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CHAPTER 1

Laplace operator and the heat equation in R"

1.1. Denote by S, (z) the sphere of radius r > 0 centered at the point z € R™, that is
Sr(x)={yeR":|z—y|=r}.

Let o be the (n — 1)-volume on S, (z), and note that o (S, (7)) = w,r" ! where w, is the
area of the unit (n — 1)-sphere in R™. Prove that, for any f € C? (R") and for all z € R",

1 2
oL (/ST(m) fd0> —f(z)=Af(z) ;—n +06(r?) asr—0. (1.1)
1.2. Denote a round ball in R™ by

Br(x) = {y € R": |z — y| < R}

and note that its volume is equal to ¢, R" where ¢, is the volume of the unit ball in R™.
Prove that, for any f € C? (R") and for all z € R™,

1 R2 o
o RT </BR(I)f(y)dy> — f(z) ZAf(iU)ero(R) as R — 0. (1.2)

1.3. Prove the following properties of the heat kernel.
(a) For allt > 0 and £ € R,

Bi(€) = e 1, (1.3)

b) Jpn i (x)de =1
( ) For all ¢, s>0,pt*p5:pt+5.

(c) % = Apy.

1.4. Fix a function f € L?(R") and set u; = p; * f for any ¢ > 0. Prove the following
properties of the function uy.
2 ~

(a) T (§) = e F(€).

(b) u¢ (z) is smooth and satisfies the heat equation in Ry x R™.

() HutHL2 < [Ifllz2 for all £ > 0.

(d) u(t,x) — f(x) as t — 0 in the norm of L? (R™).

(e) If f € L* (R™) then u (t,z) — f (z) as t — 0 uniformly in = € R".

1.5. Prove the following properties of the heat kernel.

(a) For any € > 0, p; (z) — 0 as t — 0 uniformly in {x : |z]| > €}.
(b) pt () — 0 as & — oo uniformly in ¢ € (0, +00).
(¢) For any € > 0, p; (x) is continuous in {x : |x| > £} uniformly in ¢ € (0, +00).
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1.6. (Elliptic maximum principle) Let © be a bounded open set in R™, and consider the
following differential operator in €2

- 0
L—A+j§::1bj(x)87j,
where b; are smooth bounded functions in €2.
(a) Show that there exists a function v € C? ()N C () such that Lv > 0 in Q.
(b) Prove that if u € C*(2)NC () and Lu > 0 in © then

sup v = sup u.
Q o0

1.7. Evaluate the bounded solution u (¢, z) of the Cauchy problem with the initial function
f (@) = exp(—|a]*).



CHAPTER 2

Function spaces in R"

2.1. Prove that L] () — LP (Q)foralll<p < g < +oo.

2.2. Let {fx} be a sequence of functions from LP (2) that converges to a function f in LP
norm, 1 < p < co. Prove that if f > 0 a.e. then also f > 0 a.e..

2.3. Prove that if f € L>° (R") and g € L' (R") then f* g € L>® (R") and
1f* gllzee < [[fllze<llgllLr-
2.4. Prove that if f,g € L' (R") then f*g € L' (R") and

1f*gllr < 17l llgllzr-
2.5. Prove that if f,g,h € L' (R®) then f x g = g * f and
(fg)xh=fx(gxh).
2.6. Prove that if C* (R") and ¢ € C§° (R™) then, for any multiindex o with |a| < F,
9% (f+p) = () x .
2.7. Prove that if f € C¥ (R") and ¢ is a mollifier in R then f * p. — f as € — 0 in the
topology of C* (R™).
2.8. Let f € Li. (). Prove that f > 0 a.e. if and only if

loc
/ fodu > 0,
Q

for all non-negative function ¢ € C§° (2).

2.9. For a function f on R, denote by f7., its distributional derivative, reserving f’ for
the classical derivative.
(a) Prove that if f € C' (R) then fl.,, = f.
(b) Prove that the same is true if f is continuous and piecewise continuously
differentiable.
(c) Evaluate f/. ., for f(z) = |z|.
(d) Let f = 1|9 4o0)- Prove that fy;,, = d, where § is the Dirac delta-function at
0.

2.10. Let © C R™ be an open set. We say that two distributions u,v € D' (Q2) are equal
on an open subset U C Q if (u, p) = (v, ) for all ¢ € D (U).
(a) Let {Q4} be a family of open subsets of Q2. Prove that if v and v are equal
on each of the sets €2, then they are equal on their union U,{2,,.
(b) Prove that for any u € D’ (Q2) there exists the maximal open set U C  such
that u =01in U.
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REMARK. The closed set Q2 \ U is called the support of the distribution u and is denoted
by supp u.

2.11. For any function u (z), defined pointwise in 2, set

S(u) ={x € Q:u(x)#0},

where the bar means the closure in 2.

(a) Prove that if u € C' () then its support supp v in the distributional sense
coincides with S (u).

(b) If w € L} () then its support suppu in the distributional sense can be
identified by

suppu= (] S(v),

V=u a.e.
where the intersection is taken over all functions v in 2, defined pointwise,
which are equal to u almost everywhere.

2.12. Prove the product rule: if u € D' () and f € C*° (Q) then

0% (fu) = ﬁ; (g) 8°Bf 9P, (2.1)

()= ()-()
B) " \B1) \Bn
is the product of the binomial coefficients, and § < « means that §; < «; forallt =1,...,n.

D' (Q
2.13. Let {ux} be a sequence of distributions in {2 such that wuy &)

where

(a) Prove that 0%uy D'y 9oy for any multiindex a.
(b) Prove that fuyg N fu for any f € C* ().

2.14. Let X be a topological space. Prove that a sequence {zx} C X converges to z € X
(in the topology of X) if and only if any subsequence of {x} contains a sub-subsequence
that converges to x.

2.15. Prove that the convergence “almost everywhere” is not topological, that is, it is not
determined by any topology.

2.16. Prove that the convergence in the space D () is topological.

2.17. Prove that if u,v € L? (R") and d;u, d;v € L? (R™) for some index 4, then
(Oyu,v) 2 = — (v,0;v) 12 . (2.2)
2.18. Let 1 < p < 00, u € LP (R™), and ¢ be a mollifier in R™.
(a) Prove that u* ¢ € LP and
Jux@lle < lullze.
(b) Prove that
u*gpaﬁu as e — 0.

2.19. Prove that if f € LP (R"), 1 < p < o0, and g € L' (R") then f * g exists, belongs to
LP (R™), and
1+ glly < W[ £lpllglls-
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2.20. (Lemma of Schur) Let (M, p) be a measure space with a o-finite measure p. Let
q (z,y) be a non-negative measurable function M x M such that, for a constant K,

/ q(z,y)du(y) < K for almost all (2.3)
M

and
/ q(z,y)du(z) < K for almost all y. (2.4)
M

Prove that, for any f € L" (M, u), 1 <r < oo, the function
Qf @)= [ a@) f ) dn

belongs to L™ (M, u) and

1QfllLr < K| fllzr- (2.5)
2.21. Under the condition of Exercise 2.20, assume in addition that, for some constant C,
q(z,y) <C,

for almost all z,y € M. Prove that, for any f € L™ (M, u), 1 <r < 400, the function Qf
belongs to L*® (M, ) for any s € (r, +oo| and

|Qf |z < CHTHE KT || (2:6)
where 7’ is the Holder conjugate to r.

2.22. A function f on a set S C R" is called Lipschitz if, for some constant L, called the
Lipschitz constant, the following holds:

|f (@)= f(y)| < Llz—y| forallz,yeS.

Let U be an open subset of R™ and let f be a Lipschitz function in U with the Lipschitz
constant L. For any € > 0, set

Usz{mEU:mCU}.

Let ¢ be a mollifier in R"™.
(a) Show that U, is an open set and

oo
U=J Uy (2.7)
k=1
Extend f to R™ by setting f = 0 outside U. Prove that f % ¢, is Lipschitz
in U, with the same Lipschitz constant L.
(b) Prove that, for any 6 > 0, f*xp. = f in Us as € — 0.

2.23. Prove that if f is a Lipschitz function in an open set U C R™ then all the distribu-
tional partial derivatives 0; f belong to L> (U) and |V f| < L a.e. where

1/2

IVf| = (0;1)°

1

n
1=

and L is the Lipschitz constant of f.
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2.24. Prove that if f and g are two bounded Lipschitz functions in an open set U C R"
then fg is also Lipschitz. Prove the product rule for the distributional derivatives:

9j (fg) = (0;f) g+ f (959) -

2.25. Let f (z) be a Lipschitz function on an interval [a,b] C R. Prove that if f’ is its
distributional derivative then

b
/f’(x)dwzf(b)—f(a)-

Prove that if g is another Lipschitz function on [a, b] then
[ rae=isa~ [ s 2

2.26. Let f € C*(Q), where k is a non-negative integer.
(a) Prove that if
[ fllex (@) < oo
then, for any u € W* (Q), also fu € W*(Q) and

| fullwr ) < Clfllor @ llullwe @), (2.9)
where the constant C' depends only on k,n.

(b) Prove that if u € W[ _(Q) then fu € WE_(Q).

2.27. Assume that f;, — f in W* and 0“f — g in W, for some multiindex o such that
|a| < k. Prove that g = 0“f.

2.28. Prove that, for any open set Q C R”, the space W (Q) is complete.

2.29. Denote by W} () the subset of W* (), which consists of functions with compact
support in . Prove that D () is dense in W (Q).

2.30. Prove that D (R") is dense in W* (R"), for any non-negative integer k. Warning:
for an arbitrary open set 2 C R™, D () may not be dense in W* (£2).

2.31. Denote by W¢ (Q2) the closure of D () in W (2). Prove that, for any u € W1 ()
and v € Wj (),
(Oiu,v) 2 = — (u, 0jv) 2 . (2.10)
2.32. Let u € L? (R") and 0%u € L? (R™) for some multiindex a.
(a) Prove that
0ou = (i€)* 1 (€), (2.11)

where @ is the Fourier transform of u and £% = £7"..657, 1% = gled,
(b) Prove the following identity

0l = oy [ 1B 7P e (212)

2.33. Let u € L? (R™). Prove that if the right hand side of (2.12) is finite then 9®u belongs
to L2 (R") and, hence, the identity (2.12) holds.
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2.34. Prove that the space W* (R") (where k is a positive integer) can be characterized
in terms of the Fourier transform as follows: a function u € L? (R") belongs to W* (R™)
if and only if

L@ (1416 de < o

Moreover, the following relation holds:

k
s = [ 1R (1+1€?)" de (2.13)

where the sign ~ means that the ratio of the both sides is bounded from above and below
by positive constants.

2.35. Let k be a positive integer. Prove that if u € W~ (R") and ¢ is a mollifier in R
then
[wx pllw—r < lJullp— (2.14)

2.36. Prove that, for any positive integer k, the space W~ with the norm || - ||y —« is a
Hilbert space.

2.37. Evaluate function ¢ (¢) from Lemma 2 for f (z) = exp (— ]x\g) .

2.38. Show that Lemma 2 remains true for f € Cp° (R™).

2.39. Give an alternative proof of Lemma 2 using the Fourier transform and Exercises 1.4,
2.32.






CHAPTER 3

Laplace operator on a Riemannian manifold

3.1. Prove that, on any C-manifold M, there exists a countable sequence {Q} of relatively
compact open sets such that ; € ;41 and the union of all Qx is M. Prove also that if
M is connected then the sets €2 can also be taken connected.

REMARK. An increasing sequence {{2;} of open subsets of M whose union is M, is called
an ezhaustion sequence. If in addition Q € Q41 (that is, Qj is relatively compact and
Ok C Qp11) then the sequence {Q4} is called a compact exhaustion sequence.

3.2. Prove that, on any C-manifold M, there is a countable locally finite family of relatively
compact charts covering all M. (A family of sets is called locally finite if any compact set
intersects at most finitely many sets from this family).

3.3. Prove the product rule for d and V:
d (uwv) = udv + vdu

and
V (w) = uVv + vVu, (3.1)

where v and v are smooth function on M.
3.4. Prove the chain rule for d and V:
df (u) = f' (u) du

and
Vf(u) = f (u) Vu

where u and f are smooth functions on M and R, respectively.

3.5. Let g, g be two Riemannian metric tensors on a smooth manifold M and let g and g
be the matrices of g and g respectively in some coordinate system. Prove that the ratio

detg
det g

does not depend on the choice of the coordinates (although separately det g and det g do
depend on the coordinate system).

3.6. Let g, g be two Riemannian metric tensors on a smooth manifold M such that

<, (3.2)

03 |0

that is, for all x € M and &£ € T, M,
g(£,¢) <Cg(&9¢).

9
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(a) Prove that if v and v are the Riemannian volumes of g and g, respectively.

then .
v
— < n/2
dv — ™
where n = dim M.

(b) Prove that, for any smooth function f on M,
Vi <CIVII.

3.7. (Product rule for divergence) Prove that, for any smooth function u and any smooth
vector field w,

divy (uw) = (Vu,w) + udiv, w (3.3)
3.8. (Product rule for the Laplacian) Prove that, for any two smooth functions v and v,
Ay (uwv) = uA v+ 2(Vu, Vo)g + (Ayu) v. (3.4)
3.9. (Chain rule for the Laplacian) Prove that
Auf (w) = f" (w) [Vulg + f' (u) Ayu,
where v and f are smooth functions on M and R, respectively.
3.10. The Hermite polynomials hy, (x) are defined by
kg2 dF 2

hi(z) =(—1)"e we*x ,

where k£ = 0,1,2,.... Show that the Hermite polynomials are the eigenfunctions of the
operator (77).

3.11. Let a(z), b(x) be smooth positive functions on a weighted manifold (M, g, i), and
define new metric g and measure fi by

g=ag and dp= bdpu.
Prove that the Laplace operator ﬁﬁ of the weighted manifold (M, g, i) is given by

~ 1 . b
Aﬁ = Zdlvu (aV) .

1
Ap= Ay

In particular, if a = b then

3.12. Consider the following operator L on a weighted manifold (M, g, u):
1
Lu = 3 div, (AVu),

where b = b(z) is a smooth positive function on M and A = A(x) is a smooth field of
positive dgﬁnite symmetric operators on T, M. Prove that L coincides with the Laplace
operator Ay of the weighted manifold (M, g, 11) where

g =bgA™! and dp = bdu.
3.13. Consider the following operator L on a weighted manifold (M, g, p):
Lu = Ayu+ (Vv,Vu)g,

where v is a smooth function on M. Prove that L = Ay for some measure ji, and determine
this measure.
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3.14. Let M be a smooth manifold of dimension n and N be its submanifold of dimension
n — 1 given by the equation F'(x) = 0 where F' is a smooth function on M such that
dF # 0 on N. Prove that, for any z € N, the tangent space T, N is determined as a
subspace of T, M by the equation

T,N = {¢ € T,M : (dF,¢) = 0}. (3.5)

In the case when M = R", show that the tangent space T, N can be naturally identified
with the hyperplane in R™ that goes through x and has the normal

oF oF
VF=(—,....,— .
(8:61 837”)
In other words, the tangent space T, N is identified with the tangent hyperplane to the
hypersurface N at the point x.

3.15. Prove that the Riemannian measure v of the metric (3) is given by
dv = ¢™ (z) dvxdvy, (3.6)
and the Laplace operator A of this metric is given by
1
Af =Axf+m(Vxlogy,Vx flg, + wg—(x)AYf, (3.7)

where Vx is gradient on X.

3.16. Let ¢ be the south pole of S™. For any point x € S™\ {q}, its stereographic projection
is the point y at the subspace

R"={z e R"*!: ;" =0},

which belongs to the straight line through x and gq. Show that the stereographic projection
is a bijection x <> y between S™ \ {¢} and R" given by

IL'/

antl 417
where x = (a:l, ...,x"“) and ' = (3:1, ...,:c"). Prove that, in the Cartesian coordinates
y',...,y™, the canonical spherical metric has the form

4
gsn = —————5&R",

(1+1yP)

where |y|* =3 (yi)2 and grn = (alyl)2 + ... + (dy™)? is the canonical Euclidean metric.

y:

3.17. Prove that the canonical hyperbolic metric gy is positive definite using directly the
definition of gy» as the restriction of the Minkowski metric to the hyperboloid.
3.18. Show that the equation

I/

Y= (3.8)
determines a bijection of the hyperboloid H" onto the unit ball B" = {|y| < 1} in R™.
Prove that, in the Cartesian coordinates y',...,y™ in B", the canonical hyperbolic metric

has the form A
gHn = ———58Rn, (3.9)

(1- 1)
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where |y|? = 3 (yi)2 and ggn = (dy1)2 + ... 4+ (dy™)? is the canonical Euclidean metric.
REMARK. The ball B" with the metric (3.9) is called the Poincaré model of the hyperbolic

space. Representation of the metric gy~ in this form gives yet another proof of its positive
definiteness.

3.19. Prove that the relation between the polar coordinates (r, §) in H" and the coordinates
y!,...,y™ in the Poincaré model of Exercise 3.18 are given by

1 2
coshr = lyt and 6 = —.
1— |yl |

3.20. Let wy, be defined by (?7).

(a) Use (3) to obtain a recursive formula for wy,.
(b) Evaluate w,, for n = 3,4 given wp = 27. Evaluate the volume functions of
R™, S*, H" for n = 2,3, 4.

3.21. Prove that, for any n > 1,

7.‘_n/2
n = 2 (3.10)

where I' is the gamma function (cf. Section ?7).
3.22. Using (?7?), obtain a full expansion of Agn in the polar coordinates for n = 2, 3.
Hence, obtain a full expansion of Agr and Apgr in the polar coordinates for n = 2, 3.

r
sinhr*

3.23. Consider in H? a function u given in the polar coordinates by u =
(a) Prove that, in the domain of the polar coordinates, this function satisfies the
equation
Agsu+u = 0. (3.11)
(b) Prove that function u extends to a smooth function in the whole space H?
and, hence, satisfies (3.11) in H3.

HINT. Write function w in the coordinates of the Poincaré model (cf. Exercises
3.18 and 3.19).

3.24. Let M be a weighted model of radius 7o and u = u(r) be a smooth function on
M \ {o} depending only on the polar radius. Let S (r) be its area function. Prove that u
is harmonic, that is, A,u = 0, if and only if

T dr
u(r):C' . W_'_Cb

where C, C arbitrary reals and r € (0,79). Hence or otherwise, find all radial harmonic

functions in R™, S?, S?, H?, H?3.

3.25. Let M be a weighted model of radius rg. Fix some 0 < a < b < rg and consider the
annulus

A={zeM:a<|z| <b}.
Prove the following Green formulas for any two function u, v of the class C? (4) N C* (A):

/(Auu)vdu: —/(Vu, Vv>d,u+/ urvdps, —/ urvdpg, (3.12)
A A Sy Sa



3. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD 13

and

/A (D) v pt — /A (D) udp — /S (e ) s,

/ (upv — vpu) dps,, (3.13)

where u, = %.

3.26. Let S be a surface of revolution in R"*! given by the equation
] =9 (@),
where ® is a smooth positive function defined on an open interval.
(a) Prove that S is a submanifold of R**! of dimension n.

(b) Prove that the induced metric gg of S is given in the coordinates ¢ = 2"
and 6 = & € S"! by

|z']

+1

gs = (1 + 9 (t)2> dt* 4+ ®% (t) ggn-1.
(c) Show that the change of the coordinate

p:/\/l-i-q)' (t)2dt

brings the metric gg to the model form
gs = dp® + 9% (p) ggn1, (3.14)

where V¥ is a smooth positive function.
3.27. Represent in the model form (3.14) the induced metric of the cylinder
Cyl={z ¢ R . !x’} =1}

and that of the cone
Cone = {:r e R gt = ‘:L’,‘ > 0} .

3.28. The pseudo-sphere PS is defined as follows

14 4/1— |2/
PS = xER”+1:0<‘m"<1, m"+1:—\/1—|x’|2+logT
x

Show that the model form (3.14) of the induced metric of PS is

gps = dp? + e 2Pgqn_1.

1
coshs”

HINT. Use a variable s defined by |z| =

3.29. For any two-dimensional Riemannian manifold (M, g), the Gauss curvature Kj/g ()
is defined in a certain way as a function on M. It is known that if the metric g has in
coordinates !, 2 the form
(dx1)2 + (dac2)2 315
g - f2 (.’L') I ( : )
where f is a smooth positive function, then the Gauss curvature can be computed in this
chart as follows

Kyg = f*Alog f, (3.16)
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where A = % + % is the Laplace operator of the metric (dm1)2 + (d:r2)2.
(a) Using (3.16), evaluate the Gauss curvature of R%, S?, H?.
(b) Consider in the half-plane R? := {(z!,2?) € R? : 3 > 0} the metric
(alacl)2 + (dz2)2
(22)?

Evaluate the Gauss curvature of this metric.

g:

3.30. Let g be the metric (3.15) on a two-dimensional manifold M. Consider the metric
g= h%g where h is a smooth positive function on M. Prove that

Kug = (Kmg + Aglogh) h?,
where Ag is the Laplace operator of the metric g.

3.31. Let the metric g on a two-dimensional manifold M have in coordinates (r,6) the
form

g = dr® 4+ % (r) db>. (3.17)
Prove that "
Kig = —Ifb ((:)). (3.18)

3.32. Using (3.18), evaluate the Gauss curvature of the two-dimensional manifolds R?, §?,
H?, Cyl, Cone, PS.

3.33. Find all metrics g of the form (3.17) with constant Gauss curvature.

3.34. Prove that the length /() does not depend on the parametrization of the path ~
as long as the change of the parameter is monotone.

3.35. Prove that the geodesic distance d (z,y) is finite if and only if the points z,y belong
to the same connected component of M.

3.36. Let (M, g) be a Riemannian model, and let 2/, " be two points on M with the polar
coordinates (r’,0") and (r”,6"), respectively.
(a) Prove that, for any smooth path v on M connecting the points 2’ and z”,

C(y) =" =1"].

Consequently, d (z/,2") > |r' —r"|.
(b) Show that if @ = 0" then there exists a path + of length |’ — ”’| connecting
the points 2’ and z”. Consequently, d (z/,z") = |r' — r"].
3.37. Let (M,g) be a Riemannian model. Prove that, for any point = (r,6), we have
d0,z)=r.
Hence or otherwise prove that in R™ the geodesic distance d(x,y) coincides with
[z —yl.
3.38. Let v be a shortest geodesics between points z,y and let z be a point on the image
of v. Prove that the part of v connecting x and z is a shortest geodesics between = and z.

3.39. Fix a point p on a Riemannian manifold M and consider the function f (z) = d(z,p).
Prove that if f (z) is finite and smooth in a neighborhood of a point z then |V f ()| < 1.
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3.40. Let (M, g) be a Riemannian model with infinite radius. Prove that, for any smooth
even function a on R, the function a o r is smooth on M, where r is the polar radius on

(M, g).

3.41. Denote by S the class of all smooth, positive, even functions a on R, such that

/Oo a(t)dt = co. (3.19)
0

For any function a € S, let C, be the conformal transformation of the metric of a Rie-
mannian model (M, g) with infinite radius given by

Cog = ad*(r)g.
(a) Prove that (M, C,g) is also a Riemannian model with infinite radius and that
the polar radius 7 on (M, C,g) is related to the polar radius r on (M, g) by

the identity
r= / a(s)ds.
0

(b) For any two functions a,b € S, consider the operation a x b defined by

(axb) (1) = a (/Ot b(s) ds) b(1). (3.20)

Prove that (S, *) is a group.
(¢) Fix m € N and set for any v € R™

2

10g[’v] r = (logr)" (loglogr)™ ... (log...logr)""

m times

assuming that r is a large enough positive number. Let a and b be functions
from S such that, for large enough r,

a(r) ~r*tlogtr and b(r)~rPtloglly,
for some a, 8 € Ry and u,v € R™. Prove that
axb~r " ogly
where
v=af and w = u + av. (3.21)
REMARK. The identity (3.21) leads to the operation

(u,a) % (v, 8) = (u+ av,af),

that coincides with the group operation in the semi-direct product R™ x R, where the
multiplicative group R, acts on the additive group R™ by the scalar multiplication.

3.42. Let J : M — M be a Riemannian isometry and let .S be a submanifold of M such
that J (S) = S. Prove that J|g is a Riemannian isometry of S with respect to the induced
metric of S.

3.43. Let (M, gyr) and (N, gn) be Riemannian manifolds and J : M — N be a Riemannian
isometry. Prove the following identities:
(a) For any smooth path v on M,

len (7) = Lgy (J07).
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(b) For any two points z,y € M,
dM (:C7y) = dN (J'Ta ']y) )
where djs, dy are the geodesic distances on M and N, respectively.

3.44. Let (M, gnr, par) and (N, gn, un) be two weighted manifolds and J : M — N be a
quasi-isometry. Prove the following relations.

(a) For all smooth paths v on M,
lgy (V) = gy (J o).
(b) For all couples of points z,y € M,
dM (x,y) = dN (J:E,Jy)

(¢) For all non-negative measurable functions f on N,

/ (Jof) dping ~ / fdun. (3.22)
M N

(d) For all smooth functions f on N,
[ VO, duss = [ 1V, du. (3.23)

3.45. For any real «, consider the mapping y = Jx of R"*! onto itself given by

y! = !

y"t=an! (3.24)
y" = ™ cosh o + 2"t sinh o
y" 1 = 2" sinh a + 2"t cosh a,

which is called a hyperbolic rotation.
(a) Prove that J is an isometry of R™"! with respect to the Minkowski metric
2 2
EMink = (dml) 4+ (da:")2 — (da:"“) )
(b) Prove that J|gn is a Riemannian isometry of the hyperbolic space H™ (cf.
Section 3).

3.46. Prove that, for any four points p,q,p’,q € H" such that

d(p',d) =d(p.q), (3.25)
there exists a Riemannian isometry .J of H" such that Jp’ = p and J¢' = q.



CHAPTER 4

Laplace operator and heat equation in L? (M)

4.1. Prove that if ¢ 2) ¢ then
(a) ¢r = ¢ on M;
() Aupr 2 ALp;
(c) for 2) for for any f € C™(M).

4.2. For any function f € C* (M) and a distribution u € D’ (M), their product fu is
defined as a distribution by

(fu,) = (u, f) for any ¢ € D(M). (4.1)
Prove the following assertions.

(a) If ug D', u then fug o, fu.

(b) supp (fu) C supp f Nsuppu.
(¢) Product rule:

V (fu) = fVu+ (Vf)u,
where the product fVu of a smooth function by a distributional vector field

and the product (V f) u of a smooth vector field by a distribution are defined
similarly to (4.1).

4.3. Prove that if f € C® (M) is such that |f| and |V f| are bounded, and u € W (M)
then fu € Wl (M) and

[fullwr < Cllullws,
where C' = 2max (sup | f], sup |V f]).

4.4. Prove the extension of Theorem 2 to manifold: for any 1 < p < oo and for any weighted
manifold (M, g, u), D (M) is dense in LP (M), and the space LP (M) is separable.

4.5. Prove that D (M) is dense in Cy (M), where Cy (M) is the space of continuous
functions with compact support, endowed with the sup-norm.

4.6. Let u € D' (M) and (u, ) = 0 for all non-negative functions ¢ € D (M). Prove that
u=0.

4.7. Let u € Li . (M).

loc

(a) Prove that if (u, p) > 0 for all non-negative functions ¢ € D (M), then u > 0
a.e.

(b) Prove that if (u, ¢) = 0 for all non-negative functions ¢ € D (M), then u = 0
a.e.

4.8. Let {us} be a sequence from L2 (M) such that uy N u, where u € D' (M).

17
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(a) Prove that if the sequence of norms ||ug|| ;2 is bounded then v € L? (M) and
llullz2 < liminf ||ug||z2.
k—ro0
(b) Assume in addition that Vuy, € L? and that the sequence of norms || V|| 2
is bounded. Prove that u € W (M) and

V|| 22 < liminf || V]| 2.
k—o0

4.9. Prove that the space LP (M, p) is complete.

4.10. Define the divergence of a distributional vector field v € D by
(div,v, @) = — (v, V) for all ¢ € D.
Prove that, for any distribution u € D',
Ayu = divy, (Vu),
where all operators A, V, and div,, are understood in the distributional sense.

4.11. Let (M,g,u) be a weighted manifold and U be a chart on M with coordinates
iz Let f € L2 (U).

loc

(a) Assume that all distributional partial derivatives % are in L2 (U), consid-

ering U as a part of R". Prove that the distributional gradient Vg f in U is

given by
. Of
T iy YJ
and of of
2 g 2L 4.2
|vgf’g g 8.’EZ axj ( )
Conclude that Vg f € L2, (U).
(b) Assuming that Vgf € I_;lzoc (U), prove that distributional partial derivatives
82:}:% are given by
of

5y~ 95 (Vef)
and that the identity (4.2) holds. Conclude that 6%% e L? (U).

loc

4.12. For an open set  C R™, let W' (£2) be the Sobolev space defined in Section ??, and
W1 (Q,g, ) be the Sobolev space defined in Section 4, where g is the canonical Euclidean
metric and A is the Lebesgue measure. Prove that these two Sobolev spaces are identical.

4.13. Denote by V g5 the distributional gradient in R™ (n > 2) reserving V for the gradient
in the classical sense, and the same applies to the Laplace operators Ay, and A.

(a) Let f € C1 (R™\ {o}) and assume that
feL}. (R") and Vfe L}, (RY).

loc loc

Prove that Vg f = Vf.
(b) Let f € C?(R™\ {o}) and assume that

felLl, (RY), VfeLl (R"), and Afe L}, (R").

loc loc loc

Prove that Ay f = Af.
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(¢) Consider in R3 the function f(z) = |z|~'. Show that f € L? . (R3) and
Af =0 in R?\ {o}. Prove that Ay f = —4n§ where § is the Dirac delta-
function at the origin o.
4.14. Consider in R™ (n > 2) the function f (z) = |z|®, where « is a real parameter.
(a) Prove that f € L? . provided a > —n/2.
(b) Prove that f € L2 and Vf € L2 provided a > 1 —n/2. Show that in this

loc loc

case Vyiaef = V. ~
(c) Prove that f € L? | Vf € L? ,and Au € L? _provided a > 2 —n/2. Show

loc? loc loc

that in this case Ay f = Af..

4.15. Prove that if {u;} is a sequence of functions from W! that is bounded in the norm
of W1 then there exists a subsequence {uy, } that converges to a function u € W weakly
in W! and weakly in L?.

4.16. Prove that if {uz} is a sequence of functions from W' that converges weakly in W'
to a function u € W1 then there is a subsequence {ug,} such that

L2 L2
ug, — uvand Vu,, — Vu,

where — stands for the weak convergence.

4.17. Let {u} be a sequence of functions from W' that converges weakly in L? to a
function u € L?.

(a) Prove that if the sequence {uz} is bounded in the norm W1 then u € W?
1
and uy W, Uu.
1
(b) Prove that if in addition ||ug|ly1 — ||ullyr then ug .

4.18. Let {uy} be an increasing sequence of non-negative functions from W1 that converges
almost everywhere to a function uw € L?. Prove that if

IVugl[r2 < ¢

Wl
for some constant ¢ and all k, then u € W1, up — u, and ||Vul|z2 < c.

4.19. Let M be the unit ball B in R™. Prove that the Laplace operator A with domain
{feC*(B): Af € L*(B)}
is not symmetric in L? (B).

4.20. Let A be an operator in L? (M) defined by Af = —A,f with dom 4 = C§° (M).
Prove that operator A is unbounded.

4.21. Prove that if f € C§° (M) and u € W then fu € Wi (M).
4.22. Prove that the spaces W¢ (M) and W? (M), endowed with the inner product
(U, V)2 = (1, V)1 + (Apu, A;ﬂ’)Lz ) (4.3)
are Hilbert spaces.
4.23. Prove that, for any u € W§ (M),
lull3n < e (lull2: + [ Auuls) (1.4)

where ¢ = 1+2

1S
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4.24. Let {E)} be the spectral resolution of the Dirichlet Laplace operator £ in L? (M).
Prove that, for any f € W@ (M),

IVFI2 = /0 NENL (4.5)

4.25. Prove that dom £/2 = W{ (M) and that (4.5) holds for any f € W (M).
HinT. Use Exercise 17.13.

4.26. Prove that dom £1/2 = dom (£ + id)/? and, for any f € Wi (M),

1 fllw = 1 (£ 4 i) [l 2. (4.6)
4.27. Prove that, for all f € W} (M),
IV A11Z2 = Aminl 1172, (4.7)
where
Amin := inf spec L. (4.8)
4.28. Assuming that Ay > 0, prove that the weak Dirichlet problem on M
—-Au = f,
{ weWs (M), (49)
has a unique solution u for any f € L? (M), and that for this solution
lull 22 < Agiall £l 2 (4.10)
and
~1/2
IVullzz < A llF 2. (4.11)

4.29. Consider the following version of the weak Dirichlet problem: given a real constant
a and functions f € L? (M), w € W' (M), find a function u € L? (M) that satisfies the
conditions

Ayu+ou = f,
{ u=w mod W3 (M), (4.12)

where the second condition means u — w € W (M). Prove that if @ < Apin then the
problem (4.12) has exactly one solution.

4.30. Let A be a bounded self-adjoint operator in L? such that, for a constant o > 0 and
for any function f € L2(M),

a IfI3 < (Af, )2 < all fIE.
(a) Prove that the bilinear form
{f,9}:=(Vf,Vg)+ (Af,9)

defines an inner product in Wy, and that W with this inner product is a
Hilbert space.
(b) Prove that, for any h € L?, the equation

—Aju+Au=h

has exactly one solution u € WOZ.
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4.31. Prove that, for any a > 0 and f € L?(M), the function u = R,f is the only
minimizer of the functional

E(v) = Vol +alv - fl3,
in the domain v € W (M).

4.32. Prove that for any a > 0 the operators V o Ry : L2 (M) — L2 (M) and £ o R,
L? (M) — L? (M) are bounded and

IV oRo| <a '/, (4.13)

I£o Ry <1 (4.14)
4.33. Prove that, for any f € L* (M),

ozRafL—2>f as a — +00.
Prove that if f € dom £ then

1
laBaf = fllize < ILF |z
4.34. Prove that, for all o, 3 > 0,
R, — Rg = (8 — a) RaRg. (4.15)

4.35. Fix a function f € L2

(a) Prove that the function ¢ (t) := (P.f,f) on t € [0,400) is non-negative,
decreasing, continuous, and log-convex.
(b) Prove that the function v (¢) := ||V P.f||3 is decreasing on (0, +00) and

| a5
4.36. Prove that, for any f € Wj, such that | f| ;2 = 1,

1Bz > exp (—t / Vf|2du) , (4.16)

for any ¢ > 0.
HiNT. Use Exercise 4.25 and 4.35.

4.37. Prove that, for all f € L? and all ¢t > 0,

e
1A (Bef) Iz < lIF 1]z (4.17)
and
IV (P s < \f 15152 (415)
4.38. For any t > 0, define a quadratic form & (f)
P,
& (f) = <f tf,f) , (4.19)

for all f € L2
(a) Prove that & (f) is increasing as ¢ is decreasing.
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(b) Prove that lim;—0 & (f) is finite if and only if f € W{, and
lim & (£) = [ Vs dn
t—0 M

(¢) Define a bilinear form & (f, g) in L? by

‘c/'t (f’g) - (@79)[]2'

Prove that if f,g € W then
E(f,9) — / (Vf,Vg)du ast — 0. (4.20)
M

4.39. Prove that if f € W02 then, for all ¢ > 0,
1Bef = fllze < tAufllze, (4.21)

REMARK. Recall that, by Theorem 4, if f € L? then P,f L—2> f ast — 0. The estimate
(4.21) implies a linear decay of |Pif — fllz2 ast — 0 provided f € W§.

4.40. Prove that if f € W then
1P.f = flle <2V £l e (4.22)
HinT. Use Exercise 4.25 or argue as in Lemma 2.

4.41. Prove that if f € W02 then

Pf—f
t

L Aufast—o0. (4.23)

4.42. Prove that, for any f € L?,
Bf-f o
t

— A,f ast—0,

where A, f is understood in the distributional sense.

4.43. Prove that if f € L? and, for some g € L2,

P f— 2
#L—M}astéo

then f € W¢ and g = Auf.
4.44. Let f € W¢ be such that A,f =0 in an open set 2 C M. Consider a path
| Bf, t>0,
“(t)_{ fiot<o.

Prove that u (t) satisfies in R x  the heat equation % = A ,u in the following sense: the

dt
path ¢ ~ u (t) is strongly differentiable in L2 (Q) for all ¢ € R and the derivative % is

equal to A,u where A, is understood in the distributional sense.
4.45. Prove that if f € W then
Wl
Pf — f ast — 0.

and if f € W then
Ptfmf ast — 0.
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4.46. (Product rule for strong derivatives)

(a) Let H be a Hilbert space, I be an interval in R, and w (¢),v (t) : I — H be

strongly differentiable paths. Prove that
d dv du
dt (u U) ( ?%)4_(%7@)'

(b) Consider the mappings u : [ — LP (M) and v : I — L (M) where [ is an
interval in R and p,q € [1,400]. Prove that if v and v are continuous then
the function w (¢) = u (¢) v (t) is continuous as a mapping from I to L" (M)
where r is defined by the equation

1 1 1

p qg T
(c) Prove that if v and v as above are strongly differentiable then w is also
strongly differentiable and

dw dv du

E = u% + %v.
4.47. For any open set Q2 C M, denote by Cy, (2) the linear space of all bounded continuous
functions on  with the sup-norm. Let u (¢, ) be a continuous function on I x M where
I is an open interval in R, and let the partial derivative ‘?3—1; be also continuous in I x M.
Prove that, for any relatively compact open set @ C M, the path u (¢,-) : I — Cp(Q) is

strongly differentiable, and its strong derivative ¢ coincides with the partial derivative

dt
ou
at

4.48. Let H be a Hilbert space.

(a) Let u(t) : [a,b] — H be a continuous path. Prove that, for any = € H, the
functions t — (u (t),z) and ¢t — ||u (¢) || are continuous in ¢ € [a, b], and

[ ww.mal< ([ o).

Conclude that there exists a unique vector U € H such that

b
/ (u(t),z)dt = (U,x) forall x € H,

which allows to define f t) dt by
b
/ w(t)dt = U,

/ / Ju ()] .

(b) (Fundamental theorem of calculus) Let u (t) : [a,b] — H be a strongly differ-
entiable path. Prove that if the strong derivative u’ (¢) is continuous in [a, b]
then

Prove that

T

b
/ o (t)dt = u(b) —u(a).

4.49. Let u : [a,b] — L' (M, ;1) be a continuous paths in L'. Prove that there exists an
function w € L' (N, dv) where N = [a,b] x M and dv = dtdp, such that w (¢,-) = u (t) for
any t € [a,b].
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4.50. (Chain rule for strong derivatives) Let u (t) : (a,b) — L? (M) be a strongly differ-
entiable path. Consider a function ¢ € C! (R) such that

¥ (0) =0 and sup |[¢/| < oo. (4.24)
Prove that the path 1 (u (t)) is also strongly differentiable in ¢t € (a,b) and

dp(u) | du
— —IZJ(U)a-

4.51. Let @ () be a continuous function on [0, +00) of a subexponential growth; that is,
for any € > 0,

() =o (eek) as A — +oo. (4.25)

Let £ be a non-negative definite self-adjoint operator in a Hilbert space H. Fix f € H
and consider the path v : R; — H defined by

v (t) = /000 ® (\) e N Eyf, (4.26)

where {E)} is the spectral resolution of £. Prove that, for any ¢t > 0, v (¢t) € dom L, the
strong derivative % exists, and

d o0
d—: = — / 2B (\) e MdENf = Lo (t). (4.27)
0
Conclude that the strong derivative % of any order k € N exists and
dkv
= (L) (t). (4.28)

4.52. Let L be a non-negative definite self-adjoint operator in a Hilbert space H. For any
t € R, consider the wave operators

C; = cos <t£1/2) and S; = sin (t£1/2> .

(a) Prove that Cy and S; are bounded self-adjoint operators.
(b) Prove that, for all f,g € dom £!/2, the function
u(t) = Cif + Sig
is strongly differentiable in ¢ and satisfies the initial data
du
i,
(¢) Prove that, for any f € dom £, both functions C; f and S; f are twice strongly
differentiable in ¢ and satisfy the wave equation
d’u
dt?
where j—; is the second strong derivative.

(d) (A transmutation formula) Prove the following relation between the heat
and wave operators:

ul,_o=f and

= —Lu,

> 1

2
—tL S
= — —— | Cyds, 4.29
¢ 0 meXp( 4t> ’ (4.29)

where the integral is understood in the sense of the weak operator topology
(cf. Lemma 5).
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4.53. Let ¢ (t) be a continuous real-valued function on an interval (a,b), a < b, and
assume that ¢ (t) is right differentiable at any point ¢ € (a,b). Prove that if ¢’ (¢) < 0
for all ¢t € (a,b) (where ¢’ stands for the right derivative) then function ¢ is monotone
decreasing on (a, b).

4.54. Consider the right Cauchy problem in a Hilbert space H: to find a path u :
(0,400) — H so that the following conditions are satisfied:

(1) u(t) is continuous and strongly right differentiable for all ¢ > 0;
(74) For any t > 0, u (t) € dom £ and

du
— = —Lu,
dt
where ‘é—;‘ is the strong right derivative of w.

(73i) u(t) — f as t — 0, where f is a given element of #.
Prove the uniqueness of the path w (¢) for any given f.






CHAPTER 5

Weak maximum principle and related topics

5.1. Let ¢ (t) and ¢ (t) be functions satisfying the conditions (5) and (??) of Theorem 5.
Prove that ¥/, , = ¢.

5.2. Let ¢ € C! (R) be such that

¥ (0) =0 and sup|¢| < occ.
Prove that the functions ¢ and ¢ := ¢’ satisfy the conditions (5) and (??) of Theorem 5.
5.3. Prove that if u,v € W¢ (M) then also max (u,v) and min (u,v) belong to Wi (M).
5.4. Prove that if M is a compact manifold then W' (M) = W} (M) .

5.5. Prove that if u € W1 (M) then, for any real constant ¢, Vu = 0 a.e. on the set
{reM:u(z)=c}

5.6. Prove that, for any u € W' (M),
1
(u—c)+Lu+ asc—0+.

5.7. Let f € W! (M) and assume that f(x) — 0 as z — oo (the latter means that, for
any € > 0, the set {|f| > ¢} is relatively compact). Prove that f € W3 (M).

5.8. Prove that if u € I/Vli . (M) and ¢, 9 are functions on R satisfying the conditions of
Theorem 5 then v (u) € WL _ (M) and Vi (u) = ¢ (u) Vu.

5.9. Define the space W7, (M) by
VVZ2OC = {f € VVl%)c : Auf € Ll2oc} .

Prove the Green formula (??) for any two functions u € W7} and v € W2

5.10. Let R, be the resolvent defined by (?7?).
(a) Prove that, for any f € L? and a > 0,
0 a2ktk
Pf= lim e > o REF. (5.1)
k=0

a——+00

(b) Using (5.1), give an alternative proof of the fact that f < 1 implies P, f < 1.

5.11. For all a, k > 0, define RE as ¢ (R,) where ¢ () = AX.
(a) Prove that, for all a, k > 0,

R = / A e Pydt (5.2)
“Jo T T '

where the integral is understood in the weak sense, as in Lemma 5, and I is
the gamma function (cf. Section ?7).
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(b) Write for simplicity R; = R. Prove that
RFR! = R**! for all k,1 > 0.

Prove that if f € L? (M) then f > 0 implies R*f > 0 and f < 1 implies
REf <1, forall k > 0.

(c) Prove that R¥ = e %L where L = log (id +£) and L is the Dirichlet Laplace
operator.

REMARK. The semigroup {Rk} k>0 1s called the Bessel semigroup, and the operator
log (id +L£) is its generator. -

5.12. Prove that, for any non-negative function f € L? (M) and all t,a > 0,
P,Rof < e Rqf.

5.13. Let £ be the Dirichlet Laplace operator on R!.

a) Prove that the resolvent R) = + A1 1s given for any A > y the
P hat th lvent Ry = (£ + \id)™! is given f A > 0 by th
following formula:

“+oo
Rof = % /_ e )y, (5.3)

for any and f € L? (Rl).
(b) Comparing (5.3) with

Ry = / e MPdt
0

and using the explicit formula for the heat kernel in R!, establish the follow-
ing identity:

o] 2
—t\/X t t sA
.
e = /0 = €Xp ( ) e *ds, (5.4)

forallt > 0and X > 0.

REMARK. The function s — \/ﬁ exp (—%) is the density of a probability distribution
on R, which is called the Levy distribution.

5.14. Let L be the Dirichlet Laplace operator on an arbitrary weighted manifold, and
consider the family of operators @y = exp (—tﬁl/ 2), where t > 0.

(a) Prove the identity

o) t t2)
= exp | —— | Psds. 5.5
o= [ e (-4 (5.5
(b) Let f € L?(M). Prove that f > 0 implies Q;f > 0 and f < 1 implies

Qif <1
(¢) Prove that in the case M = R", @, is given explicitly by

af=[ a-niwd
2

where
t

0 (w) = — e (56)
(2 )
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REMARK. The semigroup {Q:};~ is called the Cauchy semigroup, and the operator L£1/?
is its generator. B

5.15. Let ¥ be a C*°-function on R such that ¥ (0) = ¥’ (0) =0 and 0 < ¥” (s) <1 for
all s.

(a) Prove that, for any f € L? (M), the following function

F(t) = /M ¥ (P.f) dp (5.7)

is continuous and decreasing in ¢ € [0, +00).
(b) Using part (a), give yet another proof of the fact that f < 1 implies P,f <1,
without using the resolvent.

5.16. Give an example of a manifold M and a non-negative function u € W}l (M) such
that

u <0 mod Wy (M)
but u ¢ W (M).

5.17. Let the paths w : (0,7) — W' (M) and v : (0,T) — W (M) satisfy the same heat

equation
du
i Ayu forallt € (0,7),
where ‘fl—;‘ is the strong derivative in L? (M) and A,u is understood in the distributional
sense. Prove that if ,
w(t,) —v(t,) “M 0 ast -0,

and w > 0 then w(¢,-) > v (¢,-) for all t € (0,T).

5.18. Let v, (x) be a real valued function on a non-compact smooth manifold M depending
on a parameter a € A, and let ¢ € R. Prove that the following conditions are equivalent
(all convergences are inform in a € A):
(1) v (z) 2 cas x — oo.
(it) For any sequence {zj},-, that eventually leaves any compact set K C M,
Vo (z1) = c as k — oo.
(731) For any sequence {xj} on M that eventually leaves any compact set K C M,
there is a subsequence {zy, } such that v, (zx,) = c as i — oo.
(iv) For any £ > 0, the set

Ve = {xEM: sup |v, (2) — | 25} (5.8)
a€cA
is relatively compact.

Show that these conditions are also equivalent for ¢ = 00 provided (5.8) is appropri-
ately adjusted.

5.19. Referring to Exercise 5.18, let M = 2 where (2 is an unbounded open subset of R”.
Prove that the condition () is equivalent to
(v) vo (k) = ¢ for any sequence {zx} C Q such that either z — = € 9 or

5.20. Let a function v € C? (M) satisfy the conditions:
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(1) —Auv+oav <0on M, for some o > 0;
(73) vy () > 0as x — oo in M.
Prove that v <0 in M.
)L?OC(M)

5.21. Prove that the statement of Corollary 5 remains true if the condition u4 (¢, -

0 as t — 0 is replaced by

L (M
ug (t,-) ZQ)Oas t—0.

5.22. Let u be a function from C (M) N W¢ (M). For any a > 0, set
Uy={zeM:u(z)>a}.

Prove that (u —a), € W§ (Ua).

5.23. Let 2 be an open subset of a weighted manifold M and K be a compact subset of

Q. Let f be a non-negative function from L? (M). Prove that, for all a > 0,

Rof — RIf < coup R.f. (5.9)

5.24. Under the hypotheses of Exercise 5.23, prove that, for all ¢ > 0,
Pf — P*f < sup esup Pf. (5.10)
s€[0,] M\K
5.25. Let {€;};°, be an increasing sequence of open subsets of M, Q = [J:2, Q;, and

o0

f € L? (). Prove that the family of functions {Ptgi f } considered as the paths in

=1
L% (Q), is equicontinuous in ¢ € [0, +00) with resect to the norm in L? (2).
5.26. Let A be the multiplication operator by a bounded,non-negative measurable function
aon M.
(a) Prove that A is a bounded, non-negative definite, self-adjoint operator in L?
and, for any non-negative f € L? and ¢t > 0,

0<e™f<f (5.11)
(b) Prove that, for any non-negative f € L? and t > 0,
0< e Mt < etly (5.12)

(c) Using part (b), give an alternative proof of the fact that P}f < P,f.
HINT. In part (b) use the Trotter product formula:

e HATB) f — lim (e_% e_%B>nf, (5.13)

n—oo

that is true for any two non-negative definite self-adjoint operators A, B in L?.



CHAPTER 6
Regularity theory in R”

6.1. Show that the delta function § in R™ belongs to W~F for any k > n/2.

6.2. The purpose of this problem is to give an alternative proof of Theorem 6 by means
of the Fourier transform. Let { be a bounded open set in R”™. Recall that W3 (Q2) can be
considered as a subspace of W! (R") by extending functions by 0 outside (2.

(a) Prove that, for all f € W¢ () and g € C* (R"),
| @5)9de=~ [ 1o,9a (6.1)
Q Q
(b) Prove that, for any f € W} () and for any ¢ € R™,

(£6) yuey = (L 1EF) F @) (6:2)

where ]?(5) is the Fourier transform of f.

(c) Let {fx} be a sequence from Wy () such that fi converges weakly in
W (R") to a function f € W' (R"). Prove that fi (&) — f(£), for any
¢ € R™. Prove that also fi, — fin L} (R™).

(d) Finally, prove that if {f;} is a bounded sequence in W () then {f}} con-
tains a subsequence that converges in L2 (Q2).

HinT. Use Exercises 2.28 and 2.34.

6.3. Prove that, for any open set ' € 2, for any m > —1, and for any u € D ('),
[ullpm+z < Cf Lullwm, (6.3)
where a constant C' depends on ', L, m.

HinT. Use Lemma 6 for the inductive basis and prove the inductive step as in Lemma 6.

6.4. Consider a more general operator
L=0;(a" (2)0;) + ¥ (2) 0 + c (), (6.4)

where a¥ is as before, and & and ¢ are smooth functions in Q. Prove that if u € D’ ()
and Lu € W], (Q) for some m € Z then u € W™ (Q). Conclude that Lu € C* implies
ue C™.

6.5. Let ' € Q be open sets and m > —1 be an integer.
(a) Prove that, for any u € D ('),

[ullym+2(0) < Cl[Pullymg), (6.5)
where a constant C' depends on ', P, m.
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(b) Using part (a), prove that, for any u € C* (Q),
ullymrzgy < C (llull2@) + IPullymy) - (6.6)

REMARK. The estimate (6.6) was proved in Theorem 6. In the case u € C*, it is easier
to deduce it from (6.5).

6.6. Consider a more general parabolic operator
P = poy — 0; (aij (z)8;) — v (z)9; —c(z),

where a” and p are as before, and »/ and c are smooth functions in Q. Prove that if
u € D'() and Pu € V™ (Q) for some m € Z then u € V;™?(Q). Conclude that
Pu € C™ () implies u € C™ ().



CHAPTER 7

The heat kernel on a manifold

7.1. Prove that W is a Hilbert space.

7.2. Prove that W} = W¢ and W2 = W¢ including the equivalence (but not necessarily
the identity) of the norms.

7.3. Prove that if k is a positive integer then f € ng if and only if
fo Lf, o, LELf e WL (M) and LFf e L?(M). (7.1)
7.4. Prove that WO% C W?* and that the norms in WO% and W?* are equivalent.

7.5. Prove that if f € W2 then, for all integer 0 <1 < k,
k—1)/k 1/k

12l < 11T M IER (7.2)
7.6. Let M be a connected weighted manifold. Prove that if f € LZQOC (M) and Vf =0 on
M then f = const on M.
7.7. Let M be a connected manifold and 2 be an open subset of M such that and M \ Q
is non-empty. Prove that 1o ¢ W1 (M) and 1 ¢ W ().
REMARK. If in addition p(Q) < oo then clearly 1g € L? (Q) and V1g = 0 in Q whence

1o € W' (). In this case we obtain an example of a function that is in W' (Q) but not
in Wy ().

7.8. (The exterior maximum principle)Let M be a connected weighted manifold and € be
a non-empty open subset of M such that M \ Q is non-empty. Let u be a function from
C (M) N W (M) such that A, u =0 in Q. Prove that

sup u = sup u.
Q o

Prove that if in addition €2 is the exterior of a compact set, then the hypothesis u €
C (M)NWg (M) can be relaxed to u € C () NW{ (M).

7.9. Assume that w € L} (M) and Ayu € L2 (M). Prove that u € W _ (M) and,

loc loc
moreover, for any couple of open sets Q' € O’ € M,

lullwry < C (lullzeir + [ Apullr2gam) | (7.3)

where the constant C' depends on €, Q", g, 1, n. The space WL (M) is defined in Exercise
5.8 by (27).

7.10. Prove that if u € D' (M) and Ay u € C° (M) then uw € C* (M).

7.11. A function uw on a weighted manifold M is called harmonic if v € C* (M) and
Ayu = 0. Prove that if {ug},- is a sequence of harmonic functions such that

L2
up % € leoc (M)

. . . . Cc>
then (a version of) u is also harmonic. Moreover, prove that, in fact, uy — u.
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7.12. Let {u;} be a sequence of functions from L? (M) such that
—Auuk + apup = fk, (74)

for some ay, € R and f, € W™ (M), with a fixed non-negative integer m. Assume further
that, as k& — oo,

Wit L,
ap — a, fr —= f and up —= u.
Prove that function u satisfies the equation

and that
2m—+2
up 2 . (7.6)

Prove that if in addition f; € C*° (M) and fi it f then (versions of) uj and u belong
to C*° (M) and wy, i
7.13. Let {ux} be a sequence of non-negative functions from C*° (M), which satisfy (7.4)
with a € R and fi € C*° (M). Assume further that, as k — oo,

ap = a, [ i f and wug (z) Tu(zx) for any z € M,
where u (z) is a function from L? _ that is defined pointwise. Prove that u € C*° (M) and

U — U.

7.14. Prove that, for any relatively compact open set 2 C M, for any set K € 2, and for
any a € R, there exists a constant C = C (K, 2, ) such that, for any smooth solution to
the equation —A,u + au =0 on M,

sup |u| < Cllullz2()-
K

7.15. Let R, be the resolvent operator defined in Section 4, that is, R, = (£ + aid)_l,
where o > 0. Prove that if f € L2 N C° (M) then also R,f € L>NC>™ (M).

7.16. Let {€2;} be an exhaustion sequence in M. Prove that, for any non-negative function
fe€L*NC> (M) and any a > 0,
Rgingaf as ¢ — 00.

HINT. Use that RS f 2N Ry f (cf. Theorem 5).

7.17. Prove that, for any compact set K C M, for any f € L? (M, i), and for any positive
integer m,

sup AT (Bf)| < CE™ (L4 E7) || fll2s (7.7)
where o is the smallest integer larger than n/4.

7.18. Let f be a non-negative function from L? (M) and {Q;} be an exhaustion sequence
in M. Prove that
Ptﬂif Cm%XM) P.f asi— oo.
HinT. Use the fact that, for any ¢t > 0,
PtQifﬂPtf as ¢ — 0o

(cf. Theorem 5).
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7.19. Prove that if f € C§° (M) then
PtfcxM)fast—)O.
7.20. Consider the cos-wave operator
Cy = cos <t£1/2)
(cf. Exercise 4.52). Prove that, for any f € C5° (M), the function
u(t,z) = Cif (x)
belongs to C*° (R x M) and solves in R x M the wave equation
0%u

oz~ Bw

with the initial conditions

ou
u(0,2) = f (x) and e (0,z) = 0.

7.21. Prove that, for all x,y € M and ¢ > 0,
Pt (2,9) < Vpi (2,2) pe (v, ). (7.8)

7.22. Prove that, for all x € M, the functions p; (z,z) and ||p; 4|2 are non-increasing in ¢.

7.23. Let K C M be a compact set.
(a) Prove that the function

S(t):= sup p;(z,y)
z,yeK

is non-increasing in ¢ > 0.
(b) Prove that, for all ¢ > 0,

St <C(1+t7%),
for some constants o, C' > 0, where C depends on K.
7.24. Let J be an isometry of a weighted manifold M (see Section 3). Prove that
e (Jx, Jy) = pi (z,y) .

7.25. Prove that, for any two non-negative measurable functions f and g on M,
(P (fg))* < P, (%) P (d%) .
Prove that
(Pf)* < P ().

7.26. Prove that the following dichotomy takes place: either sup P;1 = 1 for all £ > 0 or
there is ¢ > 0 such that
sup P;1 < exp (—ct)

for all large enough t.

7.27. Prove that, for any fixed ¢t > 0 and x € M, the heat kernel p; (z,y) is a bounded
function of y € M.

7.28. Let F be a set of functions on M such that f € F implies |f| € F and P, f € F.



36 7. THE HEAT KERNEL ON A MANIFOLD

(a) Prove that the semigroup identity

PP = Pt+s
holds in F.
(b) Assume in addition that F is a normed linear space such that, for any f € F,
1Bz < NI fll7
and

|Pf — fll = 0ast—0.
Prove that, for any s > 0,

HPtf—Psfo—>0 as t — s.

7.29. Let f € W}l (M) be a non-negative function such that A, f < 0 in the distributional
sense. Prove that P;f < f for all t > 0.

7.30. Let f € L} (M) be a non-negative function such that P;f < f for all ¢ > 0.

loc
(a) Prove that P.f (x) is decreasing in t for any « € M.
(b) Prove that P, f is a smooth solution to the heat equation in Ry x M.
)

L1
(c) Prove that P,f =25 f ast — 0.
(d) Prove that A, f <0 in the distributional sense.

7.31. Under the conditions of Exercise 7.30, assume in addition that A, f = 0 in an open
set U C M. Prove that the function

N Ptf(l'), t>0,
“(”)_{ flz), t<o,

is C'*° smooth in R x U and solves the heat equation in R x U.

REMARK. The assumption P, f < f simplifies the proof but is not essential — cf. Exercise
9.8(c).

7.32. Let f € L} (M) be a non-negative function such that P,f € L} (M) for all

loc loc

t € (0,T) (where T > 0) and P, f > f for all t € (0,T).

Prove that P,f () is increasing in ¢ for any x € M.
Prove that P,f is a smooth solution to the heat equation in (0,7) x M.

(a)

o) 1

) Prove that P, f Lﬂ fast—0.
)

)

(c
(d) Prove that A, f > 0 in the distributional sense.
2
(e) Show that the function f (z) = exp (%) in R™ satisfies the above condi-
tions.

7.33. Let f € L*™° (M). Prove that P,f € L*> (M) for any ¢t > 0,

1Pef Lo < (I fllzee,
and the function u (¢, z) = P, f () is C* smooth in Ry x M and satisfies the heat equation.

7.34. Let 2 C M be an open set, and consider the function
1, z€Q
f(z) = 1o (z) '_{ 0, z€M\Q.

Prove that
}irr(l) P, f(x) = f(x) for all z € M \ 09, (7.9)
—
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and the convergence is locally uniform in x.
7.35. Prove that if a function f € L* (M) is continuous at a point x € M then
Pif(x) — f(z) ast — 0. (7.10)

7.36. Let 1 <r <oocand f € L" (M).
(a) Prove that P,f € L™ (M) for any ¢t > 0, and

IBefllzr < (] Lr- (7.11)

(b) Prove that P, f (z) is a smooth function of (¢,z) € Ry x M and satisfies the
heat equation.

7.37. Prove that if 1 <r < oo and f € L" (M) then P.f £>f ast — 0.

7.38. Assume that

F (t) := sup pt (z,2) < 0.
zeM

Prove that, for all 1 <r < s < 400, f € L" (M) implies P,f € L* (M) and
1P flle < F (O || £l (7.12)

7.39. Let f: M — [—00,+00] be a measurable function on M.
(a) Prove that, if f > 0 then the function

Bﬂ@:ﬂﬂ@wﬂwW@ (7.13)

is measurable on M for any ¢ > 0.
(b) Prove that if f is signed and the integral (7.13) converges for almost all x
then P, f (z) is measurable on M.
(c) Prove the identity
f)t-i-sf:Pt(Psf)

for any non-negative measurable function f.

7.40. For any open set 2 C M, denote by p{* (z,y) the heat kernel of the manifold (2, g, ).

(a) Prove that p (x,y) < p; (x,y) for all z,y € Q and t > 0.
(b) Let {€;} be an exhaustion sequence in M. Prove that

) C®(Ry xMxM
Q; (R4 )

P (2,y)
(c¢) Prove that, for any non-negative measurable function f (z),
PtQif(x) — Pif (z) asi— oo,
for any fixed t > 0 and x € M.
(d) Prove that if f € Cy (M) then
Pl f () RN

7.41. Let (X,gx,pux) and (Y, gy, uy) be two weighted manifold and (M, g, u) be their
direct product (see Section 3). Denote by pi and p} the heat kernels on X and Y,
respectively. Prove that the heat kernel p; on M satisfies the identity

pe ((z,y), (2,y) = pi* (z,2) p! (v,9), (7.14)
forallt >0, z,2' € X, y,y' € Y (note that (z,y) and (2/,y) are points on M).

pt (z,y) as i — oo.

)Ptf(:z:) as i — 00.
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7.42. For any t > 0, consider the quadratic form in L? (M), defined by

e = (100)
L2

(cf. Exercise 4.38). Prove that if the heat kernel is stochastically complete, that is, for all
z € M and t > 0,

/ pr () da (y) = 1, (7.15)
M

then the following identity holds:

&N =5 [ [ 0@ 10)Pnendumin). (7.16)

for all t > 0 and f € L? (M).

7.43. Prove that, for any real k > 0 and for any f € L? (M),
o tk—l

(C+id) " f (z) = / e P @) (7.17)

0
for almost all x € M, where I' is the gamma function.
HinT. Use Exercise 5.11.

7.44. Assume that the heat kernel satisfies the following condition
pr(x,z) <ct™7 forallz € M and 0 <t < 1. (7.18)
where 7, ¢ > 0. Fix a real number k > ~/2.
(a) Prove that, for any f € L? (M), the function (£ 4 id) ™ f is continuous and

sjt\zp\(ﬁﬂd)’kf’ < O|lf |2, (7.19)

where C' = C (¢,v, k).
(b) Prove that, for any u € dom £*, we have u € C (M) and

sup |u| < C (Huan + Hz:’fuup) . (7.20)
M

7.45. Prove that if (7.20) holds for all u € dom £* with some k > 0 then the heat kernel
satisfies the estimate (7.18) with v = 2k.

7.46. The purpose of this question is to give an alternative proof of Theorem 6 (Sobolev
embedding theorem).

(a) Prove that if u € W* (R") where k is a positive integer then u € dom £*/2,

where L is the Dirichlet Laplace operator in R™. Prove also that, for any
u € Wk (R"),

(£ +id)*2 u 12 < Cllullyr,

where C is a constant depending only on n and k.
(b) Prove that if u € W* (R") where k is an integer such that k > n/2 then
u € C(R") and
sup [u] < Clufly
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(c) Prove that if & > m + n/2 where m is a positive integer then v € W* (R")
implies u € C™ (R") and
[ullemmny < Cllullwrgn)-
(d) Prove that if Q is an open subset of R and k and m are non-negative integers
such that k > m +n/2 then u € W _(2) implies u € C™ (). Moreover, for
any open sets ' € Q' € Q,
ullem @y < Cllullys @,
with a constant C' depending on Q', Q" k, m,n.
HiINT. Use Exercise 4.25 for part (a) and Exercise 7.44 for part (b)

7.47. (Compact embedding theorems)
(a) Assume that p (M) < oo and

sup pt (z,2) < oo for all ¢ > 0. (7.21)
zeM

Prove that the identical embedding W (M) < L? (M) is a compact operator.

(b) Prove that, on any weighted manifold M and for any non-empty relatively
open compact set Q C M, the identical embedding W3 (Q) < L? () is a
compact operator (cf. Theorem 6 and Corollary 10).

HiINT. Use for part (a) the weak compactness of bounded sets in L? and Exercises
7.36, 4.40.

7.48. Let I be an open interval in R and H be a Hilbert space. Prove that if a mapping
h: I — H is weakly differentiable then h is strongly continuous.






CHAPTER 8

Positive solutions

8.1. Prove that if h is a non-negative function satisfying on M the equation
—Ap b+ ah =0,

where « is a real constant, then Ph < e*h for all ¢t > 0.

8.2. If u € L? (M) is a non-negative solution to the equation

—Aju+ou = f
where o > 0 and f € L? (M), f > 0. Prove that if

loc

u(z) — 0as z — oo,
then u = R, f.
8.3. Let u € L? (M) satisfy in M the equation
Ayu+Adu =0,
where A € R, and
u(z) — 0as z — oo.

Prove that u € W (M).

REMARK. Since by the equation A,u € L? (M), it follows that u € dom (£) and, hence, u
satisfies the equation Lu = —Au. Assuming that u % 0 we obtain that u is an eigenfunction
of the Dirichlet Laplace operator.

8.4. Let M be a connected weighted manifold and E, F' be two compact subsets of M.
Prove that, for any real a there is a constant C = C (o, E, F') such that, for any non-
negative a-superharmonic function u on M,

infu < C'inf u.
E F

8.5. (A wersion of the elliptic minimum principle) Let M be a non-compact connected
weighted manifold and let u (t,7) € C? (M) be a superharmonic function. Prove that if
limsup u (x) > 0 (8.1)
k—oo

for any sequence {xj} such that z; — oo in M, then u (z) > 0 for all z € M.

8.6. (A wersion of the parabolic minimum principle) Fix T' € (0,+oc] and consider the
manifold N = (0,7) x M. We say that a sequence {(tz,zr)}r—; of points in N escapes
from N if one of the following two alternatives takes place as k — co:

1. o — oo in M and t — t € [0, T];

2. xp, > € M and tp — 0.

41
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Let u (t,z) € C% (N) be a supersolution to the heat equation in N. Prove that if
lim sup u (¢, zr) > 0 (8.2)

k—o0

for any sequence {(tx, zx)} that escapes from N, then u (¢,z) > 0 for all (¢,z) € N.

8.7. Prove that any compact weighted manifold is stochastically complete.

8.8. Prove that R" is stochastically complete (cf. Exercise 8.11).

8.9. Prove that if P;1(x) =1 for some ¢t > 0, z € M then Pl (z) =1forallt >0,z € M.
8.10. Fix a > 0. Prove that M is stochastically complete if and only if R,1 = o~ 1.

8.11. Prove the following claims.

(a) R™ is stochastically complete for all n > 1. (cf. Exercise 8.8).

(b) R™\ {0} is stochastically complete if n > 2, whereas R!\ {0} is stochastically
incomplete.

(c) Any open set 2 C R™ such that Q # R", is stochastically incomplete.

8.12. Let € be an open subset of R™ and h be a positive smooth function in 2 such that
Ah =0in €,
h(x) — 0as z — 09,
h(z) = el as |z] — oo

Prove that P{*h = h for all t > 0.

8.13. Let f be a non-negative superharmonic function on M.
(a) Prove that the function

v(z) = lim P f (z) (8:3)

satisfies the identity Pwv = v for all ¢ > 0 and, hence, is harmonic on M
(the limit in (8.3) exists and is finite because by Exercise 7.29 the function
P,f (z) is finite and decreases in t).

(b) Assume in addition that manifold M is stochastically complete and f is
bounded. Prove that, for any non-negative harmonic function h on M, the
condition h < f implies h < v.

REMARK. The maximal non-negative harmonic function that is bounded by f is
called the largest harmonic minorant of f. Hence, the function v is the largest
harmonic minorant of f.

8.14. Set v (z) = limy_,o P;1(x). Prove that either v = 0 or supv = 1. Prove also that
either v =1 or infv = 0.

8.15. Let Q be the exterior of the unit ball in R", n > 2. Evaluate lim; o P{*1 (z).

8.16. (A model with two ends) Set M = R x S"~! (where n > 1) so that every point
r € M can be represented as a couple (r,0) where r € R and § € S" 1. Fix smooth
positive functions ¢ (r) and Y () on R, and consider the Riemannian metric on M

g = dr* + ¢ (r) ggn-1,
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and measure p on (M, g) with the density function Y. Define the area function S () by
S(r) = waX (r)p" ' (r)
and volume function V (R) by
V(R) = S (r)dr,
[0,R]
so that V' (R) > 0.

(a) Show that the expression (??) for A, remains true in this setting.

(b) Prove that if function V (r) is even then the following are equivalent:
(1) (M,g,p) is stochastically complete.
(i) There is a non-constant non-negative harmonic function u € L (M, p1).
(i61) [ §iddr = oo.

(¢) Let S (r) satisfy the following relations for some « > 2:

| exp(rY), r>1,
§(r)= { exp (—|r|?), r<—1.

Prove that (M, g, i) is stochastically incomplete. Prove that any non-negative
harmonic function u € L' (M, i) is identical zero.






CHAPTER 9

Heat kernel as a fundamental solution

9.1. Let 4 be a measure in R™ defined by
du = exp (2¢- z)dx

where dx is the Lebesgue measure and c is a constant vector from R™. Prove that the heat
kernel of (R™, ggn, 1) is given by
pr(o9) = ——exp [ —c- o +y) — P - 2220, (9.1)
(4mt)"™/? 4t
9.2. (Heat kernel in half-space) Let
M={(z',...,2") eR*: 2" > 0}.

Prove that the heat kernel of M with the canonical Euclidean metric and the Lebesgue
measure is given by

2 R
pe (x,y) = m (eXp (_ E 4ty| > exp (_%)) (9.2)

where 7 is the reflection of y at the hyperplane ™ = 0, that is,

Y= (yla"'7yn_17_yn) .
9.3. (Heat kernel in Weyl’s chamber) Let
M = {(xl,...,m") eER":zl <az?< ... <x"}.

Prove that the heat kernel of M with the canonical Euclidean metric and the Lebesgue

measure is given by
n

pi(w,y) = det (pf («',97)) (9.3)

where pf{l is the heat kernel in R?.

.. )
7,7=1

9.4. Let (M, g, ) be a weighted manifold, and let h be a smooth positive function on M
satisfying the equation
—A,h+ ®h =0, (9.4)
where ® is a smooth function on M. Define measure i on M by di = h%dpu.
(a) Prove that, for any f € C* (M),

Auf —@f =hAg (RT1f). (9.5)
(b) Prove that, for any f € D (M),
/ (IVFP +@f2) du > 0. (9.6)
M
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9.5. Applying (9.6) in R™\ {0} with suitable functions h and ®, prove the Hardy inequality:

for any f € D(R™\ {0}),
n— 9)2 2
/Rn IV f[? da > (n—2) 42) /R I . (9.7)

n Jaf®

9.6. Prove that if v and v are two regular fundamental solutions at point y € M then the
difference u — v is a C'°*°-smooth function on R x M satisfying in R x M the heat equation.

9.7. Let  C M be an open set. Prove that the function u; (x,%) := p; (z,y) — pi* (z,y) is
C smooth jointly in t € R and z,y € Q.

9.8. Let a smooth function u (¢,z) on Ry x M satisfy the following conditions
u = Ayu inRy x M,
L1
u(t,") =S5 f ast—0,
where f € L} (M). Extend u (t,) to t <0 by setting u (t,z) = 0.

(a) Prove that the function wu (¢, z) satisfies in R x M the equation
ou
ot

where F' is a distribution on R x M defined by

mm—Afm@ﬂmwm,

for any ¢ € D(R x M).
(b) Prove that if in (9.8) f =0in M then u € C*° (R x M).
(¢) Prove that if f € C*° (M) then

u(t,~)coo—(]‘>4)fast—>0+.

Consequently, the function

~Ayu=F, (9.9)

~ u(t,x), t>0,
“@@—{f@% <0,

belongs to C*° (R x M).
HinT. Use Exercise 7.19.

9.9. Prove that, on any weighted manifold M, for any open set §2, any compact set K C €2,
and any N > 0,

sgg/cpt (z,y) du(y) = o (t") ast — 0. (9.10)

9.10. Define the resolvent kernel ro, (x,y) by

ro (2,y) = /000 e py (z,y) dt. (9.11)

Prove that, for any a > 0, r, (x,y) is a non-negative smooth function on M x M \ diag.
Furthermore, for any y € M, r,, (-,y) satisfies the equation

—Aure +arg = 0y. (9.12)



CHAPTER 10

Spectral properties

10.1. Let (X, d) be a separable metric space and S C X be a subset of X. Prove that if
all points of S are isolated then S is at most countable.

10.2. Prove that, for any Borel set U,
m (U) = trace Ey.

10.3. Prove that if A is a non-negative definite self-adjoint operator with a finite trace
then A is a compact operator.

10.4. For any non-negative definite operator A with dom A = #, define its trace by
trace A = Z (Avg, vg),
k

where {vy} is any orthonormal basis of . Prove that the trace does not depend on the
choice of the basis {v}.

10.5. Prove that, for any f € L% (M),

(Pif, f) < exp (—Amin (M) 1) ||f||%2

10.6. Prove the following properties of Ani, for subsets of a weighted manifold M.
(a) If Q1 C Q9 are two open sets then

)\min (Ql) Z >\min (QQ) .

(b) If {2} is a finite or countable sequence of disjoint open sets and Q = J,, Qi
then
Amin (Q) = Hl%f Amin (Qk) .

(c) If {Q}32, is an increasing sequence of open sets and Q = | J;, Qi then
/\min (Q) = lim >\min (Qk) .
k—o0

10.7. Let (M, g,n) and (M, g, 1) be two weighted manifolds based on the same smooth
manifold M of dimension n. Assume that they are quasi-isometric, that is, for some
positive constant A and B,

et

A'<2<Aand B'<Z <B, (10.1)

0] [0

where Y and T are the density functions of measures p and ji respectively. Prove that
C Amin (M) < Amin (M) < CAmin (M) (10.2)
where C = C (A, B,n) is a positive constant, A\pin (M) is the bottom of the spectrum of

the Dirichlet Laplacian on (M, g, i), and Apin (M) is the bottom of the spectrum of the
Dirichlet Laplacian on (M, g, ).

47
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10.8. (Cheeger’s inequality) The Cheeger constant of a manifold is defined by

d
W)= o AulVIdR (10.3)
fecg N0y [y 1f] dp

Prove that

1
Amin (M) > Zh2 (M). (10.4)
10.9. In the setting of Lemma 10, prove that the integral operator ) is compact without
using the trace.

10.10. Let M be a compact weighted manifold, which has a finite number m of connected
components.

(a) Prove that A\ (M) = ... = A\, (M) =0 and A1 (M) > 0.
(b) Show that the estimate (10) holds for all & > m + 1 and does not hold for
k<m.

10.11. Let M be a compact connected weighted manifold. Prove that

pt (z,y) = as t — 00,

(M)
where the convergence is uniform for all xz,y € M.

10.12. Let € be a non-empty relatively compact connected open subset of a weighted
manifold M. Using the notation of Theorem 10, prove that, for all z,y € €,

P (z,y) ~ e Moy () @1 (y) as t — oo.
10.13. Prove that, under the conditions of Theorem 10,

sup |¢k ()| < C(1+ A7), forall k>1, (10.5)
z€eQ)

where o is the exponent from (??) and C' is a constant that does not depend on k.

10.14. Let (M, g, 1) be a weighted manifold with the discrete spectrum. Let {¢r} be an
orthonormal basis in L? (M) that consists of the eigenfunctions of M, and let \; be the
eigenvalue of oy,

(a) Prove that, for any f € L? (M), if f =, axpx is the expansion of f in the
basis {¢r} in L? (M) then

Ptf = Z €7>\ktakg0k, (106)
k
where the series converges in L? (M) for any ¢t > 0. Show also that the series

converges in C*° (R x M) .
(b) Assume in addition that

trace P, = Ze_)‘kt < 00
k

for all ¢ > 0. Prove that
pr(z,y) =Y e Mo (z) or (y), (10.7)
k

where the series converges in C* (Ry x M x M).
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10.15. On an arbitrary weighted manifold, consider the resolvent R = (id+£) ! and its
powers R* = (id+L)™®, where L is the Dirichlet Laplace operator and s > 0.

(a) Prove that

o] ts—l
trace R® :/0 T (s) e ! trace Pydt. (10.8)

(b) Assuming in addition that (M) < oo and
pr(z,2) <Ct ™V forall0<t<1, z€ M,

where C and v are positive constants, prove that trace R® is finite for all
s> .

10.16. Let €2 be a relatively compact open subset of a weighted manifold M of dimension
n. Let {¢x} be an orthonormal basis in L? (Q) that consists of the eigenfunctions of M,
and let {\} be the sequence of the corresponding eigenvalues.

(a) Prove that if s > so = s (n) then

> NS <o (10.9)

k:Ag>0

(b) Prove that if f € C§° (2) then the Fourier series
=Y crer
k

of function f converges to f absolutely and uniformly in €.

10.17. Let (M, g, ) be a compact weighted manifold and {y} be an orthonormal basis
in L? (M) that consists of the eigenfunctions of M. Prove that the set of all finite linear
combinations of functions ¢y, is dense in C (M).

REMARK. This can be considered as a generalization of the classical Stone-Weierstrass
theorem that any continuous 27-periodic function on R can be uniformly approximated
by trigonometric polynomials.

10.18. In this problem, the circle S! is identified with R/277Z.
(i) Prove that the heat kernel p; (z,y) of S! is given by

Pt (, —I— Ze Yeosk (z —vy). (10.10)

(ii) Show that the heat kernel p; (z,y) of S* can be obtained from the heat kernel
ﬁt (1"7y) of Rl by

pe(x,y) =Y Pi(z+2mn,y). (10.11)
nez

(73i) Prove the Poisson summation formula

S ek \/>Zexp( i 2) (10.12)

keZ ne’l
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10.19. Let P (x) be a homogeneous of degree k harmonic polynomial on R"*!. Prove
that the function f = P|sn is an eigenfunction of the Laplacian of S™ with the eigenvalue
a=kk+n—-1).

REMARK. It is possible to prove that such eigenfunctions exhaust all eigenfunctions on
Sm.

10.20. Consider the weighted manifold (R, gg, ) where du = e~®’dx. Prove that the
spectrum of this manifold is discrete, its eigenvalues are A\ = 2k, kK = 0,1, ..., and the
eigenfunctions are hy, () — the Hermite polynomials (see Exercise 3.10). Hence, show that
the heat kernel of this manifold satisfies the identity

[e.e]

pi(@,y) = 6‘2“%. (10.13)
k=0

REMARK. The same heat kernel is given by the formula

1 Qarye—2t — (xz + yz) o4t
(27 sinh 2t)/2 P 1—e ¥ A

pe (@, y) =

cf. Example 9.

10.21. Let (M, g, u) be a weighted manifold with discrete spectrum, and let {¢x} be an
orthonormal basis in L? (M) of the eigenfunctions of M with eigenvalues {\}.
(a) Prove that {p} is an orthogonal basis also in W (M).
(b) Let f € L* (M) and assume that f =Y, ary is its expansion in the basis
{or} in L? (M). Prove that if, in addition, f € W (M) then

Vi=Y aVgy inL*(M) (10.14)
k

and

/ IV dp =" Aai. (10.15)
M k
(c) Prove that if f € W2 (M) then
—Auf = Mragpr  in L? (M) (10.16)
k
and

/M (Auf)?du =Y Aai. (10.17)
k

10.22. Let manifold M admit k non-zero functions fi,..., f € W¢ (M) with disjoint
supports such that R (f;) < a for all i = 1,...,k and some number a. Assuming that the
spectrum of L is discrete, prove that \; (M) < a.

10.23. Prove that if the spectrum of a weighted manifold (M, g, u) is discrete then also
the spectrum of any non-empty open subset 2 C M is discrete.

10.24. Let (M',g', i) and (M",g", ") be two weighted manifold with discrete spectra,
whose eigenvalues are given by the sequences {«;} and {3;}, respectively (each eigenvalue
is counted with multiplicity). Prove that the spectrum of the direct product (M, g, u) is
also discrete, and the eigenvalues are given by the double sequence {a; + 5;}.
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10.25. (Compactness of the embedding WL — L2 ) Let {uy} be a sequence of functions
from W} (M) such that {uy} is bounded in W' (Q) for any relatively compact open set

Q) C M. Prove that there exists a subsequence {uy, } that converges in L2 (M).

loc

10.26. Let f € C? (M) be a non-negative function on a connected weighted manifold M
that satisfies the inequality

Auf+af <0
with a real constant a. Prove that either f =0 or a < Apn (M).
REMARK. The converse is also true, that is, for any o > Apin (M) there exists a positive
solution to the equation A,f + af = 0. This will be proved later in Chapter ?? (cf.
Theorem 13). Exercise 10.27 contains a partial result in this direction.

10.27. Let o be a real number.
(a) Prove that if & < Apin (M) then the operator £ — aid has the inverse in

L? (M) and
(L —aid) ™' = / e P,dt. (10.18)
0
(b) Prove that if u (M) < 0o and & < Apin (M) then the weak Dirichlet problem
Ayju+au=0
u €1 mod W} (M)

has a unique solution that is given by the formula
o
u=1+ a/ e (Py1) dt (10.19)
0

Deduce that u > 0.

10.28. (Mazimum principle) Let Q be a non-empty relatively compact open set in a
connected weighted manifold M such that M \ 2 is non-empty. Prove that if u € C (Q) N
C? (Q) is a subharmonic function in €2 then

sup u = sup u. (10.20)
a 29

REMARK. Of course, this statement follows from Corollary 8. Find another proof using
Theorem 10 and Exercise 4.28.

10.29. Prove that, for all z,y € M and t > s > 0,
Dbt (xu y) < \/ps ($7 $) Dbs (ya y) exXp (_)‘min (M) (t - 5)) .







CHAPTER 11

Distance function and completeness

11.1. Let g be a metric in R™, which is given in the polar coordinates (r,6) by
g = dr? + ¢% (1) ggn-1, (11.1)

where 1 (r) is a smooth positive function (cf. Sections 3 and ??). Prove that the Rie-
mannian model (R", g) is complete.

11.2. Prove the implication (¢) = (a) of Hopf-Rinow Theorem, that is, if all geodesic balls
are relatively compact then (M, d) is a complete metric space.

11.3. Prove that a function f € C' (M) is Lipschitz if and only if |V f| is bounded, and
[fllzip = sup [V ]
M

11.4. Prove the following properties of Lipschitz functions.
(a) Let fi,..., fm € Lip(M) and let I = f (M) be the range of fi. Let ¢ be
a Lipschitz function on the set I; X ... X I, C R™. Then the composite
function
®(z) = ¢ (f1(@), s fin (2))
is Lipschitz on M and

m 1/2
1®]|zip < llllLip (Z ||fk|%ip> : (11.2)

k=1
(b) If f € Lipg (M) and ¢ € Lip (R) is such that ¢ (0) = 0 then o f € Lipg (M).

11.5. Prove that f,g € Lip (M) then also the functions f + g, max (f,g), min(f,g) are
Lipschitz; moreover, fg is also Lipschitz provided one of the functions f, g is bounded on
the support of the other.

Hence show, that if f,g € Lipy (M) then also the functions f + g, fg, max(f,g),
min (f, g) belong to Lipg (M).

11.6. Prove that for any open set {2 C M and any compact set K C 2 there is a function
f € Lipy () such that 0 < f <1in Q, flxg =1, and || f||rip < W.

REMARK. A function f with the above properties is called a Lipschitz cutoff function of
K in Q.

11.7. Let f be a real valued function on a Riemannian manifold M.

(a) Prove that if {U,} is a countable family of open sets covering the manifold
M such that

C = sup || fll Lip(wa) < o0,
then f € Lip (M) and | £l Lip(ar) < C-
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(b) Prove that if Eq, Eo are two closed sets in M such that Fy U Ey = M and f
is Lipschitz in each set F7, E5 with the Lipschitz constant C, then f is also
Lipschitz in M with the Lipschitz constant C.

11.8. Prove that
Cl (M) C Liploc (M) C VVl})c (M) .

11.9. Prove that the set of functions from Lipy,. (M) with compact support is identical to
Lipo (M)

11.10. Prove that if f1,..., f;n € Lipjo. (M) and ¢ € Lipj, (R™) then the composite
function @ (z) := ¢ (f1 (z), ..., fm (x)) is locally Lipschitz on M.

11.11. Prove that if f,g € Lipjo. (M) then the functions f + g, fg, max (f,g), min (f,g)
are also in Lipy. (M) .

11.12. Prove that if f € Lipj, (M) then the distributional gradient Vf belongs to
Lig. (M).

11.13. (Product rule for Lipschitz functions)
(a) Prove that, for all f,g € Lipj,. (M),

V(fg) =fVg+gVf. (11.3)
(b) Prove that if f € Lip(M) N L> (M) and g € W{ (M) then fg € W{ (M)
and (11.3) holds.
(¢) Prove that if f € Lipy (M) and g € WL _ (M) then fg € W3 (M) and (11.3)
holds.

11.14. (Chain rule for Lipschitz functions) Prove that if f € Lipj,. (M) and ¢ € C* (R),
then ¢ (f) € Lipioe (M) and

Vi (f) =4 (f) V.
11.15. Prove that if (M, g, u) is a complete weighted manifold then W (M) = W (M).

11.16. Let (M, g, p) be a complete weighted manifold.
(a) Let {ux}o, be a sequence from W' (M) such that, for all ¢ € C§° (M),

(uks @)y = (u, P)yn (11.4)
for some u € W', and
(ur, @)z = (v,0) 12, (11.5)

for some v € L? (M). Prove that u = v.
(b) Show that without the hypothesis of completeness, the claim of (a) is not
true in general.

11.17. Let (M,g,u) be a complete weighted manifold, and let h be a smooth positive
function on M satisfying (9.4). Set dji = h2dpu.

(a) Let £ = _Aﬁ‘wg be the Dirichlet Laplace operator of (M,g, ). Prove
0

that the operator —A, + ®|, is essentially self-adjoint in L? (M, i), and its
unique self-adjoint extension, denoted by £, is given by

L =JLJt, (11.6)
where J is a bijection L? (M, 1) — L? (M, i) defined by Jf = hf.
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(b) Prove that the heat semigroup e *£" of the operator £® in L% (M, 1) has
the integral kernel p{® (z,v), given by

pf (z,y) = h(x) h(y) Pt (x,).- (11.7)

1.2

11.18. Consider in R the function ® (z) = x? — 1. Verify that the function h () = e~ 2%
satisfies (9.4) with this function. Hence, prove that

t 2 2, .2
o e (z—y)” a°+y
= — — tanht | . 11.
pi (#3) (27rsinh216)1/2 exp( 2sinh 2¢ 2 o ) (118)

REMARK. The function (11.8) is called the Mehler kernel.
HinT. Use Example 9.

11.19. Let f (r) be a positive increasing function on (0, +00) and assume that there exists
a sequence {ry} — oo such that

f (rg) < Cr? for all k.

11.20. Let M be a connected manifold with bounded geometry as in Example 11.

(a) Prove that there is a constant N such that for any x € M, the ball B (z,¢)
can be covered by at most N balls of radius €/2.

(b) Prove that for any x € M and integer k£ > 1, the ball B (z, ke/2) can be
covered by at most N*~1 balls of radii /2.

(¢) Prove that any geodesic ball on M is relatively compact.

(d) Prove that, V (z,7) < exp (Cr) for all x € M and r > 1. Conclude that M
is stochastically complete.

Prove that

11.21. Let (M, p) be a complete connected weighted manifold with u (M) < co. Prove
that, for all z,y € M,

ot (z,y) — ﬁ as t — o0. (11.9)

11.22. Let (M, p) be a complete connected weighted manifold and let h be a positive
harmonic function on M such that, for some xog € M, the function

v(r) = / h2dp
B(zo,r)

/ _rdr (11.10)

logv (r)

satisfies the condition

Prove that P.h = h.

11.23. Let f (1) be a C!-function on (0, +00) such that f’ (r) > 0. Prove that

J I R
f(r) f(r)

11.24. Prove that any parabolic manifold is stochastically complete.



56 11. DISTANCE FUNCTION AND COMPLETENESS

11.25. Prove that, for any bounded open set 2 C R™,
1
Amin () > —M——.
min () 2 n (diam Q)2
Hence or otherwise show that there exists a constant ¢, > 0 such that, for any ball
B, C R",

(11.11)

Amin (Byr) = c,r 2.

11.26. Let (M, g, ) be a weighted manifold of dimension n > 2, and o be a point in M.

(a) Prove that, for any open neighborhood U of 0 and for any € > 0, there exists
a cutoff function ¢ of {o} in U such that

/ (V|2 dp < e.
U

(b) Prove that
Amin (M \ {0}) = Amin (M) . (11.12)
(c¢) Show that (11.12) fails if n = 1.

11.27. Let (M, g, p) be a complete weighted manifold. Fix a point z¢g € M and set

1
a = limsup — log p (B (zo,7)) . (11.13)
r—oo T

Prove that

o’

>\min (M) S -

T
11.28. Let (M, g, 1) be a weighted model based on R™ as in Sections 3 and ??, and let
S (r) be the area function of this model. Set

S’ (r) : S’ (r)
" — inf =1 . 11.14
N I (1
Prove that ) )
!
@) A (M) < &

1



CHAPTER 12

Gaussian estimates in the integrated form

12.1. Let ® be a C?-function in I := [0, +00) such that &, &', &"” > 0 and
"'d > (@)?, (12.1)

for some § > 0. Let £(t,z) be a continuous function on I x M and assume that £ (¢, ) is
locally Lipschitz in x € M for any t € I, % exists and is continuous on I x M, and the
following inequality holds on I x M:

o€

= = <
= 4 IV <0

Prove that the quantity
10= [ a(Epe
M

is non-increasing in ¢ € I for any non-negative f € L? (M).

12.2. Give an alternative proof of (??) applying Theorem 12 with the function

2

§(t,2) = ad(z, 4) - t,

where « is an arbitrary real parameter.

12.3. The purpose of this question is to prove the following enhanced version of (??): if f
and g are two functions from L? (M) such that

d (supp f,suppg) > r,
where r > 0, then, for all ¢ > 0,

2
(s <17 lol [ fexp( )ds (12.2)

(a) (Finite propagation speed for the wave equation) Let u (¢, z) be a C* function
on R x M that solves in R x M the wave equation

0?%u
ﬁ = A/_LU.
Set K; = suppu (¢, -) . Prove that K is contained in the closed |¢|-neighborhood

of Ko.
(b) Prove (12.2) using part (a) and the transmutation formula of Exercise 4.52.

REMARK. See Exercise 13.25 concerning the additional factor e™** in (12.2).
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12.4. Using Corollary 12, prove that if the weighted manifold M is geodesically complete
and, for some point x € M, a constant C' > 0, and a sequence {r;} — oo,

(B (z,7m%)) < exp (Cr}7) (12.3)
then M is stochastically complete.

REMARK. Of course, this follows from Theorem 11 but the purpose of this Exercise is to
give an alternative proof.

12.5. Let A and B be sets as in Theorem 12.
(a) Prove that, for any function f € L (B¢),

2 R2
[ (P)? du < ja(B) 1 max( e 5. (12.4)
A
(b) Prove that
| [ e vdntwinte) < 0VulAn(E) max<%, e ¥, (12.5)
A Bc

where C = /e/2.



CHAPTER 13

Green function and Green operator

13.1. Prove that if M is a compact manifold then
(a) g (z,y) = oo
(b) there is no fundamental solution of the Laplace operator on M.
13.2. Let M be a weighted model (cf. Section 3) and S (r) be the area function of M.

(a) Prove that, for any positive real R that is smaller than the radius of M, the
following function

R g
hie) = 2] S (1)

is a fundamental solution in Bgr of the Laplace operator at the pole o.
(b) Using (a), evaluate the fundamental solutions on R™ and H".

13.3. Prove that if the manifold M is connected then g (z,y) > 0 for all z,y € M.

13.4. Prove that if the Green function ¢ is finite then the following identity takes place
forall t > 0 and zg € M:
Pig (z0,-) = Gpt (w0, ) -

13.5. Prove that if Ayin (M) > 0 then the Green function g (z,y) is C*° smooth jointly in
x,y in M x M\ diag.
13.6. Prove that if Apin (M) > 0 then

1
)\min (M) ‘
13.7. Prove that if Ay (M) > 0 and pu (M) < oo then g (x,y) € L' (M x M).
13.8. Prove that if {Q4} is any exhaustion sequence in M then, for all z,y € M,

g% (z,y) T g (2,y) ask — oc.

13.9. Let 2 be an open subset of a weighted manifold M. Prove that, for any compact
set K C  and for any non-negative function f € L? (M),

Gf < GQH%?IE Gf. (13.2)

G2 r2 < (13.1)

13.10. Let €2 be a non-empty relatively compact open subset of a connected manifold M
such that M \ Q is non-empty. Fix a point z( € .
(a) Let ¢ be a cutoff function of {z¢} in . Prove that

(1 =) g" (wo,) € W5 ().
(b) Prove that for any open set U C 2, containing z,

9% (z0,) — 9" (20,") € W3 ().

59



60 13. GREEN FUNCTION AND GREEN OPERATOR

13.11. Assume that Apin (M) > 0 and p (M) < co. Prove that, for all 0 < a < b and any
xg € M, the function
g (zo,z) if g (zo,) € [a,b],
v@ =1 a  ifg(zoa)<a,
b, if g (zo,z) > b,

belongs to W (M) and
Vo7 <b—a.

13.12. Prove that, for any weighted manifold M and for all ¢ > 0, g € M, the function
u = min (g (2o, ) , ) belongs to W} (M) and

IVulZ: <e

13.13. Let Q be a non-empty relatively compact connected open subset of a weighted
manifold M. Prove that

1

Q

sup/g z,y) du (y) > ———. 13.3

zeQ JQ ( ) Iu( ) )\min (Q) ( )
13.14. Let M be a connected weighted manifold and 2 be a relatively compact open subset
of M such that M \ Q is non-empty. Let {¢k}7e; be an orthonormal basis in L? (Q) of
eigenfunctions of  and {A;} be the corresponding sequence of eigenfunctions. Prove the
identity

8 (@) =Y 30k () ),
k=1

where the series converges in D’ (€2 x ).

13.15. Prove the following properties of superaveraging functions.

(a) If {fr}zre, is an increasing sequence of superaveraging functions and f —
f € Lj,. then f is also superaveraging.
(a) If {fi};c; is a family of superaveraging functions depending on a parameter

i then the function
f=inf f;
el
is also superaveraging.

13.16. Let M be a connected, stochastically complete weighted manifold, and let f be a
non-negative continuous superaveraging function on M.
(a) Prove that the inequality P,f < f is satisfied pointwise and that P,f — f
as t — 0 pointwise.
(b) (Strong minimum principle) Prove that if f (z) = inf f at some point x € M
then f = const on M.
(b) (Minimum principle) Let 2 be a relatively compact open subset of M with
non-empty boundary. Prove that

inf f = inf f.
i f =it

13.17. Prove that if the Green function is finite then it is superaveraging with respect to
each of its arguments.



13. GREEN FUNCTION AND GREEN OPERATOR 61

13.18. Let Q be a relatively compact open subset of M such that Ay (©2) > 0. Let u be
a solution of the following weak Dirichlet problem in 2

Ayu =0,
{2 mawy o 150

where f € W' (M), and set

| f inQ¢
f_{ u in Q,

(see Fig. 13.1).

FIGURE 13.1. Function fin Exercise 13.18

(a) Prove that if f € W (M) then also fe Wa (M).
(b) Prove that if f is superaveraging then also f is superaveraging and 0 < f < f.

13.19. Let f and h be two superaveraging functions from W (M). Then, for any ¢ > 0,
(~AuPif,h) < (V,Vh). (13.5)

13.20. Let f € W} (M) and {Q4} be a compact exhaustion sequence in M. Let uy €
W1 () solve in € the weak Dirichlet problem problem

Ayup =0,
U = f mod Wol (Qk) .

Then
IVug||rz2 — 0 as k — oo.

13.21. Let f and h be two superaveraging functions from W (M). If {Q}72, is a compact
exhaustion sequence such that Ay, (2%) > 0 for any &, then

sup/ (—ALPf)h dp — 0 as k — oo.
t>0 JM\Qy,

13.22. Prove the classical Harnack inequality: if f (z) is a positive harmonic function in
a ball B (z,7) in R™ then
sup f<C, inf f, (13.6)
B(z,r/2) B(z,r/2)

where the constant C,, depends only on n.
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13.23. (The Liouville theorem) Prove that any positive harmonic function in R™ is identical
constant.

13.24. Let M be a connected weighted manifold. Prove that if g (z,y) < oo for some
couple z,y € M then g (x,y) is finite, that is, g (z,y) < oo for all distinct points z,y € M.
REMARK. Hence, the following dichotomy takes places: either g (x,y) = oo for all z,y € M
or g (z,y) < oo for all distinct z,y € M.

13.25. Prove the following improved version of (12.2): if f and g are two functions from
L? (M) such that

d (supp f,suppg) >,
where r > 0, then, for all t > 0,

s > 1 52
(P90 < ISl gl 00 [~ exp (=5 ) as. (137

13.26. Let M be a connected non-compact manifold and €2 be a relatively compact open
subset of M.
(a) Prove that, for any p € [1, +oo], G is a bounded operator from LP () to
(b) Prove that the function u = G2 f satisfies the equation —Ayu = f for any
feLr(Q).

13.27. Let M be a connected weighted manifold and let f € L} (M) and f > 0. Prove

loc
that if Gf (z) is finite then G f belongs to L} . and —A, (Gf) = f.
13.28. Let M be a connected weighted manifold with a finite Green function g (z,y). Fix
a point g € M and a compact set K C M. Prove that if u is a harmonic function on M
and
u(x) < g(z,z9) forall z € M\ K,
then u (z) <0 for all z € M.

13.29. Let M be a connected weighted manifold. Prove that if A (x) is a fundamental
solution of the Laplace operator at a point z¢ € M such that h(z) — 0 as z — oo, then

h(z) =g (z, ).
13.30. Prove that, on an arbitrary connected weighted manifold M, the following condi-
tions are equivalent:

(i) the Green function is finite;
(79) there exists a positive non-constant superharmonic function (that is, M is
non-parabolic);
(797) there exists a positive non-constant superaveraging function.

13.31. Let M be a connected weighted manifold and €2 be a non-empty relatively compact
open subset of M such that M \  is non-empty. Prove that, for all x € M, y € Q,

g(@,y) < g% (,y) + sup g(2,9). (13.8)
z€0Q
Here we set ¢ (z,y) =0ifz ¢ Qor y ¢ Q.

13.32. Prove that a fundamental solution of the Laplace operator exists on any non-
compact connected weighted manifold.
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13.33. Prove that if, for some z € M and a compact set K C M,
[ 9 duty) <o (13.9)
M\K

then M is stochastically incomplete.

13.34. Let M be a weighted model of dimension n > 2, and S (r) be its boundary area
function (cf. Section 3). Prove that the Green function of the central ball Bg satisfies the
identity

R
ds

Br = = 13.1

o (w0 = [ 5o (13.10)
where 7 = |z|. Deduce that the Green function of M satisfies the identity
> ds

= . 13.11
g (.’1?, O) , S (S) ( 3 )

Hence or otherwise give an example of a complete manifold M where the Green function
belongs to L' (M).

13.35. Prove that the Green function of the ball B = Bg (0) in R™ is given by the following
formulas, for all z,y € B:

(a) If n > 2 then

1 1 R\"? 1
B
o - CET ) e
wn (n —2) <|33—y|n 2 Y| |z — y*|" 2
where y* is the inversion of y with respect to the ball B, that is
* Y
Yy = —2R2
|yl

(b) If n = 2 then

,y) = - log [z —y*[ly|
’ [z -yl R~

B( 2

9

(¢) If n =1 then

1 1 R
gB(:v,y):§!w—y!——wy+—-

2R 2
13.36. Let F'(t) be a positive monotone increasing function on R and assume that
1 2
pe(w,y) < F (V) exp (—C?>
for some z,y € M and all ¢t > 0, where r = d (z,y) and ¢ > 0. Prove that if F' satisfies the
doubling property

F (2s) < AF (s) for all s >0, (13.13)
then © o
sds
< .
g9(z,y) < C/r F i)’ (13.14)

where C = C (4, ¢).

If in addition F satisfies the condition

F(s) 5\
e 2 (;> . foralls > s >0, (13.15)
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where a > 0 and o > 2 then

(13.16)
where C = C (4, a,q,c).



CHAPTER 14

Ultracontractive estimates and eigenvalues

14.1. Prove that if the heat semigroup {P;} is L? — L? ultracontractive with the rate
function 6(t) where 1 < p < 2 then {P;} is also LP — LP" ultracontractive with the rate
function 6%(t/2).

14.2. Prove that if (??) holds for all relatively compact open sets €2 then it holds also for
all open sets Q with p (Q) < oco.

14.3. Assume that the following Nash inequality holds:

2 2 HUH%
|Vau|”dp > |lullzA 5 |
M HUH2

for any non-zero function u € C§° (M), where A is a decreasing function on [0, +00). Prove
the Faber-Krahn inequality

Amin (€2) = A (1 (Q)),

for any open set 2 C M with finite measure.

14.4. Give an example of a manifold where the Faber-Krahn inequality can holds only
with function A (v) = 0.

14.5. Prove that the Faber-Krahn inequality with function
A (v) = av™ 2V (14.1)
where a and v are positive constants, implies that, for any relatively compact ball B (z,r),
w (B (z,7) > ca’/?r, (14.2)

where ¢ = ¢ (v) > 0.
HinT. First prove that

u(B (@,1) = ¢ (ar?) 77 u (B (w,7/2)) 752
and then iterate this inequality.

14.6. Prove that the Faber-Krahn inequality with function (14.1) with v > 2 is equivalent
to the Sobolev inequality:

v—2
/ Vul?dy > ¢ (/ M= dﬂ> (14.3)
M M

for any u € W§ (M), where ¢ = ¢ (a,v) > 0.
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14.7. Prove that the Sobolev inequality (14.3) implies the following inequality, for any

ue C§°(M): .
[ auze( [ uran) ([ ) (14.4)

for any set of positive reals «, 3, a, b that satisfy the following conditions:

2v
a<ﬁ<y_2 (14.5)
and )
b—a: 1-— )
{ Bb — aa = 2. (14.6)

REMARK. Under the conditions (14.5), the numbers a, b solving (14.6) always exist and
are positive. For example, if « = 1 and § = 2 then a = 4/v and b = 1 + 2/v, so that
(14.4) coincides with the Nash inequality (??). If « = 2 and 8 = 2 + 4/v then a = 2/v
and b = 1, and we obtain the Moser inequality

—2/v
/ rwﬁduzc(/ Iu2du) (/ ru\”‘*/”cm).
M M M

14.8. Prove that if A;, Ay are two functions of class L then also A; + A and max (A1, Ag)
belong to L.

14.9. Let A be a function of class L such that

av e, v<w
A(U) — 1 7a27 >~ U1,
U™, v > vy,
where a1, c1,v1 > 0, ag,co > 0, and vy > vy. Prove that A € Ly for some ¢ > 0.

14.10. For any function v € I', denote by A, the L-transform of v, and for any function
A € L, denote by ~yp the I'-transform of A. Let a,b be positive constants.

(a) Set A (v) = aA (bv). Prove that
Vi () = b7 (at) .
(b) Set ¥ (t) = ary (bt). Prove that
A5 (v) = bA, (a1v).
(c) Prove that if A; and Ay are two functions from L and A; < Ay then vy, <
YA -

14.11. Prove that the product of two functions from f(s belongs to f(s, and the product of
two functions from I's belongs to I's/s.

14.12. Show that there is a function « € I" that does not belong to any class I's.

14.13. Let F (s) be a positive function of class C? on [0, +00) such that F’(s) does not
vanish for large s. Assume that
> ds
=00
/0 F(s)

. F/IF
¢i= lim ) (s) #0

and
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/t ds —671 ast — oo
o F(s) F'(t) '

14.14. Let A be a function of class L such that
A (v) = exp (—vﬂ> for v > 1,

Prove that

where 3 > 0. Evaluate the asymptotic of its [-transform ~ (t) as t — co.

14.15. Prove that the claim of Theorem 14 remains true for any f € L (M).
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CHAPTER 15

Pointwise Gaussian estimates 1

15.1. Fix &y € M, R > r > 0 and let the ball B (zg, R) be relatively compact. Assume
also that, for some a,n > 0, the Faber-Krahn inequality

Amin(U) > ap (U)~2™, (15.1)
holds for any open set U C B(zg,r). Let u (¢,7) be a non-negative bounded C2-function
(0,T) x B (xo, R), where T' > 0, such that

(4) %_1; —Byu <0,
(i) u(t,-) = 0ast— 0in L? (B (xo, R)).
Prove that, for all x € B (zg,7/2) and ¢t € (0,7,

1 F+1 9
u(t,x) < C|u||Loo% max (1, g) max (1, %) e (15.2)

where 6 = R —r and C' = C (n).

15.2. Prove that the Faber-Krahn inequality holds on a weighted n-dimensional manifold
M with function
A ) = { =2 v <y,
0, v > g,
where c, vy are some positive constants, provided M belongs to one of the following classes:
(a) M is compact;
(b) M has bounded geometry (see Example 11).
REMARK. If M is non-compact and has bounded geometry then the Faber-Krahn function
A can be improved by setting A (v) = cv=2 for v > vy — see [?].

15.3. Prove that, on any weighted manifold M there is a positive continuous function
F (z,s) on M x Ry, which is monotone increasing in s and such that the heat kernel on
M satisfies the following estimate

o\ /2
C <1 + %) 2
P e E (%) (153

for all z,y € M and t > 0, where n = dim M and C = C (n) (cf. Exercise 16.3).

15.4. Prove that if M has bounded geometry then, for some constant C,

C (1 + Pt_Q)W - < p2> | 15.4)

pe(x,y) < -7
@) min (1, ¢)"/?

4t
for all z,y € M and ¢t > 0.
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15.5. Under the hypotheses of Corollary 15, assume in addition that n > 2 and
1(B (z,r) < Or"

for all » > 0. Prove that each of the conditions (a) — (c) is equivalent to the following
estimate of the Green function:

g(z,y) < Cd(z,y)* ™",
for all distinct x,y € M.

REMARK. Note for comparison that the Faber-Krahn inequality of Corollary 15 implies
w (B (x,r)) > const r™ — see Exercise 14.5.

15.6. Under conditions of Corollary 15, let n > 2 and A := A\pin (M) > 0. Prove that, for
any € € (0,1), the Green function of M satisfies the estimate

2—n
g(z,y) < Ce_(l_E)ﬁP{ P n> 2,

(1+108,3), n=2, (15.5)

for all x # y, where C' = C (n, ¢, A, ¢).

15.7. Let M be an arbitrary weighted manifold of dimension n > 2. Prove that if the
Green function of M is finite then, for any x € M and for all y close enough to z,

2—n
> 2
g(w,y)SC{p I

log %, n =2, (15.6)

where C' = C (n).

15.8. Let M be a complete manifold satisfying the relative Faber-Krahn inequality. Prove
that the Green function g (z,y) is finite if and only if, for all x € M,

/°° rdr <
V(z,7) '

Prove also the estimate for all z,y € M:

> rdr

d(z,y) Vv (I7 T) '
15.9. Under conditions of Theorem 15, prove that the relative Faber-Krahn inequality
(??) implies the following enhanced version of (77?):
v—1
C (1 + %2) ’ 2
exp (——) . (15.7)
1/2 1/2

V (@, v0) 2V (1) &

HINT. Use the mean-value inequality of Theorem 15 and (12.2).

g(z,y) <C

pe (z,y) <



CHAPTER 16

Pointwise Gaussian estimates 11

16.1. Let for some z € M and all t € (0,T")
1
pe(z, ) < —=, 16.1
(@) < 5 (16.1)
where T' € (0,+o0] and v is a monotone increasing function on (0,7 satisfying the
doubling property

7(2t) < Av(t), (16.2)
for some A > 1 and all ¢t < T'/2. Prove that, for all D > 2 and ¢ > 0,
C
Ep(t,z) < —— 16.3
plt.) € —o (163

where C' = C(A).
16.2. Using Exercise 16.1, give an alternative proof of Corollary 15: on any weighted
manifold M,
Ep(t,x) < o0
forall D > 2, x€ M,t>0.

16.3. Using Lemma 15, prove that on any weighted manifold M, for any D > 2 there exists
a function ®(¢,x) that is decreasing in ¢ and such that the following inequality holds

d*(z,y)

(o) < 200t ew (-5

for all z,y € M and ¢t > 0 (cf. Exercise 15.3).

— Amin (M) t> , (16.4)

16.4. Assume that a weighted manifold M admits the Faber-Krahn inequality with a
function A € L and let v be its L-transform. Assume that - is regular in the sense of
Definition 16. Prove that, for any D > 2 and for all £ > 0 and z,y € M,

C d* (z,y)
pe(2,9) < 7 (ct) xp <_ 2Dt > ’

where C' depends on D and on the regularity constants of ~.

16.5. Assume that the volume function V (z,r) = p (B (x,r)) of a weighted manifold M
is doubling and that the heat kernel of M admits the estimate

(x m) < L
PR = Y @i
for all z € M and t € (0,T), where T € (0,+00] and C' is a constant. Prove that
C d? (:c,y))
z,y) < ——=exp | — ,
P 9) S G Xp( 2Dt

forall D > 2, x,y € M, t € (0,T) and some constant C'.
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REMARK. If T' = 400 and the manifold M is complete and non-compact, then this follows
from Theorem 15.



CHAPTER 17

Reference material

17.1. Prove that if {zx} and {yx} are two sequences in ‘H such that z; — x and yp — y
then
(@r, yr) = (2, 9) -
17.2. Prove that if x; — z then
Jall < limin |z
k—o0
17.3. Let {zx} be a sequence of vectors in a Hilbert space H and z € H.
(a) Prove that z; — z if and only of
zp — x and ||zg| — ||z

That is, the strong convergence is equivalent to the weak convergence and
the convergence of the norms.

(b) Prove that z; — z if and only if the numerical sequence {||zx||} is bounded
and, for a dense subset D of H,

(25,) = (2,y) for any y € D.

That is, the weak convergence is equivalent to the convergence “in distribu-
tion” and the boundedness of the norms.

17.4. Let {vy},-, be an orthonormal sequence in H.

(a) Prove that v, — 0 as k — oo.
(b) Prove that, for any sequence of reals ¢, the series

o
> ek
k=1
converges weakly if and only if it converges strongly.

17.5. A subset S of a Hilbert space H if called weakly closed if it contains all weak limits
of all sequences from S. Prove that any closed subspace of H is also weakly closed.

2
17.6. Let {fx} be a sequence of functions from L? (M, p1) such that fy, LN f. Prove that

esup f < likm inf (esup fx) (17.1)
—00
and
einf f > limsup (einf f%) . (17.2)
k—o0

2 1
17.7. Prove that if f; L f then f,f L f2.Hence or otherwise show that, for any function

g€ L=,
[ ftadn~ [ fgdn
M M
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17.8. If an operator A in H is injective and surjective then one defines the inverse operator
A~! such that, for any x € H, A~z is the unique vector y € dom A such that Ay = z.

(a) Prove that if A=! exists then AA~! =id and A=A C id.
(b) Prove that if A and B are two operators such that
AB =id and BA Cid

then A~! exists and A~ = B.

17.9. Prove that, for any operator A in a Hilbert space,

IA]l = sup (Az,y). (17.3)
wedom A, <1,[yl|<1

17.10. Prove that, for any bounded operator A, the adjoint operator A* is also bounded
and
1Al = |4 and  [|A*A[l = Al
17.11. Let A be a densely defined symmetric non-negative definite operator.
(a) Prove that, for all z,y € dom A,

(Az,y)* < (Az,z) (Ay,y). (17.4)

(b) Prove that
[All = sup  (Az,z).

z€dom A,||z||<1

17.12. Let A be a densely defined self-adjoint operator.

(a) Prove that (ran A)" = ker A and (ker A)" = ran A.
(b) Prove that A is invertible and the inverse A~! is bounded if and only if there
exists ¢ > 0 such that

|Az|| > c|jz|| for all z € dom A. (17.5)

17.13. A densely defined operator A in a Hilbert space H is called closed if, for any
sequence {xyp} C dom A, the conditions z; — = and Azy — y imply z € dom A and
Ax =y.
(a) Prove that any self-adjoint operator is closed.
(b) Prove that if A is a non-negative definite self-adjoint operator then dom A
is a Hilbert space with respect to the following inner product:

(z,y) + (Az, Ay) .

17.14. Let F be a function satisfying (??), and let Fi; be the associated Lebesgue-Stieltjes
measure on R. Set F' (a+) := limy_,,+ F (A\) and prove that, for all a < b,

Flap) F(b) — F (a+),
Flapy = F(b+)—F/(a),
Fp = F(at)—F(a),
Foy = F(@+)—F(at).

17.15. Let {sg}r— . be a double sequence of reals and let {t;};- __ be a double sequence
of positive reals such that ), t; < co. Define function F' by

F)= Yt (17.6)

{k:sk<)\}
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(a) Prove that F' satisfies the conditions (77).
(b) Prove that, for any Borel set U,

Fy= > t. (17.7)
{k:speU}

(c¢) Prove that, for any non-negative Borel function ¢ on R,

[T emarm =Y tp i, (178)

> kez
(d) Prove that a Borel function ¢ on R is integrable against F if and only if
Dtk lp (sk)] < oo,
keZ
and its integral against F is given by (17.8).

17.16. Prove that if function F satisfies (??7) and F' is continuously differentiable then

+0o0 +o0
/ e (N dF () = / @ (\) F' (\)dA, (17.9)

—00 —00

for any non-negative Borel function .
17.17. For any function F' on R, defined its total variation on R by

var F:= sup Y |F (Aes1) — F ()| (17.10)
(A} kez
where the supremum is taken over all increasing double sequences {Aj}; ., such that
A — —oo as k — —oo and A\, — 400 as k — +oo0.
(a) Show that F is the difference of two bounded monotone increasing functions
if and only if var F' < oo.
(b) Show that F' is the difference of two functions satisfying (??) if and only if
F is left-continuous and var F' < oo.
(c) Let F be a left-continuous function on R such that var F' < oo. Prove that

+oo
var F' = sup / e (N dF (),
lp|<1J —c0

where the supremum is taken over all continuous functions ¢ on R such that
lo (A)] <1 for all A
(d) Show that if F € C* (R) then

+oo
varF:/ ’F'()\)|d)\.

17.18. Let F' be any function on R. We say that a Borel function ¢ is integrable against
F if there are two functions F(!) and F?) satisfying (??) such that F = F() — F() and
¢ is integrable against F'") and F(®). In this case, set

+o0o +oo +o0
/ © (A) dF (\) ::/ @(A)dF(l)(A)—/ © (A dF@ (). (17.11)

Prove that the value of the right hand side of (17.11) does not depend on the choice of
FO) and F®,
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17.19. Prove the following properties of projectors in a Hilbert space.

(a) Any projector P is a linear bounded self-adjoint operator and P? = P.

(b) For any bounded self-adjoint operator A such that A? = A, its range ran A
is a closed subspace and A is the projector onto ran A.

(¢) Any projector P is non-negative definite, and ||P|| = 1 unless P = 0.

17.20. Let P be a projector and let {vi} be an orthonormal basis in H. Prove that
Z | Pvg||* = dimran P.

17.21. Let {E)},.g be a spectral resolution in a Hilbert space H.
(a) Prove that if a < b then
E.E, = EyE, = E,. (17.12)

(b) Prove that Ey — E, is a projector for all a < b. Hence or otherwise prove
that the function A — || E)\z|| is monotone increasing, for any = € H.
(¢) For a Borel set U C R, define the operator

Ey = / dE).
U
Prove that, for all —oo < a < b < 400,
Ejap) = Ep — Eg. (17.13)

(d) Prove that if the intervals [a1,b1) and [ag, by) are disjoint then the subspaces
ran B, 3,y and ran E,, ;,) are orthogonal.

17.22. Let P, ..., P, be projectors in H such that ran P; L ran P; for i # j. Consider the
operator

k
A=) AP,
1=1

where A; are reals. Let ¢ (A\) = ag + a1 A + ...ap A be a polynomial with real coefficients,
and define the operator

2] (A) = Qp id +Q’1A + ...+ OznAn.

Prove that
k
p(A)=> pN)P (17.14)
i=1
and, for any = € H,
lp (A) z[|* = Zso ) || P
Prove also that if ¢ and ¢ are two polynomlals then
@ (A)+¢(4) = (¢ +7v)(4) (17.15)
and
p (A) ¥ (A) = (py) (4). (17.16)

17.23. Let A be self-adjoint operator, and ¢ and v be Borel functions on spec A.
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(a) Prove that
P (A)+¢(4) = (p+v)(4),
provided either both functions ¢, are non-negative or one of them is
bounded.
(b) Prove that
p (A) P (A) = (¢¢) (4),
provided 1 is bounded.

17.24. Let A be a densely defined self-adjoint operator.
(a) Prove that if the inverse A~! exists and is a bounded operator then A~! = %.
Here the operator % is defined by & := 1 (A) where ¢ (A\) = 1 on spec A.
(b) Prove that if spec A C [0,+00) then there exists a non-negative definite
self-adjoint operator X such that X? = A.
(¢) Prove that if spec A C [0, 4+00) then rane™4 C dom A.

17.25. Let A be a compact self-adjoint operator, and let {v;} be an orthonormal basis in
(ker A)* of the eigenvectors of A with the eigenvalues {\;}, which is guaranteed by the
Hilbert-Schmidt theorem. Prove that spec A consists of the sequence {\x} and, possibly,
0.
17.26. Let A be a densely defined self-adjoint operator.

(a) Prove that A is non-negative definite if and only if spec A C [0, +00).

(b) Set
a zE(liIcl)mA( x,T) an zesdlégA( x,T)
llzll=1 lz||=1
Prove that

infspecA=a and supspecA =b.

17.27. Let {E\} be a spectral resolution of a self-adjoint operator A. For any Borel set
U C R, define the operator Ey by

EU = 1U (A) = / dE)\
U

The mapping U — Ey is called a spectral measure.

(a) Prove that Ey is a projector. Show that if U = [a,b) where a < b then
Ey = Ey — E,. In particular, E(—oo,b) = Ey.

(b) Prove that if U; C Uy then ran Ey, C ran Ey,.

(c¢) Prove that if U; and U; are disjoint then ran Ey, L ran Ey,.

(d) Prove that if {U;};2, is an increasing sequence of Borel sets in R and U =
U:2, U; then Ey, — Ey in the strong topology. Prove that the same is true
if the sequence {U;} is decreasing and U = (2, U;.

17.28. Let A be a densely defined self-adjoint operator and {E)} be its spectral resolution.

(a) Prove that if a is an eigenvalue of A then Ey,) := 1y, (A) is the projector
onto the eigenspace of a.

(b) Prove that if a is an eigenvalue of A with an eigenvector x then, for any
Borel function ¢ on spec A, x € dom ¢ (A) and

p(A)z = ().
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17.29. Let A be a self-adjoint operator whose spectrum consists of a finite sequence
A1, ..., Ag. Let P; be the projector onto the eigenspace of \;, that is, ran P; = ker (A — \;id) .
Prove that A = Zle AiP;.

17.30. Let A be a densely defined non-negative definite self-adjoint operator in H and

{E\} be its spectral resolution. Let {¢,},-; be a sequence of Borel functions on [0, +c0)
such that, for all n and X € [0, +00),

[on (A)] < @ (A),
where ® is a non-negative Borel function on [0, +00) such that

/ % (\) d|| Exz|? < oo, (17.17)
0

for some x € H. Prove that if ¢, (A\) — ¢ (A) for any A € [0, +00) then z € dom ¢ (A) N
dom ¢, (A) and
on(A)z — p(A)z.
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