B

Hints and solutions

Solutions to Chapter 1
1.1. Setting for simplicity x = 0, we have, by Taylor’s expansion at 0,

ffa( Do (). (B

By the symmetry argument,
/ yido(y) =0 and / yiyjdo(y) = 0 for i # j,
Sy Sy

where S, = S, (0). To compute the integral of y2, denote

I= / yido(y)
Sr

and observe that, by symmetry, I does not depend on i. Adding up for all
i1 =1,2,...,n, we obtain

/ ly|? do(y) = r2/ do = 2npnt,
n

Hence, integrating (B.1) over S, and using

2
> 2 0)=ar0),

we obtain

L / f@dy = f(0)+ —— - AF(0) + o(r?)

wnr™ L g 2wy r—1
2

= 1(0)+ 5 AF(0) +a(r),

which was to be proved.

Second solution. Let €2 be a bounded region in R™ with smooth boundary
and v be the unit normal vector field on the boundary 02 pointing outwards.
For any function u € C* (Q) N C?(2), applying (1.1) to F = Vu, we obtain

/ —da—/Audx
89
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Set 2 = B, where B, is the ball of radius r centered at the origin 0, that is
B, ={zeR":|z|<r}.
Then 02 = S, and

—1 @d —i —1 /ud
(S Js, o0 T dar \o (S Js, ")

T(r) = ﬁ/ udo,

Setting

we obtain from (1.1)
dJ 1

—_— = Aud
dr  wprm 1t g uar
whence )
d-J 1 -1
- = Audo — = / Audzx.
dr wpr™t Js wpt™ JB,
Since the n-volume of the ball B, is equal to
T
B,| = / o (Sp)dt = £y, (B.2)
0 n
we obtain that, as r — 0+,
dJj 1

o = oot Bu()|B| +0(™) =0 (r)

and )

d-J n—1 1

T Au(0) - o(1) = ~ 5(1).

o u (0) - Au (0)+0(1) nAu(O)—i—o( )
We obtain that J (0+) = u (0), J' (0+) = 0, and J” (0+) = L Au (0) whence
by the Taylor formula

2 2
(1) = J () + 7T (0)+ T (0)+0 (r?) = u(0) + - Au(0) + 0 (r?),
which was to be proved.

1.2. Similarly to Exercise 1.1, set z = 0 and use the Taylor expansion
(B.1). By the symmetry argument, we have

/ yidy =0 and / yiy;dy = 0 for i # j,
Bgr Br

where Br = Bpr (0). Set
J= | yidy
Br
and observe that, by symmetry, J does not depend on i. Adding up for all
i=1,2,...,n, we obtain

R R "
nJ = / |y‘2 dy = / (/ T‘2d0'> dr = / wr"tdr = 2 pnt2,
Br 0 r 0 n 4+ 2
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In the same way, we have that the volume of Bp is equal to

Wn n
\BR\—/ dy—/ dr = “n gn,
Bgr n

so that ¢, = “2. Hence, integrating (B.1) over Br, we obtain
1 J
fWdy = f(0)+ =—5—Af(0) + o(R?
|BR|BR<> (0) + 57 AFO0) + ()
R? 9
— 2t A 5
FO) + 5y A0+ a(B),
which was to be proved.
1.3. (a) We have
O = s [ oxw (- g (83)
= X _ — .
b Aty /2 Jou P\ Tt
1 i+ 42k
= Gy o, (_T il b)) dr o don

Consider the integral

o] 2 [e'e) 2 45 2 2 2 9
/ exp <_8 _Z.SA) o :/ o (_s + diths + (20t\)? — (2it)) )ds
—o0 41 oo At

] 2% 2
= exp(t)\Q)/ exp (%) ds.

By the change z = s 4 2¢A¢, the last integral can be treated as a contour
integral along the line Im 2z = 2¢A¢. Using the standard tools based on the
Cauchy integral formula, one reduces the integral to Im z = 0, whence

o0 §2 , [ 2
/OO exp (_E — isA) ds = e /OO exp (_ﬂ> ds
= Virte ™, (B.4)
Hence, from (B.3) and (B.4), we obtain

pi(€) = e HETHER) — o teR, (B.5)
(b) Indeed, it follows from (B.5) that

/npt(:c)dznzﬁt(()):l.

(c) It is obvious from (B.5) that piys = py Ps. Since the (inverse) Fourier
transform takes the product of functions to convolution, we obtain

DPt+s = Pt * Ps-
(d) We have
3pt 8 3 —t|§|2

et 5= — _|¢125
ot atpt 8te \5’ bt
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and
5p\t _/ —ixé 0 — 9 —ixé
riall e 8:Ekpt(:c)cla: = . 3xke pe(x)dx

=@/eﬂ%ww=@@
R”L

Iterating the last identity, we obtain
8/2;15 . 2~ 2 ~
a2 = (k)" Dt = =& Dt
oz,

and, therefore,

— _ _ o
Apr=—(§+-+&) D=~ P = ot
Taking the inverse Fourier transform, we obtain
Opy

— = Ap;.
ot Dt

1.4. (a) Using (B.5), we obtain

@ (&) =pf (©) = e T (). (B.6)
(b) Tt follows from (B.6) that @; € L' (R™) and, moreover,
€1V @ € L' (R™) (B.7)
for any power N. Indeed, setting
E={{cR": [wm(¢)]>1}

we obtain that f € L1 (E) whence
e = (eV ) Fe Lt (m),
whereas )
€™ furl < g™ e e L1 (B°),
whence (B.7) follows.
Formally differentiating the inversion formula
1 i ~
Ut (SE’) = W / e””éut (E) df,
7T n
we obtain, for any multiindex «,
1
e —
0%y () = (271')"/2
Due to (B.7), the integral in (B.8) converges uniformly for all z, which
justifies (B.8).
Finally, we obtain

Aug = —[¢fa=—[¢P e Fe),

[ o e @ de. (B3)
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and

a 0.

a7t = 50 (6 =~ e (©)

whence %ut = Auy follows.
(c) By the Plancherel identity, we have
[urllr2 = cllullr2 and || fllL2 = cll fl| 2
where ¢ = (2r) "™/, It is obvious from (B.6) that |a;| < |f], which implies
[l 2 < [ £l 2,

whence the claim follows.
(d) We have

R 5 R 1/2
o= flzz = el = Flo =< | [ 1= e fioPac|

and the last integral tends to 0 as ¢ — 0 by the dominated convergence
-~ 2
theorem, because |f(£)|? is integrable and 1 — e *¢I" — 0 pointwise.

(e) If f € L' (R™) then also 4; € L' (R"), and the inversion formula
yields

wle) = 1) = e[ e (@ - 7)) de
= o e (R 2 1) Flepa,

whence

2 —~
@)= F@l < [ [e 1] | @)
By the dominated convergence theorem, the last integral tends to 0 as t — 0,
which implies
sup |ug — f| — 0.

1.5.
(a) This follows from
1 g2
‘i1|1>p;pt (x) < Wexp <_4_t> —0ast—0
(b) We have
1 |z|?
o) = et ()
B 1 1
I (-3)
const

|x‘n Y
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where we have changed 7 =t/ |z|%. It follows that p; (z) = 0 as  — co.
(¢) It suffices to prove that |Vp; (x)| is bounded in the set { (¢, z) : |z| > €, > 0}.

We have
Ve ()] 1 |zl |
r))=———F=—exp| ——
L (47rt)”/2 ot P 4t
whence
1 1 1
sup |Vp: ()] = sup exp <——>
t>0 VP (@) >0 (47T7_ ’x‘2>"/2 27 |z| 4T

const const

’fE|n+1 - W’
which finishes the proof.
1.6. (a) Look for v in the form v (z) = exp (c \m|2> for large enough c.

(b) Consider first the case when Lu > 0 and look at a point xy € €
where u takes its maximal value. For the general case, consider the function
u + ev where v is from part (a).

1.7. Observe that f(x) = 77”/2])1/4 (z) and use (1.22). The answer is

u(t, ) =7"2py 114 (3).

Solutions to Chapter 2

2.1. If ¢ = oo then the embedding Lj5 Lf oc 18 obvious because for
any compact set K C 2 and any measurable function u in €,

/ |ul? du < esup |ulP p(K),
K K

and p (K) < co. In the case 1 < g < oo, we use the Holder inequality

1/r , 1/r
[ sldn < ( 1 du) ( [ 1d du) , (B.9)

which holds for arbitrary measurable functions f,g and exponents r,r’ €

(1,00) such that % + 1 = 1. In particular, applying (B.9) for f = |ul?,

T

g =1, and r = q/p, we obtain

1/r ,
o= ([ )
K K

whence the embedding L] . — LI  follows.

2.2. Consider the case p < oco. Assume from the contrary that the
set {f < 0} has a positive measure. Then, for some € > 0, the set E :=
{f < —¢} has also a positive measure. Since fr > 0 a.e., we see that
|f — fx| > € on E whence

Hf—fkllip=/Q\f—fk\”d#2/E!f—fkpduzepu(E)-
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In the case p = oo, we have

If = fellLe = eSglzlplf — fxl > eSélplf — ful > €.

In the both cases, we conclude that the sequence {fx} cannot converge to f
in the norm of L” (Q).

2.3. We obviously have
[f g ()] < / |f (@ =y)llg W)l dy < || fllL=llgllL1,

R
whence the claim follows.
2.4. Use the same argument as in the proof of Lemma 2.4.
2.5. Use Fubini’s theorem.
2.6. Use the same argument as in the proof of Lemma 2.1.
2.7. Apply inductively Lemma 2.4.
2.8. If f > 0 a.e. then we obviously have

/ fodp >0, (B.10)
Q

for any non-negative ¢ € Cg°(2). To prove the converse, fix a mollifier
¢ in R™ and an open set ' € Q. If ¢ > 0 is small enough then, for any
x € , the function ¢, (x — ) is supported in B; () C Q, which implies by
hypothesis (B.10) that

f*%(ﬂ«"):/f(z)cpg(a:—z)dzzo.
Q
By Lemma 2.4, f x p. — f in L}

1oe (R™), whence it follows that f > 0 a.e.
in Q' (cf. Exercise 2.2). Since Q' was arbitrary, we conclude f > 0 a.e.in €2,
which was to be proved.

2.9. (a) To prove that a function g is the distributional derivative of f,
one has to verify that, for any ¢ € C§° (R),

+o00o +o0o
/ gpdr = — fo¢' dx. (B.11)

—00 —0o0
If f’ is continuous then g = f’ satisfies (B.11) by the integration by parts
formula.

(b) Let {t,};>° . be an increasing sequence of reals such that f €
Cl[ty,tx+1] and the intervals [tg,tx,1] cover all R (such a sequence exists
by the definition of a piecewise continuously differentiable function). For
any test function ¢ € C* (R) we have

oo / bt / _ ley1 Bt /
| reis ij/t fsodm—Ekj([fso]tk /t fsod:v>

— 00

—+00 —+00

= Y (Folturr) — fo(te) — | fdde=—|  folde

L —00 —00
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where we have used the equality

D (Fotrin) — fe (tr) =0,
k

which is true because this sum contains only a finite number of non-zero
terms, and they all cancel. Hence, f}.., = f’. Note that although f’ is not
defined at {5} this does not matter because f), , is considered as an element
of L%OC and, hence, it is defined up to a set of measure zero, anyway.

(c) Since f (z) = |z| is piecewise continuously differentiable, we obtain
by the above

/ . L _].7 r < 0,

fdist = sign (ZC) T { 17 x> 0.

(d) For any ¢ € D (R), we have

(f,so'>:/Rfm)so'(a:)d:c:/omso'(w)dx:—so'<o>=—<5,so>,

whence we conclude f. ., = 0.

2.10. (a) Denote U = U,£,. We need to show that (u,y) = (v, ) for
any ¢ € D(U). Let K = suppy. Then the family {Q,} covers K, and
there is a finite subfamily {Qj}lethat also covers K. By Theorem 2.2,
there is a partition of unity 11, ..., ¥ associated with this covering, that is,
Y € D () and

Y 4j=1iK. (B.12)
J

Setting ¢; := 1;, we obtain that ¢; € D (2;) and
©=p1+...+p in Q. (B.13)

Indeed, this identity holds in K due to (B.12), and in 2\ K because all the
functions involved vanish outside K. Since u = v on {);, we have

(u, 05) = (v, ;) -
Adding up all these equalities and using (B.13), we obtain (u, @) = (v, p).
(b) Let {Q4} be the family of all open subsets of € such that v = 0 on
Q. By part (a), we have u = 0 on U = U,Q,. Hence, U is the maximal
open set with this property.

2.11. (a) Note that S = S (u) is always a closed set. If ¢ € D(Q\ 5)
then v = 0 on supp u and

(u, ) = / updp = 0.
Q

Hence, u vanishes on 2\ S in the distributional sense. Let us show that Q\ S
is the maximal open set where u vanishes in this sense. Indeed, let U be an
open subset of € such that w vanishes in U as a distribution, and assume
that U is not contained in 2\ S so that there exists a point g € UNS. By
definition of S, in any neighborhood of z( there is a point = where u (x) # 0.
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In particular, such a point z can be found in U. Assume that u (z) > 0. By
the continuity of u, there exists a neighborhood V of x such that V C U
and u (y) > 0 for any y € V. Obviously, there exists a function ¢ € D (V)
such (u, ) > 0, which contradicts the choice of U.

(b) Note that the set

So= () S(v) (B.14)
V=Uu a.e.
is closed as an intersection of closed sets. Let us show that uw =0 in £\ Sp
in the distributional sense, that is,

(u,) =0 for any ¢ € D(Q2\ o).

Indeed, supp ¢ is covered by the union of all open sets Q \ S (v), which
implies by the compactness of supp ¢ that it is covered by some finite union
of sets 2\ S (v;). Since v; vanishes outside S (v;) and v; = u a.e., we obtain
that u = 0 a.e. in Q \ S (v;). This implies that u = 0 a.e. also in the union
of the sets 2\ S (v;), whence it follows that (u,¢) = 0.

We are left to show that if U C () is an open set where u vanishes in the
distributional sense then U C '\ Sy. Corollary 2.5 yields that u = 0 a.e. in
U. Define function v (z) in 2 by

_Jou(x), z€Q\U,
”(9”)_{0, zeU.

Then we have v = u a.e. and S (v) C Q\ U, which implies Sop C 2\ U and,
hence, U C Q\ So.

2.12. Let us prove first the product rule for the first derivative:

9; (fu) = (0;f) u+ f (9ju). (B.15)
Indeed, for any ¢ € D, we have
0; (fu),¢) = —(fu,059) = = (u, fO;0) = (u, (9;f) ¢ — 0; (f))

= (u,(9;1) ) + (9ju, fo) = ((8;f) u, ) + (fOju, ¢),
whence (B.15) follows. By induction, (B.15) implies that

m

o (fu) =Y (’Z) ok f ok

k=1

Using one more induction, one obtains (2.19) for the operator 9% = 97*...05".

2.13. (a) We need to show that
(0%ug, ¢) — (0%u, ) as k — oo,
for any ¢ € D. Indeed, we have
(0%uk, ) = (= 1) (ur, %) = (=) (u,0%) = (87w, ),

which was to be proved.
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(b) The proof is similar to part (a):
(fur, ) = (ur, fo) = (u, ) = (fu, ).

2.14. If 2, — = then any subsequence of {z}} also converges to z. As-
sume that any subsequence of {zj;} contains a sub-subsequence that con-
verges to x, but {xx} does not converge to xz. The latter means that there
exists an open neighborhood U of x such that outside U there are infin-
itely many terms of the sequence {zj}. In other words, a subsequence of
{z1} lies outside U, which implies that it cannot have any sub-subsequence
converging to x. This contradiction proves the claim.

2.15. Construct a sequence that does not converges a.e. but each subse-
quence has a sub-subsequence that converges to 0 a.e.. Then use Exercise
2.14.

2.16. Left to the reader

2.17. If v € D(R"™) then (2.27) is just definition of Q;u. Assume now
v € LN C™. Let ¢ be a cutoff function of the unit ball B; (0) in R” so
that ¢ € D (R™) and v =1 on By (0). Set
x
o (@) =v ()@

so that v; € D. Therefore, we have

(Osu, v1) 2 = — (u, Ogvr) 12 - (B.16)

2 2
Letting | — oo, we obtain v; L% v but also o;u; = O;v, where the latter
follows from

X

vy = 0; [1/) (%) v (a:)} =1 (l ) o (z) + % (0i) (%) v (z).

Passing to the limit in (B.16), we obtain (2.27).
Finally, consider the general case v € L? and d;v € L?. Let ¢ be a
mollifier and set

Vg = UV * P1/k-

By Lemma 2.9, v, € C*°, and by Theorem 2.11 v;, € L?. Therefore, by the
previous part of the proof, we have

(Ou,vg) 2 = — (u, Ojvg) 2 - (B.17)
By Lemma 2.9, we also have vy = (0;v) * ¢1;, and by Theorem 2.11,
Vg L and 0ivk N O;v. Hence, letting k — oo in (B.17), we obtain (2.27).
2.18. Use the same argument as in Theorem 2.11.

2.19. Use the same argument as in Theorem 2.11 (see also Exercise 2.20).
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2.20. Assume first that f > 0. By Fubini’s theorem, the function Qf is
measurable. To prove Qf € L" (M) and the estimate (2.30), consider first
the case 7 = co. It obviously follows from (2.28) that

QF (@) < |l /Mq<m,y> du (y) < K| llso,

whence the claim follows. In the case r = 1, we obtain by Fubini’s theorem
and (2.29)

@fle = [ | aten s @) e

_ /M [ /M ¢ (z,y)dy (x)] f () dp(y)
< K/Mf(y)du(y),

whence (2.30) follows.
Let 1 < r < oo and let ' = I3 be the Holder conjugate to r. Using the
Holder inequality and (2.28), we obtain, for almost all x € M,

or@ < [ a@n @ )] duw)

< ([ awwan <y>)W ([ st s @ <y>)m

1/r
< KV ( [ atew 1 G an <y>) ,
that is
Qf ()" < K" /M g () £ () dp (y)

Using Fubini’s theorem once again and (2.29), we obtain

[er@rane < & [ g s @)
= w [ ] ande@] 5
KT/ /M () dp(y),

which together with 1/7' + 1/r = 1 implies (2.30).
Finally, if f is an arbitrary function from L" then also f; and f_ belong
to L", and by the first part of the proof, we have (2.30) for f; and f_. Then

Qf = Qf+ — Qf_ is measurable and
QI SQIfl=Qf+ +Qf-

IN

whence

1Qf e < 1QFtllr +1QFNzr < K (I fllzr + 1/~ llzr) = K fllzrs
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which was to be proved.
2.21. By the Holder inequality,

Qf (@) < g () [ [l fllzr

< g (@) =" g () I 1 f Nz
< CYTEV||f |1,
whence
1Qf e < CY"EYV||f|Lr, (B.18)

which matches (2.31) for s = oo.
If s < oo then, using the interpolation inequality

1—
IF e < |FI | FI5
we obtain from (2.30) and (B.18)

, 1-7/s /s
lQfle < (S KM fle) T (KISl
Cl/rfl/sKl/'r’%»l/s”fHLr'

2.22. (a) If B. () C U then for some &' > ¢, we also have B (x) C U
which implies that, any y € B./_. (z) belongs to U. Hence, U is open. For
any point x € U there is € > 0 such that B, (z) C U. Taking k > 1/¢ we
obtain x € Uy, which proves (2.32).

Denote for simplicity f. = f * ¢.. Note that f. € C*° (R™) by Lemma
2.1. Since supp p. C B¢ (0), we obtain, for any two points z,y € R,

fo (@)~ fo () = /B LT e (e

Assume that x,y € U.. Then z — z and y — z belong to U, whence
|f(@—2)— f(y—2)| < Llz—y|

and
|fe (z) — fe (v)] S/ Lz —yl¢e (2)dz = Lz —yl,
R’I’L

which proves that f. is Lipschitz in U,.
(b) As in the proof of Lemma 2.4, we have

fo (@) — f () = /B ICCEEENCITNErS

Then, for any « € Us and € < §, we have x — z € U and, hence,
|f(x—2) — f(x)] < L|z| < Le.

This implies
sup [fe (z) — f (¢)] < Le
zeUs

and f = fin Us as € — 0.
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2.23. Let us use the notation of Exercise 2.22. The fact that f. is Lips-
chitz in U, with a Lipschitz constant L implies that, for any vector £ € R",

9fe
23

< L, (B.19)

which easily follows from

|fe (x+t&) — f ()| < Lt
In particular, we have also |0jf.| < L in U.. Therefore, for any index j,
the sequence of functions {8j fi /k}zozl is bounded in L? (Q2) for any open set
) € U. By the weak compactness of a ball in L?, there exists a sequence
of integers k; — oo such that the subsequence 9; f1/;, converges weakly in
L2

loc

(U) for any index j =1,...,n.
Rename for simplicity fi/x, by fi, and let the weak limit of 9; f; be v;.
Let us show that v; = 9; f. Indeed, for any ¢ € D (U), we have, by the weak
convergence,

(0jfi,p) = (vj, ) asi— o0, (B.20)
and by part (b)

(8jf1'790) = - (fhajso) - = (f7 3]80) , as T — 0,
whence
(vj, 0) = = (£, 05¢)

and, hence, v; = 0; f.
In particular, we have 0; f € L? (U). Let us prove that

loc
IVfI <L ae., (B.21)
which will also imply that 0;f € L* (U).
For any smooth compactly supported vector field £ in U, we have by
(B.20) and (B.19)

/ujgfdu: Alim/ajfifjd,u: lim afidugL/ €| dp,
U 1— 00 U 1—00 R™ 8§ Rn

whence it follows that

v;&d
esup |v| = sup M <L,
U ££0 fU &l dp
which proves (B.21).
2.24. The fact that fg is Lipschitz follows from the estimate

Ifg(x) = fa)| = [(f(x)=fW)g@)+ (g —g)f W)l
< suplg|Ctlz —y[ +sup|f|Cy |z — |

where Cy and Cj are the Lipschitz constants of f and g, respectively.

It suffices to prove the product rule assuming that U is bounded. Choose
a mollifier ¢. By Exercise 2.23(b), (c) there is a sequence {ej },-; of positive
numbers such that ¢, — 0 and the sequence fj, := f * ¢, has the following
properties: f, — f locally uniformly in U, and 0;f; — 0;f weakly in
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LIQOC (U). The same applies to g := g * ¢, . Since fi and gj are smooth

functions, the product rule for them holds trivially:
9; (frgr) = (95 fx) g + fi (Ojgk) -

Passing to the limit in D’ (U) and using the fact that the norms ||9; fi||oc
and ||0;9k||c are uniformly bounded, we finish the proof.

2.25. Assume first that supp f € (a,b). Let ¢ be a smooth cutoff function
of supp f in (a,b). Then, by the definition of the distributional derivative,

b b
/ flodr = —/ fo'dx.

However, the integral in the left hand side is equal to [ : f'dx because ¢ = 1
on supp f, and the integral in the right hand side is 0 because ¢’ = 0 on
supp f. Hence, in this case we have

f/f

Assume now that f(a) = = 0. Then we extend f to R by setting
f(z) = 0 outside [a,b], and f is a Lipschitz function in R. Hence, by the

previous case,
b+1
/ flde = f’da: =0.

Now let f be any Lipschitz functlon on [a, b] and ¢ be a Lipschitz function
on [a,b] such that ¢ (a) = ¢ (b) = 0. Then fy is a Lipschitz function that
vanishes at a and b, and by the previous case we obtain

/ " (feo) de =

Using the product rule for Lipschitz functions (see Exercise 2.24), we obtain

/ flodr = / f¢'dx. (B.22)

Now apply this formula with the function
zfe, a<zr<a+te
e (x) = 1, at+e<z<b-—e¢
1_7‘”, b—e<z<b,

where 0 < ¢ < % (b — a). Since

l/e, a<z<a+e,
ol(x)=¢ 0, ate<z<b-—e,
—1/e, b—e<z <),

we obtain from (B.22)

/fsosd:c——/ Efd;eré ’ fdz.

b—e
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Letting € — 0, we obtain

b
[ F@do=re)-s@. (B.23)

The integration by parts formula (2.33) follows from (B.23) applied to fg
and from the product rule.

2.26. (a) The case k = 0 is trivial: if f is a bounded continuous function
and u € L? (Q) then fu € L?(Q) and

[fullz < sup |f][|ul L2

Let k > 1. Using the product rule (2.19) from Exercise 2.12, we obtain
that, for any |a| < k, 0% (fu) is a linear combination of functions 9%~ f9%u
which all are in L? () because 97 f is bounded continuous and 9°u € L.
Hence, 0% #f0%u € L? and 0% (fu) € L?, which implies fu € W*.

It follow from (2.19) that

0% (fu) 2 < C Y [10* 7 f 0%ul| e
B<la
< O s |07 f| 0 ullps
BLa
< Cllfllerllwlws

where C' is a constant depending on k,n. Adding up for all o < k, we
obtain (2.38).
(b) Let Q' € Q be an open set. Since u € W* (€') and

[ fllex @y < oo,
we obtain by part (b) that fu € W (€'), whence it follows that u € W% _ ().

2.27. The convergence in W* obviously implies that in D’. Therefore,
frx — f in D’ whence by Exercise 2.13 we have 0% f;, — 0%f in D’. Since
also 0% fr — g in D', we conclude that g = 0%*f.

2.28. Let {f;} be a Cauchy sequence in W*. Then for any multiindex
a such that |a| < k, the sequence {9°f;} is Cauchy in L?. Since L? is
complete, any such sequence has a limit in L?, say h®. Setting h = h°, we
obtain by Exercise 2.27 that h* = 9%h and, hence,

15 = Bl = D 10%f; = 8°hll72 = Y 10°F; = h*|[72 = 0
|| <k || <k
as j — oo. Therefore, f; — h € Wk, which was to be proved.

2.29. If u € WF(Q) then extend u by 0 outside Q. It follows from
Lemma 2.6 that the derivatives of u are also extended by 0 and, hence,
u € WF(R™). Let ¢ be any mollifier. Then, by Lemma 2.9, u * ¢, is in
D (Q) and, by Theorem 2.13, u * . — u in W* (R"), which finishes the
proof.
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2.30. In the view of Exercise 2.29, it suffices to show that any function
u € W (R™) can be approximated by a sequence {u;}7°, of functions u; €
W* (R™) with compact supports. Let 9 be a cutoff function of the unit ball
B (0) in R™ so that ¢ € D (R™) and ¢ = 1 on By (0). Set

w(@) =9 (T)u).

Clearly, u; has a compact support. By Exercise 2.26, u; € W* (R"). Let us
show that u; — u in W¥ (R") as [ — oco. Observe that v (z/1) = 1 if |z| <[
and, hence, u; = u on the ball B; = B; (0). Noticing that

w—u= (Y (x/l)-1u
and using the estimate (2.38) of Exercise 2.26, we obtain
ot =l ) < Ol /D)~ Ulen gy el
where Bf = R™ \ B;. Since
HuHWk(Blc) —0 asl — o0

and the norm ||¢ (z/l) — 1||ox remains bounded, we conclude that u; — u
in Wk (R™).

2.31. The identity (2.39) is trivial for v € D (). Since the both parts of
(2.39) are continuous in v with respect to the Wl-norm, it is extended to
all v € Wy ().

2.32. (a) Let us first prove (2.40) for functions from D (R") and for the
classical derivatives, that is,

g = (i€)* B (€) . (B.24)
where ¢ € D (R") (cf. Exercise 1.3). Indeed, we have
P = [ @

whence, for any k=1, ...,n,

=R ) . o .
(€7 = [ (e @ == [ Shetto()ds
9 _

= [ e e =8 ().

Iterating this identity, we obtain (B.24).
Next, let us use the Plancherel identity: if uy,us € L? (R™) then

(U17U2)L2 = c(u, az)Lz ) (B.25)

where ¢ = (2m)"". Recall that, for complex valued functions, the inner
product is defined by

(UI,UQ)Lz :/ uuedx |
n

where the bar stands for complex conjugation.
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Let v = 0% and note that, by definition,

(v.9) = (=1 (u,0%) (B-26)
for any ¢ € D (R™). We have by (B.25)
(0:90) = (1, 8) 12 = (T, P) 2 (B.27)

and, similarly,
(u, 0%) = c(u, 0°9) 2.
By (B.24), we have
0°% = (i€)" B,
Denoting for simplicity @ = @, we obtain
(0, 9)r2 = (=1)% (@, (i€)* ¢) 12 = (=1)* (—i&)* @, ¥) 12 = ((i)* W, ¥) 2.

(B.28)

Note that 1 ranges in the Fourier image of D (R™). Since D (R") is dense in

L? (R™) (see Theorem 2.3) and the Fourier transform is an isometry of L2

(up to a constant factor), the Fourier image of D (R") is dense in L? (R"),

too. Hence, (B.28) implies v = (i£)* u, which was to be proved.
(b) It follows from (B.25) and the result of part (a) that

10%ul|Z2 = cll 9*ul|7> = cl| (i€)* @72 = C/Rn €% [a (&)1 de,

which was to be proved.

2.33. Since the function (i€)* 4 (€) is in L* (R™), it is the Fourier image
of a function from L? (R"), say v (x). Let us show that %u = v. For that,
we need to verify the identity (B.26) for all ¢ € D (R™). Using v = (i§)“u ,
(B.27), and (B.25), we obtain

(v.9) = (i) )2 = (@ (=i6)" B)r2 = ¢ (=1)* (@, 8°%) 12

(=D (u, 9°%) 12 = (~1)*! (u, 09),
which was to be proved.

2.34. We obtain from Exercise 2.32 that if u € W* then

e = 3 l0%ulfa =c [ | 3 e | (e de

|a| <k R™ 1 al<k

k
Since the sum in the bracket is comparable to (1 + ¢ |2> , We obtain

k
lulle = [ @@ (14 1) ds (8.29)

whence it follows that the right hand side of (B.29) is finite.
Conversely, if the right hand side of (B.29) is finite then, by Exercise
2.33, 0°u € L? for any |a| < k and, hence, u € W*.
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2.35. By Lemma 2.8, we have, for any ¢ € D (R"),

(w*p,9) = (u, 9" *¥) < lullw-rll¢" * Pl
where ¢’ (x) = ¢ (—z). Since by Theorem 2.13
1" llwre < [l [l
we obtain
(uxp,9) < Jlully—rl[¢lwe,
whence (2.49) follows.

2.36. Let W§ (Q) denote the closure of D (Q2) in W¥ (Q). Then it follows
from the definition of W~* (Q) that the space W~*(Q) is dual to Wg (Q)
(the dual space consists of all bounded linear functional). However, W§ ()
is a Hilbert space as a closed subspace of a Hilbert space. Therefore, by Riesz
representation theorem, the dual space to W§ (£2) is isometric to W (),
whence the both claims follow.

2.37. By Exercise 1.7, we have P, f (x) = 7r”/2pt+1/4 (). Hence,
e(t) = (Pf.f)=n"" (Pry1/4,P1/4)
= 7Tn/2pt+1/4 * p1/4 (0)
= 7Tn/2pt+1/2 (0)
= 472 (¢4 1/2)72,

2.38. The proof of Lemma 2.17 goes through except that one needs to
verify (2.55) without Lemma 2.1. Indeed, (2.55) follows directly from

0 () = 5 [ Iy = [ pi0) gt o= )

and this is true because the last integral converges locally uniformly in x,
thanks to the boundedness of the derivative 0; f.

2.39. By Exercise 1.4

B (©) =5 (&) F(©) = F(©).
By the Plancherel identity,

—~ — - 2~
If = Pefl7z = el f = Pefll7a = ell (1 — e 40) Fl[32,
where ¢ = (27)". Using the inequality
1— et <y /e, (B.30)
we obtain

~ ~ 2
I£ = Pifls < el il A = ot [ 1€P|F o] e
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If f € W! then, by Exercise 2.32,
HVﬂ@r=2]WfMp c§]meg—c/ 2]@ |d§—gé|ﬂfeﬂwa

which together with the previous line yields (2.66).
If f € W? then we use instead of (B.30)

1—e P <gpe?,

which yields

I£ = Pifls < i P = o [ 1617 (@) P

Using Exercise 2.32, we have
11 = &1 = el SEF O I = IRERGIRS
which together with the previous line finishes the proof.

Solutions to Chapter 3

3.1. By Lemma 3.4, there exists a countable family {U;}:°; of relatively
compact charts covering all M. Set

o= U (B.31)

so that {Qk}iozl is an increasing sequence of relatively compact open sets
covering M. However, we may not have yet the inclusion Q; C Q441. To
achieve that, we will select a subsequence of {x}. The first term to be
selected is ©;. If we have already selected §; then observe that €; is a
compact set and, hence is covered by a finitely many of sets {Qx}. Since
this family is increasing, Q; is covered by one of Q. Hence, select this
as the next term in the subsequence.

Let M be connected. The sets U; considered above are always connected
(cf. the proof of Lemma 3.4). All we need is to renumber the sequence {U;}
in an appropriate order so that each set Qj defined by (B.31) is connected.
We will do this by means of an inductive construction. At each step, some
of the sets {U;} will be declared selected and denoted by Vi, Va,.... Set
Vi1 = Up and declare U; selected. Choose a non-selected set U; with the
minimal j that intersects V7, denote it by V5 and declare selected, etc. If
V1,...,V; are already defined then choose a non-selected set U; with minimal
j that intersects V1 U Va... UV}, denote it by V11 and declare selected. The
process stops if we cannot choose V11, and continues countably many times
otherwise. By construction, all the unions V; U V5... U V; are connected, so
we need only to verify that the sequence {V;} covers all M.
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Assume first that the sequence {V;} is finite. Then, at some step i, any
non-selected Uj is disjoint with V' :=V; U V... U V;. Let U be the union of
all non-selected U;. All selected U; are contained in Vi,...,V; and, hence,
their union is V. Since U and V are two disjoint open sets covering M, one
of them must be empty, which can be only U, whence V = M.

Assume now that the sequence {V;} is infinite, and show that it covers
M. 1If this is not the case then there exists U; which is not covered by
V =, Vi. If U; intersects V then it should have been selected at some step
because there are selected sets U;s with j° > j. Hence, any U; that is not
covered by V is actually disjoint with V. Let U be the union of all such
sets U;j. Clearly, U and V cover M and are disjoint, which implies by the
connectedness of M that U = () and, hence, V = M.

3.2. First of all, there exists countable family {U;} of locally compact
charts covering M (see Lemma 3.4). Let {Q} be a sequence from Exercise
3.1. Let us construct inductively a locally finite family F of relatively com-
pact charts which will also cover M. At step 0, set F = (). At step k > 1,
consider the compact set Q, \ Qi_1 (where Qg := ()). This set is covered by
a finite number of charts from the family {U;}; say Uy, ..., Uy,. Then add to
F the charts U; \ﬁk,l, it =1,...,m. Clearly, the newly added charts cover
O \ Qx_1 and do not intersect Qy_;.

The family of charts F obtained in this way covers all sets Qz \ Qx_1 and
hence M. Let us verify that it is locally finite. Indeed, any compact set K is
contained in one of the sets (2. Up to the step k of the above construction,
family F contains a finite number of chart. From step k + 1 onwards, each
added chart does not intersect ;. Hence, there is only a finite number of
charts in F intersecting €2; and hence K, which finishes the proof.

3.3. Use d and V in the local coordinates.
3.4. The same hint as above.

3.5. Let 2!, ...,2™ and 3!, ..., 4" be two coordinate systems and let ¢* and
g¥ be the matrices of g in these systems, respectively. By Lemma 3.12, we
have

g =J"g"J
where J is the Jacobian matrix of the change y = y (z). It follows that
det g¥ = (det J)? det ¢°. (B.32)

The same identity holds for the metric g. Dividing it by (B.32) and noticing
that (det J)? cancels out, we obtain

detg?  detg®

detgv  detg®’

which was to be proved.

3.6. (a) Fix a point x € M and choose an orthonormal basis e =
{e1,...,en} in T, M with respect to the inner product (,)g where the qua-
dratic form g () is diagonal, say g;; = A; and g;; = 0if ¢ # j. Then we have
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in this basis
detg(x) =1land detg(xz) = A1...\,.
On the other hand,
i = Gii = (e, ei)g < Cleg,ei)g = Cgiy = C,

whence it follows that

det g (z)

det g ()
By Exercise 3.5, the ratio of the determinants is independent on the choice

of the coordinate system. Hence, we obtain from (3.21) that % < C™/2.
(b) It follows from (3.32) that

<C".

-1

% >CcY,
where g~ is the metric tensor on covectors, whose matrix in the local co-
ordinates is (g”/) (cf. Section 3.3). Indeed, in the basis e as in part (b), the
matrix of g~! is the identity matrix, while that of g~! is the diagonal ma-
trix with the diagonal entries A;” 1> ¢~1, whence the claim follows. Using
(3.19), we obtain

IV f15 = (df,df)g-1 < Cldf,df)g = C|VfIZ,
which finishes the proof.

1

3.7. For any ¢ € C§° (M), we obtain using the divergence theorem and
(3.20)

/M divy (uw) pdp = — /M<uw,V<p>du = - /M<w,uV90>du
= [ .V () — oV
= — [ @Vt [ ooV

= /(divﬂw)ucpdu+/ (w, Vu)pdu,
M M

whence (3.48) follows.
3.8. Using the identity A, = div, V and the product rules for V and
div, (cf. Exercises 3.3 and 3.7), we obtain
Ay (wv) = div, (V (w)) = divy, (uVv +vVu)
(Vu, Vo) + uA v + (Vou, Vu) + vAu
ul v+ 2(Vu, Vo) + (Ayu) v.

3.9. Use the chain rule for V of Exercise 3.4 and the product rule for
div,, of Exercise 3.7.
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3.10. The Hermite polynomials satisfy the equation
hi — 2zh) + 2khy = 0,
which can be obtained directly from the definition. Writing it in the form
Ay hy, 4 2khy, = 0,

we obtain that hy is an eigenfunction of the weighted Laplace operator A,
with the eigenvalue 2k.

3.11. Using the obvious identity V= %V where V is the gradient of g,
the Green formula (3.43) and (3.17), we obtain, for all u,v € C§° (M),

/Uﬁﬁ’l) dp = —/<6u,%v>§dﬁ: —/(du, §v> bdu

= —/(Vu, vagdu: /udivu (ng) du = /u (% div,, (b

whence the claim follows.
3.12. For all u,v € C§° (M), we have

/uLv dp = /udivu (AVv)dp = — /(Vu,AVv>gd,u =— /(du, AVv)du

where we have used the divergence theorem on (M, g, 1) and the identity
(3.17). On the other hand, using the Green formula on (M, g, i), we obtain

/uﬁﬁv dp = — /(%u, %’U>§dﬁ = —/b(%u, %v)Qdu = —/(du, bVv)dp.
Hence, the identity L = Eﬁ amounts to

AV = bVw.

Since Vo = g~ !dv and Vv = g 'dv (see (3.17)), the above equation is
equivalent to

Ag™t =g,
whence g = bg A~ 1.

3.13. If dpp = bdp then, by Exercise 3.11 and the product rule (3.48) of
Exercise 3.7,

1
b
Hence, L = Ay provided logb = v that is, b = e”.

3.14. Note that dF is a non-zero covector, that is, a linear functional in
T, M, and the equation (dF,{) = 0, indeed, defines a (n — 1)-dimensional
subspace of T, M. Since dim 7, N = n — 1, it suffices to verify that every
vector from T, N satisfies equation (3.52). Indeed, if £ € T, N then, by
definitions (3.9) and (3.50),

(dF,§) = £ (F) =& (Fln) = £(0) = 0.

1
Aju = 3 div, (bVu) = div, (Vu) + —(Vb, Vu) = Aju+ (Viegh, Vu).

-V
a

)
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In the case M = R", rewrite the above identity in the form (VF,{)g = 0,
whence all the rest claims follows.

3.15. Using the notation of Section 3.8, we have

9x 0

0 ¥ (x)| gy

g= (B.33)

In particular, we see that
det g = ¥*™(z) det gx det gy,
which implies (3.56). It also follows from (B.33) that

9% 0

0 ¢ 2(z)| gy

Using (3.18) we see that the gradient V on M is given by the column-vector

VXu:|

Vi = [ $2Vyu

Consider a vector field v = [ ZX ] on M. By (3.35), we obtain the following
Y

formula for the divergence div on M
1
dive = W divy (¢m‘ /detgyvx) ’lﬁm\/ﬁ divy <w \/detngy)
— leva+¢—m<vX¢m x) + divy vy.
Finally, applying this to v = Vu we obtain

1
—(Vxy™, Vxu) + divy (¢ 2Vyu),

Au = divVu =divyx (Vxu) + om

whence (3.57) follows.

3.16. Let us simplify the notation by renaming x
Then the equation of the sphere S™ is

jof? + 2 =1, (B.34)

"+l to ¢t and 2/ to x.

and the Euclidean metric in R"*! is given by
grorr = (dz")? + ..+ (da™)? + di*. (B.35)

Since the spherical metric is obtained by restricting grn+1 to S™, all we need
is to rewrite (B.35) via the coordinates y',...,y" taking into account the
equation (B.34). The point y is obtained from by scaling x by the factor
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1+t, which arises from comparison of the segments [—1,¢] and [—1, 0] of the

axis " t1. Hence, we have
i

; x
= . B.36
Yo (B36)
The equation (B.34) implies that on S"
tdt = —x'dz’.

Equation (B.36) yields
(1+t)da® — z'dt

dy' =
Y (141t)?

)

whence
S(ay) = a+p Tty ((1 + ) (da')? + (mi)th2)
—(L+6)"")  (alda’ (1+t)dt + (1+t) dt2'da’)

(2

= 1+7* <Z (1+6) (da?)? + (1 — £2) dt?> + 2t (1 + 1) dt2>

%

= (14872 <Z (da')? + dt2>

7

and
(ala:l)2 + 4 (dz™)? + dt? = (1 +1)? ((dy1)2 + .+ (dy”)2) . (B.37)

It follows from (B.34) and (B.36) that

W
(1+t)? 1+t
whence
1+t=—".
1+ Jyf?

Substituting into (B.37), we obtain

4
(dﬂ?l)g + ...+ (dl‘n)2 + dt2 = —22 ((dy1)2 + ...+ (dyn)2> s
(1+1yP)
which was to be proved.
3.17. Left to the reader

3.18. This is similar to Exercise 3.16. Renaming 2! to t and 2’ to =,
we obtain the equation of the hyperboloid H"”

2 — |z)? = 1. (B.38)
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Since |z|*> = t> — 1 < (1 4 t)?, the identity
x
1+4¢
defines a point y € R™ with |y| < 1, that is, y € B™. Conversely, any point
y € B™ uniquely determines a pair (z,t) satisfying (B.38) by

1+ [yl 2y

t= 3 T = 5.

1yl 11yl

The hyperbolic metric is obtained by restricting to H” the Minkowski metric
2
garink = (da')” + ... + (dz™)® — dit*.
The equation (B.38) implies that on H"
tdt = x'dx’.

y= (B.39)

(B.40)

Equation (B.39) yields
(1+t)dx® — z'dt
(1+1)?

)

i

whence
S(ay)’ = Y (0 0? (dh) + (o) a?)
— (14t (¢fda’ (14 t)dt + (1 + t) dt 2'da’)

(2

= 1+t <Z (1+6)? (d2?)? + (2 = 1) dt> — 2t (1 + 1) dt2>

%

= (14172 <Z (da')® — dt2>

7

and
1)2 ny2 2 2 12 n\2
(dz!)? + ... + (dz™)? — a2 = (1 + 1) ((dy) +...+(dy)).
It follows from (B.40) that

1+t=

1— |y’

which implies
4
(d') 4 (") =t = ————5 ((d") 4 (@)

(1-1u?)

3.19. The hyperbolic space H" is represented as a hyperboloid in R™+1
by the equation

which was to be proved.

(xn+1)2 _ |:I,',|2 -1,
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The polar coordinates (r,6) in H" are related to z?!,...,z"*! by (3.69), that

is,
/

coshr = 2" and 6= :E—.
|2'|

The coordinates 4!, ...,4™ in the Poincaré model are related to !, ..., z"*!

by (3.71), that is

x
Y= o +1
This implies
/
v_
lyl ||
(m”“)2 + 22" 1+ ‘:L'/’2 2 (m”+1)2 + 2gnH 9pntl
1+ |y|2 = D) = ) = y
(znt1 +1) (zntl 4+1) zntl +1
and
P i) N A ol B Cn kBN
(xn+1 + 1)2 (xn—f—l + 1)2 antl 417
whence
1+ [yl 1
5 = 2" = coshr.
1— |yl

3.20. (a) The canonical metric of the sphere S” in the polar coordinates
has the form
gsn = dr? + sin? r ggn-1,
where 0 < r < 7 and § € S*!. Then the Riemannian volume w,; of S"
coincides with the volume of the ball of radius 7. Computing the latter by
means of (3.89), we obtain the recursive formula

Wntl = wn/ sin™ ! r dr. (B.41)
0
(b) Using wp = 27, we obtain from (B.41)
™
w3 = wg/ sinrdr = 4m,
0

and

s
Wy = wg/ sin? rdr = 272
0

Denote by Sy () and Vi (1) respectively the area function and the volume
function of a manifold M. Using (3.91) and (3.92), we obtain

T
SR’R (7") = wn?"n_l and VR” (’]") — wn/ ,’,.Tl—ld,r — ﬁrn,
0 n

,
Sgn (1) = wpsin™ 7 and Van (r) = wn / s dr,
0
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S (T‘) = wp sinhnfl r and Vg (7‘) — wn/ Sinhnil dr.
0

It follows that
Vez (r) = 27w (1—cosr),

Vgs (r) = m(2r —sin2r)
2
Vaa (r) = % (cos3r —9cosr + 8)

and

Vigz (r) = 2w (coshr —1),

Vs (r) = wm(sinh2r —2r),
2
Vi () = % (cosh3r —9coshr + 8).

3.21. Let us first evaluate the integral

™
In:/ sin™ rdr,
0

27

where n is a non-negative integer. Integrating by parts as sin” ! rd cosr, we

obtain the following recursive relation, for all n > 2:

n—1

I, = In_o.

Let us prove by induction that, for all n > 0,

; _ VA (nt1)/2)
" I'((n+2)/2)

(B.42)

(B.43)

For n = 0 we have Iy = m, which matches the right hand side of (B.43)
because I' (1/2) = /m and I' (1) = 1. For n = 1 we have I} = 2, which again
matches the right hand side of (B.43) because I' (3/2) = 3/7.For n > 2
we obtain, using the inductive hypothesis for I,,_s, (B.42), and the identity

2I'(z) =T (2 + 1), that

_n—1 , T((n-1)/2) _ ,D((n+1)/2)
In= n v I'(n/2) v n +

which proves (B.43).

Combining (B.43) with (B.41) in the form wy11 = wypl,—1, we obtain,

for all n > 1,
I'(n/2
iy = wy Y L/2)
F'((n+1)/2)
which easily implies (3.94) by induction in n.
3.22. We obviously have
d2

Bst = gz
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where 6 is the angle on S'. If (p,6) are the polar coordinates on S? then by
(3.84)

Ag2 = o + cot 0 ! 8—2
7 902 pap sin? p 902"
If (r, p,0) are the spherical coordinates on S then we obtain
0* 0
Ags = or 2+200tTE+EAS2
_82+2t8+1 a2+ta 1 02
oo T e T gy \9p2 T p@p sin2pd6? )"
Similarly, it follows from (3.83) that
A = 8_2 + 12 + ia_2
BT 02 T pap " p2oe?
and
A _8_2_|_22+l 8_2+COt 24_#8_2
B = o2 "ror 2 Op? pap sin? p 062
Finally, (3.85) yields
0? 0 1 02
Apz = th -
L ap? Teo pﬁp smh2p(992
and
0° 0 1 0? 0 1 9
Aps = = + 2coth — | =5 tp—+ ———=—= |- (B.44
T Akl mi g g (ap2 Teo p8p+sin2p802) (B-44)

3.23. (a) Since the function u depends only on r, we have by (B.44)
Agsu = u” + 2 (cothr) '

and a direct computation yields Agzu = —u.

(b) By Exercise 3.19, the relation between the polar radius r and the
coordinates y € B" is given by
2

1
coshr = + ’y‘g.
— |yl
This implies
2
sinhr = vl 5
— |yl
and
1
e =coshr +sinhr = T + :y;
1Y
Hence, we obtain
2
S el U] B PO e (B.45)

sinhr  2]y| 1—|y|
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We need to prove that this function extends smoothly to r = 0, that is, to
y = 0. For that, let us just expand the right hand side of (B.45) to a Taylor
series in a neighborhood of |y| = 0. We have

1+ |y| wl? P P
1 _ S ) i IS (U PO )
K — vl =5+ Iyl = =5 3

lyl’
= 2 2 2
ly| + g T2+

whence

2 > Lyl

Hence, u is a smooth function of |y|? in a neighborhood of 0. Since |y|* is a
smooth function of y, the smoothness of u in H3 follows.

3.24. Since u does not depend on the polar angle, the equation A,u =0
becomes
!

u” + %u =0
(cf. (3.93). This equation equivalent to
(Su')/ =0,

and solving it we obtain
(r) C/T I (B.46)
u(r) = — . .
n 8@

In R" we have S (r) = w,r" ! and (B.46) yields

logl, n=2,
u(r):C’1+C{ ng_ﬁ, n> 2.

Since in S” we have S (1) = w, sin® ! r, we obtain from (B.46)

logtan 5, in S?,
cot r, in S3.

u(r)zC’l—l—C{

Similarly,

logtanh 3, in H?,

u(r) _Cl+c{ cothr, in H3.
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3.25. Using the notation (3.86) and (3.87) from Section 3.10, and writing

u = %, we obtain
‘

’ w, o 1
/A(Auu)vdu = /a /S"l (u + . + EASTL_ML) vo (r) dodr

b

- / (/ (u'a)/vdr> df
Sn—t a

b
+/ (/ (Agn-1u) vdG) Y 2odr.
a Sn—1

Integrating by parts in the interval (a, b) yields

b , b b
/ (u’o) vdr = [u’va}a —/ u'v' odr.
By the Green formula (3.41) on S"~1,
/ (Agn—1u) vdf = / (Vou, Vau)do.
S'nfl Snfl

Combining together the above lines and using a consequence of (3.78) that
(Vu, Vo) = u'v' + 72 (r) (Vou, Vo),

we obtain

b b
/(Aﬂu)vdu = [/ u’vad&} —/ / u'v'odrdd
A S§n—1 a Sn=1 Jq

b
— / v2 (r) (Vou, Vov)odfdr
a JSn—1

= / v'vdpg, —/ v'vdug, —/(Vu, V) dpy,
Sh Sa A

which proves (3.96). Switching in (3.96) u and v and subtracting the result-
ing identity from (3.96), we obtain (3.97).

3.26. (a) This follows from Lemma 3.19.
(b) The change of coordinates on S is given by

o= || fFO)=2@)f0),i=1,.,n

"t o=t

where f? are the same functions as in (3.61). Therefore, the metric gg is
given by
(dz')® + oo (d2™)? + (de™)? = 3 (fi@'dt + ®df?)” + di?
i=1
= (14 (2)") df* + P25,
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(c) The change p= [ /1 + @’ (t)2dt obviously implies
(14 (@)%) ar® = dp*.
The function ¥ (p) is obtained by the condition ¥ (p) = & (¢).
3.27. goy = dp® + gsn—1 and gcoone = dp® + %Zggn—l.

3.28. The changes

1
n+1 /
= t d = =
x and |2/| i (s)

(where s > 0) bring the equation of the pseudo-sphere to the form
t = s —tanhs.

The function ® (cf. Exercise 3.26) is defined by the condition u = @ ().
Therefore,

du\? dt\?
— / 2 — _— —_ = =
p—/\/l—k(I) (t) dt_/\/(ds) + <ds> ds /tanhsds log cosh s.

The function U is defined by the condition ¥ (p) = @ (¢t) whence ¥ (p) =
u=e "’ p>0.

3.29. (a) The metric of R? has the form (3.99) with f = 1, and (3.100)
clearly gives K2z = 0. To apply (3.100) to the other metrics, let us first
notice that by the chain rule

[Af=IVIP _AF (Vf|>2
f? f f
where Vf is the gradient of f in the Euclidean metric (d:cl)2 + (dx2)2.

In particular, if the function f depends only on the polar radius r then
IVfl=|f|and Af = f" + %f’ whence

Kug = PPAlog f = 1"+ 17— (). (B.47)

The canonical metric of S? in the stereographic projection has the form
(3.99) with

Alog f =

1 1
f@) =5 (1+12P) =5 (1+r7).
Hence, f' = r and f” = 1, whence (B.47) yields Kgo = 1. Similarly, the
canonical metric of H? in the Poincaré model has the form (3.100) with
f(z) = % (1 - \:c|2> whence in the same way we obtain Ky2 = —1.
3.30. Let us write down the Laplace operator Ag in the coordinates zhx
using the fact that the matrix g = (gi;) of the metric g has the form

-2
o= (N )

2
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2
1 ([ f 0
g - ( 0 f2 ) )
we obtain

1 0 0 1 0 0
A - -9 n_9 9 g2 0
& Vdet g Ozl ( det g9 8:1:1> * V/det g 0x? ( det g9 8x2>

Since det g = f~% and

that is
Ag = f2A.
Since , ,
_ (dxl) + (dmz)
g =
(Fh)’
the formula (3.100) gives for this metric
Kug = (Fh)? Alog (fh) = h* (f*Alog f + f*Alogh) = h? (Karg + Aglogh) ,

which was to be proved.

9

3.31. Let us change the variable
dr
p= [ ——7=
(r)

so that dp = w‘%:). Clearly, in the coordinates p, 6 the metric has the form
g =v*(r) (dp® + db?),

which matches (3.99) with f (p) = ﬁ
not depend on 6, we obtain by (3.100)

. 2 2
Since A = 53—/02 + % and v does

KM,g = _Ed_ﬁlogw

We have p L dr di
r
Zlogy = - F =y
dp Ydp dr
and )
d d dr
2 _ Yy & "
Jalorv = T = T =,
whence the result follows.
3.32. We have:

For R2: ¢ (r) =7, K = 0.

For S%: 4 (r) =sinr, K = 1.

For H2: + (r) = sinhr, K = —1.
For Cyl: ¢ (r) =1, K =0.

For Cone: ¢ (r) = constr, K = 0.
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For PS: ¢ (r)=e¢", K = —1.

3.33. Left to the reader

3.34. Left to the reader

3.35. Fix a point z € M, denote by M, the connected component of M
containing x, and consider the set N, = {y : d (z,y) < co}. We need to show
that N, = M,. The inclusion N, C M, is obvious: if d(z,y) < oo then
there is a continuous path connecting x and y, which implies that y € M,.
To prove the converse, it suffices to show that IV, is open and closed as a

subset of M. Indeed, N, is open as the union of balls B (z,r) when r — oo,
and its complement

Ny={yeM:d(z,y) = oo}

is open because y € N¢ implies that, for any e > 0, also B (y,e) C N§&,
which follows from the triangle inequality.

3.36. (a) Using (3.77), we obtain

|‘2_n—1 Ccisd o .02 n_l ..'i‘j> .02
2= gy =13+ Y g > 30
i.j=0 ij=1

whence it follows that
b b
> [l | [ W”dt‘ — ) =2 (@)] = | — ]
(b) If ¢’ = 0" =: 0 then the path

v (t) = (7“' (1—1t)+r"t, 9)

connects ' and z”, because v (0) = 2z’ and (1) = z”. Since ¥(t) =
(r" —7',0) and |y| = |r” — r'|, we obtain by (3.104) £(y) =7r" —1r'.

3.37. Let us show that any smooth path + connecting the points 0 and
x = (r,0) has the length at least r. If 2’ # 0 is a point on the image of v and
r’ = |2| then, by Exercise 3.36, £ () > r —r’. Since such a point 2’ exists
with arbitrarily small 7/, we conclude that £ () > r and hence d(0,z) > r.
The path v (t) = (tr, 0) defined for ¢ € [0, 1], connects 0 and z, and it is easy
to see that £ () = r. Hence, d (0,x) = r, which was to be proved.

In R™, the above argument proves that d (0, z) = |z|. Since the origin of
the polar coordinates in R™ may be at any point, setting it to y we obtain
that d (z,y) = |z — y|.

3.38. Let 1 be the part of v connecting z and z, and 72 be the part of
v connecting z and y. Then we have £(y1) > d(z, z) and £ (y2) > d(z,y).
whence

d(z,y) =L(y) =L(n) +L(12) 2 d(z,2) +d(z,y). (B.48)
On the other hand, by the triangle inequality, we have
d(z,y) <d(z,2)+d(zy).
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Therefore, all inequalities in (B.48) are, in fact, equalities, whence £ (1) =
d(z,z).

3.39. It suffices to prove that (Vf(x),&) < [¢|, for any tangent vector
¢ € T, M; by the definition of V f, this means that £ (f) < |£|]. Consider a
smooth path v : [0,e] — M for some € > 0 such that v (0) = z and 4 (0) = &.

Then J
E(f)=(foy)(0) = 2 F (@)

so that we need to prove that

SUam)|  <hOL (5.49)
t=0

Using the definition of the geodesic distance and the triangle inequality, we
obtain, for any ¢ € (0,¢),

FOr@®) = f(0)=d(y(#),p) —d(y(0),p) <d(v(t),7(0) <L (V)
(B.50)

)

t=0

Since

¢
£Glag) = [ 1G] ds
dividing (B.50) by ¢ and letting ¢ — 0, we obtain (B.49).

3.40. (a) Since M as a smooth manifold can be identified with R"™, we
can assume that r is a polar radius in R", that is,

r= \/(x1)2 + o+ (:v")2

Clearly, » = r (x) is a smooth function away from the origin o, so the only
problem is to show that a o r is infinitely many times differentiable at o.
Note that r? is a smooth function on the entire R”. Using that a is an even
function, we will prove that a o r can be represented as a composition of a
smooth function with 72, which will settle the problem. In other words, it
suffices to prove that the function a (¢) is a smooth function of 2.

Observe that

a(t)—a(())—i—/o a'(s)ds-a(O)—i—t/O o (tu) du.

Applying the same formula to a’ and noticing that a’ (0) = 0, we obtain

a(t) =a(0)+ b (t) (B.51)

where .
b(t) ::/ / a” (tuv) dudv (B.52)
0 JO

is again a smooth even function on R.

To proceed further, we need the following claim.
Cramm. Let f(x) be a function on [0,+00), which is infinitely smooth in
(0,400). We say that f € D*, where k is a non-negative integer, if f is k
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times differentiable at 0 (if k = 0 then this means that f is continuous at
0). If f (z) € D° then z*f (x) € D* for any k.

Inductive basis for k = 0 and 1. The case k = 0 is trivial. If kK = 1 then
differentiating the function zf (x) at 0, we obtain

(@f @), = tim 2L i 12 = £ 0)

—0 xT z—0

whence zf (z) € DL

Inductive step from k — 1 and k to k + 1. Since z¥*! f (2) = z (2% f (z))
and 2* f (z) € D*, it follows that also z*!f (z) € D¥. By the product rule,
we have , ,

(l‘k+1f (3:)) = 2" f(z) + (xkf (m)) .

Since (a:kf (w))/ € D*~1 we obtain by the inductive hypothesis that = (a:kf (:L‘))I €
DF whence it follows that also (z"! f (:L‘))/ € D*. Hence, z**1 f (z) € DL,
which was to be proved.

Now we can prove by induction in k that, for any smooth even function
a on R, we have a (y/z) € DF, where z is a variable in [0, 400). The case
k = 0 follows from the continuity of a. For the inductive step from k to
k + 1, apply the inductive hypothesis to the function b from (B.51), (B.52),
so that b(,/z) € D*. By (B.51), we have

a(va) =a(0)+azb(Vz),

and by the above Claim we conclude that a (,/z) € D*¥+L.
Consequently, we see that the function a (1/x) is infinitely many times
differentiable in [0, +00), which was to be proved.

3.41. (a) Set g := C,g = a?g. Consider the path v (t) = tzr where
t € [0,1] and € R™. Then the polar radius r of the point x in the metric
g is given by

1 1
r:egm:/o w<t>rgdt=/0 2] dt = |,

while the polar radius 7 of x in g is given by

1 1 ||
=)= [ ORa= [ aada= [ a@as

which was to be proved. It follows from (3.109) that the radius of (M, g) is
infinity.

(b) It is obvious that a x b is smooth, positive and even. It satisfies the
condition (3.109) because

/Ooo(a*b)(t)dt _ /Oooa(/otb(s)ds>b(t)dt

= /Oooa(T)dT:oo,
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where we have made the change 7 = fg b(s)ds. Hence, axb € S.
It follows from part (a) that

Ca S C'b = Oa*b-
Indeed, setting g = Cpg, we obtain
(CaoCg=C8=a?Pg=a’®*(r)g=(axb)’g,
which was claimed. Hence, the family {Ca}ae s of conformal changes of

metric is closed under composition. Obviously, (C'a)_1 also belongs to this
family. Since the composition is always associative, the family {Cqa},cs
forms a group with respect to composition, which implies that S is a group
with respect to x. Alternatively, the latter can be verified directly by com-
putation.

(c¢) Noticing that

/ b(s)ds ~ / s% Togll s ds ~ rBlogl’lr as r — oo
0 0

log* (/ b(s) ds) ~ logl* r,
0
we obtain

a </ b(s) ds> b(r) ~ rBle=D pglle=viul ;. (rﬁ_l log!"! r) ~ o1 jggloviul
0

and

which was to be proved.

3.42. For any « € S and & € TS, the vector £ can be considered as an
element of T, M by

() =¢&(fls),
for f € C (M). Denoting J = J|g, we have by definition (3.112) of d.J, for
any f € C>(9), B B
dJE(f) =&(foJ).
In particular, applying this to f € C*° (M), we obtain
dJE(f) = E(fodls) =E(foJ) = dIE(f)
The fact that J is an isometry of (M, g) implies that, for any z € M and
§e I, M,
€lg = [dJTE], -
Hence, for all z € S and £ € TS,
Elg), = [€lg = |dJElg = [dTE]g = |dTE]g),,

whence it follows that J is an isometry of (S, g| g)-

3.43. (a) Let 7 : [a,b] — M be a smooth curve. By the definition of
length, we have

b
b ) = [ P (o), (B.53)
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and

b
lan (1) = / 5 (1) g, - (B.54)

Set z =~ (t) € M, £ =74 (t) € T, M and recall that £ is defined by

E() = S F (10,

for f € C* (M). Hence, by (3.112), dJ¢ is a tangent vector at Jx such that

ATE(F) = €01 f) = S F (Tor (1) = (Tor) (f).

Therefore,
dJy = (Jo~v) .

On the other hand, the hypothesis gy = J.gn and the definition (3.115) of
Jygn imply that

|’y,gM = ‘;}/’J*gN = ’dey,gN . (B55)
whence
Ygy, = 1(T07) gy -
Combining with (B.53) and (B.54), we obtain

lgy (v) = lgy (Jom),

which was to be proved.

(b) The geodesic distance is defined as the infimum of the length of a
smooth path connecting z,y. By part (a), a Riemannian isometry preserves
the length, whence the claim follows.

3.44. (a) Following the same line of arguments as in solution of Exercise
3.43(a), we only need to replace (B.55) by

Hga = gy = 14TV gy » (B.56)

whence Zg,, (7) =~ {g, (J 0 7y) follows.

(b) Since the geodesic distance is defined using the length of smooth
paths, the claim follows from (a).

(¢) For simplicity of notation, let us identify M and N as smooth mani-
folds using the quasi-isometric diffeomorphism J : M — N. Let vj; and vy
be the Riemannian measures of gys and gy, respectively. By Exercise 3.5,
we have dvy ~ dvys. Since also T ~ Ty, we obtain duy =~ dups, whence
(3.123) follows.

(d) By Exercise 3.5, we have |Vf|:;M o~ |Vf|§;N. Using also the compar-
ison dpps ~ dun from part (¢), we obtain (3.124).
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3.45. (a) Using (3.114), we obtain
(dy")* + o (A" ) + (dy™)? — (dy™ )
- () ot (Y
+ cosh? o (cl:c”)2 + sinh? o (d:c”+1)2 + coshasinh a (dz"dz™ ™ + dz"t'da™)
—sinh? o (dz™)? — cosh o?ax (da:"“) — coshasinha (dz"dz™™ + dz" ™ dz™)
= (d:cl)2 +...+ (dwn_l) + (dz™)* — (dac”H)Q.
(b) Recall that H" is a hyperboloid in R"*!, given by the equation
(:Cn+1)2 - (m1)2 — = (@")?=1, 2" >0

Similarly to the above computation, the mapping J, defined by (3.125), maps
H™ onto itself. By the same argument as in Exercise 3.42, J|g» preserves
the induced metric of H”, which is gpn.

3.46. Let us first show that, for any point p € H", there exists an isometry
J of H" such that Jp = o where o = (0,...0,1) is the origin of H". First,
by rotation in the subspace R™ with coordinates (ml, e m"), we can assume
that the projection of p onto R” lies on the axis =", that is,

p = (07 b 07 a’ b) )
where
b2 —a?=1.
Then there exists real o such that

b=cosha and a = —sinhaq,

and, setting J to be the hyperbolic rotation (3.125) of Exercise 3.45 with
this parameter a, we obtain from (3.125) Jp = o.

If ¢, ¢’ € H™ are two points such that d (o, q) = d (0,¢") then, in the polar
coordinates, the points ¢ and ¢’ have the same polar radius (cf. Exercise
3.37). Therefore, for a suitable rotation J of the polar angle, we obtain
Jq = ¢, while Jo = o.

Assume now that points p, q, p’, ¢’ satisfy (3.126). Let J and J’ be isome-
tries that bring, respectively, the points p and p’ to the origin o. Then

d(o,J'q) =d(p',d) = d(p,q) = d(o, Jq)
and, hence, there exists an isometry J” such that
J'J'qd =Jq and J"0=o.
Since o = Jp = J'p/, we obtain
J" I = Jp,

which together with the previous line implies that J~1J”J’ is an isometry
that maps p’ to p and ¢’ to q.
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Solutions to Chapter 4

4.1. Left to the reader
4.2. (a) For any ¢ € D (M), we have fo € D (M) whence

(fuk, ) = (uk, fo) = (u, fo) = (fu, ),

D/
whence fur = fu.
(b) Let ¢ € D (M) be supported away from supp fNsupp u, which implies
that supp ¢ Nsupp f is disjoint from supp u. Since

supp (fy) C supp f Nsupp ¢,

we obtain that supp (f¢) is disjoint from supp u and, hence (u, fy) = 0. By
(4.8), we obtain (fu, ) = 0, whence the claim follows.
(¢) To prove

V (fu) = fVu+ (Vf)u, (B.57)
we need to verify that, for any w € D (M),
(V (fu),w) = (fVu,w) + (V) u,w). (B.58)

Using the definition of V in D’ and the definitions of the products fu, fVu
and (Vf)u, we obtain
(V(fu),w) = —(fu,divyw) = — (u, fdiv,w),
(fVu,w) = (Vu, fw) = = (u,div, (fw)),

(V) u,w) = (u,(Vf,w)).

We are left to notice that, by Exercise 3.7,
divy, (fw) = (Vf,w) + fdiv,w,
which together with the previous three lines implies (B.58).
4.3. Set

S = max (sup |f|,sup [V f]).

Obviously, we have
[fullgz < Sullr2,
and it follows from (B.57) that
IV (fu) [z < Sllull2 + SVl

whence

Ifullis = N fullfz+ IV (fu) 32
< 38%|ullZ. + 253 VullZ,
< 38%(|ull,

whence the claim follows.

4.4. Let us show that any f € LP (M, ) can be approximated in LP norm
by a sequence of functions from C§° (M). Obviously, we can assume f > 0.
Let {Q} be an increasing sequence of relatively compact open sets in M
covering all M (see Exercise 3.1). Since the sequence {lq, f} increases and
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converges to f pointwise, it converges to f also in LP norm. Switching from
f to 1g, f, we can assume in the sequel that the support K = supp f is
compact.

By Lemma 3.4, there is a countable family {U;};2, of relatively compact
charts covering M and such that the closure U; is contained in a chart. Then
select a finite number of charts U;, say Uy, ..., Uy covering K, and let {¢;}
be the associated partition of unity. By Theorem 2.3, C§° (U;) is dense in
LP (U;, \) where X is the Lebesgue measure in U;. Since the measures p
and A are comparable in U; (that is, the density ‘;—‘; is bounded between
two positive constants), we obtain that C§° (U;) is dense also in LP (U;, p).
Hence, for any ¢ > 0 there exists f; € C§° (U;) such that

1fei = fill e <e

Adding up all such inequalities, using the triangle inequality and observing
that

k
Z f‘pl = f on M7
i=1
we obtain

k
1f =" fill by < ek
i=1

Since Y% f; € Cg° (M), this proves that CZ° (M) is dense in LP (M, ).
To prove the separability of LP (M, u), observe that by Theorem 2.3,
L? (U;, \) is separable, where {U;}:2; is the same family as above. Let F;
be a countable dense family in LP (U;, A). Then it is also dense in LP (U;, p).
Consider the family F that consists of all finite sums of functions from F;
across all i. Obviously, F is countable. The fact that F is dense in LP (M, )
is proved exactly in the same way as in the first part of the proof, replacing
fi € C§° (U;) by fi € F; and noticing that the sum Z§:1 fi belongs to F.

4.5. In R", this follows from Lemmas 2.1 and 2.4. The partition of unity
(Theorem 3.5) allows to extend this result to an arbitrary manifold.

4.6. We need to prove that (u,yp) = 0 for any function ¢ € D (M). It
suffices to show that any function ¢ € D (M) can be represented in the form
@ = 11 — 19 where 11 and 1y are non-negative functions from D (M). Let
1 be a cutoff function of supp ¢ in M (cf. Theorem 3.5) and C = sup |¢|.
Then the function ¥; = C is non-negative, belongs to D (M), and ¢; > .
Setting 19 = 11 — ¢ we complete the proof.

4.7. (a) We need to prove that if u € L} (M) and

loc
/ updp >0 (B.59)
M

for all non-negative ¢ € D (M) then u > 0 a.e.. Let us use Exercise 2.8,
where the same fact was proved in R". Let U C M be any chart and A
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be the Lebesgue measure in U. Since the density % is a smooth positive
function, the condition (B.59) implies that

/ugod)\zo
U

for all non-negative ¢ € D (U). By Exercise 2.8 we conclude that u > 0 a.e.
in U. Since M can be covered by a countable family of charts (cf. Lemma
3.4), we obtain u > 0 a.e. in M.

(b) This trivially follows from (a). Alternatively, one can use Exercise
4.6 to conclude that w = 0 in the distributional sense, and then deduce from
Corollary 2.5 that u = 0 a.e..

4.8. (a) Select first a subsequence from {uy} which realizes the liminf of
the norms ||ug||z2. By the weak compactness of a ball in a Hilbert space, we
can select further a subsequence from {u;} that convergences in L? weakly.
Renumber this subsequence again by {u;} and let v be its weak limit in L?.
This means that, for any ¢ € L2,

(s )2 = (0, 0) L2 (B.60)

Obviously, this implies that uy, D', v whence it follows that u = v and hence
u € L?. We are left to show that

lollze < Jim fluglze. (B.61)
k—oo
Setting in (B.60) ¢ = v, we obtain
lolfz = lim (ug,v) < lim fug]gel|v]l 2,
k—o0 k—o0

whence (B.61) follows.
(b) As in part (a), select first a subsequence from {uy} that realizes the
liminf of the norms ||Vug|/z2. Select further a subsequence along which

{Vuy} converges in L? weakly. Renumber this subsequence again by {uy},
and let w be the weak limit of Vuy in L2. Since U, L u and Vug 1> w,

we conclude by Lemma 4.2 that Vu = w and, hence, Vu € I[? and uw € Wt
The estimate of ||w||z2 follows in the same way as (B.61).

4.9. Left to the reader
4.10. Left to the reader
4.11. (a) Set

vt = g (B.62)

i’
To prove that v is the distributional gradient Vg f in U, we must verify that,
for any smooth vector field w compactly supported in U,

/(v,w)gdu: —/ fdiv,wdp. (B.63)
U U
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Indeed, we have

. 9 of .
(v,w)g = girv'w® = girg¥ 8;2 wh = 83]; w* (B.64)

and by (3.44)

9 .
. o1
div,w = p B (pw')
where p = %’f and A is the Lebesgue measure in U. Using the definition of
57 I and the fact that wip € D ( U) we obtain

/(v,w>gd,u = / wipd\ = —
U Oz
= —/fp‘ 3 pwz)duz—/fdivad#,
U U

whence the claim follows.
It follows from (B.62) that

weak derivative 2

of i Of _ 4 0f Of

-y = g7 =

ort”  OzI Ozt Oz’
which proves (4.9) and implies that |Vgf | g I8 locally integrable, that is,

ng € Lloc (U)
(b) Set v = Vg f so that v satisfies the identity (B.63). To prove that

of i
= g (B.65)

we need to verify that, for any ¢ € D (U

/ gijv'p dX = / f3da —d),
U
which is equivalent to

. dp _
/gijv wp 1du=—/ faﬁ tdu,
U

Consider a vector field

Ve fl2 = [vlz = grv™' = grg™

w = (0 ...gopfl,...O)

where @p~! is the j-th component; that is, w* = 5k<pp_1. Then we have
(v, w)g = giv'w® = gipv'dhpp™t = gijvipp!
and 5 5
. -1 E\ _ —19¥
divew =5~ g (o) = 7' g5

Hence, by (B.63),

. . op _
/gz-jvzwp 1du=/<v,w>gdu= —/ fdiv,wdp = —/ fa—(pjp Ly,
U U U v or

which was to be proved.
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The identity (B.65) implies (B.62), and then (4.9) follows in the same
way as in part (a). Since the matrix (¢%) is positive definite, (4.9) and

Vef € Lloc imply 2L ¢ L2

Oz loc*
4.12. By definition, we have f € W (Q) if f € L? (Q) and a%% € L?(Q)
for all j. By Exercise 4.11, this implies that

iy Of _ Of

because ( ”) id, and

n of 2
Ve fl2 = ; <axi) ,

whence

IVefl3 =3 o

This implies that Vg f € L2 (Q), f € W1 Q, g, A), and
I lroey = IfIIZe+ IIngIIQLz

17112 +Z

= Hf”wl(ﬂ)'

aaﬂ

Conversely, if f € W' (Q,g,\) then by Exercise 4.11 we have the same
identities as above and f € W (Q), whence the identity of the spaces W1 (Q)
and W' (Q, g, \) follows.
4.13. Set for simplicity Q2 = R™\ {o} and let  be the Lebesgue measure
in R™.
(a) We need to prove that, for any smooth compactly supported vector
field w on R"™,

/(Vf,w}d,u: —/ fdivwdp. (B.66)
Q Rn

If w is supported in €2 then this is just the Divergence Theorem. In general,
set

B, ={zeR": |z| <r},
Sy =0B, ={zx € R" : |z| =1},
and observe that, by f,Vf € L? C L}

loc loc?

/(Vf,w)du = lim (Vf,w)dp = lim /(V,u))fda—/ fdivwdp
Q r—=0 Jrn\ B, r—=0\ /g, R\ B,

= lim [ (v,w)fdo — fdivwdy,
T R™

r—0 S

(B.67)
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where o is the area on the sphere S, and v is the unit normal vector fields on
S, pointing at o. Since (v, w) remains uniformly bounded when r is small,
we have

| twwhsdo

i

< const/ |fldo.
S,

We are left to show that there exists a sequence {ry} — 0 such that

/ |f|do — 0,
Sr
because then (B.66) will follow from (B.67) by taking the limit along this

Sequence.
1
[ ArPan= | (/ erda)dr
Bi 0 Sr

Since
and by the Cauchy-Schwarz inequality

2
Fr) = (/S mda) <o (5 [ 1P do =wnr [ |1 do

the hypothesis f € L? implies

loc

LR
/0 (r)ldr < /31 1fI? dp < 0. (B.68)

Wnr™™

We claim that
liminf F' (r) = 0.

r—0

Indeed, if this is not so then F'(r) > ¢ for some ¢ > 0 and all small enough

r < €, which implies
1 5
F d
(rl) dr > c L o,
0 rn— 0 Tn—l

and which contradicts (B.68). Hence, there is a sequence {r;p} — 0 such
that F' (ry) — 0, which was to be proved.

(b) We need to prove that, for any smooth compactly supported function
@ on R"™,

/Q(Af) pdp = /Rn fApdp.

If ¢ is supported in €2 then this is true by the Green formula. In general,
we have by f,Af € L? C Llloc that

loc

of

o L dp
/Q(Af)wdﬂ = lim s, (Af) pdp = lim </ST<8V<;7 5 )da /RR\BT fAsodu)

L of Oy
N 71}_1}1(1) S, <61/SO_81/ )da—/Rangod,u

(B.69)
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Since |¢| and ‘g—f < |V¢| remain uniformly bounded when 7 is small, we

'/ ( )d" <Const/ST(!f!+ny\)da.

Since |f| + |V f| € L2, in the same way as in part (a), we obtain sequence
{rr} — 0 such that

have

/ (] + [V f]) do — 0,

k

Taking the limit in (B.69) along this sequence, we finish the proof.
(¢) To show that f € L? it suffices to prove that

fdp < .
B1

Indeed, we have

1 1
fPdp = / (/ fzda) dr = / r~24nr3dr = 4n.
B; 0 pa 0

To verify that Af = 0, recall the representation of A in the polar coordi-
nates: o2 8
2 1
A=— A
or? 3 T 81“ s

L we obtain

whence, using f (r) =r~
2
Af:f”+;f’:0.

To prove that Agisef = —47d we need to verify that, for any smooth
compactly supported function in R3,

(f7 ASO) = - (471'(5, 90) )
that is,

/R3 fApdu = —4mp (o).
As in (B.69), we have, using that Af = 0 in R3\ {0}

/fA(pd;u = lim FAedy = lim / <8£ 8f )da—/ oA fdu
R3 r—0 Ra\B r—0 S, aV 81/ ]R?’\BT

of

= 1l — do. B.
TILI(l) Sy <8Vf 81/ > 7 ( 70)

Since f € L, the term fSr 5. Jdo tends to 0 along a sequence r; — 0.

Let us compute the remaining term In the polar coordinates (r, ), we have

f(r)y=r- and —6—f = 72 whence

—
cpdcr == 50 o= / pdo — 4 (0)
Sr ) Sr

asr — 0. Substltutlng into B 70), we ﬁnlsh the proof.
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4.14. (a) It is clear that f € C*° () for any  not containing the origin
o. Hence, f € L? (R") is equivalent to f € L? (B) where B is the unit ball

loc
centred at o. Integrating in polar coordinates, we obtain

1 1
HfH%Q(B) = /B |z dp :/ 2%, dr = wn/ r2etn=lq.
0 0

The latter integral is finite provided 2« + n > 0, whence the claim follows.
(b) Using Vr = x/r, we obtain

Vf=ar*Vr=ar*2z
whence
|Vf’2 _ a2r2(o¢—2)7,2 _ a27,2(a—1).

Therefore,

1 1
/ |Vf]2 dyu = azwn/ pAle=Dpn=lg, — a2wn/ pt2a=3qy.
B 0 0

This integral is finite provided n+2a —3 > —1, that is @ > 1 —n/2. Hence,
under this condition, we have Vf € I_;foc. The fact that Vg f = V f follows
from Exercise 4.13.

(¢) A computation in the polar coordinates shows that

0% n-10f _
Or? r or

where r = |z|. If « —2 > —n/2 then by part (a) the function |z|* 2 belongs
to L? . and hence also Af € L2 . Also, by parts (a) and (b), we have f € L?

loc

and Vf € L2 . Then the fact that Agistf = Af follows from Exercise 4.13.

loc*

Af = aa+n—2)r“2

4.15. By hypotheses, both sequences {u;} and {Vui} are bounded in
L?. By the weak compactness of balls in L?, there is a subsequence {ug, }
that converges weakly in L?, and also Vuy, converges weakly in L2, that is,

2 2
U, L w and Vuy, 5w (B.71)
Since the weak convergence in L? implies the convergence in D', it follows
that w = Vu and, hence, v € W'. It follows from (B.71) that, for any
peWwl,

(ukia (:O)L2 + (vuku VSO)B — (U, 90)L2 + (VU, VSO)L2

1
whence ug, Wi Hence, {ug,} converges to u weakly in L? and W', which
was to be proved.

4.16. By the principle of uniform boundedness, any weakly convergence
sequence is bounded in the norm. By Exercise 4.15, there is a subsequence
{ug,} and v € W' such that

L2 L2
ug, — v and Vug, — V.
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It follows that v = u and, hence,
2

L L2
u, — wand Vug, — Vu, (B.72)

which was to be proved.

4.17. (a) By Exercise 4.15, a subsequence of {uy,} converges weakly in L2

to a function from W', which implies that w € W'. To prove that uy we U,
it suffices to verify that any subsequence of {uy} contains a sub-subsequence
that converges to u weakly in W1. (cf. Exercise 2.14). Renaming the sub-
sequence back to {uy}, it suffices to prove that {ux} contains a subsequence
that converges to u weakly in W'. Indeed, by Exercise 4.15 there is a sub-
sequence {ug, } and a function v € W! such that

L? wi
u, — vand ug — v.
1 1

1
It follows that v = u and, hence, uy, A u, which was to be proved.
(b) By part (a), ux converges to u weakly in W!. Together with the
convergence of the W1l-norms, this implies the strong convergence in W!.
4.18. Since the sequence |u — uk]2 converges almost everywhere to 0 and
is bounded by the integrable function w2, it follows by the dominated con-

2
vergence theorem that ||u — ug|| 2 — 0, that is, uy L. By hypotheses, all
norms ||uk|ly1 are uniformly bounded, which implies by Exercise 4.17 that

1
ue Wl anduk%u.
Since 0 < ug < u, we have
lurlfs < llullfe + [IVulze < [lull7z + ¢
Since uy, converges to u weakly in W', the norm |ul|;;» admits the same
estimate, that is,
lullfr < llullZe + €2,
whence |Vul[z2 < c.
4.19. Left to the reader
4.20. Let U be a chart in M. Without loss of generality, we may assume
that U contains a cube Q) = {(wl, cey a:”) : ‘ac" < 1} . For any (large) integer
k consider a function
fi (@) = sin(kz')p (z)
where ¢ € C5° (Q)\{0}. Let us show that || Afx||z> grows as k? when k — oo

whereas || fx||z2 remains bounded as k& — oo.
By the product rule,

—Afi = Apfe = Aysin (kz') + 2(Vsin (k') , Vi) + sin (kz') A .
(B.73)
We have

% sin (kz') = kcos (kz') = O (k) as k — oo.
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Hence, all the first derivatives of sin (k:rl) grow in L? (Q) at most as k when
k — oo.
For the Laplace operator, we have
2
A

.. u
pU = glﬂm + (1St order derivatives) .
z'Ox
0%u
(0a1)?

For function u = sin (kxl) the only non-vanishing second order term is
so that

A, (sin (ka:l)) = —g''k%sin (k:cl) + (15t order derivatives) .

Hence, we see that A, sin (k:xl) grows in L? (Q) as k? when k — co.
Since ¢ does not depend in k, all L? norms of ¢, Vi, A, can be bounded
by a constant. By (B.73) we have

1Afllzz > lpAysin (kat) |12 =21V (sinkz®) || 2|Vl 2~ sin (ka') [| 2 [ Al 22

whence we see that || Afx||;2 grows as k2 when k — co. The sequence { f3} is
uniformly bounded and is supported by a relatively compact set ). Hence,
the norms || fx||z2 are also bounded. In particular, we obtain

| Afll L2
[ fill 2
which means that the operator A is unbounded.

4.21. By Exercise 4.2, for any f € C§° and u € W1, we have fu € W!
and

— 00 as k— oo,

[fullwr < Cllully
where C' is a constant depending on f. If u € C§° then clearly fu € Cg°
and, hence, fu € W¢. For an arbitrary u € W, let {uy} be a sequence of
functions from C§° such that

Wl
up — u as k — o0o.
Then
| fur — fullwr < Cllug — ullpr — 0

1
that is, also fug w, fu. Since fuy € WY, it follows that also fu € W{.
4.22. Use the same argument as in the proof of Lemma 4.3.
4.23. For any u € W¢, we have by Lemma 4.4

/ ]Vu|2du:—/ ulAudp.
M M

S 1
b< a?+ —b?
W= T
which holds for all real a,b and s > 0, we obtain

9 s 1 s 1
v, = [ vulaus [ (5o g0 ) du= Gl oo Al

Using the inequality
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Therefore,

s 1
lulldn = llul3e + 190lZ, < (14 2) fuliZs + 5 1Al

14501
C = max -, — .
2’ 2s

The minimum value of ¢ is attained if

and (4.31) holds with

S 1
1+-=-
+2 2

which leads to s = v2 — 1 and ¢ = 1+2\/§.

4.24. (a) For any f € W¢ = dom L, we have

Ef:/ooo)\dEAf

and, hence,
(L5.5)= [ M(EBLD).
0
Since
(Exf, f) = (EXf, f) = (Exf, Exf) = | ExfI?,
we obtain

&f.0 = [ AlaEIE
On the other hand, by Lemma 4.4,

(Cf 1) = — (Auf, f) = /M VP du, (B.74)

whence (4.32) follows.

4.25. The operator £1/2 is non-negative definite and self-adjoint. Hence,
by Exercise A.13, dom £1/2 is a Hilbert space with the following norm:

1 o 212 = 172 + ILY2F 112
If in addition f € dom £ C dom £/? then, using (B.74) and
(£ 21,212F) = (£f.).
we obtain

1 o 2172 = 1122 + (LF, ) = 1122 + IVFIZ2 = 1 f G- (B75)

Hence, dom £ is contained in two Hilbert spaces: dom £/2 and Wol, and the
norms of these space are identical on dom £. By definition, C§° is dense in
W¢ and, since C§° C dom L, we see that dom £ is dense in W{.

Let us show that dom £ is dense in dom £1/2, too. Recall that, by (A.48),

dom £1/2 = {f cL?: / M| Exfl2. < oo}. (B.76)
0
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Consider a sequence {¢y}p; of continuous functions on [0, +00) such that
0<¢r <1 ¢r=1o0n|0,k] and pr = 0on [k+1,+00). Clearly, the operator
@k (L) is bounded. Fix a function f € dom £'/2 and set f;, = ¢ (L) f. Let
us verify that fi, € dom £ and f;, — f in the norm of dom £/2 (which will

imply that dom £ is dense in dom £/ 2). The first claim follows from the fact
that Apg () is a bounded function (cf. (A.56)). Next, we have by (A.50)

\V—m@—nm—mw»ﬂé—l (1~ ox (V)2 dl| Ef|2s,
and -
1LY — L2 2y = /0 AL~ o ()2 d|[Erf[12,

and the both integrals tend to 0 as £ — oo by the dominated convergence
theorem.

Let us now show that dom £/2 = W4. Any function f € dom L£Y/2 can
be approximated by a sequence {fr} C dom L that converges to f in the
norm of dom £/2. The sequence {f;,} is contained in W]} and, thanks to
(B.75), it is Cauchy in W{. Let fbe its limit in W3. Then f; converges
in L? to both functions f and f, which implies ]?: f and, hence, f € Wj.
The opposite inclusion is proved in the same way.

Finally, the identity (B.75) extends by continuity to all f € W, which
implies

L2 F122 = IV £l17- (B.77)
Using

1CY2 2, = /0 A Erf|2%, (B.78)

we obtain (4.32).
4.26. It follows from (B.76) and

dom (£ +id)"/? = {f € L*: /OOO A+ 1) d|IBxrf]72 < 00}

that
dom £/? = dom (£ +id)"/?.
For any f € W{, we obtain using (B.77) and (B.78),
| e

L2 F)12: + 1 £1152
= [IVFIZ + 1122 = 1 £1I3,

(£ +id)? £[12,

which was to be proved.
4.27. By (4.32), we have, for any f € W¢,

IV 72, = / AlAEA]22 > Amin / 1B 22 = Al FI122-

min min
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Since W02 is dense in Wol, it follows that the inequality
IV£IZ2 > Aminll 1172 (B.79)

holds for all f € W{.

4.28. The assumption (4.35) implies that 0 is a regular value of £ and,
hence, the inverse £~ ! is defined as a bounded operator in L?. Setting
u = L71f and noticing that u € dom £ = W§, we obtain a solution to
(4.36).

If u is another solution to (4.36) then —A,u = f implies A, u € L2,
which together with u € VVO1 yields u € dom £. In particular, we obtain
Lu = f, and, hence, v = L' f, which proves the uniqueness of solution.

To prove (4.37), observe that

£t —/ AldEA—/ A\"YdE,y,
spec L Amin

where {E)} is the spectral resolution of £. Therefore, for any f € L?

I fI2e = /A A2 ExfPe < A2, / dIE 122 = A2 1112,

whence (4.37) follows.

Multiplying the equation —A,u = f by u and using the Green formula
(4.12), we obtain

/ Vul? dy = / wf dp < g2 £ 2.
M M

Estimating ||u||z2 from (4.37), we obtain (4.38).
4.29. The equation
Ayu+ou = f

means that

(Apu, @)+ a(u, @) = (f,¢) for any ¢ € D,

where the brackets mean pairing of distributions with test functions. By
definition of A, is distributional sense, this equation is equivalent to

(u, App) +a(u,p) = (f,¢) for any p € D.

Since u —w € Wol and w € W1, a solution u must be in W1. In particular,

Vu € L? and, using the definition of the distributional gradient, we obtain
that the above equation is equivalent to

— (Vu, Vo) + a(u,¢) = (f,¢) for any ¢ € D.

Since D is dense in Wol, we rewrite the equation in yet another equivalent
form:

(Vu, V)2 —a(u, @) =—(f,¢);2 forany ¢ € WOI.
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Setting v = u — w and replacing u in the above equation by u = v + w, we
obtain the following equation for v € Wy:

(Vu, Vo) = a(v,9) = = (Vw, V) = (f — aw, ) for any ¢ € Wy, (B.80)

where the brackets mean the inner product in L?.
Let us show that the bilinear form

[v,¢], = (Vv,V) —a (v, p)
defines an inner product in Wol, which is equivalent to the standard inner
product [v,¢];. If @ < 0 then this is trivial and was already used in the
proof of Theorem 4.5. We need to prove the same in under the hypothesis
& < Amin, and we can assume in addition that o > 0.
It suffices to show that

oyl > € les )y (B.81)
for some ¢ € (0,1) and all ¢ € W}, which is equivalent to
Et+a
IVelze > T—ll#llZe- (B.82)
We claim that (B.82) holds with ¢ = )1‘_‘;“/\#0‘ Indeed, for this value of ¢ we
have
Et+a
1_¢ = AAmin,

and (B.82) coincides with the estimate (B.79) of Exercise 4.27.

Hence, the Riesz representation theorem yields that (B.80) has a unique
solution v € W{ provided the right hand side of (B.80) is a bounded linear
functional of ¢. The latter follows from the Cauchy-Schwarz inequality
because

[(Vw, Vo)| < Vw2 Vel L2 < Crllellw
and
(f = aw,0)| < ||If — aw|r2lellL2 < Callllw
where C1 = ||Vw||f2 and Cy = ||f — aw|| 2.
4.30. (a) Denote by [f,g] the standard inner product in Wy i.e.

[f,9] = (V£,Vg)+ (f,9).

Let us verify that the bilinear form {f, g} satisfies all axioms of an inner
product. Indeed, the symmetry follows from the symmetry of A, and the
positiveness follows from

{1} =2 (VEVH) +a  (f, ) 2 e[f, f]

where ¢ = min(1,a71).
Note also that

(£ <(VEVH +alf, ) <CIf, f]

where C' = max(1, a). Therefore, the norms {f, f}% and [f, f]% are equiva-
lent, and hence the inner product {-,-} defines a complete metric on Wol.
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(b) We can rewrite the given equation —A,u + Au = h in the form of
an integral identity

{u,v} = (h,v), YveWg, (B.83)

where a solution u is sought in Wj. Indeed, if u € W and u satisfies (B.83)
then as follows from the definition of the distributional Laplace operator,
Ayu= Au—h € L*(M) and hence u € W¢.

Let us show that the right hand side of (B.83) is a bounded linear func-
tional in v € W with respect to the norm {-, -}1/ 2. Indeed, we have

(h,v)* < (h,h) (v,0) < (h, k) [v,9] < ¢ ' (R, h) {v,v}
whence it follows
(hy0)] < const oy -

Hence, by the Riesz representation theorem, the equation (B.83) has exactly
one solution u € W.

4.31. As was shown in the proof of Theorem 4.5, the fact that © = R, f
is equivalent to the identity
(Vu, Vo) + a(u, ) = (f,¢)

for all ¢ € Wj. Hence, for any ¢ € W, we have

E(uty) = |V(ute)l*+alute—fI*
= [Vul® +2(Vu, Vo) + [[Ve® + a Ju = fI* + 20 (u = f, ) + alle|?
= E@)+[Vel® +alel*

It follows that E (u + ¢) > E (u) unless ¢ = 0, which was to be proved.

4.32. Let f € L? and u = R, f. Using ||ul|z2 < a7 Y| f]|z2 and (4.21), we
obtain

IVullZ: < (f,w) < [ flle2llullzz < a7 fI72,
that is,
IVRafllz2 < @™ 2| fllz2,
whence (4.40) follows.
Let u € W02 . Setting ¢ = Lu in the equation
(Lu, @) + a(u, ) = (f,¢)
and noticing that by (4.14) (u,¢) > 0, we obtain
1AuulZe < [1Fllz2ll Apullzz,
which implies ||[LRqf||z2 < | f|lr2 and, hence, (4.41).
4.33. Left to the reader
4.34. By (4.45), we have for any f € L*(M)

Raf:/ooo (a+ N dE,f.
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Hence, (4.42) follows from this and the elementary identity

1 B I (68— a)
a+r B+r (a+N(B+N)

4.35. (a)We have

o (t) = |Pyaf]2s = /O M| BT |2, (B.84)

where {FE)\} is the spectral resolution of the Dirichlet Laplace operator L.
It is clear that ¢ (t) is non-negative and decreasing. That it is continuous
follows from (4.55). Writing for simplicity o = ||E\f||3., we obtain by the
Cauchy-Schwarz inequality

t+s 0o 7/\(t+5) 0o Y 1/2 00 Y 1/2
vl )= i e N2 )do < ; e Vdo ; e “do = (t)p(s),

which is exactly the log-convexity of ¢. Alternatively, one can argue as in
the proof of Lemma 2.19.
(b) Since P;f € W, we have by the Green formula (4.12) and (4.57)

1d

60O = (VLIRS = = (AL A (P) = = (PS5 () = =5 1P e

By part (a), function ||P;f||3, is convex whence it follows that its derivative
is increasing. It follows that v (t) is decreasing. Integrating the above
identity, we obtain

| v = 3 IIRABIT < 5 11

4.36. The function ¢ (t) from (B.84) is differentiable for ¢ > 0 and
0= [N,

which follows from Theorem 4.9. Since f € W (M), Exercise 4.25 yields

IV 72, = /0 A Ex f2%, (B.85)
which implies that
. / _ 2
Jim o (1) = V£

Hence, ¢’ (0) exists and
¢ (0) = [V f]1Z--
By the log-convexity of ¢ (¢) (cf. Exercise 4.35), we have
log ¢ (t) > log ¢ (0) +  (log )" (0) .
Since ¢ (0) = || f||72 = 1, this inequality implies

¢ (t) > exp (tg' (0)) = exp (—t|Vf]|72)
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that is,
|1Pey2 Il > exp (<t V£IIZ2) (B.86)
whence (4.63) follows by changing ¢ to 2t.
4.37. If {E)} is the spectral resolution of £ then

A, (Pf) = Le o f = / e NE, f
0
and
L™ £1172 = / XA By S| < s (W27 ]
0 A€[0,4-00)
It is easy to see that
2
sup <A2672t)\) -,
A€E[0,+00) 13
whence (4.64) follows.
The inequality (4.65) follows from (4.64) and from the inequality
IVullfe = (Lu, u) < || Lullg2 |l 2,

which is true for any u € Wg.

4.38. (a) Using the spectral resolution {FE\} of the Dirichlet Laplace
operator £, we obtain

01 -\t 01 _ -\t
&= [ dEsn) = [T dIBIE

AL . . .
1—¢_™ is increasing when ¢ is decreasing

It is easy to see that the function =5
and, hence, the same is true for & (f).
(b) Since

t—0 t
the monotone convergence theorem yields

. [~ 2
tim e ()= [~ BB

which is finite if and only if f € dom £1/2 = W (see Exercise 4.25). Using
(4.32), we obtain

hmc‘,'t / IV f|? dp,

which was to be proved.
(c) Observe that & satisfies the polarization identity

§(F0) = { (G +9) & (F—9)), (B.57)
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which follows directly from the definition. By (b) we have, as t — 0,

E(ftg) — /MIV(fig)\2 s

— [ Vit ausz [ (915gdur [ (9o dn
M M M

Subtracting the these two identities and using (B.87), we obtain (4.67).
4.39. We have, for any f € L?,

o0 2
IRf =7l = [ (1= ) dIEAf IR (B.55)
Using the inequality
1—e M <N, (B.89)
and assuming that f € dom £ = WZ, we obtain
IRf = 7l < [ = ¢
which proves (4.68).
4.40. By Exercise 4.25, we have VVO1 = dom £!/? and
IV £llze = 1Y £ 2. (B.90)

L1172 = 1 AuFIIZ2,

Using the inequality

1— e—/\t S ()\t)l/Q
(which is a consequence of (B.89)) and assuming that f € dom £Y?, we
obtain

IPf — fll3. <t /0 M| Exfl|22 = t|LY2 )2 = t|V f]22,

which proves (4.69).
Alternatively, one can use the same approach as in Lemma 2.20, which
does not require Exercise 4.25.

4.41. Similarly to (B.88), we have
Pf- © e M1\
| = [T ) s @
0

t — Al

By (B.89), the function

2
L2

—)\t_l

ol (B.92)

is non-negative and bounded by A\. By £Lf € L?, the function \? is integrable
with respect to d||Exf||3, and the function (B.92) tends to 0 as t — 0, we
conclude by the dominated convergence theorem that the right hand side of
(B.91) goes to 0 as t — 0, which proves (4.70).

4.42. For any ¢ € D, we have by Exercise 4.41

P — 2
%L—)Auapastéo.
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It follows that
(Ptf_ f780> _ (f’m> = (f,Aup) = (Auf,0),

t t

whence &tti 2, Auf.
4.43. Using the quadratic form &; defined by (4.66), we obtain

E(f)— —(g,f)2 ast — 0.

By Exercise 4.38 f € W{, and by Exercise 4.42 A,f =g, whence f € We.

4.44. Clearly, u is differentiable in ¢ in the norm L? (Q2) for all ¢t > 0 and
for all £ < 0, and

du [ Ayu, t>0,
dt 0, t < 0.

For t < 0 we have A u(t) = A,f =0 in  so that the equation flj—q; =Ayu
is satisfied in 2 both for ¢ > 0 and ¢ < 0. We are left to verify it for t = 0,
which amounts to showing that ‘fi—? (0) = 0. It is obvious that Ccll—? (0—) = 0.
To evaluate ”fi—? (0+), observe that, by Exercise 4.41,

P f — f r2(m)
t

— ALf.

Since A, f = 0 in 2, we conclude that

du 72 . Ptf*f o

0,

which finishes the proof.
4.45. Using (B.90), we obtain, for any f € Wy,

o0 2
IVP.f = VflIZ2 = |12 (Pf = )72 = /0 A1 =) dlI I
Since the function X is integrable with respect to d||Eyf||2, and
2
A(l—e—”) S 0ast—0,

we obtain by the dominated convergence theorem that

IVPf =V fll2 =0,

Wl
whence P.f — f.
2
In the case f € W¢ it suffices to prove that A, P, f L A, f. Since

00 2
18P = 8,fa = [ 732 (1= ) dEa I,

the claim follows as above by the dominated convergence theorem.
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4.46. (a) We have

(u(t—i—s),v(t—l—z))—(u(t),v(t)) _ (u(t+€)7v(t+€z—v(t)>
(u(t—i—ai—u(t),v(t))

When € — 0, we have u (t + &) — u (t) and

v(t+e)—v(t) u(t+e)—u(t)

— ' (t) and — ' (1),

where all the convergencies are in the norm of H. Since the inner product is
a continuous functional of the both arguments (cf. Exercise A.1), we obtain

(u(tre),otre) = @ v®) v @)+ W @),00),

9

which was to be proved.
(b) It follows from the Holder inequality that

Juvlly < flullpllvllg (B.93)
so that w € L". We also have

lw(t+e) —w®), < [(ut+e)—u@))vt+e)lr+][E+e)=—vE)u@)]:
< ut+e)—u@®)lplloE+e)ly+ 1 (vE+e) —v @) llqlu@)]

I

p

whence it follows that w (t + ¢) 5w (t) as e — 0.
. Lp L1 L
In the same way, if upy = v and vy — v then ugvy = uv.

(c) Write
w(t+e)—w(t) —u(t+e) v(t+e)—v(t) N u(t+e) _u(t)v(t).
€ € €
Since 2te)=v®) Lf (t) and u (t +¢) B (t), we obtain by the argument

of part (b) that

v(t+e)—v(t) rr

u(t+e) Su(t)v (t).

Similarly, we have

u(tte)—ult) L

which finishes the proof.

4.47. Since the functions w (¢, -) and % (t,-) are continuous and bounded
in Q, they both belong to Cy (). By the mean value theorem, we have
u(t+e,x)—u(t,z) Ou

Z —E(t—i-@e,a:),
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where 6 € (0,1). By the uniform continuity of the function 6_1; in [t/2,3t/2] x
Q, it follows that

ou ou
a (t+0€,l') — a (t,l‘)

sup
e

—0ase—0,

that is,
u(t+e,-)—u(t,r) Ou

Cy(22)
This proves that % (t,-) is the strong derivative of u (¢,-) in Cy (£2).

4.48. (a) The function ¢t — (u(t),x) is continuous as the composition
of two continuous mappings ¢ — u(t) and v — (u,z), and the function

t +— |lu(t) ] is continuous as the composition of two continuous mappings
t+— u(t) and u — ||ul|. By the Cauchy-Schwarz inequality, we obtain

b b
/ (u(t), ) dt / [l (&)} | dt’ = Cllz[],
where C' = f: |u(t) ||dt. Hence, the functional

b
xl—>/ (u(t), ) dt

is linear and bounded, which implies by the Riesz representation theorem
that it can be represented in the form (U, z) for a unique vector U € H.
Setting

g

<

we obtain , ,
[ewa =l <c= [ ju]a

(b) For any x € ‘H, we have

(cf. Exercise 4.46). Therefore,

b b
/(u’(t),m)dt:/ %(u(t),x)dt:(u(b),:c)—(u(a),a:):(u(b)—u(a:),x),

whence, by the definition of the integral,
b
/ u (t)dt =u(b) —u(a).

4.49. It follows by a standard argument that the function v is uniformly
continuous on [a, b], that is, for any € > 0 there is § > 0 such that

t—s[ <0 = [u(®)—u(s) |l <e
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Consider a step functlon approximation uk for u defined as follows. Fix
k € N and set t; = a + ¢ (b — a) so that {t; } " s a partition of [a,b]. Then
define wuy (t) for ¢ € [a, b) by

UL (t) =Uu (tl) ift e [tl’,ti+1)
that is,

k—1
Uk = Z u (tz> l[tivt'H»l)'
=0

Function ug (¢, x) is integrable on N because it is a finite sum of functions
of the form f () g (t). Let us show that the sequence {uy}y- ; is Cauchy in
L' (N). By the uniform continuity of u, we have

sup |lug (t) —w (t) [[1ar) = 0
te(a,b]

/ab </M lur, — ul d,u) dt — 0. (B.94)
/ab (/M|Uk _“m|du> dt = 0

as k,m — oo. Since uy, — u,, € L' (INV), it follows by Fubini’s theorem that

as k — oo whence

It follows that

||uk—um||L1 —>0
that is, {us} is Cauchy in L' (IV). Hence, there is w € L' (V) such that
lug — wllz2 vy — 0

as k — oo, whence by Fubini’s theorem

b
/ </ ]uk—w|du)dt%0.
a M

Comparing with (B.94), we obtain

/ab (/M|“—w|du) dt = 0.

This implies that, for any ¢ € [a,b], u(t) and w (¢,-) coincide as functions
from L (M).

4.50. The condition (4.71) implies that [¢ (¢)| < C'|t| whence it follows
that + (u (t)) is also in L? (M).

Fix t € (a,b). Denoting

du

%> we have by hypothesis

and v’ =

r(s) LIy "(t) ass—0. (B.95)
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We need to prove that

Y(ult+s) -v@@) 2 W (w) ' as s — 0. (B.96)

It suffices to show that for any sequence s — 0, there is a subsequence
along which (B.96) holds (cf. Exercise 2.14).
By the mean value theorem, we have
Y(ut+s) =) = yut)+sr(s) —v(ud)
= U (u(t) +&sr(s)) sr(s)
where £ = £ (s,z) € (0,1). Therefore,
Y(ult+s) —v(ud)

S

—¢ () = [ (u(t)+E&sr(s) — ¢ (u(t)] v (t)
' (u(t) + &sr(s)) [ (s) — ' (t)]
and, hence,

¢(u(t+8))—¢(u(t))

.2
1/2
</ W' (u(t) + Esr (5)) — w'(U(t))IQ\U'(t)fdu) +sup [¢] [|r (s) — u (EBI97)

When s — 0, the second term in (B.97) tends to 0 by (B.95). Let us show
that, for any sequence s; — 0, there is a subsequence along which the first
term in (B.97) tends to 0. The sequence of functions sir (si) tends to 0
in L? because the norms |7 (s) ||z remain bounded as s — 0. Therefore,
there is a subsequence s, which will be renumbered by {sx}, along which
skr (sk,-) — 0 a.e. Since & := £ (sg) is bounded, we also have &sr (sx) — 0
a.e., and by the continuity of 1/,

P (u(t) + Esir (s1) — V' (u(t)) ae.

Hence, the function under the integral sign in (B.97) tends to 0 almost
everywhere. Since this function is bounded for all s by the integrable func-
tion 4C? |u’ \2, we conclude by the dominated convergence theorem that the
integral in (B.97) tends to 0, which finishes the proof.

4.51. By (4.72), the function ® (\) e~** is bounded for any ¢ > 0, which
implies that the right hand side of (4.73) is defined for all f € H and
determines v (t) as an element of H. The first equality in (4.74) is proved
exactly in the same way as the existence of the strong derivative in Theorem
4.9. Since the function A® (\) e is bounded for any ¢ > 0, we obtain from
the functional calculus that, for any ¢ > 0,

Lo(t) = £& (L) e / AN By, (B.9S)

which gives the second equality in (4.74).
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The existence of % for any k and the identity (4.75) are proved by

induction, using the fact that the function A*® (\) satisfies the condition
(4.72) for any k.

4.52. (a) This follows from the functional calculus since functions cos (t\/X)

and sin (t\/X) are real valued and bounded in A € [0, +00).
(b) We have

d I Cirsf — Cif

af = e
(3] t A2y tA\1/2

i [T e (AT —cos (AVF) (B.99)
s—0 0 S
Note that

1/2 1/2

i cos ((t+ s) A / ) — cos (t)\ / ) g, (t)\l/2) ‘

s—0 S

By Exercise A.30, in order to interchange the limit and the integral in (B.99)
it suffices to prove that

cos ((t + s) AL/2) — cos (tAY/2)

S

<@ (A),

where ® is a function such that
o0
| e waEs? <.
0

By the mean value theorem, we have

1/2) _ 1/2
cos ((t +8)A ) coS (t/\ ) RNV <§>\1/2) ’
s
where £ € (t,t + s). It follows that
1/2) _ 1/2
cos ((t+s) A S) cos (tAY/?) <AV2 ()

If f € dom £'/2 then

/0 2 (\) || Exf||* = /O M| Erf? < oo.

Hence, for such f,

00 1/2) _ 1/2
%th _ / iy €% ((t+ 5) AY2) — cos (tAY/?) dE, f
0

s—0 S
- / A2 gin (t)\l/Q) dE\ .
0
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Evaluating at ¢ = 0 we obtain

d
ZCf| =0,

t=0

Obviously, we have Cyf = f.
Similarly, we have Spg = 0 and

d 12 1/2
dtStg—/O A4 cos (t)\ )dEAg,

whence it follows that

—Stg —/ N2dE\g = £Y?g.
0

dt =0

(¢) If f € dom £ then f € dom £/? and, by the previous argument, we
have

d 172 1/2
Lof=— [ AV?gn (m ) dE)f.
dt 0
Applying similar argument again and using f € dom £, we obtain

d o
—C,f = / Acos (tAY?) dE, f.
ez 0 ( )

On the other hand,

LO,f = / A cos (t)\l/2> dE\f,
0

whence
d2
Cif = —L(Cf).

In the same way, one handles S, f.
(d) By Exercise 1.3, we have, for any A € R,

et/\z—/JrooeiS)‘ ! ex < 82>ds
PN VAt P 4t

which implies, by taking the real part and using the symmetry of the integral,

—tA2 /+Oocos( A 1 o ( 82>d
e = s\) —exp | —— | ds.
0 /7t P 4¢

As in Lemma 5.10, replacing A by £/2, we obtain from this functional
identity the operator identity

Ef ) / exp< i)w f.g)ds, (B.100)

for all f,g € H, which is equivalent to (4.76).

4.53. It suffices to prove that ¢ (a) > ¢ (8) for all a < a < § < b.
Assume first that ¢’ (t) < 0 for all ¢t € [a,5]. Let & be a point where ¢
attains its minimum value on [«, §]. If £ = 3 then there is nothing to prove.
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If £ < 3 then, at the minimum point £, the right derivative ¢’ (£) must be
non-negative, which contradicts ¢’ (£) < 0.

Consider now the general case with a non-strict inequality ¢’ (t) < 0. Fix
€ > 0 and consider the function ¢ (t) — et whose right derivative is obviously
strictly negative. By the previous argument, we have

p (@) —ea>p(P) - &b,
whence letting ¢ — 0 we obtain ¢ (a) > ¢ (5).

4.54. The proof goes the same way as that of Theorem 4.10. It suffices
to show that any path w (¢), that solves the right Cauchy problem with the
initial function 0, is identical 0. We have

i 101 = () = @ <0,

Since the function ¢ (t) = |ju (¢)||* is continuous in ¢ > 0 and its right deriv-
ative is non-positive, we conclude by Exercise 4.53 that ¢ (¢) is decreasing
in ¢. Since ¢ (t) — 0 as t — 0, it follows that ¢ (t) = 0.

Solutions to Chapter 5

5.1. Left to the reader
5.2. Let 1 be a mollifier in R, and set

Ve = Y *x Ny
Then, by Lemma 2.1, ¢, € C*° (R) and

Yy, = 'y
Hence, we obtain, by Exercise 2.3,

sup ¢ | < sup |[¢/|
and, by Lemma 2.4,
Ui (t) = (t) and 4y (t) = ' (1),

where the convergence is locally uniform in ¢.

We have satisfied all the conditions except for ¢ (0) = 0. To satisfy it,
just replace the function vy (t) by

Uk (£) = ¥ (£) — ¥ (0) .
Since 9, (0) — 1 (0) = 0, we obtain

Uk (£) = ¥ (8),
and all other requirements are trivially satisfied.
5.3. We have
max (u,v) = v+ (u—0v),

min (u,v) = u—(u—v),
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so that both functions max (u,v) and min (u,v) are in W by Lemma 5.2
(see also Example 5.3).

5.4. Since any function f € W' (M) has compact support, we have
W (M) = W} (M), whence it follows from Lemma 5.5 that Wl (M) C
W¢ (M), which was to be proved.

5.5. It suffices to prove that Vu = 0 in any relatively compact open set
Q) C M. Since c € W1 (Q) and, hence, u—c € W1 (Q), we obtain by Theorem
5.7 (see also Example 5.8) that (u—c), € W!'(Q) and V(u—c¢), =0 on
the set {u — ¢ = 0}N2.The same holds also for V (u — ¢)_, whence we obtain
that, on the set {u = c} N Q,

Vu=V(u—-c)=V(u—-c), -V(u—-c)_=0.

5.6. For any ¢ > 0, we have (u — c¢), = (uy — c) so that we can rename
uy by u and assume v > 0. By the dominated convergence theorem, we

2
obtain (u —¢), L% was ¢ — 0+, By (5.12), we have

Vu, u>c,
V(U_C)+:{0’ U<C,

which implies that

IVu—V (u—c), |2 =/

as ¢ — 0+. Since Vu = 0 on the set {u = 0}, we conclude that

[Vu -V (u—c), ||z —0,

|Vul? dy — / |Vul? dp
} {u=0}

u<c

which finishes the proof.

5.7. Fix some ¢ > 0. By Theorem 5.7, we have (f —c¢), € W' (M).
By hypothesis, the set {f > ¢} is relatively compact, which implies that
supp (f —¢), is compact. Hence, (f —c), € W2 (M), which implies by
Lemma 5.5 that (f —c), € Wy (M). By Theorem 5.7 (see also Exercise
5.6),

Wl
(f—c)p = fr asc—0,
whence it follows that fy € W3 (M). In the same way, f- € W¢ (M) and,
hence, f € Wi (M).

5.8. Let 2 be any relatively compact open subset of M. Then u €
W} (M) implies u € W!(Q). By Theorem 5.7, we obtain that v (u) €
W(Q) and

Vi (u) = ¢ (u) V.
It follows that t (u) € W}._ (M), which was to be proved.

5.9. Let ) be any relatively compact open set containing supp . Then
by Lemma 5.5 u € W{ (), while it follows from the definition of W2 that
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v € W2 (Q). Hence, the Green formula (4.12) of Lemma 4.4 can be applied
in Q, which finishes the proof.

5.10. (a) Let us first show that, for any A > 0 and ¢ > 0,

lim e g
a——+00
o 2k

Indeed, by changing at to a and At to A, it suffices to consider the case
t = 1. Then we have
k
) a_
N TS (#5)
o (a+ A)F k! 0

k=
a
= exp < o+ a—l—/\) = exp (_OH- )\>(B'102)

2ktk
=e M, (B.101)
(a4 )\

whence (B.101) follows.
Since

S
ke __
REf = /0 o dEsf, (B.103)

the right hand side of (5.33) can be transformed as follows:
o2ktk

_at Rk / —at dE _>/ooe—AtdE — P, ,
Z nf= Zk,aﬂ = \f =Pif

where we have passed to the limit as @ — 400 using the dominated con-
vergence theorem (indeed, as follows from (B.102), the integrand remains
uniformly bounded by 1 for all a > 0).

(b) If f <1 then R,f < a~! and, by induction, R f < a~*. Substitut-
ing into (5.33), we obtain

: atoo ktk_ —at _at __
Pf< lim e Z T lim e *e* =1.

a—+00

5.11. (a) By the definition of the gamma function,

I' (k) :/ Fle T dr,
0

which implies, for any s > 0,

/OO 1 e Stdt = sk
o I'(k) '
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Similarly to the proof of Lemma 5.10, we obtain, for all f,g € L?,
I ot (Bfog) et = A LAY (/Ooe_’\td(E 1.9) )dt
o TR I o T\ S

[e'S) oo 4k—1
- /0 (/O 17: (k) e(aJr/\)tdt) d (Ekfa g)L2

- /0 T et N (B )

- <R§f, g>L2, (B.104)

which was to be proved.

(b) The identity RFR! = R**! follows from the functional calculus be-
cause R is bounded self-adjoint operator in L?. If f > 0 then by Theo-
rem 5.11, P,f > 0 which implies for any non-negative g € C§° (M) that
(P.f,g) > 0. From the identity (B.104) we conclude (R*f,g) > 0 whence
RFf > 0. If f <1 then by Theorem 5.11 P;f < 1, and (B.104) implies, for
any g as above,

ootk—l
RF dg/ etdt/d:/d,
/M< f)gu TR Mgu Mgu

where in the last identity we have used the definition of gamma function.
This obviously yields R*f < 1.

(¢) Since spec L C [0, +00), the function log (1 4+ \) is defined (and even
non-negative) on spec £, which implies that L = log (id +£) is defined by
the functional calculus as a self-adjoint operator. Since for any A > 0 and
k>0

(14+X) 7" =exp(—klog (1+ 1)),

we obtain from the functional calculus a similar operator identity
(id +L£) 7" = exp (—klog (id +£)),

whence the claim follows.

5.12. For any non-negative g € L? (M), we obtain using (5.29),
(PtROéf’g) = (Raf’Ptg) = (/ e—aspsf d87Ptg) _/ e (Psf,Ptg)dS
0 0
- / €% (Pyysf,g) ds = / =D (P, f, g) dr
0 t

= ot [T e (g < (U Rat )
t

whence the claim follows.
5.13. (a) Function u = R) f must satisfy the equation Lu+ Au = f, that
is,
—u" 4+ Xu=f.
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Moreover, u is the unique solution of this equation in L? (]Rl) . Solving this
ODE by the method of variation of constants and selecting a solution from
L?, we obtain (5.35).

(b) Using the explicit formula for P;f, we obtain

< e 2~ yf?
R :/ / ——exp| — e M dydt
)\f o . (47Tt)1/2 ( At f(y) Y

Comparing with (5.35) and setting r = |x — y|, we obtain

1 —VAr /oo 1 ( 712) —tA
—€ = —— €X — ] € dt
2V o (amt)Z P\ m

Differentiating this identity in r, we obtain

2
—VAr _ /Oo T ( r ) —tA
e = ——exp | —— | e “\dt,
0o Vant? 4s

whence (5.36) follows by renaming the variables. The limiting case A = 0
follows by passing to the limit as A — 0+.

5.14. (a) The identity (5.37) follows from (5.36) by substituting £ in
place of A.

(b) If f > 0 then P,f > 0, whence Q;f > 0 just by the positivity of the
integral kernel in (5.37). If f < 1 then P,f < 1, whence Q.f < 1 follows

from the identity
———exp|—— |ds=1,
/0 Vars? ( 43)

which is a particular case of (5.36) for A = 0.
(c) It follows from (5.37) that the integral kernel ¢ (z) of @ is related
to the integral kernel p; (x) of P; by the identity

q (x) = /000 \/# exp (—1—1) ps () ds.

Substituting p; (z) from (2.50), we obtain

00 2 2
(z) = / _t ex (—t—) _ ex =P ds
& 0 Virs3 P\ (47s)"/ P 4s

00 2 2
= %/ s~ F3)/2 exp Bkl ds. (B.105)
(4m)"2 Jo 4s

Applying (A.60) in order to evaluate the integral (B.105), we obtain

1\ . ¢
q () =T (n+ ) T
2 (2 +1al?)

Using the value of w1 from (3.94), we obtain (5.38).
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5.15. (a) For example, for ¥ (s) = s?/2 the claim amounts to the fact
that || P, f||z2 is decreasing in ¢, which follows from Theorem 4.9 or Theorem
4.10.

The function F is non-negative and finite because 0 < ¥ (s) < 3 |s|* and
P,f € L?. Observe that for all real a,b

W (a) — ¥ (b)] < (laf +[b]) |a 0], (B.106)
since for some £ € (a,b)
@ (a) =¥ (0)] = [T ()|la—0| <|¢]la—b] < (la +[b]) |a —b].

Set u; = P;f and recall that by Theorem 4.9 |lut||z2 < ||f||z2. Using (B.106)
we obtain for all ¢,7 € [0, 400)

F(r) = F(t)| < /Mrwuf)—wumcm

/ (| + fue]) fur — e | dp
M

2[ 2l wr = el L2

Since by Theorem 4.9 the mapping ¢ — w; is continuous in L? we conclude
that the function F'(t) is continuous.
Next, let us prove that F(t) is differentiable for ¢ > 0 and

F'(t) = /M O (ur) L dp. (B.107)

This formula allows to finish the proof as follows. Since by Theorem 4.9
dut/dt = Ayu; and, by the previous claim, ¥’ (u;) € Wj, we obtain by
Lemma 4.4

F'(t) = /M U (ug) Augdpy = — /

M

IN

IN

(V' (ug), Vug)dp = / U (uy) [V |* dp < 0,
M

which implies that F' (t) is decreasing.
To prove (B.107) let us observe that for all real a, b

1
¥ (a) W (0) ~ ¥ (5) (a )| < 5 (a— D)
because there exists £ € (a,b) such that

[ (a) ¥ (5) ~ ¥ () (a— ) = 5 [ (©)] (a— )* < J (a—b)*.

N

Therefore, for all 7,¢t > 0,

1
[ 19 ) = 9 )~ ) (= )] e < G
M
whence dividing by 7 — ¢ and passing to the limit as 7 — ¢, we obtain

v (U’T) -V (ut) _ (Ut)

T—1 T—1

. Ur — Ut
lim E——
T—t M

dp = 0.
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Finally, since
ur — U 12 duy
T—t dt

and ¥’ (u;) € L%, we obtain

d
/ v’ (ut)u du—)/ U’ (uy —d,u
wr dt

T —1

and

) U (ur) — U (uy) duy
F'(t)=1 du= [ V' (u)) —dp.

(b) There exists a C*°-function ¥ on R satisfying the conditions of the
previous claim and in addition ¥ (s) = 0 for s <1 and ¥ (s) > 0 for s > 1
(see Fig. B.1).

¥Y(9)

1 s

Ce

FIGURE B.1. Functions ¥ and ¢ = ¥”

Indeed, one can find ¥ from the equation ¥’ = ¢ where ¢ is a smooth
function such that 0 < ¢ <1, p(s) =0 for s <1 and p(s) >0 for s > 1
(think of ¢ (s) as a smooth approximation to a step function 1,y and of

¥ (s) as a smooth approximation to 3 (s — 1)1) Hence, the function F (t)

defined by (5.39) is decreasing in ¢. The condition f < 1 implies F (0) = 0.
Since F'(t) is non-negative and decreasing, we conclude that F'(¢) = 0 for
all ¢ > 0. This implies that ¥ (P.f) = 0 which is only possible if P,f < 1
almost everywhere.

5.16. Let M be the interval (0,4) and let w € C*° (M) be a function such
that

1
u(x) = z+zsin— forz € (0,1),
x

u(x) € [0,2z] forz e (1,2)
u(zr) = 0 forze(2,4).
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Clearly, v > 0 and u € WL (M). Consider also the function

(z) = 2z, z € (0,2],
VWIT 8 -2z, me(2,4).
Obviously, u < v and v € W (M), whence

u<0 modW&.

On the other hand, it is easy to verify that

/01 (u')de:oo

so that u ¢ W (M).

5.17. Set uw = w — v so that u satisfies the following conditions:

% = Ayu, for t € (0,7),
u(t,") =w(t,-) modW} (M) forte (0,T),
u(t,-)L—2>0 as t — 0.

By Theorem 5.16, w > 0 implies u > 0 and, hence w > v.

5.18. The implications (i) = (i7) = (4i7) are trivial.

Proof of (iii) = (7). Assume from the contrary that v, (z) A& ¢ as
x — 00, that is, there is € > 0 such that, for any compact set K C M,

sup sup |vg(x) —c| >e.
acAze M\K
Take any compact exhaustion sequence {€;} in M and choose a point z; €
M \ € so that
sup [vn (1) — ¢| > /2.
acA
Then the sequence {x;} leaves any compact in M, but there is no subse-
quence {x, } such that v (zg,) = c.

Proof of (i) < (iv). If (i) holds then, using the set K. from (5.59) we
obtain that V. C K. which implies that V. is relatively compact. If (iv)
holds then setting K. = V. we obtain (5.59) although with a non-strict
inequality.

The case ¢ = F00 is treated similarly or can be reduced to the case ¢ = 0
by switching to the function #(x)

5.19. Observe that (v) = (i7), because every sequence {zx} as in (v)
leaves any compact in €.

Let us show that (iii) = (v). Indeed, if {xx} C Q is a sequence leaving
any compact in §2, then it is either bounded and, hence, contains a conver-
gent subsequence {z,} whose limit  must be then at the boundary 0%,
or {z}} is unbounded and, hence, contains a subsequence {zy,} such that
|zg,| — co. In the both cases, we have by (v) that v, () = c.
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5.20. The hypothesis v; (z) — 0 as £ — oo means that, for any € > 0,
there is a compact set K C M such that

sup v < e. (B.108)

M\K
Let © be a relatively compact open subset of M containing K. We claim
that the function u = v — € satisfies the hypotheses of Theorem 5.13 in 2.
Indeed, obviously u € W1 (),

—Ayju+ou=-Apw+a(v—ce) <0,
and
uy = (v—e)y € Wy (),
which is equivalent to
u <0 mod Wy ().
By Theorem 5.13, we obtain v < 0 in 2, that is, v < ¢ in . Letting ¢ — 0
and expanding 2, we obtain v < 0 in M.
Second solution.Let ¢ (s) be a C*° function on R such that ¢ (s) = 0

for s < e, p(s) >0 for s > ¢, and ¢’ (s) > 0. Then ¢ (v) is a C? function
on M that vanishes outside K (where K is defined by (B.108)), whence

¢ (v) € CF (M).
Multiplying the inequality —A,v+av < 0 by ¢ (v) and integrating over
M, we obtain

/ Vol ¢ (v) d,u+oz/ v (v) du < 0.
M M

Since ¢’ > 0 and «a > 0, this implies

/M vp (v)dp =0

whence vy (v) =0 and v < e. Since € > 0 is arbitrary, we conclude v < 0.
5.21. By the hypothesis uy (z,t) = 0 as z — oo, for any € > 0 there is
a compact set K C M such that

sup sup u(t,x) <e.
tel ze M\K

Choose a function ¢ (s) € C°°(—o00,+00) such that ¢ (s) = 0 for s < ¢,
¢ (s) =1for s > 2¢, and ¢’ (s) > 0 for all s € (g,2¢). Clearly, for any ¢ € I,
the function ¢ (u (t,)) is of the class C% (M) and is supported in the set K.

Multiplying the inequality %—It‘ < Aju by ¢ (u), integrating over M and
using the Green formula, we obtain, for any ¢ € I,

[e@Sans [ o dudi=- [ [VuPe @dp<o. B109
Next, set

q’(S)—/gssﬁ(é)dé,
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and observe ®(s) = 0 for s < e so that the function ® (u(t,-)) is also
supported in K for any t € I. Using (B.109), we obtain

d ou ou
—_ ) = P’ du = “du < 0.
7 (u) dp / (u) y dp / ¢ (u) . dp <0

Hence, the function
tH/ B (u(t, ) du (B.110)
M

is decreasing in t.

1
Since @ (s) < s4 and uy (t,-) Llﬁ)

/M@(u(t,-))du:/K<I>(u(t,-))d;¢§/1(u+(t,-)du—>0ast—>0.

Since the function (B.110) is monotone decreasing and non-negative, we
conclude that

0 as t — 0, we obtain

/ D (u(t,))du=0,
M

which implies u (¢,-) < e. Letting ¢ — 0, we obtain w (¢,-) < 0, which was
to be proved.

5.22. Since uy € C (M) NWg (M) and u = u; on Uy, we rename u, by
u and assume in the sequel that u > 0.

Assume first in addition that the support of u is compact. Then also
supp (u — ¢), is compact for any ¢ > 0. For any ¢ > a, we have

supp (u —c), ={x € M :u(x) > c} C Uy,
whence it follows that (u —¢), € W} (U,) and, by Lemma 5.5,
(u—c), c Wi (U,).

By Exercise 5.6, we have

1
(u—c)JrKNu—a)+ as ¢ — a+

whence (u —a), € Wg (Ua).
For a general non-negative function u € C (M) N W (M), there is a
1
sequence {py} € C5° (M) such that ¢, Y, u. Consider the functions

ug, == min ((pr),u) =u— (u— (gok)Jr)+ (B.111)

Clearly, up € C N W3 (M) and uy W was k — oo (cf. Theorem 5.7 and
Example 5.8). Since suppur C supp g, the argument in the first part of
the proof applies to ug, whence we obtain
(ug — a), € Wa(UP)
where
UFR = {z e M :u,(z) > a}.
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Since 0 < ug < u, we have Uék) C U, and, hence,
(ur — a) . € Wy (Uy).
Letting k£ — oo, we finish the proof.

5.23. It suffices to assume that €2 is relatively compact, because otherwise
we can exhaust Q by a sequence {Q} of relatively compact open subsets
and then let k£ — oo (cf. Theorems 5.22 and 5.23).

The inequality (5.72) is trivial in M \ Q so it suffices to verify it in €.
Set C' = esupyy\ g Raf and consider the function

uw=Rof — RYf - C
that belongs to W' (Q2) and satisfies in § the relation
—Ayu+ou=—-aC <0.

By Theorem 5.7, uy € W1 (Q). By the choice of C, we have u < 0in Q\ K
so that suppuy C K, which implies by Lemma 5.5 that u. € W (Q). We
conclude by Theorem 5.13 that u < 0 in 2, which is equivalent to (5.72).

5.24. Fix some T > 0 and set

C = sup esup Pff.
s€[0,T] M\K

It suffices to prove that P,f — P2f < C in [0,7] x 2. Consider the function
u(t,) = Pf = Pf - C

that belongs to W1 (Q) for any ¢ > 0. Clearly, it satisfies the heat equation in
R4 x € in the sense of Theorem 5.13. By the choice of C', we have u (¢,-) <0
in M\ K for all t € (0,7"), which implies that uy (¢,-) is supported in 2

2
and, hence, uy (t,-) € Wy (). Finally, we have u (¢,-) O Cast - 0,

L2(Q
whence it follows that uy (¢,-) 0. By Theorem 5.16, we conclude that
u(t,-) <0in [0,7] x 2, which was to be proved.
5.25. Splitting f into the positive and negative parts, we can assume that
f>0. For all s >0 and ¢t > 0, we have

| Pt =g = [P (P2s = 1) < 1 P2r = 11
Since P f < Pt < PfYf, it follows that
| P = Bu|| < 1P s = £ + (| P25 - 1]

)

whence
Q; Q;
sup [PEEf — PO || < [P 7 — 7|+ |[PEF — 7| = 0as s 0,
1€
which means the right equicontinuity. If £ > s > 0 then we have

[P = pfg] = || (= 22p)|| < 122es - 11,

which similarly implies the left equicontinuity.
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5.26. (a) The boundedness of A follows from
4715 = [ (@) du < sup ol |1
the non-negative definiteness from
(f.0)= [ afduzo
and the self-adjointness from "
(Af.9)= [ afadu=(f.49).

Since the operator A is bounded, we have

otA _ i (—t4)"

k!
k=0

whence - i
—tAp _ (=ta)” .,
=D =,
k=0
which obviously implies (5.74).
(b) Let us show by induction in n that, for any s > 0,
0< (e_Sl:e_SA)n f<e ™S (B.112)

Set g = (e*S‘:e*SA) f. The inductive basis for n = 1 means that 0 < g <
e %L f. Indeed, we have

g= efsﬁ (efsAf) ,
which implies by (5.74) and Theorem 5.11

0<g<e ™.
To prove the inductive step from n — 1 to n, observe that
(efsﬁefsA)" f _ (efsﬁefsA)n_l g,
which implies by the inductive hypothesis that (eiSﬁe*SA)n f >0 and
(e—sﬁe—sA)” f < e—(n—l)sﬁg < e—(n—l)sﬁe—sﬁf _ e—nsﬁf_
Finally, it follows from (B.112) that
0< (e7nbemid)" f <eity,

which together with (5.76) yields (5.75).
(c) Consider the sequence {Ay}re; of operators in L? (M) where Ay is
the multiplication operator by k1,nq. By part (b), we have

e—t(ﬂ—i—Ak)f < e_tﬁf.
This implies the claim because

10 . _
e tL f — lim e t(E-i-Ak)f.
k—o0
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See also [96, Theorem 2.1.6].

Solutions to Chapter 6

6.1. Use the same argument as in Example 6.2.

6.2. (a) If f € C§°(Q2) then (6.24) is just the standard integration-by-
parts formula. Then (6.24) extends by continuity to all f € W () because
the both sides of (6.24) are bounded functional with respect to || f||y1.

(b) Using (6.24), we obtain

<f’ €i£r>W1 - <f’ eigz)m + Zj (8jf’ ajeiﬁﬂ?)m
= / fe %% dy — Zj/ f@?e_igwdm
Q Q

= fe %z + ) &2 / fe %% dy,
. 2.8,

whence (6.25) follows.
(¢) The weak convergence in W' (R™) implies that, for any ¢ € C$° (R"),

(fk790)W1(Rn) — (f»‘P)Wl(Rn)- (B-113)

Choose a function ¢ € C§° (R™) so that ¢|g = 1. Then, applying (B.113)
to ¢ (x) = v (x) ¥ and using (6.25), we obtain

(1+16F) et = <f’“’ei£x>wl(m
= (F0) iy = (596) oy = (14 1EF) T O,

whence the first claim follows.
By the Cauchy-Schwarz inequality,

Fo©)] = /Q e fy (@) da| < (Y2 | fill e,

whence it follows that the sequence {f (£)} is bounded uniformly for all
£ € R™. By the dominated convergence theorem, the Eniforgl boundedness
of {fx (£)} and the pointwise convergence imply that fi, — f in L (R™).
(d) Since the sequence {fi} is bounded in W1 (R") and W (R") is a
Hilbert space (see Exercise 2.28), by the weak compactness of balls in Hilbert
spaces, there is a subsequence of {f;} that converges weakly in W (R").
Let now {f.} denote this subsequence, and let f € W' (R") be its weak
limit in W1 (R™). Since W{ (Q) is a closed subspace of W (R"), we have
f € W (Q). The proof will be concluded if we show that fi, — f in L* (R™).
Due to the Plancherel identity, it suffices to prove that f, — f in L2 (R™).
By Exercise 2.34, we have

Iy = [ (1+167) 17 (&) P
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Therefore, there exists a constant C' such that, for all &,
L (t+1eR) 1R Pas <
In particular, for any ball B, = {|{| < r}, we obtain
[ R©Pde s [ (14 167) 1 (0) e <
B¢ R»
and the same inequality holds for f, too. Hence, for any r > 0,

A_AZ — A_AQ A_/\Q
A /Br\fk 7l d5+/Bg|fk fl2de

C
1472’

14172

/

< fr — f|2d .
< [ 1R Fras s

Passing to the limit as k — oo and using the fact that, by part (¢), ﬁ —f
in L? (B,.), we obtain
!
lim su — flI2. < ——.
k—)ooprk fHL2 = 1_1_7,,2
Letting r — oo, we finish the proof.

6.3. The inductive basis for m = —1 is covered by Lemma 6.7. Assuming
m > 0, let us prove the inductive step from m — 1 to m. By the inductive
hypothesis, we have

Jullwonss < CllLullynr < ClZuflyn. (B.114)
We are left to show that any partial derivative d;u admits the estimate
|l s < Ol Zulliym. (B.115)
By (6.43), we have
L (Oyu) = 0y (Lu) — 0; [(91a") 9;u]
whence it follows that
1L (Gu) lwm—r < || Lullwm + Cllullyymr.
Combining with (B.114), we obtain
IL () s < Cll L. (B.116)
Applying the inductive hypothesis to the function Oju, we obtain
[Oullymer < CJIL (Ou) lwm-r,

which together with (B.116) gives (B.115).
6.4. Set
Lo = 0; (a" (z) 9;)
so that
Lou = Lu — b 9;u — cu. (B.117)
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Fix an open set U € (2 and notice that u € W} _(U) for some integer k.
Let k& be the maximal integer < m + 2 with this property. If £k < m + 1
then the hypothesis Lu € W (Q) implies Lu € W'l’f)zl (U). It follows from
(B.117) that Lou € Wkl (U), whence, by Lemma 6.14 (or by Theorem

loc

6.15), u € VVl]Zjl (U). Hence, we conclude that &k = m + 2, which was to be
proved.

6.5. (a) The inductive basis for m = —1 and m = 0 is covered by Lemmas
6.16 and 6.17, respectively. Assuming m > 1, let us prove the inductive step
from m — 2 and m — 1 to m. By the inductive hypothesis, we have

[ullymr < C|Pullyms < C|[Pulym. (B.118)

We need to show that any partial derivative d;u, d;u, 0;0;u has also the
V™-norm bounded by C||Pul|ym.
Applying the inductive hypothesis to dyu, we obtain

[0rullym < ClIP (@) s = Cll0Pullyns < C|[Pulym.
It follows from (6.82) that
1P (Brw) [lym-1 < [[Pullym + Cllullym.
Combining with (B.118), we obtain
1P (Ow) [[ym-1 < Cl[Pullym.
Applying the inductive hypothesis to d;u, we obtain
JOrullynes < CIP (@) lymos < C'[Puflym.

Therefore, the V"™-norms of the second derivatives 0;0;u are also bounded
by C’||Pul|ym, which finishes the proof.
(b) Let us first prove a weaker inequality

[ullymez@y < C ([ullym+r@) + IPullwmq)) - (B.119)

Let ¢ € D () be such that 1) =1 on Q. Then ¢yu € D (") where Q" is a
small neighborhood of supp ¢, and by part (a) we have

[ullym+2@y < [Yullymiz@) < C[P (du) [[vm.
Next, by (6.82),
1P (Yu) [lvm < C([ullymer + [[Pullym),

which together with the previous line implies (B.119).
Finally, (B.119) implies (6.88) by induction in m > —1.

6.6. Solution is similar to Exercise 6.4.
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Solutions to Chapter 7

7.1. Since the operator (£ + id)fs/ ? is bounded and, hence, its domain
in L? (M), the range of (L + id)s/2 is L?. Hence, the mapping
fre (L+id)"? f

is a bijection between W* and L?; it is obviously linear and norm preserving,
which implies that W?* is isometric to L? as a normed linear space, whence
it follows that W? is Hilbert space.

7.2. By Exercise 4.25, we have dom (£ + id)l/2 = W¢ and, for any f €
W4,
£ llws = 1| (£ +id)"* £l 2,
which implies

[ fllwr = [1Fllwz -

Hence, the spaces WO1 and W& are identical including the identity of the
norms.

Since W¢ = dom £ and W = dom (£ + id), we obviously have W¢ =
W2. For the norms, we have

£z = IFI1Z2 + VA2 + 1AL FIIZe

and

(€ +id) fllZ2 = (Lf + £,Lf + f)p2
= (D2 +2(LF )2+ (LF,LS) 2
= |f172 + 21V FlZ2 + 1 AuflI 72
Obviously, the two norms are equivalent, although not equal.
7.3. If {E)\} is the spectral resolution of £ then, for any o > 0,

dom £ = {f eL?: / A29d|| Exfl2s < oo}
0

11z

and
dom (£ +id)* = {f e L?: / (1+ 22 d||Exfl2. < oo} .
0
Since -
| BT = 17122 < o
it follows that
dom £ = dom (£ +id)*
and that this domain shrinks when « is increasing. Hence, if f € ng then
f € dom £* which implies that, for any [ = 0,....k — 1, £'f € dom £ and,

hence, AL f € W} and Aﬁ f € L?. Conversely, assuming that (7.12) holds,
we obtain AL f €dom L for any [ =0, ...,k — 1, which implies by induction
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in [ that £'f € dom £ and L'f = AL f. Applying this for [ = k — 1 yields
f € dom £F = W2k,

7.4. It follows from Exercise 7.3 that f € W2k implies £'f € L% (M)
for all I = 0,1,...,k, that is, f € W?* which proves that W2*F c W2k, If
f € W2k then

e = ((E+i0f F2+i0#) =3 () () wren,..

3,j=0
Using the fact that £ is positive definite and symmetric, we obtain
0 < (L, L7F) 12 < NLFIT2 + 1L FI1Z,

which implies

k
1y = D LT = £ Sy
1=0

7.5. We have, forany i =1,....k — 1
ICf T = (LF, L) o = (L7 L7) o < NLTHFllp2 L7 £l e
Hence, the sequence a; = log || £ f|| ;2 is convex, which implies

alg (k_l)ZO+lak

and, hence, (7.13).

7.6.If f € C° (M) and Vf = 0 then f is a constant in any connected
chart whence it follows by the connectedness of M, that f is a constant in
M.

Let us show that the present hypotheses actually imply that f € C* (M).
For that, let us verify that A, f = 0 in the distributional sense. Indeed, for
any ¢ € D (M), we have

(Auf, @) = (f,Aup) = —(Vf, V) =0.

The conditions f € L? (M) and A,f = 0 imply by Corollary 7.3 that
feC>®(M).

7.7. Assume that f := 1g € W' (M). We have Vf = 0 in ), but also
Vf =0ae. on M\Q by Exercise 5.5. Hence, Vf = 0 a.e. in M. By Exercise
7.6, we conclude that f = const on M which contradicts the definition of f.
Hence, f ¢ W (M).

If f € Wy (Q) then by a Claim in Section 5.5, f € W (M), which is not
the case by the above argument. Hence, f ¢ Wj (Q).

7.8. Set a = supyn v and prove that v < a in . If a = 400 then there
is nothing to prove. Assuming a < 400, consider the open set

U={zxeM:u(x)>a}.
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By Exercise 5.22, we have (u—a), € Wy (U). Since U does not intersect
0Q, U is a disjoint union of the open sets V =U NQ and U \ Q.

Assume that V' is non-empty. Clearly, the function v = (u — a) |y be-
longs to W (V). Since A,v =0 in V, we obtain that v € W¢ (V). By the
Green formula (4.12), we obtain

/ Vol d,u:—/ vAvdp =0,
|4 \%4

whence Vv = 0 in V. Extending v by 0 outside V so that v € W} (M), we
obtain Vo = 0 in M \ V (cf. Exercise 5.5). By Exercise 7.6, we conclude
that v = const on M, which contradicts to the fact that v > 0 in V and
v =01in M \ Q. This contradiction shows that ¥ must be empty, whence
u<ain .

To prove the second claim, set K = M\ Q. By hypothesis, K is compact.
Let K. be the closed e-neighborhood of K. If ¢ > 0 is small enough then
K. is compact. Set Q. = M \ K. and prove that

sup u = sup u. (B.120)
Qe 00

Let ¢ be a cutoff function of K in K.. Then the function
w:=(1l—p)u=u—gu

is continuous in 2 and vanishes in K (where ¢ = 1), whence w € C (M). It
is clear that also w € W¢ (M) and w = u in . (where ¢ = 0). In particular,
w is harmonic in €).. It follows from the first part that

sup w = sup w,
Qe Qe

which is equivalent to (B.120). Letting ¢ — 0 we finish the proof.

7.9. Consider first the case when the closure €0 is contained in a chart
U. Counsider the following operator in the chart U

L=p"'9;(pg"9;),

where p = z—ﬁ and A is the Lebesgue measure in U. As was shown in
the proof of Theorem 7.1, if u € L%OC and A, u € L?OC then Lu = A uin U.

Hence, Lu € L7 (U) and, by Corollary 6.11, we conclude that u € W2 _ (U).
In particular, the partial derivatives O;u exist in L%OC (U) and satisfy the
estimate

/ > (Biw)?dr < C/ w?dA+C [ (Lu)®dX (B.121)
! 2:1 1" Q//

(cf. 6.47). Note that the measures A and p are comparable in " so that A in
(B.121) can be replaced by u. By Exercise 4.11, the distributional gradient
Vu in U as a part of M is given by

(Vu)' = g*dgu,
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whence
\Vu]é = gij (Vu)' (Vu) = g9 dudju < Ci (B;u)?.
i=1
Combining with (B.121), we obtain
/Q/ |Vu|z du < C’/Q” wldp + C . (A u)* dp. (B.122)

In the general case when Q" is not contained in a chart, the same estimate

follows by covering o8 by a finite number of charts.
Finally, since u € W1 (€) for any Q' € M, it follows that u € WL _(M).

7.10. Let U be a chart on M with the coordinates z',...,z". Let du =

p () dX\ where A is the Lebesgue measure, and hence
A, =p o (,ogij(‘)j) .

For any uw € D' (M) and ¢ € D (U), we obtain

(Apu, ) = (u,Aup) = (u,p10; (pg0;0)) = (p~ u, 0; (pg705¢))

= — (i (p7"u), pg"050) = (9 (pg" i (P~ 1)) 0)
Hence, considering v as a distribution in U, we obtain that
Ayu=Lv

1

where v = p~ u and

L =0, (pgijai) .
The hypothesis A, u € C* (M) implies Lv € C* (U) whence, by Theorem
6.15, v € C*° (U) and u € C* (U).
7.11. The fact that wj is harmonic implies that (Aug, ) = 0 for any
¢ € C§° (M), whence (ug, A,p) = 0. Since

(s Ap) = /M e

and ur, — w in L? , we obtain that also (u,A,p) = 0. Hence, A, u = 0
in the distributional sense and, by Corollary 7.3, we conclude that u € C'*°
and, hence, u is harmonic (cf. Exercise 7.10).

By Corollary 7.2, in order to prove that

[e'o]

Uy — U
it suffices to show that
The latter means that
g % u (B.123)
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and, for all positive integers [,

1, Liog Al
ALy, 225 ALy, (B.124)
However, (B.123) is given by hypothesis, and (B.124) is trivial because
Ayup = Ayu = 0.

7.12. The equation (7.15) means that, for any ¢ € D (M),

— (uky Apep) + o, (ug, ©) = (frs ) -

Passing to the limit as k — oo we obtain (7.16).
To prove the convergence

2m—+2
loc

U — U,

set v, = u — uy and observe that

—A“vk + av = hg,
where

Wit

hy = f— fr == 0. (B.125)

The identity
A;ﬂ)k = QU — hk
implies by induction that, for any positive integer [,
szk = alvg, — ot hy, — al_2A“hk — = AL_lhk,
whence, for any open set Q2 € M,
vk [lwzmt2() < Cllhkllywemq)

where C' depends on m and «. Finally, using (B.125), we conclude that

2m—+2
loc

vy — 0,
which was to be proved.
If fi o f then, by Corollary 7.2, fi Vﬁ? f and, by the previous part
of the proof, ug % u. Applying again Corollary 7.2, we obtain uy .
7.13. Since {uy (x)} is increasing and converging to u pointwise, it follows
2

L ~ .
that u, —2 u. By Exercise 7.12, there is a version % of v that is C* smooth

and that ug N4 In particular, uy () — w(x) for any x € M. Since also
ug (z) = u(x), it follows that u (x) = w(x) for all z € M, which finishes the
proof.

7.14. Since ALu = alu, we have

k
HUH%/V%(Q) = Z HALUH%%Q) = (1 +al 4 042k> HUH%Q(Q)'
1=0
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Hence, the result follows immediately from estimate (7.2) of Theorem 7.1.

7.15. By Theorem 4.5, for any f € L? (M), the function u := R, f also
belongs to L? (M) (in fact, even to W (M)) and satisfies in M the equation

—Ayu+ou = f. (B.126)
By Corollary 7.3, f € C* implies u € C*°, whence the claim follows.

7.16. Set u = R, f, u; = R f and note u satisfies the equation (B.126)
in M, and u; satisfies the same equation

—Ayu; +au; = f
in ;. Fix an open set 2 € M. For large enough 4, €2; contains {2 and, by
Corollary 7.3, u; € C* (2). Obviously, both u; and u satisfy the same equa-
tion (B.126) in ©. By Theorem 5.22, we have u; L@)) u, and we conclude
by Exercise 7.12 (with f; = f) that w; Ci(? ) u, which finishes the proof.
7.17. Arguing similarly to the proof of Theorem 7.6, we obtain
sup | AT (Pef)| < CIAT (Pef) llweo (ar)s

whereas

1A (Pef) Iwer = Y IIATHEPf]| 2
k=0

o m m—+k
¢ (Z( fk) e“”*’“’) 17112

k=0
< CtT (1 47) (1 f]l e
Combining these two estimates, we obtain (7.46).
7.18. Set u (t,2) = P.f (x) and w; (t,z) = P f (z). By Theorem 7.10, u
is a smooth function in Ry x M and satisfies in Ry x M the heat equation.

The same applies to the function u; in Ry x ;.
It was shown in the proof of Theorem 5.23, that, for any t > 0,

w; (t,-) 25 u(t,).

IN

That is, the set of points (¢, z) where w; (¢,x) /4 u(¢,z), has measure 0 on
M for every fixed ¢ and, hence, it has measure 0 on Ry x M. By Theorem
5.23, we also have 0 < w; < u. Hence, the sequence {u;} increases and
converges a.e. on Ry x M to the function u € L? (R4 x M), which implies
by the dominated convergence theorem that

L2 (RyxM

g (e BRAD (B.127)
Fix an open set 2 € M. For large enough ¢, €); contains 2. Hence, all
functions u; with large enough ¢ satisfy the heat equation in 2. By Theorem
7.4, (B.127) implies

C®(RyxQ
U; (—+) )’LL,
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whence the claim follows.
7.19. By Corollary 7.2, it suffices to prove that

WOO
Pf % fast—0,
which it turn will be the case provided we show that, for any k € N,

LF ) B b foast — 0. (B.128)

Using the spectral resolution of £ and arguing as in the proof of Lemma 4.8,
we obtain

et e] = [ () s

The integrand is bounded by A?*, which is an integrable function with re-
spect to d ||E'>\f||2 because LFf € L? By the dominated convergence theo-
rem, we can pass to the limit as ¢ — oo under the sign of the integral and
obtain (B.128).

7.20. Observe that f € dom (ﬁk) for any k£ € N and use the approach of
the third proof of Theorem 7.10 to prove that u € C'°°. That u satisfies the
wave equation follows then from Exercise 4.52.

7.21. By (7.48) and the Cauchy-Schwarz inequality,

Pt (2,9) = (Pej2,erPry2y) p2 < IPtll 2 Peyll L2
Using

pe(2,2) = (Dry2,0 Prj2e) 1o = P2l
and a similar identity for p; (y,y), we obtain (7.61).

7.22. Since

pe (2, 2) = (Pej2,0:Prj2a) = IPej2allizs (B.129)
it suffices to prove that ||pt | 2 is non-increasing in ¢. For any 0 < s < ¢,
we have by (7.56)

Pt (2,y) = (Pt—sy Psz) = PresPsz (y)
for all y € M. Since p; , = pt (z,-) a.e., we obtain
Ptae = PisPsz ace.
Since ||P_s|| = |le=*9)£|| < 1, we conclude that
IPtellzz < llpsallzz,

which was to be proved.
7.23. (a) It follows from (7.61) and (B.129) that

S (t) = sup p; (z,2) = sup |[pyj2zl72- (B.130)
reK zeK

Hence, S (t) is non-increasing by Exercise 7.22.
(b) By Theorem 7.7, we have

sup [|przlle <C(1+t77),
zeK
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which together with (B.130) settles the claim.
7.24. The pullback operator J, on functions, defined by
J*f = f © J7

obviously maps D (M) onto D (M) and, by Lemma 3.27, J, commutes with
A, on D(M). In the same way, J, commutes with gradient V.
It follows from Lemma 3.27 that, for all f,g € L? (M),

(Juf, Jsq)p2 = (£, 9) 12 (B.131)

which implies that J, is an isometry in L? (M). In the same way, J, is an
isometry in the spaces W (M) and W (M).
Extend J, to D’ (M) by the identity

(J*uv J*QD) = (u7 90) )

for all w € D' (M) and ¢ € D (M). Then A, commutes with J, in D' (M),
because

(JApu, Jop) = (Apu, @) = (u, App) = (Jau, JLALp)
= (Jau, Apdip) = (Apdiu, Jop) .

Hence, J, is an isometry of W02 (M), and the Dirichlet Laplace operator
L= —AM|W02 commutes with J,.

By the spectral theory, also the heat semigroup operator P, = e £

commutes with J,, that is, for any f € L? (M),
P(foJ)=(Pif)o
In the terms of the heat kernel, this means that the following identity holds

/ P (2,9) £ (Jy) dps (y) = / P (T2,y) £ () dps ()
M M

By (B.131), we have

/ pe (T2, 9) £ (4) di (4) = / pr (J, Ty) £ (Ty) dps (),
M M

and the comparison with the previous line yields p; (z,y) = p; (Jz, Jy).
7.25. We have by the Cauchy-Schwarz inequality

P (fg)(z) = /Mpt (2,) fodu = /M Vo @) e (@, Jadn

< (/M pe (z,°) f2dpc> v (/M pe (2, ) deu) v
= (B)" (Pg)"”

which proves the first claim. The second claim follows from the first one by
setting ¢ = 1 and using P;1 < 1.
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7.26. Assume that the first alternative fails, that is, there is 7 > 0 such
that a := sup P;1 < 1. Then
Py.1 =P, (P;1) < Pra = aP;1 < a®.
By induction, we obtain P,;1 < a” for all n € N. If t € (n7,(n+ 1) 7) then

t 1
Pl=P ;P11 <P _pra" <a" < at/Til =a! exp (__ In _> )
T a

so that the second alternative holds.

7.27. Denote for simplicity ¢ (y) = p¢ (z,y) and assume that ¢ is un-
bounded. Consider the following sets

QY ={reM:k<q(x)<k+1}.

Since ¢ is a continuous function, €2 is an open set, and sup ¢ = oo implies
that i is non-empty for all large enough k. Choose a compact subset
By C Q4 of positive measure and consider the function

F=> g,
K

where c¢; are positive constant to be specified. For this function, we have

[ ran =3 cn(®y

k

and
/ fadu > kepp (Ey).
M e

Choosing cj, from the condition cpu (Ey) = 1/k?, we obtain that f € L (M)
but

Rt @) = [ Fadu=os,

which contradicts Theorem 7.19.

7.28. (a) Assume first that f € F is non-negative. Then, using (7.62),
(7.51), and Fubini’s theorem for non-negative functions, we obtain

RPN = [ nlen) P @) dn)
= /Mpt (z,9) (/M ps (y,2) f () dp (z)) du (y)

— [ ([ e wwmw) e

_ /Mpm (z,2) f (2) dp (2)
= Psf(x). (B.132)
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If f is a signed function from F then applying the above argument to |f|,
we obtain that the function

(y,2) = o (2,9) ps (y, 2) f (2)

is integrable on M x M. Hence, we can repeat the above computation for
f, using Fubini’s theorem for integrable functions.
(b) Set € =t — s. By the semigroup identity, we have

Pif — Pf = Py (P.f — f) ife >0,
and

Pf —Pf =P, (f—P.f) ife<0.
In the both cases, we obtain using || P.f||= < || f|l#,

|Pef = Psfllz < |1Pef — fllr =0 as e =0,

which was to be proved.

7.29. For any relatively compact open set QO C M, we have f € W1 (Q).
Consider the constant path u (¢,-) = f in W (2). Then we obviously have
du
% — Auu Z O,
which implies by Corollary 5.17 that u > PtQ f. Exhausting M by sets like
Q, we conclude by Theorem 5.23 that v > P, f, that is, f > P, f.

7.30. (a) Applying the operator Ps to the inequality P,f < f, where the
both sides are non-negative, and using (B.132), we obtain

Prysf (z) < Pof ().

This means that P, f (x) is decreasing in t.
(b) The inequality P;f < f implies that P.f € L} (Ry x M) and, by

Theorem 7.15, P;f is smooth in R} x M and satisfies the heat equation.
(c) By part (a) and by P.f (z) < f (x) we conclude that the limit

h(x):= %1_1}(1) P.f (x) (B.133)

exists for all z and h(x) < f(x). Let us show that h(xz) = f(x) p-a.e.
Indeed, P, f < h implies that, for all t,s > 0,

Pt+5f:Ps(Ptf)§Psh~

Letting t — 0, we obtain P;f < Psh. On the other hand, h < f implies
P,h < P f, whence it follows that Psf = P;h.

Hence, the function v = f — h is non-negative and Psv = 0. Let us
show that this implies v = 0 p-a.e.. If v € L' (M) then this follows from
Theorem 7.19. In general, we have v € L} (M) and, hence, v € L' (Q)
for any relatively compact open set Q. Then 0 < P$v < P,v implies that
PSQ’U = 0, and by the above argument v = 0 p-a.e.in ). Exhausting M by
such sets €2, we prove that v =0 p-a.e. in M.
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Hence, f = h p-a.e., and it follows from (B.133) that P, f (x) increases
as t | 0 and converges to f(z) p-a.e.. By the dominated (or monotone)

Ll
convergence theorem, we conclude that P, f %% f.
(d) By parts (a) and (b), the function u(¢,2) = P.f (x) is a smooth
solution to the heat equation in Ry x M and u (¢,z) is decreasing in t for

any x € M. Therefore,
ou
AM’U, = E S 0,
that is, A,P,f < 0. By part (c), we have P,f o, f, which implies
AP f 2, A, f and, hence, A, f < 0.

7.31. Since 0 < u (t,z) < f (), the function u (¢, z) belongs to L} (R x M).

loc

Let us show that u satisfies the heat equation in NV = R x U in the distri-
butional sense. Then by Theorem 7.4, we can conclude that v € C* (N),
which will settle the claim.

It remains to prove that, for any function ¢ € D (N),

0
/ u (a—f + Amp) dtdp = 0. (B.134)
N
For any € > 0, set
N. = (g,+00) xU and N_.=(—o0,—¢)xU.

Note that the function u is C°*° smooth separately in N, and N_., and
satisfies the heat equation in each of these domain (here we use the fact that
A,f =01in U). For simplicity of notation, set us = u (¢,-) and ¢y = ¢ (¢, ).
Using the integration by parts in ¢ and the Green formula, we obtain

0
/ u <—SO + Awp) dtdp = —/ Uepe dpp — / © <% — Auu) dtdu
N. 8t U N. 8t

= —/ugcpsdu. (B.135)
U

Similarly,

o
/ u (i + Am@) dtdy = / U_cp_cdp = / fo—edp. (B.136)
.\ ot U U

Ll
As ¢ — 0, we have by Exercise 7.30 that u(s,-) —% f. Using also that
0 <u. < f, we obtain

/Uuasoadu—/Uf@odu‘
/Ufsoa—cpo\du+’/[](us—f)soodu',

which obviously goes to 0 as € — 0. It follows that

/u&‘(pgdu%/fgood,uasaéo.
U U

IN

/Uua (¢= — o) du‘ + ‘/U (ue = f) soodu‘

IN
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Adding up (B.135) and (B.136) and letting € — 0, we obtain (B.134).

7.32. (a) Applying the operator P; to the inequality P,f > f and using
(B.132), we obtain

Prysf(z) > Psf (z),

which implies that P, f (z) is increasing in ¢.
(b) The function P.f (x) is non-negative and measurable on R} x M.
For any compact set K C M and any interval [a,b] C I := (0,7, we have

/ Ptf(sc)du(x)dtg(b—a)/ Py (z) dp () < oo,
[a,b] x K K

whence P,f € L} (I x M). By Theorem 7.15, P, f is smooth in I x M and
satisfies the heat equation.

(c) By part (a) and by P.f (z) > f (x), the limit

h(z):=lim P, f (z) (B.137)

t—0

exists for all z and h(x) > f(x). Let us show that h(z) = f(x) p-a.e.
Indeed, P, f > h implies that, for all t,s > 0,

Pt+sf:Ps(F)tf)ZPsh-

Letting t — 0, we obtain P;f > Psh. On the other hand, h > f implies
P,h > P, f, whence it follows that P, f = Psh. Arguing as in the solution to
Exercise 7.30(c), we conclude that f = h p-a.e.. It follows from (B.137) that
P, f (x) decreases as t | 0 and converges to f (z) p-a.e.. By the dominated

1
convergence theorem, we obtain P, f L& f.
(d) By parts (a) and (b), the function u(¢t,z) = P,f (x) is a smooth
solution to the heat equation in R x M and u (¢, ) is increasing in ¢ € (0,7T)
for any © € M. Therefore,

that is, A,P,f > 0. By part (c), we have P f o, f, which implies
AP f 2, A, f and, hence, A, f > 0.
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(e) The straightforward computation yields, for ¢t < «,

Pf@) = [ plew)f o) dy

1 e =y |y

C (4mt)™? / neXp< % aa |V

_ 1 a? / (1 1 oz

" @y P\ 1 —0) S TP U\ & T 1) T T/
1 - n/2 x2

T ) ((:ﬂ R i)) o <4<a = t))

T —1t/a P (4(52— t)) '

It is clear that P.f (z) increasing in ¢ € (0, «) whence the claim follows. It
is also obvious that P;f = oo for t > a.

7.33. The proof follows verbatim the first part of the proof of Theorem
7.16 since the continuity of f in that theorem was used only for the proof
of the initial condition.

7.34. Let us prove that P;f — f as t — 0 uniformly on any compact set
K C M\ 09. It suffices to consider separately the following two cases.

Case K C Q. There exists a function ¢ € Cp(Q2) such that 0 < ¢ <1
and ¢ =1 on K. Clearly, ¢ < f <1 on M whence

Pp <PBf<1.

By Theorem 7.16, function P:;p converges to ¢ uniformly on K as t — 0.
Since ¢ =1 = f on K, it follows that P, f converges to f uniformly on K.

Case K C M \ Q. There exists a function ¢ € Co (M \ Q) such that
0<p<landp=1lon K. Setp =1—@psothatyp =10on Qand ¢ =0
on K. Obviously, we have 0 < f < on M, whence

0< P f < P

By Theorem 7.16, Pt converges to ¢ uniformly on K as t — 0. Since
Y =0= f on K, it follows that P;f converges to f uniformly on K.

7.35. By Theorem 7.16, the convergence (7.73) holds for any bounded
continuous function, in particular, for a constant function. Hence, by adding
to f a constant and renormalizing it, we can assume that 0 < f < 1. Set
a = f (z) and let U, be an open neighborhood of x where |f — a| < &, which
by hypothesis exists for any € > 0. Consider the function ¢ = (a — ¢) 1y..
By Exercise 7.34 we have

Py (z) — p(x) ast—0.

2
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Since f > ¢ on M and, hence, P.f > P,;p, we obtain

lim inf P, > lim P, = = — €.

iminf P, f (z) > lim Pop () = ¢ (2) = f () —¢
Since € > 0 is arbitrary, it follows that

liminf P, f (z) > f(x).
t—0
Applying the same argument to the function 1 — f, we obtain
liminf P, (1 — f) (z) >1— f(x).
t—0

Since P;1 (z) — 1, it follows that

lir?j(l)lp Pif(xz) < f(=),

which finishes the proof.

7.36. (a) This statement is a particular case Exercise 2.20. Nevertheless,
let us give an independent proof. The case r = 1 is covered by Theorem
7.19, and the case r = oo is covered by Exercise 7.33 (see also Theorem
7.16). So, assume in the sequel 1 < r < oo.

By Theorem 7.15, the function P.f (z) is measurable. To estimate
|P.f||Lr, let us first estimate P, f (z) using the Holder inequality and (7.50):

1/r

|P.f ()] = ‘/Mpt(a:,-)fduls/Mpi1“@,-) (pt (x,-)\f\)du

(/M pe(z,) du) o (/M pe () [ fI" du)w
([ wtelor an) " (B.138)

Next, applying Fubini’s theorem and (7.50), we obtain

\Pfle = /M!Ptf(z)lrdu(w)

/M (/Mpt (z,y) |f]" (y) dp (y)) dyu ()
- /M </Mpt (z,y) dp (m)> 1" (v) dp (y)

/ 17 (W) d (v)
M

IN

IN

IN

IN

whence (7.74) follows.

(b) Integrating (7.74) in dt, we obtain P, f € L] . (R4 x M), whence the
claim follows from Theorem 7.15.

7.37. Prove first the L™ analogue of Lemma 7.18, and then use the same
argument as in the proof of Theorem 7.19. The only place that requires an
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explanation is why
PtQ’“fk LQ(—%) fi ast—0
implies
P, MO o ast o, (B.139)

using the notation of the proof of Theorem 7.19. If » < 2 then this is true
by the embedding L? ()< L™ (). If r > 2 then we use the obvious
interpolation inequality

IAll} < [IRlIES2]RI3,
which is true for any measurable function h. Indeed, since function fj is
bounded by k, function Ptﬂ’“ fx is also bounded by k. Therefore, we obtain

1P fie = filly < k)2 NP2 fi = il
whence (B.139) follows.
7.38. This is a particular case of Exercise 2.21 with K = 1 and C' = F (t).

7.39. (a) For any ¢ > 0, the function p; (z,y) f (y) is measurable in z,y.
Hence, the measurability of

Pif (z) = /Mpt (2,9) f (4) du (v) (B.140)

follows from Fubini’s theorem.

(b) If f is signed then the convergence of the integral (B.140) means
that P;f, and P,f_ are finite almost everywhere. It follows from P.f =
P.fi — P,f_ and part (a) that P,f is measurable.

(c) See Exercise 7.28(a).

7.40. (a) By Theorem 5.23, we have P{!f < P,f for any non-negative
f € L?(Q). In terms of the heat kernels this means that, for all z € Q and
t>0,

/p? (z,y) f () dp (y) S/pt (z,y) f () du (y),
Q Q

whence pi! (z,y) < p; (x,y) follows.
(b) For simplicity of notation, define pi* (x,y) for all z,y € M by setting
pt (x,y) = 0 if z or y is outside Q.

By part (a), the sequence {p?l (x,y)} is increasing for all ¢ > 0 and
x,y € M and, hence, has a pointwise limit

. Q
gt (z,y) == lim p;" (z,y) < pt (z,y). (B.141)
11— 00
The function p; (z,y) is smooth in ¢, z,y and, hence,
bt (l’,y) € LIQOC(R-F X M x M) .
By the dominated convergence theorem, we obtain from (B.141)

L2

loc

(R xMxM)
—

P (2,) @ (z,y) . (B.142)
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By Theorem 5.23, for any non-negative f € L? (M), we have
P f(z) = Pif (2), (B.143)
for all ¢ > 0 and for almost all' € M, that is,

/ P () £ () dpt () = / P (2,9) £ (4) dis (9).
; M

k3

On the other hand, by (B.141) and the monotone convergence theorem, we
have also

/ P (2,) £ () dpt () — / @ (@,y) f (v) du (v)
; M

Q

for all t > 0 and = € M, whence it follows that

a (z,y) = pt (2, y),

for all ¢ > 0 and almost all z,y € M.
It follows from (B.142) that

P (z,y) pt (z,y). (B.144)

Fix an open set 2 € M. For large enough i, £2; contains §2 and, hence, both

functions p?" (z,y) and p; (x,y) satisfy in Ry x Q x Q the heat equation
ou 1
a2

where A, + A, is the Laplace operator on the manifold M x M (see the

proof of Theorem 7.20). By Theorem 7.4, applied to the manifold © x €,
the convergence (B.144) implies that

C® (R xOQx0Q
(R4 )

L (RyxMxM)
—
(Az +Ay)u,

Q;
y2 (z, y)

which was to be proved.
(¢) The claim follows from parts (a), (b) and from the monotone conver-
gence theorem:

P?"f(x)z/ P (o:,-)fdﬂ%/ pe (x,-) fdu = Pif (x). (B.145)
M M

(d) Splitting f = f4+ — f—, it suffices to consider the case f > 0. By part
(c), we have, for any ¢t > 0,

Dt (’Tay) )

P f(z) 1 P.f () (B.146)

pointwise in x. Since P.f (z) is a locally bounded function on Ry x M,
(B.146) implies by the dominated convergence theorem that the conver-
gence in (B.146) is also in L? (R, x M). By Theorem 7.16, both functions

loc

P f (z) and P,f (z) solve the heat equation. Hence, we conclude by The-
orem 7.4 that the convergence in (B.146) is also in C*° (Ry x M).

IIn fact, by Exercise 7.18, the convergence (B.143) is in C*° (R; x M) but we will
not use this.
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7.41. Let P; be the heat semigroup on M. Consider the integral operator
Q) on functions on M defined by

Quf (z,y) = /Mpzx (z, @)l (v, 9/) £ (2,9) d(pxp) (2,y) .

We will show that Q,f = P,f for all f € L? (M), which will imply (7.92).
We will use the fact that, for any f € L? (M), the path ¢t — P;f is a unique
solution to the L?-Cauchy problem on M with the initial function f (see
Corollary 4.11).

Let function f be of the form

fxy)=g(x)h(y), (B.147)
where g € L? (X) and h € L? (Y). Then we obviously have

Quf (x,y) = Pg () P/ h(y),
where PX and P} are the heat semigroups on X and Y, respectively. The
paths ¢ — PtX g and t — Ptyh solve the L?-Cauchy problems on X and Y,
respectively, with the initial functions g and h.

Let us show that u (¢, -) = Qqf solves the L2-Cauchy problem on M with
the initial function f. Since PXg € W (X) and PY'h € Wi (Y), we easily
obtain that u (¢,-) € W§ (M).

Next, we have

du d d
at - dt (Pth) Ptyh + PthE (Ptyh)
= Ax (PXg) PY'h+PXgAy (P'h), (B.148)

where Ax and Ay are (distributional) Laplace operators on X and Y. On
smooth functions, we have

Ax—l-Ay:Au

(cf. Section 3.8), whence it follows that the same identity holds on distribu-
tions. Since the right hand side in (B.148) belongs to L? (M), we conclude
that the strong derivative% exists in L? (M) and is equal to

d
d_qti = Axu+ Ayu = Au.

2
In particular, A ,u € L? (M) and, hence, u (t,-) € W¢ (M). Finally, u (¢, -) gl
f as t — 0 because

2 2
PXg" %) g ana P "%

By Corollary 4.11, we conclude that u = P, f, that is,

Qif =B f, (B.149)

for all f of the form (B.147). Since @Q; and P; are linear bounded operator
in L2 (M) (cf. Exercise 2.20) and the functions of the form (B.147) span
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all L? (M), we conclude that (B.149) holds for all f € L? (M), whence the
claim follows.

7.42. It follows from (7.93) that

Fl2) - Pif (x) — /f e () du (y /f ) pr () dpt ()
- /M (F (@) — £ () pr () dps (1)

whence

(f = Pif. f) = /M /M<f<x) — F@)f (@) prla, y)dp(y)dp(z).

Switching x and y in the integral and using the symmetry of the heat kernel,
we obtain

(f — Pif.f) = /M /M(f(y) — F@)f @) pe(e, v) (@) dp(y).

Adding up the above two lines, we obtain

(F=Ps0) =3 [ ] (H@) = 1) ny)duts)dnta),

whence (7.94) follows.

7.43. Note that the operators £ and R := (£ +id)™" are self-adjoint
with the spectra in [0, +-00) so that £¥ and R* are defined by the functional
calculus for all real k& > 0. Since R is bounded, R* is also bounded and,

hence, its domain is L2.
Using Exercise 5.11 and (7.49), we obtain, for all f,g € L?,

(Rir.g) = / tkl (P, g) dt

whence, it follows

R f (2) = /O T b (@) dt, (B.150)

for almost all x € M.
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7.44. (a) Using the Cauchy-Schwarz inequality, (7.51), and (7.96), we
obtain, for all x € M and t > 0,

B ()] = ‘ [ b f ) an o)

< ( /Mp% <w,y>du<y>)l/2uf||2

= pou(z,2)2 || ]2

By hypothesis, p; (z,x2) < ct™” for t < 1. By Exercise 7.22, py (z,z) is a
non-increasing function of ¢ and, hence, p; (z,z) < ¢ for t > 1. Combining
these estimates together, we obtain that, for all z € M and ¢t > 0,

Pf @) < e (1+72) | £l (B.151)

Therefore, (B.150) yields, for almost all z € M,

‘ka(:c)‘ < chHg/OOO (1 +t‘7/2> %e‘tdt.

We are left to observe that if k& > +/2 then this integral converges, which
implies

REf @)] < Clflls (B.152)

for almost all z.
Let us prove that the function R* f (z) has a continuous version. In fact,

the latter is given by the right hand side of (B.150). Denoting it by }/#Jf ,
we have, for all z,y € M,

k _ Rk — PR
R ) =R @) = [t
Since the function x +— P, f () is continuous, P, f (y)—P.f (x) — 0asy — z.
By (B.151), the function under integration in the previous line is uniformly
bounded by an integrable function, and the dominated convergence theorem
implies that the integral converges to 0 as y — z, which finishes the proof.

(b) Let {Eyx} be the spectral resolution of £. Then

dom £F = {u eL?: / Adel\E,\u\%}
0

oo 1k—1
e " (Pf (y) — P.f (x))dt.

and
dom (£ 1 id)* — {u ert: [ a+ A)Q’“czuEwu%},
0

whence it follows that these two domains are identical. Applying part (b)
tof=(L+ id)k u, we obtain that u = R* f and, hence, v is continuous and

sup [u| < C|| (£ +id)* u2. (B.153)
M
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Finally, the inequality
(1+ M) < 2% (1 + A%)
implies that
(2 +id) ulla < 2% (Jlulla + 150l )

which leads to
sup [u| < € (|[ull2 + | £Full2) -

7.45. Fix f € L?,t > 0 and apply (7.98) to the function v = P, f. Using

also
lull2 = [[Pefll2 < [ f]l2
and
k, (12 2k —xt 2 2k _—At 2 ci 2
Ikl = [N NAEIE < sup (W) £ = £ I3,
0 A€(0,+00)

where ¢, = (2k/e)", we obtain
sup Pof| < O (lullo + 1€¥ull2) < € (145 ) £l
Arguing further as in the proof of Theorem 7.7, we obtain
sup lprell2 < € (1+%)

whence )
C
pi (@,2) = Ipiyaalf < C (14 5),
which finishes the proof.

7.46. (a) The identity W' (R") = W (R") (cf. Exercise 2.30) im-
plies that dom£ = W2 (R"). Let us show that v € W*(R") implies
uw € dom L£F/2. If k is even then this easily follows by induction because
u € WF implies Lu = —Au € WF 2. Also, expanding (£+id)k/2u by
the binomial formula, we obtain that (£ + id)k/ %4 is a combination of the
(weak) derivatives of u up to the order k, which yields

(£ +id)* "l 2 < Cllullye
If k is odd, then write k = [ + 1 and notice that u € W* implies £/%u €
W' = W¢. Since by Exercise 4.25 W} = dom L2 we obtain that £/2u €
dom £/2 whence it follows that v € dom £¥/2. Since for any f € Wq,

(£ +id)"2 fllz2 = [ £llws,
(see Exercise 4.25), we also obtain

(L +id) "l = || (£+id)"? (£ +1d)"? ul| 2
1 (£ + i) ulyr < Cllullyes = Cllullys.
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(b) Since the heat kernel in R” is given by
pe (z, ) = (4mt)~"/?

and, hence, satisfies the hypothesis of Exercise 7.44 with v = n/2, we obtain
that if k > n/2 then every function u € dom £*/? is continuous and satisfies
the estimate

sup |u| < O (L + id)k/2u||L2

RTL

(cf. (B.153)). By part (a) we conclude that every function v € W* with
k > n/2 is continuous and

Sup lu| < Cllullyye-

(¢) If a is a multiindex such that |a| < m then u € W¥ (R") implies
0% € WF=™ and, by part (b), 0%u is continuous and

sup |0%u| < Cl|0%u|lyr-m < C|lullyye-
RTL

Therefore, v € C™ (R™) and
[ullom < Cllully.
(d) For any ¢ € C5° (2), we have ¢yu € W* (R™) and, by part (c) of the
proof, Yu € C™ (R™) and
[Yullom@ny < Cllvullprgn)-

If ' and Q" are two open sets such that ' € Q" € Q then ¢ can be chosen
so that 9y =1 on Q' and suppvy C Q”. Since Yyu = u on §, it follows from
the above that v € C™ (Q') and

lullem @y < CMllullwe o,
which finishes the proof.

7.47. (a) We need to prove that any bounded sequence {fi} in W has
a convergent subsequence in L2. Since {f}} is bounded in L2, there exists
a subsequence, denoted again by {fi}, which converges weakly in L? to a
function f € L2. Let us show that, in fact, {f;} converges to f in L2-norm.
For any t > 0, we have by the triangle inequality

1fe = fllz2 < | fk = Pefill + (| Pefi = Pefll2 + 1P f = fll2- (B.154)
Since fi € W, we have, by the inequality (4.69) of Exercise 4.40,

| fr = Pefrllz < VEV frll2-

By the hypothesis, the norms ||V fi||2 are uniformly bounded so that we can
write

fx = Pefill2 < OV, (B.155)
for all ¢t > 0 and k. Since {f} converges to f weakly in L2, we obtain that,
for almost all x € M,

Ptfk(m) = (pt,mvfk) — (pt,xaf) = Ptf(x) as k — oo.
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On the other hand, we have by the inequality (7.75) of Exercise 7.36

1/2
IPfulloe < (sup P <w,x>) Vil
xeEM

Applying the hypothesis (7.99) and using the fact that all the norms || fx]|2
are uniformly bounded, we obtain, that

1P filloo < S (),

where S (t) is a finite function of ¢. Hence, for any fixed ¢ > 0, the sequence
{P;f} is bounded and converges to P;f almost everywhere. Since pu (M) <
o0, the dominated convergence theorem yields

|Pefi — Pifll2 — 0 as k — oo. (B.156)
Hence, we obtain from (B.154), (B.155), and (B.156) that, for any ¢ > 0,

likmsup Ifr = flla < CVE+||Pif = fl-
—00

Since by Theorem 4.9 ||P;f — f|l2 — 0 as ¢ — 0, we finish the proof by
letting t — 0.

(b) Let us apply part (a) to the weighted manifold (€2, x). Since Q is
relatively compact subset of M, we have u (2) < co. We are left to verify
the condition

sup p;’ (2, ) < 00,
€

where p? is the heat kernel of Q2. It follows from Theorem 5.23 that p? < py.
By Theorem 7.7, there exist a finite function Fg (t) such that

sup [|pezll2 < Fo (1) -
e

Recalling that p; (z,z) = ||pt/27$|\§, we compete the proof.
7.48. It suffices to prove that, for any ¢ € I and any sequence of reals
L — 07
Ilh(t+ex) —h(t)] — 0as k — co. (B.157)
Since the sequence of vectors

{h@+sw-4uo}w

€k

k=1

is weakly convergent, it is weakly bounded and, hence, strongly bounded,
by the principle of uniform boundedness. Therefore, there is a constant C
such that

for all k, whence (B.157) follows.

h(t+er)—h(t)
Ek

2
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Solutions to Chapter 8

8.1. Observe that the function v (¢,z) = e**h (x) solves the heat equation
because by hypothesis A, h = ah and
ov
ot
Hence, v (¢, x) is a non-negative solution to the heat equation with the initial
function h. By Theorem 8.1, we conclude

v (t,x) > Ph(z),

=oav = A,v.

which was to be proved.

8.2. By Theorem 8.4, we have 0 < R,f < w and R,f solves (8.11).
Setting v = u — Rof, we obtain that v € L2 (M), v solves the equation
—Ayv+ov=0,and v(z) = 0 as x — oco. By Corollary 7.3, v € C* (M),
and by Exercise 5.20 we conclude that v = 0.

Note that if f € L? (M) and u € W (M) then one can use Corollary
5.15 instead of Theorem 8.4.

8.3. By Corollary 7.3, u € C*° (M). Consider the open set
Q={xeM:u(x)>0}

and notice that

u(z) »>0asx —ooin Q. (B.158)
Indeed, z — oo in 2 means a sequence {z} such that either x — oo in M
or xp — 0.

Function u, satisfies in €} the equation A, uy + Auy = 0. Choose some
a > |A| and rewrite this equation in the form

—Apuq +auy = f

where f = (o + A)uy. Using (B.158), f € L?(2) and f > 0, we obtain by
Exercise 8.2 that uy = Rg f. It follows that u; € dom (£Q) and, hence,
uy € W¢ (). Since uy = 0 outside , it follows that uy € W (M) . In the
same way, u_ € W¢ (M), which implies u € W} (M).

8.4. Left to the reader

8.5. Let {2} be a compact exhaustion sequence in M. By Corollary
8.16, we have

infu = inf u.
Q aQy,

Let z; be a point on 0€ such that
inf u > - —.
1& u > u(xg) k

Since z — oo as k — 0o, we obtain by hypothesis that

limsup u (xf) > 0.
k—o0
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Passing to a subsequence, we can assume that in fact

liminf u (xy) > 0,
k—o0

whence .
infu = lim infwu > liminf <u () — E) > 0.

M k—o0 Qp k—o0
Hence, u > 0 in M, which was to be proved.
8.6. Let {Q} be a compact exhaustion sequence in M, and let {7} and
{T}} be two sequences of reals such that

O<m<Tp<T

and 7, — 0, T, — T as k — oo. Applying the minimum principle of
Theorem 8.10 to function « in the cylinder Cy = (7, k) X Qk, we obtain

infu = inf w.
Cr, 3pCl

Choose a point (ty, ;) € 0pCy such that

1
inf u > wu (¢ ——.
1&u_u(k,mk) .

Note that (ty,zr) € 0pCr means that either ¢, = 7, or z;, € 0Q;. We
claim that the sequence {(tx, zx)} contains a subsequence that escapes from
N = (0,T) x M. First of all, pass to a subsequence such that t; — t € [0, 7]
and z — oo or ¢ — x € M (the former case occurs when {xy} leaves any
compact in M while the latter case occurs when infinitely many terms xy
stay in the same compact subset of M). If x, — = € M then z; cannot be
on the boundary 9€, for large k. Hence, in this case we must have t; = 73,
which implies ¢ — 0. Hence, by definition, {(¢x, )} escapes from N.
By hypothesis, we obtain

1
lim sup inf » > lim sup (u (tg, ) — —> > 0.

k—oo Ck k—o0 k

Passing to a subsequence of Cy, we obtain

lim infwu > 0.
k—o0 Ck

Since the union of all cylinders Ci is N, it follows that infy uw > 0, which
was to be proved.

Second solution. The conclusion follows also from Corollary 5.20 if we
show that

(1) u— (t,x) = 0 as * — oo in M, where the convergence is uniform in
te (0,7);
(73) u_ (t,z) — 0 as t — 0 locally uniformly in x.
The hypothesis (8.24) is equivalent to

lim w_ (tg,zx) =0, (B.159)
k—o0

for any sequence {(tg,xx)} that escapes from N.
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If (¢) fails then there is € > 0 such that, for any compact exhaustion
sequence {{};} in M,

sup sup u_ (t,z) > e.
te(0,T) M\

Choose t; € (0,T) and z; € M \ §; so that
u_ (t,z;) > €/2.

Passing to a subsequence, we can assume that the sequence {¢;} converges
in [0,7]. Since z; — oo in M, we see that (t;,z;) escapes from N, which
contradicts (B.159).

In the same way one proves that u_ (¢,-) = 0 as t — 0 where the
convergence is locally uniform in z € M, which implies (i).

8.7. If u is a bounded solution to the equation —A,u + au = 0 on a
compact manifold M then u € C§° (M) which implies by the Green formula
that

(Vu,Vu) 2 + a(u,u) 2 = 0.
Since a > 0, this is possible only if u = 0. By Theorem 8.18, we conclude
that M is stochastically complete.

8.8. By Theorem 1.7, the bounded Cauchy problem in R™ has a unique
solution, which implies that R™ is stochastically complete by Theorem 8.18.

8.9. For all s € (0,t), we have by the semigroup identity and Ps1 < 1
that

Pl=P,_,P1<P_,<1. (B.160)
If P.1(xz) = 1 holds for some z € M, we obtain that, for this z, all the
inequalities in (B.160) become equalities. In particular, we have
Pt—s(Psl)(x) =1,
which is only possible if
P1=1. (B.161)

We are left to extend (B.161) to s > ¢. Assume first s < 2¢. Then s/2 < t
and we obtain

Pl = Py (Pypl) = Pypl =1,
that is, (B.161) holds also for s € (0,2¢). By induction, we prove (B.161)
for s € (0,2"%t), whence it follows for all s > 0.
8.10. If M is stochastically complete then

Ra1:/ e ot (Ptl)dt:/ e dt = a1l
0 0

Conversely, if P;1(z) < 1 for some x and t then the above identity shows
that Rl (z) < a™l.

8.11. (a) The function u (z) = |z|* satisfies in R” the equation Au = 2n,
which implies that Au < u for |x| > C where C is large enough. Hence, u is
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1-superharmonic, and since u (z) — 0o as £ — oo then R™ is stochastically
complete by Theorem 8.20.

(b) Let us construct 1-superharmonic function in R™ \ {0} outside the
compact set K = {1 < |z| < C}. Indeed, in domain {|z| > C'} the function
from part (a) will do. In domain {0 < |z| < 1} set

2—n
2
U(LL') = { ’x‘ » 7 > ’

log‘—:i', n=2,

so that u(x) harmonic and positive in this domain (cf. Exercise 3.24),
which implies that u is 1-superharmonic. Obviously, u (z) — oo as £ — oo
(in this context, “x — co” means leaving any compact, which is equivalent
to |z| — oo or |z| — 0 — cf. Exercise 5.19). Hence, R™\ {0} is stochastically
complete by Theorem 8.20.

In R\ {0}, function e~®! is a bounded solution to the equation Au = u,
which implies by Theorem 8.18 that this manifold is stochastically incom-
plete.

(¢) Without loss of generality, we can assume that 0 ¢ 2, which implies
that, for some € > 0, a ball B, is disjoint with Q. Consider in R \ {0}
the function u (z) = e~**l where o > 0 is to be chosen. Writing u = ="
where r = |z| and computing Aw in the polar coordinates, we obtain

-1 -1
Au:u"—i—n u':(az—n a)u.
r r

In Q we have r > ¢ which implies

-1
Au2<2—n a)u—o/u,

€

where o/ > 0 provided « is large enough. Hence, for such «, u is a bounded
positive a’-subharmonic function in 2, which implies that Q is stochastically
incomplete by Theorem 8.23.

8.12. Let p be the Lebesgue measure in 2 and define measure 1 by
dfi = h?dp. Then the Laplace operator Ayg satisfies the identity

EZ%OAO}L

and the corresponding heat semigroup ﬁtg satisfies a similar identity

A

~ 1
Pl'=—-oPloh
h
(see Theorem 9.15). Therefore,
Peh = hP{,

and the required identity PtQh = h is equivalent to ﬁtﬂl =1, that is, to the
stochastic completeness of (€2, ).

To prove the latter, let us use Theorem 8.20 which says that it suffices
to construct an a-superharmonic function v (z) in the exterior of a compact
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K in (9, t), such that v (z) — 400 as ¢ — oo in 2. Take K to be any closed
ball, say B (0,¢) assuming that the origin 0 is contained in € and £ > 0 is
small enough, and consider the function u (z) = u (r) = e where r = |z|
and ¢ > 0 is a constant to be chosen. Then we have

n—1 n—1
Au—au=u"+ u’—au:<02+ c—a)ec’".
r r

Given ¢ > 0, choose « so big that

—1
02+n

c—a <0,
which yields that Au—au < 0in Q\ K. Therefore, setting v = §, we obtain

Apv —av = %(A(vh) —a(vh)) = %(Au—au) <0
so that v is a-superharmonic outside K in (2, i1).

We are left to ensure that v () — 400 as x — oo in §2. The latter means
that, for any sequence {z;} C Q leaving any compact in , v (x) — 400
or, equivalently, for any such sequence {zy} leaving any compact in 2, there
is a subsequence {zy,} such that v (xy,) — 400 (see Exercise 5.18). If {x}}
leaves any compact in €2 then it has a subsequence {zy,} that converges to
either a point on 99 or to co in R™. In the former case, we have h (zy,) — 0

whence
u(xg,) > 1
In the latter case, we have |zy,| — co. Using the hypothesis h (z) = Oz,
that is, h (z) < e“*l as |z| — oo, we obtain
() u(2) > i — +oo as |z| —
v(r) = —F% > —— 00 T 00,
h(z) — eClal

provided c is chosen to be larger than C.

8.13. (a) Set u (t,-) = P.f so that the family u (¢,x) increases as t | 0
and converges to v (x) pointwise. Fix s > 0. By the monotone convergence
theorem we obtain that

v (zk,) = — 400. (B.162)

tlg(r)lo Psu (t,-) = Py,
where the convergence is pointwise. Since
Psu(t,") = PsPf =u(t+s,-)
and, hence,
tlgglo P (t,) =v(x),

we obtain that Psv = v. By Theorem 7.15, the function v (z) must satisfy
the heat equation in variables s,z which yields A,v = 0.

(b) If h < f then P;h < P,f for any t > 0. Both functions Pk (x) and
h (z) as functions of ¢t and z are bounded solutions to the Cauchy problem
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with the initial function h. Hence, by Theorem 8.18, they coincide, that is,
P,h = h. This implies that h < P, f for any ¢t > 0 whence h < v.

Note that without the hypothesis of the stochastic completeness this
statement is false. Indeed, consider f(x) = 1. Then f is harmonic so
that the largest harmonic minorant of f is f. On the other hand, if M is
stochastically incomplete then P, f () < 1 for some x and ¢, which implies
v(z) < f(z).

8.14. Set a = sup v and note that a < 1. Using Exercise 8.13, we obtain

v = Pw < aPl.

Letting ¢ — oo and using that P;1 — v, we obtain v < av. If a < 1 then this
is only possible if v = 0. Otherwise, we have a = 1 and, hence, supv = 1.
To prove the second claim, set b = infv and assume that b > 0. By
Exercise 8.13, we have
Pov=v
for all £ > 0. On the other hand, v — b is a non-negative harmonic function,
which implies by Exercise 7.29 that

P (v—0b) <v-—b.
Comparing the above two lines, we obtain that P:b > b, which is only
possible if P;1 =1 and, hence, v = 1.
8.15. Let B be the closed unit ball centered at the origin in R" and
Q = B°. By Exercise 8.13(a), the function v (z) = limy ., P*1 () is a
harmonic function on ). Clearly, 0 < v <1 and v # 1, the latter because {2
is not stochastically complete by Exercise 8.11.

By the symmetry argument, v () must depend only on the polar radius
r. By Exercise 3.24, we obtain

alz " +b, n>3,
v(z) =4 alnp+b, n=2 (B.163)

ar + b, n=1,
where a,b are real constants. In the case n = 1,2, the boundedness of v
implies a = 0, whence v = const. Since v # 1, it follows from Exercise

8.13(c) that v = 0.
In the case n > 3, consider the function

h=1—z)*™",

which is a harmonic function in Q that vanishes on 0B and h(z) — 1 as
|z| — co. By Exercise 8.12 we have P{’h = h. Hence,

P > Peh = h.

Passing to the limit as t — oo, we obtain v > h. Since also v < 1, we see
that v (z) — 1 as |x| — oo, whence it follows that v () must have the form

v(z) =alz)* "+ 1.
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Since v # const, it follows from Exercise 8.13(¢) that inf v = 0.0n the other
hand, we have infv = a 4+ 1, whence a = —1 and v (z) = 1 — |z|*™".
8.16. Use the same argument as in the proof of Theorem 8.24.

Solutions to Chapter 9

9.1. We have dy = h? (x) dr where the function h (z) = exp (c - z) satis-
fies the equation

Ah —|e[*h =0.
By Theorem 9.15, the heat kernel of (R™, ggn, 1) is obtained from the Gauss-
Weierstrass heat kernel by (9.24) with o = — |¢|?, whence the claim follows.

9.2. Let pi" (z,y) be the heat kernel in R™ so that the formula (9.41)
can be rewritten in the form

pe(e,y) =0 (z,9) —p" (2,7).
Obviously, the function u (¢, x) = p; (x, y) solves the heat equation in R xR"
and ,
u(t, ) 2, dy — by ast— 0.
Hence, if y € M, then 0y = 0 in M, whence it follows that u (¢,z) is a
fundamental solution of M at y. Since |z —y| > |z —y| for any z € M, it
follows that w (t,z) > 0.

Let us show that u (¢,2) = 0 as £ — oo on M (where the convergence is
uniform in ¢ € (0, +00)). Indeed, if {z;} is a sequence leaving any compact
in M then, passing to a subsequence, we can assume that either |zy| — oo
or xp — v € OM (cf. Exercise 5.19). In the first case, both pi" (z,y)
and p" (zx,7) go to 0 as k — oo uniformly in ¢ (cf. Exercise 1.5), so that
u(t,zx) = 0. In the second case, |x — y| = |z — Y| whence it follows that
u (t,x) = 0. By the uniform continuity of the heat kernel (cf. Exercise 1.5),
we obtain wu (t,z;) = 0. Hence, u (t,zx) = 0 as ¢ — oo in M. We conclude
by Theorem 9.7 that u (¢, x) is the heat kernel at y, which was to be proved.

9.3. The formula (9.42) makes sense for all z,y € R". If z € M then
z' = 2t for some index 3. It follows that the two rows of the determinant
(9.42) are the same, whence p; (x,y) = 0.

In order to investigate further properties of p; (z,y), let us use the full
expansion of the determinant, which gives

PEEDSICHS | L CHE B ST R}

O'ESn O'GSn
(B.164)
where S,, is the group of permutations of {1,...,n}, pf" is the heat kernel

in R”, and
Yy’ = (y”(l), e ,y”(n)> .
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It follows that p; (z,y) solves the heat equation in R} x R™ and

pe(z,y) — Z (—1)7 6yo as t — 0.
0ESh

If y € M then y” ¢ M for all o # id, which implies 6,5 = 0 in M for
all o # id and, hence, p; (z,y) — 0, as t — 0. Therefore, p; (z,y) is a
fundamental solution of M at y.

By Theorem 9.7 and Remark 9.8, in order to show that p; (z,y) is the
heat kernel, it suffices to verify, for any fixed y € M, the following two
conditions:

(1) For any sequence {(tg,xy)} such that ¢, — 0 and z — x € M,

limsup py, (zx,y) > 0. (B.165)

k—o0

(73) For any sequence {xy}, such that x, — OM or |z| — oo,
pt (zg,y) = 0 as k — oo, (B.166)

whence the convergence is uniform in ¢t € (0, 4+00).

Proof of (i). Choose £ > 0 so that B, (x) C M; we can assume that
ry € B.jp () for all k. If o # id then y° ¢ M whence it follows that
|z — y°| > €/2 and

n 1 52

R o

vy, (Tp,y°) < —————exp <——) — 0 as k — oo. B.167
§ ) s e (g (B.167)
In the case 0 = id we have (—1)/°/ = 1 and the corresponding term in

(B.164) is positive. Hence, (B.165) follows from (B.164) and (B.167).

Proof of (i1). Assume first that x;, — x € OM. There is € > 0 such
that |z — y?| > € for all permutations o. We can assume that all zj are
in the ball B,y (x). The heat kernel pr" (z,97) is continuous in z outside
B, /5 (y°) uniformly in ¢ (cf. Exercise 1.5), which implies that p; (z,y) is
continuous in z € B,/ (z) uniformly in ¢ € (0,+00). As it was observed
above, p; (z,y) = 0 whence (B.166) follows.

Let now |zx| — oco. Then all terms in (B.164) go to 0 uniformly in ¢ (cf.
Exercise 1.5), whence we obtain again (B.166).

9.4. (a) Similarly to the proof of Theorem 9.15, we have, using A;L‘h =,

%Au (hf) = % (hAuf +2(Vh,V f)g + fAuR)

Vh ALh
= Aﬂf+2<Tan>g+f ;:

= Apf+ 2f,
whence (9.44) follows by replacing f by h=1f.
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(b) Multiplying (9.44) by f and integrating, we obtain
/ (]Vf\z + <I>f2) dy = —/ hfAy (hilf) du
M M
- _/ KA (RUf) dip = / IV (h1 )| dii > 0,
M M

where we have applies the Green formula both on (M, g, ) and (M, g, ).
9.5. Setting h (z) = || for some real 3, we obtain Ah = ®h where
2 —
d — w
||

Choosing 8 = 1 — n/2, we obtain
(n—2)°
Al
Substituting this function into (9.45), we obtain (9.46).

9.6. By Theorem 9.20, both u and v satisfy equation (9.48). Hence, the
difference w = uw — v satisfies in R x M the heat equation %—;” -Aw =0

and, hence, w is C*° function on R x M by Theorem 7.4.

9.7. As in the proof of Corollary 9.21, it suffices to show that the following
equation

% = Axut = Ayut

ot
holds in R x Q2 x Q. It will follows if we prove that, for any ¢ € D (R x Q x Q)
and any y € 2,

/ (Orp + App) ug (x,y) du(z)dt = 0. (B.168)
RxQ

Since both p; (-, y) and p{’ (-, y) are regular fundamental solutions at g, The-
orem 9.20 yields

/ (Brp + Do) pr (2, y) ds(z)dt = — (0,1, )
RxQ

and the same identity for p§, which implies (B.168).

Ll
9.8. (a) The condition u (t,-) —%% f implies that, for any compact set
K c M,

/ |u(t,~)]du—>/ f|du ast — 0, (B.169)
K K

whence it follows that, for any 7" > 0,

/OT/K|u(t,m)|d,u(:v)dt < .

Therefore, the function u, extended by 0 to ¢ < 0, belongs to Li . (R x M)
and, hence, can be considered as a distribution on R x M.
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The equation (9.56) is equivalent to the identity

[ @+ A ududt = [ 0(0.) £, (B.170)
Rx M M

which should be satisfied for any ¢ € D (R x M). Since u =0 for ¢ < 0, the
integral in the left hand side of (B.170) is equal to

/0 /M (Orp + App) udpdt = lim / / (Orp + App) udpdt.

e—0+

As in the proof of Theorem 9.20, we obtain, for any € > 0,

/:O /M (Brp + A o) udpdt = _/Mgo(g, Yul(e, ) du.

We are left to verify that

/ v (g, ) dp — / ) fdu as e — 0. (B.171)
M
By hypothesis, we have u (e, -) & f as € — 0, which implies

/ ¢ (0,-) ) dp — / ) fdp ase—0. (B.172)
M

Let K C M be the projection onto M of suppy in R x M. Then K is
compact, and we have

'/ ) dp — /90(0,-) (€,) dp

< suplp(e,x) - ow/\u ) dp,
zeK

which tends to 0 as ¢ — 0 by the continuity of ¢ and (B.169). Together
with (B.172), this proves (B.171).

(b) If f =0in M and also F' =0 in R x M and we obtain from (9.56)
% = Ay u in R x M. Hence, u € C* (R x M) by Theorem 7.4.

(c) It suffices to prove that

u(t,-) =@ fast—0 (B.173)

for any relatively compact open set U C M, where ¢t > 0. Let ¢ be a cutoff
function of U in M. Since ¢f € C§° (M), we obtain by Exercise 7.19 that
Pi(of) T of ast 0,
and, in particular,
P, (gof) f ast — 0. (B.174)
On the other hand, the function

v(t,)=ult,) = P (pf)
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solves the heat equation in Ry x M with the initial condition

Ll
v(t,) 2% f—of ast —0.
Since f — ¢f =0 in U, we obtain by part (b) that

c=(U)

v(t,) — 0 ast—0. (B.175)

Adding up (B.174) and (B.175), we obtain (B.173).
9.9. Consider the function

u(t:) =P = | piCoy) dutw),

which solves the heat equation in R, x ) and satisfies the initial condition

w(t,) e g

(see Exercises 7.33 and (7.34). Extending u (¢,-) to t < 0 by setting u (¢,-) =
0 and applying Exercise 9.8 in manifold €2, we obtain that u € C* (R x ).
By the Taylor formula, we have for any positive integer NV, ¢ > 0 and z € (),

N-1 €N
u(ta) = 30 ul (0,2) ) () & i

k=0

where u(F) = % and ¢ € (0,t). Clearly, u® (0,z) = 0. Since u™) is
uniformly bounded in [0, 1] x K, we obtain, for some constant C, that

sup u (t,z) < CtY for all t € [0,1],
zeK

whence the claim follows.
Another solution can be obtained using Exercise 15.1.

9.10. The identity (9.58) implies that r, (x,y) is a non-negative measur-
able function in z,y. By Fubini’s theorem and (7.50), we obtain

/ / Ap (z,y) dtdp (x) = /OOO (/Mpt (z,y)dp (a:)) e odt < /OOo e dt = a1,

which implies that the function x — 7, (z,y) belongs to L' (M) and

/ra%wwu@Sal.
M

Since 7, (z,y) is symmetric in z,y, the same applies to the function y —
ro (x,y). To prove (9.59), fix y € M and show that, for any ¢ € D (M),

(—Apra +are, @) = ¢ (y). (B.176)
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Indeed, we have

(—Aura +are,p) = (Taa_AuSO+aS0):/ Ta () (—Aup + ap) du

([ e

= [ [ et (et ap) dude
0 M

= /Ooo (/M (—Au +aid) pe (- y) godu) e tdt

_ /OOO (/M <_% —|—aid> i (49) wd#) ot dt

(e™“pi (- y)) pdudt

a —at
(E /Me Pe (5 y) sodu) dt

= - [/Me‘atpt (+y) wdﬂ]:o
= —[e*Pe )],

(here the derivative 0/0t and the integral can be interchanged because the
function p; (+,y) ¢ under the integral is smooth and compactly supported).
Since Py is a bounded function and Py (y) — ¢ (y) as t — 0, (B.176)
follows.

/0 ety (- y) dt) (— Ao+ ag) du

Solutions to Chapter 10

10.1. By hypothesis, for any point z € S there is a ball B (z,r;) of a
positive radius r, such that the only point of S inside this ball is x. We
claim that all balls {B (z,7,/2)},cg are disjoint. Indeed, if z,y are two
distinct points from S then y ¢ B (z,7;) and = ¢ B (y,r,) whence

d(z,y) > 1y and d(z,y) > ry.
Hence,
Ty Ty
d >4 4
(z,y) 2 5 + 5
which implies that the balls B (z,7,/2) and B (y,r,/2) are disjoint.

Since X is a separable, there is a countable set Y C X which is dense in
X. Hence, each ball B (z,r,/2) contains a point from Y, and different balls
contain different points. This obviously implies that the family of all balls
{B (x,72/2)},cg is at most countable, whence the claim follows.

10.2. Let {v} be an orthonormal basis in the Hilbert space H such that
each vy is either contained in ran FEy or is orthogonal to ran Ey. Since Ey
is a projector, in the first case we have Eyv, = v whereas in the second
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case Eyvgp = 0. Using Lemma 10.4 and the definition (10.3) of m (U), we
obtain

trace By = Z (Eyvg,vg) = Z 1 =dimran Ey = m (U).

k v Eran By

10.3. Left to the reader
10.4. Left to the reader
10.5. Using (10.31), we obtain

(Pif, f) = (Poyafs Pijaf) = [1Py2f1” < exp (= Amint) | £,
which was to be proved.

10.6. (a) Since

)\min Q) = inf R
() fecge()\{0} ()

and Cgo (Ql) C Cgo (Qg), we obtain Apin (Ql) > Amin (Qg) .
(b) It is obvious that f € C§° (2) if and only if fi := fla, € C5° (%)
for all k. Clearly, we have
R(f) = Dok fgk IV fil? dp
>k ka 7 du

(note that some of functions f; may identically vanish; in this case set
R (fx) = +00). Taking inf in f, we obtain

)\min (Q) Z i%f >\min (Qk) . (B177)

> nf R (fy)

On the other hand, since 2 D Qy, we have also Apin (£2) < Amin (%) whence
the opposite inequality in (B.177) follows.
(c) By part (a), the sequence {Apin ()} decreases and

)\min (Qk) > )\min (Q) . (B178)

To prove the opposite inequality, observe that, for any f € C3° (Q2), there is
a set 2 that contains supp f and, hence,

Amin (Qk) <R (f) :
Taking infimum over all such f, we obtain

lim Amin (Qk> = inf Amin (Qk> < Amin (Q) s
k—o0 k

which together with (B.178) proves the claim.
10.7. It follows from (10.23) and Exercise 3.5, that

<BA”/2)71 dp < dii < (BA"/2) dys

and
—1 2 2 2
A7 [Velg < |Velz < AVl .
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By Theorem 10.8, we have

- Vol2dn
R (M) = inf f’;;'gf,
peC (N0} [ p2dp

whence it follows that

(A™1B) ™ Auin (M) < Aanin (M) < (A" B?) A (M)

10.8. Replacing in (10.25) f by f2, we obtain

T IV du o AUV dne 2 IV f e IV fllze
h (M _ _ '
e W= ey Iy 7 TR PR T P

Taking inf in f, we obtain

B (M) < 2 (Anin (M))'/?,

whence (10.26) follows.
10.9. Left to the reader

10.10. (a) Consider a function ¢ such that ¢ = 1 on one of the compo-
nents of M and ¢ = 0 on the other components. Since ¢ € C§° (M) and
Aup = 0, we see ¢ is an eigenfunction of £ = —A#|W02 with eigenvalue 0.
Obviously, there are m linearly independent eigenfunctions as above, whence
it follows that A (M) = 0 for all £ < m.

To prove that A,,11 (M) > 0, we need to show that any eigenfunction u
of 0 is a linear combination of the above eigenfunctions. For that, it suffices
to verify that u = const on any component of M. Since u € L? and Ayu =0,
Corollary 7.3 implies that v € C* (M) = C§° (M). By the Green formula,

/ \Vul? dy = —/ uljudp =0,
M M

which implies Vu =0 on M.
For any two points x,y on the same component, there is a smooth path
~ connecting x and y. Then, by (3.103) and (3.17),

Dot (1) = 3 (1) () = (Ve (1)) = 0,

so that u (7 (t)) = const. It follows that u (z) = u (y) and, hence, u = const
on this component, which finishes the proof.

(b) This follows from A, 41 (M) > 0 and Ay, (M) = 0.

10.11. By Exercise 10.10, we have A\; (M) = 0 and A2 (M) > 0. The
first eigenfunction (; is constant, and the condition ||p1||z2 =1 yields ¢ =

1(M). Therefore, the eigenfunction expansion (10.33) yields
o

1 N ot
pt(x,y):erge Mo () ex (1)
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where A\, = A\, (M), whence

1 At
Sup | (z,9) u(M)’ < ;e IZ%%I% () er (y)] -
Since Ay > 0, the right hand side here tends to 0 as ¢ — oo by Remark
10.15.

An alternative solution follows from Exercise 11.21.

10.12. Note that ¢; () > 0 by Theorem 10.11. By the identity (10.33)
of Theorem 10.13, we have

p? (.’E,y) 1 — ; S e_()‘k_)‘l)t x
v @ o1 0) 1 o (@) o1 ) ; ok () pr (y) -

By Theorem 10.23, we have Ao > A\;. Consequently, there is € > 0 such that
A — A1 > e, for all k > 2.

Hence, we have

0o o
> e Wl (@) o ()| < e sup o () o (9)]
Pt 2 z,yeM

Since Ao > 0, the right hand side tends to 0 as ¢ — oo by Remark 10.15,
which finishes the proof.
10.13. It follows from (10.50) that, for all ¢ > 0,

sup |y, ()| < Cet (14+¢79) .
z€eQN

Choosing t = 1/, we obtain the required estimate.
10.14. (a) Using Py = e ¥, = e Py, and the symmetry of P;, we
obtain
(jjtfa (pk)L2 = (f7 Rﬁ%pk) = e_t/\k (f: Sok) = e_t)\kak-
Hence, P, f has the following expansion in the basis ¢y:

Pf = Z e Magop. (B.179)
k

Let us show that this series converges also in L? (R4 x M). Indeed, for
any t > 0 and positive integer N, we have

N
1Pf = e Marprlfe = Y e Mag < Y af
k=1

k>N k>N

so that the L? (M)-convergence of the series (B.179) is uniform in t. It
follows that the series converges in L? ([a, 8] x M) for any bounded interval
[, B] € Ry. Finally, since all the terms e !¢y, (z) in (B.179) solve the
heat equation, the convergence is in C*° (R4 x M) by Theorem 7.4.

(b) As in the proof of Theorem 10.13, we have, for any z € M and t > 0,

— ot

(Ptas 0k) 2 = Prpr () = e oy (z) o (),
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which implies
Pra=» e oy (z)er,
k

where the series converges in L? (M). Similarly to part (a), we obtain

N

— —2)
Ipte =D e or () @rllTon = Y e ek (@),
k=1 k>N

whence, integrating also in x € M,
N
Y 2 —2A,t
Ipe (2, y) =Y e Moo (@) or W) 32 arany = D €r
k=1 k>N

By hypothesis, the right hand side is finite and tends to 0 as N — oo locally
uniformly in ¢. Integrating the previous line also in ¢ over a bounded interval
[a, B] C Ry and passing to the limit as N — oo, we obtain that

pr(z,y) =D e Moy (2) ok (y),
k

where the series converges in L? ([a, 8] x M x M). Finally, the convergence
in the sense of C*° (R4 x M x M) follows in the same way as in the last
paragraph of the proof of Theorem 10.13.

10.15. (a) Let {vx} be any orthonormal basis in L?. Since the operators
P, and R’ are bounded, all v belong to their domains. By Exercise 5.11,
we have the identity

[ee) ts—l

s _ -z -t P, .
(R°vg, vg) /0 F(s)e (P, vg) dt

Summing up in all £ and using Lemma 10.4, we obtain (10.60).
(b) By Lemma 10.14, we have, for all 0 < t < 1,

trace P, = tracePf/Q:/ / pf/2 (x,y) du (z)du (y)
MJm
= /pt(w,w) dp ()
M

< CtVu(M).

It follows from (a) that

o0 ps—v—1

e tdt.

trace R}, < const /
o T'(k)

The integral always converges at oo and converges at 0 provided s > v,
whence the claim follows.
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10.16. (a) We have
W) = [ @) du

< /th/g (z,9)? du(y).

Since € is compact, we obtain by Theorem 7.7 for all z € Q and 0 < t < 1,

[ s .90 () < 500 sl any <
zeQ

where o is the smallest integer larger than n/4, whence
P (z,x) < Ct™2°.

Consider the resolvent Rq = (id +£Q) - By Exercise 10.15, we obtain that
trace R¢, < oo provided s > 20. On the other hand, since the eigenvalues of
§ are (14 \;)~°, we have by (10.14)

[e.o]
trace Rg, = Z (1+ M) "
k=1
Hence, the series here converges for s > 20, whence (10.61) follows.
(b) We need to prove that

o0

Z ek | sup |gr| < oo.
k=1

This will imply that the sum ), cxpy is a continuous function, which, being
equal to f almost everywhere, must coincide with f pointwise.

In the view of the estimate (10.57) of Exercise 10.13, it suffices to show
that

(o, ¢]
D X k| < 0. (B.180)
k=1

Restricting the summation to those k& where A; # 0 and using the Cauchy-
Schwarz inequality, we obtain, for any s > 0,

1/2

D A7 el < (Z A§”+Sci> SN (B.181)
k=1

k=1 k:Ap>0

By part (a), the last term here is finite provided s is large enough. To
estimate the middle term, observe that (—A,)™ f € C§° (Q) for any positive
integer m, whence it follows that f € dom (EQ)m and

(€™ fron) = (£ (£ o) = X (£.00) = Men.
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By the Parseval identity, we have
S = 1 (£%)" £y < o (B.152)
k=1
Hence, the middle term in (B.181) is finite for any s > 0, whence (B.180)
follows.

REMARK. Let {fi},c; be a family of functions from C§° (22) depending on
some parameter ¢. It follows from the above argument that the Fourier series
of f; converges to f; (z) absolutely and uniformly both in z and 4, provided
each norm ||AT fi z2(q) is bounded uniformly in i.

10.17. Let f € C(M). By Exercise 10.14, for any ¢ > 0, the function
P.f can be uniformly approximated by linear combinations of ¢ (this also
follows from Exercise 10.16 because Pif € C3°(M)). Since Pf =3 f as
t — 0 (cf. Theorem 7.16), the same applies to f.

10.18. (i) If ¢ is an eigenfunction of A, on S with an eigenvalue A then
©" + Ap = 0. This implies that A = k? where k is a non-negative integer,
and the corresponding eigenfunction ¢ is given by

p = const, iftk=0,
o =Crcoskr + Cosinkzx, if k> 0.
Hence, we obtain an orthonormal basis of eigenfunctions
1 cosz sinzx coskx sinkx
\/%7 \/E ) \/E LA ﬁ ) ﬁ L)
whence, by (10.33),

I 1
Pt (z,y) o + - Z et cos kz cos ky + — Z e ¥ sin kx sin ky
k=1 k=1
11
= 5 + ;Ze_kztcosk(.r—y).
k=1
(i) Set

q (z,y) = Y _ P (x + 27n,y)
nez
and observe that the series converges in any reasonable sense because p; (z, y)
decays quickly in |z —y|. Using the fact that p; (z,y) satisfies the heat
equation in ¢,z for any fixed y, it is easy to show that so does ¢ (z,y).
Next, we have

27 (')
/Slqt(w,y)de/o qt(:v,y)dl‘:/ Pt (z,y)dr =1,

—00

and
y+e y+e

/ qt(m,y)dmZ/ pt (z,y)der — 1 as e — 0.
Y

—€ y—e
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Hence, ¢; (z,y) is a regular fundamental solution to the heat equation on
S!. Since S! is stochastically complete (cf. Exercise 8.7), we conclude by
Corollary 9.6 that g; (z,%) is the heat kernel on S'.

(737) Rewrite (10.62) as follows
1
pe(z,y) = — Z e Fcosk (x—y). (B.183)

27
kEZ

In particular, for x = y = 0 we obtain
1 7k2t
pe(0,0) = - et (B.184)
keZ
From (10.63) at x = y = 0, we obtain

1 m2n?
p (0,0) = ————exp (——) .
% (4mt)/? t
Comparing the above two lines, we obtain (10.64).

10.19. Let (r,0) be the polar coordinates on R™"!. By (3.83) we have
o0*p nopP 1

Apni1i P = — + — —Agn P.
Rt 8r2+7'8r+r2 s
In particular, setting » = 1 and using Agn+1 P = 0, we obtain
9*P 9P
—Agnf = ——= —
s or? +n8r 1

By the homogeneity of P, we have, for x = (r,0),

T
P(z)=rkP (;) =rkf(9).
It follows that
o°P
o -

kr*=1f(0) and P _ k(k—1)r*2f ()
or?

whence
—Agnf = (k(k—1) +nk) f = of,

which was to be proved.

10.20. As was shown in Exercise 3.10, each Hermite polynomial

k
k x2 d —z2
hk (.Z') = (—1) € @6
satisfies the equation
Ay hy + 2khy, = 0. (B.185)

Let us show that hy € dom £, which will imply that hy are eigenfunctions of
L with eigenvalues 2k. Indeed, since hy, (z) is a polynomial in z, it obviously
belongs to L2(R, 1) because du = e~*"dz. By (B.185), we have also Ayhy €
L? (R, 11), which implies by Lemma 11.7 that hj € dom L.
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Since deg hy = k and, hence, the sequence {h;} spans all the polynomi-
als, the completeness of this sequence in L? (R, 1) follows from the Weier-
strass approximation theorem. Since the eigenvalues A\ = 2k do not have
finite accumulation points, we conclude that they exhaust all the spectrum
of L.

Since

trace e £ = Ze*%t < 00,
k

we can apply the eigenfunction expansion formula for the heat kernel (cf.
Exercise 10.14), that is

[e.e]

pr(my) = Y e Mop (@) vk (y)

k=0

where @}, are normalized eigenfunctions. A computation yields

[xllZ2 = Vr2tkt
whence (10.65) follows.

10.21. (a) By (10.68), we have, for any f € W (M),
(va V‘Pk)y = >\k (f7 (Pk)L2 ’ (B186)
and by (10.69),
Since the inner product in W (M) is given by
(uv U)Wl = (U’?U)L? + (Vu, VU)L2 ’

we obtain that {¢y} is an orthogonal sequence in W (M) as well.
It follows from (B.186) that, for any f € W (M),

(fyer)wr = (L4 M) (f, 1) 2 -
In particular, if (f, px)y1 = 0 for all k& then also (f, ¢r);2 = 0 and, hence,

f = 0. Therefore, {¢} is a basis in W (M).
(b) Expanding f in the basis {¢x} in W} (M) and using
(ks o)y = 1+ A,
we obtain

(frep)wr (1+ ) (f, 01) 12
/= Z AL ; (L M) (oo ZW’“

Hence, the series f = ), appy converges also in Wa (M), which implies
(10.74). Then (10.75) follows from the Parseval identity, (10.74) and (Vg, Vir) 2 =
Ak

(¢) By the symmetry of A, if f € W (M) = dom A, then

(Auf7 SOk)Lz = (f: A,u‘Pk)LQ == (fa ‘Pk)Lz = — A0k,
whence both (10.76) and (10.77) follow.
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10.22. Consider the space F' = span (f1, ..., fx), which is a k-dimensional
subspace of W (M) (functions f; are linearly independent because they have
disjoint supports). It is easy to check that, for any f € F \ {0}, we have
R (f) < a. Hence, using the identity (10.67) of Theorem 10.18, we conclude
that \x (M) < a.

10.23. By Theorem 10.20, the embedding operator W} (M) < L? (M)
is compact. As it was shown in Section 5.5, trivial extension of functions
from 2 to M determines an embedding W (2) —W{ (M). Since a compo-
sition of a bounded operator with a compact one is a compact operator, we
conclude that the composite embedding W (2) < L? (M) is a compact op-
erator. Obviously, the range of this embedding is contained in L? (£2), which
implies that the embedding W () < L? (Q2) is also compact. By Theorem
10.20, we conclude that £ has a discrete spectrum.

10.24. If {p;} is an orthonormal basis of eigenfunctions in L? (M’) and
{4;} is that of L?(M") then fi; (z,y) := ¢; (z); (y) is an orthonormal
basis in L? (M). Obviously, we have

Aufij = (Ba+ Ay) (0i (2) Y5 (y) = — (i + 55) fis
so that a; + (; are the eigenvalues in M. Since the sequence {o; + ;} has

no finite accumulation point, it represents all spectrum of M, which, hence,
is discrete.

10.25. Consider two relatively compact open sets ' € Q and let ¥ be a
cutoff function of Q' in Q. Since the sequence {u} is bounded in W1 (Q),
the sequence {ux9} is also bounded in W1 (2). Note that uxy) € Wi (Q) by
Corollary 5.6), and the embedding W, (Q) < L? () is compact by Corol-
lary 10.21. Therefore, there is a subsequence of {uy®} that converges in
L? (9); the corresponding subsequence of {u} converges in L2 (€'). Using
the diagonal process, we can choose a subsequence of {ug} that converges
in L? (Q) for all relatively compact open sets 2, which was to be proved.

10.26. If f vanishes at a point then f = 0 by the strong minimum
principle of Corollary 8.14. Hence, assume in the sequel that f > 0 and prove
that a < Apin (M). Exhausting M be a sequence of connected relatively
compact open sets {2 and noticing that Amin () = Amin (M) (cf. Exercise
10.6), it suffices to prove that a < Apin (©2) for any such Q.

The function u (¢,7) = e~ f (x) obviously satisfies the heat equation in
Ry xQand u (t,-) — f ast — 0 locally uniformly. Since u > 0, by Theorem
8.1 we conclude that u > PtQ f, which implies that

(P, Frz@) < W P
and, hence,
(P21, ) oy < €720 (B.187)
Let {px}re, be an orthonormal basis in L? (Q2) that consists of the eigen-

functions of £, and let {Ak} e be the sequence of the corresponding eigen-
values in the increasing order. Since f € L?(f2), we can expand f in this
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basis, say,
F=Y " arpr.
k

It follows from Exercise 10.14 that
(Pthv f) L2() = Z eixktafz, (B188)
k

whence
(PRF,F) oy = € Mai. (B.189)

By Theorem 10.11, we have 1 > 0 in €2, which implies that

a1=/f<P1dM>0
Q

(we can assume that  is so big that f # 0 in Q). Comparing (B.187) and
(B.189) and letting t — oo, we conclude that a < A;.

10.27. (a) The spectrum of the operator £ — «id is contained in the
interval [Amin (M) —a, +00). By the hypothesis o < Apin (M), the spectrum
of L—aid does not contain 0, which implies that it is invertible. The identity
(10.85) proved exactly in the same way as Lemma 5.10.

(b) Set v = u — 1 so that v is a function from W} (M) that must satisfy
the equation
Ay(v+1)+a(v+1)=0,
that is,
A+ av = —a.
Since constants are in L? (M), we obtain that A,v € L? (M) whence v €
dom (L£). The latter allows to rewrite the above equation in the form

Ly —av = a.
Since the operator £ — «id is invertible, this equation has a unique solution
v=(L—-aid) '

Combining with (10.85) we obtain (10.86).

Since P11 > 0, the conclusion that v > 0 seems to be a trivial con-
sequence of (10.86). However, one should make the following point clear.
The identity (10.85) and its consequence (10.86) are understood weakly. In
particular, (10.86) means that, for any ¢ € L% (M),

(u,0) = (1,) + a/ooo e (P11, ) dt.

If ¢ > 0 and ¢ # 0 then (1,¢) > 0 and (P;1,¢) > 0 whence it follows that
(u, ) > 0. This implies that v > 0 a.e..

10.28. Assume first that u satisfies a strict inequality Ayu > 0 in Q. Let
z be a point where u attains its maximum in Q. If z € 9Q then (10.87) is
trivially satisfied. Assume now that z € Q. Let x1, xa, ...z, be a coordinate
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system in a chart containing z. Recall that the Laplace operator A, is
written in the local coordinates as follows:

10 i Ou
A = —— ZJ—.
where p = T+/det g and Y is the density function of measure p. It follows
that
0%u - Ou

wtt =49 6x’8x9+b]8x9’

where

10
b]_;&zi

(pg”) -

By a linear change of the coordinates, the matrix (g” ) at the point z can
be reduced to id (cf. the proof of Theorem 8.11), which yields

0%u . 0u
Au(z) =52 9u .
) =3 G )+ 55 ()
Since z is the point of maximum of u, we have

ou 0%u
. = <
E (2) =0 and 027)? (2) <0,

whence A, u(z) <0, which contradicts the hypothesis A,u > 0.

Consider now the general case when A, u > 0. Suppose that there exists
a function v € C? (Q) such that A, v > 0 in Q. Then, for any € > 0, we
have

Ay (u+ev) >0,
and the first part of this proof applies to the function u + v and yields

sup (u + ev) = sup (u + ev)
a 0

whence (10.87) follows when £ — 0.
Let us show that such a function v always exists. For example, in R"
the following function will do:

v(z) =z =22+ ...+ 22,

because Av = 2n > 0. On an arbitrary manifold, we can use the solvability
of the weak Dirichlet problem to construct such a function. Indeed, let Q’
be a relatively compact open neighborhood of Q such that M \ € is still
non-empty. By Theorem 10.22, A\; (') > 0. By Exercise 4.28, there exists
a function v € Wy (') such that A, v =1 in  in the distributional sense.
By Corollary 7.3, v € C* (). Hence, the function v satisfies all the above
requirements, which finishes the proof.
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10.29. Using (10.84), we obtain

V27 (x,y) = (pt/2,mapt/2,y) < Hpt/2,xHL2HPt/2,yHL2

< e P 1p o 2 Psjayll2

— e 2min(M)(t-s) \/ps (l‘, .T) Ps (y: y).

Solutions to Chapter 11

11.1. All balls in (R"™, grn) are relatively compact by the Bolzano-Weierstrass

theorem. To prove that (R™, g) is complete with metric g is given by (11.1),
first observe that the geodesic ball B (0,r) centered at the origin, coin-
cides with the Euclidean ball B, = {|z| <}, because by Exercise 3.37,
d(z,0) = |x|.

Since the identity mapping between (R", gg») and (R", g) is a diffeomor-
phism, B (0,7) = B, is also relatively compact in the topology of (R",g).
By the triangle inequality, any geodesic ball B (x,r) is contained in B (0,7’)
for v’ = r + |z|, which implies that B (z,r) is relatively compact.

11.2. Let {z} be a Cauchy sequence with respect to the distance d.
Then the sequence {xj} is bounded, that is, it is contained in a geodesic
ball. Since the ball is relatively compact, the set of points {zx} is also
relatively compact and hence contains a convergent subsequence. However,
any Cauchy sequence containing a convergent subsequence, converges itself,
which was to be proved.

11.3. For function f € C! (M), the classical gradient V f coincides with
the distributional one. Therefore, we obtain by Theorem 11.3 that

sup [V f| < [|f| Lip-
The opposite inequality
[fllzip < sup [V f]
M

was shown in the proof of Corollary 11.4.

11.4. (a) The fact that ¢ is Lipschitz means that, for all XY € I :=
I x ... x I,

m 1/2
o (X) — o (V)| < lelleip | X = Y[ = [lollLip (Z | Xk — Yk\2> -

k=1

Therefore, for any two points =,y € M, setting

X = (fl (x) ooy fm (;E)) and Y = (fl (y) N (y)) )
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we obtain
@ (z) —@(y)| = leX)—e@)|<IelLplX —Y]
m 1/2
< el (Z fe (@)~ fi <y>!2>
k:; 1/2
< lellzip <Z I fll7pd” (x,y))
k=1

m 1/2
= |lellzip <Z kaH%@) d(z,y),
k=1

which proves (11.14).

(b) Prove that if f € Lipg (M) and ¢ € Lip (R) such that ¢ (0) = 0 then
po f € Lipy (M). By part (a), we have ® := po f € Lip (M). By condition
¢ (0) = 0, function ® (z) vanishes at any point x where f (x) = 0. Hence,
supp ® C supp f whence it follows that supp ® is compact and ® € Lipy (M).

11.5. Since the following functions in R? are Lipschitz:
X+Y, max (X,Y), min(X,,Y),
we conclude by Exercise 11.4 that also the functions

f+g, max(f,g), min(f,g)

are Lipschitz. If in addition f is bounded on M then fg is Lipschitz because
the function XY is Lipschitz when the domain of X is bounded.
Assume that f is bounded on supp g, say

a< f<bon suppg.
Consider function f: p o f where
¢ (t) = min (max (t,a),b).

Since ¢ is a bounded Lipschitz function on R, the function fis a bounded
Lipschitz function on M, which implies by the above argument that fg is
Lipschitz. Since f = f on supp g, we have fg = fg so that fg is Lipschitz.

If f+ g € Lipg then both functions f,g are bounded. Hence, all the
functions f + g, fg, max (f,g), min (f, g) are Lipschitz. Since they all have
compact supports, they belong to Lipg, which was to be proved.

11.6. Let d (z) be the distance from z to K and § = d (K, Q°). Then the

function
(6/2 —d(z))

satisfies all the required properties.
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11.7. (a) To prove that f is Lipschitz with constant C, it suffices to show
that, for any smooth path ~ : [a,b] — M such that v (a) = x and v (b) =y,

[f (2) = F (Yl < CL(). (B.190)

Consider the preimages V,, := v~ 1 (Uy) of the open sets U, and observe that
{Va} is a family of open sets in [a,b] that covers [a, b].

We claim that, for any covering {V,} of the interval [a, b] by open sets,
there exists a finite partition

a=tg<t1 <..<tym="> (B.191)

such that any interval [t;_1, ;] is contained in one of the sets V,,. By splitting
each V, into its connected components, it suffices to assume that each V, is
connected, that is, V, is an interval. Since [a, b] is compact, we can further
assume that the family {V,} is finite, say {V;}*_,. Now we can prove the
above claim by induction in k. If £ = 1 then the trivial partition a < b will
do. Consider also the case k = 2 when

[a,b] cWvinW.

If a,b € V; then [a, b] C V;, which amounts to the case k = 1. Let a € V; and
b € V5. Since the interval [a, ] is connected, the sets Vi, V5 have a common
point s € (a,b). Then the partition a < s < b satisfies the requirements.

Assuming k > 2, let us prove the inductive step from k£ — 1 to k. Since
the following £ — 1 open sets

Vi,Vo, ....Vi_o, Vi1 UV (B.192)

cover [a, b], by the inductive hypothesis, there exists a partition (B.191) such
that any interval [t;_1,¢;] is contained in one of the sets (B.192). Suppose
that, for some index j,

[tj_l, tj] C V1NV

(if such 7 does not exist then the proof is finished). Then arguing as in the
case k = 2, we split further [t;_1,¢;] into two intervals, which leads to a
required partition.

Now, having constructed a partition (B.191) as above, set x; = v (t;)
so that any two consecutive points z;_1,x; belong to the same set U,. By
hypothesis, we obtain

f (@j-1) = [ ()| < Cd(zj-1,25),
whence
I (@) = f W) <CD d(wj1,25) <CL(),
J

which finishes the proof.

(b) Using the notation of part (a), we need only to prove (B.190) when
r € By and y € Ey. The preimages v~ ! (E;) and y~! (E3) cover the interval
[a,b]. Since they are closed sets and the interval [a,b] is connected, they
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must have a common point, say ¢, which implies that z = v (¢) belongs to
both sets F7 and E5. Therefore, we obtain

[f(x) = f W <|f (@) = f@)+]f (z) = f ()| < Cd(x,2)+Cd(2,y) < CL(y),
which was to be proved.

11.8. If f € C' (M) then, for any open set Q € M, we have supg, |V f| <
oo which implies by Exercise 11.3 that f is Lipschitz in € and, hence, f €
Liploc (M )

If f € Lipjo. (M) then f € Lip () for any open Q € M, and by Theorem
11.3 we have Vf € L™ () and, hence, Vf € L2 (). Since also f € L? (1),
it follows that f € W' (Q) and, hence, f € W} (M).

11.9. Obviously, if f € Lipo (M) then f € Lipi. (M) and f has com-
pact support. Conversely, assume that f € Lipy,. (M) and f has compact
support. Let € be a relatively compact open set covering supp f. Then
f is Lipschitz in 2. On the other hand, f is Lipschitz in the open set
Y := M\ supp f because f =0 in . Since Q and Q' cover M, we conclude
by Exercise 11.7 that f € Lip (M). Since supp f is compact, we conclude
f € Lipo (M).

11.10. It suffices to prove that ® (x) is Lipschitz on any open set Q € M.
Let I, = fx (). Then Iy is a bounded subset of R, which implies that the
the product I = I1 X ... X I, is a relatively compact subset of R™. Hence,
¢ is Lipschitz on I. Applying Exercise 11.4 to the manifold 2, we conclude
that @ is Lipschitz on €2, which was to be proved.

11.11. This follows from Exercise 11.10 and the fact that the following
functions are locally Lipschitz in R?:

X+Y, XY, max(X,Y), min(X,Y).
(cf. Exercise 11.5).

11.12. Let 2 € M be an open set and 1 € D (M) be a cutoff function
of Q in M. By Exercises 11.9, 11.11, we have ¢ f € Lipy (M) whence, by
Theorem 11.3, V (¢ f) belongs to L>® (M). Since ¥f = f in Q, we obtain
that V f|q belongs to L (), whence the claim follows.

11.13. (a) By the argument of Exercise 11.12, it suffices to prove the
product rule when f, g € Lipy (M). By Corollary 11.4, f € Lipg (M) implies
f € W§ (M) and, hence, there is a sequence {fx} C D (M) such that

i 7. (B.193)

Furthermore, we can assume that the sequence {f;} is uniformly bounded.
Indeed, f is bounded and let C' := sup|f|. Let v € C*° (R) be a bounded
function such that 1 (t) = ¢ if |t| < C, and that v is also bounded®. Then

2To construct such a function 1, let ¢ be a cutoff function of the interval [—C, C],
and then set
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¥ (fx) C D (M) and, by Theorem 5.7, (B.193) implies

Wl
U (fr) — b (f) =F
Obviously, the sequence {¢ (fx)} is uniformly bounded, so we can rename

w (fk) into fk
Let {gx} be a similar approximation for function g € Lipy (M). Then

we have

fror 2 fg (B.194)
because
| fegr — fallz2 | fx (gr — 9) Iz + || (fe — ) gll 2

IAIA

I fxllzeellge = gllze + llgllzee|[fx = fllL> = 0.
Using the fact that the functions |V f| and |Vg| are bounded, which is due

to Theorem 11.3, we obtain in the same way that
2 2
feVge — fVg and g Vfi, — gV, (B.195)
By Lemma 4.2, (B.194) implies

,ﬁ,
V (frge) — V (f9).
On the other hand, we have
V (frgr) = ftVor + giV fr
(see Exercise 3.3), which implies by (B.195)

V (frgr) 2> Vg + gV F,

whence the claim follows.

(b) If g € C§° (M) then fg € Lipyg (M) C Wy (M) by Exercise 11.5
and Corollary 11.12, and product rule holds by part (a). For an arbitrary
g € W} (M), the boundedness of f and V f implies that

fge L? (M) and fVg+gVfe L?(M)

so that fg € Wt (M).
By the definition of W] (M), there exists a sequence {gx} of functions

from C§° (M) such that gy W g. Hence, fg, € W¢ (M) and

2
for == fg. (B.196)
Let us show that also
2
YV (fgK) = fVg +gVf. (B.197)

Indeed, we have
V(far) = fVgr + gV f
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and

IV (fgr) = (fVg+ gV )l 1f (Var —Vg) 2 + I (9 — 9) V£llr2

<
<

which tends to 0 by the choice of the sequence {gy}.

It follows from (B.196) and (B.197) that fgx m—/; fg whence fg €
W¢ (M). Besides, (B.196) and (B.197) imply by Lemma 4.2 that

V(fg) =fVg+gVf,

which finishes the proof.
(¢) Multiplying ¢g by a cutoff function of supp f, we can assume that
g € Wt (M) (cf. Corollary 5.6). Then the claim follows from part (b).

11.14. The fact that ¢ (f) € Lipioe (M) follows from Exercise 11.10 be-
cause ¥ € Lipj, (R).

Hence, we only need to prove that chain rule. Using the argument from
the solution of Exercise 11.12, we can assume that f € Lipg (M).

If 1) = const then v (f) = const and the claim is obvious. So, subtracting
a constant from v, we can assume that ¢ (0) = 0. Since f is bounded, say
|f| < C, the values of ¢ (t) for |[t| > C are not used in v (f). Multiplying
1 by a cutoff function of the interval [—C, C], we can assume that supp ¢ is
bounded; in particular, |¢'| is bounded.

Since by Corollary 11.4, f € W} (M), the assumptions made about 1
allow to apply Theorem 5.7 (or Lemma 5.2) and to conclude that

VY (f) =4 (f) VS

11.15. Let us show that any u € W (M) belongs also to Wi (M). By
Exercise 11.13, if f € Lipy (M) then fu € W{ (M) and

V(fu) =uVf+ fVu.

Fix o € M, set B, = B (o,r) and, for some R > r > 0, choose f as follows:

1, z € By,
(@) = min (1, 52 ) = 0 0, z ¢ Br,
Rdwo) 3 ¢ B\ B,

Note that 0 < f < 1. Since d (-, 0) is a Lipschitz function with the Lipschitz
constant 1, function f is Lipschitz with the Lipschitz constant ﬁ, which

implies by Theorem 11.3 that |V f| < Rl_r. Noticing that f =1and Vf =0
in B,, we obtain

Ifu—ulf = [ (F=1)"uldu < /M\B udp (B.198)

[z IV (gr = 9) l[2 + [V fllzllgr — gll 2,
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and

IV (fu) = Vul| 2

IN

[uV fllzz + 11 (f = 1) Va2
1/2

1/2
1
(/ u2d,u> +(/ |Vu\2d;(9.199)
R—r \JmB, M\B,

By choosing R and r large enough, the right hand sides of (B.198) and
(B.199) can be made arbitrarily small, which means that u can be approx-
imated in W! (M) by functions of the form fu. Since fu € Wj (M), it
follows that also u € W3 (M).

11.16. (a) Replacing up — u by ug, we can assume that v = 0. Then the
condition (11.17) means that

(U, @) 2 + (Vug, Vo) o — 0

whence, by the definition of distributional gradient,

(uk:a QD)L2 - (uka Au‘p)L2 — 0.
Together with (11.18) this gives

(’U, SO)L2 - (’U, AMSO)LQ = 07
which implies A,v = v where A, is understood in the distributional sense.
By Lemma 11.6, we conclude that v = 0, which was to be proved.

(b) To show that the hypothesis of completeness of M cannot be dropped,
consider any incomplete manifold where there exists a non-zero function
v € W' such that Ayv = v. For example, one can take M = (0,1) and
v (z) = e*. Set up = v for all k£ so that (11.18) holds. For any ¢ € C§° (M),
we have

(uka SO)Wl = (Ua SO)LQ + (V’U, V@)[P = (U7 @)Lz - (Au’U, SD)LZ = 05
so that (11.17) holds with u = 0.
11.17. (a) Obviously, mapping J is an isometry of the Hilbert spaces

L? (M, 1) and L% (M, ) . Also, J maps D (M) onto itself. Identity (9.44),
restricted to f € D (M), can be rewritten in the following form

—A+ @ =T (-Ap) T, (B.200)

where all operators act in D (M). By Theorem 4.6, operator L is a self-
adjoint extension of —Ag|, in L* (M, 7). It follows from (B.200) that
JLJ L is a self-adjoint extension of —A, + ®|,in L? (M, p). If A is another
self-adjoint extension of —A, + ®|, in L? (M, ) then the operator J~tAJ
is a self-adjoint extension of —Aﬂ‘p in L2 (M, fz).

By hypothesis, the manifold (M, g, 1) is complete. Hence, by Theorem
11.5, _Aﬁ‘D is essentially self-adjoint, and its unique self-adjoint extension
in L2 (M, ) is L, whence we conclude £ = J'AJ and A = JLJ!. Hence,
JLJ L is a unique self-adjoint extension of —A, + ®|,, which was to be
proved.
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(b) Tt follows from £® = JLJ ! that
eftﬁé — Je—tEJ—l
which implies, for any f € L2 (M, u)

) = b [ Fi) %dﬁ )= [ i h@ ) ] @),

whence (11.20) follows.
11.18. Since A, = d‘i—z, the function h (z) = e~ 2%" satisfies the equation
Ayh=H'= (2 — 1) h = Dh.
Consider measure p given by
dii = h2dy = e dz.
As was shown in Example 9.19, the heat kernel p; of this measure is given
by
ot 2zye — (22 4 y2) et
. 172 P —4t :
(27 sinh 2t) I—e
Hence, we obtain from the identity (11.20) of Exercise 11.17 that

Pt (z,y) =

~ 1 1
i (@) = Be(z,y)exp (—5:132 - §y2)
’ by ™ — (54 7) (1
= exp - ‘
(2 sinh 2¢)/2 2(1 — e—4)

The rest follows from the elementary identity

dzye= — (22 +2) (1 + e~4) (@—y)? 2%+¢?

= — - tanh t.
2(1— %) 2 sinh 2 g
11.19. Indeed, we have
/OO rdr i/r’“ rdr
T1 f(r) k=2 Tek—1 f(/r>
(0. 0]
1 /’"’c
> rdr
g f (Tk) Tk—1
1 — 7"1%_7“1%71
> — - B.201
> o) (B.201)

We are left to observe that the series
o0 T2

2 00
E Tk—1 Tk—1
Z r2 _Z 1- r2
k k

k=2
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diverges because so does the infinite product
2
T T _
1% -0
Tk

k=2

11.20. Left to the reader

11.21. Since the constants functions are in L? (M), zero is an eigenvalue
of the Dirichlet Laplace operator £ on M with eigenfunction

1

O aan

Using the spectral decomposition

F)t — e—tﬁ :/ e—)\tdE)\
[0,+00)

and noticing that e~ — 1{x=0} as t — oo, we obtain by Lemma 4.8 that,
for any f € L? (M),

2
Pf I dENf = (f,p)p ast— oo. (B.202)
{0}
Choose f = ps gz, for some s > 0 and x € M. By Theorem 11.8, M is
stochastically complete, which implies

1 1
(ps,xa 90) ¥ = m /M ps,mdﬂ = m

Using Pips ¢ = Pt4s,z (cf. Theorem 7.13), we obtain from (B.202) that

RN t—

—— as 00.

P T )

By Theorem 7.4, we conclude that, in fact, the convergence is in C'*°, which
finishes the proof.

11.22. Consider measure p given by
dii = h2dp.

Then v (r) = p (B (zo,r)) and, by Theorem 11.8, the hypothesis (11.47)
implies that the weighted manifold (M, z) is stochastically complete. The
heat semigroup P; on (M, Ji) is given by P, = 3 0 P,oh (see Theorem 9.15).
By the stochastic completeness we have ]3,51 = 1 whence P;h = h.

11.23. One of possible solutions is as follows. By approximation argu-
ment, we can assume f € C* (0,+00). Then there exist a weighted model
manifold with the volume function V (r) such that V (r) = f (r) for r > 1.
The condition

© rdr
/ ok (B.203)
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implies by Theorem 11.14 that M is parabolic. On the other hand, by

Example 11.16, the parabolicity of the model manifold implies
* dr

— = oo, B.204

7o) (2204

which was to be proved.
Of course, there is a more direct proof of the implication (B.203) =
(B.204).

11.24. If M is stochastically incomplete then there exists a non-zero solu-
tion u to the equation A,u = u such that 0 < u < 1. In particular, A ,u > 0
that is, u is a subharmonic function. Hence, 2 — u is a positive superhar-
monic function, which implies by hypothesis of parabolicity that u = const.
The only constant solution to A,u = u is u = 0. This contradiction finishes
the proof.

11.25. It follows from Lemma 6.4 that, for any f € C§° (Q),

/f2 d1amﬂ /!Vf\ s

whence (11.62) follows by Theorem 10.8.
Any function f € C§° (B1) determines a function f € C3° (B;) by

We have

/f2 cl:c—/f2 da:—r /f2
[IvFRdz = [r2 (s (T o= [ 195 ) dy,

whence it follows that

and

R(f) =r*R(f)
and, hence,
Amin (Br) = 77 *Amin (B1) = ™2,
where ¢, := Apin (B1). Note that ¢, > 0 by the first part.

11.26. (a) The neighborhood U can be chosen sufficiently small, in par-
ticular, so that U is contained in a chart with coordinates x!,...,2". Then
we have in U

ij O O

8 Oz

= +/det gdz < Cdxz,

so that the problem amounts to the case of the Euclidean metric and the
Lebesgue measure. Hence, we can assume that M = R” and o is the origin.

Vel < C VY| B

and
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Let us construct a function ¢ € Lipy (U) such that ¢» = 1 in a neighbor-
hood of o and

/ (V2 de < e. (B.205)
U
If n > 3 then choose r > 0 so that Bs, C U, and set
1 lz| <r
2r — |x ’ )
¥ (z) = min <1, w) =< 0, |z| > 2r,
" —2T;|x‘, r<l|z| < 2r.

This function is Lipschitz with the Lipschitz constant %, which implies by
Theorem 11.3 [V#| < 1 and, hence,

1
/U|V¢]2d:r < aH (Bay) = cpr™ 2.

Choosing r sufficiently small, we obtain (B.205).
If n = 2 then choose R > r > 0 so that Bop C U, and set

L lz| <,
¥ (z) = min <1, _(101gRJ/%|xD+) -0 0, |z| > R,
og R/r WeRflal < g < R.

For this function, we have

/‘VWQd —/RWSWI(S)‘st—L/Rslds— T
U a r ~log?R/r ), “s2  logR/r’

Choosing the ratio R/r sufficiently large, we obtain (B.205).

Finally, having constructed v, consider its smooth approximation v * ¢,
where ¢ is a mollifier in R". By Lemma 2.4 and Theorem 2.13, ¢ x ¢, — ¢
as € — 0 where the convergence is both uniform and in the norm of W (U).
Clearly, for small enough ¢, function 9 * ¢, belongs to C§° (U), is equal
to 1 in a neighborhood of o, and its energy integral is sufficiently small.
Renaming v * ¢, to 1, we finish the proof.

(b) By Exercise 10.6, we have

Amin (M \ {0}) > Amin (M) 5

so we only have to prove the opposite inequality. By Theorem 10.8, it suffices
to show that, for any non-zero f € C§° (M) and any € > 0 there non-zero
exists g € C5° (M \ {o}) such that

R(g) <R(f) +e.

Let U be a small neighborhood of o and ¢ be a cutoff function of {0} in
U, which exists by part (a). Then function ¢ = (1 — 1) f vanishes in a
neighborhood of o and, hence, belongs to C5° (M \ {o}). For this function,
we have

22: 1— 2 2d 2d
gl /M( V)2 f uZ/M\Uf p
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and
IVgllpe = | (1 =) Vf = V|2 <[V fllzz +sup | f[ [V 2.

By closing U sufficiently small, we obtain

gLz = 1 Fllz2 — e,

and by choosing v with sufficiently small energy integral as in part (a), we
obtain
IVgllLe < IV flz2 +e,
whence the claim follows.
(c) Let M = S! so that Ay (M) = 0. The set St \ {o} is isometric to
the open interval I = (0, 27), while Ayin (I) > 0.

11.27. Set p (z) = d (z, o) and show that e € L' (M) for any 3 > «,
which will imply the claim by Theorem 11.19. Indeed, fix v > 1 and consider
the balls B, = B (330, ’yk). Then we have

/ e PPdy = Z/ e PPdy < Z e_ﬁwkil,u, (Byg) - (B.206)
M\ By k=1 " Be\Bk—1 k=1

Using the hypothesis (11.64), we obtain, for large enough £,

1 (By) < exp (a’vk) :

for any prescribed o/ > a. Hence, for large enough k,
gkl _
e P w (By) < exp (—fyk 1 (ﬂ — o/’y)) .

Since 3 > a, we can choose o/ close enough to a and ~y close enough to 1
to ensure that 8 — o’y > 0, which implies the convergence of the series in
(B.206). Hence, e 7 € L' (M), which was to be proved.

11.28. Note that a model based on R is complete by Exercise 11.1. The
condition (11.65) implies that, for any € > 0 and for all large enough r,

S (r)

S (r)

Integrating this inequality, we obtain

S (r) < Celoter,

<a+e.

and, hence,
T
V()= / S(t)dt < ¢+ Celotor,
0
where V' (r) is the volume function of M. This obviously implies

1
limsup —log V (r) < «,

r—oo T

and we conclude by Exercise 11.27 that

Oé2

Amin]\j S_
() < 5
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To prove the lower bound for Ay (M), observe that by Exercise 11.26,
Amin (M) = Amin (M/) )

where M" = M \ {o}. Consider the function p (x) = |z| in M’. In the polar
coordinates (r,#), we have p = r and, by (3.93) or (8.42),

LI

sP =5

By the first condition in (11.65), we obtain A,p > o and, by Theorem
11.17,

AMPZPH"F

oy s (@)
AIl'llI‘l (M) Z 4 Y

which was to be proved.

Solutions to Chapter 12

12.1. As in the proof of Theorem 12.1, we can replace M by a relatively
compact open set 2. Besides, by the same approximation argument, we can
assume that f € C3° (). Since

HPthHoo < ”f”oo =:a,

the range of all functions P{lf, t > 0, is within a bounded interval [0, a].
Since @' is bounded on this interval, say by C, we obtain, for all s,¢ > 0,

@ (P2F) =@ (Pf)| < C|R2S = PP
1
Since Pff L Pf'f as s — t we conclude that J (t) is continuous in ¢ > 0.
It is suffices to show that J’(t) < 0 for t > 0. Setting u = P{’f and

differentiating in ¢ (which is justified as in the proof of Theorem 12.1), we
obtain

I ) = /M <<1>' (u) % + B (u) %) edy
< [ (2 au- 25 veR) an

- — / <<I>"(u) Vul? + @ (u) (Vu, VE) +
M

@)
44
D (u)
44

In the brackets we have a quadratic polynomial of |Vu| and |V¢|, which is
non-negative because by (12.10)

|V£|2) m

IN

—/ (cp" (v) |[Vul® + @ (u) |[Vu||VE| + |vg\2> eSdp.
M

72 ,,(IJ(U)
(@) <42 5

Hence, J’ < 0, which finishes the proof.
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12.2. Using |Vd (-, A)| <1, we obtain
23
at

By Theorem 12.1, we conclude that the function

J(t) = /M (Puf)? Sty

1 2
+§\V§! <

satisfies the inequality
J(t) < J(0) exp (—2Amin (M) t) .
If x € A then £(0,z) = 0 whence we obtain

~ [ Pau=1113
A
If z € B then d(z,A) > d(B, A), which implies

J(t) = /B(Ptf) > exp <ad(A,B) - %2t)/B(Ptf)2du

Combining the above three lines, we obtain

[ R < e (St - ad(4,B) ~ 2 (1),
B

Setting here a = d(A, B)/t we finish the proof.

12.3. (a) Left to the reader

(b) Replacing f and g by functions f14 and glp where A and B are
compact subsets of supp f and supp g, respectively, we reduce the question
to the case when f and g have compact supports. Next, approximating f
and g by Cg° functions with close L?-norms and supports, we see that it
suffices to prove (12.18) for f,g € C§° (M). Let us use the cos-wave operator
C; = cos (tﬁl/ 2) from Exercise 4.52. By Exercise 7.20, the function Cyf is
C* smooth in R x M and solves in R x M the wave equation. By part (a),
the support of C;f is contained in the closed |t|-neighborhood of supp f.
It follows that if 0 < s < r then supp Csf is disjoint with supp g whence
(Csf,g) = 0. Therefore, the integration in s in the transmutation formula
(B.100) can be reduced to s € [r, +oo) that is,

#h) = [ e (-5) (Cto)ds

Using |(Cuf,9)] < [1£]; lglly, we obtain (12.18).

12.4. By Theorem 8.18, it suffices to show that if u is a bounded solution
of the heat equation in (0,7) x M and u(¢,-) — 0 as t — 0 then u = 0.
Applying the estimate (12.39) of Corollary 12.11 with B = B (z,71%), A =
B (z,r;/2), R =r}/2 and using (12.42) we obtain

2 2
[ ) dus e (Ol max (.1 ) exp (< 3F 41)
B(I,’!‘k) St 8t
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Choose t small enough so that é > (. Then letting rp, — oo, we obtain
that the right hand side goes to 0, whence it follows that w (-,¢) =0 on M.
Repeating the same argument with a shift of time, we obtain in the end that
u(,t) =0 for all t € (0,T).
12.5. (a) Fix any compact subset K of B¢ and consider the function
u (t, ) = Pt (flK) .
By Theorem 7.10, w is a smooth solution to the heat equation in (0, +00)x M.

2
Moreover, since flyx € L? (M), we have by Theorem 4.9 that u (¢, ) Lan

2
flg as t — 0 whence it follows that w (¢,-) L—(;B ) 0. Applying the inequal-

ity (12.39) of Corollary 12.11 (see also Remark 12.10) and using |ju|[ze <
| |l Lo, we obtain

2 R? R2
[ P10 dn (@) < 0 (B) 15 (g 1) exp (—5 ; 1) |
A

Exhausting B¢ by a sequence of compact sets K, we obtain (12.43).
(b) Applying (12.43) with f = 1gc and then using the Cauchy-Schwarz
inequality, we obtain (12.44).

Solutions to Chapter 13

13.1. (a) By Exercise 10.11, p; (z,y) — m as t — oo whence

g(z,y) :/Ooopt (z,y) dt = oo.

(b) If h (z) is a fundamental solution at z¢ then, for any ¢ € C5° (M),

/ h(2) (D) di = — (z0)
M

If M is compact then setting here ¢ = 1 we obtain a contradiction since the
left hand side vanishes, while the right hand side is equal to 1.

13.2. (a) By Exercise 3.24, the function h (z) is harmonic in M \ {o}.
Let us show that h € L' (Bg). Since h (x) depends only on r = |z, we will
write h (r) instead of h (z). Then we have

/Bth” = /ORh(T)S(r)dr:/ORS(T) TR%

B oat ot
= /0 m/OS(T)dT. (B.207)

In the bounded range of 7, S (r) is of the order "~ ! where n = dim M.
Therefore,

I "
—— | S(r)dr~ =t
S(t) /O (r)dr = g3 =1,

whence the convergence of the integral (B.207) follows.
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Finally, let us show that —A,h = d,, that is, for any ¢ € C3° (Br),

/ (D) hdu = —p (o).
M

Indeed, using the Green formula (3.97) from Exercise 3.25, we obtain, for
any € > 0,

[ @uohdn = [ edhdnk [ (oo oh) dus,
BR\BE BR\BS SR

—/(%h—¢MNM&-

Se

Since A h =0in Bg \ B; and ¢ = ¢, = 0 on Sg, we obtain
| @uphdn = = [ (o= phi)dus
Br\B: Se

— h(e) /S erdus, + by () /S o dyus, (B.208)

/ Sord,uSE
Se

where C' is the supremum of |Vg| in a neighborhood of 0. Since

B qr {5, n > 2,

h(e)S(e) =5 (e) S "\ elog®, n=2,

As e — 0, we have

<CS(e),

Y

it follows that
lim A (5)/ ordps. = 0.
Se

e—0

On the other hand, using that A, (¢) = —ﬁa) and

| pdus. ~o(0)5() as = -0,

Se

we obtain that
lim A, (8)/; pdus, = — (o).

e—0
It follows from (B.208) that
| Guphdu=tim [ (auphdi=—p ),
M e—0 BR\BE

which was to be proved.
(b) In R™ we have S (1) = w,r™ ! (cf. (3.91)). Taking R = 1, we obtain
from part (a) the following fundamental solution

1 dr 71 n—2 "~ ,,1L_ ) n#27
m@:/ :{E%@x "n=2)
2w

n—1 1 —
|| wnTr 2] n = 2.
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Adding a constant in the case n # 2, we see that also the function
1

wp (n —2) |z[" 2

h(x)=

is a fundamental solution at the origin (cf. (13.5)).
More generally, if the radius of a model manifold is co and

> dr <
S(r)
then also the function ~ g
.
x) = — (B.209)
o) S ()

is a fundamental solution at the pole because it differs from f 2| S ) by an
additive constant.
In H” we have S (r) = w, sinh” ! r whence we obtain the fundamental

solution at the pole:
1 [ dr
h = — _—
(@) = - /| —

2| sinh" Ly

13.3. By Corollary 8.12, we have p; (z,y) > 0 for all x,y € M, whence
we conclude by (13.3) that g (z,y) > 0.

13.4. By computation (13.15) from the proof of Lemma 13.5, we have
the identity

@Mm»ua&gmwmmwmmw:[mmmmMa

for all x,x¢g € M. By switching zy and z, we obtain

BﬂmﬁuzﬁﬁﬂawﬂmwﬂMw=Amm®m@%-

Observing that ps (zg, z) = ps (z, x¢), we obtain the desired identity P.g (o, ) =

Gpt (1’07 ) .

13.5. Function g (z,y) is always measurable on M x M by (13.3). As
it was shown in the proof of Theorem 13.4, for any compact K C M, the
function

zH/gmww@

is locally bounded. This implies that g € LloC (M x M) and, hence, g can
be considered as a distribution on M x M. The Laplace operator on M x M
is Ay + Ay, where A, and A, are both the Laplace operator on M with
respect to the variables x and y, respectively. Since away from diag

Actg (may) = Ayg (x7y) = 07

we conclude that the function g (z,y) is harmonic in (x,y) in M x M \ g
and, hence, g is C*° smooth in this domain.
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13.6. Since the Green operator G in the inverse to the Dirichlet Laplace
operator L, it follows

1
spec G C [0, : ,
whence .
G
161 < 1

Alternatively, this can be seen directly from the definition (13.1) which im-
plies that

Tl /0 |Pfdt < /0 e mint | £ d =

where we have also used (10.31).

13.7. Using the estimate (13.19) of Exercise 13.6 and the fact that 1 €
L? (M), we obtain

// (@.9) du (@) du(y) = (GL ) < 1

whence the claim follows.

13.8. This follows from the fact that pi** (z,y) T p¢ (x,y) (cf. Exercise
7.40) and (13.3), (13.4).

13.9. Use the resolvent R, f and observe that

Rf= [ e mina 2 [T (ng)a =G
0 0
as a | 0. By Exercise 5.23, we have, for any a > 0,

R.,f < Rgf—kesupRaf
M\K

< GUf +esupGf.
M\K

171,

mlIl

Letting a — 0 we obtain (13.20).

13.10. (a) Let V be an open neighborhood of xy in 2 such that ¢ =1
in V, and let Q' be a relatively compact open neighborhood of Q such that
M \ € is non-empty. By Theorem 10.22, Apin (') > 0, and by Theorem
13.4, g% is finite. Since the function ¢ (xg,) is continuous in '\ {zo}, it
follows that

C = sup ¢ (z,-) < 0.
N%
Setting for simplicity v = ¢ (z¢,-) and using ¢ < ¢*, we obtain that
v < Cin Q\ V. It follows that

(1—p)v=(1—-¢)min(v,C).

Indeed, in V we have ¢ = 1 so that the both side vanish, while outside V'
we have v = min (v,C). By Corollary 13.6, we have min (v,C) € Wy (),
whence also (1 — @) min (v, C) and, hence, (1 — ¢)v are in Wg (€2).
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REMARK. The hypothesis that M \ © is non-empty is used twice: to ensure
that Amin (2) > 0 and to ensure the boundedness of g% (zg,-) away from
V via comparison with ¢ (zo,-). However, the latter is true always, as
one will see from Exercise 13.31. Hence, the hypothesis of non-emptiness of
M \ Q can be relaxed to the assumption Ay, (2) > 0.

(b) Let ¢ be a cutoff function of {zp} in U. Set
U= gQ (LL‘(), ) - gU (.’EO, )
so that u is a harmonic function in U. Observing that
u=pu+(1—9)u,
where pu € C§°(Q) and (1 —p)u € W3 (Q) by part (a), we obtain that
u € Wi (Q).
13.11. Consider function
¢ (s) = (min (s,b) —a)
so that
v(z) =a+¢(g(zo,2)).
Hence, it suffices to prove that the function u = ¥ (g (xo,-)) belongs to
W1 (M) and
IVull3: <b—a. (B.210)
As in the proof of Corollary 13.6, construct a sequence {v¢y} of smooth
functions on [0, +00) satisfying (13.12) and such that 0 < ¢, < 1 and
Y (s) T (s) as k — oo. Indeed, it suffices to choose ¢} € C§° (a,b) so that

Y, T 1 on (a,b) as k — oo, and then define v, by integration of ;. By
Lemma 13.5, we conclude that uy := ¥, (g (zo,-)) € W§ and

Vg2, s/ [l (s)[? ds < sup Wl sup e < supdh = b — a.
0

Passing to the limit as k¥ — oo, we obtain (B.210).

13.12. Let {Q} be a compact exhaustion of M such that zy € Qy for
all k. Since M is non-compact, we have by Theorem 10.22 A, (%) > 0.
Setting

Ug = min (ng (3307 ) 7C)
we obtain by Corollary 13.6 that uj, € W{ () and
IVur72(,) < e

Fix some index m. By Exercise 13.8, uy, (z) T u (x) as k — oo for all z € (,.
Since u is bounded in €2, and, hence, u € L? (Q,,), we obtain by Exercise
4.18 that u € W1 (,,) and

IVullZ2q,,) < e

Letting m — oo, we finish the proof.
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13.13. By Theorem 10.13, the spectrum of the Dirichlet Laplace operator
£ is discrete; let it be the sequence {Mk}re; in the increasing order so that
Amin () = A1.

Let ¢ be the eigenfunction of \;, normalized in L? (Q2). By Theorem
10.11, we can assume that ¢ (z) > 0 in Q. If A; = 0 then by Exercise 10.12

pi (z,y) = ¢ (z) ¢ (y) ast — oo.

which implies ¢ (z,y) = co. Hence, the estimate (13.21) is trivially satis-
fied.

Assume in the sequel that A\; > 0. Then, by Theorem 13.4, the Green
function ¢® is finite. By Exercise 10.13, the function ¢ is bounded. Let us
renormalize ¢ so that

sup ¢ (z) = 1.
zeQ
For any z € 2, we have then
6% (@) = [ @ e dut) < [ @nde). B2
On the other hand, we have
L% = M.

Since by Theorem 13.4, G is the inverse of £L? in L? (Q), applying here G,
we obtain

Y = AlGQgO.
Combining with (B.211), we obtain

¢ (v) SM/QQQ (z,y) du(y) -

Finally, taking sup in z € , we obtain (13.21).

13.14. Note that by Theorem 10.13 the spectrum of {2 is discrete, and
A1 > 0 by Theorem 10.22. Then the Green function ¢% is finite by The-
orem 13.4. By Exercise 13.7, we have ¢ € L' (Q x Q) so that ¢ can be
considered as a distribution on 2 x €. We need to prove that, for any
feC(QxQ)

(9", f) ZZ)\%(M®%J‘), (B.212)
k=1

where the brackets stand for the pairing of functions in 2 x Q and

(or @ ¢r) (,y) = ¢k () ¢k (y) -

Fix a function f (z,y) € C§° (2 x ) and consider for any = € € the Fourier
expansion

Fly) = c(@)en), (B.213)
k=1
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where
:/ F(@,y) er (y) du (y) .-
M

By Exercise 10.16, for any fixed z € Q, the series in (B.213) converges to
f (z,y) absolutely and uniformly in y € €. Moreover, as it is remarked in
Solution to Exercise 10.16, the convergence is uniform both in z and y in Q
provided the norm
||AZ‘f (z,-) HL2(Q)

is uniformly bounded in x for any positive integer m, which is clearly the
case because f € C5° (Q2 x Q).

Since the Green operator G is a bounded inverse to £%, we have for
any function 1 € L? with Fourier series ¢ = >k Ak that

620 () = 6 = Pt = 3 o,
k

where the convergence is in L2 (Q). Applying this for ¢ = f (z,-) with a
fixed x € (), we obtain the identity

[ ware) e =Y L0, @2y
Q k

k=1

where the convergence is in L? (£2) with respect to the variable y. However,

(z)

since the series Y oo | C’“)\k ¢k (y) converges uniformly in z and y, its sum is

a continuous function of 2 and y. Since also G*f (z,-) is also continuous by
Theorem 13.4, we conclude that the identity (B.214) holds pointwise, and
the convergence is uniform jointly in z,y € €.

Setting in (B.214) x = y and integrating in x, we obtain

// (z,2) f(z,2)dp () dp (2 Z)\k//fwys% z) er (y) dp (z) dp (y)

which is equivalent to (B.212).

13.15. (a) If P,fx < fr and by the monotone convergence theorem
P, fi — P,f, it follows that P, f < f.

(b) For any i € I, we have P,f < P,f; < f;, whence

Pf <inff, = f.
el

13.16. (a) By definition, the inequality P,f < f is satisfied almost ev-
erywhere. Since the both functions P;f and f are continuous, it follows
that this inequality is satisfied pointwise. To prove that P.f (z) — f ()
pointwise, fix a point x € M and choose a cutoff function ¢ of the point x.
Since fy € Cp (M), we have by Theorem 7.16 that P; (fy) — f¢ pointwise
as t — 0. In particular, it follows that

P (fe)(x) = fo(z) = f(z).
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Since
Py (fe)(z) < Pif (z) < f (),

it follows that P, f (x) — f ().

(b) Let inf f = m. Since M is stochastically complete, we have P,1 = 1,
whence

Pf > Pbm =m.

If f (x) = m at some point z then by part (a) we have P, f (z) < f (x) = m,
whence P;f (z) = m. Since P;f solves the heat equation in Ry x M (cf.
Exercise 7.30), we conclude by the strong parabolic minimum principle of
Theorem 8.11, that P;f = m. Letting t — 0, we obtain f = m.

(c) Use the same argument as in the proof of Corollary 8.16.

13.17. Fix xp € M. By (13.15) and Exercise 13.4, we have

Pig (3707 ) = Gpy (CC(), ) = /toops (xo, ) ds < 9(3707 ) :

Hence, g (z9, ) is superaveraging.

13.18. (a) By (13.24), the function v = u — f belongs to W (Q). Ex-
tending v by setting v = 0 outside £, we obtain v € W (M). Obviously, we
have the identity f = f+v on M. Hence, f € W4 (M) implies fe Wi (M).

(b) Since f > 0 and Amin (2) > 0, by Theorem 5.13 we obtain from
(13.24) that u > 0. Hence, f > 0.
Since f is superaveraging, we have A, f <0, whence
Ay (u—f)=-Au+A,f <0in Q.

Since u— f € W¢ (), Theorem 5.13 yields that u— f < 0. Therefore, fg f
in M. In particular, we have fE L2 (M).
Let us show that Ptfg f Outside € this is true because
hRf<Pf<f=F.
To prove that P,f < f inside €2, observe that the both function w; (t,-) =
Ptfv and ws (¢,-) = f: u solve the heat equation in Ry x :
dw
dt
which is understood in the sense of Theorem 5.16, that is, w (¢,-) is a path
in W(Q), & is the strong derivative in L? (2), and A,w is understood

’odt
in the distributional sense. Moreover, the both functions satisfy the same

initial condition

- Aw =0,

2(Q
w (t,-) &) ast =0,
Furthermore, these functions satisfy the conditions
ws (t,-) = f mod Wy ()

while _
wi (t,") =P f < Pf<f,
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whence it follows that

wy (t,-) — wa (t,-) <0 mod W¢ (Q).
Hence, we obtain by Theorem 5.16 that w; < ws, that is, Ptf < u in £,
which finishes the proof.

13.19. Assume first that h € W¢. Then by the Green formula of Lemma
4.4,
(_ANPL‘f? h) = (Ptf’ _Auh) < (f’ _Alth) = (Vf, Vh) ’
where we have used that® —A,h >0 and P.f < f.
For a general h € WOI, the function Ps;h belongs to VVO2 for any s > 0
and is superaveraging, because for any t > 0

P, (Psh) = Ps (P;h) < Psh.
By the above argument, we have
(_A/LPtfa Psh‘> S (vfa V-Psh) .

Since Psh VK; h as s — 0 (cf. Exercise 4.45), we can pass here to the limit
and obtain (13.25).

13.20. The condition A u; = 0 is equivalent to

(Vug, Vv) 2 = 0 for any v € Wy () (B.215)
(cf. the proof of Theorem 4.5). Setting here v = uy — f, we obtain
Vel = (Vur, V1) < IV [| V1 (B.216)
whence
Vuell < IV£]]- (B.217)

Since f € W¢ (M), there is a sequence of functions fi, € C§° (M) such that

1
fr w, f. Passing to a subsequence, we can assume that supp fr C Q.
Choosing v = fi in (B.215) and using (B.217), we obtain

(Vur, V) = (Vug, V(f = fr)) + (Vug, Vi)
[Vugl[[V (f = fe) [ +0
INVAIIY Cf = fi) -
Combining with (B.216), we conclude that

[Vugl> < VANV (f = fe) || = 0 as k — oo,

which was to be proved.
13.21. Since Apin (©2%) > 0, the weak Dirichlet problem in €y

Ajup =0,
up = h mod W (),

INIA

3Ifh e W§ is superaveraging then the fact that A,h < 0 follows also from

Ayh = L*-lim Peh—h

t—0 t

(cf. Exercise 4.40).
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has a unique solution u; € W1 (Q;). Consider the following function

hy — h in M \ Qk,
k= Uk in Qk
By Exercise 13.18, h, € W (M) and hy, is superaveraging. Since —A, P, f >
0, we obtain

/ (—AuPf) hdp < / (—ALP:f) hidp.
M\, M

By Exercise 13.19 we have, for all t > 0 and k € N,
(=AuPf, b)) < (Vf, Vhe) < VFIIVA,
and by Exercise 13.20,
|Vhi|]| = 0as k — oo.

Combining the above three lines, we finish the proof.
13.22. By Theorem 13.10, there is a constant C,, such that, for any
positive harmonic function h in B (0, 1),

sup h<C, inf h. (B.218)
B(0,1/2) B(0,1/2)

If f is a positive harmonic function in B (x,r) then the function
h(z) = f (xo+ rz)
is positive and harmonic in B (0, 1). Hence, (13.33) follows from (B.218).

13.23. Let f be a positive harmonic function in R™. Renaming f — inf f
by f, we can assume that inf f = 0. Applying the Harnack inequality (13.33)
of Exercise 13.22 in any ball B (z,r) with fixed x and r — oo, we obtain
sup f = 0, whence f =0.

13.24. If M is compact then, by Exercise 13.1, g (x,y) = oo so that the
claim is satisfied. Assume in the sequel that M is non-compact. It suffices
to prove that if g (xg,yo) < oo for some xg,yo € M, then g (z,yo) < oo for
all z # yo. Then using the symmetry of the Green function and applying
further this claim, we obtain g (z,y) < oo for all z # y.

Let {Qx} be a compact exhaustion sequence of M such zg,yp € ;.
Since M is connected, {2 can also be chosen to be connected. By Theorem
10.22, we have Apin () > 0, and by Theorem 13.4, the Green function g
is finite. By Exercise 13.8, ¢ (z,) 1 g (z,y) as k — oo for all ,y € M.
Fix some m > 1 and consider for any k£ > m the following function

U, () = g% (2, 90) — g™ (,0) -

Clearly, {uy} is an increasing sequence of harmonic functions in ,,, which
is bounded at point z9. By the Harnack principle (Corollary 13.13), we have

lim wug () < oo for all z € Q,,,
k—ro0
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whence it follows that
g (z,y0) = im w (z) + g™ (2,90) < 00
k—oo

for all z € Q, \ {yo}. Letting m — oo we obtain that g (z,y0) < oo for all
T # Yo.

13.25. Set A = Apin (M). By Exercise 12.3, we have the estimate (12.18)
but without the term e **. By Theorem 13.16, there is a positive solution h
of the equation A, h + Ah = 0 on M. Consider the new measure pi defined

by dii = h?du. By Theorem 9.15, the heat semigroup P; of the weighted
manifold (M, 1) is related to P; by

~ 1
Pt:e’\tEoPtOh.

Applying the estimate (12.18) of Exercise 12.3 to P;, we obtain that, for all
fr9 € G (M),
. © 1 82
(Bt 0) i | < W ol [ e (‘47) ds

Noticing that

~ 1 _
Pt = [ @GR gdi=e [ Pn)hod

and
1l 22y = N FRll L2 () -

we can rename everywhere fh and gh by f and g, respectively, and obtain

© 1 82
e (Pef, 9) 2y < Il L2 Hg‘L2(p)/T ﬁexp <_E) ds,

which is equivalent to (13.36). Finally, this estimate extends to arbitrary
f,g € L?> (M, ) in the same way as it was done in Exercise 12.3.

13.26. (a) By Theorem 10.22, A\; (£2) > 0 so that by Theorem 13.4 the
Green function ¢% is finite. Modifying the computation from the proof of
that lemma, we have, for all x € 2 and s > 0,

G (z) = /Q 0% (2, ) dps (9)

— /s/p? (x,y)du(y)dt+/7p? (z,y) dtdu (y)
0 Q Q s

s+ /Q / Vs (@,2) s (4, ) exp (<A (t — 8)) dt dpu (y)

IA

< s+ 0N (Q),
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where A = A\ () and
C =supps(z,2) < oo.
z€Q)
Hence, E := ||G?1]|co < 00. Then by Exercise 2.20, G is a bounded
operator in any space L", 1 <7 < 400, and |G|z < E.
Let us give also independent proofs for the boundedness of G in L>, L2, L'.
For any f € L* (12), we have

16 fllso < 1G™ ssIf oo = Bl flloo

so that HGQHLOO_H.JOO <E.
The fact that G* is a bounded operator in L? (2) follows from Theorem
13.4 because by G = (EQ)_l, the spectrum of G! is contained in [0, ).
The boundedness in L' () follows from

169 = /Mj [ o (w,y)f(y)du(y)‘dﬂ(x)

/M (/MgQ (@, y) dp (fc)) f ()l dp ()
E/le(y)du(y) = E|f|l1.

(b) If f € L? () then the fact that u = G f solves the equation —A,u =
f follows from Lemma 13.1. Assume now that f € L! (), which is the
general case, because LP (Q) C L' (Q) for any p > 1. Then the function
fr = (f ANk)V (=k) is in L? (Q) and, hence, the function uy = G f;, satisfies

the equation —A uy = fi. Since fj L—1> f and, hence, uy L—1> u, we obtain in
the limit —A,u = f.

13.27. We use the fact that if {u;} is an increasing sequence of L}
functions such that —A,u, = f and if u := limy_, o uy, is finite then u € Llloc
and —A,u = f. Indeed, the differences vy := u; —u; are harmonic functions,
and the result follows from the Harnack principle for harmonic functions
(Corollary 13.13).

Let {2} be a compact exhaustion sequence in M. Set uj, = G f.
Since f € L' (Qy), by Exercise 13.26 we have u;, € L' (€) and —Ayup = f.
By the above remark, we conclude that the function

IN

IN

U= Gf:kli_g)louk

belongs to L] . and satisfies the equation —A,u = f.

13.28. By enlarging K, we can assume that xg is an interior point of K.
Let us first consider the following special case. Let 2 be a relatively compact
open set containing K and such that M \ © is non-empty. Let v € W (Q)
be a harmonic function in €2 such that

v(z) < g% (zo,z) for all z € Q\ K.
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We claim that v < 0 in €. Choose a cutoff function ¢ of {zy} in K and a
cutoff function ¢ of K in (2, set C = supg v, and show that

v < (1=¢) g% (-,x0) + C in Q. (B.219)

Indeed, in K we have ¢» = 1, and (B.219) holds by v < C. In Q\ K we
have 1 — ¢ = 1, and (B.219) holds by v < ¢ (-, 29). By Exercise 13.10, the
function (1 — ) g% (-, o) belongs to Wi (Q). Since also Cyp € Wi (), it
follows from (B.219) that

v <0 mod Wj (Q).
Since Apin (€2) > 0, we conclude by the weak maximum principle of Theorem
5.13, that v < 0 in Q.

Returning to the general case, let {2} be a compact exhaustion se-
quence of M such that K C Q for all k. Since M is non-compact, M \
is non-empty for all k. We claim that, for any index k and any £ > 0, there
exists m large enough such that

g—g% <ein O\ K. (B.220)

Indeed, the function g*» — g%+ is harmonic in Qx4 \ {z¢} and, as m — oo,
converges pointwise monotonically to g — g*++1. Since the limit function is
continuous in Q41 \ {zo}, the convergence is locally uniform in Q11 \ {zo}
by the Dini theorem.? In particular, the convergence is uniform on €, \ K,
whence (B.220) follows.

Using (B.220) and the hypothesis u < g in M \ K, we obtain that, for
the above m and k,

vi=u—c—gPm 4+ g% < g% in O\ K.

The function v is harmonic in Q; and belongs to W' () because so do
u — ¢ and g% — g% (cf. Exercise 13.10). We conclude by the above special
case that v < 0 in g, that is,

uge—i—ggm —ng in Q.
Replacing g™ by its upper bound g, letting & — co and then ¢ — 0, we
obtain u < 0 in M, which was to be proved.
13.29. Set
u(z) = g(z,z0) —h(z).
Then u (z) is a harmonic function in M, and

limsup u (xr) > 0,
T —00
for any sequence {zy} such that z; — oo in M. By Exercise 8.5, we conclude
that w > 0 in M. Hence, g (z,z9) > h (z).
If we knew a priori that h is non-negative then the opposite inequality
would hold by Theorem 13.17. In the general case, we use again that h (z) —

4By the Harnack principle, we have in fact that g —g+1 — g—g*+1 in C™ (Qp11)
(cf. the proof of Theorem 13.17), but here we need much less.
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0, which means that, for any € > 0 there is a compact K C M such that
|h(z)| <ein M\ K. It follows that

u(z) —e < g(z,z) forall z € M\ K. (B.221)

Since u — € is harmonic, we conclude by Exercise (13.28) that u —e < 0 on
M. Since ¢ is arbitrary, we obtain v < 0 and g (x,z9) < h(x), which finishes
the proof.

13.30. (i) = (¢i) If the Green function is finite then, by Theorem 13.17,
g(z,-) € L} (M). Therefore, for any non-negative p € C§°, the function

loc

f (z) = Gy is finite. By Exercise 13.27, f € LL and —A,f = ¢. It follows
that f is a smooth non-negative superharmonic function. If ¢ # 0 then f is
non-constant.

The implication (ii) = (i7) follows from the fact that any positive
superharmonic function is also superaveraging (see Exercise 7.29).

(#i1) = (i) Let f be a non-constant positive superaveraging function.
Choose a constant c strictly between einf f and esup f and set ]?: min (f, ¢).

By Exercise 13.15, fis also superaveraging. Moreover, we claim that in fact
a strict inequality holds

Ptf~ < fa.e.

for any ¢ > 0. Indeed, by the choice of ¢, the strict inequality f < f holds
on a set of positive measure. It follows that, for all ¢t > 0 and x € M,

R (z) = /Mpt (2,9) F () du(y) < /Mpt (.9) f () du(y) = Pof < f.

In the same way, the strict inequality f < cholds on a set of positive measure
whence

Ptf< Pie <ec.
It follows that
P.f < min(f,c) = f.

For simplicity of notation, let us now rename ]7 to f so that Pf < f.
Consider a truncated Green function

T
gr (z,y) = /0 pe (z,y) dt,
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where T' € (0, +00), and obtain some upper bound for gp, which would be
uniform in 7. We have

T
/ 00 (o9) (F = Pf) () du(y) = / P,(f — Pof)ds
M 0

— /OTPsf ds—/oTPs(Ptf)dS

T T

- / P.f ds - / Poyef ds
0 0
T T+t

= / Psfds—/ Pif ds
0 t

t
/ P, f ds.
0

Since the right hand side here is independent of T', we can let 7' — oo and
obtain

IN

/ g(y) (f = Pf)(y) du(y) < oo.
M

Since the function f — P,f is strictly positive, it follows that the Green
function g (z,y) is finite, which was to be proved.

13.31. If M is compact then ¢ = oo and there is nothing to prove.
Hence, we can assume that M is non-compact. By switching to a connected
component, we can also assume that €2 is connected.

Fix once and for all a point y € Q. Let us first prove (13.40) in the case
x € Q. For that consider in 2 the function

u(@) =g (z,y) - g% (z,y),
that is harmonic in €2 and is bounded by g (z,y). In particular, we have

limsupu (z) < a:= sup g(z,y).
z—00 z€00)
It follows from the maximum principle of Exercise 8.5) that v < a in €,

which proves (13.40) in the case z € Q.
If z € 09 then (13.40) is trivially satisfied, so we are left to treat the

case = ¢ Q. In this case ¢ (z,y) = 0 and (13.40) amounts to

sup g (z,y) < sup g(z,y). (B.222)
IEM\ﬁ €00

Let {Q}r-; be a compact exhaustion of M such that Q € ;. We will show
that, for any index k,

sup g% (z,y) < sup ¢ (z,y),
ze\Q €00
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whence (B.222) will follow by letting k& — oo. By Theorem 10.22, we have
Amin () > 0, whence g% is finite by Theorem 13.4. Set

b:= sup g% (z,y)
zGQk\ﬁ

and observe that b < oo because g% < ¢g%+1 and ¢+ is continuous in
Qi \ Q. Consider in f the function

u () = min (g% (z,) ,b).
Clearly, u = ¢ (-,%) in Q4 \ Q and, hence, function u is harmonic in €, \ Q.
By Corollary 13.6, we have u € W (). Clearly, u € C (Q \ {y}). We
conclude by Exercise 7.8, applied to manifold €, and its subset €\ (which
is the exterior of a compact set ) that

sup u = sup u.
Q:\Q o0

Since the left hand side is equal to b, we obtain
b=supu < supg™ (,y),
o0 o0
which was to be proved.

13.32. We show that a fundamental solution exists at any given point
zo € M. Let {Q}r—, be a compact exhaustion sequence in M such that
all Q. are connected. Since M \ Qi # (), by Theorems 10.22 and 13.4,
the weighted manifold €, has a finite Green function ¢***, which is also a
fundamental solution of the Laplacian in €.

We can assume that zo belongs to all sets ;. Fix another point z(, that
also belongs to all €2 and set

Q /
ek =g (20, 20) -
Consider sequence of functions

fie (@) = g™ (,m0) — cx
so that fj is a fundamental solution in €2 at the point xg, and in addition
fr (z4) = 0. Fix some index m € N and consider functions

hie (2) = fr (&) = fim (2) -

Clearly, for any k£ > m, the function hy (z) is harmonic in 2, and vanishes
at z(. By the compactness principle (Theorem 13.12), there is a subsequence
{hg,} that converges to a harmonic function in €, in the sense C* (£2,,).
Therefore, the sequence { fi,} converges to a fundamental solution in ,, in
the sense of distributions in §2,,,. Using the diagonal process, the subsequence
{fk;} can be chosen so that it converges to a fundamental solution in any
Q. This implies that its limit is defined on all of M and is a fundamental
solution on M.

Note that if M is non-parabolic then by Exercise 13.30 the Green func-
tion is finite and, hence, is a (positive) fundamental solution. The above
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argument proves the existence of a signed fundamental solution on para-
bolic manifolds.

13.33. Assume the contrary that M is stochastically complete, that is,

/mmwm@zl
M

for all ¢ > 0. Integrating in ¢ from 0 to co and using the definition (13.3) of
the Green function, we obtain

/Mg(ﬂfy dp (y // pe(z,y) du(y //pt:ry dp (y) =

Since g (z,-) is locally integrable (see the proof of Theorem 13.17), we have

/g(w,y) du (y) < oo
K

whence

/ g () dp () = oo,
M\K

which contradicts the hypothesis.

13.34. Fix some R > 0 and consider in Bg the function
" ds
ol S(5)
By Exercise 13.2, this function is a fundamental solution in By, of the Laplace
operator at the pole 0. Since hgr vanishes at dBg, we conclude by Exercise

13.29 that h (z) = gP% (x,0). Letting R — oo and using that g% — g as
R — oo we obtain from (B.223) that

hr(z) = (B.223)

g(z,0) = N %, (B.224)

T

which was to be proved.
To answer the last question, write

o0 o0 d
/ﬁuww:/sw ’ S
M 0 r

where V (s fo r)dr. Hence, the Green function g( 0) belongs to
L' (M) 1f and only 1f
>V
/ (5) ds < oo.
o S(s)

At 0 this integral is always convergent because % =0 (s) as s = oo. The

convergence at oo occurs, for example, if, for large s, V (s) = exp (s2+5)
with € > 0.

REMARK. Note that (B.224) remains valid also in the case when the integral
in the right hand side diverges as in this case g = oo
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13.35. Let h(z) be the standard fundamental solution of the Laplace
operator in R”, that is,

1 2—n
h(x):{m|$—y\ , nF#2,

1 1 _
ﬂlogm, n =2

(cf. Exercise 13.2).
(a) Fix a point y € B. Note that the right hand side of (13.44) coincides
with the following function

R n—2
r@=ne-n- (1) ne-v).
Since y* lies outside B, the function h (z — y*) is harmonic in B. Therefore,
we have —A, f = d,, that is, f is a fundamental solution in B. Let us verify
that f = 0 on 0B. For any x € 0B, we have || = R, whence, by the
definition of y*,

*
el _ W] (B.225)
lyl |l
It follows that the triangles Oxy and Oy*x are similar, whence
o=y _ el _ R (B.226)

e =yl lyl ol
Clearly, (B.226) implies that f (z) = 0 for x € 0B. By Exercise 13.29, we

conclude that g (z,y) = f (z) for all z € B.
Solutions to (b) and (c) are similar to (a).

13.36. Since -
g(ﬂc,y):/0 Pt (x,y) dt,

it suffices to prove that

oo 2 oo
J ::/0 ﬁexp (—c%) dt ':/T ;C(lj) (B.227)
Split the integral into the sum
J=Jo+ Jeo,
where
Jo = /7~2 ! exp (—cﬁ> dt, (B.228)
o F (V) t
Joo = /oo ! exp (—cﬁ> dt. (B.229)
o F (V) :

Step 1. Let us show that

< gd
Joo g/ iy (B.230)
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Indeed, observe that in the integral (B.229) 2/t < 1, which implies

& 1
Jso :/ —dt,
r2 F(\/%)

and the rest follows by the change s = v/%.

Step 2. Let us show that

2
Jo < C——.
0
By (13.45) there are constants 5 > 0 and b > 0 such that

F (s) s\8
F(s’)Sb(_> , foralls>s >0,

3/
so that, for all t < r2,

(B.231)

(g

Substituting into (B.228) and changing in the integral 7 = ¢/r2, we see that

(B.231) amounts to
1
1
/ 7 exp (——) dr < C,
0 T
which is obviously true.

Step 3. Let us show that

2 o'}
T_< A/ sds_ (B.232)
T
Indeed, using (13.45), we have

* sds 2 sds 2 sds r2
> > AL > At
/r F(s) = J, F(s) /q« -

Combining (B.230), (B.231), (B.232), we obtain (13.2).
To prove the second claim, let us show that, under the condition (13.47),

T2

F(r)

The lower bound follows from (B.232). For the upper bound, it suffices to
show that

J ~

7“2

< (O_—___
T < CF

since Jy satisfies a similar estimate by (B.231). By (B.230), it suffices to

prove that
2

* sds r
L 76w
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which by (13.47) amounts to

/00 <£)asds < Cr?,

and which is true by a > 2.

Solutions to Chapter 14

14.1. By Theorem 14.2, {P,} is L? — LP" ultracontractive with the rate
function 6(t). Hence, for any f € LP N L?, we have

t t
1Pefllpe = 11Prj2 (Pey2f) llp < 0GPy fll2 < 92(§)||f|!p,

whence the claim follows.

14.2. Let {Q} be a compact exhaustion sequence of Q. Then we have

Amin (%) 2 A (1 () = A (1 (€)) -
Letting & — oo and using Exercise 10.6, we obtain Amin (€2) > A (1 (2)).
14.3. If u € C§° (£2) then by the Cauchy-Schwarz inequality

lullf < p () fJull3

whence

Vul*d 2
Ll Sol i (1) > a o).
fM udp [[ull3
The rest follows from the variational principle of Theorem 10.8.
14.4. Left to the reader

14.5. Let V (r) = p (B (z,r)). Then using the Lipschitz cutoff func-
tion ¢ of B (x,r/2) in B (z,r) (see Exercise 11.6) as a test function in the
variational property of the first eigenvalue, we obtain

Vir/2) < / Fdpt < Amin (B (7)) / IVl du
B(x,r) B(z,r)

-1
< (o) v
whence
Vi(r)>c (ar2V (1"/2))0 ,
where = ;%5 and ¢ = ¢ (v) > 0. Iterating this, we obtain

Vi(r) > caer%V(g)e

5 r 262 ry 02
> (1H00+0%,.20 (_) V(—)

2 4
2 2 93 rN\20% ;pN\20° e\ 0°
S L0602 04+6%+6% 20 (_) (_) v (_)
- 2 4 8
k
S 002 (140407 +...), 20 (140402 +...) =20 (140407 +...) (L)a
— 2k M
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Letting k£ — oo and noticing that
r r\Y
V() ~e ()
ok .
and, hence, V (zlk) — 1, we obtain

_6 20 V)2, v
V (r) > const aT¢r1-¢ = const a”/“r".

14.6. Let us first prove that the Sobolev inequality (14.19) implies the
Faber-Krahn inequality

Amin (2) > cp ()7, (B.233)
for any relatively compact open set 2 C M. Indeed, set
v
v—2

and observe that, for any u € C§°(©2) we have by the Holder inequality
inequality and (14.19)

1/p
[ ([ @) n@ < en@? [ vita
Q Q M

whence (B.233) follows.

Next, let us deduce the Sobolev inequality from (B.233). Obviously, it
suffices to assume that u > 0. Any non-negative function u € W (M) can
be approximated by a sequence of non-negative functions u, € C§° (M) such
that

p:

|luk —ull2 — 0 and [|[Vur — Vulla — 0 as k — o0

(see Lemma 5.4). Choose a subsequence {ug, } which converges to u almost
everywhere. If (14.19) holds for each uy, then we can pass to the limit and
obtain (14.19) for u since by Fatou’s lemma

[[ull2p < lim inf[[ug,[[2p -
1—00

Hence, we can assume in the sequel that u is a non-negative function from
C3° (M). Set for any k € Z

Q= {:L‘ €M :u(x) > 2’“} and  my = u(Q).

Clearly, Q41 C Qf, and the union of all sets Q is {u > 0}. Hence, we have

/ uPdp =) / uPdp < 4P 4FPmy, (B.234)

M ke S\t kEZ
For any k € Z, consider the function
2k7 HAS Qk+17
w(@) = (min(u(@), 257 = 28) = ¢ w(e) -2, @€ O\ D,
+ 0, x §é Qk,
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which belongs to W (M) (cf. Exercise 5.3). Since Vug = Vu on Q \ Qk11
and Vug = 0 outside Qj \ Qk1, we obtain

/ \Vul* dp = Z/ (V| dp. (B.235)
kEZ

Let €, be an relatively open neighborhood of Q, such that ,u,(ﬁk) <2u (ﬁk)
Since supp uy C Q, we conclude by Lemma 5.5 that uy € W¢(Qx). Apply-
ing the Faber-Krahn inequality (B.233) for €, we obtain

a a a 4Fmpy
J, p(@)2 Jo, "= mie 22 2l

whence

a 4kmk+1
/ Vup?dp > =Y —5 (B.236)
M 22/ keZ mk/y

For arbitrary sequences of positive numbers {zx}, {yx}, and r,s > 1 such
that 1/r 4+ 1/s = 1, we have by the Holder inequality

. 1/r . 1/r o\ 1/s
Ear-X () = (25) (2w
whence
Zwk (le/r) > > Tk
" ()" "

where oo = s/r can take any positive value. Therefore, we obtain

4km 4kpm 4krm
S g e e
my 4F(P=Dmy (Z 4k(p—1)amia/l/>
Choosing « so that (p — 1) a = p that is, a = p%l = v/2, we obtain
4k 4P 7 gkp 1-2/v
§o 2k 2 AT (Z 4kpmk) . (B.237)

m2lY T (D k)
Combining together (B.234), (B.235), (B.236), (B.237), we obtain (14.19).
14.7. It suffices to prove that

(o) "= ()" ()

where v = V2—_”2, that is,
b
luall < ul| 2 [lull?.
Let us use the interpolation inequality

lully < llullallull,
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which is true whenever a < 3 < 7 and x,y, z are positive numbers such that

{m—{—z:y
Tz Y
a+v_ﬂ

Substituting = aa, y = b, and z = 2, we obtain the conditions (14.22).

14.8. Each of the functions A = A; + A and A = max (A1, Ay) is obvi-
ously non-negative, monotone decreasing, and right continuous. The condi-
tion (14.23) is satisfied because in the both cases A > A;.

14.9. Let ~ be the I'-transform of A. For t < t; := (;)1 milz’v) we have

1/a 7, 1
v (t) =constt/* and — (t) = —.
¥ agt
Clearly, ~ satisfies (14.36) for ¢ < t; with 6 = 1/2. It suffices to check that
«y satisfies (14.36) also for large enough ¢ with some § > 0, which will imply
by Lemma 14.15 that v € I'ss for some §’ > 0 and, hence, A € L.
To treat large ¢, assume first that cy,a0 > 0. Then, for t > ty =

v2 _dv :
0 wA(s): Ve obtain

0 dy 1
t—ty = = 1) —v5?),
2 /U2 vA (0) c2a2(7() 2)

whence, for some real c,
/
¥ 1
t) = const (t +¢)/*? and ~(t) = ———.
7 (1) = const (¢ + 0 L= g

Therefore, v satisfies (14.36) for large enough ¢ with 6 < 1/2.
Let ag = 0 while ¢o > 0, that is, A (v) = co for v > v9. Then we have

for t > t9
v(®) ¢ 1 t
t—tzz/ = =—10g—7(>,
v Cov C2 v

whence 77, (t) = co. Hence, ~y satisfies (14.36) for all ¢ > t5 with § = 1.

Finally, let g = co = 0. In this case, A(v) = 0 for v > vg, and by
(14.25) ~y (t) = const for t > t5. Hence, 77/(15) = 0 for ¢ > t3, which again
satisfies (14.36).

14.10. (a) Denote for simplicity v = y5 and 5 = b~!vy(at). Then by
(14.24)

¥ = ab~'y (at) = ab~"y (at) A (v (at)) = a7A (7) = FA (7)
whence it follows by Lemma 14.10 that vz = 7.
(b) Set A (v) = bA, (a"'v). Then by part (a) we have

7 (t) = aya (bt) =7 (t)

whence by Lemma 14.10 A5 = A.
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(c) For the function f = ya,, we have
!/

7=A2(f)ZA1(f),

whence by Lemma 14.13 f () > 7, (t) for all ¢ € (0,¢p) where

v do
0 /0 oAy () and vo =sup{v >0:A; (v) >0}
If v9 = oo then tg = oo and ya, (t) > ya, (¢) for all £ > 0. If vy < oo then
by the monotonicity of v,,, for ¢t > ¢ty we have

Yaq (8) > Y4, (o) = YA, (Fo) = vo = YA, (F) -

14.11. For the function v = 172 we have
/

Y_h %

YoM 72
Therefore, v; and 72 belong to f(; then

Y oy 7 0y = [Pan - s%h0)] + [Togany - 528
7(2:5) — 57(:5) = [wi (2t) 571 (t)] + [72 (2t) 572 (t)] >0

so that v € fg. If 41 and -5 belong to I's then similarly
/

v o4 261
Loyl >-—22

whence it follows that v € T's .

14.12. Choose function f (t) = % for large ¢ to be a constant ¢, on

any interval [2F,2F+1). Then v ¢ I's provided for any § > 0 there exists k

such that .

Ci+1 + m < dcy. (B238)

In fact, it suffices to ensure (B.238) for § = 1, which will be the case if the
following two inequalities hold:
2
Cpr1 < %% and ¢ > ;C—k (B.239)
A sequence {cy} that satisfies (B.239) for arbitrarily large k can be con-
structed inductively as follows. Set ¢; = 1. If ¢ has been defined then
define ¢ to be equal to ¢; for some values of k =14 1,14 2, ... until &£ is so

big that ]2“—,2; < ¢;. For this k, set ¢, = ¢; and cgp1 = %%
14.13. Set .
ds 1
= [ —— and g(t) = ——.
0= [ 75 mda0 =55
Then
gl FIIF

—=——— — —c ast — oo.

f/ (F,)Q
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By I'Hospital rule,

g—>—cast—>oo,

whence the claim follows.
14.14. We have for tg =y~ (1)

10 do 10 dw
t_t == =
0 / vA (v) / F(v)’

F (v) = evA (v) = vexp (—’U’B) .

where

Set also f = log F' so that
F//F "
L
(F7) (f")

A simple computation shows that

Fw) =~ B0 and 7 (0) =~ ~ B(5~1)v 7,

whence % — 0 and % — 1 as v — oco. By Exercise 14.13, we conclude
that

S dv 1 exp (sﬁ) .

L F@) T TF R T e BT
whence

exp (fy ()’ + 1>
t~ as t — oo.

By (8)°

Taking log, we obtain

logt ~ (t)° + 1 —log (ﬂv (t)ﬁ> ~v (),
whence
7 (t) ~ (logt)"/7.

14.15. We can assume that f > 0 since |P.f| < P |f|. For any natural
number k, consider the function
fk = min(f7k)a
which is obviously in L' N L?. By Theorem 14.19, we have
4 4

1P fell3 < mllfkllf < ml\f\l?
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Since fi T f, we obtain by the monotone convergence theorem that
IPifills = (Pefis Pef) = (Pacfes fr)

_ //mxyfk 2) fi () dps () ds (y)
N /M /Mpgt(w,y)f(:v)f(y)du(w)du(y)

= [IPfI3,

whence the claim follows.

Solutions to Chapter 15

15.1. Fix « € B (z,r/2) and t € (0,7"). Since the Faber-Krahn inequal-
ity (15.19) holds in B (z,r/2), it follows from Theorem 15.1 that

7n/2
u? (tz) < ——mM8M —— / / (s,y)du(y)ds. (B.240)
IIllIl t/2 zr/2

Applying inequality (12.39) of Theorem 12.9 with A = B(x,r/2) and B =
B (z9, R) and noticing that d (A, B¢) > §, we obtain

2
[ w6 dn) < (B (o, ) ful (g—) (B.241)
(z,r/2) s

where

D (€) = max (€, 1) exp (1 — &)..

. . . . 52
Observe that the function ® (&) is decreasing in £. Consequently, ® <§>

is decreasing in § and increasing in s. Replacing in the right hand side of
(B.241) s by t and substituting into (B.240), we obtain
Ca™"%t

52
) < S (B o ) o0 (2—t) |

whence (15.20) follows.

15.2. (a) Let r(z) be the function from Theorem 15.4 and set r =
mingeps 7 (z). Then in any ball B (z,7) the Faber-Krahn inequality holds
with function av~2/". Applying Theorem 15.11 to the family {B (z, )} wenrs
we obtain the claim.

It is obvious from the above argument that compact manifolds have
bounded geometry so that the claim follows also from part (b).

(b) By definition of a manifold of bounded geometry, there is r > 0 such
that all balls B (x,r) are uniformly quasi-isometric to a Euclidean ball. It
follows that the Faber-Krahn inequality holds in every ball B (z,r) with
function av~2/", and the rest follows from Theorem 15.11.

15.3. Setting in (15.43) ¢ = ¢p and
F (z,s) = min (s,r (z))"
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we obtain (15.51).

15.4. Setting in (15.43) ¢ = top and replacing r (z) by infr (z) > 0 (cf.
Remark 15.5), we obtain (15.52).

15.5. Integrating the heat kernel upper bound (15.49) in ¢ and using
Exercise 13.36, we obtain

g(z,y) <Cd (:r,y)Q_n. (B.242)

Conversely, let us show that (B.242) implies the Faber-Krahn inequality
with the function A (v) = cv=2/". Due to the estimate (13.21) of Exercise
13.13, it suffices to prove that, for any relatively compact open subset €2 of
M and for all z € €,

/Q g% () du (y) < Cpu ()"

Since g < g and g satisfies the upper bound of (B.242), it suffices to show
that, for any fixed z € €,

/ PPy < Op ()" (B.243)
Q

where p = d(x,-). Choose some R > 0 and estimate the integral in the left
hand side as follows:

/ P>y < / P> " dp + / P> " dp.
9 on{p>R) {p<R)

The first integral is bounded by

/ podp < RPMu(Q),
Qn{p>R}

whereas the second integral can be estimates by

/{p<R} pQ*” = Z /[2—k—1R§p<2—kR} p2*" s
k1) 2T —k
() (b ()

N o k2 (o g\
Ckzzo@ R) (2 R)

= CR2§:4:’c
k=0

C'R?.

I
e T

i

IA

IN

Hence, we obtain

[ 7 < R () + O
Q
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whence (B.243) follows by setting R = u (Q)l/".

15.6. Using (15.50), rewrite the inequality (15.48) of Corollary 15.17 as
follows:

C p?
e (2, y S—exp(—ﬁ;——)\ t—T ) B.244
) S b AT, (B.244)

where ¢,T7 > 0, and « € (0,1) is arbitrary, while C = C\ 5, .. Let us verify
that (B.244) implies the following estimate:

C p?
pt (z,y) < ] exp (H4—t — H)\t) , (B.245)

where C = C (n,k,\). Indeed, choose in (B.244) T' = 1. If ¢ < 1 then
(B.245) follows trivially from (B.244); if ¢ > 1 then use the inequality

tn/2 < Cn,(5 eXp (6t) )

where § = (1 — k) A
Since ﬁ—i + At > pV/A, it follows from (B.245) that, for any € € (0, ),

(z )<iex —(k—¢) \/X—Ep—z—s)\t
Pt Y _tn/2 p P At )

whence

g(m,y) - /Ooopt(x7y)dt
2

oo
Cexp (* (k —¢) p\/X> /0 /2 exp (z—:’Z—t — z—:)\t)(Bt246)

If n > 2 then the integral in (B.246) is estimated from above by

[e’s) P2
/ /2 exp <—5—) dt = const ,02_”,
0 4t

where we have used (A.60). Together with (B.246), this implies (15.53) in
the case n > 2.

Consider the case n = 2. Then we split the integral in (B.246) into two
parts: from 0 to p and from p to co. Making change s = s2/t, we estimate
the first part as follows:

P p2 P p2
/0 ¢t exp (—&‘E - 5At> dt < /0 ¢! exp <_€E> dt
= / s Lexp (—5§) ds, (B.247)
o 4

while for the second part we use the trivial estimate

00 p2 00
/ t~Lexp (54—t - eAt) dt < / t~Lexp (—et) dt. (B.248)
p p

IN
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Since the integrals in the right hand sides of (B.247) and (B.248) are similar,
it suffices to estimate one of them, say (B.247). If p > 1 then we have

© s © s
/ s texp (—E—) ds < / s texp (—5—) ds =: c,
o 4 1 4

while for p < 1 we have

oo S ! 1
/ s texp (—5—) ds <c +/ s~ lds = ¢+ log ~.
p 4 p p

Combining these estimates together, we obtain

oo p2 1
/ t~Lexp (—5— - 6)¢> dt <2 (c +log —) , (B.249)
0 4t p

which together with (B.246) implies (15.53) in the case n = 2.
15.7. Fix x € M and let 2 be an open set containing x. Since the
function
uly) = g(z,y) - g° (,y)
is harmonic in {2 and, hence, is bounded in a neighborhood of z, we have

g (z,y) < ¢ (z,y) + const

provided y is close enough to z. Since the right hand side of (15.54) goes to
oo as y — , it suffices to prove (15.54) for ¢ instead of g.
Consider the function r (y) from Theorem 15.4 and set

1
LRI
Consider Q = B (z,2r¢) as a manifold itself and observe that, for any y €
B (z,rp), the ball B (y,ro) is contained in Q and ro < r (y) (indeed, we have
ro < 7 (x) whence y € B (z,r (z)) and r9 < r (y)). Applying Theorem 15.14
for the family of two balls B (x,rg), B (y,ro) in the manifold €2, we obtain,
for allt > tp > 0 and y € B (z,79), that

C

2
p? (z,y) < —WeXP<

_P
2 5t

min (tg, rH

At —to)) ;

where p = d (2,y), A = Amin (), and C = C (n). Choosing tg = t or tg = 73,
we obtain the following two estimates:

Py (z,y) < C{
It follows that

T(2) o0
¢ (z,y) = /0 pt(w,y)dt+/2 pe (z,y) dt

0

r2 2 00
C/ Y2 exp (—%) dt + CTO_"/ exp (=X (¢t — 7@3)250)
0 r2

0

IN
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The second term in (B.250) is equal to CA~1ry". Observing that
A = Amin (B (z,2r)) ~ r0_2
(cf. Exercise 11.25), we obtain

o
7‘0_"/ exp (—)\ (t — Tg)) dt < C"r'g_” < C’pz_”. (B.251)
7
To estimate the first term in (B.250), assume first that n > 2. Then by
(A.60) (or by Exercise 13.36) we have

T3 2 ) 2
/2 P at< / /2 P ) at = op2
/0 exp ( 5t> =, exp w Cp=™",

where C' = C'(n). Combining the above estimates together, we obtain from
(B.250) that
9% (z,y) < CP* ™,
which proved (15.54) for the case n > 2.
Consider now the case n = 2. Assuming ry < 1 and making change

s = p?/t, we obtain as in (B.247)
oo
/ s le=5/5qs
p

7‘3 2
_ p
¢t —Z ) dt
[ (-g)e < [
1
/ E—i—/ooes/‘r’dT
p2 S 1
1

= 2log — + const.
P

IA

IN

Combining with (B.250), (B.251) and choosing p small enough to absorb
the constant, we obtain

1
gQ (.T,y) S ClOg ;7

which proves (15.54) for the case n = 2.

15.8. If M satisfies the relative Faber-Krahn inequality then, by Theorem
15.21, the volume function V (z,r) is doubling and

9 d* (z,y)
Pt(ﬂﬁ,y)ﬁmexp (—c ; )

By Exercise 13.36, we obtain, for all x # y,

[e.9]

rdr

d(z,y) 14 (1‘7 T)

g(z,y) <C < 00,

which was to be proved.
If the Green function is finite then by Exercise 13.30 the manifold M is
non-parabolic, and by Theorem 11.14, we obtain

/OO rdr < o
V (z,7)
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for all z € M.
15.9. See [154, Theorem 5.9].

Solutions to Chapter 16

16.1. (a) Extend «(t) to (0,+00) by setting v(t) = v(T'—) for all t > T.
It is easy to see that the doubling property (16.24) holds for all ¢ > 0 so
that 7 is regular on (0,400) in the sense of Definition 16.1. Since p:(z, z)
decreases in t, we conclude that (16.23) holds for all ¢ > 0.

Theorem 16.3 yields that, for all D > 2 and ¢ > 0,

ED(t,l') S ’)’(Ct) .

Using again the doubling property of <y, we obtain ~y(ct) > ey(t) where
e = g(c) > 0, which finishes the proof.

16.2. By Theorem 7.7, for any x € M there exists a finite constant C (z)
such that, for all ¢ > 0,
o\ 2
pu(,2) = [p1jaal® < C(2) (L)%, (B.252)
Hence, by Exercise 16.1, Ep (t,z) admits the upper bound
Ep (t,z) < C(z) (1+17°)?, (B.253)

whence the finiteness of Ep (t, z) follows.

16.3. Set
F(t,z) = \/Ep(3t, ). (B.254)

By Exercise 16.2, this function is finite. By Theorem 12.1, the function
F(t,x) is decreasing in t. By Lemma 15.13, we have the inequality

d?(x,
Dt (.7], 3/) S F (t07 'T) F (t()v y) e€xp (AmintO) €xXp <_M - Amint) ;

2Dt
(B.255)
for all t > tg > 0. Set

- 1 F(t,z), t<l1,

s (tam) = exp <§>\mln) { F(l,.’l?), t>1.
Obviously, this function is decreasing in t. We claim that the required
inequality (16.26) holds with this function ®. Indeed, if ¢ > 1 then (16.26)

follows from (B.255) with tg = 1. If £ < 1 then (16.26) follows from (B.255)
with tg = ¢.

16.4. By Theorem 14.19, we have, for all z € M and ¢ > 0,

pe(z,x) < .
L0 =5
Then the claim follows from Corollary 16.4.
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16.5. By Exercise 16.1, we have

Ep (t,x) < ¢

for all z € M and t € (0,7), and by Lemma 15.13
C exp (_d2 (:v,y))
2 1/2 :
V(@)Y vD)” 2Dt
Finally, using the estimate
V(z,\Vt 2 ¢
(z, V?) §0(1+d (w,y))
V (y,V?) t

which follows from the doubling property of V' (z,r), we finish the proof.

pe(z,y) <

Solutions to Appendix A
A.1. Using the bilinearity of the inner product, we obtain

(xk,yk) - (‘r7y) = (-Tk7yk) - (xlwy) + (.’Ek,y) - (l‘,y)
= (xk7yk_y)+($k_$7y)
whence, by the triangle inequality and the Cauchy-Schwarz inequality,

(@ yx) — (2, 9)| < llzwell llye = yll + llze — 2 lyll -

Since ||yx — y|| and ||z — || tend to 0 and ||| remains bounded, the claim
follows.

A.2. Passing to a subsequence, we can assume that lim ||x|| exists. Using
the definition of the weak convergence and the Cauchy-Schwarz inequality,
we obtain

|z[* = (z,2) = lim (z,23) < lim [2]|]|zx],
k—o0 k—o0

whence the claim follows.

A.3. (a) The fact, that the strong convergence implies the weak one
and the convergence of the norms, is obvious. Conversely, if z; — z and
||l = [lz]| then

. 2 2 2 2
tim o=z = lim (Jl2l + ol = 2 (2, 2) ) = |2l +]z]*~2 (z,2) = 0,
—00

lim
k—o0
that is, =, — x.

(b) That the weak convergence implies the boundedness of the norms
follows from the principle of uniform boundedness; the convergence “in dis-
tribution” is obvious. Conversely, in order to prove that x; — z, we must
show that

(xg,y) = (x,y) for all y € H.
Set C' = supy, ||zk|| and let {y;} be a sequence from D such that y; — y as
t — 0o0. Then we have

(zr,y) = (@, ¥s) + (@ ¥ — Ys)
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whence, for any index ¢,

limsup (zx,y) < kli_?go (Tr, yi) + Clly — vill = (z,9:) + Clly — will-

k—o0

Letting now ¢ — oo, we obtain

limsup (zx,y) < (z,y) .

k—o0

In the same way one proves that

liminf (zx,y) > (z,y),

k—o0
whence the claim follows.
A.4. (a) We need to prove that, for any y € H,
ek = (vg,y) — 0 as k — oo.
Indeed, by Bessel’s inequality

> le® < llyll? < oo

k

whence it follows that ¢, — 0.
(b) By the definition of weak convergence, we have, for any y € H,

(@,9) =Y ck (vr,y).

k
In particular, setting y = v;, we obtain

(z,v;) = ¢.

2
2> = lexl*

that is, z satisfies Parseval’s identity. It follows that the identity

Tr = Z CL Uk
holds also in the strong sense.
A.5. Let S be a closed subspace of H. and let S be the orthogonal

complement of S. Since S = (SJ-)L, the condition x € S is equivalent to
LS+, that is,

Setting y = x, we obtain

(z,y) = 0 for all y € S*. (B.256)

Clearly, the condition (B.256) is stable under weak convergence; that is, if
every xj, satisfies it and x; — z then also x satisfies it. Therefore, S contains
all weak limits of its sequences, which means that S is weakly closed.

A.6. It suffices to prove (A.9) since (A.10) follows from (A.9) by changing

f to —f. Denote by S the set of indicator functions of subsets of M with
finite measures. Then we have, for any measurable function f,

esup f =  sup LA/ fdu= sup (f,0) )
ACM, w(A) Ja »eS\{0} el
0<p(A)<oo
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Since (fx, ) — (f, ) as k — oo, we obtain

(fr, )

esupf = sup lim —=
pes\{oy k=0 [lellL

< limsup( sup (fk,go))

koo \ges\{o} Nl
= limsup (esup fi) .
k—00

Passing to a subsequence of {fi}, one can replace limsup by lim inf.
A.7. We have

1Fe = f2ll

/ \f;?—fQ}duz/ = F11fx+ f] du
M M

1/2 1/2
(/ - S du) (/ ot £ du)
M M

I fe = Fllz2 Nl fe + fllz2-

IN

Since

[fx+ Flle < 1kl + 11 fllz2
remains bounded as k — oo and | fx — f|lzz= — 0, we obtain that ||fZ —
f2|lz1 — 0, which was to be proved.
The second claim follows from

/M 1720 — f2g] du < |F2 — f2I11 gl -

A.8. (a) This is obvious. Note that A=A is not necessarily equal to id
because dom (A*IA) C dom A where as domid = H.

(b) For any © € H, we have A(Bxz) = x. In particular, this implies
ranA = H. For any z € dom A, we have B (Az) = z. It follows that
ker A = {0} because Ax = 0 implies # = B0 = 0. Hence, A~! exists. The
equation Ay = z has solution y = Bz for any x € H whence it follows that
A7'z = Brand A~! = B.

A.9. Set
a:= sup (Azx,y)
zedom A,||z[|<1,[ly||<1
and note that a > 0. By the Cauchy-Schwarz inequality, if ||z| < 1 and
ly[l <1 then
(Az,y) < | Az| Iyl < 1A,

whence a < ||A||. Assume now that a < ||A||. Then there exists € dom A
with ||z|| = 1 and such that ||Az| > a. Setting y = ﬁ, we obtain

Az
Az,y) = (Az, ——) = ||Az|| > a,
(Az,y) = ( IIAfUII) | Az]]

which contradicts the definition of a.
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A.10. By definition, dom A* consists of those y € H for which the linear
functional = — (Az,y) is bounded. Since
[(Az, )| < | Azl[lyll < [|Alllyllll=l],

we see that this functional is bounded for any y. Hence, dom A* = H.
It follows from (A.18) and (Az,y) = (z, A*y) that

|All= sup (Az,y)= sup (x,A"y)= sup (A'y,z)=|[A"|.
<1, ]lylI<1 Iz <1,]lylI<1 [EIESHES!

In particular, A* is bounded. The identity ||A| = ||A*|
1A Al < [|A* 1Al = [|A]1>.
On the other hand, taking z = y in (A.18) we obtain

IA* A > sup [[Az]* = ||A].
]| <1

implies

Hence, we conclude ||A*A| = ||A||%.

A.11. (a) Since A is non-negative definite, we have, for all z,y € dom A
and for any real t,

(A(z + ty),z + ty) > 0.
Using the linearity of A and the symmetry, we obtain
(A(z + ty), z + ty) = (Az, x) + 2t(Az,y) + t2(Ay, y),
whence
(Az,z) + 2t(Az,y) + t*(Ay,y) > 0. (B.257)

If (Ay,y) > 0 then the left hand side of (B.257) is a quadratic function of ¢
that is non-negative for all real ¢, whence we conclude

(Az,y)? < (Az,z) (Ay,y). (B.258)
If (Ay,y) = 0 then (B.257) becomes
(Az, z) + 2t(Az,y) > 0

which can be true for all real ¢ only if (Az,y) = 0 whence (B.258) follows
again.

(b) It follows from (A.18) and (A.19) that

1Al = sup (Az,y)
a,y€dom A,|z]| <1, |yl <1
< sup (Az,z) (Ay,y)=  sup  (Az,2).
2,y€dom A,|z]| <1,y <1 s€dom A, |z <1

The opposite inequality trivially follows from (A.18) by setting y = =.

A.12. (a) If z € (ran A)" then z_Lran A, that is, (z, Ay) = 0 for y €
dom A. Hence, we have

(Az,y) = (z, Ay) =0
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so that Azl dom A. Since dom A is dense in H, we conclude Ax = 0 and
hence x € ker A, which proves that (ran A)L C ker A. For the opposite
inclusion, for any z € ker A and y € dom A, we have

(x7Ay) = (Ax7y) =0

whence =L Ay and hence z € (ran A)". Thus, we have (ran A)" = ker A.
Taking the orthogonal complements to both parts, we obtain ran A = (ker A)

(b) If A~! exists and is bounded then there exists C' > 0 such that, for
all y € H,

L

1A=yl < Cllyll-

Setting y = Az, we obtain (A.20) with ¢ = C~L.
Let us prove the converse. The hypothesis (A.20) implies ker A = {0},
and by part (a) we obtain

ran A = (ker A" = 7,

so that ran A is dense in H. Let us show that in fact ran A = H. For
any y € H, there is a sequence {yx} C ran A such that y; — y. For some
zx € dom A, we have y = Axg. By hypothesis, we obtain that

Az — Az > cl||lzg — ]|

whence it follows that the sequence {zy} is Cauchy and, hence, converges
to a vector x € H. Let us show that z € dom A and y = Az, which would
imply y € ran A and ran A = ‘H. For any z € dom A, we have

(Azg, 2) = (2, A2) — (2, A2).
Since Axp — y, we conclude that
(Az,x) = (2,y) .

In particular, we see that the linear functional z — (Az,z) is bounded,
which implies, by the definition of the adjoint operator, that x € dom A*
and A*x = y. Since A = A*, we conclude z € dom A and Az = y, which
was claimed.

Hence, the operator A is injective and surjective and hence, the inverse
A~ exists with domain #. The boundedness of A~! immediately follows
from (A.20).

A.13. (a) Let us show that (Az,z) is a bounded linear functional in
z € dom A, which will implies that x € dom A* = dom A. Indeed, we have,
for any z € dom A.

(Az,z) = lim (Az,zx) = lim (z, Azg) = (2,9) .
k—o0 k—o0

Indeed, (z,y) is a bounded linear functional in z, whence it follows that
x € dom A. Since

(Az,x) = (z, Ax),

comparing the above two lines, we conclude Ax = y.
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(b) The symmetry and the non-negative definiteness of A easily imply

that the bilinear form
(z,y) + (Az, Ay)

in dom A satisfies the axioms of an inner product. Let {z}} be a Cauchy
sequence in dom A. Then {z;} and {Axj} are Cauchy sequences in H so
that xp — z and Az — y for some z,y € H. By part (a), we obtain
x € dom A and y = Az, which means that the sequence {zj} converges to x
in the norm of the space dom A, whence the completeness of dom A follows.

A.14. The fact that Fy is o-additive implies that, for any increasing
sequence {Uy} of Borel sets,
F,u. = lim Fy
ViU k—o0 Ui
and, for any decreasing sequence {Uy},
Fru, = lim Fy,.
k—o0

Hence, the required results follow from Fj, ;) = F' (b) — F' (a) and the follow-
ing observations:

(@b) = [J ),

A—a+
@bl = () laN),
A—b+
{af = () laN),
A—a+

and (a,b] = [a,8] \ {a}.
A.15. (a) The fact that F' is increasing is obvious from (A.25). If {\,}
is a monotone increasing sequence that converges to A from the left then

the sequence of sets {k : sp < A\,} increases and the union of all these sets
is {k : sy < A}. Therefore, we obtain that

F () = F(X)

and hence F' is left-continuous. If )\, — +oo then the union of the sets
{k : s < An} is the set of all integers so that

F(+00) = lim F(A,) = Dt < oo
keZ

Finally, if A\, — —oo then the intersection of all the sets {k: sx < A\,} is
empty and we obtain F' (—oo0) = 0.

(b) Denote by Sy the right hand side of (A.26). Clearly, Sy is a measure
of the o-ring of all Borel sets. For any interval [a,b) we have

Slap) = Z t = Z t — Z ty = F (b) — F(a).

{k:a<sp<b} {k:sp<b} {k:sp<a}
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We see that S| ) = Flup) and, hence, by the uniqueness of the extension,
Sy = Fy for all Borel sets U.

(¢) If ¢ = 1y then (A.27) follows from (A.26). The the identity (A.27)
extends by linearity to finite linear combinations of indicator functions, that
is, to functions ¢ of the form

n
o => aly,. (B.259)
k=1

Observe that the both parts of (A.27) survive when taking monotone limit
of a sequence of functions ¢. Since any non-negative Borel function is a
monotone limit of functions like (B.259), we conclude that (A.27) holds for
all non-negative Borel functions ¢.

(d) This immediately follows from (c).

A.16. If p = 1,3 then the left hand side of (A.28) is equal to

/ LugydF (\) = Fioyy = F (b) — F(a),

and the right hand side of (A.28) is equal to

/F’ )yd\ = F (b) — F (a).

Hence, (A.28) holds for all indicator functions. By linearity, (A.28) extends
to all finite linear combinations of indicator functions. Finally, by taking
monotone limits of such functions, we extend (A.28) to all non-negative
Borel functions.

A.17. (a) If F is a monotone function then it is obvious that the right
hand side of (A.29) does not depend on { A} and is equal to | F' (+00) — F' (—00)]|.
Hence, a bounded monotone function has a finite total variation. It also fol-
lows from (A.29) that var F' = var (—F') and

var (F + G) < var (F + G).

Hence, the sum and the difference of two functions with finite total varia-
tion is again a function of this class. Hence, the difference of two bounded
monotone functions has a finite total variation.

Now, let var F' < oo and let us prove that F' is the difference of two
bounded increasing monotone functions. Define the total variation of F' on
(—OO, a] by

+o0o
var F = supZ\F (Akg1) — F ()]
(—00,a] X} o

where {A};> is a decreasing sequence such that
X =a and A\, — —oo as k — +o0. (B.260)

Clearly, the function
G(a):= var F (B.261)
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is non-negative and is bounded by var F. Let us show that the functions
G and G — F are increasing, which will finish the proof because both these
functions are bounded and

F=G-(G-F).

Indeed, for any pair a < b and for any decreasing sequence { A } k>0 satisfying
(B.260), we obtain by the definition of var(_.  F' that

+oo
G(B) = var F =30 |F (i) = F )] +1F () — F (@)
’ k=0

whence
G (b) 2 G (a) +|F (b) - F (a)]-
This implies that G (b) > G (a) and
G (b) > G(a) + F(b) - F(a),
that is,
G(b)—F () >G(a)— F(a).
(b) If F is the difference of two functions satisfying (A.21) then F' is left-

continuous and, by part (a), var ' < oo. To prove the converse, consider
the function G defined by (B.261) and H := G — F. As was shown above,

both G and H are bounded monotone increasing functions. Let G be the
left-continuous modification of GG, that is,

G(\) =G().

Note that G and G coincide everywhere except for the set of points of jumps
of G, which is at most a countable set. Defining the same way H, we
conclude that G — H is a left-continuous function on R, which coincides
with ' = G — H outside a countable set. Since function F' is also left-
continuous, we conclude that F' = G — H at all points, which finishes the
proof.

(c) and (d) Left to the reader

A.18. Let us first show that, for any two functions F(!) and F® satis-
fying (A.21) and for any non-negative Borel function ¢,

+oo +o00 +o0
/ edFY) + / edF?) = / od (F(1>+F<2>). (B.262)

—00

It suffices to show that, for any Borel set U C R,
FV 4+ 7P = ( FO L F(z))U

By uniqueness of the extension in the Carathéodory Extension Theorem, it
suffices to prove this for U = [a,b), which is obvious because

FULER = PO (6)—FO (0)+FO (5)—F (a) = (F(l) + F<2>) (b)— (F<1> + F<2>) (a).
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Let now G(M) and G be another pair of functions satisfying (A.21) and
such that F = G(M) — G® and ¢ is integrable against G!) and G?). Let us
prove that

[ Temaro - [ Temart o= [Temaa - [T e maa® .

—o0 —00 —00 —00

(B.263)
Since the integral of ¢ is defined as the difference of the integrals of ¢4 and
p_, it suffices to prove the same identity separately for ¢4 and ¢_. Hence,
we can assume without loss of generality that ¢ > 0. Then (B.263) follows
from

+oo +oo +oo +oo
[ Temar o [ Temae® )= [ TemdeM o+ [ e ar® o),
- - - (B.264)

while (B.264) holds by (B.262) because F(!) 4+ G?) = G() 4 F(2),
A.19. (a) Let S =ran P so that Pz is determined by the conditions
Pre S and =z — PxlS. (B.265)
If z € S then Pz = x. Therefore, for any x € H,
P (Pz) = Pz

and hence P? = P.
If x — Px1lS and y — Py LS then also

(z — Pz) 4+ (y — Py) LS,
that is
(x +y) — (Pz+ Py)LS,
whence it follows that Px+ Py = P (x + y). Similarly, one proves P (Az) =
APz whence the linearity follows.
Let us prove that P is symmetric, that is,
(Pz,y) = (=, Py). (B.266)
Since Py € S and z — Px LS, we have
(x — Pz, Py) =0,
whence
(z, Py) = (P, Py).
By switching x and y, we obtain
(y, Pz) = (Py, Px),

which together with the previous line implies (B.266).

(b) Let us first verify that ran A is closed. For any = € ran A we have
Az = x because, for some y € H, x = Ay and hence Az = A%y = Ay = z.
Let {z} be a sequence from ran A that converges to € H. Then we have
Az = x, and x; — x implies by the boundedness of A than Ax;, — Ax.
Hence, Ax = z and x € ran A, which shows that ran A is closed.
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Observe that ker A1 ran A because for any = € ker A and y € ran A, we
have y = Az for some z and hence

(z,y) = (z,Az) = (Az,2) = 0.

On the other hand, for any = € H, we have x — Ax € ker A because
Az — Az) = Az — A%z = Az — Az = 0.
Therefore, x — Az is orthogonal to ran A. Since Ax € ran A, we obtain that
A is the projection onto ran A.
(c) By (B.265), we have
(x — Px,Px) =0
whence
(z, Pz) = (Pz,Pz) > 0.

Hence, P is non-negative definite. The above identity also yields

|Pz||* = (z, Pz) < ||| Pzll,
whence ||Pz|| < ||z| and hence

1Pl <1.
If P # 0 then ran P contains a non-zero vector, say x. For this vector, we
have Px = z and ||Pz| = ||z|| whence ||P|| = 1.
A.20. Let {u;} an orthonormal basis in ran P. Then
Py, = Z (Vg wi) uy
i
and, applying twice the Parseval Identity, we obtain
1Pok]l* = (vr, us)?
i

and
S OIPvel? =D (ko ua)® =D ) (okyua)® =D Jlug* =D 1= dimran P.

A.21. (a) By definition, E, and E} are a projector, and ran E, C ran Ej,.
Therefore, for any vector x,

x— Eprlran F,

so that E, (x — Epz) = 0 and hence E,z = E,Epz. Since E,x € ran Ej, we
conclude also that E,z = Ej (E,x) = EpEyz.

(b) The operator Ey — E, is bounded and self-adjoint, so to prove that
it is a projector it suffices to verify that (Ej — Ea)2 = E, — E,, which
immediately follows from (A.39):

(Ey — E,)* = E} — EyE, — E,Ey+ E? = Ey, — 2E, + E, = Ey — E,.

In fact, one can show that ran (Ej, — E,) is the orthogonal complement of
ran F, in ran E,.
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Let us prove that || Eyz|| < ||Epz||. We have:
Hbe”Q - ”Eatz = (BEpr,z) — (Eow,7) = ((Bp — Eo) 2, 7) > 0,

because E, — E, is a projector and, hence, is non-negative definite.
(c) By the definition of the numerical Lebesgue-Stieltjes integration, we
have, for any = € H,

+oo

[ dlBalP = [ vapd|Bsell = |Bsel - | Easl = || (By - Ea)alP
a,b —0o0

where we have also used (A.39). Therefore, for all z,y € H,

1 1
[ a@ey = 1[ aBGrlP-7[ dBE-yP
[a,b) [a,b) [a,b)

= }1 (Il By — Ea) (z +9)I* = || (B — Ea) (= — y)II)

= ((Eb - Ea) Z, (Eb - Ea) y)
= ((Eb_Ea) l‘,y),
whence it follows that

dEy = Ey — E,.
[a,b)
(d) For any two projectors P and () such that PQ = 0, we have
P (ran Q) = {0} which implies ran P | ran (). Hence, to prove that ran Ej,, 5 )
and ran E,, 5, are orthogonal, it suffices to verify that Ej,, 4,)E4,p,) = 0.
Assuming for simplicity that a1 < b1 < ag < be and using (A.39) and (A.40),
we obtain

(Eb1 - Ea1) (Ebz - Ea2) = Eb1Ebz - Eb1Ea2 - Ea1Eb2 + Ea1Ea2
Eb1 — Eb1 - Ea1 + Ea1 =0.

A.22. Note that P> = P; and P,P; = 0 for i # j. Therefore, when
expanding the expression

k m
an (zm) ,
i=1

all the terms coming from the products of projectors P; with different indices
¢ will vanish, and the term P/ will amount to P;. Hence, we obtain

k
A" =3 "\I"P,.
i=1
By linearity, we obtain
k
0 (4) =3¢ (\)P.
i=1

Note that operators A and ¢ (A) are bounded.
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Finally, for any = € H,

k k
le (AP = (pA)zeA)z)=|D e) Pz, > ¢(\) Pz
i=1 j=1
k
= > o) e\ (P, P).
ig=1

If i # j then
whence it follows that
k

lo ()17 =Y ¢ (N)* (Piz, Piz).

ij=1
The identity (A.42) obviously follows from (A.41). The identity (A.43)
is also implied by (A.41) as follows:

k k
PA)Y(A) = D eM)BY v(\)P
i=1 j=1

k

k
= Y e v () RP = ZSO()\i) ¥ (N) P = (p9) (4),

i,j=1
where we have used the following properties of the projectors: P;P; = 0 if
i#j and P? = P,.
A.23. (a) As it follows from (A.55), it suffices to verify that
dom ¢ (A) Ndom ) (A) D dom (¢ + ) (A). (B.267)
By (A.48), we have

domp(4) = {o: [loPalBral? < oo}

and the similar expressions for dom (A) and dom (¢ + ) (A). Hence,
(B.267) will follow if we prove that
max (g02, ¢2) <C1+Cy(p+ ¢)2 , (B.268)

for some positive constants C', Cs. If functions ¢ and 1 are non-negative
then

0>+ 97 < (p+ )%,
and we are done. If one of them is bounded, say, |¢| < 1, then

1 1
(p+1)% > @+ 200 > p? — <§s02+2¢2> > —p? -2

[\

and
2(p+9)* +4> ¢
whence (B.268) follows.
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(b) By (A.56), it suffices to prove that

dom () (A) N dom 1 (4) > dom () (A),

which is obviously true because 1 is bounded and hence dom v (A) = H.
A.24. (a) Since A~! exists and is bounded, 0 is a regular value of A and
hence 0 ¢ spec A. Since spec A is closed, this means that a small neigh-
bourhood of 0 is also outside spec A, which implies that function ¥ (\) = %
is continuous and bounded on spec A. Hence, 9 (A) = % is a bounded

self-adjoint operator. Let ¢ (\) = A. Since gy = 1, (A.56) implies
v(A)Y(A) =id and 9 (A) e (A) Cid.

Therefore, ¢ (A) = A has the inverse ¢ (A4), which was to be proved. Con-
sequently, we see that A~! is a bounded self-adjoint operator.

(b) Since spec A C [0, a], the function 1 (A) = v/ is defined on spec A.
Setting X = 1 (A) = v/A, we obtain by (A.56)

X2 c Aand dom X? = dom A Ndom X.

Let us show that dom A C dom X, which will imply dom X? = dom A and
hence X2 = A. Indeed, by (A.48),

dom A = {x ceH: Nd||Exz|? < oo}

spec A

and

dom X = {:pEH: || Eyz|)? <oo}.

spec A

Then dom A C dom X follows from A < A2 4+ 1. The operator X is non-
negative definite because, by the Spectral Mapping Theorem,

spec X = ¢ (spec A) C [0, +00).
(c) Set ¢ (A) = XA and ¥ (\) = e so that ¢ (A) = A and ¥ (A) = e~ 4.
The function 1 is bounded on spec A whence by Exercise A.23
@ (A) ¢ (A) = (e9) (A).
The function ¢ (A) = Ae™ is also bounded on spec A whence we obtain

dom (¢) (A) = H. This implies that dom (¢ (A)¢ (A)) = H and hence
ran® (A) C dom ¢ (A), which was to be proved.

A.25. Obviously, all eigenvalues A belong to spec A. Let us show that
A is a real number that is not equal to any A\; or 0 then ) is a regular value
of A.

For any 2 € H, denote by z° the projection of  onto ker A, and by x*
the projection of x onto (ker A)*, so that z = 2° 4+ z-. Assuming that {vy,}
is an orthonormal basis in (ker A)", we obtain the expansion

zt =" zpop,
k
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where
T = (ajL7Uk) = (:B?Uk) .

z =2+ E TV,
k

Therefore,

which implies that
Az = Z AL TRV, (B.269)
k

where we have used Az° = 0 and Av, = \yvg.
The inverse operator (A — )\id)_1 can be explicitly constructed as fol-
lows. Define operator B in ‘H by

1, 1
Br = —1a + Zk: T (B.270)

The sequence {\;} is either finite or tends to 0; therefore, the differences
|\ — A| are separated from 0. Set

a := min (\)\\ ,mkin | Ak — A]) > 0.
Then the coefficients § and Tl—/\ in (B.270) are all bounded by o', which
implies that the series in (B.270) converges for all z € H and
1Bz]| < a™|l]l.
Using (B.269) and (B.270), we obtain

(A—Xid) Bz = Z};Ak_)\xkvk A( 3@ +zk:)\k_>\a:kvk>

= w0+ E TRV = X,
k

and, similarly, B (A — \id) 2 = . Hence, B is the inverse of A — \id, which
finishes the proof.

A.26. (a) Let us show that if A is non-negative definite then spec A C
[0,4+00). It suffices to show that B = A + \id is invertible for any A > 0
and the inverse B~! is bounded. Since B is self-adjoint, it suffice to prove
B satisfies the condition (A.20) of Exercise A.12, that is, for some ¢ > 0,

|Bx|| > c||z| for all x € dom B = dom A.

Indeed, we have
(Bzx, Bx) = (Azx, Az) + 2)\ (Az, ) + \? (2, z),
and the hypothesis (Ax,z) > 0 implies
| Bz|| = Allz].
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Assume now that spec A C [0, 4+00) and show that A is non-negative definite.
Indeed, by (A.46), we have

(Az,x) = / A (Exx,x) >0,
spec A

because the function A — (E\x,z) is monotone increasing and A > 0 in the
domain of integration spec A.

(b) By the definition of a, the operator A — aid is non-negative defi-
nite. By part (a), its spectrum is contained in [0, +00), which implies that
spec A C [a,+00) and, hence,

a’ := infspec A > a. (B.271)

By the definition of a’, the spectrum of the operator A — a’id is contained
in [0, 400) and, hence, this operator is non-negative definite, which implies
that
(Az,z) > o||=||?,
for all x € dom A. Therefore,
a= inf (Az,z)>d,
r€dom A
=l=1
/

which together with (B.271) proves that a = a’. The supremum of the
spectrum is handled in the same way.

A.27. (a) Since function ¢ (I) = 17 (A) is bounded, Ey is a bounded self-
adjoint operator. To prove that it is a projector, it suffices to verify that
E% = Ey, which follows from ¢? = ¢. If U = [a,b) then, for all z,y € H,

(Byz,y) = / Ty (V) d (B y) = / d(Exz,y) = (Bxt, 1),

— 00 [CL,b)
whence Fy = F),.
(b) Since 1y, 1y, = 1y, we obtain Ey, Ey, = Ey, whence

Ey, (ran Ey, ) = ran Ey,,

whence the claim follows.
(¢) Since 1y, 1y, = 0, we obtain Ey, By, = 0, whence the claim follows.
(d) In the both cases, we have the pointwise convergence 1y, — 1y and
the sequence {1y, } is uniformly bounded. Hence, Lemma 4.8 yields that,

for all x € H,
+o0o +oo
/ 1UidE)\£C —)/ 1lydE)\z,

whence Ey,xz — Eyz, which was to be proved.

A.28. (a) Let S = ker (A — aid) be the eigenspace of a. Let us show that
z € S if and only if Ef,3z = z, which will settle the claim. If x € S then
|Az — ax| = 0. On the other hand, we have

+o00
Amax:/ (A —a)dE\x

—00
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and
+oo
| Az — az|? = / (A — a)? d]| Exz*
—0oQ

The function (A — a)2 is positive everywhere except for A = a. Since function
A — ||[Exz||? is increasing, the only way the above integral can be equal to
0 is that the function A\ — ||E\z|? is identical constant for A < a and for
A > a. Letting A - —oo and A — 400 we conclude that

0, A <a,
|Exal —{ s

This implies, that
Frz = { 0, A<a,

T, A>a,
whence
Egr = Ell%gr E—cate) = Ellr(ﬁ (Bgyex — Eg_cx) =2 — 0 = z.
To prove the converse, consider first functions ¢ (A) = X and ¥ (\) =

Lgay (A). We have ¢t = atp whence

@ (A) ¢ (A) = atp (A),
that is
AE{a} = CLE{a}.
Therefore, if Ff, x = x then AE;,3z = Az and
AEipz = aBygyr = ax,

that is, Ax = ax and x € S.
(b) By part (a), € ran E,). By Exercise A.27, this implies that
Eyx = 0 for any Borel set U C R that does not contain «. It follows that

o (A)z = /Rw(/\) B = /{ POABxE = (@) By = o (@)

which was to be proved.
A.29. It follows from (A.46) that

+o00 k +o00 k
A= / MgpecadBEx =Y / MpgdBy =) MEp)-
—o0 =19~ i=1

By Exercise A.28, Eyyy = P;, which finishes the proof.
A.30. Since |[¢ (A)] < @ () and

domip () = {z 2 [Tl P alBral? < oo
0

we obtain that z € dom ¢ (A). In the same way, we have also x € dom ¢, (A).
Since
[ (N) = o (V* < 497 (N)
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where the function ®2()) is integrable against the measure d||Eyz||?, the
Lebesgue dominated convergence theorem implies that

o (@) = eu ()l = [l () = eu P d|Esal — 0 s n - o

which was to be proved.



