## Blatt 2. Abgabe bis 03.05.2024

12. Let $K$ be a compact subset of a smooth manifold $M$ and $\left\{U_{j}\right\}_{j=1}^{k}$ be a finite family of open sets covering $K$. Prove that there exist non-negative functions $\varphi_{j} \in C_{0}^{\infty}\left(U_{j}\right)$ such that $\sum_{j=1}^{k} \varphi_{j} \equiv 1$ in an open neighbourhood of $K$ and $\sum_{j=1}^{k} \varphi_{j} \leq 1$ in $M$.
Remark. The family $\left\{\varphi_{j}\right\}$ is called a partition of unity at $K$ subordinate to $\left\{U_{j}\right\}$. If all $U_{j}$ are charts then the existence of the partition of unity was proved in lectures.
Hint. Choose first a finite family $\left\{W_{i}\right\}$ of charts covering $K$ and such that each $W_{i}$ is contained in one of the sets $U_{j}$. By a theorem from lectures, there exists a partition of unity $\left\{\psi_{i}\right\}$ of $K$ subordinate to $\left\{W_{i}\right\}$. Use functions $\psi_{i}$ to construct functions $\varphi_{j}$.
13. Let $M$ be a Riemannian manifold.
(a) Prove the product rule for the operators $d$ and $\nabla$ on $M$ :

$$
\begin{equation*}
d(u v)=u d v+v d u \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla(u v)=u \nabla v+v \nabla u \tag{3}
\end{equation*}
$$

where $u$ and $v$ are smooth function on $M$.
(b) Prove the chain rule for the operators $d$ and $\nabla$ on $M$ :

$$
d f(u)=f^{\prime}(u) d u
$$

and

$$
\nabla f(u)=f^{\prime}(u) \nabla u,
$$

where $u$ and $f$ are smooth functions on $M$ and $\mathbb{R}$, respectively.
14. Let $(M, \mathbf{g})$ be a Riemannian manifold. Let $U$ and $V$ be charts on $M$ with the local coordinates $x^{1}, \ldots, x^{n}$ and $y^{1}, \ldots, y^{n}$, respectively. Denote by $g^{x}$ and $g^{y}$ the matrices of $\mathbf{g}$ in $U$ and $V$, respectively. Let $J=\left(J_{i}^{k}\right)_{k, i=1}^{n}$ be the Jacobian matrix of the change $y=y(x)$ defined in $U \cap V$ by

$$
\begin{equation*}
J_{i}^{k}=\frac{\partial y^{k}}{\partial x^{i}} \tag{4}
\end{equation*}
$$

where $k$ is the row index and $i$ is the column index. Prove the following identity in $U \cap V:$

$$
\begin{equation*}
g^{x}=J^{T} g^{y} J, \tag{5}
\end{equation*}
$$

where $J^{T}$ denotes the transposed matrix.
15. Let $\mathbf{g}, \widetilde{\mathbf{g}}$ be two Riemannian metrics on a smooth manifold $M$ and let $g^{x}$ and $\widetilde{g}^{x}$ be the matrices of $\mathbf{g}$ and $\widetilde{\mathbf{g}}$, respectively, in some local coordinate system $x^{1}, \ldots, x^{n}$. Prove that the ratio

$$
\frac{\operatorname{det} \widetilde{g}^{x}}{\operatorname{det} g^{x}}
$$

does not depend on the choice of the coordinate system (although separately $\operatorname{det} g^{x}$ and $\operatorname{det} \widetilde{g}^{x}$ do depend on the coordinate system).

