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Abstract

We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non-
compact Lie groups and on infinite discrete groups. By using this method, we are able to
recover the previously known results for unimodular amenable Lie groups as well as for cer-
tain classes of discrete groups including the polycyclic groups, and to give them a geometric
interpretation. We also obtain new results for some discrete groups which admit the structure
of a semi-direct product or of a wreath product. These include the two-generators groups
of affine transformations of the real line 〈x �→ x + 1, x �→ λx〉 with λ algebraic, as well as
lamplighter groups with nilpotent base.
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1 Introduction

Let G be a finite dimensional connected non-compact unimodular Lie group. One can endow
G with a left-invariant Riemannian structure. Denote by M the corresponding Riemannian
manifold and by ∆ its Laplace-Beltrami operator. The associated heat semigroup {exp(t∆)}t>0

has a smooth density pt(x, y) with respect to the Haar measure, which is called the heat kernel.
Alternatively, pt(x, y) is the transition density of the Brownian motion on M .

Because of the left-invariance, the on-diagonal value pt(x, x) of the heat kernel does not depend
on x ∈ G; let us denote

ΦM (t) = pt(x, x).

Our main interest in the present work is in lower estimates for ΦM (t) as t → +∞, as well as
in similar estimates for discrete groups. Note that the behavior of ΦM(t) for large t does not
depend on the choice of the Riemannian structure up to multiplicative constants (see [47], [34]).
Therefore, it can be considered as a property of the sole group G.

Denote by V (r) the volume (=the Haar measure) of a geodesic ball on M of radius r. Again,
the behavior of V (r) for large r is an invariant of G. The following dichotomy takes place provided
G is amenable:

– either the volume growth is polynomial, that is, for some positive integer D,

crD ≤ V (r) ≤ CrD, ∀r ≥ 1, (1.1)

and then the heat kernel decays also polynomially as follows:

ct−D/2 ≤ ΦM(t) ≤ Ct−D/2, ∀t ≥ 1; (1.2)

– or the volume growth is exponential

c exp (cr) ≤ V (r) ≤ C exp (Cr) , ∀r ≥ 1, (1.3)

in which case
c exp(−Ct1/3) ≤ ΦM (t) ≤ C exp(−ct1/3), ∀t ≥ 1 (1.4)

(here C and c stand for some positive constants, possibly different at different occurrences).

Note that, for non-amenable Lie groups, a third possibility takes place: the volume growth is
exponential and the heat kernel decays as exp(−Ct).

The description of the possible behaviors of the volume growth function is due to Guivarc’h
([21]) and Jenkins ([24]). The estimate (1.2) and the upper bound in (1.4) are due to Varopoulos
([44], [45]). The lower estimate in (1.4) is due to Alexopoulos [1], [2] (see also [22] and [46]).
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The situation with discrete groups is much more complicated. Let G be an infinite finitely
generated group and let Γ be a Cayley graph of G (see Section 5 for definitions). Denote by
pk(x, y) the transition probability of the simple random walk {Xk}k∈N

on Γ. Again, pk(x, x) does
not depend on x; let us denote

ϕΓ(k) = pk(x, x).

We are interested in estimating ϕΓ(k) from below as k → +∞. Again, the behaviour of ϕΓ(k) is,
up to multiplicative constants, an invariant of the group G (see [34]). Even if we restrict ourselves
to the solvable case, the range of possible decay rates of the heat kernel is richer than in the case
of Lie groups.

Denote by V (r) the cardinality of a combinatorial ball on Γ of radius r. First of all, there is
no dichotomy in the volume growth. By the results of H.Bass [5] and Gromov [20], if the volume
growth V (r) is at most polynomial then it does admit the estimate (1.1) with an integer D.
However, apart from the case of the exponential growth (1.3), there are examples (which are due
to Grigorchuk [19], see also [4]) of groups whose volume growth is strictly between polynomial
and exponential. For the heat kernel estimates that are known in that case, see Corollary 7.4
below.

In the polynomial volume growth case (1.1), one can also prove that

ck−D/2 ≤ ϕΓ(k) ≤ Ck−D/2, (1.5)

where the upper bound holds for all positive integers k and the lower bound holds for all even k
(because of the parity problem on bipartite graphs). The upper bound was proved in [43] whereas
the lower bound follows from [23].

If G is non-amenable then, again, by a theorem of Kesten [26], the heat kernel decays expo-
nentially in k. Assume that the group G is amenable and its volume growth is exponential as in
(1.3) (excluding the groups of intermediate growth). Then one can claim only the upper bound

ϕΓ(k) ≤ exp(−ck1/3). (1.6)

In general, the matching lower bound fails. As was shown in [33, Theorem 7.1], there are solvable
groups with exponential volume growth for which the heat kernel decays as exp(−ckα) with
α ∈ (0, 1), and α can be taken arbitrarily close to 1. It is an interesting question to characterize
those groups of exponential volume growth which admit the lower bound

exp(−Ck1/3) ≤ ϕΓ(k), (1.7)

for even k. For example, by the result of Alexopoulos ([1], [2]), the lower bound (1.7) holds
for polycyclic groups. Since the volume growth on polycyclic groups is either polynomial or
exponential, we see that the above dichotomy holds among polycyclic groups, too.

The upper estimates in (1.2), (1.5), (1.4) and (1.6) have now a simple proof and a clear
geometric interpretation. One proves first a universal isoperimetric inequality for groups which
takes into account the volume growth function V (r) ([13]). From there, one obtains a Faber-
Krahn inequality which is known to be equivalent to the correct upper estimate of the heat kernel
([16]). See Section 2 for detailed explanations.

The proof of the lower bound in (1.2), (1.5) can be obtained via the Gaussian upper bounds
for the heat kernel ([14], [39], [23]). A simpler proof follows from [11], Thm. 2.7. The proof in [2]
of the lower bound in (1.4) and (1.7) uses structure results for Lie groups and polycyclic groups
as well as certain properties of Brownian motion in RD and random walks in ZD.

Our method provides a more direct approach to the lower bounds in (1.4), (1.7) for Lie groups
and polycyclic groups, and gives new lower bounds for some other situations; as a by-product,
it makes the lower bounds in (1.2) and (1.5) completely transparent. The method relies on the
following two ingredients:
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(i) A technique of [11] for obtaining lower bounds, which is based on the so-called anti-Faber-
Krahn inequalities (see Sections 2 and 4 for details).

(ii) A technique of constructing families of so-called Følner couples - pairs of sets with certain
volume and distance properties, which allow to obtain the anti-Faber-Krahn inequalities.
Certain aspects of this technique are reminiscent of the construction of Følner sets on groups
in [30], [31].

The main emphasis of the present work is on the case of discrete groups. Although we
provide a full proof of the lower bounds in (1.2) and (1.4) for amenable unimodular Lie groups
(see Sections 2, 3, and Theorem 3.3), the result itself is not new. In the general case, our proof
relies on the geometric constructions of [31], but in a model case (the group Sol), it can be made
entirely self-contained (see the end of Section 3).

For the discrete case, ingredient (i) is developed in Section 4 in the context of arbitrary
graphs (Theorem 4.8). As far as (ii) is concerned, for certain typical groups, sequences of Følner
couples can be built in a direct and explicit way as we do in Section 5 (Theorems 5.1, 5.2). In
the general case, we introduce in Section 6 the notion of contraction of graphs as a convenient
setting where one can construct sequences of Følner couples (Theorem 6.1). We apply these
techniques in Section 7 to obtain the heat kernel lower bounds for certain classes of groups which
are semi-direct products as well as for polycyclic groups (Theorems 7.5, 7.10).

Our approach applies (but is not restricted) to the following situations. Let G be the
Baumslag-Solitar group BS(q) = 〈X,Y : XY = XqY 〉 where q > 1 is an integer. This group
has exponential volume growth, is solvable but not polycyclic. The heat kernel on its Cayley
graph admits the estimate

exp(−Ck1/3) ≤ ϕΓ(k) ≤ exp(−ck1/3), (1.8)

where k is even for the lower bound. The upper bound is a consequence of the general result
discussed above whereas the lower bound is proved within the scheme (i) − (ii) (see Theorems
5.1, 7.9). The lower bound for this group was first obtained in [32] (see also [48, III.15.C]).

Let G be the lamplighter group Z2 
 ZD. Every element of G is a pair (f, a) where a ∈ ZD

and f is a function on ZD with finite support taking the values 0, 1 ∈ Z2. The group law in G is
given by

(f, a) + (g, b) = (f + g(· − a), a + b)

where g(· − a) is the function
x �→ g(x − a).

The random walk on the corresponding Cayley graph corresponds to movements of a lamplighter
on ZD with a current position at a, who can either switch the value of f at a or move to one of
the neighboring elements of ZD. The heat kernel of this group admits the estimate

exp(−Ck
D

D+2 ) ≤ ϕΓ(k), (1.9)

for even k. This estimate was proved in [33], alongside with the matching upper bound (see also
[48, III.15.D]; see [25], [42] for earlier results). Our Theorem 5.2 provides the estimate (1.9) for a
wider class of wreath products F 
A where F is a finite group and A is a finitely generated group
with polynomial volume growth of degree D as in (1.1).

In Section 7.4, we prove the estimate (1.8) in particular for the group of affine transformations
of the real line generated by x �→ x + 1 and x �→ λx where λ is an algebraic number not equal to
0,±1 (Theorem 7.8). If λ is transcendental then the behavior of ϕΓ(k) on this group is different
(see [35] and Remark 7.2).
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With the exception of the lamplighter groups with non-abelian nilpotent base, our lower
bounds are sharp in the sense that they match previously known upper bounds. However, we
believe that the lower bounds we give are sharp in all cases.

In conclusion, let us mention that an on-diagonal estimate of the heat kernel on a finitely
generated group G implies a similar estimate for the large time behavior of the heat kernel on
any regular co-compact covering manifold with G as a deck transformation group (see [34]). It
also follows from [34] that if a finitely generated group embeds as a co-compact lattice in a Lie
group, then the large time behaviour of the heat kernel on both objects is the same. But, as it
follows from [29], the finitely generated groups under consideration in the present paper (with
the exception of polycyclic groups, which are treated in an appendix) do not embed as lattices in
any real or complex Lie group with a finite number of connected components. Therefore a direct
approach is needed.
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Notation
C, c denote positive constants whose values are unimportant. Their values may change even

within one formula. Normally (but not necessarily) C is a large constant whereas c is small.
f(s) � g(s) means

cf(s) ≤ g(s) ≤ Cf(s),

for s large enough.
f(s) � g(s) means

cf(cs) ≤ g(s) ≤ Cf(Cs),

for s large enough.
If f and g have an additional non-numerical argument x then

f(x, s) � g(x, s), ∀x ∈ X

means that, for all x ∈ X and large enough s,

cf(x, cs) ≤ g(x, s) ≤ Cf(x,Cs).

The same applies to the relation �.

2 Estimating heat kernels on manifolds

Let M be a smooth connected geodesically complete non-compact Riemannian manifold. Denote
by d(x, y) the geodesic distance on M and by B(x, r) the (open) geodesic ball of radius r centered
at x.

We assume that, alongside with the Riemannian structure, the manifold M is equipped with
a measure µ having a smooth positive density σ with respect to the Riemannian measure. In
particular, µ may be the Riemannian measure, which will be the case in the applications of this
paper. However, we present the results of this section in a more general setting because it may
prove useful in the future.

The pair (M,µ) is called a weighted manifold. There is a natural weighted Laplace operator
associated with (M,µ) and defined by

∆µ = σ−1div (σ∇u) ,
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where div and ∇ are the Riemannian divergence and gradient, respectively. Note that ∆µ is
symmetric, and even essentially self-adjoint in L2(M,µ) with domain C∞

0 (M). It is well-known
that, for any precompact open set Ω ⊂ M , the Dirichlet problem for ∆µ has a discrete positive
spectrum. Let us denote by λ1(Ω) the smallest eigenvalue of this problem. Alternatively, we have
the variational definition of the first eigenvalue, which says

λ1(Ω) = inf
f∈Lip0(Ω),f �≡0

∫ |∇f |2 dµ∫
f2dµ

, (2.1)

where Lip0(Ω) is the set of all Lipschitz functions in M vanishing outside Ω.
Denote by pt(x, y) the heat kernel associated with ∆µ. By definition, it is the kernel of the

semigroup exp (t∆µ) acting on L2(M,µ). An equivalent definition is that pt(x, y) is the positive
minimal fundamental solution of the heat equation

∂u

∂t
= ∆µu.

Yet another definition is that pt(x, y) is the density of the transition probability of the Brownian
motion Xt on M generated by ∆µ.

We are interested in the long time on-diagonal estimates of the heat kernel, that is, in the
behaviour in t → +∞ of the quantity

sup
x∈M

pt(x, x).

It is now well-known [16] that the long time behaviour of the heat kernel is closely related to a
Faber-Krahn inequality, which provides a lower bound for λ1(Ω) in terms of the measure µ(Ω).

For example, in RD with the Lebesgue measure µ, one has

λ1(Ω) ≥ cDµ(Ω)−2/D,

whereas
pt(x, x) = (4πt)−D/2 .

In general, by a Faber-Krahn inequality with function Λ we mean the following condition:

(FK) For any open precompact set Ω ⊂ M , λ1(Ω) ≥ Λ(µ(Ω)).

Proposition 2.1 ([16, Theorem 1.1]) Let Λ be a positive continuous decreasing function on
(0,+∞). Assume that (M,µ) admits the Faber-Krahn inequality (FK) with function Λ. Define
the function γ on (0,+∞) by

t =
∫ γ(t)

0

dv

vΛ(v)
(2.2)

assuming that the integral converges at 0. Then, for all t > 0,

sup
x∈M

pt(x, x) ≤ C

γ(ct)
, (2.3)

with some constants C, c > 0.

This result admits a converse - see [16].
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Remark 2.1 The relation (2.2) can be equivalently stated as follows

γ′(t)
γ(t)

= Λ(γ(t)), γ(0) = 0. (2.4)

In particular, Λ is uniquely determined by γ. It is also useful to observe that the change of
function Λ(v) �−→ cΛ(Cv) induces the change of function: γ(t) �−→ C−1γ(ct).

As was shown in [11], in order to obtain a lower bound for supx pt(x, x), it suffices to prove a so-
called anti-Faber-Krahn inequality. We say that (M,µ) admits the anti-Faber-Krahn inequality
with function Λ if the following is true:

(aFK)
{

For some v0 ≥ 0 and all v > v0, there exists an open
precompact set Ωv such that µ(Ωv) ≤ v and λ1(Ωv) ≤ Λ(v).

We need also the following definition. Given δ > 0, let us say that a positive increasing
function f ∈ C1(0,+∞) is δ-regular if, for all 0 < t ≤ s ≤ 2t,

f ′(s)
f(s)

≥ δ
f ′(t)
f(t)

.

Then we have the following result.

Proposition 2.2 ([11, Theorem 3.2]) Let Λ be a positive continuous decreasing function on
(v0,+∞) and assume that (M,µ) admits the anti-Faber-Krahn inequality (aFK) with function
Λ. Define a function γ on (0,+∞) by

t =
∫ γ(t)

v0

dv

vΛ(v)
(2.5)

and assume that γ is δ-regular. Then, for all t > 0,

sup
x∈M

pt(x, x) ≥ 1
γ(Ct)

, (2.6)

where C = 2/δ.

Remark 2.2 If v0 > 0, which means that (aFK) contains no information on small sets, the
estimate (2.6) is of little value for small time, as one should expect: γ(t) does not even tend to
zero with t.

Remark 2.3 At the present time, we do not know whether one can get rid of the regularity
assumption on γ. We will apply Proposition 2.2 in situations where the regularity of γ can be
easily verified. For example, the functions γ(t) = tα, exp(tα) are obviously regular. Assuming
that Λ is twice differentiable, the following condition in terms of the function f(ξ) := Λ(eξ) is
sufficient for γ to be δ-regular:

ff ′′ ≥ ε
(
f ′)2 (2.7)

where ε = (log2
1
δ )−1(see [16, Section 2]). For example, the functions Λ(v) = v−α and (log v)−α

satisfy (2.7). See Section 8 for another sufficient condition for δ-regularity.
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Example 2.1 If Λ(v) = Cv−1/α, α > 0, then one obtains from (2.5)

γ(t) � tα.

If Λ(v) = C(log v)−α, α > 0, then
γ(t) � exp(t

1
α+1 ).

If Λ(v) = C(log log v)β(log v)−α, α, β > 0, then

γ(t) � exp(t
1

α+1 (log t)
β

α+1 ).

In all three cases, one checks that γ is regular, either directly or by using Lemma 8.1.

Propositions 2.1 and 2.2 provide a universal method for estimating supx pt(x, x). Proving
matching upper and lower bounds for supx pt(x, x) amounts therefore to obtaining an optimal
Faber-Krahn inequality. Define the L2-isoperimetric profile of M by

Λmax(v) = inf
µ(Ω)≤v

λ1(Ω).

One can summarize the above by saying that the on-diagonal heat kernel behaviour is controlled
from above and below by Λmax (see [10] for details).

Let us discuss some methods for obtaining the Faber-Krahn and anti-Faber-Krahn inequal-
ities. Let I(·) be a positive function on (0,+∞). We say that the manifold (M,µ) admits the
isoperimetric inequality with function I if the following is true:

(Iso) For any precompact open set Ω with smooth boundary, µ′(∂Ω) ≥ I(µ(Ω))

(where µ′ is the surface area). If I(s)/s is non-increasing then (Iso) implies the Faber-Krahn
inequality (FK) with function

Λ(v) =
1
4

(
I(v)
v

)2

(2.8)

(this is basically Cheeger’s inequality - see [6], [28], [16, Proposition 2.4]).
It is natural to ask whether a kind of anti-isoperimetric inequality could imply an anti-Faber-

Krahn inequality in the same way as the isoperimetric inequality implies a Faber-Krahn inequality.
This is indeed the case in certain situations (see [11, Sections 3 and 4]) and the results of the
present paper together with [31, Section 2.2] show that these situations include Lie groups and
some interesting examples of finitely generated groups.

Let us now explain a direct method which allows to obtain anti-Faber-Krahn inequalities.
Some ancestors or relatives of this method can be found in [11], Propositions 3.4 and 4.9. The
following lemma is a simple consequence of (2.1). For any ρ > 0 and Ω ⊂ M , denote

Ωρ =
{
x ∈ Ω : d(x, �Ω) > ρ

}
Lemma 2.3 For any precompact open set Ω ⊂ M and any ρ > 0, we have

λ1(Ω) ≤ 1
ρ2

µ(Ω)
µ(Ωρ)

.

Proof. Let us define a test function f ∈ Lip0(Ω) by f(x) = d(x, �Ω).
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f(x)=d(x, )

Figure 1 Sets Ω, Ωρ and function f .

Then |∇f | ≤ 1, f = 0 outside Ω, and f ≥ ρ on Ωρ, whence we obtain

λ1(Ω) ≤
∫ |∇f |2 dµ∫

f2dµ
≤ µ(Ω)

ρ2µ(Ωρ)
,

which was to be proved.
We can now prove our main result for general manifolds.

Proposition 2.4 Let ρ be a positive increasing continuous function on (v0,+∞). Suppose that
the manifold (M,µ) satisfies the following property: for any v > v0, there exists a pair of open
precompact sets Ω′

v ⊂ Ωv such that

µ(Ωv) ≤ v , µ
(
Ω′

v

) ≥ cv , d(Ω′
v , �Ωv) ≥ ρ(v). (2.9)

Then M admits the anti-Faber-Krahn inequality (aFK) with function

Λ(v) =
1

cρ2(v)
.

Consequently, the following heat kernel lower bound holds, for all t > 0,

sup
x∈M

pt(x, x) ≥ 1
γ(Ct)

,

where γ is defined by

t =
∫ γ(t)

v0

ρ2(v)
dv

v
,

provided γ is δ-regular.

Remark 2.4 By Lemma 8.1 (see Section 8), the function γ is δ-regular provided v ρ′(v)
ρ(v) is non-

increasing for large enough v.

Proof. Denote for simplicity Ω = Ωv and Ω′ = Ω′
v. The hypothesis d(Ω′, �Ω) ≥ ρ(v) implies

Ω′ ⊂ Ωρ(v), whence
µ(Ω′) ≤ µ(Ωρ(v)).

Now Lemma 2.3 and (2.9) yield

λ1(Ω) ≤ 1
ρ2(v)

µ(Ω)
µ(Ωρ(v))

≤ 1
ρ2(v)

µ(Ω)
µ(Ω′)

≤ 1
cρ2(v)

,
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which is the first claim. The second claim follows from Proposition 2.2.
The pairs of sets Ω′

v ⊂ Ωv from the hypothesis (2.9) will be called Følner couples, in association
with the Følner sets Ω which are fat sets in the sense that the surface area of their boundary ∂Ω
is small compared to their volume µ(Ω). Indeed Ωv is fat in the sense that one can substantially
shrink it (with distance ρ(v)) while keeping a constant proportion of its volume. Følner sets are
used to prove anti-isoperimetric inequalities (see for example [30] and [31]). Similarly, Følner
couples can be used to prove anti-Faber-Krahn inequalities and, consequently, heat kernel lower
bounds.

Remark 2.5 Sometimes it may be convenient to parametrize the Følner couples in a differ-
ent way. Indeed, assume that the function ρ admits an inverse and denote V = ρ−1. Then,
parametrizing Følner couples by a new variable r = ρ(v), we can rewrite (2.9) as follows:

µ(Ωr) ≤ V (r) , µ
(
Ω′

r

) ≥ cV(r) , d(Ω′
r, �Ωr) ≥ r. (2.10)

The function γ can be found by

t =
∫ γ(t)

v0

[V−1(v)
]2 dv

v
.

This formula should be compared with formula (3.4) from Corollary 3.2 below, which provides a
similar upper bound for the heat kernel in terms of the volume growth function

V (x, r) = µ(B(x, r)).

If V(r) � V (x, r) then the Følner sets, though being far from spherical in general (see [30]), still
retain something of the behaviour of spheres (as in Example 2.2 below). In this case the lower
bound of Proposition 2.4 matches the upper bound of Corollary 3.2.

Proposition 2.4 provides a general approach to heat kernel lower bounds, which will be used
in the next section in the case of Lie groups. The following example is a particular case of [11,
Theorem 2.7]. However, it demonstrates how the present method works.

Example 2.2 Suppose that the function V (x, r) is polynomial, that is, for some x ∈ M and
D > 0,

V (x, r) � rD. (2.11)

Define Ωr = B(x, 2r) and Ω′
r = B(x, r). Then µ(Ω′

r) � µ(Ωr) � rD and d(Ω′
r, �Ωr) = r. Hence,

(2.10) holds with the function V (r) = CrD, or ρ(v) = cv1/D . Consequently, Proposition 2.4
yields the anti-Faber-Krahn inequality with function

Λ(v) � v−2/D (2.12)

and the heat kernel lower bound
sup
x∈M

pt(x, x) ≥ ct−D/2. (2.13)

Note that both (2.12) and (2.13) are sharp in RD.
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3 Lie groups

Let us first recall how one can obtain heat kernel upper bounds for unimodular amenable Lie
groups in a simple and geometric way. Given a connected unimodular Lie group G, fix a left-
invariant Riemannian structure on G and denote by M the corresponding Riemannian manifold.
Denote by µ the Riemannian measure, which coincides with the Haar measure. By the left-
invariance of the metric, V (x, r) := µ(B(x, r)) does not depend on x. We can therefore set
V (r) = V (x, r) and call V (r) the volume growth function. Similarly, the heat kernel pt(x, x) on
(M,µ) does not depend on x, and we denote

ΦM (t) = pt(x, x).

Proposition 3.1 ([13, Theorem 4]) Let G be a connected unimodular Lie group, endowed with
a left-invariant Riemannian metric. Then the associated manifold M admits the isoperimetric
inequality (Iso) with function

I(v) :=
cv

V −1(Cv)
, (3.1)

where V −1 is the inverse function of the volume growth function.

Combining with (2.8) and Proposition 2.1, we obtain:

Corollary 3.2 Under the assumptions of Proposition 3.1, the manifold M admits the Faber-
Krahn inequality (FK) with function

Λ(v) =
(

c

V −1(Cv)

)2

. (3.2)

Consequently, we have, for all t > 0,

ΦM (t) ≤ C

γ(ct)
(3.3)

where γ is defined by

t =
∫ γ(t)

0

[
V −1(v)

]2 dv

v
. (3.4)

Example 3.1 If V (r) � rD then (3.2) and (3.3) yield Λ(v) � v−2/Dand

ΦM (t) ≤ Ct−D/2, t ≥ 1. (3.5)

If V (r) � er then we obtain Λ(v) � (log v)−2 and

ΦM(t) ≤ C exp(−ct1/3), t ≥ 1. (3.6)

Here is our main result for Lie groups. It says that, in the unimodular and amenable case,
one can obtain from the volume growth function also a correct lower bound for the heat kernel.

Theorem 3.3 Let G be a connected non-compact unimodular amenable Lie group, endowed with
a left-invariant Riemannian metric. Then the associated Riemannian manifold M admits the
anti-Faber-Krahn inequality (aFK) with function

Λ(v) :=
(

C

V −1(cv)

)2

, (3.7)

11



and, for all t > 0,
ΦM(t) ≥ c

γ(Ct)
, (3.8)

where γ is defined by

t =
∫ γ(t)

0

[
V −1(v)

]2 dv

v
. (3.9)

Because of the dichotomy for volume growth on Lie groups, one can formulate a combination
of Corollary 3.2 and Theorem 3.3 in the following way.

Theorem 3.4 Under the hypotheses of Theorem 3.3, we have either

• V (r) � rD and ΦM(t) � t−D/2,

• or V (r) � er and ΦM(t) � e−t1/3
.

As we already mentioned, this theorem is well-known ([44], [45], [2], [22]). Our contribution
here is to give a simple and geometric proof of the lower bounds, which matches somewhat the
proof of the upper bounds relying on [13] and [16]. The ideas involved in this new proof will also
open the way for the treatment of discrete groups.

Theorem 3.3 will be deduced from Proposition 2.4. The following statement, based on the
structure of Lie groups, will be used in order to construct families of Følner couples needed to
apply Proposition 2.4.

Given a connected non-compact unimodular amenable Lie group G and an associated Rie-
mannian manifold M , there exists a simply connected solvable Lie group S quasi-isometric to M .
Let a be the growth exponent of the commutator group [S, S] of S (which is nilpotent and simply
connected). The quotient S/[S, S] is a vector space, let b be its dimension. If the volume growth
is exponential then a, b ≥ 1. For all this, see [31, Sections 2.2, 3.4, 4.4].

Proposition 3.5 ([31, Section 2.2]) Let G be a connected unimodular amenable Lie group with
exponential growth, and a, b be defined as above. Then there exists a two-parameter family {Ωt,u}
of subsets of G, increasing in t and decreasing in u (where t varies in [1,+∞) and u varies in
[0, t/2]), and possessing the following properties:

(a) For all t and u in the range,

µ(Ωt,u) � (αt − uβt
)a (t − u)b , (3.10)

for some numbers α > β > 1.

(b) For all t and u in the range,
d(Ωt,u, �Ωt,0) ≥ εu , (3.11)

for some ε > 0.

At the end of this section, we will show a typical example of group G where the family {Ωt,u}
can be explicitly constructed. For the general case, see [31].

Proof of Theorem 3.3. If the volume growth V (r) is polynomial then the statement of
Theorem 3.3 follows from Example 2.2. An obvious adaptation of the same technique yields the
small time estimate in (3.8). Assume now that G has exponential volume growth, i.e. V (r) � er.

12



Then we apply Proposition 3.5. It follows from (3.10) and from a > 0 that for any v large enough,
say v > v0 > 0, there exists t � log v so that

µ(Ωt,0) ≤ v and µ(Ωt,t/2) ≥ cv. (3.12)

Using (3.11), we obtain
d(Ωt,t/2, �Ωt,0) ≥ εt/2 ≥ c log v.

Hence, we can apply Proposition 2.4 with the Følner couples Ωv = Ωt,0, Ω′
v = Ωt,t/2 and the

function ρ(v) = V−1(v) = c log v. This yields (aFK) with function Λ1(v) =
(

C
log v

)2
. Let γ1 be

defined by

t =
∫ γ1(t)

v0

[V−1(v)
]2 dv

v
,

which yields γ1(t) = exp(C ′(t + c)1/3). In particular, γ1 is regular, and

ΦM (t) ≥ 1
γ1(Ct)

.

Since V −1(v) � log v � V−1(v), (3.7) as well as (3.8) for large time are true.

In the rest of this section, we show a simple proof of the crucial Proposition 3.5 for a specific
Lie group. Let G = Sol, that is, G = R2 � R, where R (with the coordinate z) acts on R2 (with
the coordinates (x, y)) by the matrix (

ez 0
0 e−z

)
.

The commutator group [G,G] is R2 (with the coordinates (x, y)); the quotient G/[G,G] is iso-
morphic to R (with the coordinate z). Thus in that case a = 2 and b = 1.

As a manifold, Sol is diffeomorphic to R3, and it can be equipped with the left-invariant
Riemannian metric g defined by

(gij) =


 e−2z 0 0

0 e2z 0
0 0 1


 . (3.13)

Denote this manifold by M . It is well-known that M has exponential volume growth. Let us
define the following two-parameter family of boxes in M

Ωt,u :=
{
(x, y, z) ∈ R3 : |x| < e2t − uet, |y| < e2t − uet, |z| < t − u

}
, (3.14)

where t > 0 and 0 < u ≤ t, and show that it satisfies the conditions (a) and (b) of Proposition
3.5.

To verify (a), let us observe that det (gij) = 1. Therefore, the Riemannian volume in M
coincides with the Euclidean volume in R3, whence

µ(Ωt,u) = 8
(
e2t − uet

)2 (t − u)

matching (3.10).
Let us prove (b). Consider any smooth path γ(s) : [0, l] → M parametrized by the Riemannian

arc length s and starting from a point γ(0) ∈ Ωt,u. Assuming that it has length l and that

l ≤ u, (3.15)

13



let us prove that γ(l) ∈ Ωt,0 which will then imply

d(Ωt,u , �Ωt,0) ≥ u,

that is, (3.11) with ε = 1.

z

y

x

t

e2t

e2t

t-u

e2t-uet

e2t-uet

(0)

(l)

Figure 2 Boxes Ωt,0, Ωt,u in the first octant and the path γ(s).

Let us set
γ(s) = (x(s), y(s), z(s)) .

Due to g33 = 1, the projection of M onto the z-axis does not increase the length. Therefore, for
any s ∈ [0, l], as γ(0) ∈ Ωt,u and because of (3.15),

|z(s)| ≤ |z(0)| + s ≤ (t − u) + l ≤ t. (3.16)

Hence, the entire path γ lies between two hyperplanes z = ±t containing two faces of the box
Ωt,0, respectively.

In order to show that γ(l) ∈ Ωt,0, we are left to verify that

|γ(l) − γ(0)|Eucl ≤ uet

where the subscript Eucl refers to the Euclidean distance in R3. As follows from the definition
(3.13) of the Riemannian metric of M , for any vector v at the point (x, y, z), we have the following
inequality

|v|Eucl ≤ e|z| |v|M . (3.17)

In particular, for the vector v =
·
γ which has the Riemannian length 1, we obtain from (3.17) and

(3.16)
| ·
γ (s)|Eucl ≤ e|z(s)| ≤ et,

whence

|γ(l) − γ(0)|Eucl ≤
∫ l

0
| ·
γ (s)|Euclds ≤ let ≤ uet,

which was to be proved.
Note that an easy way to verify that M has exponential growth is to check that, for large t,

B(0, 10t) ⊃ Ωt,0.
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4 Estimating heat kernels on graphs

Let Γ be an infinite (countable) graph, i.e. a set of vertices, some of which are connected by
an edge. If two vertices x, y ∈ Γ are neighbors, i.e. are connected by an edge, then we write
x ∼ y (equivalently, y ∼ x) and denote the edge by xy. Assume that Γ is connected, i.e. any
two vertices can be joined by an edge path in Γ, and locally finite, i.e. each vertex has a finite
number of neighbors called its degree.

Denote by d(x, y) the graph distance on Γ: for any x, y ∈ Γ, d(x, y) is the minimal number of
edges in a path connecting x and y. Let B(x, r) be the ball of radius r > 0 centered at x ∈ Γ,
that is

B(x, r) = {y ∈ Γ : d(x, y) < r} .

Any edge xy will be equipped with a weight µxy = µyx > 0 (if x and y are not neighbors then
we set µxy = 0). This induces also a weight µ on vertices defined by

µ(x) =
∑
y∼x

µxy

which extends to a measure on Γ by

µ(Ω) =
∑
x∈Ω

µ(x),

for all finite sets Ω ⊂ Γ. We will use also the following notation for the volume of the ball B(x, r):

V (x, r) = µ(B(x, r)).

We will call the pair (Γ, µ) a weighted graph. For example, we may put µxy = 1 for all
neighboring vertices x and y. This weight is referred to as the standard weight on Γ. For the
standard weight, µ(x) is equal to the degree of the vertex x.

There is a natural random walk Xk on the weighted graph (Γ, µ). It is determined by the
transition function

P (x, y) :=
µxy

µ(x)
. (4.1)

If µ is the standard weight then Xk is referred to as the simple random walk on Γ.
Denote by Pk(x, y) the transition probability of the random walk Xk, that is,

Pk(x, y) = Px {Xk = y} .

It can also be defined inductively by P0(x, y) = δxy and

Pk(x, y) =
∑
z∈Γ

Pk−1(x, z)P (z, y).

The heat kernel pk(x, y) of (Γ, µ) is defined by

pk(x, y) =
Pk(x, y)

µ(y)
.

In other words, pk(x, y) is the density of the transition probability Pk(x, y) with respect to the
measure µ. As follows from (4.1) and µxy = µyx, the heat kernel is symmetric in x, y, that is, the
random walk Xk is reversible with respect to the measure µ on Γ.
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Alternatively, it is possible to construct a weight on Γ assuming that there is a nearest neighbor
random walk Xk on Γ reversible with respect to a measure µ. Indeed, the weight µxy is recovered
via the measure µ and the transition function P (x, y) by

µxy := P (x, y)µ(x) = µyx.

We shall need the following notions related to analysis on graphs. Let f denote a function on
Γ.

1. The operators. Define the gradient

∇xyf := f(y) − f(x)

and the Laplace operator

∆f(x) :=
∑
y∈Γ

P (x, y)f(y) − f(x) =
∑
y∈Γ

P (x, y)∇xyf =
1

µ(x)

∑
y∈Γ

(∇xyf)µxy .

2. The norms and spaces. The space 
p(Γ) is the set of all functions f on Γ for which the
following norm is finite:

‖f‖p =

(∑
x∈Γ

|f(x)|p µ(x)

)1/p

.

If Ω ⊂ Γ, we denote by 
p(Ω) the set of all functions in 
p(Γ) vanishing outside Ω.

The Dirichlet form is defined by

E(f) := (−∆f, f)�2(Γ) =
1
2

∑
x,y∈Γ

(∇xyf)2 µxy.

3. The eigenvalues. Let Ω ⊂ Γ. Denote by ∆Ω the restriction of the Laplace operator to 
2(Ω)
that is, for any f ∈ 
2(Ω),

∆Ωf(x) =
{

∆f(x), x ∈ Ω,
0, x /∈ Ω

(recall that f = 0 outside Ω). If Ω is non-empty and finite, −∆Ω is a self-adjoint positive
definite operator on the finitely dimensional space of all functions on Ω. Denote by λ1(Ω)
the smallest eigenvalue of −∆Ω. Alternatively, it admits the following variational definition

λ1(Ω) = inf
f∈�2(Ω)

f �≡0

E(f)
‖f‖2

2

. (4.2)

Similarly to the case of manifolds, heat kernel upper and lower bounds on (Γ, µ) can be ob-
tained via Faber-Krahn and anti-Faber-Krahn inequalities. The following statement is a discrete
version of Proposition 2.1 and can be proved in the same way as [9, Proposition V.1], [16].

Proposition 4.1 Suppose that
v0 := inf

x∈Γ
µ(x) > 0.

Assume that, for any finite non-empty set Ω ⊂ Γ,

λ1 (Ω) ≥ Λ(µ(Ω)),
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where Λ is a continuous positive decreasing function on [v0,+∞). Define the function γ on
(0,+∞) by

t =
∫ γ(t)

v0

dv

vΛ(v)
. (4.3)

Then, for all k ∈ N,

sup
x∈Γ

pk(x, x) ≤ C

γ(ck)
.

The converse statement is also true, provided γ is δ-regular - see [9], [16].
The rest of this section is devoted to obtaining lower bounds for supx∈Γ pk(x, x). We will focus

around two results: Proposition 4.4, which states a lower bound similar to the upper bound of
Proposition 4.1, and Theorem 4.8, which is a discrete analogue of Proposition 2.4.

Let us start with the following elementary lower bound.

Proposition 4.2 Let (Γ, µ) be a weighted graph. Then, for any non-empty finite set Ω ⊂ Γ, and
for all even k ∈ N,

sup
x∈Γ

pk(x, x) ≥ (1 − λ1(Ω))k

µ(Ω)
. (4.4)

In particular, if λ1(Ω) ≤ 1/2 then

sup
x∈Γ

pk(x, x) ≥ exp (−2λ1(Ω)k)
µ(Ω)

. (4.5)

Remark 4.1 Since Γ is connected and infinite, the following inequality holds for any non-empty
finite set Ω ⊂ Γ:

0 < λ1(Ω) < 1

(see [7] or [12, Lemma 3.2]).

Remark 4.2 Note that, in general, one cannot claim any non-trivial lower bound for pk(x, x) if
k is odd. For example, for any bipartite graph (say the Cayley graph associated to the canonical
generating set of ZD), one has pk(x, x) = 0 for all odd k. Note that the estimate (4.5) was
obtained in [11, Proposition 4.3] for all k under the additional hypothesis P (x, x) ≥ c > 0 which
is not assumed here.

Proof. Let {λi(Ω)}i≥1 be the eigenvalues of the operator −∆Ω in increasing order. Then

PΩ := Id + ∆Ω has the eigenvalues 1 − λi(Ω). Writing tr
(
PΩ
)k in two ways, we obtain∑

i≥1

(1 − λi(Ω))k =
∑
x∈Ω

PΩ
k (x, x).

Using the fact that PΩ
k (x, x) ≤ Pk(x, x) for any x, we obtain, for even k,

(1 − λ1(Ω))k ≤
∑
x∈Ω

Pk(x, x) =
∑
x∈Ω

pk(x, x)µ(x) ≤ µ(Ω) sup
x∈Ω

pk(x, x),

whence (4.4) follows.
The estimate (4.5) is a consequence of (4.4) and the following elementary inequality:

1 − λ ≥ exp (−2λ) , ∀λ ∈ [0,
1
2
].
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Definition 4.3 Given a numerical sequence {vn}n≥1 such that vn ↑ ∞ and a function Λ defined
on {vn}, we say that (Γ, µ) admits the discrete anti-Faber-Krahn inequality with Λ and {vn}, if
the following holds:

(daFK) There exists a sequence {Ωn}n≥1 of non-empty finite sets in Γ such that

µ(Ωn) ≤ vn, λ1(Ωn) ≤ Λ(vn). (4.6)

The following proposition is a version of [11, Theorem 4.7] adapted to the above formulation
of anti-Faber-Krahn inequalities.

Proposition 4.4 Let Λ be a positive continuous non-increasing function on (0,+∞). Assume
that (Γ, µ) admits (daFK) with Λ and some sequence {vn}n≥1. Fix some positive v0 < v1, define
the function γ on (0,+∞) by

t =
∫ γ(t)

v0

dv

vΛ(v)
, (4.7)

and assume that γ is δ-regular in the sense of Section 2. Let k be a positive even integer such
that

δ2 ≤ k

γ−1(vn)
≤ δ1, (4.8)

for some n ≥ 1 and some positive δ2 < δ1, where

δ1 =
1
2

min
(

δ,
1

− log(1 − λ1(Ω1))

)
.

Then, for this k, we have
sup
x∈Γ

pk(x, x) ≥ c

γ(Ck)
, (4.9)

where C = 2/δ2 and c = v0/v1.

Condition (4.8), with a fixed δ2, may not be satisfied by all integers k unless the sequence
of the volumes {vn} is dense enough. The conclusion of Proposition 4.4 can be reformulated as
follows: the estimate (4.9) holds for those k which are in the following union of segments:⋃

n≥1

[δ2γ
−1(vn), δ1γ

−1(vn)]. (4.10)

Hence, we obtain the following consequence.

Corollary 4.5 Under the hypotheses of Proposition 4.4, assume in addition that there is a con-
stant K > 1 such that

γ−1(vn+1) ≤ Kγ−1(vn), for all n large enough. (4.11)

Then the lower bound (4.9), with suitable c and C, holds for all large enough even k.

Proof. Indeed, take δ2 = δ1/K. Then (4.11) implies that the consecutive segments in (4.10)
overlap, whence the claim follows by Proposition 4.4.

For example, if γ(t) � tα then (4.11) becomes

vn+1 ≤ K ′vn,
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which allows vn to grow at most as a geometric series. If γ(t) � exp (tα) then (4.11) becomes

log vn+1 ≤ K ′ log vn

which allows vn to grow as fast as vn = een
.

Proof of Proposition 4.4. Given an even k and a positive integer n satisfying (4.8), let
us consider first the (main) case when Λ(vn) ≤ 1/2. By (4.6), this implies λ1(Ωn) ≤ 1/2. By
Proposition 4.2 with Ω = Ωn and by (4.6), we obtain

sup
x∈Γ

pk(x, x) ≥ exp (−2λ1(Ωn)k)
µ(Ωn)

≥ exp (−2Λ(vn)k)
vn

.

Let us rewrite this estimate as follows

sup
x∈Γ

pk(x, x) ≥ exp (−Ln) . (4.12)

where
Ln := log vn + 2kΛ(vn). (4.13)

Define τn by

τn :=
∫ vn

v0

ds

sΛ(s)
= γ−1(vn)

so that vn = γ(τn). Using the identity Λ(γ(t)) = (log γ(t))′ which follows from (4.7), we rewrite
(4.13) as

Ln = log γ(τn) + 2k (log γ)′ (τn). (4.14)

By the mean-value theorem, there exists θ ∈ (τn, 2τn) such that

(log γ)′ (θ) =
log γ(2τn) − log γ(τn)

τn
. (4.15)

The δ-regularity of γ yields
(log γ)′ (θ) ≥ δ (log γ)′ (τn). (4.16)

From (4.14), (4.15) and (4.16), we obtain

Ln ≤ log γ(τn) + 2k
log γ(2τn) − log γ(τn)

δτn
.

Hypothesis (4.8) gives

2δ2 ≤ 2k
τn

≤ 2δ1 ≤ δ

whence
Ln ≤ log γ(2τn) ≤ log γ(

2k
δ2

)

Finally, this inequality and (4.12) imply (4.9) with c = 1 and C = 2/δ2.
Consider now the case Λ(vn) > 1/2. By the monotonicity of Λ, we have also Λ(v) > 1/2 for

all v ≤ vn. Then, as long as γ(t) ≤ vn, (4.7) yields

t ≤
∫ γ(t)

v0

2dv

v
= 2 log

γ(t)
v0

.

Hence, for all t ≤ γ−1(vn), we have

γ(t) ≥ v0 exp (t/2) . (4.17)
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On the other hand, by Proposition 4.2 with Ω = Ω1,

sup
x∈Γ

pk(x, x) ≥ (1 − λ1(Ω1))k

µ(Ω1)
≥ exp (−k/ (2δ1))

v1
, (4.18)

where we have used the condition log(1−λ1(Ω1)) ≥ − (2δ1)
−1 . By (4.8), we have k/δ1 ≤ γ−1(vn).

Therefore we can apply (4.17) with t = k/δ1, and comparing with (4.18) yields (4.9) with c = v0/v1

and C = 1/δ1.
The following statement provides a simple upper bound for λ1(Ω) and is a discrete version of

Lemma 2.3.

Lemma 4.6 Let Ω be a finite subset of Γ and let Ω′ ⊂ Ω. If , for some ρ ≥ 1,

d(Ω′, �Ω) ≥ ρ

then
λ1(Ω) ≤ 1

ρ2

µ(Ω)
µ(Ω′)

.

Proof. Indeed, define a test function f ∈ 
2(Ω) by f(x) = d(x, �Ω). Then |∇xyf | ≤ 1 for
x ∼ y and f(x) ≥ ρ on Ω′ whence we obtain, by (4.2),

λ1(Ω) ≤
1
2

∑
x,y∈Γ (∇xyf)2 µxy∑
x∈Γ f2(x)µ(x)

≤
∑

x∈Ω

∑
y∼x µxy

ρ2µ(Ω′)
=

µ(Ω)
ρ2µ(Ω′)

,

which was to be proved.
Finally, we can state our main result for graphs. Let V be a positive continuous increasing

function on [1,+∞) whose inverse V−1 is defined on [V(1),+∞).

Definition 4.7 We say that (Γ, µ) admits a sequence of Følner couples adapted to V if there
exists a sequence {(Ω′

n,Ωn)}n≥1 of pairs of non-empty finite sets Ω′
n ⊂ Ωn in Γ such that vn :=

µ(Ωn) ↑ ∞ and {
µ(Ω′

n) � vn, vn ≤ V(n),
V−1(vn+1) ≤ CV−1(vn), d(Ω′

n, �Ωn) ≥ cn.
(4.19)

Any individual pair (Ωn,Ω′
n) from this sequence is called a Følner couple (see Fig. 3). The

function V is called a Følner volume function.

cn

n

n

Figure 3 A Følner couple Ωn, Ω′
n.

Let us introduce some notation for logarithmic derivatives:

Lf :=
f ′

f
and L2f := L (Lf) =

f ′′

f ′ −
f ′

f
.
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Theorem 4.8 Assume that (Γ, µ) admits a sequence of Følner couples adapted to a function V.
Assume also that V ∈ C2(1,+∞), V ′ > 0, and

−1
s
≤ L2V(s) ≤ C

s
, (4.20)

for all large enough positive s. Define the function γ by

t =
∫ γ(t)

V(1)

[V−1(v)
]2 dv

v
. (4.21)

Then, for all large enough even integers k,

sup
x∈Γ

pk(x, x) ≥ c

γ(Ck)
. (4.22)

Comparing (4.21) with the formula (7.2) of Corollary 7.2 we see that the Følner volume
function V(r) plays here the same role as the ball volume growth function V (x, r) in the upper
bound result (cf. the comments at the end of Remark 2.5). We shall encounter below some
situations where the property V(r) � V (x, r) holds, as well as situations where it does not.

Computation of L2V for standard functions V is shown in the table (where α is a positive
parameter):

V(s) = sα exp (sα) exp (exp (sα)) logα s

L2V (s) = −1
s

α−1
s

α−1
s + αsα−1 −1

s

(
1 + 1

log s

)
(4.20) holds for all α for all α never never

For our applications, we will need the functions V (s) = Csα and exp(Csα) for which the hypoth-
esis (4.20) holds.

Example 4.1 If V(n) = CnD then (4.21) yields γ(t) � tD/2. For example, if the volume growth
of (Γ, µ) satisfies V (x, r) � rD for some x ∈ Γ and all r large enough then we can take Ωn =
B(x, 2n) and Ω′

n = B(x, n). Hence, we obtain a sequence of Følner couples adapted to the
function V(n) = CnD, and the heat kernel satisfies the lower bound (4.22) with γ(t) � tD/2.

Example 4.2 If V(n) = exp (Cnα), 0 < α ≤ 1, then γ(t) � exp(t
α

α+2 ). A particularly important
case is V(n) = exp(Cn) where we have γ(t) � exp(t1/3). Examples of Cayley graphs with such
Følner volume functions will be discussed in Section 7.

Proof of Theorem 4.8. We use the notation of Definition 4.7 for the sequence of Følner
couples. By Lemma 4.6 and (4.19) we have

λ1(Ωn) ≤ C

n2
. (4.23)

By (4.19) we have, if vn ≥ V(1),
n ≥ V−1(vn) (4.24)

whence

λ1(Ωn) ≤
(

C

V−1(vn)

)2

.

Introduce the function

Λ(v) =
(

C

V−1(v)

)2

(4.25)
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and observe that the equality (4.7) which defines a function γ on the base of a function Λ can be
rewritten as

t =
∫ γ(t)

V(1)

dv

vΛ(v)
= c

∫ γ(t)

V(1)

[V−1(v)
]2 dv

v
(4.26)

where we have taken v0 = V(1). Therefore, up to a constant multiple of the variable, the function
γ we have just defined coincides with the one defined by (4.21), so that it suffices to prove (4.22)
with this γ.

The estimate (4.22) will follow from Corollary 4.5 if we show that γ is δ-regular and that

γ−1(vn+1) ≤ Cγ−1(vn). (4.27)

We will obtain these properties of γ using the hypothesis (4.20).
The δ-regularity of γ. Denote ρ = V−1. By Lemma 8.1 (see Section 8), γ is δ-regular provided

vLρ(v) is non-increasing for large v. Taking v = V (s) we see that

vLρ(v) =
1

sLV(s)

The hypothesis L2V(s) ≥ −1
s implies (sLV(s))′ ≥ 0 so that sLV(s) increases and hence vLρ(v)

decreases.
The density condition (4.27). Changing s = V−1 (v) in (4.26) and taking t = γ−1(vn), we

obtain

γ−1(vn) = c

∫ V−1(vn)

1
s2LV (s) ds.

Since by (4.19) V−1(vn+1) ≤ CV−1(vn), the density condition (4.27) will follow from the following
inequality ∫ Cr

1
s2LV (s) ds ≤ C ′

∫ r

1
s2LV (s) ds. (4.28)

Observe that if a positive continuous function f(s) satisfies the doubling condition

f(2s) ≤ Cf(s), for s large enough,

then F (s) =
∫ s
1 f(u) du also satisfies this condition. A sufficient condition for f being doubling

is:
Lf(s) ≤ C

s
,

as one can see by integrating between t and 2t. Since we know by (4.20) that L2V(s) ≤ C
s , the

function LV(s) is doubling. This implies that s2LV(s) is also doubling, whence (4.28) follows.
We conclude this section by quoting the following result which allows to obtain the heat kernel

lower bound directly from the volume growth function.

Proposition 4.9 Suppose that, for some vertex x0 ∈ Γ and all r large enough,

V (x0, r) ≤ V (r)

where V (r) is a continuous increasing function on (0,+∞) such that the function

r �→ r2

log V (r)
(4.29)

is strictly increasing and going to +∞ as r → +∞. Denote by R(s) the inverse function to
(4.29). Then, for all large enough even k,

pk(x0, x0) ≥ c

V (R(Ck))
. (4.30)
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The proof of Proposition 4.9 in the setting of manifolds can be found in [11, Theorem 6.1].
Strictly speaking, the proof for the setting of graphs in this form is not written anywhere. For
the case of polynomial function V (r), it was proved by Lust-Piquard [27]. Some modification of
her method in the spirit of [11] allows to obtain Proposition 4.9 in full generality (see [11, p.160]).

If V (x0, r) ≤ CrD then Proposition 4.9 gives R(t) � √
t log t and

pk(x0, x0) ≥ c (k log k)−D/2 .

There are examples showing that the factor log k cannot be eliminated - see [3], [11] and [18]. Let
us recall that if V (x0, r) � rD then as we have seen in Example 4.1,

sup
x

pk(x, x) ≥ ck−D/2 ,

which contains no log k.
If V (x0, r) ≤ exp (Crα) where α ∈ (0, 1] then we obtain R(t) � t

1
2−α and

pk(x0, x0) ≥ exp(−Ck
α

2−α ). (4.31)

The exponent α
2−α here is sharp ([11], §8).

5 Discrete groups: some examples

Let G be an infinite finitely generated group and let S be a finite symmetric set of generators of
G, not containing the identity element. The couple (G,S) induces a so-called Cayley graph Γ.
The vertices of Γ are identified with the elements of G, and two vertices x, y ∈ Γ are connected
by an edge if x−1y ∈ S (in particular, G acts simplicially on Γ on the left). Each vertex x ∈ Γ
has |S| neighbors in Γ (here |S| is the cardinality of S). Define the weight on Γ by µxy = 1

|S| ,
for all neighboring vertices x, y. Then the corresponding measure µ on Γ satisfies µ(x) ≡ 1, and
µ(Ω) = |Ω|.

The random walk associated with µ is the simple random walk on Γ. Clearly, the heat kernel
pk(x, x) does not depend on x so that we can set

ϕΓ(k) = pk(x, x).

Hence, lower bounds for supx pk(x, x) obtained in the previous section, will imply for Cayley
graphs lower bounds for ϕΓ(k).

The purpose of this section is to prove lower estimates for ϕΓ(k) for Cayley graphs Γ of certain
groups G such as Baumslag-Solitar groups and lamplighter groups. We will show how one can
directly construct sequences of Følner couples on such groups and hence, obtain the heat kernel
lower bounds by Theorem 4.8. More general groups will be treated in Section 7, after introducing
tools for constructing sequences of Følner couples.

For the (standard) group theoretic terminology that we use in the sequel we refer for instance
to [37].

5.1 Baumslag-Solitar groups

Fix a positive integer q and let Z[1q ] be the smallest additive subgroup of Q containing all rational
numbers k/qm with k,m ∈ Z. Then Z acts on Z[1q ] as follows: a(u) = qau. Hence, the semi-direct
product G = Z[1q ] � Z is defined with the group law

(u, a)(v, b) = (u + qav, a + b) (5.1)
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(we use here the multiplicative notation for G and the additive notation for Z[1q ] and Z). The
group G is solvable (in fact it is metabelian), but not polycyclic as it contains the non-finitely
generated subgroup Z[1q ]. It is generated by the set S =

{
X,X−1, Y, Y −1

}
where X = (0, 1) and

Y = (1, 0). This can be easily seen from the identities

(u, a)X = (u, a + 1) , (u, a)X−1 = (u, a − 1),
(u, a)Y = (u + qa, a) , (u, a)Y −1 = (u − qa, a).

The group Z[1q ] � Z is isomorphic to the Baumslag-Solitar group

BS(q) := 〈X,Y : XY = Y qX〉 ,

and it has exponential volume growth (see [32], chap.8).

0 a

u [1/2]

1a

X-1

2a

X
Y

Y
Y

X

Y-1

X

Y-1

Figure 4 The Cayley graph of the group Z[12 ] � Z.

The Cayley graph Γ of BS(2) is illustrated by Fig. 4. Each vertical dotted line contains a
countable dense set of vertices of Γ. Any vertex on Γ has two horizontal and two vertical edges
which correspond to acting by the generators X,X−1 and Y, Y −1, respectively.

Theorem 5.1 The heat kernel on the Cayley graph Γ = (Z[1q ] � Z, S) admits the estimate

ϕΓ(k) � exp(−k1/3) (5.2)

for even k.

Credits for this result were given in the introduction.
Proof. The upper bound in (5.2) follows from the fact that G has exponential volume growth

and from Corollary 7.4 in Section 7 below. The lower bound will be derived from Theorem 4.8.
For all positive integers n and for non-negative m ≤ n/2, define the set Ωn,m by

Ωn,m = {(u, a) ∈ G : m < a < n − m, u is integer and |u| < (2q)n − mqn}

(see Fig. 5).
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u [1/q]

1
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Figure 5 The set Ωn,m consists of the integer nodes which fall into the shaded box.

First observe that if x ∈ Ωn,m and y ∼ x in Γ then y ∈ Ωn,m−1 provided m ≥ 1. Indeed,
y = xs where s is a generator. If x = (u, a) and s = (0,±1) then

y = (u, a ± 1) ∈ Ωn,m−1.

If s = (±1, 0) then
y = (u ± qa, a).

Since u ± qa is an integer and

|u ± qa| ≤ |u| + qa < ((2q)n − mqn) + qn = (2q)n − (m − 1) qn,

we see that y ∈ Ωn,m−1.
Let us take Ωn = Ωn,0 and Ω′

n = Ωn,n/3. As a consequence of the above argument, we obtain

d(Ω′
n, �Ωn) ≥ n/3.

On the other hand, it is obvious that

|Ωn| � n (2q)n ,
∣∣Ω′

n

∣∣ � n
(
(2q)n − n

3
qn
)

(where |Ω| is the cardinality of the set Ω). If n is large enough, this implies

|Ωn| �
∣∣Ω′

n

∣∣ ≤ Cn (2q)n .

Let V(s) = Cs (2q)s. Note that V−1(v) � log v. One checks easily that V satisfies conditions
(4.19) and (4.20), therefore Theorem 4.8 applies. Hence, computing the function γ(t) by (4.21),
we obtain γ(t) � exp(t1/3), whence the claim follows.

5.2 Lamplighter groups

Let F and A be two groups. Denote by U the set of all functions u : A → F having finite
support1. Then U has a natural group structure induced by that of F . The group A acts by left
translations on the group U as follows:

ua(x) := u(a−1x).
1The support of a function u : A → F is defined by suppu := {x ∈ A : u(x) �= IdF } .
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The semi-direct product G = U � A is defined with the group law

(u, a)(v, b) = (uva, ab).

The group U � A is called the wreath product of F with A and is denoted by F 
 A.
Assume now that F and A are finitely generated. Fix some symmetric sets of generators

SF = {f1, f2, ..., fn} and SA = {a1, a2, ..., am} for the groups F and A, respectively. A natural
set S of generators of the group Γ = F 
 A consists of the following two sequences

(IdU , a1), (IdU , a2), ...., (IdU , am) (5.3)

(where IdU is the function on A identically equal to IdF ) and

(v1, IdA), (v2, IdA), ..., (vn, IdA), (5.4)

where the functions vi ∈ U are defined by

vi(x) =
{

fi, x = IdA,
IdF , x �= IdA.

(5.5)

The group G = U � A is called a lamplighter group, for the following reason. A vertex a on
the Cayley graph A = (A,SA) is regarded as the current position of the lamplighter moving on
A, whereas the value u(x) ∈ F describes the current status of a lamp at the point x ∈ A. Acting
by the generators (5.3) corresponds to a move of the lamplighter to a neighboring vertex on A,
whereas acting by the generators (5.4) means switching a lamp at the current position a to a
neighboring status.

A typical example of a wreath product is Z2 
 ZD. The group law of G = Z2 
 ZD is given by

(u, a)(v, b) = (u + v(· − a), a + b).

The generating set S consists of the 2D + 1 elements

(0,±e1), (0,±e2), ..., (0,±eD), (δ(x), 0),

where {ei} is the canonical basis in ZD and δ(x) is the Z2-valued delta-function on ZD taking
the value 1 at 0 ∈ ZD, and 0 otherwise. In this case, the lamplighter moves on the nodes of ZD,
and a lamp at each node may be either ON or OFF (see Fig. 6).

e1

e2

Figure 6 Lamplighter group Z2 
 Z2.

The next theorem is our main result for wreath products.

Theorem 5.2 Let F be a finite group and A be a finitely generated group with polynomial volume
growth of degree D > 0. Then the heat kernel on the Cayley graph Γ = (F 
 A,S) admits the
following lower bound

ϕΓ(k) ≥ exp(−Ck
D

D+2 ), (5.6)

for all even k.
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For the case A = ZD, the estimate (5.6) was proved in [33, Theorem 7.1] as well as a matching
upper bound for ϕΓ(k) (see also [25], [42] for earlier results). In the setting of Theorem 5.2, the
base A may be nilpotent, in which case no matching upper bound for ϕΓ(k) seems to be known.

Proof. The proof is similar to the one of Theorem 5.1. Denote by BA(r) the ball in A of
radius r centered at IdA, and define the sets Ωn,m by

Ωn,m = {(u, a) ∈ G : a ∈ BA(n − m) and suppu ⊂ BA(n)}

(see Fig. 7).

BA(n)

BA(n-m)

Figure 7 The set Ωn,m : the lamplighter is inside the ball BA(n − m), and the lamps may be
“ON” only inside the ball BA(n).

We claim that if x ∈ Ωn,m and y ∼ x then y ∈ Ωn,m−1. Indeed, let y = xs where s is a
generator. If x = (u, a) and s = (IdU , ai) then

y = (u, a)(IdU , ai) = (u, aai) .

Since aai ∈ B(n − m + 1), we see that y ∈ Ωn,m−1. If s = (vi, IdA) then we have

y = (u, a)(vi, IdA) = (uva
i , a).

Note that vi has support at a single point IdA. Hence, supp va
i is a single point a. Since suppu ⊂

BA(n) and a ∈ BA(n), we see that
suppuva

i ⊂ BA(n)

whence y ∈ Ωn,m−1.
As in Theorem 5.1, we set Ωn = Ωn,0 and Ω′

n = Ωn,n/2, which yields d(Ω′
n, �Ωn) ≥ n/2. We

are left to compute |Ωn| and |Ω′
n|. Denote by VA(r) the cardinality of the ball BA(r) and observe

that the number of distinct functions u supported in BA(r) is equal to |F |VA(r) . Therefore,

|Ωn,m| = VA(n − m) |F |VA(n) .

Since the function VA(r) is polynomial, we obtain for some C,D > 0

|Ωn| �
∣∣Ω′

n

∣∣ � VA(n) |F |VA(n) � nD exp
(
CnD

) ≤ exp
(
C ′nD

)
.

Clearly, the function V(s) = exp
(
C ′sD

)
satisfies the conditions of Theorem 4.8. Since V−1(v) �

(log v)1/D, we compute by (4.21) γ(t) � exp(t
D

D+2 ) whence (5.6) follows.
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6 Contractions of graphs

Let Γ and A be two graphs. We say that A is a contraction of Γ if there is a surjection π : Γ → A
such that if x, y ∈ Γ and x ∼ y then either π(x) = π(y) or π(x) ∼ π(y). For each a ∈ A, denote
Γa = π−1(a). Then Γ is the union of all fibres Γa as a runs over A. If two vertices x, y are
neighbors in Γ then they either lie in the same fibre or in neighboring fibres (see Fig. 8).

Graph

Graph

a

a

x

y

b

Figure 8 A contraction A of the graph Γ

Given a graph, we call a norm any function on this graph taking values in [0,+∞]. Suppose
that two graphs A and Γ as above are endowed with norms |·| and ‖·‖, respectively. Assume that
the norm on A satisfies the following property:

(LT ) The local triangle inequality: if a, b ∈ A and a ∼ b then

|b| ≤ |a| + 1. (6.1)

In the applications below, |·| will be defined as a graph distance to a fixed vertex or a subset
of A so that (6.1) will be automatically true.

The following hypothesis relates the norm in Γ to the one in A. Fix a subset A∗ ⊂ A.

(DT ) There exists a positive number β with the following property: for all x, y ∈ Γ such that
x ∼ y,

‖y‖ ≤ ‖x‖ + β|π(x)|, (6.2)

provided π(x) ∈ A∗.

Here (DT ) stands for “Distortion” and “Triangle” because in the setting of groups in Section
7, (DT ) will be deduced from a distortion condition for semi-direct products and from a triangle
inequality. In most applications, the set A∗ coincides with A, in which case the condition π(x) ∈
A∗ may be discarded. Of course, (DT ) is always valid if A∗ is empty but no interesting result
can be obtained in this case. Examples with a non-trivial A∗ will be considered in Section 7.4.

Let us introduce another norm on A by

|a|∗ = dA(a, �A∗)

where dA is the graph distance on A. If A∗ = A then �A∗ is empty and |a|∗ ≡ +∞. Note that
|a|∗ > 0 is equivalent to a ∈ A∗.

Let us define the balls Ba(r) in Γa and the truncated balls BA(r, ρ) in A as follows:

Ba(r) = {x ∈ Γa : ‖x‖ < r} and BA(r, ρ) = {a ∈ A : ρ < |a|∗ , |a| < r} . (6.3)
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BA(r, )

|a|<r

|a| >*

*

Figure 9 The truncated ball BA(r, ρ) on A is the intersection of the sets {|a| < r} and
{|a|∗ > ρ}.

If A∗ = A then BA(r, ρ) is independent of ρ:

BA(r, ρ) = BA(r) = {a ∈ A : |a| < r} . (6.4)

We say that a function f(r) is doubling if, for all r large enough,

f(r/2) ≥ cf(r). (6.5)

Let us introduce the following volume hypothesis.

(W ) There exist positive increasing functions VA(r) and V⊥(r) on (0,+∞), such that, for r large
enough,

VA(r) � #BA(r, 0) � #BA(r, εr), (6.6)

for some ε > 0, and
V⊥(r) � #Ba(r) ∀a ∈ A. (6.7)

Moreover, both V⊥(r) and VA(r) are doubling.

If A∗ = A then the condition (6.6) simplifies as follows:

VA(r) � #BA(r).

The next theorem is our main result for graphs which admit a contraction.

Theorem 6.1 Let Γ be an infinite connected locally finite graph, and let A be a contraction of
Γ. Suppose that there are norms on Γ and A satisfying (LT ), (DT ) and (W ). Assume also that
the graph Γ is equipped with a weight µ such that, for all x ∈ Γ,

µ(x) � 1. (6.8)

Then the heat kernel of the weighted graph (Γ, µ) satisfies the estimate

sup
x∈Γ

pk(x, x) ≥ exp(−Ck1/3), (6.9)

for all large enough even k.
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Examples of applications of Theorem 6.1 will be given in Section 7. The proof of Theorem
6.1 uses Theorem 4.8, for which we need to construct on Γ a sequence of Følner couples Ω′

n, Ωn

satisfying (4.19). The contraction procedure will enable us to construct them as certain cylindrical
sets in Γ.

Let us define the following two-parameter family of sets

Ωn,m = {x ∈ Γ : m < |π(x)|∗ , |π(x)| < n − m and ‖x‖ < αn − mβn} , (6.10)

where n ∈ N and 0 ≤ m < n. Here we choose α > β > 1 so that, for all n ∈ N,

αn ≥ 2nβn. (6.11)

The set Ωn,m can be regarded as a cylinder in Γ with base BA(n−m,m) and “height” αn −mβn

(see Fig. 10).

BA(n-m)

BA(n-m+1)

n,m

n,m-1

n-m n

x y
π

Figure 10 The sets Ωn,m and Ωn,m−1 in Γ.

Lemma 6.2 If x ∈ Ωn,m and y ∼ x then y ∈ Ωn,m−1 provided 1 ≤ m < n.

Proof. Since y ∼ x, we have either π(y) = π(x) or π(y) ∼ π(x). As follows from the
hypothesis (LT ) and definition (6.10) of Ωn,m,

|π(y)| ≤ |π(x)| + 1 < n − (m − 1)

and
|π(y)|∗ ≥ |π(x)|∗ − 1 > m − 1.

Observe that |π(x)|∗ > m > 0 implies π(x) ∈ A∗. Hence, we can apply (DT ) and obtain

‖y‖ ≤ ‖x‖ + β|π(x)| < (αn − mβn) + βn = αn − (m − 1)βn,

whence y ∈ Ωn,m−1.

Lemma 6.3 There exists ε > 0 such that, for all n large enough and 0 ≤ m ≤ εn,

#Ωn,m � V⊥(αn)VA(n). (6.12)

Consequently,
#Ωn,εn � #Ωn,0 . (6.13)
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Proof. As follows from definitions (6.10) of Ωn,m and (6.3) of Ba,

#Ωn,m =
∑

m<|a|∗ , |a|<n−m

#Ba(αn − mβn).

Together with (6.7), this implies

#Ωn,m � V⊥(αn − mβn)#BA(n − m,m).

If n is large enough and m ≤ εn for small enough ε > 0, then we obtain, by (6.6) and the doubling
property of VA,

#BA(n − m,m) � VA(n − m) � VA(n)

whence
#Ωn,m � V⊥(αn − mβn)VA(n). (6.14)

Finally, we have by (6.11)

αn − mβn ≥ αn − nβn ≥ αn

2
,

so that (6.12) follows from (6.14) by the doubling property of V⊥.

Lemma 6.4 If n is large enough and 0 ≤ m ≤ εn then

d(Ωn,m, �Ωn,0) > m.

Proof. As follows from Lemma 6.3, if n is large enough and 0 ≤ m ≤ εn then Ωn,m is
non-empty and finite. Since Γ is infinite and Ωn,0 is finite, �Ωn,0 is non-empty. Choose points x
and y so that x ∈ Ωn,m and y /∈ Ωn,0. Then it suffices to show that d(x, y) > m. Let x and y be
connected by a path of length k

x = x0 ∼ x1 ∼ ... ∼ xk = y.

Suppose that k ≤ m. By Lemma 6.2, we obtain x1 ∈ Ωn,m−1, x2 ∈ Ωn,m−2, ..., and y ∈ Ωn,m−k.
Hence y ∈ Ωn,0, which contradicts the choice of y. Therefore, k > m and d(x, y) > m.

Proof of Theorem 6.1. As Theorem 4.8 says, in order to estimate the heat kernel on Γ
from below, it suffices to construct a sequence of Følner couples {Ω′

n,Ωn} , that is, sets Ω′
n ⊂ Ωn

such that vn := µ(Ωn) ↑ +∞ and

µ(Ω′
n) � vn, vn ≤ V(n), V−1(vn+1) ≤ CV−1(vn), d(Ω′

n, �Ωn) ≥ cn, (6.15)

with a function V, which is C2 and with C1 inverse, satisfying the regularity condition (4.20Then
the function V(n) determines the lower bound for supx pk(x, x).

Let us take
Ωn = Ωn,0 and Ω′

n = Ωn,εn ,

where ε is determined by Lemma 6.3. By Lemma 6.4, we have d(Ω′
n, �Ωn) ≥ εn. By Lemma 6.3

and hypothesis (6.8),
µ(Ω′

n) � µ(Ωn) � V⊥(αn)VA(n).

The doubling hypothesis in condition (W ) imply that, for r large enough, V⊥(r) ≤ CrC and
VA(r) ≤ CrC whence, for C large enough,

µ(Ωn) ≤ exp (Cn) := V (n) .

We are left to verify the third condition in (6.15) which amounts to

log vn+1 ≤ C log vn. (6.16)

Since vn � V⊥(αn)VA(n), (6.16) follows from the doubling property of V⊥ and VA.
Finally, with the function V (n) = exp(Cn), Theorem 4.8 yields the lower bound (6.9).
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7 Discrete groups: a general method

The main result of this section is Theorem 7.5 which generalizes the heat kernel estimates obtained
in Section 5. While in Section 5 we directly constructed Følner couples on certain groups and
applied Theorem 4.8, in the present section we will use the machinery of graph contraction based
on Theorem 6.1. Applications of Theorem 7.5 for concrete groups are presented in Theorems 7.9
and 7.8.

We use the same notation as in Section 5.

7.1 Heat kernel and volume growth on groups

Let us first recall how one obtains heat kernel upper bounds on a Cayley graph Γ via its volume
growth. We say that the graph (Γ, µ) admits the isoperimetric inequality with function I if, for
all finite sets Ω,

(Iso) µ(∂Ω) ≥ I(µ(Ω)),

where
∂Ω = {x ∈ Ω : x ∼ y for some y /∈ Ω} .

Recall that B(x, r) denotes balls on Γ and that V (x, r) = µ(B(x, r)). Since V (x, r) does not
depend on x, we denote

V (k) = V (x, k)

for k ∈ N, and extend V to R∗
+ by linearity. In this way V is a continuous strictly increasing

function.

Proposition 7.1 ([13, Theorem 4]) Let Γ be the Cayley graph of a an infinite finitely generated
group G. Then Γ admits the isoperimetric inequality (Iso) with function

I(v) :=
cv

V −1(Cv)
.

Combining Propositions 7.1 and 4.1 with a discrete version of Cheeger’s inequality (see [7],
[8, Proposition 7.1], [15]), we obtain the following.

Corollary 7.2 Under the assumptions of Proposition 7.1, the Cayley graph Γ admits the Faber-
Krahn inequality (FK) with function

Λ(v) =
(

c

V −1(Cv)

)2

.

Consequently, we have, for all k ∈ N,

ϕΓ(k) ≤ C

γ(ck)
(7.1)

where γ is defined by

t =
∫ γ(t)

1

[
V −1(v)

]2 dv

v
. (7.2)

Corollary 7.3 Assume that the volume growth on a Cayley graph Γ is polynomial:

V (r) � rD. (7.3)

Then, for even k,
ϕΓ(k) � k−D/2. (7.4)
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Proof. The upper bound in (7.4) is implied by Corollary 7.2 whereas the lower bound follows
from Theorem 4.8. Indeed, as was explained in Example 4.1, (7.3) implies, for arbitrary weighted
graphs,

sup
x∈Γ

pk(x, x) ≥ ck−D/2.

Since for Cayley graphs ϕΓ(k) = supx∈Γ pk(x, x), the lower bound in (7.4) follows.
Recall that by a theorem of Gromov, among finitely generated groups, the class of those with

polynomial growth coincides with the class of virtually nilpotent groups. It seems that the above
argument is the simplest known method to obtain the on-diagonal estimates (7.4) of the heat
kernel on such groups. Recall that the upper bound is originally due to Varopoulos (see [47]).
The lower bound is stated with hints in [41]. One can find a complete proof in [23].

As a consequence of Corollary 7.3 and Corollary 7.2 we see that the simple random walk on a
Cayley graph Γ is recurrent if and only if it has polynomial volume growth with exponent D ≤ 2
(see [42] and the discussion in [17, p.199]). This is a way to obtain very easily the crucial step of
the proof of Kesten’s conjecture (see [48, I.3.B] for more information).

Corollary 7.4 Let α, β ∈ (0, 1]. If a Cayley graph Γ satisfies, for all r large enough,

V (r) ≤ exp (Crα)

then, for all even k ∈ N,
ϕΓ(k) ≥ exp(−Ck

α
2−α ). (7.5)

If, for all large enough r,
V (r) ≥ exp

(
crβ
)

,

then, for all k ∈ N,
ϕΓ(k) ≤ exp(−ck

β
2+β ). (7.6)

Indeed, the upper bound (7.6) follows from Corollary 7.2 and the lower bound (7.5) from
Proposition 4.9. 2

Note, that the lower and upper bounds (7.5) and (7.6) do not match even if α = β. For
example, if α = β = 1 then

exp (−Ck) ≤ ϕΓ(k) ≤ exp(−ck1/3). (7.7)

Both upper and lower bounds here are sharp in the sense that information about the volume
growth of balls cannot imply more. Indeed, the lower bound in (7.7) is attained for non-amenable
groups whereas the upper bound is attained for polycyclic groups with exponential growth. The
lower bound is also sharp for amenable groups, since, as we already mentioned, there are groups
with exponential volume growth for which the heat kernel decays as exp(−ckα) with α ∈ (0, 1),
and α can be taken arbitrarily close to 1 ([33, Theorem 7.1]).

It is not surprising that one does not get in general sharp information about the heat kernel
from the volume growth function. The point is that on amenable groups with exponential growth
balls are far from being the level sets of the heat kernel, and one needs to look at different sets,
too.

We will apply Theorem 6.1 to obtain sharp lower bounds of the heat kernel on certain Cayley
graphs. Theorem 6.1 is particularly well-adapted to the case when the group G is a semi-direct
product. Indeed, this structure allows to define in a natural way a contraction of the Cayley
graph Γ of G.

2If we knew that V (r) � exp (Crα) then the lower bound (7.5) could also be obtained by Theorem 4.8 similarly to
Corollary 7.3 and Example 4.1. However, normally for groups and graphs one cannot have such a sharp information
about the volume growth.
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7.2 Semi-direct products

Suppose that G is a semi-direct product of two groups A and U , which we denote by G = U � A.
This means that there is a group morphism from A to the group of automorphisms of U , called
the action. The action of a ∈ A on u ∈ U is denoted by a(u) or ua. Then G is defined as the set
of pairs (u, a), u ∈ U , a ∈ A, the group law being given by

(u, a)(v, b) = (uva, ab).

Both U and A can be identified with subgroups of G in an obvious way, and U is a normal
subgroup.

Assume that G is finitely generated, and let S = {(vi, ai)} be a finite symmetric set of
generators of G, not containing the identity element of G. Denote

SU = {vi} \ {IdU} and SA = {ai} \ {IdA} .

Then SA is a finite symmetric set of generators of A.
In general, SU does not generate U . In fact, U need not be finitely generated. However, if U

is finitely generated, then one may choose some finite symmetric sets of generators SU in U and
SA in A, and define a generating set S in G by

S = (SU × {IdA}) ∪ ({IdU} × SA).

Denote by Γ the Cayley graph (G,S) and by A the Cayley graph (A,SA). Then A can be
considered as a contraction of Γ (see Section 6) with the projection π : Γ → A defined by

π(u, a) = a. (7.8)

The projection π is a homomorphism, and the fibres Γa of π are the classes aU .
Suppose that we are given norms |·| on A and ‖·‖ on U . By a norm we simply mean a function

on a group with values in [0,+∞], with no a priori assumptions. Let us introduce some further
hypotheses.

(A) The norm |·| on A satisfies the local triangle inequality : if a ∼ b then

|b| ≤ |a| + 1.

(T ) The norm ‖·‖ on U satisfies the triangle inequality: for all u, v ∈ U ,

‖uv‖ ≤ ‖u‖ + ‖v‖ . (7.9)

(D) The distortion condition: there is a positive number β and a subset A∗ ⊂ A such that

‖va‖ ≤ β|a|, (7.10)

for all v ∈ SU and a ∈ A∗.

A typical example of a norm |·| on A is the distance norm, that is the distance in the Cayley
graph A to the identity element. If the group U is finitely generated then ‖·‖ can also be defined
as a distance norm, which obviously satisfies (T ). If U is not finitely generated, one still can
choose a finitely generated subgroup U∗ ⊂ U , define a distance norm on U∗ and extend it by +∞
outside U∗. The resulting norm satisfies (T ) as well.

Condition (D) relates the norms in A and U to the structure of the semi-direct product U �A.
To some extent, the number β says how “distorted” is U � A compared to the direct product
U × A. In most applications we have A∗ = A in which case (7.10) should be true for all a ∈ A.
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Example 7.1 Consider the following class of (polycyclic) groups. Let U = ZD and A = Z.
Define the action of a ∈ A on u ∈ U by

ua = T au,

where T is any D × D matrix with integer entries such that T−1 also has integer entries. Here
we regard u as a vector in RD.

Define |·| and ‖·‖ as the Euclidean norms in Z and ZD, and let SA and SU be canonical
generating sets in Z and ZD, respectively. Conditions (A) and (T ) are obviously true. For all
v ∈ ZD and a ∈ Z, we have

‖va‖ = ‖T av‖ ≤ β|a| ‖v‖ ,

where β2 is the maximal eigenvalue of the matrix T ∗T , whence (D) follows (with A∗ = A).

Returning to the general case, define another norm on A by

|a|∗ = dA(a, �A∗)

where dA is the graph distance on A; if A∗ = A, set |a|∗ = +∞ . Obviously, |·|∗ satisfies the local
triangle inequality.

Let us introduce notation for balls and truncated balls associated with the norms in U and
A, respectively:

BU (r) := {u ∈ U : ‖u‖ < r} and BA(r, ρ) := {a ∈ A : ρ < |a|∗, |a| < r} . (7.11)

Consider the following hypothesis.

(V ) There exist increasing functions VA(r) and VU (r) on (0,+∞), which are positive for large
enough r and satisfy the conditions

VA(r) � #BA(r, 0) � #BA(r, εr), (7.12)

for some ε > 0, and
VU (r) � #BU (r). (7.13)

Moreover, both functions VA and VU are doubling (cf. (6.5)).

If A∗ = A then (7.12) can be simplified so as to match (7.13):

VA(r) � #BA(r)

where
BA(r) = {a ∈ A : |a| < r} . (7.14)

The main result of this section is the following theorem.

Theorem 7.5 Let G = U �A be an infinite finitely generated group and let Γ be its Cayley graph.
Assume that A and U admit norms which satisfy the hypotheses (A), (T ), (D), (V ). Then the
heat kernel on Γ admits the following lower bound

ϕΓ(k) ≥ exp(−Ck1/3), (7.15)

for all even k.
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Remark 7.1 If the volume growth of Γ is exponential, then the matching upper bound for the
heat kernel is given by Corollary 7.4 so that we obtain

ϕΓ(k) � exp(−k1/3).

Proof. We deduce the claim from Theorem 6.1. The hypothesis (LT ) of Theorem 6.1 follows
from (A). Extend the norm on U to one on G as follows:

|||(u, a)|||G = ‖u‖ . (7.16)

Let us show that Γ and its contraction A satisfy the hypothesis (DT ) of Theorem 6.1. If x, y ∈ Γ
and x ∼ y then s := x−1y ∈ S. Let x = (u, a) and s = (v, b) where v ∈ SU or v = IdU . Assuming
that π(x) ∈ A∗ := A∗, we have a ∈ A∗. Since y = xs = (uva, ab), we obtain, by (T ) and (D),

|||y||| = ‖uva‖ ≤ ‖u‖ + ‖va‖ ≤ |||x||| + β|a|,

which settles (DT ) for the case v ∈ SU . If v = IdU then we have

|||y||| = ‖uva‖ = ‖u‖ = |||x|||
so that (DT ) holds again.

Finally, (V ) implies the hypothesis (W ) of Theorem 6.1. Therefore, Theorem 6.1 applies and
yields the claim.

7.3 Constructing norms using subgroups

Let (A,SA) be a Cayley graph of a group A. Assume that there is a semigroup A∗ ⊂ A containing
IdA and generated by a finite set SA∗. Let us introduce in A∗ the distance to the identity element
as follows

dA∗(a, IdA) = min {m : a = c1c2..., cm, c1, c2, ..., cm ∈ SA∗}
(in general, dA∗(a, b) is not defined for arbitrary a, b ∈ A∗). Consider also balls in A∗

BA∗(r) = {a ∈ A∗ : dA∗(a, IdA) < r}
and truncated balls

BA∗(r, ρ) = BA∗(r) ∩
{
a ∈ A∗ : dA(a, �A∗) > ρ

}
.

We say that A∗ has polynomial volume growth of degree D if, for some ε > 0 and all r large
enough,

#BA∗(r) � #BA∗(r, εr) � rD

(see Fig. 11). Here dA denotes the graph distance on (A,SA).

rρ

r

a1

a2

A*={( a1,a2)
2 : a1 0, a2 0}

0

ρ

B (r,ρ)A*

A= 2

Figure 11 The semigroup A∗ has polynomial volume growth of degree 2.
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The following statement provides some way of constructing norms satisfying the hypotheses
(A), (T ), (D), (V ).

Corollary 7.6 Let G = U � A be a finitely generated group, and S be a finite symmetric set of
generators of G not containing the identity. Assume that the following conditions hold:

(i) There is a finitely generated semigroup A∗ ⊂ A containing IdA and such that

dA∗(a, IdA) = dA(a, IdA), ∀a ∈ A∗ (7.17)

where dA∗ is related to a finite set SA∗ of generators of A∗.

(ii) There is a finitely generated subgroup U∗ ⊂ U such that

SU ⊂ U∗
and U∗ is stable under the action of A∗, that is

a (U∗) ⊂ U∗ ∀a ∈ A∗. (7.18)

(iii) The group U∗ and the semigroup A∗ both have polynomial volume growth.

Then the heat kernel on Γ = (G,S) satisfies the estimate

ϕΓ(k) ≥ exp(−Ck1/3),

for all even k.

Proof. Let SU∗ be a finite symmetric set of generators of U∗ not containing IdU . Since
U∗ ⊃ SU , we may assume without loss of generality SU∗ ⊃ SU . Define a norm |a| on A by

|a| = dA(a, IdA)

and a norm ‖·‖ on U by

‖u‖ =
{

dU∗(u, IdU ), u ∈ U∗
+∞, u /∈ U∗

where dU∗ is the graph distance on (U∗, SU∗). Obviously, hypotheses (A), (T ) and (V ) of Theorem
7.5 are satisfied.

To prove hypothesis (D), it suffices to show that, for all v ∈ SU∗ and a ∈ A∗
‖va‖ ≤ β|a|, (7.19)

with some number β. First observe that ‖va‖ < +∞ because v ∈ U∗ and hence va ∈ U∗. If
a ∈ SA∗ then (7.19) holds for

β = max
a∈SA∗ ,v∈SU∗

‖va‖.
Before we prove (7.19) for all a ∈ A∗, let us first verify that, for any c ∈ SA∗ and any u ∈ U∗,

‖uc‖ ≤ β‖u‖. (7.20)

If u ∈ SU∗ then this follows from the definition of β. If ‖u‖ > 1, write u = vw where w ∈ SU∗
and ‖v‖ = ‖u‖ − 1. Hence, by the triangle inequality and the inductive hypothesis,

‖uc‖ = ‖vcwc‖ ≤ ‖vc‖ + ‖wc‖ ≤ β‖v‖ + β = β‖u‖.
Now we prove (7.19) for arbitrary a ∈ A∗ by induction on |a|. If |a| = 1 then, again, this

follows from the definition of β. Assume |a| > 1. By the hypothesis (7.17), |a| = dA∗(a, IdA).
Hence, a can be represented as a = cb where b ∈ A∗, c ∈ SA∗, and |b| = |a| − 1. By (7.20) and by
the inductive hypothesis, we obtain

‖va‖ = ‖(vb)c‖ ≤ β‖vb‖ ≤ ββ|b|‖v‖ = β|a|‖v‖.
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7.4 Some semi-direct products related to homotheties

The main result of this section is Theorem 7.8 that can be regarded as an application of Corollary
7.6. Let D be a positive integer and λ = (λ1, ..., λD) ∈ RD so that all components λi �= 0. Then
ZD acts on R by homotheties

a(u) := λau (7.21)

where a = (a1, ..., aD) ∈ ZD, u ∈ R and

λa := λa1
1 λa2

2 ...λaD
D .

This action defines a semi-direct product R � ZD.
Consider the additive group Zλ ⊂ R generated by all numbers λa with a ∈ ZD, that is

Zλ =
{
m1λ

a(1) + m2λ
a(2) + ... + mlλ

a(l) : l ∈ N∗, mi ∈ Z, a(i) ∈ ZD, i = 1, ..., l
}

.

Obviously, Zλ is stable under the action (7.21) so that the following group is defined:

Gλ := Zλ � ZD.

We claim that Gλ is finitely generated; moreover, the following set S generates Gλ

S = {(±1, 0), (0,±e1), ..., (0,±eD)} , (7.22)

where e1, e2, ..., eD is the canonical basis of ZD. Indeed, this can be seen from the identities

(u, a) (±1, 0) = (u ± λa, a) and (u, a) (0,±ei) = (u, a ± ei)

where u ∈ Zλ and a ∈ ZD.
The group Gλ admits a representation in the affine transformation group of the real line.

Indeed, the generator (1, 0) corresponds to the translation x → x + 1 of R and the generator
(0, ei) corresponds to the homothety x → λix. The representation is faithful if and only if
log |λ1| , ..., log |λD| are linearly independent over the rationals.

Recall that a real number α is called algebraic if it is a root of a polynomial with integer
coefficients. The minimal degree of such a polynomial is called the degree of α. If in addition the
highest coefficient of the polynomial is equal to 1 then α is called an integral algebraic number.
Hence, if n is the degree of an integral algebraic number α then

αn = c0 + c1α + c2α
2 + ... + cn−1α

n−1 (7.23)

for some integers c0, c1, ..., cn−1.

Proposition 7.7 Let λ1, λ2, ..., λD be non-zero real integral algebraic numbers. Then the heat
kernel on Γλ = (Gλ, S) satisfies the estimate

ϕΓ(k) ≥ exp(−Ck1/3),

for even k.

Proof. Denote U = Zλ, A = ZD and set

A∗ = ZD
+ :=

{
a ∈ ZD : a1 ≥ 0, a2 ≥ 0, ..., aD ≥ 0

}
.

Let U∗ be the subgroup of U generated by all numbers λa with a ∈ ZD
+ . Obviously, U∗ is stable

under multiplication by λb with b ∈ A∗ so that A∗(U∗) ⊂ U∗. It is also obvious that the semigroup
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distance dA∗ associated with the canonical generating set e1, ..., eD is equal to the restriction of
dA to A∗. Notice that U∗ ⊃ {±1} = SU and that the volume growth of A∗ is polynomial.

Let us verify that U∗ is finitely generated. Indeed, if λi has degree ni then λai
i with any ai ≥ ni

can be expressed in the form m0 + m1λi + m2λ
2
i + ... + mni−1λ

ni−1
i with integer mj. Therefore,

λa with a ∈ A∗ can be expressed as a sum of terms like ±λb1
1 λb2

2 ...λbD
D where 0 ≤ bi < ni, which

means that U∗ is finitely generated. Since U∗ is abelian, U∗ also has polynomial volume growth,
whence the lower bound for ϕΓ follows by Corollary 7.6.

Theorem 7.8 Let λ1, λ2, ..., λD be non-zero real algebraic numbers at least one of them being not
equal to ±1. Then the heat kernel on Γλ =

(
Zλ � ZD, S

)
satisfies the estimate

ϕΓ(k) � exp(−k1/3),

for even k.

Proof. Each λi satisfies an equation

miλ
ni
i = c0,i + c1,iλi + c2,iλ

2
i + ... + cn−1,iλ

ni−1
i , (7.24)

with some positive integers ni,mi and integers ck,i. Introduce the vector

ν = (m1λ1,m1,m2λ2,m2, ...,mDλD,mD) ∈ R2D,

and observe that all components νj of ν are integral algebraic numbers, which follows from (7.24)
by multiplication by mni−1

i . Therefore, by Proposition 7.7, the heat kernel on the group

Gν = Zν � Z2D

admits lower bound exp(−Ck1/3). By a result of [34], the same lower bound is true for any finitely
generated subgroup of Gν .

Thus, we are left to show that Gλ is isomorphic to a subgroup of Gν . Indeed, Zλ is naturally
identified with a subgroup of Zν because λi = ν2i−1/ν2i. For any a ∈ ZD, consider

ba := (a1,−a1, a2,−a2, ..., aD ,−aD) ∈ Z2D.

D

2D

a

b

Figure 12 The map a �→ ba.

Since the action of a ∈ ZD on Zλ is given by

a(u) = λau = (m1λ1)
a1 m−a1

1 ... (mDλD)aD m−aD
D u = νbau,

and the action of b ∈ Z2D on Zν is given by b(u) = νbu, we see that ba(u) = a(u) on Zλ. This
implies that the map from Gλ to Gν defined by

(u, a) �−→ (u, ba)
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is a morphism of Gλ into Gν .
The condition λi �= ±1 for some i implies that Gλ has exponential volume growth (to see this,

one can imitate the argument in [40], Lemma 3), so that the upper bound for the heat kernel on
Gλ follows from Corollary 7.4.

Assume that all λi’s are integers, and set q = λ1λ2...λD. Then Zλ coincides with Z[1q ] (cf.
Section 5.1 for the case D = 1). Theorem 7.8 (or Proposition 7.7) implies immediately the
following result which generalizes Theorem 5.1.

Corollary 7.9 Let all λi be integers not equal to 0,±1, and let q = λ1λ2...λD. Then the heat
kernel on the Cayley graph Γ = (Z[1q ] � ZD, S) admits the estimate

ϕΓ(k) � exp(−k1/3),

for even k.

Remark 7.2 If D = 1 and λ1 is transcendental, then Gλ can be shown to be isomorphic to Z 
Z.
In this case one has

ϕΓλ
(k) � exp(−k1/3(log k)2/3)

(see [35] and [33]). If λ1 = ±1 then Gλ is commensurable with Z, i.e. they contain isomorphic
subgroups of finite index. Namely, if λ1 = 1 then Gλ = Z and if λ1 = −1 then Gλ is the non-trivial
split extension of Z by Z2. In both cases, by the result of [34],

ϕΓλ
(k) � k−1/2.

7.5 Appendix: Polycyclic groups

The aim of this appendix is to give a self-contained proof of a result first proved by Alexopoulos
([2]). His original proof relies on certain non-trivial estimates for random walks on ZD which we
do not use here. For general information on polycyclic groups, we refer to [36], Chap. 4, or [38].

The scheme with contraction of graphs may also apply for a finitely generated group G with
abelian quotient A even if the short exact sequence

1 → U → G → A → 1

does not split.
By a theorem of Mal’cev, any polycyclic group G (up to finite index) contains a normal

subgroup U � G which is a nilpotent group, and such that G/U is abelian (see, for example,
[38, p.35], [37]). Therefore, the scheme which will be described below is well suited for polycyclic
groups.

Let G be a finitely generated group and let U be a normal subgroup of G. Assume that U is
also finitely generated, and that A := G/U = ZD. Let π : G → A be the natural homomorphism
with kernel U . Denote by {e1, e2, ..., eD} the canonical basis in ZD. For each ei choose some
gi ∈ π−1(ei) (see Fig. 13) and denote

S̃A :=
D⋃

i=1

{
gi, g

−1
i

} ⊂ G.

Let S̃U = {vj} be a finite symmetric set of generators in U . Then the set S := S̃U ∪ S̃A is a finite
symmetric set of generators of G. Denote by Γ the Cayley graph (G,S).
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U

A= 2
e1

e2

g2

g1

1

2

Figure 13 The generating set S of G is the union of {vi}, {gi} and {g−1
i }.

Theorem 7.10 Let G be a finitely generated group and U be a normal subgroup of G. If U is a
finitely generated group with polynomial volume growth and A := G/U = ZD, then the heat kernel
on the Cayley graph Γ = (G,S) admits the lower bound

ϕΓ(k) ≥ exp(−Ck1/3) (7.25)

for all even k.

In particular, this theorem covers polycyclic groups. Indeed, as was mentioned above, any
polycyclic group up to finite index is of this kind. However, a theorem of [34] implies that passing
to a finite index subgroup does not change the asymptotic behavior of ϕΓ(k).

Proof. It suffices to verify that all hypotheses (LT ), (W ) and (DT ) of Theorem 6.1 are
satisfied for Γ = (G,S) and A = (A,SA) (where SA consists of ei’s and their inverses). Note
that the homomorphism π : G → A can be considered as a projection π : Γ → A so that A is
a contraction of Γ. Let |·| be the distance norm on A, that is the graph distance to the identity
element on A. Then the hypothesis (LT ) is trivially true.

Similarly, let ‖·‖ be a distance norm on U with respect to the Cayley graph (U, S̃U ). Next,
we would like to extend ‖·‖ to a norm ||| · ||| on G. We cannot use equality (7.16) as it was
possible in the case of semi-direct products. However, the fact that A is abelian (hence admits
nice normal forms) allows to define a (set-theoretic) section with good enough properties. For
each a = a1e1 + ... + aDeD ∈ ZD, denote

σa := ga1
1 ga2

2 ...gaD
D ∈ G

and observe that
π(σa) = a1e1 + ... + aDeD = a.

If x ∈ π−1(a), let
u := x(σa)−1 ∈ U.

We see that any x ∈ G can be uniquely represented in the form:

x = uσa, u ∈ U, a ∈ ZD. (7.26)

Hence, if we fix the choice of the gi’s then we can define a norm on G by

|||uσa|||G = ‖u‖ . (7.27)

Let us verify condition (W ). Let BA(r) and Ba(r) be the balls defined by (6.4) and (6.3),
that is

BA(r) = {a ∈ A : |a| < r}
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and, for any a ∈ A,

Ba(r) = {x ∈ Γa : |||x||| < r} = {uσa ∈ G : ‖u‖ < r} .

Note that Ba(r) is in one-to-one correspondence with the ball BU (r) in the Cayley graph (U, S̃U ),
which is defined by

BU (r) = {u ∈ U : ‖u‖ < r} .

Let VA(r) and VU (r) be the cardinalities of the balls BA(r) and BU (r), respectively. By hypothesis,
both functions VA(r) and VU (r) are polynomial, whence condition (W ) follows.

We are left to verify the hypothesis (DT ). Let us first prove two lemmas.

Lemma 7.11 For all v ∈ U and a ∈ ZD,∥∥σav(σa)−1
∥∥ ≤ η|a| ‖v‖ , (7.28)

for some large enough number η.

Proof. First observe that σav(σa)−1 ∈ U so that the left-hand side of (7.28) makes sense.
By induction on |a|, (7.28) amounts to ∥∥gvg−1

∥∥ ≤ η ‖v‖ , (7.29)

for any g ∈ S̃A.
Let us prove (7.29) by induction on ‖v‖. The inductive basis for ‖v‖ = 0 is obvious. If ‖v‖ > 0

then v can be represented as v = ws where w ∈ U , s ∈ S̃U and ‖w‖ = ‖v‖ − 1. Hence,

gvg−1 =
(
gwg−1

) (
gsg−1

)
and, by the triangle inequality, ∥∥gvg−1

∥∥ ≤ ∥∥gwg−1
∥∥+

∥∥gsg−1
∥∥ . (7.30)

By the inductive hypothesis, ∥∥gwg−1
∥∥ ≤ η ‖w‖ = η(‖v‖ − 1). (7.31)

Define η by
η := max

s∈S̃U

max
g∈S̃A

∥∥gsg−1
∥∥ . (7.32)

Then (7.29) follows from (7.30), (7.31) and (7.32).
Define a commutator in the group G by

c(x, y) = xyx−1y−1. (7.33)

Since G/U = A is abelian, π(c(x, y)) = 0A whence c(x, y) ∈ U . The next lemma provides an
estimate for a norm in U of certain commutators.

Lemma 7.12 For all a ∈ ZD and h ∈ S̃A,

‖c(σa, h)‖ ≤ β|a|, (7.34)

for some large enough β.
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Proof. If |a| = 0 then c(σa, h) = IdU and the claim is trivial. If |a| = 1 then σa = g for some
g ∈ S̃A. Therefore, inequality (7.34) holds provided β is big enough so that

β ≥ max
g,h∈S̃A

‖c(g, h)‖ . (7.35)

For |a| ≥ 2, let us prove (7.34) inductively on |a|. Let i be the smallest index for which ai �= 0
so that

a = aiei + ai+1ei+1 + ... + aDeD.

Depending on the sign of ai, let us set b = a − ei or b = a + ei so that |b| = |a| − 1. By the
inductive hypothesis, w := c(σb, h) satisfies the inequality

‖w‖ ≤ β|b| = β|a|−1. (7.36)

Clearly, we have
σa = gai

i g
ai+1

i+1 ...gaD
D = gσb

where g = gi or g−1
i . Applying the general identity

c(gg′, h) = g c(g′, h)g−1c(g, h), (7.37)

for g′ = σb, we obtain
c(σa, h) = (gwg−1)c(g, h). (7.38)

By (7.29), (7.35) and (7.36), we obtain

‖c(σa, h)‖ ≤ ∥∥gwg−1
∥∥+ ‖c(g, h)‖ ≤ η ‖w‖ + β ≤ ηβ|a|−1 + β. (7.39)

We may choose β ≥ 2η which implies, for any n ≥ 2,

ηβn−1 + β ≤ 1
2
βn + β ≤ βn.

Then (7.39) yields (7.34) which finishes the proof.
Now we can prove the condition (DT ) which can be stated as follows: there exists a positive

number β such that, for all x ∈ G and s ∈ S,

|||xs||| ≤ |||x||| + β|π(x)|. (7.40)

Recall that any x ∈ G can be uniquely represented as x = uσa where u ∈ U and a = π(x) ∈ ZD.
By definition (7.27) of the norm in G, we have |||x||| = ‖u‖. Hence, it suffices to prove the
inequality

|||xs||| ≤ ‖u‖ + β|a|. (7.41)

Choose β to be large enough so that it satisfies the conclusion of Lemma 7.12 and is larger than
η from Lemma 7.11. Since S = S̃U ∪ S̃A, we consider two cases.

Case 1. Assume s ∈ S̃U . Then

xs = uσas = u(σas(σa)−1)σa = uvσa

where
v := σas(σa)−1 ∈ U.

By Lemma 7.11 and ‖s‖ = 1, we have

‖v‖ =
∥∥σas(σa)−1

∥∥ ≤ β|a| ‖s‖ = β|a|.
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Since xs = (uv)σa, we have, by (7.27) and (T ),

|||xs||| = ‖uv‖ ≤ ‖u‖ + ‖v‖ ≤ ‖u‖ + β|a|,

which was to be proved.
Case 2. Assume s ∈ S̃A. Then s = gi or s = g−1

i for some i = 1, 2, ...,D. Split a as a = a′+a′′

where
a′ = a1e1 + ... + aiei and a′′ = ai+1ei+1 + ... + aDeD,

and write
xs = uσas = uσa′

σa′′
s = uσa′

c(σa′′
, s)sσa′′

. (7.42)

Denote w := c(σa′′
, s) ∈ U , then (7.42) yields

xs = u
[
σa′

w(σa′
)−1
]
(σa′

sσa′′
). (7.43)

Since
σa′

w(σa′
)−1 ∈ U

and
σa′

sσa′′
= ga1

1 ...gai±1
i ...gaD

D = σb,

where b = a ± ei, the relation (7.43) provides a representation of xs as a product of an element
of U by σb. By definition (7.27) of the norm in G and by Lemmas 7.11, 7.12, we obtain

|||xs||| = ‖uσa′
w(σa′

)−1‖ ≤ ‖u‖ + ‖σa′
w(σa′

)−1‖
≤ ‖u‖ + β|a′| ‖w‖ ≤ ‖u‖ + β|a′|+|a′′| = ‖u‖ + β|a|,

which was to be proved.
There is an alternative way of proving heat kernel estimates on a polycyclic group. Indeed,

any polycyclic group G has a finite index subgroup which is a discrete cocompact subgroup in
a simply-connected solvable Lie group. The heat kernel estimate on the Lie group is given by
Theorem 3.3. Then one can use [34] as it was mentioned in the Introduction.

8 Appendix: δ-regularity

Lemma 8.1 Let ρ ∈ C1(0,+∞) be a positive non-decreasing function such that v ρ′(v)
ρ(v) is non-

increasing for large enough v. Define γ(t) by the identity

t =
∫ γ(t)

γ0

ρ2(v)
dv

v
(8.1)

for some γ0 > 0. Then the function γ is δ-regular for some δ > 0.

Proof. Set η(v) = ρ2(v); v η′(v)
η(v) = 2v ρ′(v)

ρ(v) is non-increasing for large enough v. By definition
of δ-regularity (see Section 2) we need to show that, for some δ > 0 and all 0 < t ≤ s ≤ 2t,

γ′(s)
γ(s)

≥ δ
γ′(t)
γ(t)

. (8.2)

Let us first show that (8.2) is implied by the following condition: for some t0 ≥ 0,

(t − t0)
γ′(t)
γ(t)

increases for t large enough. (8.3)
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Indeed, if t is large enough then by (8.3)

(t − t0)
γ′(t)
γ(t)

≤ (s − t0)
γ ′(s)
γ(s)

≤ (2t − t0)
γ′(s)
γ(s)

whence
γ′(s)
γ(s)

≥ t − t0
2t − t0

γ′(t)
γ(t)

,

and (8.2) follows with some 0 < δ < 1/2. For a bounded range of t (and s), we have, by
differentiating (8.1) and by continuity of η and γ,

γ′(t)
γ(t)

=
1

η(γ(t))
� 1

η(γ0)

so that (8.2) holds again with some δ > 0.
Now let us prove (8.3). We have already noticed that

γ ′(t)
γ(t)

=
1

η(γ(t))
.

Applying (8.1) again, we obtain

t − t0 =
∫ γ(t)

γ(t0)
η(v)

dv

v

whence

(t − t0)
γ′(t)
γ(t)

=
1

η(γ(t))

∫ γ(t)

γ(t0)
η(v)

dv

v
.

Therefore, the increasing of (t − t0)
γ′(t)
γ(t) will follow from the increasing of the function

θ �−→ 1
η(θ)

∫ θ

θ0

η(v)
dv

v
, (8.4)

where θ0 = γ(t0). By differentiating the function (8.4) in θ, we are left to verify the inequality

− η′(θ)
η2(θ)

∫ θ

θ0

η(v)
dv

v
+

1
θ
≥ 0. (8.5)

Since η is increasing, we have η′ ≥ 0. If η′(θ) = 0, then (8.5) trivially holds. If η′(θ) > 0 then
rewrite (8.5) as

1
η(θ)

∫ θ

θ0

η(v)
dv

v
≤ η(θ)

θη′(θ)
.

Using the generalized mean value theorem and the fact that v η′(v)
η(v) decreases, we obtain, for some

ξ ∈ (θ0, θ),

1
η(θ)

∫ θ

θ0

η(v)
dv

v
≤

∫ θ
θ0

η(v)dv
v

η(θ) − η(θ0)
=

η(ξ)
ξη′(ξ)

≤ η(θ)
θη′(θ)

,

which finishes the proof.
Note added in proof: Applying the method developed in this paper, Ch.Pittet and L.Saloff-

Coste have recently established the on-diagonal lower bound exp
(−Ck1/3

)
for the heat kernel

decay in finitely generated solvable groups of finite rank.
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(1983) 263-273.

[42] Varopoulos N.Th., Random walks on soluble groups, Bull. Sc. Math., 22ème série, 107 (1983) 337-344.
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