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Classical heat kernel

The heat kernel in Rn is the fundamental solution of the heat equation ∂u
∂t

= Δu:

pt (x) = 1

(4πt)n/2 exp
(
− |x|2

4t

)
.

This function is also called the Gauss-Weierstrass function. Some applications:

• Solving the Cauchy problem: u (t, ∙) = pt ∗ f .

• Mollification of functions: pt ∗ f → f as t → 0 locally uniformly provided f ∈ Cb (R).

• Proof of Sobolev embedding theorems.

• pt (x) is the transition density of Brownian motion in Rn.

• Approximation of the Dirichlet integral: for any f ∈ W 1,2 (Rn)
∫

Rn

|∇f |2 dx = lim
t→0

1
2t

∫

Rn

∫

Rn

pt (x − y) |f (x) − f (y)|2 dxdy.
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Analysis on metric spaces: integration

Since the time of Newton and Leibniz, differentiation and integration have been major con-
cepts of mathematics. Nowadays, integration amounts to construction of a measure.

Let (M,d) be a metric space and μ be a Borel measure on M . Assume in what follows
that M is α-regular, that is, for any metric ball B (x, r) := {y ∈ M : d (x, y) < r} of radius
r < r0,

μ (B (x, r)) ' rα, (1)

where α > 0.
It follows from (1) that

dimH M = α and Hα ' μ.

The number α is called also the fractal dimension of M. In some sense, α is a numerical
characteristic of the integral calculus on M .

Spaces with fractional α are called fractals. They appeared in mathematics as curious
examples that initially served as counterexamples to illustrate various theorems.

The most famous fractal – the Cantor set, was introduced by Georg Cantor in 1883.
Important examples of fractal sets are the Sierpinski gasket (SG) and Sierpinski carpet

(SC) that were introduced by Wac law Sierpiński in 1915.
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Sierpinski gasket, α = log 3
log 2

≈ 1.59

Three steps of construction of SG

Sierpinski carpet, α = log 8
log 3

≈ 1.90
Two steps of construction of SC
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Another example of a fractal: the Vicsek snowflake (VS)

Vicsek snowflake, α = log 5
log 3

≈ 1.47

Three steps of construction of VS
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Analysis on metric spaces: differentiation

On certain metric spaces, including fractal spaces, it is possible to construct a Laplace-type
operator, by means of the theory of Dirichlet forms by Beurling–Deny and Fukushima.

A Dirichlet form in L2 (M,μ) is a pair (E ,F) where F is dense subspace of L2 (M,μ)
and E is a bilinear form on F with the following properties:

1. It is positive definite, that is, E (f, f) ≥ 0 for all f ∈ F .

2. It is closed, that is, F is complete with respect to the norm

∫

M

f 2dμ + E (f, f) .

3. It is Markovian, that is, if f ∈ F then f̃ := min(f+, 1) ∈ F and E(f̃ , f̃) ≤ E (f, f).

Any Dirichlet form has the generator: a positive definite self-adjoint operator L in
L2 (M,μ) with domain dom (L) ⊂ F such that

(Lf, g) = E (f, g) for all f ∈ dom (L) and g ∈ F .
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For example, the bilinear form

E (f, g) =

∫

Rn

∇f ∙ ∇g dx (2)

in F = W 1
2 (Rn) is a Dirichlet form, whose quadratic part is the Dirichlet integral. Its

generator is L = −Δ with dom (L) = W 2
2 (Rn) .

Another example of a Dirichlet form in Rn:

E(f, f) =

∫

Rn

∫

Rn

(f (x) − f (y))2

|x − y|n+s dxdy, (3)

where s ∈ (0, 2) and F = B
s/2
2,2 (Rn) . It has the generator L = (−Δ)s/2 .

A Dirichlet form (E ,F) is called strongly local if E (f, g) = 0 whenever f = const in a
neighborhood of supp g. It is called regular if C0 (M) ∩ F is dense both in F and C0 (M) .

For example, both Dirichlet forms (2) and (3) are regular, the form (2) is strongly local,
while the form (3) is nonlocal.

The generator of any regular Dirichlet form determines the heat semigroup
{
e−tL

}
t≥0

, as

well as a Markov processes {Xt}t≥0 on M with the transition semigroup e−tL, that is,

Exf (Xt) = e−tLf (x) for all f ∈ C0 (M) .
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If (E ,F) is local then {Xt} is a diffusion while otherwise the process {Xt} contains jumps.
For example, the Dirichlet form (2) determines Brownian motion in Rn, whose transition

density is exactly the Gauss-Weierstrass function

pt (x) =
1

(4πt)n/2
exp

(

−
|x|2

4t

)

.

The Dirichlet form (3) determines a jump process: a symmetric stable Levy process of the
index s. In the case s = 1 its transition density is the Cauchy distribution

pt (x) =
cnt

(
t2 + |x|2

)n+1
2

=
cn

tn

(

1 +
|x|2

t2

)−n+1
2

,

where cn = Γ
(

n+1
2

)
/π(n+1)/2. For an arbitrary s ∈ (0, 2) we have

pt (x) '
1

tn/s

(

1 +
|x|
t1/s

)−(n+s)

.
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If a metric measure space M possesses a strongly local regular Dirichlet form (E ,F)
then we consider its generator L as an analogue of the Laplace operator. In this case the
differential calculus is defined on M .

Nontrivial strongly local regular Dirichlet forms have been successfully constructed on
large families of fractals, in particular, on SG by Barlow–Perkins ’88, Goldstein ’87 and
Kusuoka ’87, on SC by Barlow–Bass ’89 and Kusuoka–Zhou ’92, on p.c.f. fractals (including
VS) by Kigami ’93.

In fact, each of these fractals can be regarded as a limit of a sequence of approximating
graphs Γn.

Approximating graphs Γ1, Γ2, Γ3 for SG
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Define on each Γn a Dirichlet form En by

En (f, f) =
∑

x∼y

(f (x) − f (y))2

and then consider a scaled limit

E (f, f) = lim
n→∞

ρnEn (f, f)

with an appropriately chosen scaling parameter ρ. The main difficulty is to ensure the exis-
tence of ρ such that this limit exists and is nontrivial for a dense family of f . For example,
we have

• on SG: ρ = 5
3

• on VS: ρ = 3

• on SC the exact value of ρ is unknown, ρ ≈ 1.25.

On SG and VS the limit exists due to monotonicity (Kigami), while on SC it is much
harder (Bass–Barlow).
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Walk dimension

In all the above examples the heat semigroupe−tL of the Dirichlet form (E ,F) is an integral
operator:

e−tLf (x) =

∫

M

pt (x, y) f (y) dμ (y)

whose integral kernel pt (x, y) is called the heat kernel of (E ,F) or of L. Moreover, in all the
examples the heat kernel satisfies the following estimates

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(4)

for all x, y ∈ M and t ∈ (0, t0) (Barlow–Perkins ’88, Barlow–Bass ’92).
Here α is the fractal dimension while β is a new parameter that is called the walk

dimension. It can be regarded as an numerical characteristic of the differential calculus
on M .

It is known that always β ≥ 2 and that any pair (α, β) of reals with α > 0 and β ≥ 2
can be realized on some fractal as parameters in the heat kernel bounds (4) (Barlow ’04).

Hence, we obtain a large family of metric measure spaces each of them being characterized
by a pair (α, β) where α is responsible for integration while β is responsible for differentiation.
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The Euclidean space Rn belongs to this family with α = n and β = 2. In the case β = 2
the estimate (4) is called Gaussian, while in the case β > 2 – sub-Gaussian.

On fractals the values of β is determined by the scaling parameter ρ. It is known that:

• on SG: β = log 5
log 2

≈ 2. 32

• on VT: β = log 15
log 3

≈ 2. 47

• on SC the exact value of β is unknown, β ≈ 2.09.

The walk dimension β has the following probabilistic meaning. Denote by τΩ the first
exit time of Xt from an open set Ω ⊂ M , that is, τΩ = inf {t > 0 : Xt /∈ Ω} .

Then in the above setting,
for any ball B (x, r) with r < r0,
we have

ExτB(x,r) ' rβ.
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Besov spaces and characterization of β

Given an α-regular metric measure space (M,d, μ) , it is possible to define the family Bσ
p,q of

Besov spaces. We need only the following special cases: for any σ > 0 the space Bσ
2,2 consists

of functions such that

‖f‖2
Bσ

2,2
:= ‖f‖2

2 +

∫ ∫

M×M

|f(x) − f(y)|2

d (x, y)α+2σ dμ(x)dμ(y) < ∞

and Bσ
2,∞ consists of functions such that

‖f‖2
Bσ

2,∞
= ‖f‖2

2 + sup
0<r<r0

1

rα+2σ

∫ ∫

{d(x,y)<r}

|f(x) − f(y)|2 dμ(x)dμ(y) < ∞.

It is easy to see that Bσ
2,2 shrinks as σ increases and that Bσ

2,2 contains Lip0 if σ < 1. In Rn

the space Bσ
2,2 becomes {0} if σ > 1, so that for σ > 1 the definition of the Besov spaces in

Rn changes. However, in our setting we are interested in the borderline value of σ when the
space Bσ

2,2 degenerates:

σcrit = sup
{
σ > 0 : Bσ

2,2 is dense in L2
}

.
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Theorem 1 (AG–J.Hu ’03) If (E ,F) is a Dirichlet form on M such that its heat kernel
exists and satisfies the sub-Gaussian estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(5)

with some α and β then the following is true:

1. the space M is α-regular, α = dimH M and μ ' Ha;

2. σcrit = β/2 (consequently, β ≥ 2);

3. F = B
β/2
2,∞ and E (f, f) ' ‖f‖2

.
B

β/2

2,∞

.

Partial results in this direction: Jonsson ’96, Pietruska-Paluba ’00.

Corollary 2 Both α and β in (5) are the invariants of the metric structure (M,d) alone.

Big open question. Let M be an α-regular metric measure space (even self-similar). Set
β = 2σcrit. How to construct a strongly local Dirichlet form with the heat kernel satisfying
the estimate (5)? Does such a form exist?
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Self-similar heat kernels

Let (M,d) be metric space and μ be an α-regular measure on M .

Theorem 3 (AG–Kumagai ’08) Let (E ,F) be a regular Dirichlet form on M . Assume that

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

,

where α, β > 0 and Φ is a positive function on [0,∞). Then the following dichotomy holds:

• either the Dirichlet form E is strongly local and Φ (s) � C exp
(
−cs

β
β−1

)
.

• or the Dirichlet form E is non-local and Φ (s) ' (1 + s)−(α+β).

That is, in the first case pt (x, y) satisfies the sub-Gaussian estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

(6)

while in the second case we obtain a stable-like estimate

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

' min

(
1

tα.β
,

t

d (x, y)α+β

)

. (7)
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Estimating heat kernels: strongly local case

Let M be a metric space with precompact balls, μ be an α-regular measure on M and (E ,F)
be a strongly local regular Dirichlet form on M .
Definition. We say that (M,d) satisfies the chain condition (CC) if ∃C such that for all
x, y ∈ M and for n ∈ N there exists a sequence {xk}

n
k=0 of points in M such that x0 = x,

xn = y, and

d(xk−1, xk) ≤ C
d(x, y)

n
, for all k = 1, ..., n.

Definition. We say that (E ,F) satisfies the Poincare inequality with exponent β if, for any
ball B = B (x, r) on M and for any function f ∈ F ,

EB (f, f)≥
c

rβ

∫

εB

(
f − f

)2
dμ, (PI)

where f = −
∫

εB
fdμ, and c, ε are small positive constant independent of B and f . For example,

in Rn (PI) holds with β = 2 and ε = 1.
Let A b B be two open subset of M . Define the capacity of the capacitor (A,B) as

follows:
cap(A,B) := inf {E (ϕ, ϕ) : ϕ ∈ F , ϕ|A = 1, supp ϕ b B } .
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Definition. We say that (E ,F) satisfies the capacity condition if, for any two concentric
balls B0 := B(x,R) and B := B(x,R + r),

cap(B0, B) ≤ C
μ (B)

rβ
. (cap)

Conjecture. (CC) + (PI) + (cap) ⇔(6)

The implication ⇐ is known to be true, so the main difficulty is in ⇒ .
Let A b B be two open subset of M . For any measurable function u on B, define the

generalized capacity capu(A,B) by

capu(A,B) = inf
{
E
(
u2ϕ, ϕ

)
: ϕ ∈ F , ϕ|A = 1, supp ϕ b B

}
.

Definition. We say that the generalized capacity condition (Gcap) holds if, for any u ∈ F
and for any two concentric balls B0 := B(x,R) and B := B(x,R + r),

capu(B0, B) ≤
C

rβ

∫

B

u2dμ. (Gcap)

Theorem 4 (AG–J.Hu–K.S.Lau ’15) (CC) + (PI) + (Gcap) ⇔ (6).
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Estimating heat kernels: jump case

Let now (E ,F) be a jump type Dirichlet form given by

E (f, f) =

∫∫

M×M

(f (x) − f (y))2 J(x, y)dμ(x)dμ(y),

where J is a symmetric jump kernel. We use the following condition instead of the Poincaré
inequality:

J(x, y) ' d (x, y)−(α+β) . (J)

Theorem 5 (AG-E.Hu–J. Hu ’16 and Z.Q.Chen-Kumagai-J.Wang ’16)

(J) + (Gcap) ⇔ (7).

In the case β < 2 it is easy to show that (J)⇒ (Gcap) so that in this case we obtain the
equivalence

(J) ⇔ (7).

The latter was also shown by Chen and Kumagai ’03, although under some additional
assumptions about the metric structure of (M,d).

Conjecture. (J) + (cap) ⇔ (7).
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