Prof. A. Grigoryan

Blatt 2. Abgabe bis 03.05.2024

12. Let K be a compact subset of a smooth manifold M and $\{U_j\}_{j=1}^k$ be a finite family of open sets covering K. Prove that there exist non-negative functions $\varphi_j \in C_0^{\infty}(U_j)$ such that $\sum_{j=1}^k \varphi_j \equiv 1$ in an open neighbourhood of K and $\sum_{j=1}^k \varphi_j \leq 1$ in M. *Remark.* The family $\{\varphi_j\}$ is called a partition of unity at K subordinate to $\{U_j\}$. If all U_j are charts then the existence of the partition of unity was proved in lectures. *Hint.* Choose first a finite family $\{W_i\}$ of charts covering K and such that each W_i is contained in one of the sets U_j . By a theorem from lectures, there exists a partition of unity $\{\psi_i\}$ of K subordinate to $\{W_i\}$. Use functions ψ_i to construct functions φ_j .

- 13. Let M be a Riemannian manifold.
 - (a) Prove the product rule for the operators d and ∇ on M:

$$d\left(uv\right) = udv + vdu\tag{2}$$

and

$$\nabla\left(uv\right) = u\nabla v + v\nabla u,\tag{3}$$

where u and v are smooth function on M.

(b) Prove the chain rule for the operators d and ∇ on M:

$$df\left(u\right) = f'\left(u\right)du$$

and

$$\nabla f\left(u\right) = f'\left(u\right)\nabla u,$$

where u and f are smooth functions on M and \mathbb{R} , respectively.

14. Let (M, \mathbf{g}) be a Riemannian manifold. Let U and V be charts on M with the local coordinates $x^1, ..., x^n$ and $y^1, ..., y^n$, respectively. Denote by g^x and g^y the matrices of \mathbf{g} in U and V, respectively. Let $J = (J_i^k)_{k,i=1}^n$ be the Jacobian matrix of the change y = y(x) defined in $U \cap V$ by

$$J_i^k = \frac{\partial y^k}{\partial x^i},\tag{4}$$

where k is the row index and i is the column index. Prove the following identity in $U \cap V$:

$$g^x = J^T g^y J, (5)$$

where J^T denotes the transposed matrix.

15. Let \mathbf{g} , $\mathbf{\tilde{g}}$ be two Riemannian metrics on a smooth manifold M and let g^x and \tilde{g}^x be the matrices of \mathbf{g} and $\mathbf{\tilde{g}}$, respectively, in some local coordinate system $x^1, ..., x^n$. Prove that the ratio

$$\frac{\det g^x}{\det g^x}$$

does not depend on the choice of the coordinate system (although separately det g^x and det \tilde{g}^x do depend on the coordinate system).