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Hints and solutions

Solutions to Chapter 1

1.1. Setting for simplicity x = 0, we have, by Taylor’s expansion at 0,

f(y) = f(0) +
n∑

i=1

∂f(0)

∂yi
yi +

1

2

n∑

i,j=1

∂2f(0)

∂yi∂yj
yiyj + ō

(
|y|2
)
. (B.1)

By the symmetry argument,
∫

Sr

yidσ(y) = 0 and

∫

Sr

yiyjdσ(y) = 0 for i 6= j,

where Sr ≡ Sr (0). To compute the integral of y2
i , denote

I =

∫

Sr

y2
i dσ(y)

and observe that, by symmetry, I does not depend on i. Adding up for all
i = 1, 2, ..., n, we obtain

I =
1

n

∫

Sr

|y|2 dσ(y) =
1

n
r2

∫

Sr

dσ =
ωn

n
rn+1.

Hence, integrating (B.1) over Sr and using

n∑

i=1

∂2f

∂y2
i

(0) = ∆f (0) ,

we obtain

1

ωnrn−1

∫

BR

f(y)dy = f(0) +
I

2ωnrn−1
∆f(0) + ō(r2)

= f(0) +
r2

2n
∆f(0) + ō(r2),

which was to be proved.
Second solution. Let Ω be a bounded region in Rn with smooth boundary

and ν be the unit normal vector field on the boundary ∂Ω pointing outwards.
For any function u ∈ C1

(
Ω
)
∩C2 (Ω), applying (1.1) to F = ∇u, we obtain

∫

∂Ω

∂u

∂ν
dσ =

∫

Ω
∆u dx.

1
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Set Ω = Br where Br is the ball of radius r centered at the origin 0, that is

Br = {x ∈ Rn : |x| < r} .

Then ∂Ω = Sr and

1

σ (Sr)

∫

Sr

∂u

∂ν
dσ =

d

dr

(
1

σ (Sr)

∫

Sr

udσ

)

.

Setting

J (r) :=
1

σ (Sr)

∫

Sr

udσ,

we obtain from (1.1)
dJ

dr
=

1

ωnrn−1

∫

Br

∆udx

whence
d2J

dr2
=

1

ωnrn−1

∫

Sr

∆udσ −
n− 1

ωnrn

∫

Br

∆udx.

Since the n-volume of the ball Br is equal to

|Br| =
∫ r

0
σ (St) dt =

ωn
n
rn, (B.2)

we obtain that, as r → 0+,

dJ

dr
=

1

ωnrn−1
(∆u (0) |Br|+ ō (rn)) = O (r)

and
d2J

dr2
= ∆u (0)−

n− 1

n
∆u (0) + ō (1) =

1

n
∆u (0) + ō (1) .

We obtain that J (0+) = u (0), J ′ (0+) = 0, and J ′′ (0+) = 1
n∆u (0) whence

by the Taylor formula

J (r) = J (0) + rJ ′ (0) +
r2

2
J ′′ (0) + ō

(
r2
)

= u (0) +
r2

2n
∆u (0) + ō

(
r2
)
,

which was to be proved.

1.2. Similarly to Exercise 1.1, set x = 0 and use the Taylor expansion
(B.1). By the symmetry argument, we have

∫

BR

yidy = 0 and

∫

BR

yiyjdy = 0 for i 6= j,

where BR ≡ BR (0). Set

J =

∫

BR

y2
i dy

and observe that, by symmetry, J does not depend on i. Adding up for all
i = 1, 2, ..., n, we obtain

nJ =

∫

BR

|y|2 dy =

∫ R

0

(∫

Sr

r2dσ

)

dr =

∫ R

0
ωnr

n+1dr =
ωn

n+ 2
Rn+2.
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In the same way, we have that the volume of BR is equal to

|BR| :=
∫

BR

dy =

∫ R

0
σ (Sr) dr =

ωn
n
Rn,

so that cn = ωn
n . Hence, integrating (B.1) over BR, we obtain

1

|BR|

∫

BR

f(y)dy = f(0) +
J

2 |BR|
∆f(0) + ō(R2)

= f(0) +
R2

2 (n+ 2)
∆f(0) + ō(R2),

which was to be proved.

1.3. (a) We have

p̂t(ξ) =
1

(4πt)n/2

∫

Rn
exp

(

−
|x|2

4t
− ixξ

)

dx (B.3)

=
1

(4πt)n/2

∫

Rn
exp

(

−
x2

1 + · · ·+ x2
n

4t
− i(x1ξ1 + · · ·+ xnξn)

)

dx1 · · · dxn.

Consider the integral
∫ ∞

−∞
exp

(

−
s2

4t
− isλ

)

ds =

∫ ∞

−∞
exp

(

−
s2 + 4itλs+ (2itλ)2 − (2itλ)2

4t

)

ds

= exp(−tλ2)

∫ ∞

−∞
exp

(

−
(s+ 2iλt)2

4t

)

ds.

By the change z = s + 2iλt, the last integral can be treated as a contour
integral along the line Im z = 2iλt. Using the standard tools based on the
Cauchy integral formula, one reduces the integral to Im z = 0, whence

∫ ∞

−∞
exp

(

−
s2

4t
− isλ

)

ds = e−tλ
2

∫ ∞

−∞
exp

(

−
s2

4t

)

ds

=
√

4πte−tλ
2
. (B.4)

Hence, from (B.3) and (B.4), we obtain

p̂t(ξ) = e−t(ξ
2
1+···+ξ2

n) = e−t|ξ|
2
. (B.5)

(b) Indeed, it follows from (B.5) that
∫

Rn
pt (x) dx = p̂t (0) = 1.

(c) It is obvious from (B.5) that p̂t+s = p̂t p̂s. Since the (inverse) Fourier
transform takes the product of functions to convolution, we obtain

pt+s = pt ∗ ps.

(d) We have

∂̂pt

∂t
=

∂

∂t
p̂t =

∂

∂t
e−t|ξ|

2
= −|ξ|2 p̂t
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and

∂̂pt
∂xk

=

∫

Rn
e−ixξ

∂

∂xk
pt(x)dx = −

∫

Rn

∂

∂xk
e−ixξpt(x)dx

= iξk

∫

Rn
e−ixξpt(x)dx = iξk p̂t.

Iterating the last identity, we obtain

∂̂2pt

∂x2
k

= (iξk)
2 p̂t = −ξ2

k p̂t

and, therefore,

∆̂pt = −(ξ2
1 + · · ·+ ξ2

n) p̂t = −|ξ|2 p̂t =
∂̂pt

∂t
.

Taking the inverse Fourier transform, we obtain

∂pt

∂t
= ∆pt.

1.4. (a) Using (B.5), we obtain

ût (ξ) = p̂tf̂ (ξ) = e−t|ξ|
2

f̂ (ξ) . (B.6)

(b) It follows from (B.6) that ût ∈ L1 (Rn) and, moreover,

|ξ|N ût ∈ L
1 (Rn) (B.7)

for any power N . Indeed, setting

E = {ξ ∈ Rn : |ût(ξ)| > 1}

we obtain that f̂ ∈ L1 (E) whence

|ξ|N ût =
(
|ξ|N e−t|ξ|

2
)
f̂ ∈ L1 (E) ,

whereas
|ξ|N |ût| ≤ |ξ|

N e−t|ξ|
2

∈ L1 (Ec) ,

whence (B.7) follows.
Formally differentiating the inversion formula

ut (x) =
1

(2π)n/2

∫

Rn
eixξût (ξ) dξ,

we obtain, for any multiindex α,

∂αut (x) =
1

(2π)n/2

∫

Rn
(iξ)α eixξût (ξ) dξ. (B.8)

Due to (B.7), the integral in (B.8) converges uniformly for all x, which
justifies (B.8).

Finally, we obtain

∆̂ut = − |ξ|2 û = − |ξ|2 e−t|ξ|
2

f̂ (ξ) ,
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and
∂̂

∂t
ut =

∂

∂t
ût (ξ) = − |ξ|2 e−t|ξ|

2

f̂ (ξ)

whence ∂
∂tut = ∆ut follows.

(c) By the Plancherel identity, we have

‖ut‖L2 = c‖û‖L2 and ‖f‖L2 = c‖f̂‖L2

where c = (2π)−n/2. It is obvious from (B.6) that |ût| ≤ |f̂ |, which implies

‖ût‖L2 ≤ ‖f̂‖L2 ,

whence the claim follows.
(d) We have

‖ut − f‖L2 = c‖ût − f̂‖L2 = c

[∫

Rn

∣
∣
∣1− e−t|ξ|

2
∣
∣
∣
2
|f̂(ξ)|2dξ

]1/2

,

and the last integral tends to 0 as t → 0 by the dominated convergence

theorem, because |f̂(ξ)|2 is integrable and 1− e−t|ξ|
2
→ 0 pointwise.

(e) If f̂ ∈ L1 (Rn) then also ût ∈ L1 (Rn), and the inversion formula
yields

ut (x)− f (x) = c

∫

Rn
eixξ

(
ût(ξ)− f̂(ξ)

)
dξ

= c

∫

Rn
eixξ

(
e−t|ξ|

2

− 1
)
f̂(ξ)dξ,

whence

|ut (x)− f (x)| ≤ c
∫

Rn

∣
∣
∣e−t|ξ|

2

− 1
∣
∣
∣ |f̂(ξ)|dξ.

By the dominated convergence theorem, the last integral tends to 0 as t→ 0,
which implies

sup |ut − f | → 0.

1.5.
(a) This follows from

sup
|x|>ε

pt (x) ≤
1

(4πt)n/2
exp

(

−
ε2

4t

)

→ 0 as t→ 0.

(b) We have

sup
t>0

pt (x) = sup
t>0

1

(4πt)n/2
exp

(

−
|x|2

4t

)

= sup
τ>0

1
(

4πτ |x|2
)n/2 exp

(

−
1

4τ

)

=
const

|x|n
,
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where we have changed τ = t/ |x|2. It follows that pt (x)⇒ 0 as x→∞.
(c) It suffices to prove that |∇pt (x)| is bounded in the set {(t, x) : |x| > ε, t > 0}.

We have

|∇pt (x)| =
1

(4πt)n/2
|x|
2t

exp

(

−
|x|2

4t

)

whence

sup
t>0
|∇pt (x)| = sup

τ>0

1
(

4πτ |x|2
)n/2

1

2τ |x|
exp

(

−
1

4τ

)

=
const

|x|n+1 ≤
const

εn+1
,

which finishes the proof.

1.6. (a) Look for v in the form v (x) = exp
(
c |x|2

)
for large enough c.

(b) Consider first the case when Lu > 0 and look at a point x0 ∈ Ω
where u takes its maximal value. For the general case, consider the function
u+ εv where v is from part (a).

1.7. Observe that f (x) = πn/2p1/4 (x) and use (1.22). The answer is

u (t, x) = πn/2pt+1/4 (x).

Solutions to Chapter 2

2.1. If q = ∞ then the embedding L∞loc ↪→ L
p
loc is obvious because for

any compact set K ⊂ Ω and any measurable function u in Ω,
∫

K

|u|p dµ ≤ esup
K
|u|p µ (K) ,

and µ (K) <∞. In the case 1 < q <∞, we use the Hölder inequality
∫

K

|fg| dµ ≤

(∫

K

|f |r dµ

)1/r (∫

K

|g|r
′
dµ

)1/r′

, (B.9)

which holds for arbitrary measurable functions f, g and exponents r, r′ ∈
(1,∞) such that 1

r + 1
r′ = 1. In particular, applying (B.9) for f = |u|p,

g ≡ 1, and r = q/p, we obtain
∫

K

|u|p dµ ≤

(∫

K

|u|q dµ

)1/r

µ (K)1/r′ ,

whence the embedding Lqloc ↪→ L
p
loc follows.

2.2. Consider the case p < ∞. Assume from the contrary that the
set {f < 0} has a positive measure. Then, for some ε > 0, the set E :=
{f < −ε} has also a positive measure. Since fk ≥ 0 a.e., we see that
|f − fk| ≥ ε on E whence

‖f − fk‖
p
Lp =

∫

Ω
|f − fk|

p dµ ≥
∫

E

|f − fk|
p dµ ≥ εPµ (E) .
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In the case p =∞, we have

‖f − fk‖L∞ = esup
Ω
|f − fk| ≥ esup

E
|f − fk| ≥ ε.

In the both cases, we conclude that the sequence {fk} cannot converge to f
in the norm of LP (Ω).

2.3. We obviously have

|f ∗ g (x)| ≤
∫

Rn
|f (x− y)| |g (y)| dy ≤ ‖f‖L∞‖g‖L1 ,

whence the claim follows.

2.4. Use the same argument as in the proof of Lemma 2.4.

2.5. Use Fubini’s theorem.

2.6. Use the same argument as in the proof of Lemma 2.1.

2.7. Apply inductively Lemma 2.4.

2.8. If f ≥ 0 a.e. then we obviously have
∫

Ω
fψdµ ≥ 0, (B.10)

for any non-negative ψ ∈ C∞0 (Ω). To prove the converse, fix a mollifier
ϕ in Rn and an open set Ω′ b Ω. If ε > 0 is small enough then, for any
x ∈ Ω′, the function ϕε (x− ·) is supported in Bε (x) ⊂ Ω, which implies by
hypothesis (B.10) that

f ∗ ϕε (x) =

∫

Ω
f (z)ϕε (x− z) dz ≥ 0.

By Lemma 2.4, f ∗ ϕε → f in L1
loc (Rn), whence it follows that f ≥ 0 a.e.

in Ω′ (cf. Exercise 2.2). Since Ω′ was arbitrary, we conclude f ≥ 0 a.e.in Ω,
which was to be proved.

2.9. (a) To prove that a function g is the distributional derivative of f ,
one has to verify that, for any ϕ ∈ C∞0 (R),

∫ +∞

−∞
gϕ dx = −

∫ +∞

−∞
fϕ′ dx. (B.11)

If f ′ is continuous then g = f ′ satisfies (B.11) by the integration by parts
formula.

(b) Let {tk}
+∞
k=−∞ be an increasing sequence of reals such that f ∈

C1[tk, tk+1] and the intervals [tk, tk+1] cover all R (such a sequence exists
by the definition of a piecewise continuously differentiable function). For
any test function ϕ ∈ C∞ (R) we have
∫ +∞

−∞
f ′ϕdx =

∑

k

∫ tk+1

tk

f ′ϕdx =
∑

k

(

[fϕ]
tk+1

tk
−
∫ tk+1

tk

fϕ′dx

)

=
∑

k

(fϕ (tk+1)− fϕ (tk))−
∫ +∞

−∞
fϕ′dx = −

∫ +∞

−∞
fϕ′dx
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where we have used the equality
∑

k

(fϕ (tk+1)− fϕ (tk)) = 0,

which is true because this sum contains only a finite number of non-zero
terms, and they all cancel. Hence, f ′dist = f ′. Note that although f ′ is not
defined at {tk} this does not matter because f ′dist is considered as an element
of L2

loc and, hence, it is defined up to a set of measure zero, anyway.
(c) Since f (x) = |x| is piecewise continuously differentiable, we obtain

by the above

f ′dist = sign (x) :=

{
−1, x < 0,
1, x > 0.

(d) For any ϕ ∈ D (R), we have

(
f, ϕ′

)
=

∫

R
f (x)ϕ′ (x) dx =

∫ ∞

0
ϕ′ (x) dx = −ϕ′ (0) = − (δ, ϕ) ,

whence we conclude f ′dist = δ.

2.10. (a) Denote U = ∪αΩα. We need to show that (u, ϕ) = (v, ϕ) for
any ϕ ∈ D (U). Let K = suppϕ. Then the family {Ωα} covers K, and

there is a finite subfamily {Ωj}
k
j=1that also covers K. By Theorem 2.2,

there is a partition of unity ψ1, ..., ψk associated with this covering, that is,
ψj ∈ D (Ωj) and ∑

j

ψj ≡ 1 in K. (B.12)

Setting ϕj := ϕψj , we obtain that ϕj ∈ D (Ωj) and

ϕ ≡ ϕ1 + ...+ ϕk in Ω. (B.13)

Indeed, this identity holds in K due to (B.12), and in Ω \K because all the
functions involved vanish outside K. Since u = v on Ωj , we have

(u, ϕj) = (v, ϕj) .

Adding up all these equalities and using (B.13), we obtain (u, ϕ) = (v, ϕ).
(b) Let {Ωα} be the family of all open subsets of Ω such that u = 0 on

Ωα. By part (a), we have u = 0 on U = ∪αΩα. Hence, U is the maximal
open set with this property.

2.11. (a) Note that S = S (u) is always a closed set. If ϕ ∈ D (Ω \ S)
then u ≡ 0 on suppu and

(u, ϕ) =

∫

Ω
uϕdµ = 0.

Hence, u vanishes on Ω\S in the distributional sense. Let us show that Ω\S
is the maximal open set where u vanishes in this sense. Indeed, let U be an
open subset of Ω such that u vanishes in U as a distribution, and assume
that U is not contained in Ω \S so that there exists a point x0 ∈ U ∩S. By
definition of S, in any neighborhood of x0 there is a point x where u (x) 6= 0.
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In particular, such a point x can be found in U . Assume that u (x) > 0. By
the continuity of u, there exists a neighborhood V of x such that V ⊂ U
and u (y) > 0 for any y ∈ V . Obviously, there exists a function ϕ ∈ D (V )
such (u, ϕ) > 0, which contradicts the choice of U .

(b) Note that the set

S0 :=
⋂

v=u a.e.

S (v) (B.14)

is closed as an intersection of closed sets. Let us show that u = 0 in Ω \ S0

in the distributional sense, that is,

(u, ϕ) = 0 for any ϕ ∈ D (Ω \ S0) .

Indeed, suppϕ is covered by the union of all open sets Ω \ S (v), which
implies by the compactness of suppϕ that it is covered by some finite union
of sets Ω \ S (vi). Since vi vanishes outside S (vi) and vi = u a.e., we obtain
that u = 0 a.e. in Ω \ S (vi). This implies that u = 0 a.e. also in the union
of the sets Ω \ S (vi), whence it follows that (u, ϕ) = 0.

We are left to show that if U ⊂ Ω is an open set where u vanishes in the
distributional sense then U ⊂ Ω \ S0. Corollary 2.5 yields that u = 0 a.e. in
U . Define function v (x) in Ω by

v (x) =

{
u (x) , x ∈ Ω \ U,
0, x ∈ U.

Then we have v = u a.e. and S (v) ⊂ Ω \ U , which implies S0 ⊂ Ω \ U and,
hence, U ⊂ Ω \ S0.

2.12. Let us prove first the product rule for the first derivative:

∂j (fu) = (∂jf)u+ f (∂ju) . (B.15)

Indeed, for any ϕ ∈ D, we have

(∂j (fu) , ϕ) = − (fu, ∂jϕ) = − (u, f∂jϕ) = (u, (∂jf)ϕ− ∂j (fϕ))

= (u, (∂jf)ϕ) + (∂ju, fϕ) = ((∂jf)u, ϕ) + (f∂ju, ϕ) ,

whence (B.15) follows. By induction, (B.15) implies that

∂mj (fu) =
m∑

k=1

(
m

k

)

∂m−kj f ∂kj u.

Using one more induction, one obtains (2.19) for the operator ∂α = ∂α1
1 ...∂αnn .

2.13. (a) We need to show that

(∂αuk, ϕ)→ (∂αu, ϕ) as k →∞,

for any ϕ ∈ D. Indeed, we have

(∂αuk, ϕ) = (−1)|α| (uk, ∂
αϕ)→ (−1)|α| (u, ∂αϕ) = (∂αu, ϕ) ,

which was to be proved.
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(b) The proof is similar to part (a):

(fuk, ϕ) = (uk, fϕ)→ (u, f) = (fu, ϕ) .

2.14. If xk → x then any subsequence of {xk} also converges to x. As-
sume that any subsequence of {xk} contains a sub-subsequence that con-
verges to x, but {xk} does not converge to x. The latter means that there
exists an open neighborhood U of x such that outside U there are infin-
itely many terms of the sequence {xk}. In other words, a subsequence of
{xk} lies outside U , which implies that it cannot have any sub-subsequence
converging to x. This contradiction proves the claim.

2.15. Construct a sequence that does not converges a.e. but each subse-
quence has a sub-subsequence that converges to 0 a.e.. Then use Exercise
2.14.

2.16. Left to the reader

2.17. If v ∈ D (Rn) then (2.27) is just definition of ∂iu. Assume now
v ∈ L2 ∩ C∞. Let ψ be a cutoff function of the unit ball B1 (0) in Rn so
that ψ ∈ D (Rn) and ψ ≡ 1 on B1 (0). Set

vl (x) = ψ
(x
l

)
v (x)

so that vl ∈ D. Therefore, we have

(∂iu, vl)L2 = − (u, ∂ivl)L2 . (B.16)

Letting l → ∞, we obtain vl
L2

→ v but also ∂ivl
L2

→ ∂iv, where the latter
follows from

∂ivl = ∂i

[
ψ
(x
l

)
v (x)

]
= ψ

(x
l

)
∂lv (x) +

1

l
(∂iψ)

(x
l

)
v (x) .

Passing to the limit in (B.16), we obtain (2.27).
Finally, consider the general case v ∈ L2 and ∂iv ∈ L2. Let ϕ be a

mollifier and set

vk = v ∗ ϕ1/k.

By Lemma 2.9, vk ∈ C∞, and by Theorem 2.11 vk ∈ L2. Therefore, by the
previous part of the proof, we have

(∂iu, vk)L2 = − (u, ∂ivk)L2 . (B.17)

By Lemma 2.9, we also have ∂ivk = (∂iv) ∗ ϕ1/k, and by Theorem 2.11,

vk
L2

→ v and ∂ivk
L2

→ ∂iv. Hence, letting k →∞ in (B.17), we obtain (2.27).

2.18. Use the same argument as in Theorem 2.11.

2.19. Use the same argument as in Theorem 2.11 (see also Exercise 2.20).
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2.20. Assume first that f ≥ 0. By Fubini’s theorem, the function Qf is
measurable. To prove Qf ∈ Lr (M) and the estimate (2.30), consider first
the case r =∞. It obviously follows from (2.28) that

Qf (x) ≤ ‖f‖∞

∫

M

q (x, y) dµ (y) ≤ K‖f‖∞,

whence the claim follows. In the case r = 1, we obtain by Fubini’s theorem
and (2.29)

‖Qf‖L1 =

∫

M

[∫

M

q (x, y) f (y) dµ (y)

]

dµ (x)

=

∫

M

[∫

M

q (x, y) dµ (x)

]

f (y) dµ (y)

≤ K

∫

M

f (y) dµ (y) ,

whence (2.30) follows.
Let 1 < r <∞ and let r′ = r

r−1 be the Hölder conjugate to r. Using the

Hölder inequality and (2.28), we obtain, for almost all x ∈M ,

Qf (x) ≤
∫

M

q (x, y)1/r′
[
q (x, y)1/r f (y)

]
dµ (y)

≤

(∫

M

q (x, y) dµ (y)

)1/r′ (∫

M

q (x, y) f r (y) dµ (y)

)1/r

≤ K1/r′
(∫

M

q (x, y) f r (y) dµ (y)

)1/r

,

that is

|Qf (x)|r ≤ Kr/r′
∫

M

q (x, y) f r (y) dµ (y) .

Using Fubini’s theorem once again and (2.29), we obtain
∫

M

|Qf (x)|r dµ (x) ≤ Kr/r′
∫

M

[∫

M

q (x, y) f r (y) dµ (y)

]

dµ (x)

= Kr/r′
∫

M

[∫

M

q (x, y) dµ (x)

]

f r (y) dµ (y)

≤ Kr/r′+1

∫

M

f r (y) dµ (y) ,

which together with 1/r′ + 1/r = 1 implies (2.30).
Finally, if f is an arbitrary function from Lr then also f+ and f− belong

to Lr, and by the first part of the proof, we have (2.30) for f+ and f−. Then
Qf = Qf+ −Qf− is measurable and

|Qf | ≤ Q |f | = Qf+ +Qf−

whence

‖Qf‖LP ≤ ‖Qf+‖Lr + ‖Qf−‖Lr ≤ K (‖f+‖Lr + ‖f−‖Lr) = K‖f‖Lr ,
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which was to be proved.

2.21. By the Hölder inequality,

|Qf (x)| ≤ ‖q (x, ·) ‖Lr′‖f‖Lr

≤ ‖q (x, ·) ‖1−1/r′

L∞ ‖q (x, ·) ‖1/r
′

L1 ‖f‖Lr

≤ C1/rK1/r′‖f‖Lr ,

whence
‖Qf‖L∞ ≤ C

1/rK1/r′‖f‖Lr , (B.18)

which matches (2.31) for s =∞.
If s <∞ then, using the interpolation inequality

‖F‖Ls ≤ ‖F‖
1−r/s
L∞ ‖F‖r/sLr ,

we obtain from (2.30) and (B.18)

‖Qf‖Ls ≤
(
C1/rK1/r′‖f‖Lr

)1−r/s
(K‖f‖Lr)

r/s

= C1/r−1/sK1/r′+1/s‖f‖Lr .

2.22. (a) If Bε (x) ⊂ U then for some ε′ > ε, we also have Bε′ (x) ⊂ U
which implies that, any y ∈ Bε′−ε (x) belongs to U . Hence, U is open. For

any point x ∈ U there is ε > 0 such that Bε (x) ⊂ U . Taking k ≥ 1/ε we
obtain x ∈ U1/k, which proves (2.32).

Denote for simplicity fε = f ∗ ϕε. Note that fε ∈ C∞ (Rn) by Lemma
2.1. Since suppϕε ⊂ Bε (0), we obtain, for any two points x, y ∈ Rn,

fε (x)− fε (y) =

∫

Bε(0)
(f (x− z)− f (y − z))ϕε (z) dz.

Assume that x, y ∈ Uε. Then x− z and y − z belong to U , whence

|f (x− z)− f (y − z)| ≤ L |x− y|

and

|fε (x)− fε (y)| ≤
∫

Rn
L |x− y|ϕε (z) dz = L |x− y| ,

which proves that fε is Lipschitz in Uε.
(b) As in the proof of Lemma 2.4, we have

fε (x)− f (x) =

∫

Bε(0)
(f (x− z)− f (x))ϕε (z) dz.

Then, for any x ∈ Uδ and ε < δ, we have x− z ∈ U and, hence,

|f (x− z)− f (x)| ≤ L |z| ≤ Lε.

This implies
sup
x∈Uδ

|fε (x)− f (x)| ≤ Lε

and fε ⇒ f in Uδ as ε→ 0.
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2.23. Let us use the notation of Exercise 2.22. The fact that fε is Lips-
chitz in Uε with a Lipschitz constant L implies that, for any vector ξ ∈ Rn,

∣
∣
∣
∣
∂fε
∂ξ

∣
∣
∣
∣ ≤ L |ξ| , (B.19)

which easily follows from

|fε (x+ tξ)− fε (x)| ≤ L |tξ| .

In particular, we have also |∂jfε| ≤ L in Uε. Therefore, for any index j,

the sequence of functions
{
∂jf1/k

}∞
k=1

is bounded in L2 (Ω) for any open set

Ω b U . By the weak compactness of a ball in L2, there exists a sequence
of integers ki → ∞ such that the subsequence ∂jf1/ki converges weakly in

L2
loc (U) for any index j = 1, ..., n.

Rename for simplicity f1/ki by fi, and let the weak limit of ∂jfi be vj .
Let us show that vj = ∂jf . Indeed, for any ϕ ∈ D (U), we have, by the weak
convergence,

(∂jfi, ϕ)→ (vj , ϕ) as i→∞, (B.20)

and by part (b)

(∂jfi, ϕ) = − (fi, ∂jϕ)→ − (f, ∂jϕ) , as i→∞,

whence
(vj , ϕ) = − (f, ∂jϕ)

and, hence, vj = ∂jf .
In particular, we have ∂jf ∈ L2

loc (U). Let us prove that

|∇f | ≤ L a.e., (B.21)

which will also imply that ∂jf ∈ L∞ (U).
For any smooth compactly supported vector field ξ in U , we have by

(B.20) and (B.19)
∫

U

vjξ
jdµ = lim

i→∞

∫

U

∂jfi ξ
jdµ = lim

i→∞

∫

Rn

∂fi

∂ξ
dµ ≤ L

∫

Rn
|ξ| dµ,

whence it follows that

esup
U
|v| = sup

ξ 6≡0

∫
U vjξ

jdµ
∫
U |ξ| dµ

≤ L,

which proves (B.21).

2.24. The fact that fg is Lipschitz follows from the estimate

|fg (x)− fg (y)| = |(f (x)− f (y)) g (x) + (g (x)− g (y)) f (y)|

≤ sup |g|Cf |x− y|+ sup |f |Cg |x− y|

where Cf and Cg are the Lipschitz constants of f and g, respectively.
It suffices to prove the product rule assuming that U is bounded. Choose

a mollifier ϕ. By Exercise 2.23(b) , (c) there is a sequence {εk}
∞
k=1 of positive

numbers such that εk → 0 and the sequence fk := f ∗ ϕεk has the following
properties: fk → f locally uniformly in U , and ∂jfk → ∂jf weakly in
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L2
loc (U). The same applies to gk := g ∗ ϕεk . Since fk and gk are smooth

functions, the product rule for them holds trivially:

∂j (fkgk) = (∂jfk) gk + fk (∂jgk) .

Passing to the limit in D′ (U) and using the fact that the norms ‖∂jfk‖∞
and ‖∂jgk‖∞ are uniformly bounded, we finish the proof.

2.25. Assume first that supp f ∈ (a, b). Let ϕ be a smooth cutoff function
of supp f in (a, b). Then, by the definition of the distributional derivative,

∫ b

a

f ′ϕdx = −
∫ b

a

fϕ′dx.

However, the integral in the left hand side is equal to
∫ b
a f
′dx because ϕ ≡ 1

on supp f , and the integral in the right hand side is 0 because ϕ′ ≡ 0 on
supp f . Hence, in this case we have

∫ b

a

f ′ (x) dx = 0.

Assume now that f (a) = f (b) = 0. Then we extend f to R by setting
f (x) = 0 outside [a, b], and f is a Lipschitz function in R. Hence, by the
previous case, ∫ b

a

f ′dx =

∫ b+1

a−1
f ′dx = 0.

Now let f be any Lipschitz function on [a, b] and ϕ be a Lipschitz function
on [a, b] such that ϕ (a) = ϕ (b) = 0. Then fϕ is a Lipschitz function that
vanishes at a and b, and by the previous case we obtain

∫ b

a

(fϕ)′ dx = 0.

Using the product rule for Lipschitz functions (see Exercise 2.24), we obtain
∫ b

a

f ′ϕdx = −
∫ b

a

fϕ′dx. (B.22)

Now apply this formula with the function

ϕε (x) =






x/ε, a ≤ x ≤ a+ ε
1, a+ ε ≤ x ≤ b− ε
1−x
ε , b− ε ≤ x ≤ b,

where 0 < ε < 1
2 (b− a). Since

ϕ′ε (x) =






1/ε, a < x < a+ ε,
0, a+ ε < x < b− ε,
−1/ε, b− ε < x < b,

we obtain from (B.22)
∫ b

a

f ′ϕεdx = −
1

ε

∫ a+ε

a

fdx+
1

ε

∫ b

b−ε
fdx.
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Letting ε→ 0, we obtain
∫ b

a

f ′ (x) dx = f (b)− f (a) . (B.23)

The integration by parts formula (2.33) follows from (B.23) applied to fg
and from the product rule.

2.26. (a) The case k = 0 is trivial: if f is a bounded continuous function
and u ∈ L2 (Ω) then fu ∈ L2 (Ω) and

‖fu‖L2 ≤ sup |f | ‖u‖L2 .

Let k ≥ 1. Using the product rule (2.19) from Exercise 2.12, we obtain
that, for any |α| ≤ k, ∂α (fu) is a linear combination of functions ∂α−βf∂βu
which all are in L2 (Ω) because ∂α−βf is bounded continuous and ∂βu ∈ L2.
Hence, ∂α−βf∂βu ∈ L2 and ∂α (fu) ∈ L2, which implies fu ∈W k.

It follow from (2.19) that

‖∂α (fu) ‖L2 ≤ C
∑

β≤α

‖∂α−βf ∂βu‖L2

≤ C
∑

β≤α

sup
∣
∣
∣∂α−βf

∣
∣
∣ ‖∂βu‖L2

≤ C‖f‖Ck‖u‖Wk ,

where C is a constant depending on k, n. Adding up for all |α| ≤ k, we
obtain (2.38).

(b) Let Ω′ b Ω be an open set. Since u ∈W k (Ω′) and

‖f‖Ck(Ω′) <∞,

we obtain by part (b) that fu ∈W k (Ω′), whence it follows that u ∈W k
loc (Ω).

2.27. The convergence in W k obviously implies that in D′. Therefore,
fk → f in D′ whence by Exercise 2.13 we have ∂αfk → ∂αf in D′. Since
also ∂αfk → g in D′, we conclude that g = ∂αf .

2.28. Let {fj} be a Cauchy sequence in W k. Then for any multiindex
α such that |α| ≤ k, the sequence {∂αfj} is Cauchy in L2. Since L2 is
complete, any such sequence has a limit in L2, say hα. Setting h ≡ h0, we
obtain by Exercise 2.27 that hα = ∂αh and, hence,

‖fj − h‖
2
Wk =

∑

|α|≤k

‖∂αfj − ∂
αh‖2L2 =

∑

|α|≤k

‖∂αfj − h
α‖2L2 → 0

as j →∞. Therefore, fj → h ∈W k, which was to be proved.

2.29. If u ∈ W k
c (Ω) then extend u by 0 outside Ω. It follows from

Lemma 2.6 that the derivatives of u are also extended by 0 and, hence,
u ∈ W k (Rn). Let ϕ be any mollifier. Then, by Lemma 2.9, u ∗ ϕε is in
D (Ω) and, by Theorem 2.13, u ∗ ϕε → u in W k (Rn), which finishes the
proof.



16 B. HINTS AND SOLUTIONS

2.30. In the view of Exercise 2.29, it suffices to show that any function
u ∈ W k (Rn) can be approximated by a sequence {ul}

∞
l=1 of functions ul ∈

W k (Rn) with compact supports. Let ψ be a cutoff function of the unit ball
B1 (0) in Rn so that ψ ∈ D (Rn) and ψ ≡ 1 on B1 (0). Set

ul (x) = ψ
(x
l

)
u (x) .

Clearly, ul has a compact support. By Exercise 2.26, ul ∈ W k (Rn). Let us
show that ul → u in W k (Rn) as l→∞. Observe that ψ (x/l) = 1 if |x| < l
and, hence, ul = u on the ball Bl ≡ Bl (0). Noticing that

ul − u = (ψ (x/l)− 1)u

and using the estimate (2.38) of Exercise 2.26, we obtain

‖ul − u‖Wk(Bcl )
≤ C‖ψ (x/l)− 1‖Ck(Bcl )

‖u‖Wk(Bcl )
,

where Bc
l ≡ R

n \Bl. Since

‖u‖Wk(Bcl )
→ 0 as l→∞

and the norm ‖ψ (x/l) − 1‖Ck remains bounded, we conclude that ul → u

in W k (Rn).

2.31. The identity (2.39) is trivial for v ∈ D (Ω). Since the both parts of
(2.39) are continuous in v with respect to the W 1-norm, it is extended to
all v ∈W 1

0 (Ω).

2.32. (a) Let us first prove (2.40) for functions from D (Rn) and for the
classical derivatives, that is,

∂̂αϕ = (iξ)α ϕ̂ (ξ) , (B.24)

where ϕ ∈ D (Rn) (cf. Exercise 1.3). Indeed, we have

ϕ̂ (ξ) =

∫

Rn
e−ixξϕ (x) dx,

whence, for any k = 1, ..., n,

(iξk) ϕ̂ (ξ) =

∫

Rn
(iξk) e

−ixξϕ (x) dx = −
∫

Rn

∂

∂xk
e−ixξϕ (x) dx

=

∫

Rn
e−ixξ

∂

∂xk
ϕ (x) dx = ∂̂kϕ (ξ) .

Iterating this identity, we obtain (B.24).
Next, let us use the Plancherel identity: if u1, u2 ∈ L2 (Rn) then

(u1, u2)L2 = c ( û1, û2)L2 , (B.25)

where c = (2π)−n. Recall that, for complex valued functions, the inner
product is defined by

(u1, u2)L2 =

∫

Rn
u1u2dx ,

where the bar stands for complex conjugation.
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Let v = ∂αu and note that, by definition,

(v, ϕ) = (−1)|α| (u, ∂αϕ) (B.26)

for any ϕ ∈ D (Rn). We have by (B.25)

(v, ϕ) = (v, ϕ)L2 = c( v̂, ϕ̂)L2 (B.27)

and, similarly,

(u, ∂αϕ) = c( û, ∂̂αϕ)L2 .

By (B.24), we have

∂̂αϕ = (iξ)α ϕ̂,

Denoting for simplicity ψ = ϕ̂, we obtain

( v̂, ψ)L2 = (−1)α ( û, (iξ)α ψ)L2 = (−1)α ((−iξ)α û, ψ)L2 = ((iξ)α û, ψ)L2 .
(B.28)

Note that ψ ranges in the Fourier image of D (Rn). Since D (Rn) is dense in
L2 (Rn) (see Theorem 2.3) and the Fourier transform is an isometry of L2

(up to a constant factor), the Fourier image of D (Rn) is dense in L2 (Rn),
too. Hence, (B.28) implies v̂ = (iξ)α û, which was to be proved.

(b) It follows from (B.25) and the result of part (a) that

‖∂αu‖2L2 = c‖ ∂̂αu‖2L2 = c‖ (iξ)α û‖2L2 = c

∫

Rn
|ξα|2 |û (ξ)|2 dξ,

which was to be proved.

2.33. Since the function (iξ)α û (ξ) is in L2 (Rn), it is the Fourier image
of a function from L2 (Rn), say v (x). Let us show that ∂αu = v. For that,
we need to verify the identity (B.26) for all ϕ ∈ D (Rn). Using v̂ = (iξ)α û ,
(B.27), and (B.25), we obtain

(v, ϕ) = c( (iξ)α û, ϕ̂)L2 = c( û, (−iξ)α ϕ̂)L2 = c (−1)|α| ( û, ∂̂αϕ)L2

= (−1)|α| (u, ∂αϕ)L2 = (−1)|α| (u, ∂αϕ),

which was to be proved.

2.34. We obtain from Exercise 2.32 that if u ∈W k then

‖u‖2Wk =
∑

|α|≤k

‖∂αu‖2L2 = c

∫

Rn




∑

|α|≤k

|ξα|2



 |û (ξ)|2 dξ.

Since the sum in the bracket is comparable to
(

1 + |ξ|2
)k

, we obtain

‖u‖2Wk '
∫

Rn
|û (ξ)|2

(
1 + |ξ|2

)k
dξ, (B.29)

whence it follows that the right hand side of (B.29) is finite.
Conversely, if the right hand side of (B.29) is finite then, by Exercise

2.33, ∂αu ∈ L2 for any |α| ≤ k and, hence, u ∈W k.
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2.35. By Lemma 2.8, we have, for any ψ ∈ D (Rn),

(u ∗ ϕ,ψ) =
(
u, ϕ′ ∗ ψ

)
≤ ‖u‖W−k‖ϕ

′ ∗ ψ‖Wk ,

where ϕ′ (x) = ϕ (−x). Since by Theorem 2.13

‖ϕ′ ∗ ψ‖Wk ≤ ‖ψ‖Wk ,

we obtain

(u ∗ ϕ,ψ) ≤ ‖u‖W−k‖ψ‖Wk ,

whence (2.49) follows.

2.36. Let W k
0 (Ω) denote the closure of D (Ω) in W k (Ω). Then it follows

from the definition of W−k (Ω) that the space W−k (Ω) is dual to W k
0 (Ω)

(the dual space consists of all bounded linear functional). However, W k
0 (Ω)

is a Hilbert space as a closed subspace of a Hilbert space. Therefore, by Riesz
representation theorem, the dual space to W k

0 (Ω) is isometric to W k
0 (Ω),

whence the both claims follow.

2.37. By Exercise 1.7, we have Ptf (x) = πn/2pt+1/4 (x). Hence,

ϕ (t) = (Ptf, f) = πn/2
(
pt+1/4, p1/4

)

= πn/2pt+1/4 ∗ p1/4 (0)

= πn/2pt+1/2 (0)

= 4−n/2 (t+ 1/2)−n/2 .

2.38. The proof of Lemma 2.17 goes through except that one needs to
verify (2.55) without Lemma 2.1. Indeed, (2.55) follows directly from

∂j (Ptf) =
∂

∂xj

∫

Rn
pt (y) f (x− y) dy =

∫

Rn
pt (y)

∂

∂xj
f (x− y) dy,

and this is true because the last integral converges locally uniformly in x,
thanks to the boundedness of the derivative ∂jf .

2.39. By Exercise 1.4

P̂tf (ξ) = p̂t (ξ) f̂ (ξ) = e−t|ξ|
2

f̂ (ξ) .

By the Plancherel identity,

‖f − Ptf‖
2
L2 = c‖f̂ − P̂tf‖

2
L2 = c‖(1− e−t|ξ|

2

)f̂‖2L2 ,

where c = (2π)−n. Using the inequality

1− e−t|ξ|
2

≤
√
t |ξ|2, (B.30)

we obtain

‖f − Ptf‖
2
L2 ≤ ct‖ |ξ| f̂‖2L2 = ct

∫

Rn
|ξ|2

∣
∣
∣f̂ (ξ)

∣
∣
∣
2
dξ.
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If f ∈W 1 then, by Exercise 2.32,

‖∇f‖2L2 =
∑

j

‖∂jf‖
2
L2 = c

∑

j

‖∂̂jf‖
2
L2 = c

∫

Rn

∑

j

|ξj |
2 |f̂ (ξ) |2dξ = c

∫

Rn
|ξ|2 |f̂ (ξ) |2dξ,

which together with the previous line yields (2.66).
If f ∈W 2 then we use instead of (B.30)

1− e−t|ξ|
2

≤ t |ξ|2 ,

which yields

‖f − Ptf‖
2
L2 ≤ ct2‖ |ξ|2 f̂‖2L2 = ct2

∫

Rn
|ξ|4 |f̂ (ξ) |2dξ.

Using Exercise 2.32, we have

‖∆f‖2L2 = c‖∆̂f‖2L2 = c‖
∑

j

ξ2
j f̂ (ξ) ‖2L2 = c

∫

Rn
|ξ|4 |f̂ (ξ) |2dξ,

which together with the previous line finishes the proof.

Solutions to Chapter 3

3.1. By Lemma 3.4, there exists a countable family {Ui}
∞
i=1 of relatively

compact charts covering all M . Set

Ωk =
k⋃

j=1

Uj (B.31)

so that {Ωk}
∞
k=1 is an increasing sequence of relatively compact open sets

covering M . However, we may not have yet the inclusion Ωk ⊂ Ωk+1. To
achieve that, we will select a subsequence of {Ωk}. The first term to be
selected is Ω1. If we have already selected Ωi then observe that Ωi is a
compact set and, hence is covered by a finitely many of sets {Ωk}. Since
this family is increasing, Ωi is covered by one of Ωk. Hence, select this Ωk

as the next term in the subsequence.
Let M be connected. The sets Uj considered above are always connected

(cf. the proof of Lemma 3.4). All we need is to renumber the sequence {Uj}
in an appropriate order so that each set Ωk defined by (B.31) is connected.
We will do this by means of an inductive construction. At each step, some
of the sets {Uj} will be declared selected and denoted by V1, V2, .... Set
V1 = U1 and declare U1 selected. Choose a non-selected set Uj with the
minimal j that intersects V1, denote it by V2 and declare selected, etc. If
V1, ..., Vi are already defined then choose a non-selected set Uj with minimal
j that intersects V1 ∪ V2... ∪ Vi, denote it by Vi+1 and declare selected. The
process stops if we cannot choose Vi+1, and continues countably many times
otherwise. By construction, all the unions V1 ∪ V2... ∪ Vi are connected, so
we need only to verify that the sequence {Vi} covers all M .
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Assume first that the sequence {Vi} is finite. Then, at some step i, any
non-selected Uj is disjoint with V := V1 ∪ V2... ∪ Vi. Let U be the union of
all non-selected Uj . All selected Uj are contained in V1, ..., Vi and, hence,
their union is V . Since U and V are two disjoint open sets covering M , one
of them must be empty, which can be only U , whence V = M .

Assume now that the sequence {Vi} is infinite, and show that it covers
M . If this is not the case then there exists Uj which is not covered by
V =

⋃
i Vi. If Uj intersects V then it should have been selected at some step

because there are selected sets Uj′ with j′ > j. Hence, any Uj that is not
covered by V is actually disjoint with V . Let U be the union of all such
sets Uj . Clearly, U and V cover M and are disjoint, which implies by the
connectedness of M that U = ∅ and, hence, V = M .

3.2. First of all, there exists countable family {Ui} of locally compact
charts covering M (see Lemma 3.4). Let {Ωk} be a sequence from Exercise
3.1. Let us construct inductively a locally finite family F of relatively com-
pact charts which will also cover M . At step 0, set F = ∅. At step k ≥ 1,
consider the compact set Ωk \Ωk−1 (where Ω0 := ∅). This set is covered by
a finite number of charts from the family {Ui}; say U1, ..., Um. Then add to
F the charts Ui \ Ωk−1, i = 1, ...,m. Clearly, the newly added charts cover
Ωk \ Ωk−1 and do not intersect Ωk−1.

The family of charts F obtained in this way covers all sets Ωk \Ωk−1 and
hence M . Let us verify that it is locally finite. Indeed, any compact set K is
contained in one of the sets Ωk. Up to the step k of the above construction,
family F contains a finite number of chart. From step k + 1 onwards, each
added chart does not intersect Ωk. Hence, there is only a finite number of
charts in F intersecting Ωk and hence K, which finishes the proof.

3.3. Use d and ∇ in the local coordinates.

3.4. The same hint as above.

3.5. Let x1, ..., xn and y1, ..., yn be two coordinate systems and let gx and
gy be the matrices of g in these systems, respectively. By Lemma 3.12, we
have

gy = JT gxJ

where J is the Jacobian matrix of the change y = y (x). It follows that

det gy = (det J)2 det gx. (B.32)

The same identity holds for the metric g̃. Dividing it by (B.32) and noticing

that (det J)2 cancels out, we obtain

det g̃y

det gy
=

det g̃x

det gx
,

which was to be proved.

3.6. (a) Fix a point x ∈ M and choose an orthonormal basis e =
{e1, ..., en} in TxM with respect to the inner product 〈, 〉g where the qua-
dratic form g̃ (x) is diagonal, say g̃ii = λi and g̃ij = 0 if i 6= j. Then we have
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in this basis

det g (x) = 1 and det g̃ (x) = λ1...λn.

On the other hand,

λi = g̃ii = 〈ei, ei〉g̃ ≤ C〈ei, ei〉g = Cgii = C,

whence it follows that
det g̃ (x)

det g (x)
≤ Cn.

By Exercise 3.5, the ratio of the determinants is independent on the choice
of the coordinate system. Hence, we obtain from (3.21) that dν̃

dν ≤ C
n/2.

(b) It follows from (3.32) that

g̃−1

g−1
≥ C−1,

where g−1 is the metric tensor on covectors, whose matrix in the local co-
ordinates is

(
gij
)

(cf. Section 3.3). Indeed, in the basis e as in part (b), the

matrix of g−1 is the identity matrix, while that of g̃−1 is the diagonal ma-
trix with the diagonal entries λ−1

i ≥ C−1, whence the claim follows. Using
(3.19), we obtain

|∇f |2g = 〈df, df〉g−1 ≤ C〈df, df〉g̃−1 = C |∇f |2g̃ ,

which finishes the proof.

3.7. For any ϕ ∈ C∞0 (M), we obtain using the divergence theorem and
(3.20)

∫

M

divµ (uω)ϕdµ = −
∫

M

〈uω,∇ϕ〉dµ = −
∫

M

〈ω, u∇ϕ〉dµ

= −
∫

M

〈ω,∇ (uϕ)− ϕ∇u〉dµ

= −
∫

M

〈ω,∇ (uϕ)〉dµ+

∫

M

〈ω, ϕ∇u〉dµ

=

∫

M

(divµ ω)uϕdµ+

∫

M

〈ω,∇u〉ϕdµ,

whence (3.48) follows.

3.8. Using the identity ∆µ = divµ∇ and the product rules for ∇ and
divµ (cf. Exercises 3.3 and 3.7), we obtain

∆µ (uv) = divµ (∇ (uv)) = divµ (u∇v + v∇u)

= 〈∇u,∇v〉+ u∆µv + 〈∇v,∇u〉+ v∆µu

= u∆µv + 2〈∇u,∇v〉+ (∆µu) v.

3.9. Use the chain rule for ∇ of Exercise 3.4 and the product rule for
divµ of Exercise 3.7.
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3.10. The Hermite polynomials satisfy the equation

h′′k − 2xh′k + 2khk = 0,

which can be obtained directly from the definition. Writing it in the form

∆µhk + 2khk = 0,

we obtain that hk is an eigenfunction of the weighted Laplace operator ∆µ

with the eigenvalue 2k.

3.11. Using the obvious identity ∇̃ = 1
a∇ where ∇̃ is the gradient of g̃,

the Green formula (3.43) and (3.17), we obtain, for all u, v ∈ C∞0 (M),
∫
u∆̃µ̃v dµ̃ = −

∫
〈∇̃u, ∇̃v〉g̃dµ̃ = −

∫
〈du, ∇̃v〉 bdµ

= −
∫
〈∇u,

b

a
∇v〉g dµ =

∫
u divµ

(
b

a
∇v

)

dµ =

∫
u

(
1

b
divµ

(
b

a
∇v

))

dµ̃,

whence the claim follows.

3.12. For all u, v ∈ C∞0 (M), we have
∫
uLv dµ̃ =

∫
u divµ (A∇v) dµ = −

∫
〈∇u,A∇v〉gdµ = −

∫
〈du,A∇v〉dµ

where we have used the divergence theorem on (M,g, µ) and the identity
(3.17). On the other hand, using the Green formula on (M, g̃, µ̃), we obtain
∫
u∆̃µ̃v dµ̃ = −

∫
〈∇̃u, ∇̃v〉g̃dµ̃ = −

∫
b〈∇̃u, ∇̃v〉g̃dµ = −

∫
〈du, b∇̃v〉dµ.

Hence, the identity L = ∆̃µ̃ amounts to

A∇v = b∇̃v.

Since ∇v = g−1dv and ∇̃v = g̃−1dv (see (3.17)), the above equation is
equivalent to

Ag−1 = bg̃−1,

whence g̃ = bgA−1.

3.13. If dµ̃ = bdµ then, by Exercise 3.11 and the product rule (3.48) of
Exercise 3.7,

∆µ̃u =
1

b
divµ (b∇u) = divµ (∇u) +

1

b
〈∇b,∇u〉 = ∆µu+ 〈∇ log b,∇u〉.

Hence, L = ∆µ̃ provided log b = v that is, b = ev.

3.14. Note that dF is a non-zero covector, that is, a linear functional in
TxM , and the equation 〈dF, ξ〉 = 0, indeed, defines a (n− 1)-dimensional
subspace of TxM . Since dimTxN = n − 1, it suffices to verify that every
vector from TxN satisfies equation (3.52). Indeed, if ξ ∈ TxN then, by
definitions (3.9) and (3.50),

〈dF, ξ〉 = ξ (F ) = ξ (F |N ) = ξ (0) = 0.
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In the case M = Rn, rewrite the above identity in the form 〈∇F, ξ〉g = 0,
whence all the rest claims follows.

3.15. Using the notation of Section 3.8, we have

g =






gX 0

0 ψ2 (x) gY




 . (B.33)

In particular, we see that

det g = ψ2m(x) det gX det gY ,

which implies (3.56). It also follows from (B.33) that

g−1 =








g−1
X 0

0 ψ−2 (x) g−1
Y







.

Using (3.18) we see that the gradient ∇ on M is given by the column-vector

∇u =

[
∇Xu

ψ−2∇Y u

]

.

Consider a vector field v =

[
vX
vY

]

on M . By (3.35), we obtain the following

formula for the divergence div on M

div v =
1

ψm
√

det gY
divX

(
ψm
√

det gY vX

)
+

1

ψm
√

det gX
divY

(
ψm
√

det gXvY

)

= divX vX +
1

ψm
〈∇Xψ

m, vX〉+ divY vY .

Finally, applying this to v = ∇u we obtain

∆u = div∇u = divX (∇Xu) +
1

ψm
〈∇Xψ

m,∇Xu〉+ divY (ψ−2∇Y u),

whence (3.57) follows.

3.16. Let us simplify the notation by renaming xn+1 to t and x′ to x.
Then the equation of the sphere Sn is

|x|2 + t2 = 1, (B.34)

and the Euclidean metric in Rn+1 is given by

gRn+1 =
(
dx1
)2

+ ...+ (dxn)2 + dt2. (B.35)

Since the spherical metric is obtained by restricting gRn+1 to Sn, all we need
is to rewrite (B.35) via the coordinates y1, ..., yn taking into account the
equation (B.34). The point y is obtained from by scaling x by the factor
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1+ t, which arises from comparison of the segments [−1, t] and [−1, 0] of the
axis xn+1. Hence, we have

yi =
xi

1 + t
. (B.36)

The equation (B.34) implies that on Sn

tdt = −xidxi.

Equation (B.36) yields

dyi =
(1 + t) dxi − xidt

(1 + t)2 ,

whence
∑

i

(
dyi
)2

= (1 + t)−4
∑

i

(
(1 + t)2 (dxi

)2
+
(
xi
)2
dt2
)

− (1 + t)−4
∑

i

(
xidxi (1 + t) dt+ (1 + t) dt xidxi

)

= (1 + t)−4

(
∑

i

(1 + t)2 (dxi
)2

+
(
1− t2

)
dt2 + 2t (1 + t) dt2

)

= (1 + t)−2

(
∑

i

(
dxi
)2

+ dt2

)

and
(
dx1
)2

+ ...+ (dxn)2 + dt2 = (1 + t)2
((
dy1
)2

+ ...+ (dyn)2
)
. (B.37)

It follows from (B.34) and (B.36) that

|y|2 =
|x|2

(1 + t)2 =
1− t
1 + t

whence

1 + t =
2

1 + |y|2
.

Substituting into (B.37), we obtain

(
dx1
)2

+ ...+ (dxn)2 + dt2 =
4

(
1 + |y|2

)2

((
dy1
)2

+ ...+ (dyn)2
)
,

which was to be proved.

3.17. Left to the reader

3.18. This is similar to Exercise 3.16. Renaming xn+1 to t and x′ to x,
we obtain the equation of the hyperboloid Hn

t2 − |x|2 = 1. (B.38)
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Since |x|2 = t2 − 1 < (1 + t)2, the identity

y =
x

1 + t
(B.39)

defines a point y ∈ Rn with |y| < 1, that is, y ∈ Bn. Conversely, any point
y ∈ Bn uniquely determines a pair (x, t) satisfying (B.38) by

t =
1 + |y|2

1− |y|2
and x =

2y

1− |y|2
. (B.40)

The hyperbolic metric is obtained by restricting to Hn the Minkowski metric

gMink =
(
dx1
)2

+ ...+ (dxn)2 − dt2.

The equation (B.38) implies that on Hn

tdt = xidxi.

Equation (B.39) yields

dyi =
(1 + t) dxi − xidt

(1 + t)2 ,

whence
∑

i

(
dyi
)2

= (1 + t)−4
∑

i

(
(1 + t)2 (dxi

)2
+
(
xi
)2
dt2
)

− (1 + t)−4
∑

i

(
xidxi (1 + t) dt+ (1 + t) dt xidxi

)

= (1 + t)−4

(
∑

i

(1 + t)2 (dxi
)2

+
(
t2 − 1

)
dt2 − 2t (1 + t) dt2

)

= (1 + t)−2

(
∑

i

(
dxi
)2
− dt2

)

and
(
dx1
)2

+ ...+ (dxn)2 − dt2 = (1 + t)2
((
dy1
)2

+ ...+ (dyn)2
)
.

It follows from (B.40) that

1 + t =
2

1− |y|2
,

which implies

(
dx1
)2

+ ...+ (dxn)2 − dt2 =
4

(
1− |y|2

)2

((
dy1
)2

+ ...+ (dyn)2
)
,

which was to be proved.

3.19. The hyperbolic space Hn is represented as a hyperboloid in Rn+1

by the equation
(xn+1)2 − |x′|2 = 1.
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The polar coordinates (r, θ) in Hn are related to x1, ..., xn+1 by (3.69), that
is,

cosh r = xn+1 and θ =
x′

|x′|
.

The coordinates y1, ..., yn in the Poincaré model are related to x1, ..., xn+1

by (3.71), that is

y =
x′

xn+1 + 1
.

This implies
y

|y|
=

x′

|x′|
= θ,

1 + |y|2 =

(
xn+1

)2
+ 2xn+1 + 1 + |x′|2

(xn+1 + 1)2 =
2
(
xn+1

)2
+ 2xn+1

(xn+1 + 1)2 =
2xn+1

xn+1 + 1
,

and

1− |y|2 =

(
xn+1

)2
+ 2xn+1 + 1− |x′|2

(xn+1 + 1)2 =
2xn+1 + 2

(xn+1 + 1)2 =
2

xn+1 + 1
,

whence
1 + |y|2

1− |y|2
= xn+1 = cosh r.

3.20. (a) The canonical metric of the sphere Sn in the polar coordinates
has the form

gSn = dr2 + sin2 r gSn−1 ,

where 0 < r < π and θ ∈ Sn−1. Then the Riemannian volume ωn+1 of Sn

coincides with the volume of the ball of radius π. Computing the latter by
means of (3.89), we obtain the recursive formula

ωn+1 = ωn

∫ π

0
sinn−1 r dr. (B.41)

(b) Using ω2 = 2π, we obtain from (B.41)

ω3 = ω2

∫ π

0
sin r dr = 4π,

and

ω4 = ω3

∫ π

0
sin2 rdr = 2π2.

Denote by SM (r) and VM (r) respectively the area function and the volume
function of a manifold M . Using (3.91) and (3.92), we obtain

SRn (r) = ωnr
n−1 and VRn (r) = ωn

∫ r

0
rn−1dr =

ωn

n
rn,

SSn (r) = ωn sinn−1 r and VSn (r) = ωn

∫ r

0
sinn−1 dr,
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SHn (r) = ωn sinhn−1 r and VHn (r) = ωn

∫ r

0
sinhn−1 dr.

It follows that

VS2 (r) = 2π (1− cos r) ,

VS3 (r) = π (2r − sin 2r)

VS4 (r) =
π2

6
(cos 3r − 9 cos r + 8)

and

VH2 (r) = 2π (cosh r − 1) ,

VH3 (r) = π (sinh 2r − 2r) ,

VH4 (r) =
π2

6
(cosh 3r − 9 cosh r + 8) .

3.21. Let us first evaluate the integral

In =

∫ π

0
sinn rdr,

where n is a non-negative integer. Integrating by parts as sinn−1 rd cos r, we
obtain the following recursive relation, for all n ≥ 2:

In =
n− 1

n
In−2. (B.42)

Let us prove by induction that, for all n ≥ 0,

In =

√
πΓ ((n+ 1) /2)

Γ ((n+ 2) /2)
(B.43)

For n = 0 we have I0 = π, which matches the right hand side of (B.43)
because Γ (1/2) =

√
π and Γ (1) = 1. For n = 1 we have I1 = 2, which again

matches the right hand side of (B.43) because Γ (3/2) = 1
2

√
π.For n ≥ 2

we obtain, using the inductive hypothesis for In−2, (B.42), and the identity
zΓ (z) = Γ (z + 1), that

In =
n− 1

n

√
π

Γ ((n− 1) /2)

Γ (n/2)
=
√
π

Γ ((n+ 1) /2)

Γ ((n+ 2) /2)
,

which proves (B.43).
Combining (B.43) with (B.41) in the form ωn+1 = ωnIn−1, we obtain,

for all n ≥ 1,

ωn+1 = ωn

√
πΓ (n/2)

Γ ((n+ 1) /2)
,

which easily implies (3.94) by induction in n.

3.22. We obviously have

∆S1 =
d2

dθ2
,
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where θ is the angle on S1. If (ρ, θ) are the polar coordinates on S2 then by
(3.84)

∆S2 =
∂2

∂ρ2
+ cot ρ

∂

∂ρ
+

1

sin2 ρ

∂2

∂θ2
.

If (r, ρ, θ) are the spherical coordinates on S3 then we obtain

∆S3 =
∂2

∂r2
+ 2 cot r

∂

∂r
+

1

sin2 r
∆S2

=
∂2

∂r2
+ 2 cot r

∂

∂r
+

1

sin2 r

(
∂2

∂ρ2
+ cot ρ

∂

∂ρ
+

1

sin2 ρ

∂2

∂θ2

)

.

Similarly, it follows from (3.83) that

∆R2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

and

∆R3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ρ2
+ cot ρ

∂

∂ρ
+

1

sin2 ρ

∂2

∂θ2

)

.

Finally, (3.85) yields

∆H2 =
∂2

∂ρ2
+ coth ρ

∂

∂ρ
+

1

sinh2 ρ

∂2

∂θ2

and

∆H3 =
∂2

∂r2
+ 2 coth r

∂

∂r
+

1

sinh2 r

(
∂2

∂ρ2
+ cot ρ

∂

∂ρ
+

1

sin2 ρ

∂2

∂θ2

)

. (B.44)

3.23. (a) Since the function u depends only on r, we have by (B.44)

∆H3u = u′′ + 2 (coth r)u′,

and a direct computation yields ∆H3u = −u.
(b) By Exercise 3.19, the relation between the polar radius r and the

coordinates y ∈ Bn is given by

cosh r =
1 + |y|2

1− |y|2
.

This implies

sinh r =
2 |y|

1− |y|2

and

er = cosh r + sinh r =
1 + |y|
1− |y|

.

Hence, we obtain

u =
r

sinh r
=

1− |y|2

2 |y|
log

1 + |y|
1− |y|

. (B.45)
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We need to prove that this function extends smoothly to r = 0, that is, to
y = 0. For that, let us just expand the right hand side of (B.45) to a Taylor
series in a neighborhood of |y| = 0. We have

log
1 + |y|
1− |y|

=

(

|y| −
|y|2

2
+
|y|3

3
− ...

)

−

(

− |y| −
|y|2

2
−
|y|3

3
− ...

)

= 2 |y|+ 2
|y|3

3
+ 2
|y|5

5
+ ...

whence

u =
(

1− |y|2
)
(

2 + 2
|y|2

3
+ 2
|y|4

5
+ ...

)

.

Hence, u is a smooth function of |y|2 in a neighborhood of 0. Since |y|2 is a
smooth function of y, the smoothness of u in H3 follows.

3.24. Since u does not depend on the polar angle, the equation ∆µu = 0
becomes

u′′ +
S′

S
u = 0

(cf. (3.93). This equation equivalent to

(
Su′
)′

= 0,

and solving it we obtain

u (r) = C

∫ r

r1

dr

S (r)
+ C1. (B.46)

In Rn we have S (r) = ωnr
n−1 and (B.46) yields

u (r) = C1 + C

{
log 1

r , n = 2,
r2−n, n > 2.

Since in Sn we have S (r) = ωn sinn−1 r, we obtain from (B.46)

u (r) = C1 + C

{
log tan r

2 , in S2,
cot r, in S3.

Similarly,

u (r) = C1 + C

{
log tanh r

2 , in H2,
coth r, in H3.
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3.25. Using the notation (3.86) and (3.87) from Section 3.10, and writing
u′ = ∂u

∂r , we obtain

∫

A

(∆µu) v dµ =

∫ b

a

∫

Sn−1

(

u′′ +
σ′

σ
u′ +

1

ψ2
∆Sn−1u

)

vσ (r) dθdr

=

∫

Sn−1

(∫ b

a

(
u′σ
)′
vdr

)

dθ

+

∫ b

a

(∫

Sn−1

(∆Sn−1u) vdθ

)

ψ−2σdr.

Integrating by parts in the interval (a, b) yields
∫ b

a

(
u′σ
)′
vdr =

[
u′vσ

]b
a
−
∫ b

a

u′v′σdr.

By the Green formula (3.41) on Sn−1,
∫

Sn−1

(∆Sn−1u) vdθ = −
∫

Sn−1

〈∇θu,∇θv〉dθ.

Combining together the above lines and using a consequence of (3.78) that

〈∇u,∇v〉 = u′v′ + ψ−2 (r) 〈∇θu,∇θv〉,

we obtain
∫

A

(∆µu) v dµ =

[∫

Sn−1

u′vσdθ

]b

a

−
∫

Sn−1

∫ b

a

u′v′σdrdθ

−
∫ b

a

∫

Sn−1

ψ−2 (r) 〈∇θu,∇θv〉σdθdr

=

∫

Sb

u′vdµSb −
∫

Sa

u′vdµSa −
∫

A

〈∇u,∇v〉 dµ,

which proves (3.96). Switching in (3.96) u and v and subtracting the result-
ing identity from (3.96), we obtain (3.97).

3.26. (a) This follows from Lemma 3.19.
(b) The change of coordinates on S is given by

xi =
∣
∣x′
∣
∣ f i (θ) = Φ (t) f i (θ) , i = 1, ..., n

xn+1 = t,

where f i are the same functions as in (3.61). Therefore, the metric gS is
given by

(
dx1
)2

+ ...+ (dxn)2 +
(
dxn+1

)2
=

n∑

i=1

(
f iΦ′dt+ Φdf i

)2
+ dt2

=
(

1 +
(
Φ′
)2)

dt2 + Φ2gSn−1 .
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(c) The change ρ =
∫ √

1 + Φ′ (t)2dt obviously implies
(

1 +
(
Φ′
)2)

dt2 = dρ2.

The function Ψ (ρ) is obtained by the condition Ψ (ρ) = Φ (t).

3.27. gCyl = dρ2 + gSn−1 and gCone = dρ2 + ρ2

2 gSn−1 .

3.28. The changes

xn+1 = t and
∣
∣x′
∣
∣ =

1

cosh s
=: u (s)

(where s > 0) bring the equation of the pseudo-sphere to the form

t = s− tanh s.

The function Φ (cf. Exercise 3.26) is defined by the condition u = Φ (t).
Therefore,

ρ =

∫ √
1 + Φ′ (t)2dt =

∫ √(
du

ds

)2

+

(
dt

ds

)2

ds =

∫
tanh s ds = log cosh s.

The function Ψ is defined by the condition Ψ (ρ) = Φ (t) whence Ψ (ρ) =
u = e−ρ, ρ > 0.

3.29. (a) The metric of R2 has the form (3.99) with f ≡ 1, and (3.100)
clearly gives KR2 ≡ 0. To apply (3.100) to the other metrics, let us first
notice that by the chain rule

∆ log f =
f∆f − |∇f |2

f2
=

∆f

f
−

(
|∇f |
f

)2

.

where ∇f is the gradient of f in the Euclidean metric
(
dx1
)2

+
(
dx2
)2

.
In particular, if the function f depends only on the polar radius r then
|∇f | = |f ′| and ∆f = f ′′ + 1

rf
′ whence

KM,g = f2∆ log f = ff ′′ +
1

r
f ′f −

(
f ′
)2
. (B.47)

The canonical metric of S2 in the stereographic projection has the form
(3.99) with

f (x) =
1

2

(
1 + |x|2

)
=

1

2

(
1 + r2

)
.

Hence, f ′ = r and f ′′ = 1, whence (B.47) yields KS2 ≡ 1. Similarly, the
canonical metric of H2 in the Poincaré model has the form (3.100) with

f (x) = 1
2

(
1− |x|2

)
whence in the same way we obtain KH2 ≡ −1.

(b) KR2
+,g
≡ −1.

3.30. Let us write down the Laplace operator ∆g in the coordinates x1, x2

using the fact that the matrix g = (gij) of the metric g has the form

g =

(
f−2 0

0 f−2

)

.
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Since det g = f−4 and

g−1 =

(
f2 0
0 f2

)

,

we obtain

∆g =
1

√
det g

∂

∂x1

(√
det gg11 ∂

∂x1

)

+
1

√
det g

∂

∂x2

(√
det gg22 ∂

∂x2

)

= f2 ∂2

(∂x1)2 + f2 ∂2

(∂x2)2

= f2∆,

that is
∆g = f2∆.

Since

g̃ =

(
dx1
)2

+
(
dx2
)2

(fh)2 ,

the formula (3.100) gives for this metric

KM,g̃ = (fh)2 ∆ log (fh) = h2
(
f2∆ log f + f2∆ log h

)
= h2 (KM,g + ∆g log h) ,

which was to be proved.

3.31. Let us change the variable

ρ =

∫
dr

ψ (r)

so that dρ = dr
ψ(r) . Clearly, in the coordinates ρ, θ the metric has the form

g = ψ2 (r)
(
dρ2 + dθ2

)
,

which matches (3.99) with f (ρ) = 1
ψ(r) . Since ∆ = ∂2

∂ρ2 + ∂2

∂θ2 and ψ does

not depend on θ, we obtain by (3.100)

KM,g = −
1

ψ2

d2

dρ2
logψ.

We have
d

dρ
logψ =

1

ψ

dr

dρ

dψ

dr
= ψ′

and
d2

dρ2
logψ =

d

dρ
ψ′ =

dr

dρ
ψ′′ = ψψ′′,

whence the result follows.

3.32. We have:
For R2: ψ (r) = r, K ≡ 0.
For S2: ψ (r) = sin r, K ≡ 1.
For H2: ψ (r) = sinh r, K ≡ −1.
For Cyl: ψ (r) = 1, K ≡ 0.
For Cone: ψ (r) = const r, K ≡ 0.
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For PS: ψ (r) = e−r, K ≡ −1.

3.33. Left to the reader

3.34. Left to the reader

3.35. Fix a point x ∈M , denote by Mx the connected component of M
containing x, and consider the set Nx = {y : d (x, y) <∞}. We need to show
that Nx = Mx. The inclusion Nx ⊂ Mx is obvious: if d (x, y) < ∞ then
there is a continuous path connecting x and y, which implies that y ∈ Mx.
To prove the converse, it suffices to show that Nx is open and closed as a
subset of M . Indeed, Nx is open as the union of balls B (x, r) when r →∞,
and its complement

N c
x = {y ∈M : d (x, y) =∞}

is open because y ∈ N c
x implies that, for any ε > 0, also B (y, ε) ⊂ N c

x,
which follows from the triangle inequality.

3.36. (a) Using (3.77), we obtain

|γ̇|2 =
n−1∑

i,j=0

gij γ̇
iγ̇j =

∣
∣γ̇0
∣
∣2 +

n−1∑

i,j=1

gij γ̇
iγ̇j ≥

∣
∣γ̇0
∣
∣2 ,

whence it follows that

|γ| ≥
∫ b

a

∣
∣γ̇0
∣
∣ dt ≥

∣
∣
∣
∣

∫ b

a

γ̇0dt

∣
∣
∣
∣ =

∣
∣γ0 (b)− γ0 (a)

∣
∣ =

∣
∣r′′ − r′

∣
∣ .

(b) If θ′ = θ′′ =: θ then the path

γ (t) =
(
r′ (1− t) + r′′t, θ

)

connects x′ and x′′, because γ (0) = x′ and γ (1) = x′′. Since γ̇ (t) =
(r′′ − r′, 0) and |γ̇| = |r′′ − r′|, we obtain by (3.104) ` (γ) = r′′ − r′.

3.37. Let us show that any smooth path γ connecting the points 0 and
x = (r, θ) has the length at least r. If x′ 6= 0 is a point on the image of γ and
r′ = |x′| then, by Exercise 3.36, ` (γ) ≥ r − r′. Since such a point x′ exists
with arbitrarily small r′, we conclude that ` (γ) ≥ r and hence d (0, x) ≥ r.
The path γ (t) = (tr, θ) defined for t ∈ [0, 1], connects 0 and x, and it is easy
to see that ` (γ) = r. Hence, d (0, x) = r, which was to be proved.

In Rn, the above argument proves that d (0, x) = |x|. Since the origin of
the polar coordinates in Rn may be at any point, setting it to y we obtain
that d (x, y) = |x− y|.

3.38. Let γ1 be the part of γ connecting x and z, and γ2 be the part of
γ connecting z and y. Then we have ` (γ1) ≥ d (x, z) and ` (γ2) ≥ d (z, y).
whence

d (x, y) = ` (γ) = ` (γ1) + ` (γ2) ≥ d (x, z) + d (z, y) . (B.48)

On the other hand, by the triangle inequality, we have

d (x, y) ≤ d (x, z) + d (z, y) .
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Therefore, all inequalities in (B.48) are, in fact, equalities, whence ` (γ1) =
d (x, z).

3.39. It suffices to prove that 〈∇f (x) , ξ〉 ≤ |ξ|, for any tangent vector
ξ ∈ TxM ; by the definition of ∇f , this means that ξ (f) ≤ |ξ|. Consider a
smooth path γ : [0, ε]→M for some ε > 0 such that γ (0) = x and γ̇ (0) = ξ.
Then

ξ (f) = (f ◦ γ)′ (0) =
d

dt
(f (γ (t)))

∣
∣
∣
∣
t=0

,

so that we need to prove that

d

dt
(f (γ (t)))

∣
∣
∣
∣
t=0

≤ |γ̇ (0)| . (B.49)

Using the definition of the geodesic distance and the triangle inequality, we
obtain, for any t ∈ (0, ε),

f (γ (t))− f (γ (0)) = d (γ (t) , p)− d (γ (0) , p) ≤ d (γ (t) , γ (0)) ≤ `
(
γ|[0,t]

)

(B.50)
Since

`
(
γ|[0,t]

)
=

∫ t

0
|γ̇ (s)| ds,

dividing (B.50) by t and letting t→ 0, we obtain (B.49).

3.40. (a) Since M as a smooth manifold can be identified with Rn, we
can assume that r is a polar radius in Rn, that is,

r =

√
(x1)2 + ...+ (xn)2.

Clearly, r = r (x) is a smooth function away from the origin o, so the only
problem is to show that a ◦ r is infinitely many times differentiable at o.
Note that r2 is a smooth function on the entire Rn. Using that a is an even
function, we will prove that a ◦ r can be represented as a composition of a
smooth function with r2, which will settle the problem. In other words, it
suffices to prove that the function a (t) is a smooth function of t2.

Observe that

a (t) = a (0) +

∫ t

0
a′ (s) ds = a (0) + t

∫ 1

0
a′ (tu) du.

Applying the same formula to a′ and noticing that a′ (0) = 0, we obtain

a (t) = a (0) + t2b (t) (B.51)

where

b (t) :=

∫ 1

0

∫ 1

0
a′′ (tuv) dudv (B.52)

is again a smooth even function on R.
To proceed further, we need the following claim.

Claim. Let f (x) be a function on [0,+∞), which is infinitely smooth in
(0,+∞). We say that f ∈ Dk, where k is a non-negative integer, if f is k
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times differentiable at 0 (if k = 0 then this means that f is continuous at
0). If f (x) ∈ D0 then xkf (x) ∈ Dk for any k.

Inductive basis for k = 0 and 1. The case k = 0 is trivial. If k = 1 then
differentiating the function xf (x) at 0, we obtain

(xf (x))′x=0 = lim
x→0

xf (x)

x
= lim

x→0
f (x) = f (0) ,

whence xf (x) ∈ D1.
Inductive step from k− 1 and k to k+ 1. Since xk+1f (x) = x

(
xkf (x)

)

and xkf (x) ∈ Dk, it follows that also xk+1f (x) ∈ Dk. By the product rule,
we have (

xk+1f (x)
)′

= xkf (x) + x
(
xkf (x)

)′
.

Since
(
xkf (x)

)′
∈ Dk−1, we obtain by the inductive hypothesis that x

(
xkf (x)

)′
∈

Dk whence it follows that also
(
xk+1f (x)

)′
∈ Dk. Hence, xk+1f (x) ∈ Dk+1,

which was to be proved.
Now we can prove by induction in k that, for any smooth even function

a on R, we have a (
√
x) ∈ Dk, where x is a variable in [0,+∞). The case

k = 0 follows from the continuity of a. For the inductive step from k to
k + 1, apply the inductive hypothesis to the function b from (B.51), (B.52),
so that b (

√
x) ∈ Dk. By (B.51), we have

a
(√
x
)

= a (0) + xb
(√
x
)
,

and by the above Claim we conclude that a (
√
x) ∈ Dk+1.

Consequently, we see that the function a (
√
x) is infinitely many times

differentiable in [0,+∞), which was to be proved.

3.41. (a) Set g̃ := Cag = a2g. Consider the path γ (t) = tx where
t ∈ [0, 1] and x ∈ Rn. Then the polar radius r of the point x in the metric
g is given by

r = `g (γ) =

∫ 1

0
|γ̇ (t)|g dt =

∫ 1

0
|x| dt = |x| ,

while the polar radius r̃ of x in g̃ is given by

r̃ = `g̃ (γ) =

∫ 1

0
|γ̇ (t)|g̃ dt =

∫ 1

0
a (t |x|) |x| dt =

∫ |x|

0
a (s) ds,

which was to be proved. It follows from (3.109) that the radius of (M, g̃) is
infinity.

(b) It is obvious that a ? b is smooth, positive and even. It satisfies the
condition (3.109) because

∫ ∞

0
(a ? b) (t) dt =

∫ ∞

0
a

(∫ t

0
b (s) ds

)

b (t) dt

=

∫ ∞

0
a (τ) dτ =∞,
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where we have made the change τ =
∫ t

0 b (s) ds. Hence, a ? b ∈ S.
It follows from part (a) that

Ca ◦ Cb = Ca?b.

Indeed, setting g̃ = Cbg, we obtain

(Ca ◦ Cb) g = Cag̃ = a2 (r̃) g̃ = a2 (r̃) b2 (r) g = (a ? b)2 g,

which was claimed. Hence, the family {Ca}a∈S of conformal changes of

metric is closed under composition. Obviously, (Ca)
−1 also belongs to this

family. Since the composition is always associative, the family {Ca}a∈S
forms a group with respect to composition, which implies that S is a group
with respect to ?. Alternatively, the latter can be verified directly by com-
putation.

(c) Noticing that
∫ r

0
b (s) ds '

∫ r

0
sβ−1 log[v] s ds ' rβ log[v] r as r →∞

and

log[u]

(∫ r

0
b (s) ds

)

' log[u] r,

we obtain

a

(∫ r

0
b (s) ds

)

b (r) ' rβ(α−1) log[(α−1)v+u] r
(
rβ−1 log[v] r

)
' rαβ−1 log[αv+u] r,

which was to be proved.

3.42. For any x ∈ S and ξ ∈ TxS, the vector ξ can be considered as an
element of TxM by

ξ (f) = ξ (f |S) ,

for f ∈ C∞ (M). Denoting J̃ = J |S , we have by definition (3.112) of dJ̃ , for
any f ∈ C∞ (S),

dJ̃ξ (f) = ξ(f ◦ J̃).

In particular, applying this to f ∈ C∞ (M), we obtain

dJ̃ξ (f) = ξ (f ◦ J |S) = ξ (f ◦ J) = dJξ (f)

The fact that J is an isometry of (M,g) implies that, for any x ∈ M and
ξ ∈ TxM ,

|ξ|g = |dJξ|g .

Hence, for all x ∈ S and ξ ∈ TxS,

|ξ|g|S = |ξ|g = |dJξ|g = |dJ̃ξ|g = |dJ̃ξ|g|S ,

whence it follows that J̃ is an isometry of (S,g|S) .

3.43. (a) Let γ : [a, b] → M be a smooth curve. By the definition of
length, we have

`gM (γ) =

∫ b

a

|γ̇ (t)|gM dt (B.53)
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and

`gN (γ) =

∫ b

a

|γ̇ (t)|gN dt. (B.54)

Set x = γ (t) ∈M , ξ = γ̇ (t) ∈ TxM and recall that ξ is defined by

ξ (f) =
d

dt
f (γ (t)) ,

for f ∈ C∞ (M). Hence, by (3.112), dJξ is a tangent vector at Jx such that

dJξ (f) = ξ (J∗f) =
d

dt
f (J ◦ γ (t)) = (J ◦ γ)· (f) .

Therefore,

dJγ̇ = (J ◦ γ)· .

On the other hand, the hypothesis gM = J∗gN and the definition (3.115) of
J∗gN imply that

|γ̇|gM = |γ̇|J∗gN = |dJγ̇|gN . (B.55)

whence

|γ̇|gM = |(J ◦ γ)·|gN .

Combining with (B.53) and (B.54), we obtain

`gM (γ) = `gN (J ◦ γ) ,

which was to be proved.
(b) The geodesic distance is defined as the infimum of the length of a

smooth path connecting x, y. By part (a), a Riemannian isometry preserves
the length, whence the claim follows.

3.44. (a) Following the same line of arguments as in solution of Exercise
3.43(a), we only need to replace (B.55) by

|γ̇|gM ' |γ̇|J∗gN = |dJγ̇|gN , (B.56)

whence `gM (γ) ' `gN (J ◦ γ) follows.
(b) Since the geodesic distance is defined using the length of smooth

paths, the claim follows from (a).
(c) For simplicity of notation, let us identify M and N as smooth mani-

folds using the quasi-isometric diffeomorphism J : M → N . Let νM and νN
be the Riemannian measures of gM and gN , respectively. By Exercise 3.5,
we have dνN ' dνM . Since also ΥN ' ΥM , we obtain dµN ' dµM , whence
(3.123) follows.

(d) By Exercise 3.5, we have |∇f |2gM ' |∇f |
2
gN

. Using also the compar-

ison dµM ' dµN from part (c), we obtain (3.124).
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3.45. (a) Using (3.114), we obtain
(
dy1
)2

+ ...+
(
dyn−1

)2
+ (dyn)2 −

(
dyn+1

)2

=
(
dx1
)2

+ ...+
(
dxn−1

)2

+ cosh2 α (dxn)2 + sinh2 α
(
dxn+1

)2
+ coshα sinhα

(
dxndxn+1 + dxn+1dxn

)

− sinh2 α (dxn)2 − coshα2α
(
dxn+1

)2
− coshα sinhα

(
dxndxn+1 + dxn+1dxn

)

=
(
dx1
)2

+ ...+
(
dxn−1

)2
+ (dxn)2 −

(
dxn+1

)2
.

(b) Recall that Hn is a hyperboloid in Rn+1, given by the equation
(
xn+1

)2
−
(
x1
)2
− ...− (xn)2 = 1, xn+1 > 0.

Similarly to the above computation, the mapping J , defined by (3.125), maps
Hn onto itself. By the same argument as in Exercise 3.42, J |Hn preserves
the induced metric of Hn, which is gHn .

3.46. Let us first show that, for any point p ∈ Hn, there exists an isometry
J of Hn such that Jp = o where o = (0, ...0, 1) is the origin of Hn. First,
by rotation in the subspace Rn with coordinates

(
x1, ..., xn

)
, we can assume

that the projection of p onto Rn lies on the axis xn, that is,

p = (0, ..., 0, a, b) ,

where

b2 − a2 = 1.

Then there exists real α such that

b = coshα and a = − sinhα,

and, setting J to be the hyperbolic rotation (3.125) of Exercise 3.45 with
this parameter α, we obtain from (3.125) Jp = o.

If q, q′ ∈ Hn are two points such that d (o, q) = d (o, q′) then, in the polar
coordinates, the points q and q′ have the same polar radius (cf. Exercise
3.37). Therefore, for a suitable rotation J of the polar angle, we obtain
Jq = q′, while Jo = o.

Assume now that points p, q, p′, q′ satisfy (3.126). Let J and J ′ be isome-
tries that bring, respectively, the points p and p′ to the origin o. Then

d
(
o, J ′q′

)
= d

(
p′, q′

)
= d (p, q) = d (o, Jq)

and, hence, there exists an isometry J ′′ such that

J ′′J ′q′ = Jq and J ′′o = o.

Since o = Jp = J ′p′, we obtain

J ′′J ′p′ = Jp,

which together with the previous line implies that J−1J ′′J ′ is an isometry
that maps p′ to p and q′ to q.
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Solutions to Chapter 4

4.1. Left to the reader

4.2. (a) For any ϕ ∈ D (M), we have fϕ ∈ D (M) whence

(fuk, ϕ) = (uk, fϕ)→ (u, fϕ) = (fu, ϕ) ,

whence fuk
D′
→ fu.

(b) Let ϕ ∈ D (M) be supported away from supp f∩suppu, which implies
that suppϕ ∩ supp f is disjoint from supp u. Since

supp (fϕ) ⊂ supp f ∩ suppϕ,

we obtain that supp (fϕ) is disjoint from supp u and, hence (u, fϕ) = 0. By
(4.8), we obtain (fu, ϕ) = 0, whence the claim follows.

(c) To prove
∇ (fu) = f∇u+ (∇f)u, (B.57)

we need to verify that, for any ω ∈ ~D (M),

(∇ (fu) , ω) = (f∇u, ω) + ((∇f)u, ω) . (B.58)

Using the definition of ∇ in D′ and the definitions of the products fu, f∇u
and (∇f)u, we obtain

(∇ (fu) , ω) = − (fu, divµ ω) = − (u, f divµ ω) ,

(f∇u, ω) = (∇u, fω) = − (u, divµ (fω)) ,

((∇f)u, ω) = (u, 〈∇f, ω〉) .

We are left to notice that, by Exercise 3.7,

divµ (fω) = 〈∇f, ω〉+ f divµ ω,

which together with the previous three lines implies (B.58).

4.3. Set
S = max (sup |f | , sup |∇f |) .

Obviously, we have
‖fu‖L2 ≤ S‖u‖L2 ,

and it follows from (B.57) that

‖∇ (fu) ‖L2 ≤ S‖u‖L2 + S‖∇u‖L2

whence

‖fu‖2W 1 = ‖fu‖2L2 + ‖∇ (fu) ‖2L2

≤ 3S2‖u‖2L2 + 2S2‖∇u‖2L2

≤ 3S2‖u‖2W 1 ,

whence the claim follows.

4.4. Let us show that any f ∈ Lp (M,µ) can be approximated in Lp norm
by a sequence of functions from C∞0 (M). Obviously, we can assume f ≥ 0.
Let {Ωk} be an increasing sequence of relatively compact open sets in M
covering all M (see Exercise 3.1). Since the sequence {1Ωkf} increases and
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converges to f pointwise, it converges to f also in Lp norm. Switching from
f to 1Ωkf , we can assume in the sequel that the support K = supp f is
compact.

By Lemma 3.4, there is a countable family {Ui}
∞
i=1 of relatively compact

charts covering M and such that the closure Ui is contained in a chart. Then
select a finite number of charts Ui, say U1, ..., Uk covering K, and let {ϕi}
be the associated partition of unity. By Theorem 2.3, C∞0 (Ui) is dense in
Lp (Ui, λ) where λ is the Lebesgue measure in Ui. Since the measures µ

and λ are comparable in Ui (that is, the density dµ
dλ is bounded between

two positive constants), we obtain that C∞0 (Ui) is dense also in Lp (Ui, µ).
Hence, for any ε > 0 there exists fi ∈ C∞0 (Ui) such that

‖fϕi − fi‖Lp(Ui,µ) < ε.

Adding up all such inequalities, using the triangle inequality and observing
that

k∑

i=1

fϕi ≡ f on M,

we obtain

‖f −
k∑

i=1

fi‖Lp(M,µ) < εk.

Since
∑k

i=1 fi ∈ C
∞
0 (M), this proves that C∞0 (M) is dense in Lp (M,µ).

To prove the separability of Lp (M,µ), observe that by Theorem 2.3,
Lp (Ui, λ) is separable, where {Ui}

∞
i=1 is the same family as above. Let Fi

be a countable dense family in Lp (Ui, λ). Then it is also dense in Lp (Ui, µ).
Consider the family F that consists of all finite sums of functions from Fi
across all i. Obviously, F is countable. The fact that F is dense in Lp (M,µ)
is proved exactly in the same way as in the first part of the proof, replacing

fi ∈ C∞0 (Ui) by fi ∈ Fi and noticing that the sum
∑k

i=1 fi belongs to F .

4.5. In Rn, this follows from Lemmas 2.1 and 2.4. The partition of unity
(Theorem 3.5) allows to extend this result to an arbitrary manifold.

4.6. We need to prove that (u, ϕ) = 0 for any function ϕ ∈ D (M). It
suffices to show that any function ϕ ∈ D (M) can be represented in the form
ϕ = ψ1 − ψ2 where ψ1 and ψ2 are non-negative functions from D (M). Let
ψ be a cutoff function of suppϕ in M (cf. Theorem 3.5) and C = sup |ϕ|.
Then the function ψ1 = Cψ is non-negative, belongs to D (M), and ψ1 ≥ ϕ.
Setting ψ2 = ψ1 − ϕ we complete the proof.

4.7. (a) We need to prove that if u ∈ L1
loc (M) and

∫

M

uϕdµ ≥ 0 (B.59)

for all non-negative ϕ ∈ D (M) then u ≥ 0 a.e.. Let us use Exercise 2.8,
where the same fact was proved in Rn. Let U ⊂ M be any chart and λ
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be the Lebesgue measure in U . Since the density dµ
dλ is a smooth positive

function, the condition (B.59) implies that
∫

U

uϕdλ ≥ 0

for all non-negative ϕ ∈ D (U). By Exercise 2.8 we conclude that u ≥ 0 a.e.
in U . Since M can be covered by a countable family of charts (cf. Lemma
3.4), we obtain u ≥ 0 a.e. in M .

(b) This trivially follows from (a). Alternatively, one can use Exercise
4.6 to conclude that u = 0 in the distributional sense, and then deduce from
Corollary 2.5 that u = 0 a.e..

4.8. (a) Select first a subsequence from {uk} which realizes the lim inf of
the norms ‖uk‖L2 . By the weak compactness of a ball in a Hilbert space, we
can select further a subsequence from {uk} that convergences in L2 weakly.
Renumber this subsequence again by {uk} and let v be its weak limit in L2.
This means that, for any ϕ ∈ L2,

(uk, ϕ)L2 → (v, ϕ)L2 . (B.60)

Obviously, this implies that uk
D′
−→ v whence it follows that u = v and hence

u ∈ L2. We are left to show that

‖v‖L2 ≤ lim
k→∞

‖uk‖L2 . (B.61)

Setting in (B.60) ϕ = v, we obtain

‖v‖2L2 = lim
k→∞

(uk, v) ≤ lim
k→∞

‖uk‖L2‖v‖L2 ,

whence (B.61) follows.
(b) As in part (a), select first a subsequence from {uk} that realizes the

lim inf of the norms ‖∇uk‖L2 . Select further a subsequence along which

{∇uk} converges in ~L2 weakly. Renumber this subsequence again by {uk},

and let ω be the weak limit of ∇uk in ~L2. Since uk
D′
−→ u and ∇uk

~D′
−→ ω,

we conclude by Lemma 4.2 that ∇u = ω and, hence, ∇u ∈ ~L2 and u ∈W 1.
The estimate of ‖ω‖L2 follows in the same way as (B.61).

4.9. Left to the reader

4.10. Left to the reader

4.11. (a) Set

vi = gij
∂f

∂xj
. (B.62)

To prove that v is the distributional gradient ∇gf in U , we must verify that,
for any smooth vector field w compactly supported in U ,

∫

U

〈v, w〉gdµ = −
∫

U

f divµw dµ. (B.63)
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Indeed, we have

〈v, w〉g = gikv
iwk = gikg

ij ∂f

∂xi
wk =

∂f

∂xi
wi (B.64)

and by (3.44)

divµw = ρ−1 ∂

∂xi
(
ρwi
)

where ρ = dµ
dλ and λ is the Lebesgue measure in U . Using the definition of

weak derivative ∂f
∂xi

and the fact that wiρ ∈ D (U), we obtain
∫

U

〈v, w〉gdµ =

∫

U

∂f

∂xi
wiρ dλ = −

∫

U

f
∂

∂xi
(
wiρ
)
dλ

= −
∫

U

fρ−1 ∂

∂xi
(
ρwi
)
dµ = −

∫

U

f divµw dµ,

whence the claim follows.
It follows from (B.62) that

|∇gf |
2
g = |v|2g = gklv

kvl = gklg
ki ∂f

∂xi
gkj

∂f

∂xj
= gij

∂f

∂xi
∂f

∂xj
,

which proves (4.9) and implies that |∇gf |
2
g is locally integrable, that is,

∇gf ∈ ~L2
loc (U).

(b) Set v = ∇gf so that v satisfies the identity (B.63). To prove that

∂f

∂xj
= gijv

i (B.65)

we need to verify that, for any ϕ ∈ D (U),
∫

U

gijv
iϕdλ = −

∫

U

f
∂ϕ

∂xj
dλ,

which is equivalent to
∫

U

gijv
iϕρ−1dµ = −

∫

U

f
∂ϕ

∂xj
ρ−1dµ,

Consider a vector field

w =
(
0, ...ϕρ−1, ...0

)

where ϕρ−1 is the j-th component; that is, wk = δkjϕρ
−1. Then we have

〈v, w〉g = gikv
iwk = gikv

iδkjϕρ
−1 = gijv

iϕρ−1

and

divµw = ρ−1 ∂

∂xk

(
ρwk

)
= ρ−1 ∂ϕ

∂xj
.

Hence, by (B.63),
∫

U

gijv
iϕρ−1dµ =

∫

U

〈v, w〉gdµ = −
∫

U

f divµw dµ = −
∫

U

f
∂ϕ

∂xj
ρ−1dµ,

which was to be proved.
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The identity (B.65) implies (B.62), and then (4.9) follows in the same
way as in part (a). Since the matrix

(
gij
)

is positive definite, (4.9) and

∇gf ∈ ~L2
loc imply ∂f

∂xj
∈ L2

loc.

4.12. By definition, we have f ∈ W 1 (Ω) if f ∈ L2 (Ω) and ∂f
∂xj
∈ L2 (Ω)

for all j. By Exercise 4.11, this implies that

(∇gf)i = gij
∂f

∂xj
=

∂f

∂xi

because
(
gij
)

= id, and

|∇gf |
2
g =

n∑

i=1

(
∂f

∂xi

)2

,

whence

‖∇gf‖
2
L2 =

n∑

i=1

∥
∥
∥
∥
∂f

∂xi

∥
∥
∥
∥

2

L2

.

This implies that ∇gf ∈ ~L2 (Ω), f ∈W 1 (Ω,g, λ), and

‖f‖2W 1(Ω,g,λ) = ‖f‖2L2 + ‖∇gf‖
2
L2

= ‖f‖2L2 +
n∑

i=1

∥
∥
∥
∥
∂f

∂xi

∥
∥
∥
∥

2

L2

= ‖f‖2W 1(Ω).

Conversely, if f ∈ W 1 (Ω,g, λ) then by Exercise 4.11 we have the same
identities as above and f ∈W 1 (Ω), whence the identity of the spaces W 1 (Ω)
and W 1 (Ω,g, λ) follows.

4.13. Set for simplicity Ω = Rn \ {o} and let µ be the Lebesgue measure
in Rn.

(a) We need to prove that, for any smooth compactly supported vector
field w on Rn, ∫

Ω
〈∇f, w〉dµ = −

∫

Rn
f divwdµ. (B.66)

If w is supported in Ω then this is just the Divergence Theorem. In general,
set

Br = {x ∈ Rn : |x| < r} ,

Sr = ∂Br = {x ∈ Rn : |x| = r} ,

and observe that, by f,∇f ∈ L2
loc ⊂ L

1
loc,

∫

Ω
〈∇f, w〉dµ = lim

r→0

∫

Rn\Br
〈∇f, w〉dµ = lim

r→0

(∫

Sr

〈ν, w〉fdσ −
∫

Rn\Br
f divwdµ

)

= lim
r→0

∫

Sr

〈ν, w〉fdσ −
∫

Rn
f divwdµ, (B.67)
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where σ is the area on the sphere Sr and ν is the unit normal vector fields on
Sr pointing at o. Since 〈ν, w〉 remains uniformly bounded when r is small,
we have ∣

∣
∣
∣

∫

Sr

〈ν, w〉fdσ

∣
∣
∣
∣ ≤ const

∫

Sr

|f | dσ.

We are left to show that there exists a sequence {rk} → 0 such that
∫

Sr

|f | dσ → 0,

because then (B.66) will follow from (B.67) by taking the limit along this
sequence.

Since ∫

B1

|f |2 dµ =

∫ 1

0

(∫

Sr

|f |2 dσ

)

dr

and by the Cauchy-Schwarz inequality

F (r) :=

(∫

Sr

|f | dσ

)2

≤ σ (Sr)

∫

Sr

|f |2 dσ = ωnr
n−1

∫

Sr

|f |2 dσ,

the hypothesis f ∈ L2
loc implies
∫ 1

0

F (r)

ωnrn−1
dr ≤

∫

B1

|f |2 dµ <∞. (B.68)

We claim that

lim inf
r→0

F (r) = 0.

Indeed, if this is not so then F (r) ≥ c for some c > 0 and all small enough
r < ε, which implies

∫ 1

0

F (r)

rn−1
dr ≥ c

∫ ε

0

dr

rn−1
=∞,

and which contradicts (B.68). Hence, there is a sequence {rk} → 0 such
that F (rk)→ 0, which was to be proved.

(b) We need to prove that, for any smooth compactly supported function
ϕ on Rn, ∫

Ω
(∆f)ϕdµ =

∫

Rn
f∆ϕdµ.

If ϕ is supported in Ω then this is true by the Green formula. In general,
we have by f,∆f ∈ L2

loc ⊂ L
1
loc that

∫

Ω
(∆f)ϕdµ = lim

r→0

∫

Rn\Br
(∆f)ϕdµ = lim

r→0

(∫

Sr

(
∂f

∂ν
ϕ−

∂ϕ

∂ν
f

)

dσ −
∫

Rn\Br
f∆ϕdµ

)

= lim
r→0

∫

Sr

(
∂f

∂ν
ϕ−

∂ϕ

∂ν
f

)

dσ −
∫

Rn
f∆ϕdµ (B.69)
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Since |ϕ| and
∣
∣
∣∂ϕ∂ν

∣
∣
∣ ≤ |∇ϕ| remain uniformly bounded when r is small, we

have ∣
∣
∣
∣

∫

Sr

(
∂f

∂ν
ϕ−

∂ϕ

∂ν
f

)

dσ

∣
∣
∣
∣ ≤ const

∫

Sr

(|f |+ |∇f |) dσ.

Since |f |+ |∇f | ∈ L2
loc, in the same way as in part (a), we obtain sequence

{rk} → 0 such that ∫

Srk

(|f |+ |∇f |) dσ → 0,

Taking the limit in (B.69) along this sequence, we finish the proof.
(c) To show that f ∈ L2

loc it suffices to prove that
∫

B1

f2dµ <∞.

Indeed, we have
∫

B1

f2dµ =

∫ 1

0

(∫

Sr

f2dσ

)

dr =

∫ 1

0
r−24πr2dr = 4π.

To verify that ∆f = 0, recall the representation of ∆ in the polar coordi-
nates:

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆S2 ,

whence, using f (r) = r−1, we obtain

∆f = f ′′ +
2

r
f ′ = 0.

To prove that ∆distf = −4πδ we need to verify that, for any smooth
compactly supported function in R3,

(f,∆ϕ) = − (4πδ, ϕ) ,

that is, ∫

R3

f∆ϕdµ = −4πϕ (o) .

As in (B.69), we have, using that ∆f = 0 in R3 \ {o}
∫

R3

f∆ϕdµ = lim
r→0

∫

R3\Br
f∆ϕdµ = lim

r→0

(∫

Sr

(
∂ϕ

∂ν
f −

∂f

∂ν
ϕ

)

dσ −
∫

R3\Br
ϕ∆fdµ

)

= lim
r→0

∫

Sr

(
∂ϕ

∂ν
f −

∂f

∂ν
ϕ

)

dσ. (B.70)

Since f ∈ L2
loc, the term

∫
Sr

∂ϕ
∂ν fdσ tends to 0 along a sequence rk → 0.

Let us compute the remaining term. In the polar coordinates (r, θ), we have

f (r) = r−1 and ∂f
∂ν = −∂f

∂r = r−2 whence
∫

Sr

∂f

∂ν
ϕdσ =

1

r2

∫

Sr

ϕdσ =
4π

σ (Sr)

∫

Sr

ϕdσ −→ 4πϕ (o)

as r → 0. Substituting into (B.70), we finish the proof.
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4.14. (a) It is clear that f ∈ C∞ (Ω) for any Ω not containing the origin
o. Hence, f ∈ L2

loc (Rn) is equivalent to f ∈ L2 (B) where B is the unit ball
centred at o. Integrating in polar coordinates, we obtain

‖f‖2L2(B) =

∫

B

|x|2α dµ =

∫ 1

0
r2αωnr

n−1dr = ωn

∫ 1

0
r2α+n−1dr.

The latter integral is finite provided 2α+ n > 0, whence the claim follows.
(b) Using ∇r = x/r, we obtain

∇f = αrα−1∇r = αrα−2x

whence

|∇f |2 = α2r2(α−2)r2 = α2r2(α−1).

Therefore,
∫

B

|∇f |2 dµ = α2ωn

∫ 1

0
r2(α−1)rn−1dr = α2ωn

∫ 1

0
rn+2α−3dr.

This integral is finite provided n+ 2α−3 > −1, that is α > 1−n/2. Hence,

under this condition, we have ∇f ∈ ~L2
loc. The fact that ∇distf = ∇f follows

from Exercise 4.13.
(c) A computation in the polar coordinates shows that

∆f =
∂2f

∂r2
+
n− 1

r

∂f

∂r
= α (α+ n− 2) rα−2,

where r = |x|. If α− 2 > −n/2 then by part (a) the function |x|α−2 belongs
to L2

loc and hence also ∆f ∈ L2
loc. Also, by parts (a) and (b), we have f ∈ L2

loc

and ∇f ∈ ~L2
loc. Then the fact that ∆distf = ∆f follows from Exercise 4.13.

4.15. By hypotheses, both sequences {uk} and {∇uk} are bounded in
L2. By the weak compactness of balls in L2, there is a subsequence {uki}
that converges weakly in L2, and also ∇uki converges weakly in L2, that is,

uki
L2

⇀ u and ∇uki
L2

⇀ w. (B.71)

Since the weak convergence in L2 implies the convergence in D′, it follows
that w = ∇u and, hence, u ∈ W 1. It follows from (B.71) that, for any
ϕ ∈W 1,

(uki , ϕ)L2 + (∇uki ,∇ϕ)L2 → (u, ϕ)L2 + (∇u,∇ϕ)L2

whence uki
W 1

⇀ u. Hence, {uki} converges to u weakly in L2 and W 1, which
was to be proved.

4.16. By the principle of uniform boundedness, any weakly convergence
sequence is bounded in the norm. By Exercise 4.15, there is a subsequence
{uki} and v ∈W 1 such that

uki
L2

⇀ v and ∇uki
L2

⇀ ∇v.



SOLUTIONS TO CHAPTER 4 47

It follows that v = u and, hence,

uki
L2

⇀ u and ∇uki
L2

⇀ ∇u, (B.72)

which was to be proved.

4.17. (a) By Exercise 4.15, a subsequence of {uk} converges weakly in L2

to a function from W 1, which implies that u ∈W 1. To prove that uk
W 1

⇀ u,
it suffices to verify that any subsequence of {uk} contains a sub-subsequence
that converges to u weakly in W 1. (cf. Exercise 2.14). Renaming the sub-
sequence back to {uk}, it suffices to prove that {uk} contains a subsequence
that converges to u weakly in W 1. Indeed, by Exercise 4.15 there is a sub-
sequence {uki} and a function v ∈W 1 such that

uki
L2

⇀ v and uki
W 1

⇀ v.

It follows that v = u and, hence, uki
W 1

⇀ u, which was to be proved.
(b) By part (a), uk converges to u weakly in W 1. Together with the

convergence of the W 1-norms, this implies the strong convergence in W 1.

4.18. Since the sequence |u− uk|
2 converges almost everywhere to 0 and

is bounded by the integrable function u2, it follows by the dominated con-

vergence theorem that ‖u− uk‖L2 → 0, that is, uk
L2

→ u. By hypotheses, all
norms ‖uk‖W 1 are uniformly bounded, which implies by Exercise 4.17 that

u ∈W 1 and uk
W 1

⇀ u.
Since 0 ≤ uk ≤ u, we have

‖uk‖
2
W 1 ≤ ‖u‖2L2 + ‖∇uk‖

2
L2 ≤ ‖u‖2L2 + c2.

Since uk converges to u weakly in W 1, the norm ‖u‖W 1 admits the same
estimate, that is,

‖u‖2W 1 ≤ ‖u‖2L2 + c2,

whence ‖∇u‖L2 ≤ c.

4.19. Left to the reader

4.20. Let U be a chart in M . Without loss of generality, we may assume
that U contains a cube Q =

{(
x1, ..., xn

)
:
∣
∣xi
∣
∣ < 1

}
. For any (large) integer

k consider a function

fk (x) = sin(kx1)ϕ (x)

where ϕ ∈ C∞0 (Q)\{0}. Let us show that ‖Afk‖L2 grows as k2 when k →∞
whereas ‖fk‖L2 remains bounded as k →∞.

By the product rule,

−Afk = ∆µfk = ϕ∆µ sin
(
kx1
)

+ 2〈∇ sin
(
kx1
)
,∇ϕ〉+ sin

(
kx1
)

∆µϕ.
(B.73)

We have
∂

∂x1
sin
(
kx1
)

= k cos
(
kx1
)

= O (k) as k →∞.
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Hence, all the first derivatives of sin
(
kx1
)

grow in L2 (Q) at most as k when
k →∞.

For the Laplace operator, we have

∆µu = gij
∂2u

∂xi∂xj
+
(
1st order derivatives

)
.

For function u = sin
(
kx1
)

the only non-vanishing second order term is ∂2u

(∂x1)2

so that

∆µ

(
sin
(
kx1
))

= −g11k2 sin
(
kx1
)

+
(
1st order derivatives

)
.

Hence, we see that ∆µ sin
(
kx1
)

grows in L2 (Q) as k2 when k →∞.
Since ϕ does not depend in k, all L2 norms of ϕ,∇ϕ,∆µϕ can be bounded

by a constant. By (B.73) we have

‖Afk‖L2 ≥ ‖ϕ∆µ sin
(
kx1
)
‖L2−2‖∇

(
sin kx2

)
‖L2‖∇ϕ‖L2−‖ sin

(
kx1
)
‖L2‖∆µϕ‖L2 ,

whence we see that ‖Afk‖L2 grows as k2 when k →∞. The sequence {fk} is
uniformly bounded and is supported by a relatively compact set Q. Hence,
the norms ‖fk‖L2 are also bounded. In particular, we obtain

‖Afk‖L2

‖fk‖L2

→∞ as k →∞,

which means that the operator A is unbounded.

4.21. By Exercise 4.2, for any f ∈ C∞0 and u ∈ W 1, we have fu ∈ W 1

and
‖fu‖W 1 ≤ C‖u‖W 1

where C is a constant depending on f . If u ∈ C∞0 then clearly fu ∈ C∞0
and, hence, fu ∈ W 1

0 . For an arbitrary u ∈ W 1
0 , let {uk} be a sequence of

functions from C∞0 such that

uk
W 1

−→ u as k →∞.

Then
‖fuk − fu‖W 1 ≤ C‖uk − u‖W 1 → 0

that is, also fuk
W 1

−→ fu. Since fuk ∈W 1
0 , it follows that also fu ∈W 1

0 .

4.22. Use the same argument as in the proof of Lemma 4.3.

4.23. For any u ∈W 2
0 , we have by Lemma 4.4
∫

M

|∇u|2 dµ = −
∫

M

u∆µu dµ.

Using the inequality

ab ≤
s

2
a2 +

1

2s
b2,

which holds for all real a, b and s > 0, we obtain

‖∇u‖2~L2 =

∫

M

|∇u|2 dµ ≤
∫

M

(
s

2
u2 +

1

2s
(∆µu)2

)

dµ =
s

2
‖u‖2L2+

1

2s
‖∆µu‖

2
L2 .
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Therefore,

‖u‖2W 1 := ‖u‖2L2 + ‖∇u‖2~L2 ≤
(

1 +
s

2

)
‖u‖2L2 +

1

2s
‖∆µu‖

2
L2 ,

and (4.31) holds with

c = max

(

1 +
s

2
,

1

2s

)

.

The minimum value of c is attained if

1 +
s

2
=

1

2
s−1,

which leads to s =
√

2− 1 and c = 1+
√

2
2 .

4.24. (a) For any f ∈W 2
0 = domL, we have

Lf =

∫ ∞

0
λdEλf

and, hence,

(Lf, f) =

∫ ∞

0
λd (Eλf, f) .

Since
(Eλf, f) =

(
E2
λf, f

)
= (Eλf,Eλf) = ‖Eλf‖

2,

we obtain

(Lf, f) =

∫ ∞

0
λ‖dEλf‖

2.

On the other hand, by Lemma 4.4,

(Lf, f) = − (∆µf, f) =

∫

M

|∇f |2 dµ, (B.74)

whence (4.32) follows.

4.25. The operator L1/2 is non-negative definite and self-adjoint. Hence,
by Exercise A.13, domL1/2 is a Hilbert space with the following norm:

‖f‖2
domL1/2 = ‖f‖2L2 + ‖L1/2f‖2L2 .

If in addition f ∈ domL ⊂ domL1/2 then, using (B.74) and
(
L1/2f,L1/2f

)
= (Lf, f) ,

we obtain

‖f‖2
domL1/2 = ‖f‖2L2 + (Lf, f) = ‖f‖2L2 + ‖∇f‖2L2 = ‖f‖2W 1

0
. (B.75)

Hence, domL is contained in two Hilbert spaces: domL1/2 and W 1
0 , and the

norms of these space are identical on domL. By definition, C∞0 is dense in
W 1

0 and, since C∞0 ⊂ domL, we see that domL is dense in W 1
0 .

Let us show that domL is dense in domL1/2, too. Recall that, by (A.48),

domL1/2 =

{

f ∈ L2 :

∫ ∞

0
λd‖Eλf‖

2
L2 <∞

}

. (B.76)
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Consider a sequence {ϕk}
∞
k=1 of continuous functions on [0,+∞) such that

0 ≤ ϕk ≤ 1, ϕk ≡ 1 on [0, k] and ϕk ≡ 0 on [k+1,+∞). Clearly, the operator

ϕk (L) is bounded. Fix a function f ∈ domL1/2 and set fk = ϕk (L) f . Let

us verify that fk ∈ domL and fk → f in the norm of domL1/2 (which will

imply that domL is dense in domL1/2). The first claim follows from the fact
that λϕk (λ) is a bounded function (cf. (A.56)). Next, we have by (A.50)

‖f − fk‖
2
L2 = ‖ (id−ϕk (L)) f‖2L2 =

∫ ∞

0
(1− ϕk (λ))2 d‖Eλf‖

2
L2 ,

and

‖L1/2f − L1/2fk‖
2
L2 =

∫ ∞

0
λ (1− ϕk (λ))2 d‖Eλf‖

2
L2 ,

and the both integrals tend to 0 as k → ∞ by the dominated convergence
theorem.

Let us now show that domL1/2 = W 1
0 . Any function f ∈ domL1/2 can

be approximated by a sequence {fk} ⊂ domL that converges to f in the

norm of domL1/2. The sequence {fk} is contained in W 1
0 and, thanks to

(B.75), it is Cauchy in W 1
0 . Let f̃ be its limit in W 1

0 . Then fk converges

in L2 to both functions f and f̃ , which implies f̃ = f and, hence, f ∈ W 1
0 .

The opposite inclusion is proved in the same way.
Finally, the identity (B.75) extends by continuity to all f ∈ W 1

0 , which
implies

‖L1/2f‖2L2 = ‖∇f‖2L2 . (B.77)

Using

‖L1/2f‖2L2 =

∫ ∞

0
λd‖Eλf‖

2
L2 , (B.78)

we obtain (4.32).

4.26. It follows from (B.76) and

dom (L+ id)1/2 =

{

f ∈ L2 :

∫ ∞

0
(λ+ 1) d‖Eλf‖

2
L2 <∞

}

that

domL1/2 = dom (L+ id)1/2 .

For any f ∈W 1
0 , we obtain using (B.77) and (B.78),

‖ (L+ id)1/2 f‖2L2 =

∫ ∞

0
(λ+ 1) d‖Eλf‖

2
L2

= ‖L1/2f‖2L2 + ‖f‖2L2

= ‖∇f‖2L2 + ‖f‖2L2 = ‖f‖2W 1 ,

which was to be proved.

4.27. By (4.32), we have, for any f ∈W 2
0 ,

‖∇f‖2L2 =

∫ ∞

λmin

λ‖dEλf‖
2
L2 ≥ λmin

∫ ∞

λmin

‖dEλf‖
2
L2 = λmin‖f‖

2
L2 .
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Since W 2
0 is dense in W 1

0 , it follows that the inequality

‖∇f‖2L2 ≥ λmin‖f‖
2
L2 (B.79)

holds for all f ∈W 1
0 .

4.28. The assumption (4.35) implies that 0 is a regular value of L and,
hence, the inverse L−1 is defined as a bounded operator in L2. Setting
u = L−1f and noticing that u ∈ domL = W 2

0 , we obtain a solution to
(4.36).

If u is another solution to (4.36) then −∆µu = f implies ∆µu ∈ L2,
which together with u ∈ W 1

0 yields u ∈ domL. In particular, we obtain
Lu = f , and, hence, u = L−1f , which proves the uniqueness of solution.

To prove (4.37), observe that

L−1 =

∫ ∞

specL
λ−1dEλ =

∫ ∞

λmin

λ−1dEλ,

where {Eλ} is the spectral resolution of L. Therefore, for any f ∈ L2,

‖L−1f‖2L2 =

∫ ∞

λmin

λ−2d‖Eλf‖
2
L2 ≤ λ−2

min

∫ ∞

λmin

d‖Eλf‖
2
L2 = λ−2

min‖f‖
2
L2 ,

whence (4.37) follows.
Multiplying the equation −∆µu = f by u and using the Green formula

(4.12), we obtain
∫

M

|∇u|2 dµ =

∫

M

uf dµ ≤ ‖u‖L2‖f‖L2 .

Estimating ‖u‖L2 from (4.37), we obtain (4.38).

4.29. The equation

∆µu+ αu = f

means that

(∆µu, ϕ) + α (u, ϕ) = (f, ϕ) for any ϕ ∈ D,

where the brackets mean pairing of distributions with test functions. By
definition of ∆µ is distributional sense, this equation is equivalent to

(u,∆µϕ) + α (u, ϕ) = (f, ϕ) for any ϕ ∈ D.

Since u− w ∈W 1
0 and w ∈W 1, a solution u must be in W 1. In particular,

∇u ∈ ~L2 and, using the definition of the distributional gradient, we obtain
that the above equation is equivalent to

− (∇u,∇ϕ) + α (u, ϕ) = (f, ϕ) for any ϕ ∈ D.

Since D is dense in W 1
0 , we rewrite the equation in yet another equivalent

form:

(∇u,∇ϕ)L2 − α (u, ϕ)L2 = − (f, ϕ)L2 for any ϕ ∈W 1
0 .



52 B. HINTS AND SOLUTIONS

Setting v = u− w and replacing u in the above equation by u = v + w, we
obtain the following equation for v ∈W 1

0 :

(∇v,∇ϕ)− α (v, ϕ) = − (∇w,∇ϕ)− (f − αw,ϕ) for any ϕ ∈W 1
0 , (B.80)

where the brackets mean the inner product in L2.
Let us show that the bilinear form

[v, ϕ]α := (∇v,∇ϕ)− α (v, ϕ)

defines an inner product in W 1
0 , which is equivalent to the standard inner

product [v, ϕ]1. If α < 0 then this is trivial and was already used in the
proof of Theorem 4.5. We need to prove the same in under the hypothesis
α < λmin, and we can assume in addition that α ≥ 0.

It suffices to show that

[ϕ,ϕ]α ≥ ε [ϕ,ϕ]1 (B.81)

for some ε ∈ (0, 1) and all ϕ ∈W 1
0 , which is equivalent to

‖∇ϕ‖2L2 ≥
ε+ α

1− ε
‖ϕ‖2L2 . (B.82)

We claim that (B.82) holds with ε = λmin−α
1+λmin

. Indeed, for this value of ε we
have

ε+ α

1− ε
= λmin,

and (B.82) coincides with the estimate (B.79) of Exercise 4.27.
Hence, the Riesz representation theorem yields that (B.80) has a unique

solution v ∈ W 1
0 provided the right hand side of (B.80) is a bounded linear

functional of ϕ. The latter follows from the Cauchy-Schwarz inequality
because

|(∇w,∇ϕ)| ≤ ‖∇w‖L2‖∇ϕ‖L2 ≤ C1‖ϕ‖W 1

and
|(f − αw,ϕ)| ≤ ‖f − αw‖L2‖ϕ‖L2 ≤ C2‖ϕ‖W 1

where C1 = ‖∇w‖L2 and C2 = ‖f − αw‖L2 .

4.30. (a) Denote by [f, g] the standard inner product in W 1
0 i.e.

[f, g] = (∇f,∇g) + (f, g) .

Let us verify that the bilinear form {f, g} satisfies all axioms of an inner
product. Indeed, the symmetry follows from the symmetry of A, and the
positiveness follows from

{f, f} ≥ (∇f,∇f) + α−1 (f, f) ≥ c [f, f ]

where c = min(1, α−1).
Note also that

{f, f} ≤ (∇f,∇f) + α (f, f) ≤ C [f, f ]

where C = max(1, α). Therefore, the norms {f, f}
1
2 and [f, f ]

1
2 are equiva-

lent, and hence the inner product {·, ·} defines a complete metric on W 1
0 .
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(b) We can rewrite the given equation −∆µu + Au = h in the form of
an integral identity

{u, v} = (h, v) , ∀v ∈W 1
0 , (B.83)

where a solution u is sought in W 1
0 . Indeed, if u ∈W 1

0 and u satisfies (B.83)
then as follows from the definition of the distributional Laplace operator,
∆µu = Au− h ∈ L2(M) and hence u ∈W 2

0 .
Let us show that the right hand side of (B.83) is a bounded linear func-

tional in v ∈W 1
0 with respect to the norm {·, ·}1/2. Indeed, we have

(h, v)2 ≤ (h, h) (v, v) ≤ (h, h) [v, v] ≤ c−1 (h, h) {v, v}

whence it follows

|(h, v)| ≤ const ‖v‖W 1
0
.

Hence, by the Riesz representation theorem, the equation (B.83) has exactly
one solution u ∈W 1

0 .

4.31. As was shown in the proof of Theorem 4.5, the fact that u = Rαf
is equivalent to the identity

(∇u,∇ϕ) + α (u, ϕ) = (f, ϕ)

for all ϕ ∈W 1
0 . Hence, for any ϕ ∈W 1

0 , we have

E (u+ ϕ) = ‖∇ (u+ ϕ)‖2 + α ‖u+ ϕ− f‖2

= ‖∇u‖2 + 2 (∇u,∇ϕ) + ‖∇ϕ‖2 + α ‖u− f‖2 + 2α (u− f, ϕ) + α‖ϕ‖2

= E (u) + ‖∇ϕ‖2 + α‖ϕ‖2.

It follows that E (u+ ϕ) > E (u) unless ϕ ≡ 0, which was to be proved.

4.32. Let f ∈ L2 and u = Rαf . Using ‖u‖L2 ≤ α−1‖f‖L2 and (4.21), we
obtain

‖∇u‖2L2 ≤ (f, u) ≤ ‖f‖L2‖u‖L2 ≤ α−1‖f‖2L2 ,

that is,

‖∇Rαf‖L2 ≤ α−1/2‖f‖L2 ,

whence (4.40) follows.
Let u ∈W 2

0 . Setting ϕ = Lu in the equation

(Lu, ϕ) + α (u, ϕ) = (f, ϕ)

and noticing that by (4.14) (u, ϕ) ≥ 0, we obtain

‖∆µu‖
2
L2 ≤ ‖f‖L2‖∆µu‖L2 ,

which implies ‖LRαf‖L2 ≤ ‖f‖L2 and, hence, (4.41).

4.33. Left to the reader

4.34. By (4.45), we have for any f ∈ L2(M)

Rαf =

∫ ∞

0
(α+ λ)−1 dEλf.
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Hence, (4.42) follows from this and the elementary identity

1

α+ λ
−

1

β + λ
=

(β − α)

(α+ λ) (β + λ)
.

4.35. (a)We have

ϕ (t) = ‖Pt/2f‖
2
L2 =

∫ ∞

0
e−λtd‖Eλf‖

2
L2 , (B.84)

where {Eλ} is the spectral resolution of the Dirichlet Laplace operator L.
It is clear that ϕ (t) is non-negative and decreasing. That it is continuous
follows from (4.55). Writing for simplicity σ = ‖Eλf‖2L2 , we obtain by the
Cauchy-Schwarz inequality

ϕ

(
t+ s

2

)

=

∫ ∞

0
e−λ( t+s

2
)dσ ≤

(∫ ∞

0
e−λtdσ

)1/2(∫ ∞

0
e−λsdσ

)1/2

=
√
ϕ (t)ϕ (s),

which is exactly the log-convexity of ϕ. Alternatively, one can argue as in
the proof of Lemma 2.19.

(b) Since Ptf ∈W 2
0 , we have by the Green formula (4.12) and (4.57)

ψ (t) = (∇Ptf,∇Ptf) = − (Ptf,∆µ (Ptf)) = −

(

Ptf,
d

dt
(Ptf)

)

= −
1

2

d

dt
‖Ptf‖

2
L2 .

By part (a), function ‖Ptf‖2L2 is convex whence it follows that its derivative
is increasing. It follows that ψ (t) is decreasing. Integrating the above
identity, we obtain

∫ ∞

0
ψ (t) dt = −

1

2

[
‖Ptf‖

2
L2

]∞
0
≤

1

2
‖f‖2L2 .

4.36. The function ϕ (t) from (B.84) is differentiable for t > 0 and

ϕ′ (t) = −
∫ ∞

0
λe−λtd‖Eλf‖

2
L2 ,

which follows from Theorem 4.9. Since f ∈W 1
0 (M), Exercise 4.25 yields

‖∇f‖2L2 =

∫ ∞

0
λd‖Eλf‖

2
L2 , (B.85)

which implies that
lim
t→0+

ϕ′ (t) = −‖∇f‖2L2 .

Hence, ϕ′ (0) exists and

ϕ′ (0) = −‖∇f‖2L2 .

By the log-convexity of ϕ (t) (cf. Exercise 4.35), we have

logϕ (t) ≥ logϕ (0) + t (logϕ)′ (0) .

Since ϕ (0) = ‖f‖2
L2 = 1, this inequality implies

ϕ (t) ≥ exp
(
tϕ′ (0)

)
= exp

(
−t‖∇f‖2L2

)
,
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that is,

‖Pt/2f‖
2
L2 ≥ exp

(
−t‖∇f‖2L2

)
, (B.86)

whence (4.63) follows by changing t to 2t.

4.37. If {Eλ} is the spectral resolution of L then

−∆µ (Ptf) = Le−tLf =

∫ ∞

0
λe−tλdEλf

and

‖Le−tLf‖2L2 =

∫ ∞

0
λ2e−2tλd‖Eλf‖

2
L2 ≤ sup

λ∈[0,+∞)

(
λ2e−2tλ

)
‖f‖2L2 .

It is easy to see that

sup
λ∈[0,+∞)

(
λ2e−2tλ

)
=
e2

t2
,

whence (4.64) follows.
The inequality (4.65) follows from (4.64) and from the inequality

‖∇u‖2L2 = (Lu, u) ≤ ‖Lu‖L2‖u‖L2 ,

which is true for any u ∈W 2
0 .

4.38. (a) Using the spectral resolution {Eλ} of the Dirichlet Laplace
operator L, we obtain

Et (f) =

∫ ∞

0

1− e−λt

t
d (Eλf, f) =

∫ ∞

0

1− e−λt

t
d‖Eλf‖

2
2.

It is easy to see that the function 1−e−λt
t is increasing when t is decreasing

and, hence, the same is true for Et (f) .
(b) Since

lim
t→0

1− e−λt

t
= λ,

the monotone convergence theorem yields

lim
t→0
Et (f) =

∫ ∞

0
λd‖Eλf‖

2
2,

which is finite if and only if f ∈ domL1/2 = W 1
0 (see Exercise 4.25). Using

(4.32), we obtain

lim
t→0
Et (f) =

∫

M

|∇f |2 dµ,

which was to be proved.
(c) Observe that Et satisfies the polarization identity

Et (f, g) =
1

4
(Et (f + g)− Et (f − g)) , (B.87)
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which follows directly from the definition. By (b) we have, as t→ 0,

Et (f ± g) →
∫

M

|∇ (f ± g)|2 dµ

=

∫

M

|∇f |2 dµ± 2

∫

M

〈∇f,∇g〉 dµ+

∫

M

|∇g|2 dµ.

Subtracting the these two identities and using (B.87), we obtain (4.67).

4.39. We have, for any f ∈ L2,

‖Ptf − f‖
2
L2 =

∫ ∞

0

(
1− e−λt

)2
d‖Eλf‖

2
L2 . (B.88)

Using the inequality
1− e−λt ≤ λt, (B.89)

and assuming that f ∈ domL = W 2
0 , we obtain

‖Ptf − f‖
2
L2 ≤ t2

∫ ∞

0
λ2d‖Eλf‖

2
L2 = t2‖Lf‖2L2 = t2‖∆µf‖

2
L2 ,

which proves (4.68).

4.40. By Exercise 4.25, we have W 1
0 = domL1/2 and

‖∇f‖L2 = ‖L1/2f‖L2 . (B.90)

Using the inequality

1− e−λt ≤ (λt)1/2

(which is a consequence of (B.89)) and assuming that f ∈ domL1/2, we
obtain

‖Ptf − f‖
2
L2 ≤ t

∫ ∞

0
λd‖Eλf‖

2
L2 = t‖L1/2f‖2L2 = t‖∇f‖2L2 ,

which proves (4.69).
Alternatively, one can use the same approach as in Lemma 2.20, which

does not require Exercise 4.25.

4.41. Similarly to (B.88), we have
∥
∥
∥
∥
Ptf − f

t
−∆µf

∥
∥
∥
∥

2

L2

=

∫ ∞

0

(
e−λt − 1

t
+ λ

)2

d‖Eλf‖
2
L2 . (B.91)

By (B.89), the function
e−λt − 1

t
+ λ (B.92)

is non-negative and bounded by λ. By Lf ∈ L2, the function λ2 is integrable
with respect to d‖Eλf‖2L2 and the function (B.92) tends to 0 as t → 0, we
conclude by the dominated convergence theorem that the right hand side of
(B.91) goes to 0 as t→ 0, which proves (4.70).

4.42. For any ϕ ∈ D, we have by Exercise 4.41

Ptϕ− ϕ
t

L2

→ ∆µϕ as t→ 0.
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It follows that
(
Ptf − f

t
, ϕ

)

=

(

f,
Ptϕ− ϕ

t

)

→ (f,∆µϕ) = (∆µf, ϕ) ,

whence Ptf−f
t

D′
−→ ∆µf .

4.43. Using the quadratic form Et defined by (4.66), we obtain

Et (f)→ − (g, f)L2 as t→ 0.

By Exercise 4.38 f ∈W 1
0 , and by Exercise 4.42 ∆µf = g, whence f ∈W 2

0 .

4.44. Clearly, u is differentiable in t in the norm L2 (Ω) for all t > 0 and
for all t < 0, and

du

dt
=

{
∆µu, t > 0,
0, t < 0.

For t < 0 we have ∆µu (t) = ∆µf = 0 in Ω so that the equation du
dt = ∆µu

is satisfied in Ω both for t > 0 and t < 0. We are left to verify it for t = 0,
which amounts to showing that du

dt (0) = 0. It is obvious that du
dt (0−) = 0.

To evaluate du
dt (0+), observe that, by Exercise 4.41,

Ptf − f
t

L2(M)
−→ ∆µf.

Since ∆µf = 0 in Ω, we conclude that

du

dt
(0+) = L2 (Ω) - lim

t→0+

Ptf − f
t

= 0,

which finishes the proof.

4.45. Using (B.90), we obtain, for any f ∈W 1
0 ,

‖∇Ptf −∇f‖
2
L2 = ‖L1/2 (Ptf − f) ‖2L2 =

∫ ∞

0
λ
(

1− e−λt
)2
d‖Eλf‖

2
L2 .

Since the function λ is integrable with respect to d‖Eλf‖2L2 and

λ
(

1− e−λt
)2
→ 0 as t→ 0,

we obtain by the dominated convergence theorem that

‖∇Ptf −∇f‖L2 → 0,

whence Ptf
W 1

→ f .

In the case f ∈W 2
0 it suffices to prove that ∆µPtf

L2

→ ∆µf . Since

‖∆µPtf −∆µf‖
2
L2 =

∫ ∞

0
λ2
(

1− e−λt
)2
d‖Eλf‖

2
L2 ,

the claim follows as above by the dominated convergence theorem.
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4.46. (a) We have

(u (t+ ε) , v (t+ ε))− (u (t) , v (t))

ε
=

(

u (t+ ε) ,
v (t+ ε)− v (t)

ε

)

+

(
u (t+ ε)− u (t)

ε
, v (t)

)

.

When ε→ 0, we have u (t+ ε)→ u (t) and

v (t+ ε)− v (t)

ε
→ v′ (t) and

u (t+ ε)− u (t)

ε
→ u′ (t) ,

where all the convergencies are in the norm of H. Since the inner product is
a continuous functional of the both arguments (cf. Exercise A.1), we obtain

(u (t+ ε) , v (t+ ε))− (u (t) , v (t))

ε
→
(
u (t) , v′ (t)

)
+
(
u′ (t) , v (t)

)
,

which was to be proved.
(b) It follows from the Hölder inequality that

‖uv‖r ≤ ‖u‖p‖v‖q (B.93)

so that w ∈ Lr. We also have

‖w (t+ ε)− w (t)‖r ≤ ‖ (u (t+ ε)− u (t)) v (t+ ε) ‖r + ‖ (v (t+ ε)− v (t))u (t) ‖r
≤ ‖ (u (t+ ε)− u (t)) ‖p ‖v (t+ ε)‖q + ‖ (v (t+ ε)− v (t)) ‖q ‖u (t)‖p

whence it follows that w (t+ ε)
Lr
→ w (t) as ε→ 0.

In the same way, if uk
Lp
→ u and vk

Lq
→ v then ukvk

Lr
→ uv.

(c) Write

w (t+ ε)− w (t)

ε
= u (t+ ε)

v (t+ ε)− v (t)

ε
+
u (t+ ε)− u (t)

ε
v (t) .

Since v(t+ε)−v(t)
ε

Lq
→ v′ (t) and u (t+ ε)

Lp
→ u (t), we obtain by the argument

of part (b) that

u (t+ ε)
v (t+ ε)− v (t)

ε

Lr
→ u (t) v′ (t) .

Similarly, we have

u (t+ ε)− u (t)

ε
v (t)

Lr
→ u′ (t) v (t) ,

which finishes the proof.

4.47. Since the functions u (t, ·) and ∂u
∂t (t, ·) are continuous and bounded

in Ω, they both belong to Cb (Ω). By the mean value theorem, we have

u (t+ ε, x)− u (t, x)

ε
=
∂u

∂t
(t+ θε, x) ,
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where θ ∈ (0, 1). By the uniform continuity of the function ∂u
∂t in [t/2, 3t/2]×

Ω, it follows that

sup
x∈Ω

∣
∣
∣
∣
∂u

∂t
(t+ θε, x)−

∂u

∂t
(t, x)

∣
∣
∣
∣→ 0 as ε→ 0,

that is, ∥
∥
∥
∥
u (t+ ε, ·)− u (t, ·)

ε
−
∂u

∂t
(t, ·)

∥
∥
∥
∥
Cb(Ω)

→ 0.

This proves that ∂u
∂t (t, ·) is the strong derivative of u (t, ·) in Cb (Ω).

4.48. (a) The function t 7→ (u (t) , x) is continuous as the composition
of two continuous mappings t 7→ u (t) and u 7→ (u, x), and the function
t 7→ ‖u (t) ‖ is continuous as the composition of two continuous mappings
t 7→ u (t) and u 7→ ‖u‖. By the Cauchy-Schwarz inequality, we obtain

∣
∣
∣
∣

∫ b

a

(u (t) , x) dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ b

a

‖u (t)‖ ‖x‖ dt

∣
∣
∣
∣ = C‖x‖,

where C =
∫ b
a ‖u (t) ‖dt. Hence, the functional

x 7→
∫ b

a

(u (t) , x) dt

is linear and bounded, which implies by the Riesz representation theorem
that it can be represented in the form (U, x) for a unique vector U ∈ H.

Setting
∫ b

a

u (t) dt = U,

we obtain ∥
∥
∥
∥

∫ b

a

u (t) dt

∥
∥
∥
∥ = ‖U‖ ≤ C =

∫ b

a

‖u (t) ‖dt.

(b) For any x ∈ H, we have

(
u′ (t) , x

)
=

d

dt
(u (t) , x)

(cf. Exercise 4.46). Therefore,
∫ b

a

(
u′ (t) , x

)
dt =

∫ b

a

d

dt
(u (t) , x) dt = (u (b) , x)−(u (a) , x) = (u (b)− u (x) , x) ,

whence, by the definition of the integral,
∫ b

a

u′ (t) dt = u (b)− u (a) .

4.49. It follows by a standard argument that the function u is uniformly
continuous on [a, b], that is, for any ε > 0 there is δ > 0 such that

|t− s| < δ =⇒ ‖u (t)− u (s) ‖L1(M) < ε.
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Consider a step function approximation uk for u defined as follows. Fix

k ∈ N and set ti = a+ i
k (b− a) so that {ti}

k
i=0 is a partition of [a, b]. Then

define uk (t) for t ∈ [a, b) by

uk (t) = u (ti) if t ∈ [ti, ti+1)

that is,

uk =
k−1∑

i=0

u (ti) 1[ti,ti+1).

Function uk (t, x) is integrable on N because it is a finite sum of functions
of the form f (x) g (t) . Let us show that the sequence {uk}

∞
k=1 is Cauchy in

L1 (N) . By the uniform continuity of u, we have

sup
t∈[a,b]

‖uk (t)− u (t) ‖L1(M) → 0

as k →∞ whence
∫ b

a

(∫

M

|uk − u| dµ

)

dt→ 0. (B.94)

It follows that ∫ b

a

(∫

M

|uk − um| dµ

)

dt→ 0

as k,m→∞. Since uk − um ∈ L1 (N), it follows by Fubini’s theorem that

‖uk − um‖L1(N) → 0

that is, {uk} is Cauchy in L1 (N). Hence, there is w ∈ L1 (N) such that

‖uk − w‖L1(N) → 0

as k →∞, whence by Fubini’s theorem
∫ b

a

(∫

M

|uk − w| dµ

)

dt→ 0.

Comparing with (B.94), we obtain
∫ b

a

(∫

M

|u− w| dµ

)

dt = 0.

This implies that, for any t ∈ [a, b], u (t) and w (t, ·) coincide as functions
from L1 (M).

4.50. The condition (4.71) implies that |ψ (t)| ≤ C |t| whence it follows
that ψ (u (t)) is also in L2 (M).

Fix t ∈ (a, b). Denoting

r (s) :=
u (t+ s)− u (t)

s

and u′ = du
dt , we have by hypothesis

r (s)
L2

−→ u′ (t) as s→ 0. (B.95)
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We need to prove that

ψ (u (t+ s))− ψ (u (t))

s

L2

−→ ψ′ (u)u′ as s→ 0. (B.96)

It suffices to show that for any sequence sk → 0, there is a subsequence
along which (B.96) holds (cf. Exercise 2.14).

By the mean value theorem, we have

ψ (u (t+ s))− ψ (u (t)) = ψ (u (t) + sr (s))− ψ (u (t))

= ψ′ (u (t) + ξsr (s)) sr (s)

where ξ = ξ (s, x) ∈ (0, 1). Therefore,

ψ (u (t+ s))− ψ (u (t))

s
− ψ′ (u)u′ =

[
ψ′ (u (t) + ξsr (s))− ψ′ (u (t))

]
u′ (t)

+ψ′ (u (t) + ξsr (s))
[
r (s)− u′ (t)

]

and, hence,
∥
∥
∥
∥
ψ (u (t+ s))− ψ (u (t))

s
− ψ′ (u)u′

∥
∥
∥
∥
L2

≤

(∫

M

∣
∣ψ′ (u (t) + ξsr (s))− ψ′ (u (t))

∣
∣2
∣
∣u′ (t)

∣
∣2 dµ

)1/2

+ sup
∣
∣ψ′
∣
∣ ‖r (s)− u (t) ‖L2 .(B.97)

When s → 0, the second term in (B.97) tends to 0 by (B.95). Let us show
that, for any sequence sk → 0, there is a subsequence along which the first
term in (B.97) tends to 0. The sequence of functions skr (sk) tends to 0
in L2 because the norms ‖r (s) ‖L2 remain bounded as s → 0. Therefore,
there is a subsequence ski , which will be renumbered by {sk}, along which
skr (sk, ·)→ 0 a.e. Since ξk := ξ (sk) is bounded, we also have ξkskr (sk)→ 0
a.e., and by the continuity of ψ′,

ψ′ (u (t) + ξkskr (sk))→ ψ′ (u (t)) a.e.

Hence, the function under the integral sign in (B.97) tends to 0 almost
everywhere. Since this function is bounded for all s by the integrable func-
tion 4C2 |u′|2, we conclude by the dominated convergence theorem that the
integral in (B.97) tends to 0, which finishes the proof.

4.51. By (4.72), the function Φ (λ) e−tλ is bounded for any t > 0, which
implies that the right hand side of (4.73) is defined for all f ∈ H and
determines v (t) as an element of H. The first equality in (4.74) is proved
exactly in the same way as the existence of the strong derivative in Theorem
4.9. Since the function λΦ (λ) e−λt is bounded for any t > 0, we obtain from
the functional calculus that, for any t > 0,

Lv (t) = LΦ (L) e−tLv (t) =

∫ ∞

0
λΦ (λ) e−tλdEλf, (B.98)

which gives the second equality in (4.74).
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The existence of dkv
dtk

for any k and the identity (4.75) are proved by

induction, using the fact that the function λkΦ (λ) satisfies the condition
(4.72) for any k.

4.52. (a) This follows from the functional calculus since functions cos
(
t
√
λ
)

and sin
(
t
√
λ
)

are real valued and bounded in λ ∈ [0,+∞).

(b) We have

d

dt
Ctf = lim

s→0

Ct+sf − Ctf
s

= lim
s→0

∫ ∞

0

cos
(
(t+ s)λ1/2

)
− cos

(
tλ1/2

)

s
dEλf. (B.99)

Note that

lim
s→0

cos
(
(t+ s)λ1/2

)
− cos

(
tλ1/2

)

s
= −λ1/2 sin

(
tλ1/2

)
.

By Exercise A.30, in order to interchange the limit and the integral in (B.99)
it suffices to prove that

∣
∣
∣
∣
∣
cos
(
(t+ s)λ1/2

)
− cos

(
tλ1/2

)

s

∣
∣
∣
∣
∣
≤ Φ (λ) ,

where Φ is a function such that
∫ ∞

0
Φ2 (λ) d‖Eλf‖

2 <∞.

By the mean value theorem, we have

cos
(
(t+ s)λ1/2

)
− cos

(
tλ1/2

)

s
= −λ1/2 sin

(
ξλ1/2

)
,

where ξ ∈ (t, t+ s). It follows that
∣
∣
∣
∣
∣
cos
(
(t+ s)λ1/2

)
− cos

(
tλ1/2

)

s

∣
∣
∣
∣
∣
≤ λ1/2 =: Φ (λ)

If f ∈ domL1/2 then
∫ ∞

0
Φ2 (λ) d‖Eλf‖

2 =

∫ ∞

0
λd‖Eλf‖

2 <∞.

Hence, for such f ,

d

dt
Ctf =

∫ ∞

0
lim
s→0

cos
(
(t+ s)λ1/2

)
− cos

(
tλ1/2

)

s
dEλf

= −
∫ ∞

0
λ1/2 sin

(
tλ1/2

)
dEλf.
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Evaluating at t = 0 we obtain

d

dt
Ctf

∣
∣
∣
∣
t=0

= 0.

Obviously, we have C0f = f .
Similarly, we have S0g = 0 and

d

dt
Stg =

∫ ∞

0
λ1/2 cos

(
tλ1/2

)
dEλg,

whence it follows that

d

dt
Stg

∣
∣
∣
∣
t=0

=

∫ ∞

0
λ1/2dEλg = L1/2g.

(c) If f ∈ domL then f ∈ domL1/2 and, by the previous argument, we
have

d

dt
Ctf = −

∫ ∞

0
λ1/2 sin

(
tλ1/2

)
dEλf.

Applying similar argument again and using f ∈ domL, we obtain

d2

dt2
Ctf = −

∫ ∞

0
λ cos

(
tλ1/2

)
dEλf.

On the other hand,

LCtf =

∫ ∞

0
λ cos

(
tλ1/2

)
dEλf,

whence
d2

dt2
Ctf = −L (Ctf) .

In the same way, one handles Stf .
(d) By Exercise 1.3, we have, for any λ ∈ R,

e−tλ
2

=

∫ +∞

−∞
e−isλ

1
√

4πt
exp

(

−
s2

4t

)

ds,

which implies, by taking the real part and using the symmetry of the integral,

e−tλ
2

=

∫ +∞

0
cos (sλ)

1
√
πt

exp

(

−
s2

4t

)

ds.

As in Lemma 5.10, replacing λ by L1/2, we obtain from this functional
identity the operator identity

(
e−tLf, g

)
=

∫ ∞

0

1
√
πt

exp

(

−
s2

4t

)

(Csf, g) ds, (B.100)

for all f, g ∈ H, which is equivalent to (4.76).

4.53. It suffices to prove that ϕ (α) ≥ ϕ (β) for all a < α < β < b.
Assume first that ϕ′ (t) < 0 for all t ∈ [α, β]. Let ξ be a point where ϕ
attains its minimum value on [α, β]. If ξ = β then there is nothing to prove.
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If ξ < β then, at the minimum point ξ, the right derivative ϕ′ (ξ) must be
non-negative, which contradicts ϕ′ (ξ) < 0.

Consider now the general case with a non-strict inequality ϕ′ (t) ≤ 0. Fix
ε > 0 and consider the function ϕ (t)−εt whose right derivative is obviously
strictly negative. By the previous argument, we have

ϕ (α)− εα ≥ ϕ (β)− εβ,

whence letting ε→ 0 we obtain ϕ (α) ≥ ϕ (β).

4.54. The proof goes the same way as that of Theorem 4.10. It suffices
to show that any path u (t), that solves the right Cauchy problem with the
initial function 0, is identical 0. We have

1

2

d

dt
‖u (t)‖2 =

(
du

dt
, u

)

= (Lu, u) ≤ 0.

Since the function ϕ (t) = ‖u (t)‖2 is continuous in t > 0 and its right deriv-
ative is non-positive, we conclude by Exercise 4.53 that ϕ (t) is decreasing
in t. Since ϕ (t)→ 0 as t→ 0, it follows that ϕ (t) ≡ 0.

Solutions to Chapter 5

5.1. Left to the reader

5.2. Let η be a mollifier in R, and set

ψk = ψ ∗ η1/k.

Then, by Lemma 2.1, ψk ∈ C∞ (R) and

ψ′k = ψ′ ∗ η1/k.

Hence, we obtain, by Exercise 2.3,

sup
∣
∣ψ′k
∣
∣ ≤ sup

∣
∣ψ′
∣
∣

and, by Lemma 2.4,

ψk (t)→ ψ (t) and ψ′k (t)→ ψ′ (t) ,

where the convergence is locally uniform in t.
We have satisfied all the conditions except for ψk (0) = 0. To satisfy it,

just replace the function ψk (t) by

ψ̃k (t) = ψk (t)− ψk (0) .

Since ψk (0)→ ψ (0) = 0, we obtain

ψ̃k (t)→ ψ (t) ,

and all other requirements are trivially satisfied.

5.3. We have

max (u, v) = v + (u− v)+

min (u, v) = u− (u− v)+
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so that both functions max (u, v) and min (u, v) are in W 1
0 by Lemma 5.2

(see also Example 5.3).

5.4. Since any function f ∈ W 1 (M) has compact support, we have
W 1 (M) = W 1

c (M), whence it follows from Lemma 5.5 that W 1 (M) ⊂
W 1

0 (M), which was to be proved.

5.5. It suffices to prove that ∇u = 0 in any relatively compact open set
Ω ⊂M . Since c ∈W 1 (Ω) and, hence, u−c ∈W 1 (Ω), we obtain by Theorem
5.7 (see also Example 5.8) that (u− c)+ ∈ W

1 (Ω) and ∇ (u− c)+ = 0 on
the set {u− c = 0}∩Ω.The same holds also for∇ (u− c)−, whence we obtain
that, on the set {u = c} ∩ Ω,

∇u = ∇ (u− c) = ∇ (u− c)+ −∇ (u− c)− = 0.

5.6. For any c > 0, we have (u− c)+ = (u+ − c)+ so that we can rename
u+ by u and assume u ≥ 0. By the dominated convergence theorem, we

obtain (u− c)+
L2

−→ u as c→ 0+. By (5.12), we have

∇ (u− c)+ =

{
∇u, u > c,
0, u ≤ c,

which implies that

‖∇u−∇ (u− c)+ ‖
2
L2 =

∫

{u≤c}
|∇u|2 dµ→

∫

{u=0}
|∇u|2 dµ

as c→ 0+. Since ∇u = 0 on the set {u = 0}, we conclude that

‖∇u−∇ (u− c)+ ‖L2 → 0,

which finishes the proof.

5.7. Fix some c > 0. By Theorem 5.7, we have (f − c)+ ∈ W 1 (M).
By hypothesis, the set {f ≥ c} is relatively compact, which implies that
supp (f − c)+ is compact. Hence, (f − c)+ ∈ W 1

c (M), which implies by

Lemma 5.5 that (f − c)+ ∈ W 1
0 (M). By Theorem 5.7 (see also Exercise

5.6),

(f − c)+
W 1

→ f+ as c→ 0,

whence it follows that f+ ∈ W 1
0 (M). In the same way, f− ∈ W 1

0 (M) and,
hence, f ∈W 1

0 (M).

5.8. Let Ω be any relatively compact open subset of M . Then u ∈
W 1
loc (M) implies u ∈ W 1 (Ω). By Theorem 5.7, we obtain that ψ (u) ∈

W 1 (Ω) and

∇ψ (u) = ϕ (u)∇u.

It follows that ψ (u) ∈W 1
loc (M), which was to be proved.

5.9. Let Ω be any relatively compact open set containing supp u. Then
by Lemma 5.5 u ∈ W 1

0 (Ω), while it follows from the definition of W 2
loc that
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v ∈ W 2 (Ω). Hence, the Green formula (4.12) of Lemma 4.4 can be applied
in Ω, which finishes the proof.

5.10. (a) Let us first show that, for any λ ≥ 0 and t > 0,

lim
α→+∞

e−αt
∞∑

k=0

α2ktk

(α+ λ)k k!
= e−λt. (B.101)

Indeed, by changing αt to α and λt to λ, it suffices to consider the case
t = 1. Then we have

e−α
∞∑

k=0

α2k

(α+ λ)k k!
= e−α

∞∑

k=0

(
α2

a+λ

)k

k!

= exp

(

−α+
α2

α+ λ

)

= exp

(

−
αλ

α+ λ

)

,(B.102)

whence (B.101) follows.
Since

Rkαf =

∫ ∞

0

1

(α+ λ)k
dEλf, (B.103)

the right hand side of (5.33) can be transformed as follows:

e−αt
∞∑

k=0

α2ktk

k!
Rkαf =

∫ ∞

0
e−αt

∞∑

k=0

α2ktk

k! (α+ λ)k
dEλf −→

∫ ∞

0
e−λtdEλf = Ptf,

where we have passed to the limit as α → +∞ using the dominated con-
vergence theorem (indeed, as follows from (B.102), the integrand remains
uniformly bounded by 1 for all α > 0).

(b) If f ≤ 1 then Rαf ≤ α−1 and, by induction, Rkαf ≤ α
−k. Substitut-

ing into (5.33), we obtain

Ptf ≤ lim
α→+∞

e−αt
∞∑

k=0

αktk

k!
= lim

α→+∞
e−αteαt = 1.

5.11. (a) By the definition of the gamma function,

Γ (k) =

∫ ∞

0
τk−1e−τdτ,

which implies, for any s > 0,

∫ ∞

0

tk−1

Γ (k)
e−stdt = s−k.
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Similarly to the proof of Lemma 5.10, we obtain, for all f, g ∈ L2,
∫ ∞

0

tk−1

Γ (k)
e−αt (Ptf, g)L2 dt =

∫ ∞

0

tk−1

Γ (k)
e−αt

(∫ ∞

0
e−λtd (Eλf, g)L2

)

dt

=

∫ ∞

0

(∫ ∞

0

tk−1

Γ (k)
e−(α+λ)tdt

)

d (Eλf, g)L2

=

∫ ∞

0
(α+ λ)−k d (Eλf, g)L2

=
(
Rkαf, g

)

L2
, (B.104)

which was to be proved.
(b) The identity RkRl = Rk+l follows from the functional calculus be-

cause R is bounded self-adjoint operator in L2. If f ≥ 0 then by Theo-
rem 5.11, Ptf ≥ 0 which implies for any non-negative g ∈ C∞0 (M) that
(Ptf, g) ≥ 0. From the identity (B.104) we conclude

(
Rkf, g

)
≥ 0 whence

Rkf ≥ 0. If f ≤ 1 then by Theorem 5.11 Ptf ≤ 1, and (B.104) implies, for
any g as above,

∫

M

(
Rkf

)
gdµ ≤

∫ ∞

0

tk−1

Γ (k)
e−tdt

∫

M

gdµ =

∫

M

gdµ,

where in the last identity we have used the definition of gamma function.
This obviously yields Rkf ≤ 1.

(c) Since specL ⊂ [0,+∞), the function log (1 + λ) is defined (and even
non-negative) on specL, which implies that L = log (id +L) is defined by
the functional calculus as a self-adjoint operator. Since for any λ ≥ 0 and
k > 0

(1 + λ)−k = exp (−k log (1 + λ)) ,

we obtain from the functional calculus a similar operator identity

(id +L)−k = exp (−k log (id +L)) ,

whence the claim follows.

5.12. For any non-negative g ∈ L2 (M), we obtain using (5.29),

(PtRαf, g) = (Rαf, Ptg) =

(∫ ∞

0
e−αsPsf ds, Ptg

)

=

∫ ∞

0
e−αs (Psf, Ptg) ds

=

∫ ∞

0
e−αs (Pt+sf, g) ds =

∫ ∞

t

e−α(τ−t) (Pτf, g) dτ

= eαt
∫ ∞

t

e−ατ (Pτf, g) dτ ≤
(
eαtRαf, g

)
,

whence the claim follows.

5.13. (a) Function u = Rλf must satisfy the equation Lu+λu = f , that
is,

−u′′ + λu = f.
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Moreover, u is the unique solution of this equation in L2
(
R1
)
. Solving this

ODE by the method of variation of constants and selecting a solution from
L2, we obtain (5.35).

(b) Using the explicit formula for Ptf , we obtain

Rλf =

∫ ∞

0

∫ +∞

−∞

1

(4πt)1/2
exp

(

−
|x− y|2

4t

)

e−λtf (y) dydt

Comparing with (5.35) and setting r = |x− y|, we obtain

1

2
√
λ
e−
√
λr =

∫ ∞

0

1

(4πt)1/2
exp

(

−
r2

4t

)

e−tλdt.

Differentiating this identity in r, we obtain

e−
√
λr =

∫ ∞

0

r
√

4πt3
exp

(

−
r2

4s

)

e−tλdt,

whence (5.36) follows by renaming the variables. The limiting case λ = 0
follows by passing to the limit as λ→ 0+.

5.14. (a) The identity (5.37) follows from (5.36) by substituting L in
place of λ.

(b) If f ≥ 0 then Ptf ≥ 0, whence Qtf ≥ 0 just by the positivity of the
integral kernel in (5.37). If f ≤ 1 then Ptf ≤ 1, whence Qtf ≤ 1 follows
from the identity

∫ ∞

0

t
√

4πs3
exp

(

−
t2

4s

)

ds = 1,

which is a particular case of (5.36) for λ = 0.
(c) It follows from (5.37) that the integral kernel qt (x) of Qt is related

to the integral kernel pt (x) of Pt by the identity

qt (x) =

∫ ∞

0

t
√

4πs3
exp

(

−
t2

4s

)

ps (x) ds.

Substituting pt (x) from (2.50), we obtain

qt (x) =

∫ ∞

0

t
√

4πs3
exp

(

−
t2

4s

)
1

(4πs)n/2
exp

(

−
|x|2

4s

)

ds

=
t

(4π)
n+1

2

∫ ∞

0
s−(n+3)/2 exp

(

−
t2 + |x|2

4s

)

ds. (B.105)

Applying (A.60) in order to evaluate the integral (B.105), we obtain

qt (x) = Γ

(
n+ 1

2

)

π−
n+1

2
t

(
t2 + |x|2

)n+1 .

Using the value of ωn+1 from (3.94), we obtain (5.38).
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5.15. (a) For example, for Ψ (s) = s2/2 the claim amounts to the fact
that ‖Ptf‖L2 is decreasing in t, which follows from Theorem 4.9 or Theorem
4.10.

The function F is non-negative and finite because 0 ≤ Ψ (s) ≤ 1
2 |s|

2 and

Ptf ∈ L2. Observe that for all real a, b

|Ψ (a)−Ψ (b)| ≤ (|a|+ |b|) |a− b| , (B.106)

since for some ξ ∈ (a, b)

|Ψ (a)−Ψ (b)| =
∣
∣Ψ′ (ξ)

∣
∣ |a− b| ≤ |ξ| |a− b| ≤ (|a|+ |b|) |a− b| .

Set ut = Ptf and recall that by Theorem 4.9 ‖ut‖L2 ≤ ‖f‖L2 . Using (B.106)
we obtain for all t, τ ∈ [0,+∞)

|F (τ)− F (t)| ≤
∫

M

|Ψ (uτ )−Ψ (ut)| dµ

≤
∫

M

(|uτ |+ |ut|) |uτ − ut | dµ

≤ 2‖f‖L2‖uτ − ut‖L2 .

Since by Theorem 4.9 the mapping t 7→ ut is continuous in L2 we conclude
that the function F (t) is continuous.

Next, let us prove that F (t) is differentiable for t > 0 and

F ′ (t) =

∫

M

Ψ′ (ut)
dut

dt
dµ. (B.107)

This formula allows to finish the proof as follows. Since by Theorem 4.9
dut/dt = ∆µut and, by the previous claim, Ψ′ (ut) ∈ W 1

0 , we obtain by
Lemma 4.4

F ′(t) =

∫

M

Ψ′ (ut) ∆µutdµ = −
∫

M

〈∇Ψ′ (ut) ,∇ut〉dµ = −
∫

M

Ψ′′ (ut) |∇ut|
2 dµ ≤ 0,

which implies that F (t) is decreasing.
To prove (B.107) let us observe that for all real a, b

∣
∣Ψ (a)−Ψ (b)−Ψ′ (b) (a− b)

∣
∣ ≤

1

2
(a− b)2 ,

because there exists ξ ∈ (a, b) such that

∣
∣Ψ (a)−Ψ (b)−Ψ′ (b) (a− b)

∣
∣ =

1

2

∣
∣Ψ′′ (ξ)

∣
∣ (a− b)2 ≤

1

2
(a− b)2 .

Therefore, for all τ, t > 0,
∫

M

∣
∣Ψ (uτ )−Ψ (ut)−Ψ′ (ut) (uτ − ut)

∣
∣ dµ ≤

1

2
‖uτ − ut‖

2
L2 ,

whence dividing by τ − t and passing to the limit as τ → t, we obtain

lim
τ→t

∫

M

∣
∣
∣
∣
Ψ (uτ )−Ψ (ut)

τ − t
−Ψ′ (ut)

uτ − ut
τ − t

∣
∣
∣
∣ dµ = 0.
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Finally, since
uτ − ut
τ − t

L2

−→
dut

dt

and Ψ′ (ut) ∈ L2, we obtain
∫

M

Ψ′ (ut)
uτ − ut
τ − t

dµ −→
∫

M

Ψ′ (ut)
dut
dt
dµ

and

F ′ (t) = lim
τ→t

∫
Ψ (uτ )−Ψ (ut)

τ − t
dµ =

∫

M

Ψ′ (ut)
dut

dt
dµ.

(b) There exists a C∞-function Ψ on R satisfying the conditions of the
previous claim and in addition Ψ (s) = 0 for s ≤ 1 and Ψ (s) > 0 for s > 1
(see Fig. B.1).

0 s

(s)

(s)

1

1

Figure B.1. Functions Ψ and ϕ = Ψ′′

Indeed, one can find Ψ from the equation Ψ′′ = ϕ where ϕ is a smooth
function such that 0 ≤ ϕ ≤ 1, ϕ (s) = 0 for s ≤ 1 and ϕ (s) > 0 for s > 1
(think of ϕ (s) as a smooth approximation to a step function 1{s>1} and of

Ψ (s) as a smooth approximation to 1
2 (s− 1)2

+). Hence, the function F (t)
defined by (5.39) is decreasing in t. The condition f ≤ 1 implies F (0) = 0.
Since F (t) is non-negative and decreasing, we conclude that F (t) = 0 for
all t > 0. This implies that Ψ (Ptf) ≡ 0 which is only possible if Ptf ≤ 1
almost everywhere.

5.16. Let M be the interval (0, 4) and let u ∈ C∞ (M) be a function such
that

u (x) = x+ x sin
1

x
for x ∈ (0, 1) ,

u (x) ∈ [0, 2x] for x ∈ (1, 2)

u (x) = 0 for x ∈ (2, 4) .



SOLUTIONS TO CHAPTER 5 71

Clearly, u ≥ 0 and u ∈W 1
loc (M). Consider also the function

v (x) =

{
2x, x ∈ (0, 2],
8− 2x, x ∈ (2, 4) .

Obviously, u ≤ v and v ∈W 1
0 (M), whence

u ≤ 0 modW 1
0 .

On the other hand, it is easy to verify that
∫ 1

0

(
u′
)2
dx =∞

so that u /∈W 1 (M).

5.17. Set u = w − v so that u satisfies the following conditions:

du
dt = ∆µu, for t ∈ (0, T ) ,
u (t, ·) = w (t, ·) modW 1

0 (M) for t ∈ (0, T ) ,

u (t, ·)
L2

−→ 0 as t→ 0.

By Theorem 5.16, w ≥ 0 implies u ≥ 0 and, hence w ≥ v.

5.18. The implications (i)⇒ (ii)⇒ (iii) are trivial.
Proof of (iii) ⇒ (i). Assume from the contrary that vα (x) 6⇒ c as

x→∞, that is, there is ε > 0 such that, for any compact set K ⊂M ,

sup
α∈A

sup
x∈M\K

|vα (x)− c| ≥ ε.

Take any compact exhaustion sequence {Ωl} in M and choose a point xl ∈
M \ Ωl so that

sup
α∈A
|vα (xl)− c| ≥ ε/2.

Then the sequence {xl} leaves any compact in M , but there is no subse-
quence {xki} such that v (xki)⇒ c.

Proof of (i) ⇔ (iv). If (i) holds then, using the set Kε from (5.59) we
obtain that Vε ⊂ Kε which implies that Vε is relatively compact. If (iv)
holds then setting Kε = V ε we obtain (5.59) although with a non-strict
inequality.

The case c = ±∞ is treated similarly or can be reduced to the case c = 0
by switching to the function 1

vα(x) .

5.19. Observe that (v) ⇒ (ii), because every sequence {xk} as in (v)
leaves any compact in Ω.

Let us show that (iii)⇒ (v). Indeed, if {xk} ⊂ Ω is a sequence leaving
any compact in Ω, then it is either bounded and, hence, contains a conver-
gent subsequence {xki} whose limit x must be then at the boundary ∂Ω,
or {xk} is unbounded and, hence, contains a subsequence {xki} such that
|xki | → ∞. In the both cases, we have by (v) that vα (xki)⇒ c.



72 B. HINTS AND SOLUTIONS

5.20. The hypothesis v+ (x) → 0 as x → ∞ means that, for any ε > 0,
there is a compact set K ⊂M such that

sup
M\K

v ≤ ε. (B.108)

Let Ω be a relatively compact open subset of M containing K. We claim
that the function u = v − ε satisfies the hypotheses of Theorem 5.13 in Ω.
Indeed, obviously u ∈W 1 (Ω),

−∆µu+ αu = −∆µv + α (v − ε) ≤ 0,

and

u+ = (v − ε)+ ∈W
1
0 (Ω) ,

which is equivalent to

u ≤ 0 modW 1
0 (Ω) .

By Theorem 5.13, we obtain u ≤ 0 in Ω, that is, v ≤ ε in Ω. Letting ε→ 0
and expanding Ω, we obtain v ≤ 0 in M .

Second solution.Let ϕ (s) be a C∞ function on R such that ϕ (s) = 0
for s ≤ ε, ϕ (s) > 0 for s > ε, and ϕ′ (s) ≥ 0. Then ϕ (v) is a C2 function
on M that vanishes outside K (where K is defined by (B.108)), whence
ϕ (v) ∈ C2

0 (M).
Multiplying the inequality −∆µv+αv ≤ 0 by ϕ (v) and integrating over

M , we obtain
∫

M

|∇v|2 ϕ′ (v) dµ+ α

∫

M

vϕ (v) dµ ≤ 0.

Since ϕ′ ≥ 0 and α > 0, this implies
∫

M

vϕ (v) dµ = 0

whence vϕ (v) = 0 and v ≤ ε. Since ε > 0 is arbitrary, we conclude v ≤ 0.

5.21. By the hypothesis u+ (x, t) ⇒ 0 as x → ∞, for any ε > 0 there is
a compact set K ⊂M such that

sup
t∈I

sup
x∈M\K

u (t, x) < ε.

Choose a function ϕ (s) ∈ C∞(−∞,+∞) such that ϕ (s) ≡ 0 for s ≤ ε,
ϕ (s) ≡ 1 for s ≥ 2ε, and ϕ′ (s) > 0 for all s ∈ (ε, 2ε). Clearly, for any t ∈ I,
the function ϕ (u (t, ·)) is of the class C2 (M) and is supported in the set K.

Multiplying the inequality ∂u
∂t ≤ ∆µu by ϕ (u), integrating over M and

using the Green formula, we obtain, for any t ∈ I,
∫

M

ϕ (u)
∂u

∂t
dµ ≤

∫

M

ϕ (u) ∆µu dµ = −
∫

M

|∇u|2 ϕ′ (u) dµ ≤ 0. (B.109)

Next, set

Φ (s) =

∫ s

0
ϕ (ξ) dξ,
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and observe Φ (s) = 0 for s ≤ ε so that the function Φ (u (t, ·)) is also
supported in K for any t ∈ I. Using (B.109), we obtain

d

dt

∫

M

Φ (u) dµ =

∫

M

Φ′ (u)
∂u

∂t
dµ =

∫

M

ϕ (u)
∂u

∂t
dµ ≤ 0.

Hence, the function

t 7→
∫

M

Φ (u (t, ·)) dµ (B.110)

is decreasing in t.

Since Φ (s) ≤ s+ and u+ (t, ·)
L1(K)
−→ 0 as t→ 0, we obtain

∫

M

Φ (u (t, ·)) dµ =

∫

K

Φ (u (t, ·)) dµ ≤
∫

K

u+ (t, ·) dµ→ 0 as t→ 0.

Since the function (B.110) is monotone decreasing and non-negative, we
conclude that ∫

M

Φ (u (t, ·)) dµ ≡ 0,

which implies u (t, ·) ≤ ε. Letting ε → 0, we obtain u (t, ·) ≤ 0, which was
to be proved.

5.22. Since u+ ∈ C (M) ∩W 1
0 (M) and u = u+ on Ua, we rename u+ by

u and assume in the sequel that u ≥ 0.
Assume first in addition that the support of u is compact. Then also

supp (u− c)+ is compact for any c > 0. For any c > a, we have

supp (u− c)+ = {x ∈M : u (x) ≥ c} ⊂ Ua,

whence it follows that (u− c)+ ∈W
1
c (Ua) and, by Lemma 5.5,

(u− c)+ ∈W
1
0 (Ua) .

By Exercise 5.6, we have

(u− c)+
W 1

−→ (u− a)+ as c→ a+

whence (u− a)+ ∈W
1
0 (Ua).

For a general non-negative function u ∈ C (M) ∩ W 1
0 (M), there is a

sequence {ϕk} ∈ C∞0 (M) such that ϕk
W 1

→ u. Consider the functions

uk := min
(
(ϕk)+ , u

)
= u−

(
u− (ϕk)+

)
+

(B.111)

Clearly, uk ∈ C ∩W 1
0 (M) and uk

W 1

→ u as k → ∞ (cf. Theorem 5.7 and
Example 5.8). Since supp uk ⊂ suppϕk, the argument in the first part of
the proof applies to uk, whence we obtain

(uk − a)+ ∈W
1
0 (U (k)

a )

where

U (k)
a := {x ∈M : uk (x) > a} .
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Since 0 ≤ uk ≤ u, we have U
(k)
a ⊂ Ua and, hence,

(uk − a)+ ∈W
1
0 (Ua).

Letting k →∞, we finish the proof.

5.23. It suffices to assume that Ω is relatively compact, because otherwise
we can exhaust Ω by a sequence {Ωk} of relatively compact open subsets
and then let k →∞ (cf. Theorems 5.22 and 5.23).

The inequality (5.72) is trivial in M \ Ω so it suffices to verify it in Ω.
Set C = esupM\K Rαf and consider the function

u = Rαf −R
Ω
αf − C

that belongs to W 1 (Ω) and satisfies in Ω the relation

−∆µu+ αu = −αC ≤ 0.

By Theorem 5.7, u+ ∈W 1 (Ω). By the choice of C, we have u ≤ 0 in Ω \K
so that supp u+ ⊂ K, which implies by Lemma 5.5 that u+ ∈ W 1

0 (Ω) . We
conclude by Theorem 5.13 that u ≤ 0 in Ω, which is equivalent to (5.72).

5.24. Fix some T > 0 and set

C = sup
s∈[0,T ]

esup
M\K

PΩ
s f.

It suffices to prove that Ptf −PΩ
t f ≤ C in [0, T ]×Ω. Consider the function

u (t, ·) = Ptf − P
Ω
t f − C

that belongs to W 1 (Ω) for any t > 0. Clearly, it satisfies the heat equation in
R+×Ω in the sense of Theorem 5.13. By the choice of C, we have u (t, ·) ≤ 0
in M \ K for all t ∈ (0, T ), which implies that u+ (t, ·) is supported in Ω

and, hence, u+ (t, ·) ∈ W 1
0 (Ω). Finally, we have u (t, ·)

L2(Ω)
→ −C as t → 0,

whence it follows that u+ (t, ·)
L2(Ω)
→ 0. By Theorem 5.16, we conclude that

u (t, ·) ≤ 0 in [0, T ]× Ω, which was to be proved.

5.25. Splitting f into the positive and negative parts, we can assume that
f ≥ 0. For all s > 0 and t ≥ 0, we have

∥
∥
∥PΩi

t+sf − P
Ωi
t f

∥
∥
∥ =

∥
∥
∥PΩi

t

(
PΩi
s f − f

)∥∥
∥ ≤

∥
∥PΩi

s f − f
∥
∥ .

Since PΩ1
s f ≤ PΩi

s f ≤ PΩ
t f , it follows that

∥
∥
∥PΩi

t+sf − P
Ωi
t f

∥
∥
∥ ≤

∥
∥PΩ1

s f − f
∥
∥+

∥
∥PΩ

s f − f
∥
∥ ,

whence

sup
i∈N

∥
∥
∥PΩi

t+sf − P
Ωi
t f

∥
∥
∥ ≤

∥
∥PΩ1

s f − f
∥
∥+

∥
∥PΩ

s f − f
∥
∥→ 0 as s→ 0,

which means the right equicontinuity. If t > s > 0 then we have
∥
∥
∥PΩi

t−sf − P
Ωi
t f

∥
∥
∥ =

∥
∥
∥PΩi

t−s

(
f − PΩi

s f
)∥∥
∥ ≤

∥
∥PΩi

s f − f
∥
∥ ,

which similarly implies the left equicontinuity.
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5.26. (a) The boundedness of A follows from

‖Af‖2L2 =

∫

M

(af)2 dµ ≤ sup |a|2 ‖f‖2L2 ,

the non-negative definiteness from

(Af, f) =

∫

M

af2dµ ≥ 0,

and the self-adjointness from

(Af, g) =

∫

M

afgdµ = (f,Ag) .

Since the operator A is bounded, we have

e−tA =
∞∑

k=0

(−tA)k

k!

whence

e−tAf =
∞∑

k=0

(−ta)k

k!
f = e−taf,

which obviously implies (5.74).
(b) Let us show by induction in n that, for any s ≥ 0,

0 ≤
(
e−sLe−sA

)n
f ≤ e−nsLf. (B.112)

Set g =
(
e−sLe−sA

)
f . The inductive basis for n = 1 means that 0 ≤ g ≤

e−sLf . Indeed, we have
g = e−sL

(
e−sAf

)
,

which implies by (5.74) and Theorem 5.11

0 ≤ g ≤ e−sLf.

To prove the inductive step from n− 1 to n, observe that
(
e−sLe−sA

)n
f =

(
e−sLe−sA

)n−1
g,

which implies by the inductive hypothesis that
(
e−sLe−sA

)n
f ≥ 0 and

(
e−sLe−sA

)n
f ≤ e−(n−1)sLg ≤ e−(n−1)sLe−sLf = e−nsLf.

Finally, it follows from (B.112) that

0 ≤
(
e−

t
n
Le−

t
n
A
)n
f ≤ e−tLf,

which together with (5.76) yields (5.75).
(c) Consider the sequence {Ak}

∞
k=1 of operators in L2 (M) where Ak is

the multiplication operator by k1M\Ω. By part (b), we have

e−t(L+Ak)f ≤ e−tLf.

This implies the claim because

e−tL
Ω
f = lim

k→∞
e−t(L+Ak)f.
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See also [96, Theorem 2.1.6].

Solutions to Chapter 6

6.1. Use the same argument as in Example 6.2.

6.2. (a) If f ∈ C∞0 (Ω) then (6.24) is just the standard integration-by-
parts formula. Then (6.24) extends by continuity to all f ∈W 1

0 (Ω) because
the both sides of (6.24) are bounded functional with respect to ‖f‖W 1 .

(b) Using (6.24), we obtain
(
f, eiξx

)

W 1
=

(
f, eiξx

)

L2
+
∑

j

(
∂jf, ∂je

iξx
)

L2

=

∫

Ω
fe−iξxdx−

∑

j

∫

Ω
f ∂2

j e
−iξxdx

=

∫

Rn
fe−iξxdx+

∑

j
ξ2
j

∫

Rn
fe−iξxdx,

whence (6.25) follows.
(c) The weak convergence in W 1 (Rn) implies that, for any ϕ ∈ C∞0 (Rn),

(fk, ϕ)W 1(Rn) → (f, ϕ)W 1(Rn) . (B.113)

Choose a function ψ ∈ C∞0 (Rn) so that ψ|Ω ≡ 1. Then, applying (B.113)

to ϕ (x) = ψ (x) eiξx and using (6.25), we obtain
(

1 + |ξ|2
)
f̂k (ξ) =

(
fk, e

iξx
)

W 1(Ω)

=
(
fk, ψe

iξx
)

W 1(Rn)
−→

(
f, ψeiξx

)

W 1(Rn)
=
(

1 + |ξ|2
)
f̂ (ξ) ,

whence the first claim follows.
By the Cauchy-Schwarz inequality,

|f̂k (ξ) | =

∣
∣
∣
∣

∫

Ω
e−ixξfk (x) dx

∣
∣
∣
∣ ≤ µ (Ω)1/2 ‖fk‖L2 ,

whence it follows that the sequence {f̂k (ξ)} is bounded uniformly for all
ξ ∈ Rn. By the dominated convergence theorem, the uniform boundedness

of {f̂k (ξ)} and the pointwise convergence imply that f̂k → f̂ in L2
loc (Rn).

(d) Since the sequence {fk} is bounded in W 1 (Rn) and W 1 (Rn) is a
Hilbert space (see Exercise 2.28), by the weak compactness of balls in Hilbert
spaces, there is a subsequence of {fk} that converges weakly in W 1 (Rn).
Let now {fk} denote this subsequence, and let f ∈ W 1 (Rn) be its weak
limit in W 1 (Rn). Since W 1

0 (Ω) is a closed subspace of W 1 (Rn), we have
f ∈W 1

0 (Ω). The proof will be concluded if we show that fk → f in L2 (Rn).

Due to the Plancherel identity, it suffices to prove that f̂k → f̂ in L2 (Rn).
By Exercise 2.34, we have

‖fk‖W 1(Rn) '
∫

Rn

(
1 + |ξ|2

)
|f̂k (ξ) |2dξ.
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Therefore, there exists a constant C such that, for all k,
∫

Rn

(
1 + |ξ|2

)
|f̂k (ξ) |2dξ ≤ C.

In particular, for any ball Br = {|ξ| < r}, we obtain
∫

Bcr

|f̂k (ξ) |2dξ ≤
1

1 + r2

∫

Rn

(
1 + |ξ|2

)
|f̂k (ξ) |2dξ ≤

C

1 + r2
,

and the same inequality holds for f , too. Hence, for any r > 0,

‖f̂k − f̂‖
2
L2 =

∫

Br

|f̂k − f̂ |
2dξ +

∫

Bcr

|f̂k − f̂ |
2dξ

≤
∫

Br

|f̂k − f̂ |
2dξ +

C ′

1 + r2
.

Passing to the limit as k →∞ and using the fact that, by part (c), f̂k → f̂
in L2 (Br), we obtain

lim sup
k→∞

‖f̂k − f̂‖
2
L2 ≤

C ′

1 + r2
.

Letting r →∞, we finish the proof.

6.3. The inductive basis for m = −1 is covered by Lemma 6.7. Assuming
m ≥ 0, let us prove the inductive step from m − 1 to m. By the inductive
hypothesis, we have

‖u‖Wm+1 ≤ C‖Lu‖Wm−1 ≤ C‖Lu‖Wm . (B.114)

We are left to show that any partial derivative ∂lu admits the estimate

‖∂lu‖Wm+1 ≤ C‖Lu‖Wm . (B.115)

By (6.43), we have

L (∂lu) = ∂l (Lu)− ∂i
[(
∂la

ij
)
∂ju
]
,

whence it follows that

‖L (∂lu) ‖Wm−1 ≤ ‖Lu‖Wm + C‖u‖Wm+1 .

Combining with (B.114), we obtain

‖L (∂lu) ‖Wm−1 ≤ C‖Lu‖Wm . (B.116)

Applying the inductive hypothesis to the function ∂lu, we obtain

‖∂lu‖Wm+1 ≤ C‖L (∂lu) ‖Wm−1 ,

which together with (B.116) gives (B.115).

6.4. Set

L0 = ∂i
(
aij (x) ∂j

)

so that

L0u = Lu− bj∂ju− cu. (B.117)
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Fix an open set U b Ω and notice that u ∈ W k
loc (U) for some integer k.

Let k be the maximal integer ≤ m + 2 with this property. If k ≤ m + 1
then the hypothesis Lu ∈ Wm

loc (Ω) implies Lu ∈ W k−1
loc (U). It follows from

(B.117) that L0u ∈ W k−1
loc (U), whence, by Lemma 6.14 (or by Theorem

6.15), u ∈ W k+1
loc (U). Hence, we conclude that k = m+ 2, which was to be

proved.

6.5. (a) The inductive basis for m = −1 and m = 0 is covered by Lemmas
6.16 and 6.17, respectively. Assuming m ≥ 1, let us prove the inductive step
from m− 2 and m− 1 to m. By the inductive hypothesis, we have

‖u‖Vm+1 ≤ C‖Pu‖Vm−1 ≤ C‖Pu‖Vm . (B.118)

We need to show that any partial derivative ∂tu, ∂ju, ∂i∂ju has also the
V m-norm bounded by C‖Pu‖Vm .

Applying the inductive hypothesis to ∂tu, we obtain

‖∂tu‖Vm ≤ C‖P (∂tu) ‖Vm−2 = C‖∂tPu‖Vm−2 ≤ C‖Pu‖Vm .

It follows from (6.82) that

‖P (∂lu) ‖Vm−1 ≤ ‖Pu‖Vm + C‖u‖Vm+1 .

Combining with (B.118), we obtain

‖P (∂lu) ‖Vm−1 ≤ C‖Pu‖Vm .

Applying the inductive hypothesis to ∂lu, we obtain

‖∂lu‖Vm+1 ≤ C‖P (∂lu) ‖Vm−1 ≤ C ′‖Pu‖Vm .

Therefore, the V m-norms of the second derivatives ∂i∂ju are also bounded
by C ′‖Pu‖Vm , which finishes the proof.

(b) Let us first prove a weaker inequality

‖u‖Vm+2(Ω′) ≤ C
(
‖u‖Vm+1(Ω) + ‖Pu‖Wm(Ω)

)
. (B.119)

Let ψ ∈ D (Ω) be such that ψ ≡ 1 on Ω′. Then ψu ∈ D (Ω′′) where Ω′′ is a
small neighborhood of suppψ, and by part (a) we have

‖u‖Vm+2(Ω′) ≤ ‖ψu‖Vm+2(Ω) ≤ C‖P (ψu) ‖Vm .

Next, by (6.82),

‖P (ψu) ‖Vm ≤ C (‖u‖Vm+1 + ‖Pu‖Vm) ,

which together with the previous line implies (B.119).
Finally, (B.119) implies (6.88) by induction in m ≥ −1.

6.6. Solution is similar to Exercise 6.4.
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Solutions to Chapter 7

7.1. Since the operator (L+ id)−s/2 is bounded and, hence, its domain

in L2 (M), the range of (L+ id)s/2 is L2. Hence, the mapping

f 7→ (L+ id)s/2 f

is a bijection betweenWs and L2; it is obviously linear and norm preserving,
which implies that Ws is isometric to L2 as a normed linear space, whence
it follows that Ws is Hilbert space.

7.2. By Exercise 4.25, we have dom (L+ id)1/2 = W 1
0 and, for any f ∈

W 1
0 ,

‖f‖W 1 = ‖ (L+ id)1/2 f‖L2 ,

which implies

‖f‖W 1 = ‖f‖W1
0
.

Hence, the spaces W 1
0 and W1

0 are identical including the identity of the
norms.

Since W 2
0 = domL and W2

0 = dom (L+ id), we obviously have W 2
0 =

W2
0 . For the norms, we have

‖f‖2W 2
0

= ‖f‖2L2 + ‖∇f‖2L2 + ‖∆µf‖
2
L2

and

‖f‖2W2
0

= ‖ (L+ id) f‖2L2 = (Lf + f,Lf + f)L2

= (f, f)L2 + 2 (Lf, f)L2 + (Lf,Lf)L2

= ‖f‖2L2 + 2‖∇f‖2L2 + ‖∆µf‖
2
L2 .

Obviously, the two norms are equivalent, although not equal.

7.3. If {Eλ} is the spectral resolution of L then, for any α > 0,

domLα =

{

f ∈ L2 :

∫ ∞

0
λ2αd‖Eλf‖

2
L2 <∞

}

and

dom (L+ id)α =

{

f ∈ L2 :

∫ ∞

0
(1 + λ)2α d‖Eλf‖

2
L2 <∞

}

.

Since ∫ ∞

0
d‖Eλf‖

2
L2 = ‖f‖L2 <∞,

it follows that

domLα = dom (L+ id)α

and that this domain shrinks when α is increasing. Hence, if f ∈ W2k
0 then

f ∈ domLk which implies that, for any l = 0, ..., k − 1, Llf ∈ domL and,
hence, ∆l

µf ∈ W
1
0 and ∆k

µf ∈ L
2. Conversely, assuming that (7.12) holds,

we obtain ∆l
µf ∈ domL for any l = 0, ..., k − 1, which implies by induction
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in l that Llf ∈ domL and Llf = ∆l
µf . Applying this for l = k − 1 yields

f ∈ domLk =W2k
0 .

7.4. It follows from Exercise 7.3 that f ∈ W2k
0 implies Llf ∈ L2 (M)

for all l = 0, 1, ..., k, that is, f ∈ W2k, which proves that W2k
0 ⊂ W2k. If

f ∈ W2k
0 then

‖f‖2W2k
0

=
(

(L+ id)k f, (L+ id)k f
)

L2
=

k∑

i,j=0

(
k

i

)(
k

j

)
(
Lif,Ljf

)
L2 .

Using the fact that L is positive definite and symmetric, we obtain

0 ≤
(
Lif,Ljf

)
L2 ≤ ‖L

if‖2L2 + ‖Ljf‖2L2 ,

which implies

‖f‖2W2k
0
'

k∑

i=0

‖Lif‖2L2 = ‖f‖2W2k .

7.5. We have, for any i = 1, ..., k − 1

‖Lif‖2L2 =
(
Lif,Lif

)
L2 =

(
Li−1f,Li+1f

)
L2 ≤ ‖L

i−1f‖L2‖Li+1f‖L2 .

Hence, the sequence ai = log ‖Lif‖L2 is convex, which implies

al ≤
(k − l) a0 + lak

k

and, hence, (7.13).

7.6. If f ∈ C∞ (M) and ∇f = 0 then f is a constant in any connected
chart whence it follows by the connectedness of M , that f is a constant in
M .

Let us show that the present hypotheses actually imply that f ∈ C∞ (M) .
For that, let us verify that ∆µf = 0 in the distributional sense. Indeed, for
any ϕ ∈ D (M), we have

(∆µf, ϕ) = (f,∆µϕ) = − (∇f,∇ϕ) = 0.

The conditions f ∈ L2
loc (M) and ∆µf = 0 imply by Corollary 7.3 that

f ∈ C∞ (M).

7.7. Assume that f := 1Ω ∈ W 1 (M). We have ∇f = 0 in Ω, but also
∇f = 0 a.e. on M \Ω by Exercise 5.5. Hence, ∇f = 0 a.e. in M. By Exercise
7.6, we conclude that f = const on M which contradicts the definition of f .
Hence, f /∈W 1 (M) .

If f ∈W 1
0 (Ω) then by a Claim in Section 5.5, f ∈W 1

0 (M), which is not
the case by the above argument. Hence, f /∈W 1

0 (Ω).

7.8. Set a = sup∂Ω u and prove that u ≤ a in Ω. If a = +∞ then there
is nothing to prove. Assuming a < +∞, consider the open set

U = {x ∈M : u (x) > a} .
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By Exercise 5.22, we have (u− a)+ ∈ W
1
0 (U). Since U does not intersect

∂Ω, U is a disjoint union of the open sets V = U ∩ Ω and U \ Ω.
Assume that V is non-empty. Clearly, the function v = (u− a) |V be-

longs to W 1
0 (V ). Since ∆uv = 0 in V , we obtain that v ∈ W 2

0 (V ). By the
Green formula (4.12), we obtain

∫

V

|∇v|2 dµ = −
∫

V

v∆µv dµ = 0,

whence ∇v = 0 in V . Extending v by 0 outside V so that v ∈ W 1
0 (M), we

obtain ∇v = 0 in M \ V (cf. Exercise 5.5). By Exercise 7.6, we conclude
that v = const on M , which contradicts to the fact that v > 0 in V and
v = 0 in M \ Ω. This contradiction shows that V must be empty, whence
u ≤ a in Ω.

To prove the second claim, set K = M \Ω. By hypothesis, K is compact.
Let Kε be the closed ε-neighborhood of K. If ε > 0 is small enough then
Kε is compact. Set Ωε = M \Kε and prove that

sup
Ωε

u = sup
∂Ωε

u. (B.120)

Let ϕ be a cutoff function of K in Kε. Then the function

w := (1− ϕ)u = u− ϕu

is continuous in Ω and vanishes in K (where ϕ = 1), whence w ∈ C (M). It
is clear that also w ∈W 1

0 (M) and w = u in Ωε (where ϕ = 0). In particular,
w is harmonic in Ωε. It follows from the first part that

sup
Ωε

w = sup
∂Ωε

w,

which is equivalent to (B.120). Letting ε→ 0 we finish the proof.

7.9. Consider first the case when the closure Ω
′′

is contained in a chart
U . Consider the following operator in the chart U

L = ρ−1∂i
(
ρgij∂j

)
,

where ρ = dµ
dλ and λ is the Lebesgue measure in U . As was shown in

the proof of Theorem 7.1, if u ∈ L2
loc and ∆µu ∈ L2

loc then Lu = ∆µu in U .
Hence, Lu ∈ L2

loc (U) and, by Corollary 6.11, we conclude that u ∈W 2
loc (U).

In particular, the partial derivatives ∂iu exist in L2
loc (U) and satisfy the

estimate
∫

Ω′

n∑

i=1

(∂iu)2 dλ ≤ C
∫

Ω′′
u2dλ+ C

∫

Ω′′
(Lu)2 dλ (B.121)

(cf. 6.47). Note that the measures λ and µ are comparable in Ω′′ so that λ in
(B.121) can be replaced by µ. By Exercise 4.11, the distributional gradient
∇u in U as a part of M is given by

(∇u)i = gik∂ku,
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whence

|∇u|2g = gij (∇u)i (∇u)j = gij∂iu∂ju ≤ C
n∑

i=1

(∂iu)2 .

Combining with (B.121), we obtain
∫

Ω′
|∇u|2g dµ ≤ C

∫

Ω′′
u2dµ+ C

∫

Ω′′
(∆µu)2 dµ. (B.122)

In the general case when Ω
′′

is not contained in a chart, the same estimate

follows by covering Ω
′′

by a finite number of charts.
Finally, since u ∈W 1 (Ω′) for any Ω′ bM , it follows that u ∈W 1

loc (M).

7.10. Let U be a chart on M with the coordinates x1, ..., xn. Let dµ =
ρ (x) dλ where λ is the Lebesgue measure, and hence

∆µ = ρ−1∂i
(
ρgij∂j

)
.

For any u ∈ D′ (M) and ϕ ∈ D (U), we obtain

(∆µu, ϕ) = (u,∆µϕ) =
(
u, ρ−1∂i

(
ρgij∂jϕ

))
=
(
ρ−1u, ∂i

(
ρgij∂jϕ

))

= −
(
∂i
(
ρ−1u

)
, ρgij∂jϕ

)
=
(
∂j
(
ρgij∂i

(
ρ−1u

))
, ϕ
)
.

Hence, considering u as a distribution in U , we obtain that

∆µu = Lv

where v = ρ−1u and

L = ∂j
(
ρgij∂i

)
.

The hypothesis ∆µu ∈ C∞ (M) implies Lv ∈ C∞ (U) whence, by Theorem
6.15, v ∈ C∞ (U) and u ∈ C∞ (U).

7.11. The fact that uk is harmonic implies that (∆uk, ϕ) = 0 for any
ϕ ∈ C∞0 (M), whence (uk,∆µϕ) = 0. Since

(uk,∆µϕ) =

∫

M

uk∆µϕdµ

and uk → u in L2
loc, we obtain that also (u,∆µϕ) = 0. Hence, ∆µu = 0

in the distributional sense and, by Corollary 7.3, we conclude that u ∈ C∞

and, hence, u is harmonic (cf. Exercise 7.10).
By Corollary 7.2, in order to prove that

uk
C∞
−→ u

it suffices to show that

uk
W∞loc−→ u.

The latter means that

uk
L2
loc−→ u (B.123)
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and, for all positive integers l,

∆l
µuk

L2
loc−→ ∆l

µu. (B.124)

However, (B.123) is given by hypothesis, and (B.124) is trivial because

∆µuk = ∆µu = 0.

7.12. The equation (7.15) means that, for any ϕ ∈ D (M),

− (uk,∆µϕ) + αk (uk, ϕ) = (fk, ϕ) .

Passing to the limit as k →∞ we obtain (7.16).
To prove the convergence

uk
W2m+2
loc−→ u,

set vk = u− uk and observe that

−∆µvk + αvk = hk,

where

hk := f − fk
W2m
loc−→ 0. (B.125)

The identity
∆µvk = αvk − hk

implies by induction that, for any positive integer l,

∆l
µvk = αlvk − α

l−1hk − α
l−2∆µhk − ...−∆l−1

µ hk,

whence, for any open set Ω bM ,

‖vk‖W2m+2(Ω) ≤ C‖hk‖W2m(Ω)

where C depends on m and α. Finally, using (B.125), we conclude that

vk
W2m+2
loc−→ 0,

which was to be proved.

If fk
C∞
−→ f then, by Corollary 7.2, fk

W∞loc−→ f and, by the previous part

of the proof, uk
W∞loc−→ u. Applying again Corollary 7.2, we obtain uk

C∞
−→ u.

7.13. Since {uk (x)} is increasing and converging to u pointwise, it follows

that uk
L2
loc−→ u. By Exercise 7.12, there is a version ũ of u that is C∞ smooth

and that uk
C∞
−→ ũ. In particular, uk (x)→ ũ (x) for any x ∈ M . Since also

uk (x)→ u (x), it follows that u (x) = ũ (x) for all x ∈M , which finishes the
proof.

7.14. Since ∆l
µu = αlu, we have

‖u‖2W2k(Ω) =
k∑

l=0

‖∆l
µu‖

2
L2(Ω) =

(
1 + α2 + ...+ α2k

)
‖u‖2L2(Ω).
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Hence, the result follows immediately from estimate (7.2) of Theorem 7.1.

7.15. By Theorem 4.5, for any f ∈ L2 (M), the function u := Rαf also
belongs to L2 (M) (in fact, even to W 2

0 (M)) and satisfies in M the equation

−∆µu+ αu = f. (B.126)

By Corollary 7.3, f ∈ C∞ implies u ∈ C∞, whence the claim follows.

7.16. Set u = Rαf , ui = RΩi
α f and note u satisfies the equation (B.126)

in M , and ui satisfies the same equation

−∆µui + αui = f

in Ωi. Fix an open set Ω b M . For large enough i, Ωi contains Ω and, by
Corollary 7.3, ui ∈ C∞ (Ω). Obviously, both ui and u satisfy the same equa-

tion (B.126) in Ω. By Theorem 5.22, we have ui
L2(Ω)
−→ u, and we conclude

by Exercise 7.12 (with fi = f) that ui
C∞(Ω)
−→ u, which finishes the proof.

7.17. Arguing similarly to the proof of Theorem 7.6, we obtain

sup
K

∣
∣∆m

µ (Ptf)
∣
∣ ≤ C‖∆m

µ (Ptf) ‖W2σ(M),

whereas

‖∆m
µ (Ptf) ‖W2σ =

σ∑

k=0

‖∆m+k
µ Ptf‖L2

≤ C

(
σ∑

k=0

(
m+ k

t

)m+k

e−(m+k)

)

‖f‖L2

≤ C ′t−m
(
1 + t−σ

)
‖f‖L2 .

Combining these two estimates, we obtain (7.46).

7.18. Set u (t, x) = Ptf (x) and ui (t, x) = PΩi
t f (x). By Theorem 7.10, u

is a smooth function in R+×M and satisfies in R+ ×M the heat equation.
The same applies to the function ui in R+ × Ωi.

It was shown in the proof of Theorem 5.23, that, for any t > 0,

ui (t, ·)
a.e.
−→ u (t, ·) .

That is, the set of points (t, x) where ui (t, x) 6→ u (t, x), has measure 0 on
M for every fixed t and, hence, it has measure 0 on R+ ×M . By Theorem
5.23, we also have 0 ≤ ui ≤ u. Hence, the sequence {ui} increases and
converges a.e. on R+×M to the function u ∈ L2

loc (R+ ×M), which implies
by the dominated convergence theorem that

ui
L2
loc(R+×M)
−→ u. (B.127)

Fix an open set Ω b M . For large enough i, Ωi contains Ω. Hence, all
functions ui with large enough i satisfy the heat equation in Ω. By Theorem
7.4, (B.127) implies

ui
C∞(R+×Ω)
−→ u,
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whence the claim follows.

7.19. By Corollary 7.2, it suffices to prove that

Ptf
W∞loc−→ f as t→ 0,

which it turn will be the case provided we show that, for any k ∈ N,

Lk (Ptf)
L2

−→ Lkf as t→ 0. (B.128)

Using the spectral resolution of L and arguing as in the proof of Lemma 4.8,
we obtain

∥
∥
∥Lk (Ptf)− Lkf

∥
∥
∥

2
=

∫ ∞

0

∣
∣
∣λk
(
e−tλ − 1

)∣∣
∣
2
d ‖Eλf‖

2 .

The integrand is bounded by λ2k, which is an integrable function with re-
spect to d ‖Eλf‖

2 because Lkf ∈ L2.By the dominated convergence theo-
rem, we can pass to the limit as t → ∞ under the sign of the integral and
obtain (B.128).

7.20. Observe that f ∈ dom
(
Lk
)

for any k ∈ N and use the approach of
the third proof of Theorem 7.10 to prove that u ∈ C∞. That u satisfies the
wave equation follows then from Exercise 4.52.

7.21. By (7.48) and the Cauchy-Schwarz inequality,

pt (x, y) =
(
pt/2,x, pt/2,y

)
L2 ≤ ‖pt,x‖L2‖pt,y‖L2 .

Using
pt (x, x) =

(
pt/2,x, pt/2,x

)
L2 = ‖pt,x‖

2
L2

and a similar identity for pt (y, y), we obtain (7.61).

7.22. Since
pt (x, x) =

(
pt/2,x, pt/2,x

)
= ‖pt/2,x‖

2
L2 , (B.129)

it suffices to prove that ‖pt,x‖L2 is non-increasing in t. For any 0 < s < t,
we have by (7.56)

pt (x, y) = (pt−s,y, ps,x) = Pt−sps,x (y) ,

for all y ∈M . Since pt,x = pt (x, ·) a.e., we obtain

pt,x = Pt−sps,x a.e.

Since ‖Pt−s‖ = ‖e−(t−s)L‖ ≤ 1, we conclude that

‖pt,x‖L2 ≤ ‖ps,x‖L2 ,

which was to be proved.

7.23. (a) It follows from (7.61) and (B.129) that

S (t) = sup
x∈K

pt (x, x) = sup
x∈K
‖pt/2,x‖

2
L2 . (B.130)

Hence, S (t) is non-increasing by Exercise 7.22.
(b) By Theorem 7.7, we have

sup
x∈K
‖pt,x‖L2 ≤ C

(
1 + t−σ

)
,
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which together with (B.130) settles the claim.

7.24. The pullback operator J∗ on functions, defined by

J∗f = f ◦ J,

obviously maps D (M) onto D (M) and, by Lemma 3.27, J∗ commutes with
∆µ on D (M). In the same way, J∗ commutes with gradient ∇.

It follows from Lemma 3.27 that, for all f, g ∈ L2 (M) ,

(J∗f, J∗g)L2 = (f, g)L2 , (B.131)

which implies that J∗ is an isometry in L2 (M). In the same way, J∗ is an
isometry in the spaces W 1 (M) and W 1

0 (M).
Extend J∗ to D′ (M) by the identity

(J∗u, J∗ϕ) = (u, ϕ) ,

for all u ∈ D′ (M) and ϕ ∈ D (M). Then ∆µ commutes with J∗ in D′ (M),
because

(J∗∆µu, J∗ϕ) = (∆µu, ϕ) = (u,∆µϕ) = (J∗u, J∗∆µϕ)

= (J∗u,∆µJ∗ϕ) = (∆µJ∗u, J∗ϕ) .

Hence, J∗ is an isometry of W 2
0 (M), and the Dirichlet Laplace operator

L = −∆µ|W 2
0

commutes with J∗.

By the spectral theory, also the heat semigroup operator Pt = e−tL

commutes with J∗, that is, for any f ∈ L2 (M),

Pt (f ◦ J) = (Ptf) ◦ J.

In the terms of the heat kernel, this means that the following identity holds
∫

M

pt (x, y) f (Jy) dµ (y) =

∫

M

pt (Jx, y) f (y) dµ (y) .

By (B.131), we have
∫

M

pt (Jx, y) f (y) dµ (y) =

∫

M

pt (Jx, Jy) f (Jy) dµ (y) ,

and the comparison with the previous line yields pt (x, y) = pt (Jx, Jy).

7.25. We have by the Cauchy-Schwarz inequality

Pt (fg) (x) =

∫

M

pt (x, ·) fgdµ =

∫

M

√
pt (x, ·)f

√
pt (x, ·)gdµ

≤

(∫

M

pt (x, ·) f2dµ

)1/2(∫

M

pt (x, ·) g2dµ

)1/2

=
(
Ptf

2
)1/2 (

Ptg
2
)1/2

,

which proves the first claim. The second claim follows from the first one by
setting g = 1 and using Pt1 ≤ 1.



SOLUTIONS TO CHAPTER 7 87

7.26. Assume that the first alternative fails, that is, there is τ > 0 such
that a := supPτ1 < 1. Then

P2τ1 = Pτ (Pτ1) ≤ Pτa = aPτ1 ≤ a2.

By induction, we obtain Pnτ1 ≤ an for all n ∈ N. If t ∈ (nτ, (n+ 1) τ) then

Pt1 = Pt−nτPnτ1 ≤ Pt−nτa
n ≤ an ≤ at/τ−1 = a−1 exp

(

−
t

τ
ln

1

a

)

,

so that the second alternative holds.

7.27. Denote for simplicity q (y) = pt (x, y) and assume that q is un-
bounded. Consider the following sets

Ωk = {x ∈M : k < q (x) < k + 1} .

Since q is a continuous function, Ωk is an open set, and sup q = ∞ implies
that Ωk is non-empty for all large enough k. Choose a compact subset
Ek ⊂ Ωk of positive measure and consider the function

f =
∑

k

ck1Ek ,

where ck are positive constant to be specified. For this function, we have
∫

M

f dµ =
∑

k

ckµ (Ek)

and ∫

M

f q dµ ≥
∑

k

kckµ (Ek) .

Choosing ck from the condition ckµ (Ek) = 1/k2, we obtain that f ∈ L1 (M)
but

Ptf (x) =

∫

M

f q dµ =∞,

which contradicts Theorem 7.19.

7.28. (a) Assume first that f ∈ F is non-negative. Then, using (7.62),
(7.51), and Fubini’s theorem for non-negative functions, we obtain

Pt (Psf) (x) =

∫

M

pt (x, y)Psf (y) dµ (y)

=

∫

M

pt (x, y)

(∫

M

ps (y, z) f (z) dµ (z)

)

dµ (y)

=

∫

M

(∫

M

pt (x, y) ps (y, z) dµ (y)

)

f (z) dµ (z)

=

∫

M

pt+s (x, z) f (z) dµ (z)

= Pt+sf (x) . (B.132)
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If f is a signed function from F then applying the above argument to |f |,
we obtain that the function

(y, z) 7→ pt (x, y) ps (y, z) f (z)

is integrable on M ×M . Hence, we can repeat the above computation for
f , using Fubini’s theorem for integrable functions.

(b) Set ε = t− s. By the semigroup identity, we have

Ptf − Psf = Ps (Pεf − f) if ε > 0,

and

Ptf − Psf = Pt
(
f − P|ε|f

)
if ε < 0.

In the both cases, we obtain using ‖P·f‖F ≤ ‖f‖F ,

‖Ptf − Psf‖F ≤ ‖P|ε|f − f‖F → 0 as ε→ 0,

which was to be proved.

7.29. For any relatively compact open set Ω ⊂M , we have f ∈ W 1 (Ω).
Consider the constant path u (t, ·) = f in W 1 (Ω). Then we obviously have

du

dt
−∆µu ≥ 0,

which implies by Corollary 5.17 that u ≥ PΩ
t f . Exhausting M by sets like

Ω, we conclude by Theorem 5.23 that u ≥ Ptf , that is, f ≥ Ptf .

7.30. (a) Applying the operator Ps to the inequality Ptf ≤ f , where the
both sides are non-negative, and using (B.132), we obtain

Pt+sf (x) ≤ Psf (x) .

This means that Ptf (x) is decreasing in t.
(b) The inequality Ptf ≤ f implies that Ptf ∈ L1

loc (R+ ×M) and, by
Theorem 7.15, Ptf is smooth in R+ ×M and satisfies the heat equation.

(c) By part (a) and by Ptf (x) ≤ f (x) we conclude that the limit

h (x) := lim
t→0

Ptf (x) (B.133)

exists for all x and h (x) ≤ f (x). Let us show that h (x) = f (x) µ-a.e.
Indeed, Ptf ≤ h implies that, for all t, s > 0,

Pt+sf = Ps (Ptf) ≤ Psh.

Letting t → 0, we obtain Psf ≤ Psh. On the other hand, h ≤ f implies
Psh ≤ Psf , whence it follows that Psf ≡ Psh.

Hence, the function v = f − h is non-negative and Psv ≡ 0. Let us
show that this implies v = 0 µ-a.e.. If v ∈ L1 (M) then this follows from
Theorem 7.19. In general, we have v ∈ L1

loc (M) and, hence, v ∈ L1 (Ω)

for any relatively compact open set Ω. Then 0 ≤ PΩ
s v ≤ Psv implies that

PΩ
s v ≡ 0, and by the above argument v = 0 µ-a.e.in Ω. Exhausting M by

such sets Ω, we prove that v = 0 µ-a.e. in M .
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Hence, f = h µ-a.e., and it follows from (B.133) that Ptf (x) increases
as t ↓ 0 and converges to f (x) µ-a.e.. By the dominated (or monotone)

convergence theorem, we conclude that Ptf
L1
loc−→ f .

(d) By parts (a) and (b), the function u (t, x) = Ptf (x) is a smooth
solution to the heat equation in R+ ×M and u (t, x) is decreasing in t for
any x ∈M . Therefore,

∆µu =
∂u

∂t
≤ 0,

that is, ∆µPtf ≤ 0. By part (c), we have Ptf
D′
−→ f , which implies

∆µPtf
D′
−→ ∆µf and, hence, ∆µf ≤ 0.

7.31. Since 0 ≤ u (t, x) ≤ f (x), the function u (t, x) belongs to L1
loc (R×M).

Let us show that u satisfies the heat equation in N = R × U in the distri-
butional sense. Then by Theorem 7.4, we can conclude that u ∈ C∞ (N),
which will settle the claim.

It remains to prove that, for any function ϕ ∈ D (N),
∫

N

u

(
∂ϕ

∂t
+ ∆µϕ

)

dtdµ = 0. (B.134)

For any ε > 0, set

Nε = (ε,+∞)× U and N−ε = (−∞,−ε)× U.

Note that the function u is C∞ smooth separately in Nε and N−ε, and
satisfies the heat equation in each of these domain (here we use the fact that
∆µf = 0 in U). For simplicity of notation, set ut = u (t, ·) and ϕt = ϕ (t, ·).
Using the integration by parts in t and the Green formula, we obtain
∫

Nε

u

(
∂ϕ

∂t
+ ∆µϕ

)

dtdµ = −
∫

U

uεϕε dµ−
∫

Nε

ϕ

(
∂u

∂t
−∆µu

)

dtdµ

= −
∫

U

uεϕε dµ. (B.135)

Similarly,
∫

N−ε

u

(
∂ϕ

∂t
+ ∆µϕ

)

dtdµ =

∫

U

u−εϕ−ε dµ =

∫

U

fϕ−εdµ. (B.136)

As ε → 0, we have by Exercise 7.30 that u (ε, ·)
L1
loc−→ f . Using also that

0 ≤ uε ≤ f , we obtain
∣
∣
∣
∣

∫

U

uεϕε dµ−
∫

U

fϕ0 dµ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

U

uε (ϕε − ϕ0) dµ

∣
∣
∣
∣+

∣
∣
∣
∣

∫

U

(uε − f)ϕ0 dµ

∣
∣
∣
∣

≤
∫

U

f |ϕε − ϕ0| dµ+

∣
∣
∣
∣

∫

U

(uε − f)ϕ0 dµ

∣
∣
∣
∣ ,

which obviously goes to 0 as ε→ 0. It follows that
∫

U

uεϕε dµ→
∫

U

fϕ0 dµ as ε→ 0.
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Adding up (B.135) and (B.136) and letting ε→ 0, we obtain (B.134).

7.32. (a) Applying the operator Ps to the inequality Ptf ≥ f and using
(B.132), we obtain

Pt+sf (x) ≥ Psf (x) ,

which implies that Ptf (x) is increasing in t.
(b) The function Ptf (x) is non-negative and measurable on R+ ×M .

For any compact set K ⊂M and any interval [a, b] ⊂ I := (0, T ), we have

∫

[a,b]×K
Ptf (x) dµ (x) dt ≤ (b− a)

∫

K

Pb (x) dµ (x) <∞,

whence Ptf ∈ L1
loc (I ×M). By Theorem 7.15, Ptf is smooth in I ×M and

satisfies the heat equation.
(c) By part (a) and by Ptf (x) ≥ f (x), the limit

h (x) := lim
t→0

Ptf (x) (B.137)

exists for all x and h (x) ≥ f (x). Let us show that h (x) = f (x) µ-a.e.
Indeed, Ptf ≥ h implies that, for all t, s > 0,

Pt+sf = Ps (Ptf) ≥ Psh.

Letting t → 0, we obtain Psf ≥ Psh. On the other hand, h ≥ f implies
Psh ≥ Psf , whence it follows that Psf ≡ Psh. Arguing as in the solution to
Exercise 7.30(c), we conclude that f = h µ-a.e.. It follows from (B.137) that
Ptf (x) decreases as t ↓ 0 and converges to f (x) µ-a.e.. By the dominated

convergence theorem, we obtain Ptf
L1
loc−→ f .

(d) By parts (a) and (b), the function u (t, x) = Ptf (x) is a smooth
solution to the heat equation in R+×M and u (t, x) is increasing in t ∈ (0, T )
for any x ∈M . Therefore,

∆µu =
∂u

∂t
≥ 0,

that is, ∆µPtf ≥ 0. By part (c), we have Ptf
D′
−→ f , which implies

∆µPtf
D′
−→ ∆µf and, hence, ∆µf ≥ 0.
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(e) The straightforward computation yields, for t < α,

Ptf (x) =

∫

Rn
pt (x, y) f (y) dy

=
1

(4πt)n/2

∫

Rn
exp

(

−
|x− y|2

4t
+
|y|2

4α

)

dy

=
1

(4πt)n/2
exp

(
x2

4 (α− t)

)∫

Rn
exp

(

−

(
1

4t
−

1

4α

) ∣∣
∣
∣y −

x

1− t/α

∣
∣
∣
∣

2
)

dy

=
1

(4πt)n/2

(
π

(
1
4t −

1
4α

)

)n/2

exp

(
x2

4 (α− t)

)

=
1

1− t/α
exp

(
x2

4 (α− t)

)

.

It is clear that Ptf (x) increasing in t ∈ (0, α) whence the claim follows. It
is also obvious that Ptf ≡ ∞ for t ≥ α.

7.33. The proof follows verbatim the first part of the proof of Theorem
7.16 since the continuity of f in that theorem was used only for the proof
of the initial condition.

7.34. Let us prove that Ptf → f as t→ 0 uniformly on any compact set
K ⊂M \ ∂Ω. It suffices to consider separately the following two cases.

Case K ⊂ Ω. There exists a function ϕ ∈ C0 (Ω) such that 0 ≤ ϕ ≤ 1
and ϕ ≡ 1 on K. Clearly, ϕ ≤ f ≤ 1 on M whence

Ptϕ ≤ Ptf ≤ 1.

By Theorem 7.16, function Ptϕ converges to ϕ uniformly on K as t → 0.
Since ϕ ≡ 1 ≡ f on K, it follows that Ptf converges to f uniformly on K.

Case K ⊂ M \ Ω. There exists a function ϕ ∈ C0

(
M \ Ω

)
such that

0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on K. Set ψ = 1 − ϕ so that ψ = 1 on Ω and ψ = 0
on K. Obviously, we have 0 ≤ f ≤ ψ on M , whence

0 ≤ Ptf ≤ Ptψ.

By Theorem 7.16, Ptψ converges to ψ uniformly on K as t → 0. Since
ψ ≡ 0 ≡ f on K, it follows that Ptf converges to f uniformly on K.

7.35. By Theorem 7.16, the convergence (7.73) holds for any bounded
continuous function, in particular, for a constant function. Hence, by adding
to f a constant and renormalizing it, we can assume that 0 < f < 1. Set
a = f (x) and let Uε be an open neighborhood of x where |f − a| < ε, which
by hypothesis exists for any ε > 0. Consider the function ϕ = (a− ε) 1Uε .
By Exercise 7.34 we have

Ptϕ (x)→ ϕ (x) as t→ 0.
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Since f ≥ ϕ on M and, hence, Ptf ≥ Ptϕ, we obtain

lim inf
t→0

Ptf (x) ≥ lim
t→0

Ptϕ (x) = ϕ (x) = f (x)− ε.

Since ε > 0 is arbitrary, it follows that

lim inf
t→0

Ptf (x) ≥ f (x) .

Applying the same argument to the function 1 − f , we obtain

lim inf
t→0

Pt (1− f) (x) ≥ 1− f (x) .

Since Pt1 (x)→ 1, it follows that

lim sup
t→0

Ptf (x) ≤ f (x) ,

which finishes the proof.

7.36. (a) This statement is a particular case Exercise 2.20. Nevertheless,
let us give an independent proof. The case r = 1 is covered by Theorem
7.19, and the case r = ∞ is covered by Exercise 7.33 (see also Theorem
7.16). So, assume in the sequel 1 < r <∞.

By Theorem 7.15, the function Ptf (x) is measurable. To estimate
‖Ptf‖Lr , let us first estimate Ptf (x) using the Hölder inequality and (7.50):

|Ptf (x)| =

∣
∣
∣
∣

∫

M

pt (x, ·) fdµ

∣
∣
∣
∣ ≤

∫

M

p
1−1/r

t (x, ·)
(
p

1/r

t (x, ·) |f |
)
dµ

≤

(∫

M

pt (x, ·) dµ

)1−1/r (∫

M

pt (x, ·) |f |r dµ

)1/r

≤

(∫

M

pt (x, ·) |f |r dµ

)1/r

. (B.138)

Next, applying Fubini’s theorem and (7.50), we obtain

‖Ptf‖
r
Lr =

∫

M

|Ptf (x)|r dµ (x)

≤
∫

M

(∫

M

pt (x, y) |f |r (y) dµ (y)

)

dµ (x)

=

∫

M

(∫

M

pt (x, y) dµ (x)

)

|f |r (y) dµ (y)

≤
∫

M

|f |r (y) dµ (y) ,

whence (7.74) follows.
(b) Integrating (7.74) in dt, we obtain Ptf ∈ Lrloc (R+ ×M), whence the

claim follows from Theorem 7.15.

7.37. Prove first the Lr analogue of Lemma 7.18, and then use the same
argument as in the proof of Theorem 7.19. The only place that requires an
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explanation is why

PΩk
t fk

L2(Ωk)
−→ fk as t→ 0

implies

PΩk
t fk

Lr(Ωk)
−→ fk as t→ 0, (B.139)

using the notation of the proof of Theorem 7.19. If r ≤ 2 then this is true
by the embedding L2 (Ωk) ↪→ Lr (Ωk). If r > 2 then we use the obvious
interpolation inequality

‖h‖rr ≤ ‖h‖
r−2
∞ ‖h‖

2
2,

which is true for any measurable function h. Indeed, since function fk is

bounded by k, function PΩk
t fk is also bounded by k. Therefore, we obtain

‖PΩk
t fk − fk‖

r
r ≤ (2k)r−2 ‖PΩk

t fk − fk‖
2
2,

whence (B.139) follows.

7.38. This is a particular case of Exercise 2.21 with K = 1 and C = F (t).

7.39. (a) For any t > 0, the function pt (x, y) f (y) is measurable in x, y.
Hence, the measurability of

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) (B.140)

follows from Fubini’s theorem.
(b) If f is signed then the convergence of the integral (B.140) means

that Ptf+ and Ptf− are finite almost everywhere. It follows from Ptf =
Ptf+ − Ptf− and part (a) that Ptf is measurable.

(c) See Exercise 7.28(a).

7.40. (a) By Theorem 5.23, we have PΩ
t f ≤ Ptf for any non-negative

f ∈ L2 (Ω). In terms of the heat kernels this means that, for all x ∈ Ω and
t > 0, ∫

Ω
pΩ
t (x, y) f (y) dµ (y) ≤

∫

Ω
pt (x, y) f (y) dµ (y) ,

whence pΩ
t (x, y) ≤ pt (x, y) follows.

(b) For simplicity of notation, define pΩ
t (x, y) for all x, y ∈M by setting

pt (x, y) = 0 if x or y is outside Ω.

By part (a), the sequence
{
pΩi
t (x, y)

}
is increasing for all t > 0 and

x, y ∈M and, hence, has a pointwise limit

qt (x, y) := lim
i→∞

pΩi
t (x, y) ≤ pt (x, y) . (B.141)

The function pt (x, y) is smooth in t, x, y and, hence,

pt (x, y) ∈ L2
loc (R+ ×M ×M) .

By the dominated convergence theorem, we obtain from (B.141)

pΩi
t (x, y)

L2
loc(R+×M×M)
−→ qt (x, y) . (B.142)
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By Theorem 5.23, for any non-negative f ∈ L2 (M), we have

PΩi
t f (x)→ Ptf (x) , (B.143)

for all t > 0 and for almost all1 x ∈M , that is,
∫

Ωi

pΩi
t (x, y) f (y) dµ (y)→

∫

M

pt (x, y) f (y) dµ (y) .

On the other hand, by (B.141) and the monotone convergence theorem, we
have also ∫

Ωi

pΩi
t (x, y) f (y) dµ (y)→

∫

M

qt (x, y) f (y) dµ (y) ,

for all t > 0 and x ∈M , whence it follows that

qt (x, y) = pt (x, y) ,

for all t > 0 and almost all x, y ∈M .
It follows from (B.142) that

pΩi
t (x, y)

L2
loc(R+×M×M)
−→ pt (x, y) . (B.144)

Fix an open set Ω bM . For large enough i, Ωi contains Ω and, hence, both
functions pΩi

t (x, y) and pt (x, y) satisfy in R+ × Ω× Ω the heat equation

∂u

∂t
=

1

2
(∆x + ∆y)u,

where ∆x + ∆y is the Laplace operator on the manifold M ×M (see the
proof of Theorem 7.20). By Theorem 7.4, applied to the manifold Ω × Ω,
the convergence (B.144) implies that

pΩi
t (x, y)

C∞(R+×Ω×Ω)
−→ pt (x, y) ,

which was to be proved.
(c) The claim follows from parts (a), (b) and from the monotone conver-

gence theorem:

PΩi
t f (x) =

∫

M

pΩi
t (x, ·) fdµ→

∫

M

pt (x, ·) fdµ = Ptf (x) . (B.145)

(d) Splitting f = f+− f−, it suffices to consider the case f ≥ 0. By part
(c), we have, for any t > 0,

PΩi
t f (x) ↑ Ptf (x) (B.146)

pointwise in x. Since Ptf (x) is a locally bounded function on R+ × M ,
(B.146) implies by the dominated convergence theorem that the conver-
gence in (B.146) is also in L2

loc (R+ ×M). By Theorem 7.16, both functions

PΩi
t f (x) and Ptf (x) solve the heat equation. Hence, we conclude by The-

orem 7.4 that the convergence in (B.146) is also in C∞ (R+ ×M).

1In fact, by Exercise 7.18, the convergence (B.143) is in C∞ (R+ ×M) but we will
not use this.
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7.41. Let Pt be the heat semigroup on M . Consider the integral operator
Qt on functions on M defined by

Qtf (x, y) =

∫

M

pXt
(
x, x′

)
pYt
(
y, y′

)
f
(
x′, y′

)
d (µ× µ)

(
x′, y′

)
.

We will show that Qtf = Ptf for all f ∈ L2 (M), which will imply (7.92).
We will use the fact that, for any f ∈ L2 (M), the path t 7→ Ptf is a unique
solution to the L2-Cauchy problem on M with the initial function f (see
Corollary 4.11).

Let function f be of the form

f (x, y) = g (x)h (y) , (B.147)

where g ∈ L2 (X) and h ∈ L2 (Y ). Then we obviously have

Qtf (x, y) = PXt g (x)P Yt h (y) ,

where PXt and P Yt are the heat semigroups on X and Y , respectively. The
paths t 7→ PXt g and t 7→ P Yt h solve the L2-Cauchy problems on X and Y ,
respectively, with the initial functions g and h.

Let us show that u (t, ·) = Qtf solves the L2-Cauchy problem on M with
the initial function f . Since PXt g ∈ W

1
0 (X) and P Yt h ∈ W

1
0 (Y ), we easily

obtain that u (t, ·) ∈W 1
0 (M).

Next, we have

du

dt
=

d

dt

(
PXt g

)
P Yt h+ PXt g

d

dt

(
P Yt h

)

= ∆X

(
PXt g

)
P Yt h+ PXt g∆Y

(
P Yt h

)
, (B.148)

where ∆X and ∆Y are (distributional) Laplace operators on X and Y . On
smooth functions, we have

∆X + ∆Y = ∆µ

(cf. Section 3.8), whence it follows that the same identity holds on distribu-
tions. Since the right hand side in (B.148) belongs to L2 (M), we conclude
that the strong derivative dudt exists in L2 (M) and is equal to

du

dt
= ∆Xu+ ∆Y u = ∆µu.

In particular, ∆µu ∈ L2 (M) and, hence, u (t, ·) ∈W 2
0 (M). Finally, u (t, ·)

L2(M)
−→

f as t→ 0 because

PXt g
L2(X)
−→ g and P Yt h

L2(Y )
−→ h.

By Corollary 4.11, we conclude that u = Ptf , that is,

Qtf = Ptf, (B.149)

for all f of the form (B.147). Since Qt and Pt are linear bounded operator
in L2 (M) (cf. Exercise 2.20) and the functions of the form (B.147) span
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all L2 (M), we conclude that (B.149) holds for all f ∈ L2 (M), whence the
claim follows.

7.42. It follows from (7.93) that

f (x)− Ptf (x) =

∫

M

f (x) pt (x, y) dµ (y)−
∫

M

f (y) pt (x, y) dµ (y)

=

∫

M

(f (x)− f (y)) pt (x, y) dµ (y) ,

whence

(f − Ptf, f) =

∫

M

∫

M

(f(x)− f(y))f (x) pt(x, y)dµ(y)dµ(x).

Switching x and y in the integral and using the symmetry of the heat kernel,
we obtain

(f − Ptf, f) =

∫

M

∫

M

(f(y)− f(y))f (y) pt(x, y)dµ(x)dµ(y).

Adding up the above two lines, we obtain

(f − Ptf, f) =
1

2

∫

M

∫

M

(f(x)− f(y))2pt(x, y)dµ(y)dµ(x),

whence (7.94) follows.

7.43. Note that the operators L and R := (L+ id)−1 are self-adjoint
with the spectra in [0,+∞) so that Lk and Rk are defined by the functional
calculus for all real k > 0. Since R is bounded, Rk is also bounded and,
hence, its domain is L2.

Using Exercise 5.11 and (7.49), we obtain, for all f, g ∈ L2,

(
Rkf, g

)
=

∫ ∞

0

tk−1

Γ (k)
e−t (Ptf, g) dt

=

∫ ∞

0

tk−1

Γ (k)
e−t
(∫

M

Ptf (x) g (x) dµ (x)

)

dt

=

∫

M

(∫ ∞

0

tk−1

Γ (k)
e−tPtf (x) dt

)

g (x) dµ (x) ,

whence, it follows

Rkf (x) =

∫ ∞

0

tk−1

Γ (k)
e−tPtf (x) dt, (B.150)

for almost all x ∈M .
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7.44. (a) Using the Cauchy-Schwarz inequality, (7.51), and (7.96), we
obtain, for all x ∈M and t > 0,

|Ptf (x)| =

∣
∣
∣
∣

∫

M

pt (x, y) f (y) dµ (y)

∣
∣
∣
∣

≤

(∫

M

p2
t (x, y) dµ (y)

)1/2

‖f‖2

= p2t (x, x)1/2 ‖f‖2.

By hypothesis, pt (x, x) ≤ ct−γ for t < 1. By Exercise 7.22, p2t (x, x) is a
non-increasing function of t and, hence, pt (x, x) ≤ c for t ≥ 1. Combining
these estimates together, we obtain that, for all x ∈M and t > 0,

|Ptf (x)| ≤ c
(

1 + t−γ/2
)
‖f‖2. (B.151)

Therefore, (B.150) yields, for almost all x ∈M ,

∣
∣
∣Rkf (x)

∣
∣
∣ ≤ c‖f‖2

∫ ∞

0

(
1 + t−γ/2

) tk−1

Γ (k)
e−tdt.

We are left to observe that if k > γ/2 then this integral converges, which
implies ∣

∣
∣Rkf (x)

∣
∣
∣ ≤ C‖f‖2, (B.152)

for almost all x.
Let us prove that the function Rkf (x) has a continuous version. In fact,

the latter is given by the right hand side of (B.150). Denoting it by R̃kf ,
we have, for all x, y ∈M ,

R̃kf (y)− R̃kf (x) =

∫ ∞

0

tk−1

Γ (k)
e−t (Ptf (y)− Ptf (x)) dt.

Since the function x 7→ Ptf (x) is continuous, Ptf (y)−Ptf (x)→ 0 as y → x.
By (B.151), the function under integration in the previous line is uniformly
bounded by an integrable function, and the dominated convergence theorem
implies that the integral converges to 0 as y → x, which finishes the proof.

(b) Let {Eλ} be the spectral resolution of L. Then

domLk =

{

u ∈ L2 :

∫ ∞

0
λ2kd‖Eλu‖

2
2

}

and

dom (L+ id)k =

{

u ∈ L2 :

∫ ∞

0
(1 + λ)2k d‖Eλu‖

2
2

}

,

whence it follows that these two domains are identical. Applying part (b)

to f = (L+ id)k u, we obtain that u = Rkf and, hence, u is continuous and

sup
M
|u| ≤ C‖ (L+ id)k u‖2. (B.153)
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Finally, the inequality

(1 + λ)2k ≤ 22k
(

1 + λ2k
)

implies that

‖ (L+ id)k u‖2 ≤ 2k
(
‖u‖2 + ‖Lku‖2

)
,

which leads to

sup |u| ≤ C
(
‖u‖2 + ‖Lku‖2

)
.

7.45. Fix f ∈ L2, t > 0 and apply (7.98) to the function u = Ptf . Using
also

‖u‖2 = ‖Ptf‖2 ≤ ‖f‖2
and

‖Lku‖22 =

∫ ∞

0
λ2ke−λtd‖Eλf‖

2
2 ≤ sup

λ∈(0,+∞)

(
λ2ke−λt

)
‖f‖22 =

c2k
t2k
‖f‖22,

where ck = (2k/e)k, we obtain

sup
M
|Ptf | ≤ C

(
‖u‖2 + ‖Lku‖2

)
≤ C

(
1 +

ck
tk

)
‖f‖2.

Arguing further as in the proof of Theorem 7.7, we obtain

sup
x∈M
‖pt,x‖2 ≤ C

(
1 +

ck
tk

)

whence

pt (x, x) = ‖pt/2,x‖
2
2 ≤ C

(
1 +

ck
tk

)2
,

which finishes the proof.

7.46. (a) The identity W 1 (Rn) = W 1
0 (Rn) (cf. Exercise 2.30) im-

plies that domL = W 2 (Rn). Let us show that u ∈ W k (Rn) implies

u ∈ domLk/2. If k is even then this easily follows by induction because

u ∈ W k implies Lu = −∆u ∈ W k−2. Also, expanding (L+ id)k/2 u by

the binomial formula, we obtain that (L+ id)k/2 u is a combination of the
(weak) derivatives of u up to the order k, which yields

‖ (L+ id)k/2 u‖L2 ≤ C‖u‖Wk .

If k is odd, then write k = l + 1 and notice that u ∈ W k implies Ll/2u ∈
W 1 = W 1

0 . Since by Exercise 4.25 W 1
0 = domL1/2, we obtain that Ll/2u ∈

domL1/2, whence it follows that u ∈ domLk/2. Since for any f ∈W 1
0 ,

‖ (L+ id)1/2 f‖L2 = ‖f‖W 1 ,

(see Exercise 4.25), we also obtain

‖ (L+ id)k/2 u‖L2 = ‖ (L+ id)1/2 (L+ id)l/2 u‖L2

= ‖ (L+ id)l/2 u‖W 1 ≤ C‖u‖W l+1 = C‖u‖Wk .
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(b) Since the heat kernel in Rn is given by

pt (x, x) = (4πt)−n/2

and, hence, satisfies the hypothesis of Exercise 7.44 with γ = n/2, we obtain

that if k > n/2 then every function u ∈ domLk/2 is continuous and satisfies
the estimate

sup
Rn
|u| ≤ C‖ (L+ id)k/2 u‖L2

(cf. (B.153)). By part (a) we conclude that every function u ∈ W k with
k > n/2 is continuous and

sup
Rn
|u| ≤ C‖u‖Wk .

(c) If α is a multiindex such that |α| ≤ m then u ∈ W k (Rn) implies
∂αu ∈W k−m and, by part (b), ∂αu is continuous and

sup
Rn
|∂αu| ≤ C‖∂αu‖Wk−m ≤ C‖u‖Wk .

Therefore, u ∈ Cm (Rn) and

‖u‖Cm ≤ C‖u‖Wk .

(d) For any ψ ∈ C∞0 (Ω), we have ψu ∈W k (Rn) and, by part (c) of the
proof, ψu ∈ Cm (Rn) and

‖ψu‖Cm(Rn) ≤ C‖ψu‖Wk(Rn).

If Ω′ and Ω′′ are two open sets such that Ω′ b Ω′′ b Ω then ψ can be chosen
so that ψ ≡ 1 on Ω′ and suppψ ⊂ Ω′′. Since ψu = u on Ω′, it follows from
the above that u ∈ Cm (Ω′) and

‖u‖Cm(Ω′) ≤ C
′‖u‖Wk(Ω′′),

which finishes the proof.

7.47. (a) We need to prove that any bounded sequence {fk} in W 1
0 has

a convergent subsequence in L2. Since {fk} is bounded in L2, there exists
a subsequence, denoted again by {fk}, which converges weakly in L2 to a
function f ∈ L2. Let us show that, in fact, {fk} converges to f in L2-norm.

For any t > 0, we have by the triangle inequality

‖fk − f‖2 ≤ ‖fk − Ptfk‖2 + ‖Ptfk − Ptf‖2 + ‖Ptf − f‖2. (B.154)

Since fk ∈W 1
0 , we have, by the inequality (4.69) of Exercise 4.40,

‖fk − Ptfk‖2 ≤
√
t ‖∇fk‖2.

By the hypothesis, the norms ‖∇fk‖2 are uniformly bounded so that we can
write

‖fk − Ptfk‖2 ≤ C
√
t, (B.155)

for all t > 0 and k. Since {fk} converges to f weakly in L2, we obtain that,
for almost all x ∈M ,

Ptfk(x) = (pt,x, fk)→ (pt,x, f) = Ptf(x) as k →∞.
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On the other hand, we have by the inequality (7.75) of Exercise 7.36

‖Ptfk‖∞ ≤

(

sup
x∈M

pt (x, x)

)1/2

‖fk‖2.

Applying the hypothesis (7.99) and using the fact that all the norms ‖fk‖2
are uniformly bounded, we obtain, that

‖Ptfk‖∞ ≤ S (t) ,

where S (t) is a finite function of t. Hence, for any fixed t > 0, the sequence
{Ptfk} is bounded and converges to Ptf almost everywhere. Since µ (M) <
∞, the dominated convergence theorem yields

‖Ptfk − Ptf‖2 → 0 as k →∞. (B.156)

Hence, we obtain from (B.154), (B.155), and (B.156) that, for any t > 0,

lim sup
k→∞

‖fk − f‖2 ≤ C
√
t+ ‖Ptf − f‖2.

Since by Theorem 4.9 ‖Ptf − f‖2 → 0 as t → 0, we finish the proof by
letting t→ 0.

(b) Let us apply part (a) to the weighted manifold (Ω, µ). Since Ω is
relatively compact subset of M , we have µ (Ω) < ∞. We are left to verify
the condition

sup
x∈Ω

pΩ
t (x, x) <∞,

where pΩ
t is the heat kernel of Ω. It follows from Theorem 5.23 that pΩ

t ≤ pt.
By Theorem 7.7, there exist a finite function FΩ (t) such that

sup
x∈Ω
‖pt,x‖2 ≤ FΩ (t) .

Recalling that pt (x, x) = ‖pt/2,x‖
2
2, we compete the proof.

7.48. It suffices to prove that, for any t ∈ I and any sequence of reals
εk → 0,

‖h (t+ εk)− h (t)‖ → 0 as k →∞. (B.157)

Since the sequence of vectors
{
h (t+ εk)− h (t)

εk

}∞

k=1

is weakly convergent, it is weakly bounded and, hence, strongly bounded,
by the principle of uniform boundedness. Therefore, there is a constant C
such that ∥

∥
∥
∥
h (t+ εk)− h (t)

εk

∥
∥
∥
∥ ≤ C

for all k, whence (B.157) follows.
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Solutions to Chapter 8

8.1. Observe that the function v (t, x) = eαth (x) solves the heat equation
because by hypothesis ∆µh = αh and

∂v

∂t
= αv = ∆µv.

Hence, v (t, x) is a non-negative solution to the heat equation with the initial
function h. By Theorem 8.1, we conclude

v (t, x) ≥ Pth (x) ,

which was to be proved.

8.2. By Theorem 8.4, we have 0 ≤ Rαf ≤ u and Rαf solves (8.11).
Setting v = u − Rαf , we obtain that v ∈ L2

loc (M), v solves the equation
−∆µv + αv = 0, and v (x) → 0 as x → ∞. By Corollary 7.3, v ∈ C∞ (M),
and by Exercise 5.20 we conclude that v = 0.

Note that if f ∈ L2 (M) and u ∈ W 1 (M) then one can use Corollary
5.15 instead of Theorem 8.4.

8.3. By Corollary 7.3, u ∈ C∞ (M). Consider the open set

Ω = {x ∈M : u (x) > 0}

and notice that

u (x)→ 0 as x→∞ in Ω. (B.158)

Indeed, x→∞ in Ω means a sequence {xk} such that either xk →∞ in M
or xk → ∂Ω.

Function u+ satisfies in Ω the equation ∆µu+ + λu+ = 0. Choose some
α > |λ| and rewrite this equation in the form

−∆µu+ + αu+ = f

where f = (α+ λ)u+. Using (B.158), f ∈ L2 (Ω) and f ≥ 0, we obtain by
Exercise 8.2 that u+ = RΩ

αf . It follows that u+ ∈ dom
(
LΩ
)

and, hence,

u+ ∈W 1
0 (Ω) . Since u+ ≡ 0 outside Ω, it follows that u+ ∈W 1

0 (M) . In the
same way, u− ∈W 1

0 (M), which implies u ∈W 1
0 (M).

8.4. Left to the reader

8.5. Let {Ωk} be a compact exhaustion sequence in M . By Corollary
8.16, we have

inf
Ωk
u = inf

∂Ωk
u.

Let xk be a point on ∂Ωk such that

inf
Ωk
u ≥ u (xk)−

1

k
.

Since xk →∞ as k →∞, we obtain by hypothesis that

lim sup
k→∞

u (xk) ≥ 0.
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Passing to a subsequence, we can assume that in fact

lim inf
k→∞

u (xk) ≥ 0,

whence

inf
M
u = lim

k→∞
inf
Ωk
u ≥ lim inf

k→∞

(

u (xk)−
1

k

)

≥ 0.

Hence, u ≥ 0 in M , which was to be proved.

8.6. Let {Ωk} be a compact exhaustion sequence in M , and let {τk} and
{Tk} be two sequences of reals such that

0 < τk < Tk < T

and τk → 0, Tk → T as k → ∞. Applying the minimum principle of
Theorem 8.10 to function u in the cylinder Ck = (τk, Tk)× Ωk, we obtain

inf
Ck
u = inf

∂pCk
u.

Choose a point (tk, xk) ∈ ∂pCk such that

inf
Ck
u ≥ u (tk, xk)−

1

k
.

Note that (tk, xk) ∈ ∂pCk means that either tk = τk or xk ∈ ∂Ωk. We
claim that the sequence {(tk, xk)} contains a subsequence that escapes from
N = (0, T )×M . First of all, pass to a subsequence such that tk → t ∈ [0, T ]
and xk →∞ or xk → x ∈M (the former case occurs when {xk} leaves any
compact in M while the latter case occurs when infinitely many terms xk
stay in the same compact subset of M). If xk → x ∈ M then xk cannot be
on the boundary ∂Ωk for large k. Hence, in this case we must have tk = τk,
which implies tk → 0. Hence, by definition, {(tk, xk)} escapes from N .

By hypothesis, we obtain

lim sup
k→∞

inf
Ck
u ≥ lim sup

k→∞

(

u (tk, xk)−
1

k

)

≥ 0.

Passing to a subsequence of Ck, we obtain

lim
k→∞

inf
Ck
u ≥ 0.

Since the union of all cylinders Ck is N , it follows that infN u ≥ 0, which
was to be proved.

Second solution. The conclusion follows also from Corollary 5.20 if we
show that

(i) u− (t, x)⇒ 0 as x→∞ in M , where the convergence is uniform in
t ∈ (0, T );

(ii) u− (t, x)→ 0 as t→ 0 locally uniformly in x.

The hypothesis (8.24) is equivalent to

lim
k→∞

u− (tk, xk) = 0, (B.159)

for any sequence {(tk, xk)} that escapes from N .
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If (i) fails then there is ε > 0 such that, for any compact exhaustion
sequence {Ωl} in M ,

sup
t∈(0,T )

sup
M\Ωl

u− (t, x) ≥ ε.

Choose tl ∈ (0, T ) and xl ∈M \ Ωl so that

u− (tl, xl) ≥ ε/2.

Passing to a subsequence, we can assume that the sequence {tl} converges
in [0, T ]. Since xl → ∞ in M , we see that (tl, xl) escapes from N , which
contradicts (B.159).

In the same way one proves that u− (t, ·) ⇒ 0 as t → 0 where the
convergence is locally uniform in x ∈M , which implies (ii).

8.7. If u is a bounded solution to the equation −∆µu + αu = 0 on a
compact manifold M then u ∈ C∞0 (M) which implies by the Green formula
that

(∇u,∇u)L2 + α (u, u)L2 = 0.

Since α > 0, this is possible only if u ≡ 0. By Theorem 8.18, we conclude
that M is stochastically complete.

8.8. By Theorem 1.7, the bounded Cauchy problem in Rn has a unique
solution, which implies that Rn is stochastically complete by Theorem 8.18.

8.9. For all s ∈ (0, t), we have by the semigroup identity and Ps1 ≤ 1
that

Pt1 = Pt−sPs1 ≤ Pt−s1 ≤ 1. (B.160)

If Pt1(x) = 1 holds for some x ∈ M,we obtain that, for this x, all the
inequalities in (B.160) become equalities. In particular, we have

Pt−s(Ps1)(x) = 1,

which is only possible if

Ps1 ≡ 1. (B.161)

We are left to extend (B.161) to s ≥ t. Assume first s < 2t. Then s/2 < t
and we obtain

Ps1 = Ps/2
(
Ps/21

)
= Ps/21 = 1,

that is, (B.161) holds also for s ∈ (0, 2t). By induction, we prove (B.161)
for s ∈ (0, 2kt), whence it follows for all s > 0.

8.10. If M is stochastically complete then

Rα1 =

∫ ∞

0
e−αt (Pt1) dt =

∫ ∞

0
e−αtdt = α−1.

Conversely, if Pt1 (x) < 1 for some x and t then the above identity shows
that Rα1 (x) < α−1.

8.11. (a) The function u (x) = |x|2 satisfies in Rn the equation ∆u = 2n,
which implies that ∆u ≤ u for |x| ≥ C where C is large enough. Hence, u is
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1-superharmonic, and since u (x) →∞ as x →∞ then Rn is stochastically
complete by Theorem 8.20.

(b) Let us construct 1-superharmonic function in Rn \ {0} outside the
compact set K = {1 ≤ |x| ≤ C} . Indeed, in domain {|x| > C} the function
from part (a) will do. In domain {0 < |x| < 1} set

u (x) =

{
|x|2−n , n > 2,
log 1

|x| , n = 2,

so that u (x) harmonic and positive in this domain (cf. Exercise 3.24),
which implies that u is 1-superharmonic. Obviously, u (x) → ∞ as x → ∞
(in this context, “x→∞” means leaving any compact, which is equivalent
to |x| → ∞ or |x| → 0 – cf. Exercise 5.19). Hence, Rn \ {0} is stochastically
complete by Theorem 8.20.

In R1 \{0}, function e−|x| is a bounded solution to the equation ∆u = u,
which implies by Theorem 8.18 that this manifold is stochastically incom-
plete.

(c) Without loss of generality, we can assume that 0 /∈ Ω, which implies
that, for some ε > 0, a ball Bε is disjoint with Ω. Consider in Rn \ {0}
the function u (x) = e−α|x| where α > 0 is to be chosen. Writing u = e−αr

where r = |x| and computing ∆u in the polar coordinates, we obtain

∆u = u′′ +
n− 1

r
u′ =

(

α2 −
n− 1

r
α

)

u.

In Ω we have r ≥ ε which implies

∆u ≥

(

α2 −
n− 1

ε
α

)

u = α′u,

where α′ > 0 provided α is large enough. Hence, for such α, u is a bounded
positive α′-subharmonic function in Ω, which implies that Ω is stochastically
incomplete by Theorem 8.23.

8.12. Let µ be the Lebesgue measure in Ω and define measure µ̃ by
dµ̃ = h2dµ. Then the Laplace operator ∆µ̃ satisfies the identity

∆µ̃ =
1

h
◦∆ ◦ h

and the corresponding heat semigroup P̃Ω
t satisfies a similar identity

P̃Ω
t =

1

h
◦ PΩ

t ◦ h

(see Theorem 9.15). Therefore,

PΩ
t h = hP̃Ω

t 1,

and the required identity PΩ
t h = h is equivalent to P̃Ω

t 1 = 1, that is, to the
stochastic completeness of (Ω, µ̃).

To prove the latter, let us use Theorem 8.20 which says that it suffices
to construct an α-superharmonic function v (x) in the exterior of a compact
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K in (Ω, µ̃), such that v (x)→ +∞ as x→∞ in Ω. Take K to be any closed
ball, say B (0, ε) assuming that the origin 0 is contained in Ω and ε > 0 is
small enough, and consider the function u (x) = u (r) = ecr where r = |x|
and c > 0 is a constant to be chosen. Then we have

∆u− αu = u′′ +
n− 1

r
u′ − αu =

(

c2 +
n− 1

r
c− α

)

ecr.

Given c > 0, choose α so big that

c2 +
n− 1

ε
c− α < 0,

which yields that ∆u−αu < 0 in Ω\K. Therefore, setting v = u
h , we obtain

∆µ̃v − αv =
1

h
(∆ (vh)− α (vh)) =

1

h
(∆u− αu) < 0

so that v is α-superharmonic outside K in (Ω, µ̃).
We are left to ensure that v (x)→ +∞ as x→∞ in Ω. The latter means

that, for any sequence {xk} ⊂ Ω leaving any compact in Ω, v (xk) → +∞
or, equivalently, for any such sequence {xk} leaving any compact in Ω, there
is a subsequence {xki} such that v (xki)→ +∞ (see Exercise 5.18). If {xk}
leaves any compact in Ω then it has a subsequence {xki} that converges to
either a point on ∂Ω or to∞ in Rn. In the former case, we have h (xki)→ 0
whence

v (xki) =
u (xki)

h (xki)
≥

1

h (xki)
→ +∞. (B.162)

In the latter case, we have |xki | → ∞. Using the hypothesis h (x) = eO(|x|),

that is, h (x) ≤ eC|x| as |x| → ∞, we obtain

v (x) =
u (x)

h (x)
≥
ec|x|

eC|x|
→ +∞ as |x| → ∞,

provided c is chosen to be larger than C.

8.13. (a) Set u (t, ·) = Ptf so that the family u (t, x) increases as t ↓ 0
and converges to v (x) pointwise. Fix s > 0. By the monotone convergence
theorem we obtain that

lim
t→∞

Psu (t, ·) = Psv,

where the convergence is pointwise. Since

Psu (t, ·) = PsPtf = u (t+ s, ·)

and, hence,

lim
t→∞

Psu (t, ·) = v (x) ,

we obtain that Psv = v. By Theorem 7.15, the function v (x) must satisfy
the heat equation in variables s, x which yields ∆µv = 0.

(b) If h ≤ f then Pth ≤ Ptf for any t > 0. Both functions Pth (x) and
h (x) as functions of t and x are bounded solutions to the Cauchy problem
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with the initial function h. Hence, by Theorem 8.18, they coincide, that is,
Pth ≡ h. This implies that h ≤ Ptf for any t > 0 whence h ≤ v.

Note that without the hypothesis of the stochastic completeness this
statement is false. Indeed, consider f (x) ≡ 1. Then f is harmonic so
that the largest harmonic minorant of f is f . On the other hand, if M is
stochastically incomplete then Ptf (x) < 1 for some x and t, which implies
v (x) < f (x).

8.14. Set a = sup v and note that a ≤ 1. Using Exercise 8.13, we obtain

v = Ptv ≤ aPt1.

Letting t→∞ and using that Pt1→ v, we obtain v ≤ av. If a < 1 then this
is only possible if v ≡ 0. Otherwise, we have a = 1 and, hence, sup v = 1.

To prove the second claim, set b = inf v and assume that b > 0. By
Exercise 8.13, we have

Ptv = v

for all t > 0. On the other hand, v− b is a non-negative harmonic function,
which implies by Exercise 7.29 that

Pt (v − b) ≤ v − b.

Comparing the above two lines, we obtain that Ptb ≥ b, which is only
possible if Pt1 ≡ 1 and, hence, v ≡ 1.

8.15. Let B be the closed unit ball centered at the origin in Rn and
Ω = Bc. By Exercise 8.13(a), the function v (x) = limt→∞ P

Ω
t 1 (x) is a

harmonic function on Ω. Clearly, 0 ≤ v ≤ 1 and v 6≡ 1, the latter because Ω
is not stochastically complete by Exercise 8.11.

By the symmetry argument, v (x) must depend only on the polar radius
r. By Exercise 3.24, we obtain

v (x) =






a |x|2−n + b, n ≥ 3,
a ln 1

|x| + b, n = 2,

ax+ b, n = 1,

(B.163)

where a, b are real constants. In the case n = 1, 2, the boundedness of v
implies a = 0, whence v = const. Since v 6= 1, it follows from Exercise
8.13(c) that v ≡ 0.

In the case n ≥ 3, consider the function

h = 1− |x|2−n ,

which is a harmonic function in Ω that vanishes on ∂B and h (x) → 1 as
|x| → ∞. By Exercise 8.12 we have PΩ

t h = h. Hence,

PΩ
t 1 ≥ PΩ

t h = h.

Passing to the limit as t → ∞, we obtain v ≥ h. Since also v ≤ 1, we see
that v (x)→ 1 as |x| → ∞, whence it follows that v (x) must have the form

v (x) = a |x|2−n + 1.
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Since v 6= const, it follows from Exercise 8.13(c) that inf v = 0.On the other

hand, we have inf v = a+ 1, whence a = −1 and v (x) = 1− |x|2−n.

8.16. Use the same argument as in the proof of Theorem 8.24.

Solutions to Chapter 9

9.1. We have dµ = h2 (x) dx where the function h (x) = exp (c · x) satis-
fies the equation

∆h− |c|2 h = 0.

By Theorem 9.15, the heat kernel of (Rn,gRn , µ) is obtained from the Gauss-

Weierstrass heat kernel by (9.24) with α = − |c|2, whence the claim follows.

9.2. Let pR
n

t (x, y) be the heat kernel in Rn so that the formula (9.41)
can be rewritten in the form

pt (x, y) = pR
n

t (x, y)− pR
n

t (x, y) .

Obviously, the function u (t, x) = pt (x, y) solves the heat equation in R+×Rn

and

u (t, x)
D′
−→ δy − δy as t→ 0.

Hence, if y ∈ M , then δy = 0 in M , whence it follows that u (t, x) is a
fundamental solution of M at y. Since |x− y| > |x− y| for any x ∈ M , it
follows that u (t, x) > 0.

Let us show that u (t, x)⇒ 0 as x→∞ on M (where the convergence is
uniform in t ∈ (0,+∞)). Indeed, if {xk} is a sequence leaving any compact
in M then, passing to a subsequence, we can assume that either |xk| → ∞
or xk → x ∈ ∂M (cf. Exercise 5.19). In the first case, both pR

n

t (xk, y)
and pR

n

t (xk, y) go to 0 as k → ∞ uniformly in t (cf. Exercise 1.5), so that
u (t, xk) ⇒ 0. In the second case, |x− y| = |x− y| whence it follows that
u (t, x) = 0. By the uniform continuity of the heat kernel (cf. Exercise 1.5),
we obtain u (t, xk)⇒ 0. Hence, u (t, xk)⇒ 0 as x→∞ in M . We conclude
by Theorem 9.7 that u (t, x) is the heat kernel at y, which was to be proved.

9.3. The formula (9.42) makes sense for all x, y ∈ Rn. If x ∈ ∂M then
xi = xi+1 for some index i. It follows that the two rows of the determinant
(9.42) are the same, whence pt (x, y) = 0.

In order to investigate further properties of pt (x, y), let us use the full
expansion of the determinant, which gives

pt (x, y) =
∑

σ∈Sn

(−1)|σ|
n∏

i=1

pR
1

t

(
xi, yσ(i)

)
=
∑

σ∈Sn

(−1)|σ| pR
n

t (x, yσ) ,

(B.164)
where Sn is the group of permutations of {1, . . . , n}, pR

n

t is the heat kernel
in Rn, and

yσ =
(
yσ(1), . . . , yσ(n)

)
.
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It follows that pt (x, y) solves the heat equation in R+ × Rn and

pt (x, y)→
∑

σ∈Sn

(−1)σ δyσ as t→ 0.

If y ∈ M then yσ /∈ M for all σ 6= id, which implies δyδ = 0 in M for
all σ 6= id and, hence, pt (x, y) → δy as t → 0. Therefore, pt (x, y) is a
fundamental solution of M at y.

By Theorem 9.7 and Remark 9.8, in order to show that pt (x, y) is the
heat kernel, it suffices to verify, for any fixed y ∈ M , the following two
conditions:

(i) For any sequence {(tk, xk)} such that tk → 0 and xk → x ∈M ,

lim sup
k→∞

ptk (xk, y) ≥ 0. (B.165)

(ii) For any sequence {xk}, such that xk → ∂M or |xk| → ∞,

pt (xk, y)⇒ 0 as k →∞, (B.166)

whence the convergence is uniform in t ∈ (0,+∞).

Proof of (i). Choose ε > 0 so that Bε (x) ⊂ M ; we can assume that
xk ∈ Bε/2 (x) for all k. If σ 6= id then yσ /∈ M whence it follows that
|xk − yσ| ≥ ε/2 and

pR
n

tk
(xk, y

σ) ≤
1

(4πtk)
n/2

exp

(

−
ε2

4tk

)

→ 0 as k →∞. (B.167)

In the case σ = id we have (−1)|σ| = 1 and the corresponding term in
(B.164) is positive. Hence, (B.165) follows from (B.164) and (B.167).

Proof of (ii). Assume first that xk → x ∈ ∂M . There is ε > 0 such
that |x− yσ| > ε for all permutations σ. We can assume that all xk are
in the ball Bε/2 (x). The heat kernel pR

n

t (z, yσ) is continuous in z outside
Bε/2 (yσ) uniformly in t (cf. Exercise 1.5), which implies that pt (z, y) is
continuous in z ∈ Bε/2 (x) uniformly in t ∈ (0,+∞). As it was observed
above, pt (x, y) = 0 whence (B.166) follows.

Let now |xk| → ∞. Then all terms in (B.164) go to 0 uniformly in t (cf.
Exercise 1.5), whence we obtain again (B.166).

9.4. (a) Similarly to the proof of Theorem 9.15, we have, using
∆µh
h = Φ,

1

h
∆µ (hf) =

1

h
(h∆µf + 2〈∇h,∇f〉g + f∆µh)

= ∆µf + 2〈
∇h
h
,∇f〉g + f

∆µh

h
= ∆µ̃f + Φf,

whence (9.44) follows by replacing f by h−1f .
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(b) Multiplying (9.44) by f and integrating, we obtain
∫

M

(
|∇f |2 + Φf2

)
dµ = −

∫

M

hf∆µ̃

(
h−1f

)
dµ

= −
∫

M

h−1f∆µ̃

(
h−1f

)
dµ̃ =

∫

M

∣
∣∇
(
h−1f

)∣∣2 dµ̃ ≥ 0,

where we have applies the Green formula both on (M,g, µ) and (M,g, µ̃).

9.5. Setting h (x) = |x|β for some real β, we obtain ∆h = Φh where

Φ =
β2 + (n− 2)β

|x|2
.

Choosing β = 1− n/2, we obtain

Φ = −
(n− 2)2

4 |x|2
.

Substituting this function into (9.45), we obtain (9.46).

9.6. By Theorem 9.20, both u and v satisfy equation (9.48). Hence, the
difference w = u − v satisfies in R ×M the heat equation ∂w

∂t − ∆µw = 0
and, hence, w is C∞ function on R×M by Theorem 7.4.

9.7. As in the proof of Corollary 9.21, it suffices to show that the following
equation

∂ut
∂t

= ∆xut = ∆yut

holds in R×Ω×Ω. It will follows if we prove that, for any ϕ ∈ D (R× Ω× Ω)
and any y ∈ Ω,

∫

R×Ω
(∂tϕ+ ∆xϕ)ut (x, y) dµ(x)dt = 0. (B.168)

Since both pt (·, y) and pΩ
t (·, y) are regular fundamental solutions at y, The-

orem 9.20 yields
∫

R×Ω
(∂tϕ+ ∆xϕ) pt (x, y) dµ(x)dt = −ϕ (0, y, y)

and the same identity for pΩ
t , which implies (B.168).

9.8. (a) The condition u (t, ·)
L1
loc−→ f implies that, for any compact set

K ⊂M , ∫

K

|u (t, ·)| dµ→
∫

K

|f | dµ as t→ 0, (B.169)

whence it follows that, for any T > 0,
∫ T

0

∫

K

|u (t, x)| dµ (x) dt <∞.

Therefore, the function u, extended by 0 to t ≤ 0, belongs to L1
loc (R×M)

and, hence, can be considered as a distribution on R×M .
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The equation (9.56) is equivalent to the identity

−
∫

R×M
(∂tϕ+ ∆µϕ)u dµdt =

∫

M

ϕ (0, ·) f dµ, (B.170)

which should be satisfied for any ϕ ∈ D (R×M). Since u ≡ 0 for t ≤ 0, the
integral in the left hand side of (B.170) is equal to

∫ ∞

0

∫

M

(∂tϕ+ ∆µϕ)u dµdt = lim
ε→0+

∫ ∞

ε

∫

M

(∂tϕ+ ∆µϕ)u dµdt.

As in the proof of Theorem 9.20, we obtain, for any ε > 0,
∫ ∞

ε

∫

M

(∂tϕ+ ∆µϕ)u dµdt = −
∫

M

ϕ (ε, ·)u (ε, ·) dµ.

We are left to verify that
∫

M

ϕ (ε, ·)u (ε, ·) dµ→
∫

M

ϕ (0, ·) f dµ as ε→ 0. (B.171)

By hypothesis, we have u (ε, ·)
L1
loc−→ f as ε→ 0, which implies

∫

M

ϕ (0, ·)u (ε, ·) dµ→
∫

M

ϕ (0, ·) f dµ as ε→ 0. (B.172)

Let K ⊂ M be the projection onto M of suppϕ in R × M . Then K is
compact, and we have

∣
∣
∣
∣

∫

M

ϕ (ε, ·)u (ε, ·) dµ−
∫

M

ϕ (0, ·)u (ε, ·) dµ

∣
∣
∣
∣

≤ sup
x∈K
|ϕ (ε, x)− ϕ (0, x)|

∫

K

|u (ε, ·)| dµ,

which tends to 0 as ε → 0 by the continuity of ϕ and (B.169). Together
with (B.172), this proves (B.171).

(b) If f = 0 in M and also F = 0 in R ×M and we obtain from (9.56)
∂u
∂t = ∆µu in R×M . Hence, u ∈ C∞ (R×M) by Theorem 7.4.

(c) It suffices to prove that

u (t, ·)
C∞(U)
−→ f as t→ 0 (B.173)

for any relatively compact open set U ⊂M , where t > 0. Let ϕ be a cutoff
function of U in M . Since ϕf ∈ C∞0 (M), we obtain by Exercise 7.19 that

Pt (ϕf)
C∞(M)
−→ ϕf as t→ 0,

and, in particular,

Pt (ϕf)
C∞(U)
−→ f as t→ 0. (B.174)

On the other hand, the function

v (t, ·) := u (t, ·)− Pt (ϕf)
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solves the heat equation in R+ ×M with the initial condition

v (t, ·)
L1
loc−→ f − ϕf as t→ 0.

Since f − ϕf = 0 in U , we obtain by part (b) that

v (t, ·)
C∞(U)
−→ 0 as t→ 0. (B.175)

Adding up (B.174) and (B.175), we obtain (B.173).

9.9. Consider the function

u (t, ·) = Pt1Ωc =

∫

Ωc
pt (·, y) dµ (y) ,

which solves the heat equation in R+ × Ω and satisfies the initial condition

u (t, ·)
L1
loc(Ω)
−→ 0

(see Exercises 7.33 and (7.34). Extending u (t, ·) to t ≤ 0 by setting u (t, ·) =
0 and applying Exercise 9.8 in manifold Ω, we obtain that u ∈ C∞ (R× Ω).
By the Taylor formula, we have for any positive integer N , t > 0 and x ∈ Ω,

u (t, x) =
N−1∑

k=0

u(k) (0, x)
tk

k!
+ u(N) (ξ, x)

ξN

N !
,

where u(k) = ∂ku
∂tk

and ξ ∈ (0, t). Clearly, u(k) (0, x) = 0. Since u(N) is
uniformly bounded in [0, 1]×K, we obtain, for some constant C, that

sup
x∈K

u (t, x) ≤ CtN for all t ∈ [0, 1] ,

whence the claim follows.
Another solution can be obtained using Exercise 15.1.

9.10. The identity (9.58) implies that rα (x, y) is a non-negative measur-
able function in x, y. By Fubini’s theorem and (7.50), we obtain

∫

M

∫ ∞

0
e−αtpt (x, y) dtdµ (x) =

∫ ∞

0

(∫

M

pt (x, y) dµ (x)

)

e−αtdt ≤
∫ ∞

0
e−αtdt = α−1,

which implies that the function x 7→ rα (x, y) belongs to L1 (M) and
∫

M

rα (x, y) dµ (x) ≤ α−1.

Since rα (x, y) is symmetric in x, y, the same applies to the function y 7→
rα (x, y). To prove (9.59), fix y ∈M and show that, for any ϕ ∈ D (M),

(−∆µrα + αrα, ϕ) = ϕ (y) . (B.176)
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Indeed, we have

(−∆µrα + αrα, ϕ) = (rα,−∆µϕ+ αϕ) =

∫

M

rα (·, y) (−∆µϕ+ αϕ) dµ

=

∫

M

(∫ ∞

0
e−αtpt (·, y) dt

)

(−∆µϕ+ αϕ) dµ

=

∫ ∞

0

∫

M

e−αtpt (·, y) (−∆µϕ+ αϕ) dµdt

=

∫ ∞

0

(∫

M

(−∆µ + α id) pt (·, y)ϕdµ

)

e−αtdt

=

∫ ∞

0

(∫

M

(

−
∂

∂t
+ α id

)

pt (·, y)ϕdµ

)

e−αtdt

= −
∫ ∞

0

∫

M

∂

∂t

(
e−αtpt (·, y)

)
ϕdµdt

= −
∫ ∞

0

(
∂

∂t

∫

M

e−αtpt (·, y)ϕdµ

)

dt

= −

[∫

M

e−αtpt (·, y)ϕdµ

]∞

0

= −
[
e−αtPtϕ (y)

]∞
0

(here the derivative ∂/∂t and the integral can be interchanged because the
function pt (·, y)ϕ under the integral is smooth and compactly supported).
Since Ptϕ is a bounded function and Ptϕ (y) → ϕ (y) as t → 0, (B.176)
follows.

Solutions to Chapter 10

10.1. By hypothesis, for any point x ∈ S there is a ball B (x, rx) of a
positive radius rx such that the only point of S inside this ball is x. We
claim that all balls {B (x, rx/2)}x∈S are disjoint. Indeed, if x, y are two
distinct points from S then y /∈ B (x, rx) and x /∈ B (y, ry) whence

d (x, y) ≥ rx and d (x, y) ≥ ry.

Hence,

d (x, y) ≥
rx

2
+
ry

2
,

which implies that the balls B (x, rx/2) and B (y, ry/2) are disjoint.
Since X is a separable, there is a countable set Y ⊂ X which is dense in

X. Hence, each ball B (x, rx/2) contains a point from Y , and different balls
contain different points. This obviously implies that the family of all balls
{B (x, rx/2)}x∈S is at most countable, whence the claim follows.

10.2. Let {vk} be an orthonormal basis in the Hilbert space H such that
each vk is either contained in ranEU or is orthogonal to ranEU . Since EU
is a projector, in the first case we have EUvk = vk whereas in the second
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case EUvk = 0. Using Lemma 10.4 and the definition (10.3) of m (U), we
obtain

traceEU =
∑

k

(EUvk, vk) =
∑

vk∈ranEU

1 = dim ranEU = m (U) .

10.3. Left to the reader

10.4. Left to the reader

10.5. Using (10.31), we obtain

(Ptf, f) =
(
Pt/2f, Pt/2f

)
= ‖Pt/2f‖

2 ≤ exp (−λmint) ‖f‖
2,

which was to be proved.

10.6. (a) Since

λmin (Ω) = inf
f∈C∞0 (Ω)\{0}

R (f)

and C∞0 (Ω1) ⊂ C∞0 (Ω2), we obtain λmin (Ω1) ≥ λmin (Ω2) .
(b) It is obvious that f ∈ C∞0 (Ω) if and only if fk := f |Ωk ∈ C

∞
0 (Ωk)

for all k. Clearly, we have

R (f) =

∑
k

∫
Ωk
|∇fk|

2 dµ
∑

k

∫
Ωk
f2
k dµ

≥ inf
k
R (fk)

(note that some of functions fk may identically vanish; in this case set
R (fk) = +∞). Taking inf in f , we obtain

λmin (Ω) ≥ inf
k
λmin (Ωk) . (B.177)

On the other hand, since Ω ⊃ Ωk, we have also λmin (Ω) ≤ λmin (Ωk) whence
the opposite inequality in (B.177) follows.

(c) By part (a), the sequence {λmin (Ωk)} decreases and

λmin (Ωk) ≥ λmin (Ω) . (B.178)

To prove the opposite inequality, observe that, for any f ∈ C∞0 (Ω), there is
a set Ωk that contains supp f and, hence,

λmin (Ωk) ≤ R (f) .

Taking infimum over all such f , we obtain

lim
k→∞

λmin (Ωk) = inf
k
λmin (Ωk) ≤ λmin (Ω) ,

which together with (B.178) proves the claim.

10.7. It follows from (10.23) and Exercise 3.5, that
(
BAn/2

)−1
dµ ≤ dµ̃ ≤

(
BAn/2

)
dµ

and

A−1 |∇ϕ|2g ≤ |∇ϕ|
2
g̃ ≤ A |∇ϕ|

2
g .
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By Theorem 10.8, we have

λ̃min (M) = inf
ϕ∈C∞0 (M)\{0}

∫
|∇ϕ|2g̃ dµ̃∫
ϕ2dµ̃

,

whence it follows that
(
An+1B2

)−1
λmin (M) ≤ λ̃min (M) ≤

(
An+1B2

)
λmin (M) .

10.8. Replacing in (10.25) f by f2, we obtain

h (M) ≤

∫
M

∣
∣∇
(
f2
)∣∣ dµ

∫
M f2 dµ

= 2

∫
M |f | |∇f | dµ∫

M f2 dµ
≤ 2
‖f‖L2‖∇f‖L2

‖f‖2
L2

= 2
‖∇f‖L2

‖f‖L2

.

Taking inf in f , we obtain

h (M) ≤ 2 (λmin (M))1/2 ,

whence (10.26) follows.

10.9. Left to the reader

10.10. (a) Consider a function ϕ such that ϕ ≡ 1 on one of the compo-
nents of M and ϕ ≡ 0 on the other components. Since ϕ ∈ C∞0 (M) and
∆µϕ = 0, we see ϕ is an eigenfunction of L = −∆µ|W 2

0
with eigenvalue 0.

Obviously, there are m linearly independent eigenfunctions as above, whence
it follows that λk (M) = 0 for all k ≤ m.

To prove that λm+1 (M) > 0, we need to show that any eigenfunction u
of 0 is a linear combination of the above eigenfunctions. For that, it suffices
to verify that u = const on any component of M . Since u ∈ L2 and ∆µu = 0,
Corollary 7.3 implies that u ∈ C∞ (M) = C∞0 (M). By the Green formula,

∫

M

|∇u|2 dµ = −
∫

M

u∆µudµ = 0,

which implies ∇u ≡ 0 on M .
For any two points x, y on the same component, there is a smooth path

γ connecting x and y. Then, by (3.103) and (3.17),

d

dt
u (γ (t)) = γ̇ (t) (u) = 〈∇u, γ̇ (t)〉 = 0,

so that u (γ (t)) = const. It follows that u (x) = u (y) and, hence, u = const
on this component, which finishes the proof.

(b) This follows from λm+1 (M) > 0 and λm (M) = 0.

10.11. By Exercise 10.10, we have λ1 (M) = 0 and λ2 (M) > 0. The
first eigenfunction ϕ1 is constant, and the condition ‖ϕ1‖L2 = 1 yields ϕ1 ≡

1√
µ(M)

. Therefore, the eigenfunction expansion (10.33) yields

pt (x, y) =
1

µ (M)
+
∞∑

k=2

e−λktϕk (x)ϕk (y) ,
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where λk = λk (M), whence

sup
x,y∈M

∣
∣
∣
∣pt (x, y)−

1

µ (M)

∣
∣
∣
∣ ≤

∞∑

k=2

e−λkt sup
x,y∈M

|ϕk (x)ϕk (y)| .

Since λ2 > 0, the right hand side here tends to 0 as t → ∞ by Remark
10.15.

An alternative solution follows from Exercise 11.21.

10.12. Note that ϕ1 (x) > 0 by Theorem 10.11. By the identity (10.33)
of Theorem 10.13, we have

pΩ
t (x, y)

e−λ1tϕ1 (x)ϕ1 (y)
− 1 =

1

ϕ1 (x)ϕ1 (y)

∞∑

k=2

e−(λk−λ1)tϕk (x)ϕk (y) .

By Theorem 10.23, we have λ2 > λ1. Consequently, there is ε > 0 such that

λk − λ1 ≥ ελk for all k ≥ 2.

Hence, we have
∣
∣
∣
∣
∣

∞∑

k=2

e−(λk−λ1)tϕk (x)ϕk (y)

∣
∣
∣
∣
∣
≤
∞∑

k=2

e−λkεt sup
x,y∈M

|ϕk (x)ϕk (y)| .

Since λ2 > 0, the right hand side tends to 0 as t → ∞ by Remark 10.15,
which finishes the proof.

10.13. It follows from (10.50) that, for all t > 0,

sup
x∈Ω
|ϕk (x)| ≤ Cetλk

(
1 + t−σ

)
.

Choosing t = 1/λk, we obtain the required estimate.

10.14. (a) Using Ptϕk = e−tLϕk = e−tλkϕk and the symmetry of Pt, we
obtain

(Ptf, ϕk)L2 = (f, Ptϕk) = e−tλk (f, ϕk) = e−tλkak.

Hence, Ptf has the following expansion in the basis ϕk:

Ptf =
∑

k

e−λktakϕk. (B.179)

Let us show that this series converges also in L2
loc (R+ ×M). Indeed, for

any t > 0 and positive integer N , we have

‖Ptf −
N∑

k=1

e−λktakϕk‖
2
L2 =

∑

k>N

e−2λkta2
k ≤

∑

k>N

a2
k

so that the L2 (M)-convergence of the series (B.179) is uniform in t. It
follows that the series converges in L2 ([α, β]×M) for any bounded interval
[α, β] ⊂ R+. Finally, since all the terms e−λktϕk (x) in (B.179) solve the
heat equation, the convergence is in C∞ (R+ ×M) by Theorem 7.4.

(b) As in the proof of Theorem 10.13, we have, for any x ∈M and t > 0,

(pt,x, ϕk)L2 = Ptϕk (x) = e−tLϕk (x) = e−tλkϕk (x) ,
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which implies

pt,x =
∑

k

e−λktϕk (x)ϕk,

where the series converges in L2 (M). Similarly to part (a), we obtain

‖pt,x −
N∑

k=1

e−λktϕk (x)ϕk‖
2
L2(M) =

∑

k>N

e−2λkt
k ϕ2

k (x) ,

whence, integrating also in x ∈M ,

‖pt (x, y)−
N∑

k=1

e−λktϕk (x)ϕk (y) ‖2L2(M×M) =
∑

k>N

e−2λkt
k .

By hypothesis, the right hand side is finite and tends to 0 as N →∞ locally
uniformly in t. Integrating the previous line also in t over a bounded interval
[α, β] ⊂ R+ and passing to the limit as N →∞, we obtain that

pt (x, y) =
∑

k

e−λktϕk (x)ϕk (y) ,

where the series converges in L2 ([α, β]×M ×M). Finally, the convergence
in the sense of C∞ (R+ ×M ×M) follows in the same way as in the last
paragraph of the proof of Theorem 10.13.

10.15. (a) Let {vk} be any orthonormal basis in L2. Since the operators
Pt and Rs are bounded, all vk belong to their domains. By Exercise 5.11,
we have the identity

(Rsvk, vk) =

∫ ∞

0

ts−1

Γ (s)
e−t (Ptvk, vk) dt.

Summing up in all k and using Lemma 10.4, we obtain (10.60).
(b) By Lemma 10.14, we have, for all 0 < t < 1,

tracePt = traceP 2
t/2 =

∫

M

∫

M

p2
t/2 (x, y) dµ (x) dµ (y)

=

∫

M

pt (x, x) dµ (x)

≤ Ct−νµ (M) .

It follows from (a) that

traceRsα ≤ const

∫ ∞

0

ts−ν−1

Γ (k)
e−tdt.

The integral always converges at ∞ and converges at 0 provided s > ν,
whence the claim follows.
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10.16. (a) We have

pΩ
t (x, x) =

∫

Ω
pΩ
t/2 (x, y)2 dµ (y)

≤
∫

Ω
pt/2 (x, y)2 dµ (y) .

Since Ω is compact, we obtain by Theorem 7.7 for all x ∈ Ω and 0 < t < 1,
∫

Ω
pt/2 (x, y)2 dµ (y) ≤ sup

x∈Ω

‖pt/2,x‖
2
L2(M) ≤ Ct

−2σ,

where σ is the smallest integer larger than n/4, whence

pΩ
t (x, x) ≤ Ct−2σ.

Consider the resolvent RΩ =
(
id +LΩ

)−1
. By Exercise 10.15, we obtain that

traceRsΩ <∞ provided s > 2σ. On the other hand, since the eigenvalues of

RsΩ are (1 + λk)
−s, we have by (10.14)

traceRsΩ =
∞∑

k=1

(1 + λk)
−s .

Hence, the series here converges for s > 2σ, whence (10.61) follows.
(b) We need to prove that

∞∑

k=1

|ck| sup |ϕk| <∞.

This will imply that the sum
∑

k ckϕk is a continuous function, which, being
equal to f almost everywhere, must coincide with f pointwise.

In the view of the estimate (10.57) of Exercise 10.13, it suffices to show
that

∞∑

k=1

λσk |ck| <∞. (B.180)

Restricting the summation to those k where λk 6= 0 and using the Cauchy-
Schwarz inequality, we obtain, for any s > 0,

∞∑

k=1

λσk |ck| ≤

(
∞∑

k=1

λ2σ+s
k c2

k

)1/2



∞∑

k:λk>0

λ−sk





1/2

. (B.181)

By part (a), the last term here is finite provided s is large enough. To
estimate the middle term, observe that (−∆µ)m f ∈ C∞0 (Ω) for any positive

integer m, whence it follows that f ∈ dom
(
LΩ
)m

and
((
LΩ
)m

f, ϕk

)
=
(
f,
(
LΩ
)m

ϕk

)
= λmk (f, ϕk) = λmk ck.
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By the Parseval identity, we have
∞∑

k=1

λ2m
k c2k = ‖

(
LΩ
)m

f‖2L2(Ω) <∞. (B.182)

Hence, the middle term in (B.181) is finite for any s > 0, whence (B.180)
follows.

Remark. Let {fi}i∈I be a family of functions from C∞0 (Ω) depending on
some parameter i. It follows from the above argument that the Fourier series
of fi converges to fi (x) absolutely and uniformly both in x and i, provided
each norm ‖∆m

µ fi‖L2(Ω) is bounded uniformly in i.

10.17. Let f ∈ C (M). By Exercise 10.14, for any t > 0, the function
Ptf can be uniformly approximated by linear combinations of ϕk (this also
follows from Exercise 10.16 because Ptf ∈ C∞0 (M)). Since Ptf ⇒ f as
t→ 0 (cf. Theorem 7.16), the same applies to f .

10.18. (i) If ϕ is an eigenfunction of ∆µ on S1 with an eigenvalue λ then
ϕ′′ + λϕ = 0. This implies that λ = k2 where k is a non-negative integer,
and the corresponding eigenfunction ϕ is given by

{
ϕ = const , if k = 0,
ϕ = C1 cos kx+ C2 sin kx, if k > 0.

Hence, we obtain an orthonormal basis of eigenfunctions

1
√

2π
,

cosx
√
π
,

sinx
√
π
, ....,

cos kx
√
π

,
sin kx
√
π
, ...,

whence, by (10.33),

pt (x, y) =
1

2π
+

1

π

∞∑

k=1

e−k
2t cos kx cos ky +

1

π

∞∑

k=1

e−k
2t sin kx sin ky

=
1

2π
+

1

π

∞∑

k=1

e−k
2t cos k (x− y) .

(ii) Set

qt (x, y) =
∑

n∈Z

p̃t (x+ 2πn, y)

and observe that the series converges in any reasonable sense because p̃t (x, y)
decays quickly in |x− y|. Using the fact that p̃t (x, y) satisfies the heat
equation in t, x for any fixed y, it is easy to show that so does qt (x, y).
Next, we have

∫

S1

qt (x, y) dx =

∫ 2π

0
qt (x, y) dx =

∫ ∞

−∞
p̃t (x, y) dx = 1,

and ∫ y+ε

y−ε
qt (x, y) dx ≥

∫ y+ε

y−ε
p̃t (x, y) dx→ 1 as ε→ 0.
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Hence, qt (x, y) is a regular fundamental solution to the heat equation on
S1. Since S1 is stochastically complete (cf. Exercise 8.7), we conclude by
Corollary 9.6 that qt (x, y) is the heat kernel on S1.

(iii) Rewrite (10.62) as follows

pt (x, y) =
1

2π

∑

k∈Z

e−k
2t cos k (x− y) . (B.183)

In particular, for x = y = 0 we obtain

pt (0, 0) =
1

2π

∑

k∈Z

e−k
2t. (B.184)

From (10.63) at x = y = 0, we obtain

pt (0, 0) =
∑

n∈Z

1

(4πt)1/2
exp

(

−
π2n2

t

)

.

Comparing the above two lines, we obtain (10.64).

10.19. Let (r, θ) be the polar coordinates on Rn+1. By (3.83) we have

∆Rn+1P =
∂2P

∂r2
+
n

r

∂P

∂r
+

1

r2
∆SnP.

In particular, setting r = 1 and using ∆Rn+1P = 0, we obtain

−∆Snf =
∂2P

∂r2
+ n

∂P

∂r

∣
∣
∣
∣
r=1

.

By the homogeneity of P , we have, for x = (r, θ),

P (x) = rkP
(x
r

)
= rkf (θ) .

It follows that

∂P

∂r
= krk−1f (θ) and

∂2P

∂r2
= k (k − 1) rk−2f (θ)

whence

−∆Snf = (k (k − 1) + nk) f = αf,

which was to be proved.

10.20. As was shown in Exercise 3.10, each Hermite polynomial

hk (x) = (−1)k ex
2 dk

dxk
e−x

2

satisfies the equation

∆µhk + 2khk = 0. (B.185)

Let us show that hk ∈ domL, which will imply that hk are eigenfunctions of
L with eigenvalues 2k. Indeed, since hk (x) is a polynomial in x, it obviously

belongs to L2(R, µ) because dµ = e−x
2
dx. By (B.185), we have also ∆µhk ∈

L2 (R, µ), which implies by Lemma 11.7 that hk ∈ domL.
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Since deg hk = k and, hence, the sequence {hk} spans all the polynomi-
als, the completeness of this sequence in L2 (R, µ) follows from the Weier-
strass approximation theorem. Since the eigenvalues λk = 2k do not have
finite accumulation points, we conclude that they exhaust all the spectrum
of L.

Since

trace e−tL =
∑

k

e−2kt <∞,

we can apply the eigenfunction expansion formula for the heat kernel (cf.
Exercise 10.14), that is

pt (x, y) =
∞∑

k=0

e−2ktϕk (x)ϕk (y) ,

where ϕk are normalized eigenfunctions. A computation yields

‖hk‖
2
L2 =

√
π2kk! ,

whence (10.65) follows.

10.21. (a) By (10.68), we have, for any f ∈W 1
0 (M),

(∇f,∇ϕk)L2 = λk (f, ϕk)L2 , (B.186)

and by (10.69),

(∇ϕi,∇ϕj)L2 = 0, i 6= j.

Since the inner product in W 1
0 (M) is given by

(u, v)W 1 = (u, v)L2 + (∇u,∇v)L2 ,

we obtain that {ϕk} is an orthogonal sequence in W 1
0 (M) as well.

It follows from (B.186) that, for any f ∈W 1
0 (M),

(f, ϕk)W 1 = (1 + λk) (f, ϕk)L2 .

In particular, if (f, ϕk)W 1 = 0 for all k then also (f, ϕk)L2 = 0 and, hence,
f = 0. Therefore, {ϕk} is a basis in W 1

0 (M).
(b) Expanding f in the basis {ϕk} in W 1

0 (M) and using

(ϕk, ϕk)W 1 = 1 + λk,

we obtain

f =
∑

k

(f, ϕk)W 1

(ϕk, ϕk)W 1

ϕk =
∑

k

(1 + λk) (f, ϕk)L2

(1 + λk) (ϕk, ϕk)L2

ϕk =
∑

k

akϕk.

Hence, the series f =
∑

k akϕk converges also in W 1
0 (M), which implies

(10.74). Then (10.75) follows from the Parseval identity, (10.74) and (∇ϕk,∇ϕk)L2 =
λk.

(c) By the symmetry of ∆µ, if f ∈W 2
0 (M) = dom ∆µ then

(∆µf, ϕk)L2 = (f,∆µϕk)L2 = −λk (f, ϕk)L2 = −λkak,

whence both (10.76) and (10.77) follow.
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10.22. Consider the space F = span (f1, ..., fk), which is a k-dimensional
subspace of W 1

0 (M) (functions fi are linearly independent because they have
disjoint supports). It is easy to check that, for any f ∈ F \ {0}, we have
R (f) ≤ a. Hence, using the identity (10.67) of Theorem 10.18, we conclude
that λk (M) ≤ a.

10.23. By Theorem 10.20, the embedding operator W 1
0 (M) ↪→L2 (M)

is compact. As it was shown in Section 5.5, trivial extension of functions
from Ω to M determines an embedding W 1

0 (Ω) ↪→W 1
0 (M). Since a compo-

sition of a bounded operator with a compact one is a compact operator, we
conclude that the composite embedding W 1

0 (Ω) ↪→L2 (M) is a compact op-
erator. Obviously, the range of this embedding is contained in L2 (Ω), which
implies that the embedding W 1

0 (Ω) ↪→L2 (Ω) is also compact. By Theorem
10.20, we conclude that LΩ has a discrete spectrum.

10.24. If {ϕi} is an orthonormal basis of eigenfunctions in L2 (M ′) and
{ψj} is that of L2 (M ′′) then fij (x, y) := ϕi (x)ψj (y) is an orthonormal
basis in L2 (M). Obviously, we have

∆µfij = (∆x + ∆y) (ϕi (x)ψj (y)) = − (αi + βj) fij

so that αi + βj are the eigenvalues in M . Since the sequence {αi + βj} has
no finite accumulation point, it represents all spectrum of M , which, hence,
is discrete.

10.25. Consider two relatively compact open sets Ω′ b Ω and let ψ be a
cutoff function of Ω′ in Ω. Since the sequence {uk} is bounded in W 1 (Ω),
the sequence {ukψ} is also bounded in W 1 (Ω). Note that ukψ ∈W 1

0 (Ω) by
Corollary 5.6), and the embedding W 1

0 (Ω) ↪→ L2 (Ω) is compact by Corol-
lary 10.21. Therefore, there is a subsequence of {ukψ} that converges in
L2 (Ω); the corresponding subsequence of {uk} converges in L2 (Ω′). Using
the diagonal process, we can choose a subsequence of {uk} that converges
in L2 (Ω) for all relatively compact open sets Ω, which was to be proved.

10.26. If f vanishes at a point then f ≡ 0 by the strong minimum
principle of Corollary 8.14. Hence, assume in the sequel that f > 0 and prove
that α ≤ λmin (M). Exhausting M be a sequence of connected relatively
compact open sets Ω and noticing that λmin (Ω) → λmin (M) (cf. Exercise
10.6), it suffices to prove that α ≤ λmin (Ω) for any such Ω.

The function u (t, x) = e−αtf (x) obviously satisfies the heat equation in
R+×Ω and u (t, ·)→ f as t→ 0 locally uniformly. Since u ≥ 0, by Theorem
8.1 we conclude that u ≥ PΩ

t f , which implies that
(
PΩ
t f, f

)
L2(Ω)

≤ (u, f)L2(Ω)

and, hence, (
PΩ
t f, f

)
L2(Ω)

≤ e−αt‖f‖2L2(Ω). (B.187)

Let {ϕk}
∞
k=1 be an orthonormal basis in L2 (Ω) that consists of the eigen-

functions of LΩ, and let {λk}
∞
k=1 be the sequence of the corresponding eigen-

values in the increasing order. Since f ∈ L2 (Ω), we can expand f in this
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basis, say,

f =
∑

k

akϕk.

It follows from Exercise 10.14 that
(
PΩ
t f, f

)
L2(Ω)

=
∑

k

e−λkta2
k, (B.188)

whence (
PΩ
t f, f

)
L2(Ω)

≥ e−λ1ta2
1. (B.189)

By Theorem 10.11, we have ϕ1 > 0 in Ω, which implies that

a1 =

∫

Ω
fϕ1dµ > 0

(we can assume that Ω is so big that f 6≡ 0 in Ω). Comparing (B.187) and
(B.189) and letting t→∞, we conclude that α ≤ λ1.

10.27. (a) The spectrum of the operator L − α id is contained in the
interval [λmin (M)−α,+∞). By the hypothesis α < λmin (M), the spectrum
of L−α id does not contain 0, which implies that it is invertible. The identity
(10.85) proved exactly in the same way as Lemma 5.10.

(b) Set v = u− 1 so that v is a function from W 1
0 (M) that must satisfy

the equation

∆µ (v + 1) + α (v + 1) = 0,

that is,

∆µv + αv = −α.

Since constants are in L2 (M), we obtain that ∆µv ∈ L2 (M) whence v ∈
dom (L). The latter allows to rewrite the above equation in the form

Lv − αv = α.

Since the operator L−α id is invertible, this equation has a unique solution

v = (L − α id)−1 α.

Combining with (10.85) we obtain (10.86).
Since Pt1 ≥ 0, the conclusion that u > 0 seems to be a trivial con-

sequence of (10.86). However, one should make the following point clear.
The identity (10.85) and its consequence (10.86) are understood weakly. In
particular, (10.86) means that, for any ϕ ∈ L2 (M),

(u, ϕ) = (1, ϕ) + α

∫ ∞

0
eαt (Pt1, ϕ) dt.

If ϕ ≥ 0 and ϕ 6≡ 0 then (1, ϕ) > 0 and (Pt1, ϕ) ≥ 0 whence it follows that
(u, ϕ) > 0. This implies that u > 0 a.e..

10.28. Assume first that u satisfies a strict inequality ∆νu > 0 in Ω. Let
z be a point where u attains its maximum in Ω. If z ∈ ∂Ω then (10.87) is
trivially satisfied. Assume now that z ∈ Ω. Let x1, x2, ...xn be a coordinate
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system in a chart containing z. Recall that the Laplace operator ∆µ is
written in the local coordinates as follows:

∆µu =
1

ρ

∂

∂xi

(

ρgij
∂u

∂xj

)

,

where ρ = Υ
√

det g and Υ is the density function of measure µ. It follows
that

∆µu = gij
∂2u

∂xi∂xj
+ bj

∂u

∂xj
,

where

bj =
1

ρ

∂

∂xi
(
ρgij

)
.

By a linear change of the coordinates, the matrix
(
gij
)

at the point z can
be reduced to id (cf. the proof of Theorem 8.11), which yields

∆µu(z) =
∑

j

∂2u

(∂xj)2 (z) + bj(z)
∂u

∂xj
(z).

Since z is the point of maximum of u, we have

∂u

∂xj
(z) = 0 and

∂2u

(∂xj)2 (z) ≤ 0,

whence ∆µu(z) ≤ 0, which contradicts the hypothesis ∆µu > 0.
Consider now the general case when ∆µu ≥ 0. Suppose that there exists

a function v ∈ C2
(
Ω
)

such that ∆µv > 0 in Ω. Then, for any ε > 0, we
have

∆µ (u+ εv) > 0,

and the first part of this proof applies to the function u+ εv and yields

sup
Ω

(u+ εv) = sup
∂Ω

(u+ εv) ,

whence (10.87) follows when ε→ 0.
Let us show that such a function v always exists. For example, in Rn

the following function will do:

v(x) = |x|2 = x2
1 + ...+ x2

n ,

because ∆v = 2n > 0. On an arbitrary manifold, we can use the solvability
of the weak Dirichlet problem to construct such a function. Indeed, let Ω′

be a relatively compact open neighborhood of Ω such that M \ Ω′ is still
non-empty. By Theorem 10.22, λ1 (Ω′) > 0. By Exercise 4.28, there exists
a function v ∈ W 1

0 (Ω′) such that ∆µv = 1 in Ω in the distributional sense.
By Corollary 7.3, v ∈ C∞ (Ω′). Hence, the function v satisfies all the above
requirements, which finishes the proof.
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10.29. Using (10.84), we obtain

pt (x, y) =
(
pt/2,x, pt/2,y

)
≤ ‖pt/2,x‖L2‖pt/2,y‖L2

≤ e−2λmin(M)(t−s)‖ps/2,x‖L2‖ps/2,y‖L2

= e−2λmin(M)(t−s)
√
ps (x, x) ps (y, y).

Solutions to Chapter 11

11.1. All balls in (Rn,gRn) are relatively compact by the Bolzano-Weierstrass
theorem. To prove that (Rn,g) is complete with metric g is given by (11.1),
first observe that the geodesic ball B (0, r) centered at the origin, coin-
cides with the Euclidean ball Br = {|x| < r} , because by Exercise 3.37,
d (x, 0) = |x|.

Since the identity mapping between (Rn,gRn) and (Rn,g) is a diffeomor-
phism, B (0, r) = Br is also relatively compact in the topology of (Rn,g).
By the triangle inequality, any geodesic ball B (x, r) is contained in B (0, r′)
for r′ = r + |x|, which implies that B (x, r) is relatively compact.

11.2. Let {xk} be a Cauchy sequence with respect to the distance d.
Then the sequence {xk} is bounded, that is, it is contained in a geodesic
ball. Since the ball is relatively compact, the set of points {xk} is also
relatively compact and hence contains a convergent subsequence. However,
any Cauchy sequence containing a convergent subsequence, converges itself,
which was to be proved.

11.3. For function f ∈ C1 (M), the classical gradient ∇f coincides with
the distributional one. Therefore, we obtain by Theorem 11.3 that

sup |∇f | ≤ ‖f‖Lip.

The opposite inequality

‖f‖Lip ≤ sup
M
|∇f |

was shown in the proof of Corollary 11.4.

11.4. (a) The fact that ϕ is Lipschitz means that, for all X,Y ∈ I :=
I1 × ...× Im,

|ϕ (X)− ϕ (Y )| ≤ ‖ϕ‖Lip |X − Y | = ‖ϕ‖Lip

(
m∑

k=1

|Xk − Yk|
2

)1/2

.

Therefore, for any two points x, y ∈M , setting

X = (f1 (x) , ..., fm (x)) and Y = (f1 (y) , ..., fm (y)) ,
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we obtain

|Φ (x)− Φ (y)| = |ϕ (X)− ϕ (Y )| ≤ ‖ϕ‖Lip |X − Y |

≤ ‖ϕ‖Lip

(
m∑

k=1

|fk (x)− fk (y)|2
)1/2

≤ ‖ϕ‖Lip

(
m∑

k=1

‖fk‖
2
Lipd

2 (x, y)

)1/2

= ‖ϕ‖Lip

(
m∑

k=1

‖fk‖
2
Lip

)1/2

d (x, y) ,

which proves (11.14).
(b) Prove that if f ∈ Lip0 (M) and ϕ ∈ Lip (R) such that ϕ (0) = 0 then

ϕ ◦ f ∈ Lip0 (M). By part (a), we have Φ := ϕ ◦ f ∈ Lip (M). By condition
ϕ (0) = 0, function Φ (x) vanishes at any point x where f (x) = 0. Hence,
supp Φ ⊂ supp f whence it follows that supp Φ is compact and Φ ∈ Lip0 (M).

11.5. Since the following functions in R2 are Lipschitz:

X + Y, max (X,Y ) , min (X, , Y ) ,

we conclude by Exercise 11.4 that also the functions

f + g, max (f, g) , min (f, g)

are Lipschitz. If in addition f is bounded on M then fg is Lipschitz because
the function XY is Lipschitz when the domain of X is bounded.

Assume that f is bounded on supp g, say

a ≤ f ≤ b on supp g.

Consider function f̃ = ϕ ◦ f where

ϕ (t) = min (max (t, a) , b) .

Since ϕ is a bounded Lipschitz function on R, the function f̃ is a bounded

Lipschitz function on M , which implies by the above argument that f̃g is

Lipschitz. Since f = f̃ on supp g, we have fg = f̃g so that fg is Lipschitz.
If f + g ∈ Lip0 then both functions f, g are bounded. Hence, all the

functions f + g, fg, max (f, g), min (f, g) are Lipschitz. Since they all have
compact supports, they belong to Lip0, which was to be proved.

11.6. Let d (x) be the distance from x to K and δ = d (K,Ωc). Then the
function

f (x) =
(δ/2− d (x))+

δ/2

satisfies all the required properties.
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11.7. (a) To prove that f is Lipschitz with constant C, it suffices to show
that, for any smooth path γ : [a, b]→M such that γ (a) = x and γ (b) = y,

|f (x)− f (y)| ≤ C` (γ) . (B.190)

Consider the preimages Vα := γ−1 (Uα) of the open sets Uα and observe that
{Vα} is a family of open sets in [a, b] that covers [a, b].

We claim that, for any covering {Vα} of the interval [a, b] by open sets,
there exists a finite partition

a = t0 < t1 < ... < tm = b (B.191)

such that any interval [tj−1, tj ] is contained in one of the sets Vα. By splitting
each Vα into its connected components, it suffices to assume that each Vα is
connected, that is, Vα is an interval. Since [a, b] is compact, we can further

assume that the family {Vα} is finite, say {Vi}
k
i=1. Now we can prove the

above claim by induction in k. If k = 1 then the trivial partition a < b will
do. Consider also the case k = 2 when

[a, b] ⊂ V1 ∩ V2.

If a, b ∈ Vi then [a, b] ⊂ Vi, which amounts to the case k = 1. Let a ∈ V1 and
b ∈ V2. Since the interval [a, b] is connected, the sets V1, V2 have a common
point s ∈ (a, b). Then the partition a < s < b satisfies the requirements.

Assuming k > 2, let us prove the inductive step from k − 1 to k. Since
the following k − 1 open sets

V1, V2, ..., Vk−2, Vk−1 ∪ Vk (B.192)

cover [a, b], by the inductive hypothesis, there exists a partition (B.191) such
that any interval [tj−1, tj ] is contained in one of the sets (B.192). Suppose
that, for some index j,

[tj−1, tj ] ⊂ Vk−1 ∩ Vk

(if such j does not exist then the proof is finished). Then arguing as in the
case k = 2, we split further [tj−1, tj ] into two intervals, which leads to a
required partition.

Now, having constructed a partition (B.191) as above, set xj = γ (tj)
so that any two consecutive points xj−1, xj belong to the same set Uα. By
hypothesis, we obtain

|f (xj−1)− f (xj)| ≤ Cd (xj−1, xj) ,

whence

|f (x)− f (y)| ≤ C
∑

j

d (xj−1, xj) ≤ C` (γ) ,

which finishes the proof.
(b) Using the notation of part (a), we need only to prove (B.190) when

x ∈ E1 and y ∈ E2. The preimages γ−1 (E1) and γ−1 (E2) cover the interval
[a, b]. Since they are closed sets and the interval [a, b] is connected, they
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must have a common point, say t, which implies that z = γ (t) belongs to
both sets E1 and E2. Therefore, we obtain

|f (x)− f (y)| ≤ |f (x)− f (z)|+|f (z)− f (y)| ≤ Cd (x, z)+Cd (z, y) ≤ C` (γ) ,

which was to be proved.

11.8. If f ∈ C1 (M) then, for any open set Ω bM , we have supΩ |∇f | <
∞ which implies by Exercise 11.3 that f is Lipschitz in Ω and, hence, f ∈
Liploc (M).

If f ∈ Liploc (M) then f ∈ Lip (Ω) for any open Ω bM , and by Theorem

11.3 we have ∇f ∈ ~L∞ (Ω) and, hence, ∇f ∈ ~L2 (Ω). Since also f ∈ L2 (Ω),
it follows that f ∈W 1 (Ω) and, hence, f ∈W 1

loc (M).

11.9. Obviously, if f ∈ Lip0 (M) then f ∈ Liploc (M) and f has com-
pact support. Conversely, assume that f ∈ Liploc (M) and f has compact
support. Let Ω be a relatively compact open set covering supp f . Then
f is Lipschitz in Ω. On the other hand, f is Lipschitz in the open set
Ω′ := M \ supp f because f ≡ 0 in Ω′. Since Ω and Ω′ cover M , we conclude
by Exercise 11.7 that f ∈ Lip (M). Since supp f is compact, we conclude
f ∈ Lip0 (M).

11.10. It suffices to prove that Φ (x) is Lipschitz on any open set Ω bM .
Let Ik = fk (Ω). Then Ik is a bounded subset of R, which implies that the
the product I = I1 × ... × Im is a relatively compact subset of Rm. Hence,
ϕ is Lipschitz on I. Applying Exercise 11.4 to the manifold Ω, we conclude
that Φ is Lipschitz on Ω, which was to be proved.

11.11. This follows from Exercise 11.10 and the fact that the following
functions are locally Lipschitz in R2:

X + Y, XY, max (X,Y ) , min (X,Y ) .

(cf. Exercise 11.5).

11.12. Let Ω b M be an open set and ψ ∈ D (M) be a cutoff function
of Ω in M . By Exercises 11.9, 11.11, we have ψf ∈ Lip0 (M) whence, by

Theorem 11.3, ∇ (ψf) belongs to ~L∞ (M). Since ψf = f in Ω, we obtain

that ∇f |Ω belongs to ~L∞ (Ω), whence the claim follows.

11.13. (a) By the argument of Exercise 11.12, it suffices to prove the
product rule when f, g ∈ Lip0 (M). By Corollary 11.4, f ∈ Lip0 (M) implies
f ∈W 1

0 (M) and, hence, there is a sequence {fk} ⊂ D (M) such that

fk
W 1

−→ f. (B.193)

Furthermore, we can assume that the sequence {fk} is uniformly bounded.
Indeed, f is bounded and let C := sup |f |. Let ψ ∈ C∞ (R) be a bounded
function such that ψ (t) = t if |t| ≤ C, and that ψ′ is also bounded2. Then

2To construct such a function ψ, let ϕ be a cutoff function of the interval [−C,C],
and then set

ψ (t) =

∫ t

0

ϕ (s) ds.
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ψ (fk) ⊂ D (M) and, by Theorem 5.7, (B.193) implies

ψ (fk)
W 1

−→ ψ (f) = f.

Obviously, the sequence {ψ (fk)} is uniformly bounded, so we can rename
ψ (fk) into fk.

Let {gk} be a similar approximation for function g ∈ Lip0 (M). Then
we have

fkgk
L2

−→ fg (B.194)

because

‖fkgk − fg‖L2 ≤ ‖fk (gk − g) ‖L2 + ‖ (fk − f) g‖L2

≤ ‖fk‖L∞‖gk − g‖L2 + ‖g‖L∞‖fk − f‖L2 → 0.

Using the fact that the functions |∇f | and |∇g| are bounded, which is due
to Theorem 11.3, we obtain in the same way that

fk∇gk
~L2

−→ f∇g and gk∇fk
~L2

−→ g∇f, (B.195)

By Lemma 4.2, (B.194) implies

∇ (fkgk)
~D′
−→ ∇ (fg) .

On the other hand, we have

∇ (fkgk) = fk∇gk + gk∇fk

(see Exercise 3.3), which implies by (B.195)

∇ (fkgk)
~D
−→ f∇g + g∇f,

whence the claim follows.
(b) If g ∈ C∞0 (M) then fg ∈ Lip0 (M) ⊂ W 1

0 (M) by Exercise 11.5
and Corollary 11.12, and product rule holds by part (a). For an arbitrary
g ∈W 1

0 (M), the boundedness of f and ∇f implies that

fg ∈ L2 (M) and f∇g + g∇f ∈ ~L2 (M)

so that fg ∈W 1 (M).
By the definition of W 1

0 (M), there exists a sequence {gk} of functions

from C∞0 (M) such that gk
W 1

−→ g. Hence, fgk ∈W 1
0 (M) and

fgk
L2

−→ fg. (B.196)

Let us show that also

∇ (fgk)
L2

−→ f∇g + g∇f. (B.197)

Indeed, we have

∇ (fgk) = f∇gk + gk∇f



SOLUTIONS TO CHAPTER 11 129

and

‖∇ (fgk)− (f∇g + g∇f) ‖L2 ≤ ‖f (∇gk −∇g) ‖L2 + ‖ (gk − g)∇f‖L2

≤ ‖f‖L∞‖∇ (gk − g) ‖L2 + ‖∇f‖L∞‖gk − g‖L2 ,

which tends to 0 by the choice of the sequence {gk}.

It follows from (B.196) and (B.197) that fgk
W 1

→ fg whence fg ∈
W 1

0 (M). Besides, (B.196) and (B.197) imply by Lemma 4.2 that

∇ (fg) = f∇g + g∇f,

which finishes the proof.
(c) Multiplying g by a cutoff function of supp f , we can assume that

g ∈W 1
0 (M) (cf. Corollary 5.6). Then the claim follows from part (b).

11.14. The fact that ψ (f) ∈ Liploc (M) follows from Exercise 11.10 be-
cause ψ ∈ Liploc (R).

Hence, we only need to prove that chain rule. Using the argument from
the solution of Exercise 11.12, we can assume that f ∈ Lip0 (M).

If ψ ≡ const then ψ (f) ≡ const and the claim is obvious. So, subtracting
a constant from ψ, we can assume that ψ (0) = 0. Since f is bounded, say
|f | ≤ C, the values of ψ (t) for |t| > C are not used in ψ (f). Multiplying
ψ by a cutoff function of the interval [−C,C], we can assume that suppψ is
bounded; in particular, |ψ′| is bounded.

Since by Corollary 11.4, f ∈ W 1
0 (M), the assumptions made about ψ

allow to apply Theorem 5.7 (or Lemma 5.2) and to conclude that

∇ψ (f) = ψ′ (f)∇f.

11.15. Let us show that any u ∈ W 1 (M) belongs also to W 1
0 (M). By

Exercise 11.13, if f ∈ Lip0 (M) then fu ∈W 1
0 (M) and

∇ (fu) = u∇f + f∇u.

Fix o ∈M , set Br = B (o, r) and, for some R > r > 0, choose f as follows:

f (x) = min
(

1,
(R−d(x,o))+

R−r

)
=






1, x ∈ Br,
0, x /∈ BR,
R−d(x,o)
R−r , x ∈ BR \Br.

Note that 0 ≤ f ≤ 1. Since d (·, o) is a Lipschitz function with the Lipschitz
constant 1, function f is Lipschitz with the Lipschitz constant 1

R−r , which

implies by Theorem 11.3 that |∇f | ≤ 1
R−r . Noticing that f = 1 and ∇f = 0

in Br, we obtain

‖fu− u‖2L2 =

∫

M

(f − 1)2 u2dµ ≤
∫

M\Br
u2dµ (B.198)
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and

‖∇ (fu)−∇u‖L2 ≤ ‖u∇f‖L2 + ‖ (f − 1)∇u‖L2

≤
1

R− r

(∫

M\Br
u2dµ

)1/2

+

(∫

M\Br
|∇u|2 dµ

)1/2

.(B.199)

By choosing R and r large enough, the right hand sides of (B.198) and
(B.199) can be made arbitrarily small, which means that u can be approx-
imated in W 1 (M) by functions of the form fu. Since fu ∈ W 1

0 (M), it
follows that also u ∈W 1

0 (M).

11.16. (a) Replacing uk − u by uk, we can assume that u = 0. Then the
condition (11.17) means that

(uk, ϕ)L2 + (∇uk,∇ϕ)L2 → 0

whence, by the definition of distributional gradient,

(uk, ϕ)L2 − (uk,∆µϕ)L2 → 0.

Together with (11.18) this gives

(v, ϕ)L2 − (v,∆µϕ)L2 = 0,

which implies ∆µv = v where ∆µ is understood in the distributional sense.
By Lemma 11.6, we conclude that v = 0, which was to be proved.

(b) To show that the hypothesis of completeness of M cannot be dropped,
consider any incomplete manifold where there exists a non-zero function
v ∈ W 1 such that ∆µv = v. For example, one can take M = (0, 1) and
v (x) = ex. Set uk = v for all k so that (11.18) holds. For any ϕ ∈ C∞0 (M),
we have

(uk, ϕ)W 1 = (v, ϕ)L2 + (∇v,∇ϕ)L2 = (v, ϕ)L2 − (∆µv, ϕ)L2 = 0,

so that (11.17) holds with u = 0.

11.17. (a) Obviously, mapping J is an isometry of the Hilbert spaces
L2 (M, µ̃) and L2 (M,µ) . Also, J maps D (M) onto itself. Identity (9.44),
restricted to f ∈ D (M), can be rewritten in the following form

−∆µ + Φ = J
(
−∆µ̃

)
J−1, (B.200)

where all operators act in D (M). By Theorem 4.6, operator L̃ is a self-
adjoint extension of −∆µ̃

∣
∣
D in L2 (M, µ̃). It follows from (B.200) that

JL̃J−1 is a self-adjoint extension of −∆µ + Φ|D in L2 (M,µ). If A is another

self-adjoint extension of −∆µ + Φ|D in L2 (M,µ) then the operator J−1AJ

is a self-adjoint extension of −∆µ̃

∣
∣
D in L2 (M, µ̃).

By hypothesis, the manifold (M,g, µ̃) is complete. Hence, by Theorem
11.5, −∆µ̃

∣
∣
D is essentially self-adjoint, and its unique self-adjoint extension

in L2 (M, µ̃) is L̃, whence we conclude L̃ = J−1AJ and A = JL̃J−1. Hence,

JL̃J−1 is a unique self-adjoint extension of −∆µ + Φ|D, which was to be
proved.
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(b) It follows from LΦ = JL̃J−1 that

e−tL
Φ

= Je−tL̃J−1,

which implies, for any f ∈ L2 (M,µ),

e−tL
Φ
f (x) = h (x)

∫

M

p̃t (x, y)
f (y)

h (y)
dµ̃ (y) =

∫

M

p̃t (x, y)h (x)h (y) f (y) dµ (y) ,

whence (11.20) follows.

11.18. Since ∆µ = d2

dx2 , the function h (x) = e−
1
2
x2

satisfies the equation

∆µh = h′′ =
(
x2 − 1

)
h = Φh.

Consider measure µ̃ given by

dµ̃ = h2dµ = e−x
2
dx.

As was shown in Example 9.19, the heat kernel p̃t of this measure is given
by

p̃t (x, y) =
et

(2π sinh 2t)1/2
exp

(
2xye−2t −

(
x2 + y2

)
e−4t

1− e−4t

)

.

Hence, we obtain from the identity (11.20) of Exercise 11.17 that

pΦ
t (x, y) = p̃t (x, y) exp

(

−
1

2
x2 −

1

2
y2

)

=
et

(2π sinh 2t)1/2
exp

(
4xye−2t −

(
x2 + y2

) (
1 + e−4t

)

2 (1− e−4t)

)

.

The rest follows from the elementary identity

4xye−2t −
(
x2 + y2

) (
1 + e−4t

)

2 (1− e−4t)
= −

(x− y)2

2 sinh 2t
−
x2 + y2

2
tanh t.

11.19. Indeed, we have
∫ ∞

r1

rdr

f (r)
=

∞∑

k=2

∫ rk

rk−1

rdr

f (r)

≥
∞∑

k=2

1

f (rk)

∫ rk

rk−1

rdr

≥
1

2C

∞∑

k=2

r2
k − r

2
k−1

r2
k

. (B.201)

We are left to observe that the series
∞∑

k=2

r2
k − r

2
k−1

r2
k

=
∞∑

k=2

(

1−
r2
k−1

r2
k

)
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diverges because so does the infinite product

∞∏

k=2

r2
k−1

r2
k

= 0.

11.20. Left to the reader

11.21. Since the constants functions are in L2 (M), zero is an eigenvalue
of the Dirichlet Laplace operator L on M with eigenfunction

ϕ (x) ≡
1

√
µ (M)

.

Using the spectral decomposition

Pt = e−tL =

∫

[0,+∞)
e−λtdEλ

and noticing that e−λt → 1{λ=0} as t → ∞, we obtain by Lemma 4.8 that,

for any f ∈ L2 (M),

Ptf
L2

−→
∫

{0}
dEλf = (f, ϕ)ϕ as t→∞. (B.202)

Choose f = ps,x, for some s > 0 and x ∈ M . By Theorem 11.8, M is
stochastically complete, which implies

(ps,x, ϕ)ϕ =
1

µ (M)

∫

M

ps,xdµ =
1

µ (M)
.

Using Ptps,x = pt+s,x (cf. Theorem 7.13), we obtain from (B.202) that

pt+s,x
L2

−→
1

µ (M)
as t→∞.

By Theorem 7.4, we conclude that, in fact, the convergence is in C∞, which
finishes the proof.

11.22. Consider measure µ̃ given by

dµ̃ = h2dµ.

Then v (r) = µ̃ (B (x0, r)) and, by Theorem 11.8, the hypothesis (11.47)
implies that the weighted manifold (M, µ̃) is stochastically complete. The

heat semigroup P̃t on (M, µ̃) is given by P̃t = 1
h ◦Pt ◦ h (see Theorem 9.15).

By the stochastic completeness we have P̃t1 = 1 whence Pth = h.

11.23. One of possible solutions is as follows. By approximation argu-
ment, we can assume f ∈ C∞ (0,+∞). Then there exist a weighted model
manifold with the volume function V (r) such that V (r) = f (r) for r > 1.
The condition ∫ ∞ rdr

f (r)
=∞ (B.203)
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implies by Theorem 11.14 that M is parabolic. On the other hand, by
Example 11.16, the parabolicity of the model manifold implies

∫ ∞ dr

f (r)
=∞, (B.204)

which was to be proved.
Of course, there is a more direct proof of the implication (B.203) =⇒

(B.204).

11.24. If M is stochastically incomplete then there exists a non-zero solu-
tion u to the equation ∆µu = u such that 0 ≤ u ≤ 1. In particular, ∆µu ≥ 0
that is, u is a subharmonic function. Hence, 2 − u is a positive superhar-
monic function, which implies by hypothesis of parabolicity that u = const.
The only constant solution to ∆µu = u is u ≡ 0. This contradiction finishes
the proof.

11.25. It follows from Lemma 6.4 that, for any f ∈ C∞0 (Ω),
∫

Ω
f2dµ ≤

1

n (diam Ω)2

∫

Ω
|∇f |2 dµ,

whence (11.62) follows by Theorem 10.8.

Any function f ∈ C∞0 (B1) determines a function f̃ ∈ C∞0 (Br) by

f̃ (x) = f
(x
r

)
.

We have ∫
f̃2 (x) dx =

∫
f2
(x
r

)
dx = rn

∫
f2 (y) dy

and ∫
|∇f̃ |2dx =

∫
r−2 |∇f |2

(x
r

)
dx = rn−2

∫
|∇f |2 (y) dy,

whence it follows that

R(f̃) = r−2R (f)

and, hence,

λmin (Br) = r−2λmin (B1) = cnr
−2,

where cn := λmin (B1). Note that cn > 0 by the first part.

11.26. (a) The neighborhood U can be chosen sufficiently small, in par-
ticular, so that U is contained in a chart with coordinates x1, ..., xn. Then
we have in U

|∇ψ|2g = gij
∂ψ

∂xi
∂ψ

∂xj
≤ C |∇ψ|2Eucl

and

dµ =
√

det gdx ≤ Cdx,

so that the problem amounts to the case of the Euclidean metric and the
Lebesgue measure. Hence, we can assume that M = Rn and o is the origin.
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Let us construct a function ψ ∈ Lip0 (U) such that ψ = 1 in a neighbor-
hood of o and ∫

U

|∇ψ|2 dx < ε. (B.205)

If n ≥ 3 then choose r > 0 so that B3r ⊂ U , and set

ψ (x) = min

(

1,
(2r − |x|)+

r

)

=






1, |x| ≤ r,
0, |x| ≥ 2r,
2r−|x|
r , r < |x| < 2r.

This function is Lipschitz with the Lipschitz constant 1
r , which implies by

Theorem 11.3 |∇ψ| ≤ 1
r and, hence,

∫

U

|∇ψ|2 dx ≤
1

r2
µ (B2r) = cnr

n−2.

Choosing r sufficiently small, we obtain (B.205).
If n = 2 then choose R > r > 0 so that B2R ⊂ U , and set

ψ (x) = min

(

1,
(logR/ |x|)+

logR/r

)

=






1, |x| ≤ r,
0, |x| ≥ R,
logR/|x|
logR/r , r < |x| < R.

For this function, we have
∫

U

|∇ψ|2 dµ =

∫ R

r

πs
∣
∣ψ′ (s)

∣
∣2 ds =

π

log2R/r

∫ R

r

s
1

s2
ds =

π

logR/r
.

Choosing the ratio R/r sufficiently large, we obtain (B.205).
Finally, having constructed ψ, consider its smooth approximation ψ ∗ϕε

where ϕ is a mollifier in Rn. By Lemma 2.4 and Theorem 2.13, ψ ∗ ϕε → ψ
as ε→ 0 where the convergence is both uniform and in the norm of W 1 (U).
Clearly, for small enough ε, function ψ ∗ ϕε belongs to C∞0 (U), is equal
to 1 in a neighborhood of o, and its energy integral is sufficiently small.
Renaming ψ ∗ ϕε to ψ, we finish the proof.

(b) By Exercise 10.6, we have

λmin (M \ {o}) ≥ λmin (M) ,

so we only have to prove the opposite inequality. By Theorem 10.8, it suffices
to show that, for any non-zero f ∈ C∞0 (M) and any ε > 0 there non-zero
exists g ∈ C∞0 (M \ {o}) such that

R(g) ≤ R (f) + ε.

Let U be a small neighborhood of o and ψ be a cutoff function of {o} in
U , which exists by part (a). Then function g = (1− ψ) f vanishes in a
neighborhood of o and, hence, belongs to C∞0 (M \ {o}). For this function,
we have

‖g‖2L2 =

∫

M

(1− ψ)2 f2dµ ≥
∫

M\U
f2dµ
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and

‖∇g‖L2 = ‖ (1− ψ)∇f − f∇ψ‖L2 ≤ ‖∇f‖L2 + sup |f | ‖∇ψ‖L2 .

By closing U sufficiently small, we obtain

‖g‖L2 ≥ ‖f‖L2 − ε,

and by choosing ψ with sufficiently small energy integral as in part (a), we
obtain

‖∇g‖L2 ≤ ‖∇f‖L2 + ε,

whence the claim follows.
(c) Let M = S1 so that λmin (M) = 0. The set S1 \ {o} is isometric to

the open interval I = (0, 2π), while λmin (I) > 0.

11.27. Set ρ (x) = d (x, x0) and show that e−βρ ∈ L1 (M) for any β > α,
which will imply the claim by Theorem 11.19. Indeed, fix γ > 1 and consider
the balls Bk = B

(
x0, γ

k
)
. Then we have

∫

M\B0

e−βρdµ =
∞∑

k=1

∫

Bk\Bk−1

e−βρdµ ≤
∞∑

k=1

e−βγ
k−1

µ (Bk) . (B.206)

Using the hypothesis (11.64), we obtain, for large enough k,

µ (Bk) ≤ exp
(
α′γk

)
,

for any prescribed α′ > α. Hence, for large enough k,

e−βγ
k−1

µ (Bk) ≤ exp
(
−γk−1

(
β − α′γ

))
.

Since β > α, we can choose α′ close enough to α and γ close enough to 1
to ensure that β − α′γ > 0, which implies the convergence of the series in
(B.206). Hence, e−βρ ∈ L1 (M), which was to be proved.

11.28. Note that a model based on Rn is complete by Exercise 11.1. The
condition (11.65) implies that, for any ε > 0 and for all large enough r,

S′ (r)

S (r)
≤ α+ ε.

Integrating this inequality, we obtain

S (r) ≤ Ce(α+ε)r,

and, hence,

V (r) :=

∫ r

0
S (t) dt ≤ C ′ + Ce(α+ε)r,

where V (r) is the volume function of M . This obviously implies

lim sup
r→∞

1

r
log V (r) ≤ α,

and we conclude by Exercise 11.27 that

λmin (M) ≤
α2

4
.
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To prove the lower bound for λmin (M), observe that by Exercise 11.26,

λmin (M) = λmin

(
M ′
)
,

where M ′ = M \ {o}. Consider the function ρ (x) = |x| in M ′. In the polar
coordinates (r, θ), we have ρ = r and, by (3.93) or (8.42),

∆µρ = ρ′′ +
S′

S
ρ′ =

S′

S
.

By the first condition in (11.65), we obtain ∆µρ ≥ α′ and, by Theorem
11.17,

λmin

(
M ′
)
≥

(α′)2

4
,

which was to be proved.

Solutions to Chapter 12

12.1. As in the proof of Theorem 12.1, we can replace M by a relatively
compact open set Ω. Besides, by the same approximation argument, we can
assume that f ∈ C∞0 (Ω). Since

‖PΩ
t f‖∞ ≤ ‖f‖∞ =: a,

the range of all functions PΩ
t f , t ≥ 0, is within a bounded interval [0, a].

Since Φ′ is bounded on this interval, say by C, we obtain, for all s, t ≥ 0,
∣
∣Φ
(
PΩ
t f
)
− Φ

(
PΩ
t f
)∣∣ ≤ C

∣
∣PΩ
t f − P

Ω
t f
∣
∣ .

Since PΩ
t f

L1

→ PΩ
t f as s→ t we conclude that J (t) is continuous in t ≥ 0.

It is suffices to show that J ′ (t) ≤ 0 for t > 0. Setting u = PΩ
t f and

differentiating in t (which is justified as in the proof of Theorem 12.1), we
obtain

J ′ (t) =

∫

M

(

Φ′ (u)
∂u

∂t
+ Φ (u)

∂ξ

∂t

)

eξdµ

≤
∫

M

(

Φ′ (u) ∆µu−
Φ (u)

4δ
|∇ξ|2

)

eξdµ

= −
∫

M

(

Φ′′ (u) |∇u|2 + Φ′ (u) 〈∇u,∇ξ〉+
Φ (u)

4δ
|∇ξ|2

)

eξdµ

≤ −
∫

M

(

Φ′′ (u) |∇u|2 + Φ′ (u) |∇u| |∇ξ|+
Φ (u)

4δ
|∇ξ|2

)

eξdµ.

In the brackets we have a quadratic polynomial of |∇u| and |∇ξ|, which is
non-negative because by (12.10)

(
Φ′
)2 ≤ 4Φ′′

Φ (u)

4δ
.

Hence, J ′ ≤ 0, which finishes the proof.
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12.2. Using |∇d (·, A)| ≤ 1, we obtain

∂ξ

∂t
+

1

2
|∇ξ|2 ≤ 0.

By Theorem 12.1, we conclude that the function

J(t) :=

∫

M

(Ptf)2 eξ(t,·)dµ

satisfies the inequality

J(t) ≤ J(0) exp (−2λmin (M) t) .

If x ∈ A then ξ(0, x) = 0 whence we obtain

J(0) =

∫

A

f2dµ = ‖f‖22.

If x ∈ B then d (x,A) ≥ d(B,A), which implies

J(t) ≥
∫

B

(Ptf)2 eξ(t,·)dµ ≥ exp

(

αd(A,B)−
α2

2
t

)∫

B

(Ptf)2 dµ.

Combining the above three lines, we obtain
∫

B

(Ptf)2 dµ ≤ ‖f‖22 exp

(
α2

2
t− αd(A,B)− 2λmin (M) t

)

.

Setting here α = d(A,B)/t we finish the proof.

12.3. (a) Left to the reader
(b) Replacing f and g by functions f1A and g1B where A and B are

compact subsets of supp f and supp g, respectively, we reduce the question
to the case when f and g have compact supports. Next, approximating f
and g by C∞0 functions with close L2-norms and supports, we see that it
suffices to prove (12.18) for f, g ∈ C∞0 (M). Let us use the cos-wave operator

Ct = cos
(
tL1/2

)
from Exercise 4.52. By Exercise 7.20, the function Ctf is

C∞ smooth in R×M and solves in R×M the wave equation. By part (a),
the support of Ctf is contained in the closed |t|-neighborhood of supp f .
It follows that if 0 ≤ s < r then suppCsf is disjoint with supp g whence
(Csf, g) = 0. Therefore, the integration in s in the transmutation formula
(B.100) can be reduced to s ∈ [r,+∞), that is,

(Ptf, g) =

∫ ∞

r

1
√
πt

exp

(

−
s2

4t

)

(Csf, g) ds.

Using |(Csf, g)| ≤ ‖f‖2 ‖g‖2, we obtain (12.18).

12.4. By Theorem 8.18, it suffices to show that if u is a bounded solution
of the heat equation in (0, T ) ×M and u (t, ·) → 0 as t → 0 then u ≡ 0.
Applying the estimate (12.39) of Corollary 12.11 with B = B (x, rk), A =
B (x, rk/2), R = rk/2 and using (12.42) we obtain
∫

B(x,rk)
u2 (t, ·) dµ ≤ exp

(
Cr2

k

)
‖u‖2L∞ max

(
r2
k

8t
, 1

)

exp

(

−
r2
k

8t
+ 1

)

.
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Choose t small enough so that 1
8t > C. Then letting rk → ∞, we obtain

that the right hand side goes to 0, whence it follows that u (·, t) ≡ 0 on M .
Repeating the same argument with a shift of time, we obtain in the end that
u (·, t) ≡ 0 for all t ∈ (0, T ).

12.5. (a) Fix any compact subset K of Bc and consider the function

u (t, ·) = Pt (f1K) .

By Theorem 7.10, u is a smooth solution to the heat equation in (0,+∞)×M .

Moreover, since f1K ∈ L2 (M), we have by Theorem 4.9 that u (t, ·)
L2(M)
→

f1K as t → 0 whence it follows that u (t, ·)
L2(B)
→ 0. Applying the inequal-

ity (12.39) of Corollary 12.11 (see also Remark 12.10) and using ‖u‖L∞ ≤
‖f‖L∞ , we obtain

∫

A

Pt (f1K)2 dµ (x) ≤ µ (B) ‖f‖2L∞ max

(
R2

2t
, 1

)

exp

(

−
R2

2t
+ 1

)

.

Exhausting Bc by a sequence of compact sets K, we obtain (12.43).
(b) Applying (12.43) with f = 1Bc and then using the Cauchy-Schwarz

inequality, we obtain (12.44).

Solutions to Chapter 13

13.1. (a) By Exercise 10.11, pt (x, y)→ 1
µ(M) as t→∞ whence

g (x, y) =

∫ ∞

0
pt (x, y) dt =∞.

(b) If h (x) is a fundamental solution at x0 then, for any ϕ ∈ C∞0 (M),
∫

M

h (x) (∆µϕ) dµ = −ϕ (x0) .

If M is compact then setting here ϕ ≡ 1 we obtain a contradiction since the
left hand side vanishes, while the right hand side is equal to 1.

13.2. (a) By Exercise 3.24, the function h (x) is harmonic in M \ {o}.
Let us show that h ∈ L1 (BR). Since h (x) depends only on r = |x| , we will
write h (r) instead of h (x). Then we have

∫

BR

h dµ =

∫ R

0
h (r)S (r) dr =

∫ R

0
S (r)

∫ R

r

dt

S (t)

=

∫ R

0

dt

S (t)

∫ t

0
S (r) dr. (B.207)

In the bounded range of r, S (r) is of the order rn−1 where n = dimM .
Therefore,

1

S (t)

∫ t

0
S (r) dr '

tn

tn−1
= t,

whence the convergence of the integral (B.207) follows.



SOLUTIONS TO CHAPTER 13 139

Finally, let us show that −∆µh = δo, that is, for any ϕ ∈ C∞0 (BR),
∫

M

(∆µϕ)h dµ = −ϕ (o) .

Indeed, using the Green formula (3.97) from Exercise 3.25, we obtain, for
any ε > 0,

∫

BR\Bε
(∆µϕ)h dµ =

∫

BR\Bε
ϕ∆µh dµ+

∫

SR

(ϕrh− ϕhr) dµSR

−
∫

Sε

(ϕrh− ϕhr) dµSε .

Since ∆µh = 0 in BR \Bε and ϕ = ϕr = 0 on SR, we obtain
∫

BR\Bε
(∆µϕ)h dµ = −

∫

Sε

(ϕrh− ϕhr) dµSε

= −h (ε)

∫

Sε

ϕrdµSε + hr (ε)

∫

Sε

ϕdµSε .(B.208)

As ε→ 0, we have ∣
∣
∣
∣

∫

Sε

ϕrdµSε

∣
∣
∣
∣ ≤ CS (ε) ,

where C is the supremum of |∇ϕ| in a neighborhood of 0. Since

h (ε)S (ε) = S (ε)

∫ R

ε

dr

S (r)
'

{
ε, n > 2,
ε log R

ε , n = 2,
,

it follows that

lim
ε→0

h (ε)

∫

Sε

ϕrdµSε = 0.

On the other hand, using that hr (ε) = − 1
S(ε) and

∫

Sε

ϕdµSε ∼ ϕ (o)S (ε) as ε→ 0,

we obtain that

lim
ε→0

hr (ε)

∫

Sε

ϕdµSε = −ϕ (o) .

It follows from (B.208) that
∫

M

(∆µϕ)h dµ = lim
ε→0

∫

BR\Bε
(∆µϕ)h dµ = −ϕ (o) ,

which was to be proved.
(b) In Rn we have S (r) = ωnr

n−1 (cf. (3.91)). Taking R = 1, we obtain
from part (a) the following fundamental solution

h (x) =

∫ 1

|x|

dr

ωnrn−1
=

{
1

ωn(n−2)|x|n−2 − 1
ωn(n−2) , n 6= 2,

1
2π ln 1

|x| , n = 2.
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Adding a constant in the case n 6= 2, we see that also the function

h (x) =
1

ωn (n− 2) |x|n−2

is a fundamental solution at the origin (cf. (13.5)).
More generally, if the radius of a model manifold is ∞ and

∫ ∞ dr

S (r)
<∞

then also the function

h (x) =

∫ ∞

|x|

dr

S (r)
(B.209)

is a fundamental solution at the pole because it differs from
∫ R
|x|

dr
S(r) by an

additive constant.
In Hn we have S (r) = ωn sinhn−1 r whence we obtain the fundamental

solution at the pole:

h (x) =
1

ωn

∫ ∞

|x|

dr

sinhn−1 r
.

13.3. By Corollary 8.12, we have pt (x, y) > 0 for all x, y ∈ M , whence
we conclude by (13.3) that g (x, y) > 0.

13.4. By computation (13.15) from the proof of Lemma 13.5, we have
the identity

Gpt (x0, ·) |x =

∫

M

g (x, y) pt (x0, y) dµ (y) =

∫ ∞

t

ps (x, x0) ds,

for all x, x0 ∈M . By switching x0 and x, we obtain

Ptg (x0, ·) |x =

∫

M

pt (x, y) g (x0, y) dµ (y) =

∫ ∞

t

ps (x0, x) ds.

Observing that ps (x0, x) = ps (x, x0), we obtain the desired identity Ptg (x0, ·) =
Gpt (x0, ·) .

13.5. Function g (x, y) is always measurable on M ×M by (13.3). As
it was shown in the proof of Theorem 13.4, for any compact K ⊂ M , the
function

x 7→
∫

K

g (x, y) dµ (y)

is locally bounded. This implies that g ∈ L1
loc (M ×M) and, hence, g can

be considered as a distribution on M×M . The Laplace operator on M×M
is ∆x + ∆y, where ∆x and ∆y are both the Laplace operator on M with
respect to the variables x and y, respectively. Since away from diag

∆xg (x, y) = ∆yg (x, y) = 0,

we conclude that the function g (x, y) is harmonic in (x, y) in M ×M \ g
and, hence, g is C∞ smooth in this domain.
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13.6. Since the Green operator G in the inverse to the Dirichlet Laplace
operator L, it follows

specG ⊂ [0,
1

λmin
],

whence

‖G‖ ≤
1

λmin
.

Alternatively, this can be seen directly from the definition (13.1) which im-
plies that

‖G‖ ≤
∫ ∞

0
‖Ptf‖dt ≤

∫ ∞

0
e−λmint‖f‖dt =

1

λmin
‖f‖,

where we have also used (10.31).

13.7. Using the estimate (13.19) of Exercise 13.6 and the fact that 1 ∈
L2 (M), we obtain

∫

M

∫

M

g (x, y) dµ (x) dµ (y) = (G1, 1) ≤
1

λmin
‖1‖2L2 <∞,

whence the claim follows.

13.8. This follows from the fact that pΩk
t (x, y) ↑ pt (x, y) (cf. Exercise

7.40) and (13.3), (13.4).

13.9. Use the resolvent Rαf and observe that

Rαf =

∫ ∞

0
e−αt (Ptf) dt ↗

∫ ∞

0
(Ptf) dt = Gf

as α ↓ 0. By Exercise 5.23, we have, for any α > 0,

Rαf ≤ RΩ
αf + esup

M\K
Rαf

≤ GΩf + esup
M\K

Gf.

Letting α→ 0 we obtain (13.20).

13.10. (a) Let V be an open neighborhood of x0 in Ω such that ϕ ≡ 1
in V , and let Ω′ be a relatively compact open neighborhood of Ω such that
M \ Ω′ is non-empty. By Theorem 10.22, λmin (Ω′) > 0, and by Theorem

13.4, gΩ′ is finite. Since the function gΩ′ (x0, ·) is continuous in Ω′ \ {x0}, it
follows that

C := sup
Ω\V

gΩ′ (x0, ·) <∞.

Setting for simplicity v = gΩ (x0, ·) and using gΩ ≤ gΩ′ , we obtain that
v ≤ C in Ω \ V . It follows that

(1− ϕ) v ≡ (1− ϕ) min (v, C) .

Indeed, in V we have ϕ = 1 so that the both side vanish, while outside V
we have v = min (v, C). By Corollary 13.6, we have min (v, C) ∈ W 1

0 (Ω),
whence also (1− ϕ) min (v, C) and, hence, (1− ϕ) v are in W 1

0 (Ω).
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Remark. The hypothesis that M \Ω is non-empty is used twice: to ensure
that λmin (Ω) > 0 and to ensure the boundedness of gΩ (x0, ·) away from
V via comparison with gΩ′ (x0, ·). However, the latter is true always, as
one will see from Exercise 13.31. Hence, the hypothesis of non-emptiness of
M \ Ω can be relaxed to the assumption λmin (Ω) > 0.

(b) Let ϕ be a cutoff function of {x0} in U . Set

u = gΩ (x0, ·)− g
U (x0, ·)

so that u is a harmonic function in U . Observing that

u = ϕu+ (1− ϕ)u,

where ϕu ∈ C∞0 (Ω) and (1− ϕ)u ∈ W 1
0 (Ω) by part (a), we obtain that

u ∈W 1
0 (Ω).

13.11. Consider function

ψ (s) = (min (s, b)− a)+

so that

v (x) = a+ ψ (g (x0, x)) .

Hence, it suffices to prove that the function u = ψ (g (x0, ·)) belongs to
W 1 (M) and

‖∇u‖2L2 ≤ b− a. (B.210)

As in the proof of Corollary 13.6, construct a sequence {ψk} of smooth
functions on [0,+∞) satisfying (13.12) and such that 0 ≤ ψ′k ≤ 1 and
ψk (s) ↑ ψ (s) as k →∞. Indeed, it suffices to choose ψ′k ∈ C

∞
0 (a, b) so that

ψ′k ↑ 1 on (a, b) as k → ∞, and then define ψk by integration of ψ′k. By
Lemma 13.5, we conclude that uk := ψk (g (x0, ·)) ∈W 1

0 and

‖∇uk‖
2
L2 ≤

∫ ∞

0

∣
∣ψ′k (s)

∣
∣2 ds ≤ supψ′k supψk ≤ supψ = b− a.

Passing to the limit as k →∞, we obtain (B.210).

13.12. Let {Ωk} be a compact exhaustion of M such that x0 ∈ Ωk for
all k. Since M is non-compact, we have by Theorem 10.22 λmin (Ωk) > 0.
Setting

uk = min
(
gΩk (x0, ·) , c

)

we obtain by Corollary 13.6 that uk ∈W 1
0 (Ωk) and

‖∇uk‖
2
L2(Ωk) ≤ c.

Fix some index m. By Exercise 13.8, uk (x) ↑ u (x) as k →∞ for all x ∈ Ωm.
Since u is bounded in Ωm and, hence, u ∈ L2 (Ωm), we obtain by Exercise
4.18 that u ∈W 1 (Ωm) and

‖∇u‖2L2(Ωm) ≤ c.

Letting m→∞, we finish the proof.
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13.13. By Theorem 10.13, the spectrum of the Dirichlet Laplace operator
LΩ is discrete; let it be the sequence {λk}

∞
k=1 in the increasing order so that

λmin (Ω) = λ1.
Let ϕ be the eigenfunction of λ1, normalized in L2 (Ω). By Theorem

10.11, we can assume that ϕ (x) > 0 in Ω. If λ1 = 0 then by Exercise 10.12

pΩ
t (x, y)→ ϕ (x)ϕ (y) as t→∞.

which implies gΩ (x, y) ≡ ∞. Hence, the estimate (13.21) is trivially satis-
fied.

Assume in the sequel that λ1 > 0. Then, by Theorem 13.4, the Green
function gΩ is finite. By Exercise 10.13, the function ϕ is bounded. Let us
renormalize ϕ so that

sup
x∈Ω

ϕ (x) = 1.

For any x ∈ Ω, we have then

GΩϕ (x) =

∫

Ω
gΩ (x, y)ϕ (y) dµ (y) ≤

∫

Ω
gΩ (x, y) dµ (y) . (B.211)

On the other hand, we have

LΩϕ = λ1ϕ.

Since by Theorem 13.4, GΩ is the inverse of LΩ in L2 (Ω), applying here GΩ,
we obtain

ϕ = λ1G
Ωϕ.

Combining with (B.211), we obtain

ϕ (x) ≤ λ1

∫

Ω
gΩ (x, y) dµ (y) .

Finally, taking sup in x ∈ Ω, we obtain (13.21).

13.14. Note that by Theorem 10.13 the spectrum of Ω is discrete, and
λ1 > 0 by Theorem 10.22. Then the Green function gΩ is finite by The-
orem 13.4. By Exercise 13.7, we have gΩ ∈ L1 (Ω× Ω) so that gΩ can be
considered as a distribution on Ω × Ω. We need to prove that, for any
f ∈ C∞0 (Ω× Ω)

(
gΩ, f

)
=
∞∑

k=1

1

λk
(ϕk ⊗ ϕk, f) , (B.212)

where the brackets stand for the pairing of functions in Ω × Ω and

(ϕk ⊗ ϕk) (x, y) = ϕk (x)ϕk (y) .

Fix a function f (x, y) ∈ C∞0 (Ω× Ω) and consider for any x ∈ Ω the Fourier
expansion

f (x, y) =
∞∑

k=1

ck (x)ϕk (y) , (B.213)
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where

ck (x) =

∫

M

f (x, y)ϕk (y) dµ (y) .

By Exercise 10.16, for any fixed x ∈ Ω, the series in (B.213) converges to
f (x, y) absolutely and uniformly in y ∈ Ω. Moreover, as it is remarked in
Solution to Exercise 10.16, the convergence is uniform both in x and y in Ω
provided the norm

‖∆m
µ f (x, ·) ‖L2(Ω)

is uniformly bounded in x for any positive integer m, which is clearly the
case because f ∈ C∞0 (Ω× Ω).

Since the Green operator GΩ is a bounded inverse to LΩ, we have for
any function ψ ∈ L2 with Fourier series ψ =

∑
k akϕk that

∫

Ω
gΩ (·, z)ψ (z) dµ (z) = GΩψ =

∑

k

akG
Ωϕk =

∑ ak
λk
ϕk,

where the convergence is in L2 (Ω). Applying this for ψ = f (x, ·) with a
fixed x ∈ Ω, we obtain the identity

∫

Ω
gΩ (y, z) f (x, z) dµ (z) =

∞∑

k=1

ck (x)

λk
ϕk (y) , (B.214)

where the convergence is in L2 (Ω) with respect to the variable y. However,

since the series
∑∞

k=1
ck(x)
λk

ϕk (y) converges uniformly in x and y, its sum is

a continuous function of x and y. Since also GΩf (x, ·) is also continuous by
Theorem 13.4, we conclude that the identity (B.214) holds pointwise, and
the convergence is uniform jointly in x, y ∈ Ω.

Setting in (B.214) x = y and integrating in x, we obtain
∫

Ω

∫

Ω
gΩ (x, z) f (x, z) dµ (x) dµ (z) =

∞∑

k=1

1

λk

∫

Ω

∫

Ω
f (x, y)ϕk (x)ϕk (y) dµ (x) dµ (y) ,

which is equivalent to (B.212).

13.15. (a) If Ptfk ≤ fk and by the monotone convergence theorem
Ptfk → Ptf , it follows that Ptf ≤ f .

(b) For any i ∈ I, we have Ptf ≤ Ptfi ≤ fi, whence

Ptf ≤ inf
i∈I

fi = f.

13.16. (a) By definition, the inequality Ptf ≤ f is satisfied almost ev-
erywhere. Since the both functions Ptf and f are continuous, it follows
that this inequality is satisfied pointwise. To prove that Ptf (x) → f (x)
pointwise, fix a point x ∈M and choose a cutoff function ϕ of the point x.
Since fϕ ∈ Cb (M), we have by Theorem 7.16 that Pt (fϕ)→ fϕ pointwise
as t→ 0. In particular, it follows that

Pt (fϕ) (x)→ fϕ (x) = f (x) .
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Since
Pt (fϕ) (x) ≤ Ptf (x) ≤ f (x) ,

it follows that Ptf (x)→ f (x).
(b) Let inf f = m. Since M is stochastically complete, we have Pt1 = 1,

whence
Ptf ≥ Ptm = m.

If f (x) = m at some point x then by part (a) we have Ptf (x) ≤ f (x) = m,
whence Ptf (x) = m. Since Ptf solves the heat equation in R+ ×M (cf.
Exercise 7.30), we conclude by the strong parabolic minimum principle of
Theorem 8.11, that Ptf ≡ m. Letting t→ 0, we obtain f ≡ m.

(c) Use the same argument as in the proof of Corollary 8.16.

13.17. Fix x0 ∈M . By (13.15) and Exercise 13.4, we have

Ptg (x0, ·) = Gpt (x0, ·) =

∫ ∞

t

ps (x0, ·) ds ≤ g (x0, ·) .

Hence, g (x0, ·) is superaveraging.

13.18. (a) By (13.24), the function v = u − f belongs to W 1
0 (Ω). Ex-

tending v by setting v = 0 outside Ω, we obtain v ∈W 1
0 (M). Obviously, we

have the identity f̃ = f+v on M . Hence, f ∈W 1
0 (M) implies f̃ ∈W 1

0 (M).
(b) Since f ≥ 0 and λmin (Ω) > 0, by Theorem 5.13 we obtain from

(13.24) that u ≥ 0. Hence, f̃ ≥ 0.
Since f is superaveraging, we have ∆µf ≤ 0, whence

−∆µ (u− f) = −∆µu+ ∆µf ≤ 0 in Ω.

Since u−f ∈W 1
0 (Ω), Theorem 5.13 yields that u−f ≤ 0. Therefore, f̃ ≤ f

in M . In particular, we have f̃ ∈ L2 (M).

Let us show that Ptf̃ ≤ f̃ . Outside Ω this is true because

Ptf̃ ≤ Ptf ≤ f = f̃ .

To prove that Ptf̃ ≤ f̃ inside Ω, observe that the both function w1 (t, ·) =

Ptf̃ and w2 (t, ·) = f̃ = u solve the heat equation in R+ × Ω:

dw

dt
−∆µw = 0,

which is understood in the sense of Theorem 5.16, that is, w (t, ·) is a path
in W 1 (Ω), dw

dt is the strong derivative in L2 (Ω), and ∆µw is understood
in the distributional sense. Moreover, the both functions satisfy the same
initial condition

w (t, ·)
L2(Ω)
−→ u as t→ 0.

Furthermore, these functions satisfy the conditions

w2 (t, ·) = f modW 1
0 (Ω)

while
w1 (t, ·) = Ptf̃ ≤ Ptf ≤ f,
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whence it follows that

w1 (t, ·)− w2 (t, ·) ≤ 0 modW 1
0 (Ω) .

Hence, we obtain by Theorem 5.16 that w1 ≤ w2, that is, Ptf̃ ≤ u in Ω,
which finishes the proof.

13.19. Assume first that h ∈W 2
0 . Then by the Green formula of Lemma

4.4,
(−∆µPtf, h) = (Ptf,−∆µh) ≤ (f,−∆µh) = (∇f,∇h) ,

where we have used that3 −∆µh ≥ 0 and Ptf ≤ f .
For a general h ∈ W 1

0 , the function Psh belongs to W 2
0 for any s > 0

and is superaveraging, because for any t > 0

Pt (Psh) = Ps (Pth) ≤ Psh.

By the above argument, we have

(−∆µPtf, Psh) ≤ (∇f,∇Psh) .

Since Psh
W 1

→ h as s → 0 (cf. Exercise 4.45), we can pass here to the limit
and obtain (13.25).

13.20. The condition ∆µuk = 0 is equivalent to

(∇uk,∇v)L2 = 0 for any v ∈W 1
0 (Ωk) (B.215)

(cf. the proof of Theorem 4.5). Setting here v = uk − f , we obtain

‖∇uk‖
2 = (∇uk,∇f) ≤ ‖∇uk‖‖∇f‖, (B.216)

whence
‖∇uk‖ ≤ ‖∇f‖. (B.217)

Since f ∈ W 1
0 (M), there is a sequence of functions fk ∈ C∞0 (M) such that

fk
W 1

−→ f . Passing to a subsequence, we can assume that supp fk ⊂ Ωk.
Choosing v = fk in (B.215) and using (B.217), we obtain

(∇uk,∇f) = (∇uk,∇ (f − fk)) + (∇uk,∇fk)

≤ ‖∇uk‖‖∇ (f − fk) ‖+ 0

≤ ‖∇f‖‖∇ (f − fk) ‖.

Combining with (B.216), we conclude that

‖∇uk‖
2 ≤ ‖∇f‖‖∇ (f − fk) ‖ → 0 as k →∞,

which was to be proved.

13.21. Since λmin (Ωk) > 0, the weak Dirichlet problem in Ωk
{

∆µuk = 0,
uk = h modW 1

0 (Ωk) ,

3If h ∈W 2
0 is superaveraging then the fact that ∆µh ≤ 0 follows also from

∆µh = L2- lim
t→0

Pth− h
t

(cf. Exercise 4.40).
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has a unique solution uk ∈W 1 (Ωk). Consider the following function

hk =

{
h in M \ Ωk,
uk in Ωk.

By Exercise 13.18, hk ∈W 1
0 (M) and hk is superaveraging. Since −∆µPtf ≥

0, we obtain
∫

M\Ωk

(−∆µPtf)hdµ ≤
∫

M

(−∆µPtf)hkdµ.

By Exercise 13.19 we have, for all t > 0 and k ∈ N,

(−∆µPtf, hk) ≤ (∇f,∇hk) ≤ ‖∇f‖‖∇hk‖,

and by Exercise 13.20,

‖∇hk‖ → 0 as k →∞.

Combining the above three lines, we finish the proof.

13.22. By Theorem 13.10, there is a constant Cn such that, for any
positive harmonic function h in B (0, 1),

sup
B(0,1/2)

h ≤ Cn inf
B(0,1/2)

h . (B.218)

If f is a positive harmonic function in B (x0, r) then the function

h (x) = f (x0 + rx)

is positive and harmonic in B (0, 1). Hence, (13.33) follows from (B.218).

13.23. Let f be a positive harmonic function in Rn. Renaming f − inf f
by f , we can assume that inf f = 0. Applying the Harnack inequality (13.33)
of Exercise 13.22 in any ball B (x, r) with fixed x and r → ∞, we obtain
sup f = 0, whence f ≡ 0.

13.24. If M is compact then, by Exercise 13.1, g (x, y) ≡ ∞ so that the
claim is satisfied. Assume in the sequel that M is non-compact. It suffices
to prove that if g (x0, y0) < ∞ for some x0, y0 ∈ M , then g (x, y0) < ∞ for
all x 6= y0. Then using the symmetry of the Green function and applying
further this claim, we obtain g (x, y) <∞ for all x 6= y.

Let {Ωk} be a compact exhaustion sequence of M such x0, y0 ∈ Ω1.
Since M is connected, Ωk can also be chosen to be connected. By Theorem
10.22, we have λmin (Ωk) > 0, and by Theorem 13.4, the Green function gΩk

is finite. By Exercise 13.8, gΩk (x, y) ↑ g (x, y) as k → ∞ for all x, y ∈ M .
Fix some m ≥ 1 and consider for any k > m the following function

ukm (x) = gΩk (x, y0)− gΩm (x, y0) .

Clearly, {uk} is an increasing sequence of harmonic functions in Ωm, which
is bounded at point x0. By the Harnack principle (Corollary 13.13), we have

lim
k→∞

uk (x) <∞ for all x ∈ Ωm,
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whence it follows that

g (x, y0) = lim
k→∞

uk (x) + gΩm (x, y0) <∞

for all x ∈ Ωm \ {y0}. Letting m → ∞ we obtain that g (x, y0) < ∞ for all
x 6= y0.

13.25. Set λ = λmin (M). By Exercise 12.3, we have the estimate (12.18)
but without the term e−λt. By Theorem 13.16, there is a positive solution h
of the equation ∆µh + λh = 0 on M . Consider the new measure µ̃ defined

by dµ̃ = h2 dµ. By Theorem 9.15, the heat semigroup P̃t of the weighted
manifold (M, µ̃) is related to Pt by

P̃t = eλt
1

h
◦ Pt ◦ h.

Applying the estimate (12.18) of Exercise 12.3 to P̃t, we obtain that, for all
f, g ∈ C∞0 (M),

∣
∣
∣(P̃tf, g)L2(µ̃)

∣
∣
∣ ≤ ‖f‖L2(µ̃) ‖g‖L2(µ̃)

∫ ∞

r

1
√
πt

exp

(

−
s2

4t

)

ds.

Noticing that

(P̃tf, g)L2(µ̃) =

∫

M

eλt
1

h
Pt (hf) g dµ̃ = eλt

∫

M

Pt (hf)hg dµ

and

‖f‖L2(µ̃) = ‖fh‖L2(µ) ,

we can rename everywhere fh and gh by f and g, respectively, and obtain

eλt (Ptf, g)L2(µ) ≤ ‖f‖L2(µ) ‖g‖L2(µ)

∫ ∞

r

1
√
πt

exp

(

−
s2

4t

)

ds,

which is equivalent to (13.36). Finally, this estimate extends to arbitrary
f, g ∈ L2 (M,µ) in the same way as it was done in Exercise 12.3.

13.26. (a) By Theorem 10.22, λ1 (Ω) > 0 so that by Theorem 13.4 the
Green function gΩ is finite. Modifying the computation from the proof of
that lemma, we have, for all x ∈ Ω and s > 0,

GΩ1 (x) =

∫

Ω
gΩ (x, y) dµ (y)

=

s∫

0

∫

Ω

pΩ
t (x, y) dµ (y) dt+

∫

Ω

∞∫

s

pΩ
t (x, y) dt dµ (y)

≤ s+

∫

Ω

∞∫

s

√
ps (x, x) ps (y, y) exp (−λ (t− s)) dt dµ (y)

≤ s+ Cλ−1µ (Ω) ,
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where λ = λ1 (Ω) and

C = sup
z∈Ω

ps (z, z) <∞.

Hence, E := ‖GΩ1‖∞ < ∞. Then by Exercise 2.20, GΩ is a bounded
operator in any space Lr, 1 ≤ r ≤ +∞, and ‖GΩ‖Lr→Lr ≤ E.

Let us give also independent proofs for the boundedness of GΩ in L∞, L2, L1.
For any f ∈ L∞ (Ω), we have

‖GΩf‖∞ ≤ ‖G
Ω1‖∞‖f‖∞ = E‖f‖∞

so that
∥
∥GΩ

∥
∥
L∞→L∞ ≤ E.

The fact that GΩ is a bounded operator in L2 (Ω) follows from Theorem

13.4 because by GΩ =
(
LΩ
)−1

, the spectrum of GΩ is contained in [0, λ].

The boundedness in L1 (Ω) follows from

‖GΩf‖L1 =

∫

M

∣
∣
∣
∣

∫

M

gΩ (x, y) f (y) dµ (y)

∣
∣
∣
∣ dµ (x)

≤
∫

M

(∫

M

gΩ (x, y) dµ (x)

)

|f (y)| dµ (y)

≤ E

∫

M

|f (y)| dµ (y) = E‖f‖L1 .

(b) If f ∈ L2 (Ω) then the fact that u = GΩf solves the equation −∆µu =
f follows from Lemma 13.1. Assume now that f ∈ L1 (Ω), which is the
general case, because Lp (Ω) ⊂ L1 (Ω) for any p ≥ 1. Then the function
fk = (f ∧ k)∨ (−k) is in L2 (Ω) and, hence, the function uk = GΩfk satisfies

the equation −∆µuk = fk. Since fk
L1

→ f and, hence, uk
L1

→ u, we obtain in
the limit −∆µu = f .

13.27. We use the fact that if {uk} is an increasing sequence of L1
loc

functions such that −∆µuk = f and if u := limk→∞ uk is finite then u ∈ L1
loc

and −∆µu = f . Indeed, the differences vk := uk−u1 are harmonic functions,
and the result follows from the Harnack principle for harmonic functions
(Corollary 13.13).

Let {Ωk} be a compact exhaustion sequence in M . Set uk = GΩkf .
Since f ∈ L1 (Ωk), by Exercise 13.26 we have uk ∈ L1 (Ωk) and −∆µuk = f .
By the above remark, we conclude that the function

u := Gf = lim
k→∞

uk

belongs to L1
loc and satisfies the equation −∆µu = f .

13.28. By enlarging K, we can assume that x0 is an interior point of K.
Let us first consider the following special case. Let Ω be a relatively compact
open set containing K and such that M \ Ω is non-empty. Let v ∈ W 1 (Ω)
be a harmonic function in Ω such that

v (x) ≤ gΩ (x0, x) for all x ∈ Ω \K.
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We claim that v ≤ 0 in Ω. Choose a cutoff function ϕ of {x0} in K and a
cutoff function ψ of K in Ω, set C = supK v, and show that

v ≤ (1− ϕ) gΩ (·, x0) + Cψ in Ω. (B.219)

Indeed, in K we have ψ = 1, and (B.219) holds by v ≤ C. In Ω \ K we
have 1− ϕ = 1, and (B.219) holds by v ≤ gΩ (·, x0). By Exercise 13.10, the
function (1− ϕ) gΩ (·, x0) belongs to W 1

0 (Ω). Since also Cψ ∈ W 1
0 (Ω), it

follows from (B.219) that

v ≤ 0 modW 1
0 (Ω) .

Since λmin (Ω) > 0, we conclude by the weak maximum principle of Theorem
5.13, that v ≤ 0 in Ω.

Returning to the general case, let {Ωk} be a compact exhaustion se-
quence of M such that K ⊂ Ωk for all k. Since M is non-compact, M \ Ωk

is non-empty for all k. We claim that, for any index k and any ε > 0, there
exists m large enough such that

g − gΩm ≤ ε in Ωk \K. (B.220)

Indeed, the function gΩm−gΩk+1 is harmonic in Ωk+1\{x0} and, as m→∞,
converges pointwise monotonically to g − gΩk+1 . Since the limit function is
continuous in Ωk+1 \ {x0}, the convergence is locally uniform in Ωk+1 \ {x0}
by the Dini theorem.4 In particular, the convergence is uniform on Ωk \K,
whence (B.220) follows.

Using (B.220) and the hypothesis u ≤ g in M \K, we obtain that, for
the above m and k,

v := u− ε− gΩm + gΩk ≤ gΩk in Ωk \K.

The function v is harmonic in Ωk and belongs to W 1 (Ωk) because so do
u− ε and gΩm − gΩk (cf. Exercise 13.10). We conclude by the above special
case that v ≤ 0 in Ωk, that is,

u ≤ ε+ gΩm − gΩk in Ωk.

Replacing gΩm by its upper bound g, letting k → ∞ and then ε → 0, we
obtain u ≤ 0 in M , which was to be proved.

13.29. Set
u (x) = g (x, x0)− h (x) .

Then u (x) is a harmonic function in M , and

lim sup
xk→∞

u (xk) ≥ 0,

for any sequence {xk} such that xk →∞ in M . By Exercise 8.5, we conclude
that u ≥ 0 in M . Hence, g (x, x0) ≥ h (x).

If we knew a priori that h is non-negative then the opposite inequality
would hold by Theorem 13.17. In the general case, we use again that h (x)→

4By the Harnack principle, we have in fact that gΩm−gΩk+1 → g−gΩk+1 in C∞ (Ωk+1)
(cf. the proof of Theorem 13.17), but here we need much less.
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0, which means that, for any ε > 0 there is a compact K ⊂ M such that
|h (x)| ≤ ε in M \K. It follows that

u (x)− ε ≤ g (x, x0) for all x ∈M \K. (B.221)

Since u− ε is harmonic, we conclude by Exercise (13.28) that u− ε ≤ 0 on
M . Since ε is arbitrary, we obtain u ≤ 0 and g (x, x0) ≤ h (x), which finishes
the proof.

13.30. (i)⇒ (ii) If the Green function is finite then, by Theorem 13.17,
g (x, ·) ∈ L1

loc (M). Therefore, for any non-negative ϕ ∈ C∞0 , the function
f (x) = Gϕ is finite. By Exercise 13.27, f ∈ L1

loc and −∆µf = ϕ. It follows
that f is a smooth non-negative superharmonic function. If ϕ 6≡ 0 then f is
non-constant.

The implication (ii) ⇒ (iii) follows from the fact that any positive
superharmonic function is also superaveraging (see Exercise 7.29).

(iii) ⇒ (i) Let f be a non-constant positive superaveraging function.

Choose a constant c strictly between einf f and esup f and set f̃ = min (f, c).

By Exercise 13.15, f̃ is also superaveraging. Moreover, we claim that in fact
a strict inequality holds

Ptf̃ < f̃ a.e.

for any t > 0. Indeed, by the choice of c, the strict inequality f̃ < f holds
on a set of positive measure. It follows that, for all t > 0 and x ∈M ,

Ptf̃ (x) =

∫

M

pt (x, y) f̃ (y) dµ (y) <

∫

M

pt (x, y) f (y) dµ (y) = Ptf ≤ f.

In the same way, the strict inequality f̃ < c holds on a set of positive measure
whence

Ptf̃ < Ptc ≤ c.

It follows that

Ptf̃ < min (f, c) = f̃ .

For simplicity of notation, let us now rename f̃ to f so that Ptf < f .
Consider a truncated Green function

gT (x, y) =

∫ T

0
pt (x, y) dt,
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where T ∈ (0,+∞), and obtain some upper bound for gT , which would be
uniform in T . We have

∫

M

gT (·, y) (f − Ptf) (y) dµ (y) =

∫ T

0
Ps (f − Ptf) ds

=

∫ T

0
Psf ds−

∫ T

0
Ps (Ptf) ds

=

∫ T

0
Psf ds−

∫ T

0
Ps+tf ds

=

∫ T

0
Psf ds−

∫ T+t

t

Psf ds

≤
∫ t

0
Psf ds.

Since the right hand side here is independent of T , we can let T → ∞ and
obtain ∫

M

g (·, y) (f − Ptf) (y) dµ (y) <∞.

Since the function f − Ptf is strictly positive, it follows that the Green
function g (x, y) is finite, which was to be proved.

13.31. If M is compact then g ≡ ∞ and there is nothing to prove.
Hence, we can assume that M is non-compact. By switching to a connected
component, we can also assume that Ω is connected.

Fix once and for all a point y ∈ Ω. Let us first prove (13.40) in the case
x ∈ Ω. For that consider in Ω the function

u (x) = g (x, y)− gΩ (x, y) ,

that is harmonic in Ω and is bounded by g (x, y). In particular, we have

lim sup
x→∂Ω

u (x) ≤ a := sup
z∈∂Ω

g (z, y) .

It follows from the maximum principle of Exercise 8.5) that u ≤ a in Ω,
which proves (13.40) in the case x ∈ Ω.

If x ∈ ∂Ω then (13.40) is trivially satisfied, so we are left to treat the
case x /∈ Ω. In this case gΩ (x, y) = 0 and (13.40) amounts to

sup
x∈M\Ω

g (x, y) ≤ sup
x∈∂Ω

g (x, y) . (B.222)

Let {Ωk}
∞
k=1 be a compact exhaustion of M such that Ω b Ω1. We will show

that, for any index k,

sup
x∈Ωk\Ω

gΩk (x, y) ≤ sup
x∈∂Ω

gΩk (x, y) ,
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whence (B.222) will follow by letting k → ∞. By Theorem 10.22, we have
λmin (Ωk) > 0, whence gΩk is finite by Theorem 13.4. Set

b := sup
x∈Ωk\Ω

gΩk (x, y)

and observe that b < ∞ because gΩk ≤ gΩk+1 and gΩk+1 is continuous in
Ωk \ Ω. Consider in Ωk the function

u (x) = min
(
gΩk (x, y) , b

)
.

Clearly, u = gΩk (·, y) in Ωk \Ω and, hence, function u is harmonic in Ωk \Ω.
By Corollary 13.6, we have u ∈ W 1

0 (Ωk). Clearly, u ∈ C (Ωk \ {y}). We
conclude by Exercise 7.8, applied to manifold Ωk and its subset Ωk\Ω (which
is the exterior of a compact set Ω) that

sup
Ωk\Ω

u = sup
∂Ω

u.

Since the left hand side is equal to b, we obtain

b = sup
∂Ω

u ≤ sup
∂Ω

gΩk (·, y) ,

which was to be proved.

13.32. We show that a fundamental solution exists at any given point
x0 ∈ M . Let {Ωk}

∞
k=1 be a compact exhaustion sequence in M such that

all Ωk are connected. Since M \ Ωk 6= ∅, by Theorems 10.22 and 13.4,
the weighted manifold Ωk has a finite Green function gΩk , which is also a
fundamental solution of the Laplacian in Ωk.

We can assume that x0 belongs to all sets Ωk. Fix another point x′0 that
also belongs to all Ωk and set

ck = gΩk
(
x′0, x0

)
.

Consider sequence of functions

fk (x) = gΩk (x, x0)− ck

so that fk is a fundamental solution in Ωk at the point x0, and in addition
fk (x′0) = 0. Fix some index m ∈ N and consider functions

hk (x) = fk (x)− fm (x) .

Clearly, for any k > m, the function hk (x) is harmonic in Ωm and vanishes
at x′0. By the compactness principle (Theorem 13.12), there is a subsequence
{hki} that converges to a harmonic function in Ωm in the sense C∞ (Ωm).
Therefore, the sequence {fki} converges to a fundamental solution in Ωm in
the sense of distributions in Ωm. Using the diagonal process, the subsequence
{fki} can be chosen so that it converges to a fundamental solution in any
Ωm. This implies that its limit is defined on all of M and is a fundamental
solution on M .

Note that if M is non-parabolic then by Exercise 13.30 the Green func-
tion is finite and, hence, is a (positive) fundamental solution. The above
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argument proves the existence of a signed fundamental solution on para-
bolic manifolds.

13.33. Assume the contrary that M is stochastically complete, that is,
∫

M

pt (x, y) dµ (y) = 1

for all t > 0. Integrating in t from 0 to ∞ and using the definition (13.3) of
the Green function, we obtain
∫

M

g (x, y) dµ (y) =

∫

M

∫ ∞

0
pt (x, y) dµ (y) =

∫ ∞

0

∫

M

pt (x, y) dµ (y) =∞.

Since g (x, ·) is locally integrable (see the proof of Theorem 13.17), we have
∫

K

g (x, y) dµ (y) <∞

whence ∫

M\K
g (x, y) dµ (y) =∞,

which contradicts the hypothesis.

13.34. Fix some R > 0 and consider in BR the function

hR (x) =

∫ R

|x|

ds

S (s)
. (B.223)

By Exercise 13.2, this function is a fundamental solution in BR of the Laplace
operator at the pole o. Since hR vanishes at ∂BR, we conclude by Exercise
13.29 that h (x) = gBR (x, o). Letting R → ∞ and using that gBR → g as
R→∞ we obtain from (B.223) that

g (x, o) =

∫ ∞

r

ds

S (s)
, (B.224)

which was to be proved.
To answer the last question, write

∫

M

g (·, o) dµ =

∫ ∞

0
S (r)

∫ ∞

r

ds

S (s)
=

∫ ∞

0

V (s)

S (s)
ds

where V (s) =
∫ s

0 S (r) dr. Hence, the Green function g (·, o) belongs to

L1 (M) if and only if ∫ ∞

0

V (s)

S (s)
ds <∞.

At 0 this integral is always convergent because V (s)
S(s) = O (s) as s→∞. The

convergence at ∞ occurs, for example, if, for large s, V (s) = exp
(
s2+ε

)

with ε > 0.

Remark. Note that (B.224) remains valid also in the case when the integral
in the right hand side diverges as in this case g =∞.
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13.35. Let h (x) be the standard fundamental solution of the Laplace
operator in Rn, that is,

h (x) =

{
1

ωn(n−2) |x− y|
2−n , n 6= 2,

1
2π log 1

|x−y| , n = 2

(cf. Exercise 13.2).
(a) Fix a point y ∈ B. Note that the right hand side of (13.44) coincides

with the following function

f (x) = h (x− y)−

(
R

|y|

)n−2

h (x− y∗) .

Since y∗ lies outside B, the function h (x− y∗) is harmonic in B. Therefore,
we have −∆µf = δy, that is, f is a fundamental solution in B. Let us verify
that f = 0 on ∂B. For any x ∈ ∂B, we have |x| = R, whence, by the
definition of y∗,

|x|
|y|

=
|y∗|
|x|

. (B.225)

It follows that the triangles 0xy and 0y∗x are similar, whence

|x− y∗|
|x− y|

=
|x|
|y|

=
R

|y|
. (B.226)

Clearly, (B.226) implies that f (x) = 0 for x ∈ ∂B. By Exercise 13.29, we
conclude that g (x, y) = f (x) for all x ∈ B.

Solutions to (b) and (c) are similar to (a).

13.36. Since

g (x, y) =

∫ ∞

0
pt (x, y) dt,

it suffices to prove that

J :=

∫ ∞

0

1

F
(√
t
) exp

(

−c
r2

t

)

dt '
∫ ∞

r

sds

F (s)
. (B.227)

Split the integral into the sum

J = J0 + J∞,

where

J0 =

∫ r2

0

1

F
(√
t
) exp

(

−c
r2

t

)

dt, (B.228)

J∞ =

∫ ∞

r2

1

F
(√
t
) exp

(

−c
r2

t

)

dt. (B.229)

Step 1. Let us show that

J∞ '
∫ ∞

r

sds

F (s)
. (B.230)
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Indeed, observe that in the integral (B.229) r2/t ≤ 1, which implies

J∞ '
∫ ∞

r2

1

F
(√
t
)dt,

and the rest follows by the change s =
√
t.

Step 2. Let us show that

J0 ≤ C
r2

F (r)
. (B.231)

By (13.45) there are constants β > 0 and b > 0 such that

F (s)

F (s′)
≤ b

( s
s′

)β
, for all s > s′ > 0,

so that, for all t ≤ r2,

F (r)

F
(√
t
) ≤ b

(
r
√
t

)β
.

Substituting into (B.228) and changing in the integral τ = t/r2, we see that
(B.231) amounts to

∫ 1

0
τβ exp

(

−
1

τ

)

dτ ≤ C,

which is obviously true.

Step 3. Let us show that

r2

F (r)
≤ A

∫ ∞

r

sds

F (s)
. (B.232)

Indeed, using (13.45), we have
∫ ∞

r

sds

F (s)
≥
∫ 2r

r

sds

F (s)
≥ A−1

∫ 2r

r

sds

F (r)
≥ A−1 r2

F (r)
.

Combining (B.230), (B.231), (B.232), we obtain (13.2).
To prove the second claim, let us show that, under the condition (13.47),

J '
r2

F (r)
.

The lower bound follows from (B.232). For the upper bound, it suffices to
show that

J∞ ≤ C
r2

F (r)

since J0 satisfies a similar estimate by (B.231). By (B.230), it suffices to
prove that

∫ ∞

r

sds

F (s)
≤ C

r2

F (r)
,
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which by (13.47) amounts to
∫ ∞

r

(r
s

)α
sds ≤ Cr2,

and which is true by α > 2.

Solutions to Chapter 14

14.1. By Theorem 14.2, {Pt} is L2 → Lp
∗

ultracontractive with the rate
function θ(t). Hence, for any f ∈ Lp ∩ L2, we have

‖Ptf‖p∗ = ‖Pt/2
(
Pt/2f

)
‖p∗ ≤ θ(

t

2
)‖Pt/2f‖2 ≤ θ

2(
t

2
)‖f‖p,

whence the claim follows.

14.2. Let {Ωk} be a compact exhaustion sequence of Ω. Then we have

λmin (Ωk) ≥ Λ (µ (Ωk)) ≥ Λ (µ (Ω)) .

Letting k →∞ and using Exercise 10.6, we obtain λmin (Ω) ≥ Λ (µ (Ω)).

14.3. If u ∈ C∞0 (Ω) then by the Cauchy-Schwarz inequality

‖u‖21 ≤ µ (Ω) ‖u‖22
whence ∫

M |∇u|
2 dµ

∫
M u2dµ

≥ Λ

(
‖u‖21
‖u‖22

)

≥ Λ (µ (Ω)) .

The rest follows from the variational principle of Theorem 10.8.

14.4. Left to the reader

14.5. Let V (r) = µ (B (x, r)). Then using the Lipschitz cutoff func-
tion ϕ of B (x, r/2) in B (x, r) (see Exercise 11.6) as a test function in the
variational property of the first eigenvalue, we obtain

V (r/2) ≤
∫

B(x,r)
ϕ2dµ ≤ λmin (B (x, r))−1

∫

B(x,r)
|∇ϕ|2 dµ

≤
16

r2

(
aV (r)−2/ν

)−1
V (r)

whence
V (r) ≥ c

(
ar2V (r/2)

)θ
,

where θ = ν
ν+2 and c = c (ν) > 0. Iterating this, we obtain

V (r) ≥ caθr2θV
(r

2

)θ

≥ c1+θaθ+θ
2
r2θ
(r

2

)2θ2

V
(r

4

)θ2

≥ c1+θ+θ2
aθ+θ

2+θ3
r2θ
(r

2

)2θ2 (r
4

)2θ3

V
(r

8

)θ3

...

≥ c1+θ+θ2+...aθ(1+θ+θ2+...)r2θ(1+θ+θ2+...)2−2θ2(1+θ+θ2+...)V
( r

2k

)θk
.
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Letting k →∞ and noticing that

V
( r

2k

)
∼ cν

( r
2k

)ν

and, hence, V
(
r

2k

)θk → 1, we obtain

V (r) ≥ const a
θ

1−θ r
2θ

1−θ = const aν/2rν .

14.6. Let us first prove that the Sobolev inequality (14.19) implies the
Faber-Krahn inequality

λmin (Ω) ≥ cµ (Ω)−2/ν , (B.233)

for any relatively compact open set Ω ⊂M . Indeed, set

p =
ν

ν − 2

and observe that, for any u ∈ C∞0 (Ω) we have by the Hölder inequality
inequality and (14.19)

∫

Ω
u2dµ ≤

(∫

Ω

(
u2
)p
)1/p

µ (Ω)1−1/p ≤ c−1µ (Ω)
2
ν

∫

M

|∇u|2 dµ,

whence (B.233) follows.
Next, let us deduce the Sobolev inequality from (B.233). Obviously, it

suffices to assume that u ≥ 0. Any non-negative function u ∈ W 1
0 (M) can

be approximated by a sequence of non-negative functions uk ∈ C∞0 (M) such
that

‖uk − u‖2 −→ 0 and ‖∇uk −∇u‖2 −→ 0 as k →∞

(see Lemma 5.4). Choose a subsequence {uki} which converges to u almost
everywhere. If (14.19) holds for each uki then we can pass to the limit and
obtain (14.19) for u since by Fatou’s lemma

‖u‖2p ≤ lim inf
i→∞

‖uki‖2p .

Hence, we can assume in the sequel that u is a non-negative function from
C∞0 (M). Set for any k ∈ Z

Ωk =
{
x ∈M : u(x) > 2k

}
and mk = µ(Ωk).

Clearly, Ωk+1 ⊂ Ωk, and the union of all sets Ωk is {u > 0}. Hence, we have
∫

M

u2pdµ =
∑

k∈Z

∫

Ωk\Ωk+1

u2pdµ ≤ 4p
∑

k∈Z

4kpmk. (B.234)

For any k ∈ Z, consider the function

uk(x) :=
(

min(u(x), 2k+1)− 2k
)

+
=






2k, x ∈ Ωk+1,

u(x)− 2k, x ∈ Ωk \ Ωk+1,
0, x /∈ Ωk,
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which belongs to W 1
0 (M) (cf. Exercise 5.3). Since ∇uk = ∇u on Ωk \Ωk+1

and ∇uk = 0 outside Ωk \ Ωk+1, we obtain
∫

M

|∇u|2 dµ =
∑

k∈Z

∫

M

|∇uk|
2 dµ. (B.235)

Let Ω̃k be an relatively open neighborhood of Ωk, such that µ(Ω̃k) ≤ 2µ
(
Ωk

)
.

Since supp uk ⊂ Ω̃k, we conclude by Lemma 5.5 that uk ∈ W 1
0 (Ω̃k). Apply-

ing the Faber-Krahn inequality (B.233) for Ω̃k, we obtain
∫

M

|∇uk|
2 dµ ≥

a

µ(Ω̃k)2/ν

∫

Ωk

u2
kdµ ≥

a

(2mk)2/ν
22kmk+1 =

a

22/ν

4kmk+1

m
2/ν
k

,

whence ∫

M

|∇uk|
2 dµ ≥

a

22/ν

∑

k∈Z

4kmk+1

m
2/ν
k

. (B.236)

For arbitrary sequences of positive numbers {xk}, {yk}, and r, s > 1 such
that 1/r + 1/s = 1, we have by the Hölder inequality

∑
x

1/r
k =

∑(
xk
yk

)1/r

y
1/r
k ≤

(∑ xk
yk

)1/r (∑
y
s/r
k

)1/s
,

whence

∑ xk
yk
≥

(∑
x

1/r
k

)r

(∑
y
s/r
k

)r/s ≥

∑
xk

(∑
yαk
)1/α ,

where α = s/r can take any positive value. Therefore, we obtain

∑ 4kmk+1

m
2/ν
k

=
∑ 4kpmk+1

4k(p−1)m
2/ν
k

≥

∑
4kpmk+1

(∑
4k(p−1)αm

2α/ν
k

)1/α
.

Choosing α so that (p− 1)α = p that is, α = p
p−1 = ν/2, we obtain

∑ 4kmk+1

m
2/ν
k

≥
4−p

∑
4kpmk

(
∑

4kpmk)
2/ν

= 4−p
(∑

4kpmk

)1−2/ν
. (B.237)

Combining together (B.234), (B.235), (B.236), (B.237), we obtain (14.19).

14.7. It suffices to prove that
(∫

M

|u|γ
)2/γ

≥

(∫

M

|u|α dµ

)−a(∫

M

|u|β dµ

)b

where γ = 2ν
ν−2 , that is,

‖u‖bββ ≤ ‖u‖
aα
α ‖u‖

2
γ .

Let us use the interpolation inequality

‖u‖yβ ≤ ‖u‖
x
α‖u‖

z
γ ,
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which is true whenever α < β < γ and x, y, z are positive numbers such that
{
x+ z = y
x
a + z

γ = y
β

.

Substituting x = aα, y = bβ, and z = 2, we obtain the conditions (14.22).

14.8. Each of the functions Λ = Λ1 + Λ2 and Λ = max (Λ1,Λ2) is obvi-
ously non-negative, monotone decreasing, and right continuous. The condi-
tion (14.23) is satisfied because in the both cases Λ ≥ Λ1.

14.9. Let γ be the Γ-transform of Λ. For t < t1 :=
∫ v1

0
dv

vΛ(v) we have

γ (t) = const t1/α1 and
γ′

γ
(t) =

1

α1t
.

Clearly, γ satisfies (14.36) for t < t1 with δ = 1/2. It suffices to check that
γ satisfies (14.36) also for large enough t with some δ > 0, which will imply
by Lemma 14.15 that γ ∈ Γδ′ for some δ′ > 0 and, hence, Λ ∈ Lδ′ .

To treat large t, assume first that c2, α2 > 0. Then, for t > t2 :=∫ v2

0
dv

vΛ(v) , we obtain

t− t2 =

∫ γ(t)

v2

dv

vΛ (v)
=

1

c2α2
(γ (t)α2 − vα2

2 ) ,

whence, for some real c,

γ (t) = const (t+ c)1/α2 and
γ′

γ
(t) =

1

α2 (t+ c)
.

Therefore, γ satisfies (14.36) for large enough t with δ < 1/2.
Let α2 = 0 while c2 > 0, that is, Λ (v) = c2 for v ≥ v2. Then we have

for t > t2

t− t2 =

∫ γ(t)

v2

dv

c2v
=

1

c2
log

γ (t)

v
,

whence γ′

γ (t) = c2. Hence, γ satisfies (14.36) for all t > t2 with δ = 1.

Finally, let α2 = c2 = 0. In this case, Λ (v) = 0 for v > v2, and by

(14.25) γ (t) = const for t > t2. Hence, γ′

γ (t) = 0 for t > t2, which again

satisfies (14.36).

14.10. (a) Denote for simplicity γ = γΛ and γ̃ = b−1γ (at). Then by
(14.24)

γ̃′ = ab−1γ′ (at) = ab−1γ (at) Λ (γ (at)) = aγ̃Λ (bγ̃) = γ̃Λ̃ (γ̃) ,

whence it follows by Lemma 14.10 that γ
Λ̃

= γ̃.

(b) Set Λ̃ (v) = bΛγ
(
a−1v

)
. Then by part (a) we have

γ
Λ̃

(t) = aγΛ (bt) = γ̃ (t)

whence by Lemma 14.10 Λγ̃ = Λ̃.
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(c) For the function f = γΛ2 , we have

f ′

f
= Λ2 (f) ≥ Λ1 (f) ,

whence by Lemma 14.13 f (t) ≥ γΛ1 (t) for all t ∈ (0, t0) where

t0 =

∫ v0

0

dv

vΛ1 (v)
and v0 = sup {v > 0 : Λ1 (v) > 0} .

If v0 = ∞ then t0 = ∞ and γΛ2 (t) ≥ γΛ1 (t) for all t > 0. If v0 < ∞ then
by the monotonicity of γΛ2 , for t ≥ t0 we have

γΛ2 (t) ≥ γΛ2 (t0) ≥ γΛ1 (t0) = v0 = γΛ1 (t) .

14.11. For the function γ = γ1γ2 we have

γ′

γ
=
γ′1
γ1

+
γ′2
γ2
.

Therefore, γ1 and γ2 belong to Γ̃δ then

γ′

γ
(2t)− δ

γ′

γ
(t) =

[
γ′1
γ1

(2t)− δ
γ′1
γ1

(t)

]

+

[
γ′2
γ2

(2t)− δ
γ′2
γ2

(t)

]

≥ 0

so that γ ∈ Γ̃δ. If γ1 and γ2 belong to Γδ then similarly

γ′

γ
(2t)− δ

γ′

γ
(t) ≥ −

2δ−1

(1 + t)1+δ
,

whence it follows that γ ∈ Γδ/2.

14.12. Choose function f (t) = γ′(t)
γ(t) for large t to be a constant ck on

any interval [2k, 2k+1). Then γ /∈ Γδ provided for any δ > 0 there exists k
such that

ck+1 +
δ−1

2k(1+δ)
< δck. (B.238)

In fact, it suffices to ensure (B.238) for δ = 1
k , which will be the case if the

following two inequalities hold:

ck+1 <
1

2

ck
k

and ck >
k2

2k
. (B.239)

A sequence {ck} that satisfies (B.239) for arbitrarily large k can be con-
structed inductively as follows. Set c1 = 1. If cl has been defined then
define ck to be equal to cl for some values of k = l + 1, l + 2, ... until k is so

big that k2

2k
< cl. For this k, set ck = cl and ck+1 = 1

3
ck
k .

14.13. Set

f (t) =

∫ t

0

ds

F (s)
and g (t) =

1

F ′ (t)
.

Then
g′

f ′
= −

F ′′F

(F ′)2 → −c as t→∞.
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By l’Hospital rule,
g

f
→ −c as t→∞,

whence the claim follows.

14.14. We have for t0 = γ−1 (1)

t− t0 =

∫ γ(t)

1

dv

vΛ (v)
= e

∫ γ(t)

1

dv

F (v)
,

where

F (v) = evΛ (v) = v exp
(
−vβ

)
.

Set also f = logF so that

F ′′F

(F ′)2 = 1 +
f ′′

(f ′)2 .

A simple computation shows that

f ′ (v) =
1

v
− βvβ−1 and f ′′ (v) = −

1

v2
− β (β − 1) vβ−2,

whence f ′′

(f ′)2 → 0 and F ′′F
(F ′)2 → 1 as v →∞. By Exercise 14.13, we conclude

that
∫ s

1

dv

F (v)
∼ −

1

F ′ (s)
∼

exp
(
sβ
)

βsβ
as s→∞,

whence

t ∼
exp

(
γ (t)β + 1

)

βγ (t)β
as t→∞.

Taking log, we obtain

log t ∼ γ (t)β + 1− log
(
βγ (t)β

)
∼ γ (t)β ,

whence

γ (t) ∼ (log t)1/β .

14.15. We can assume that f ≥ 0 since |Ptf | ≤ Pt |f |. For any natural
number k, consider the function

fk = min (f, k) ,

which is obviously in L1 ∩ L2. By Theorem 14.19, we have

‖Ptfk‖
2
2 ≤

4

γ (t)
‖fk‖

2
1 ≤

4

γ (t)
‖f‖21
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Since fk ↑ f , we obtain by the monotone convergence theorem that

‖Ptfk‖
2
2 = (Ptfk, Ptfk) = (P2tfk, fk)

=

∫

M

∫

M

p2t (x, y) fk (x) fk (y) dµ (x) dµ (y)

→
∫

M

∫

M

p2t (x, y) f (x) f (y) dµ (x) dµ (y)

= ‖Ptf‖
2
2,

whence the claim follows.

Solutions to Chapter 15

15.1. Fix x ∈ B (x0, r/2) and t ∈ (0, T ). Since the Faber-Krahn inequal-
ity (15.19) holds in B (x, r/2), it follows from Theorem 15.1 that

u2 (t, x) ≤
Ca−n/2

min
(√
t, r
)n+2

∫ t

t/2

∫

B(x,r/2)
u2 (s, y) dµ (y) ds. (B.240)

Applying inequality (12.39) of Theorem 12.9 with A = B (x, r/2) and B =
B (x0, R) and noticing that d (A,Bc) ≥ δ, we obtain

∫

B(x,r/2)
u2 (s, y) dµ (y) ≤ µ (B (x0, R)) ‖u‖2L∞Φ

(
δ2

2s

)

(B.241)

where
Φ (ξ) = max (ξ, 1) exp (1− ξ) .

Observe that the function Φ (ξ) is decreasing in ξ. Consequently, Φ
(
δ2

2s

)

is decreasing in δ and increasing in s. Replacing in the right hand side of
(B.241) s by t and substituting into (B.240), we obtain

u2 (t, x) ≤
Ca−n/2t

min
(√
t, r
)n+2µ (B (x0, R)) ‖u‖2L∞Φ

(
δ2

2t

)

,

whence (15.20) follows.

15.2. (a) Let r (x) be the function from Theorem 15.4 and set r =
minx∈M r (x). Then in any ball B (x, r) the Faber-Krahn inequality holds

with function av−2/n. Applying Theorem 15.11 to the family {B (x, r)}x∈M ,
we obtain the claim.

It is obvious from the above argument that compact manifolds have
bounded geometry so that the claim follows also from part (b).

(b) By definition of a manifold of bounded geometry, there is r > 0 such
that all balls B (x, r) are uniformly quasi-isometric to a Euclidean ball. It
follows that the Faber-Krahn inequality holds in every ball B (x, r) with

function av−2/n, and the rest follows from Theorem 15.11.

15.3. Setting in (15.43) t = t0 and

F (x, s) = min (s, r (x))n
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we obtain (15.51).

15.4. Setting in (15.43) t = t0 and replacing r (x) by inf r (x) > 0 (cf.
Remark 15.5), we obtain (15.52).

15.5. Integrating the heat kernel upper bound (15.49) in t and using
Exercise 13.36, we obtain

g (x, y) ≤ Cd (x, y)2−n . (B.242)

Conversely, let us show that (B.242) implies the Faber-Krahn inequality

with the function Λ (v) = cv−2/n. Due to the estimate (13.21) of Exercise
13.13, it suffices to prove that, for any relatively compact open subset Ω of
M and for all x ∈ Ω,

∫

Ω
gΩ (x, y) dµ (y) ≤ Cµ (Ω)2/n .

Since gΩ ≤ g and g satisfies the upper bound of (B.242), it suffices to show
that, for any fixed x ∈ Ω,

∫

Ω
ρ2−ndµ ≤ Cµ (Ω)2/n (B.243)

where ρ = d (x, ·). Choose some R > 0 and estimate the integral in the left
hand side as follows:

∫

Ω
ρ2−ndµ ≤

∫

Ω∩{ρ≥R}
ρ2−n dµ+

∫

{ρ<R}
ρ2−n dµ.

The first integral is bounded by
∫

Ω∩{ρ≥R}
ρ2−n dµ ≤ R2−nµ (Ω) ,

whereas the second integral can be estimates by
∫

{ρ<R}
ρ2−n dµ =

∞∑

k−0

∫

{2−k−1R≤ρ<2−kR}
ρ2−n dµ

≤
∞∑

k=0

(
2−k−1R

)2−n
µ
(
B
(
x, 2−kR

))

≤ C

∞∑

k=0

(
2−kR

)2−n (
2−kR

)n

= CR2
∞∑

k=0

4−k

≤ C ′R2.

Hence, we obtain
∫

Ω
ρ2−ndµ ≤ R2−nµ (Ω) + C ′R2,
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whence (B.243) follows by setting R = µ (Ω)1/n.

15.6. Using (15.50), rewrite the inequality (15.48) of Corollary 15.17 as
follows:

pt (x, y) ≤
C

min (t, T )n/2
exp

(

−κ
ρ2

4t
− λ (t− T )+

)

(B.244)

where t, T > 0, and κ ∈ (0, 1) is arbitrary, while C = Cκ,n,c. Let us verify
that (B.244) implies the following estimate:

pt (x, y) ≤
C

tn/2
exp

(

−κ
ρ2

4t
− κλt

)

, (B.245)

where C = C (n, κ, λ). Indeed, choose in (B.244) T = 1. If t ≤ 1 then
(B.245) follows trivially from (B.244); if t > 1 then use the inequality

tn/2 ≤ Cn,δ exp (δt) ,

where δ = (1− κ)λ.

Since ρ2

4t + λt ≥ ρ
√
λ, it follows from (B.245) that, for any ε ∈ (0, κ),

pt (x, y) ≤
C

tn/2
exp

(

− (κ− ε) ρ
√
λ− ε

ρ2

4t
− ελt

)

,

whence

g (x, y) =

∫ ∞

0
pt (x, y) dt

≤ C exp
(
− (κ− ε) ρ

√
λ
)∫ ∞

0
t−n/2 exp

(

−ε
ρ2

4t
− ελt

)

dt.(B.246)

If n > 2 then the integral in (B.246) is estimated from above by
∫ ∞

0
t−n/2 exp

(

−ε
ρ2

4t

)

dt = const ρ2−n,

where we have used (A.60). Together with (B.246), this implies (15.53) in
the case n > 2.

Consider the case n = 2. Then we split the integral in (B.246) into two
parts: from 0 to ρ and from ρ to ∞. Making change s = s2/t, we estimate
the first part as follows:

∫ ρ

0
t−1 exp

(

−ε
ρ2

4t
− ελt

)

dt ≤
∫ ρ

0
t−1 exp

(

−ε
ρ2

4t

)

dt

=

∫ ∞

ρ

s−1 exp
(
−ε

s

4

)
ds, (B.247)

while for the second part we use the trivial estimate
∫ ∞

ρ

t−1 exp

(

−ε
ρ2

4t
− ελt

)

dt ≤
∫ ∞

ρ

t−1 exp (−ελt) dt. (B.248)
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Since the integrals in the right hand sides of (B.247) and (B.248) are similar,
it suffices to estimate one of them, say (B.247). If ρ ≥ 1 then we have

∫ ∞

ρ

s−1 exp
(
−ε

s

4

)
ds ≤

∫ ∞

1
s−1 exp

(
−ε

s

4

)
ds =: c,

while for ρ < 1 we have
∫ ∞

ρ

s−1 exp
(
−ε

s

4

)
ds ≤ c+

∫ 1

ρ

s−1ds = c+ log
1

ρ
.

Combining these estimates together, we obtain
∫ ∞

0
t−1 exp

(

−ε
ρ2

4t
− ελt

)

dt ≤ 2

(

c+ log+

1

ρ

)

, (B.249)

which together with (B.246) implies (15.53) in the case n = 2.

15.7. Fix x ∈ M and let Ω be an open set containing x. Since the
function

u (y) = g (x, y)− gΩ (x, y)

is harmonic in Ω and, hence, is bounded in a neighborhood of x, we have

g (x, y) ≤ gΩ (x, y) + const

provided y is close enough to x. Since the right hand side of (15.54) goes to
∞ as y → x, it suffices to prove (15.54) for gΩ instead of g.

Consider the function r (y) from Theorem 15.4 and set

r0 :=
1

2
inf

y∈B(x,r(x))
r (y) > 0.

Consider Ω = B (x, 2r0) as a manifold itself and observe that, for any y ∈
B (x, r0), the ball B (y, r0) is contained in Ω and r0 < r (y) (indeed, we have
r0 < r (x) whence y ∈ B (x, r (x)) and r0 < r (y)). Applying Theorem 15.14
for the family of two balls B (x, r0), B (y, r0) in the manifold Ω, we obtain,
for all t ≥ t0 > 0 and y ∈ B (x, r0), that

pΩ
t (x, y) ≤

C

min
(
t0, r

2
0

)n/2 exp

(

−
ρ2

5t
− λ (t− t0)

)

,

where ρ = d (x, y), λ = λmin (Ω), and C = C (n). Choosing t0 = t or t0 = r2
0,

we obtain the following two estimates:

pΩ
t (x, y) ≤ C

{
t−n/2 exp

(
−ρ2

5t

)
, t ≤ r2

0,

r−n0 exp
(
−λ
(
t− r2

0

))
, t > r2

0.

It follows that

gΩ (x, y) =

∫ r2
0

0
pt (x, y) dt+

∫ ∞

r2
0

pt (x, y) dt

≤ C

∫ r2
0

0
t−n/2 exp

(

−
ρ2

5t

)

dt+ Cr−n0

∫ ∞

r2
0

exp
(
−λ
(
t− r2

0

))
dt.(B.250)
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The second term in (B.250) is equal to Cλ−1r−n0 . Observing that

λ = λmin (B (x, 2r0)) ' r−2
0

(cf. Exercise 11.25), we obtain

r−n0

∫ ∞

r2
0

exp
(
−λ
(
t− r2

0

))
dt ≤ Cr2−n

0 ≤ Cρ2−n. (B.251)

To estimate the first term in (B.250), assume first that n > 2. Then by
(A.60) (or by Exercise 13.36) we have

∫ r2
0

0
t−n/2 exp

(

−
ρ2

5t

)

dt ≤
∫ ∞

0
t−n/2 exp

(

−
ρ2

5t

)

dt = Cρ2−n,

where C = C (n). Combining the above estimates together, we obtain from
(B.250) that

gΩ (x, y) ≤ Cρ2−n,

which proved (15.54) for the case n > 2.
Consider now the case n = 2. Assuming r0 < 1 and making change

s = ρ2/t, we obtain as in (B.247)
∫ r2

0

0
t−1 exp

(

−
ρ2

5t

)

dt ≤
∫ ∞

ρ2

s−1e−s/5ds

≤
∫ 1

ρ2

ds

s
+

∫ ∞

1
e−s/5dτ

= 2 log
1

ρ
+ const .

Combining with (B.250), (B.251) and choosing ρ small enough to absorb
the constant, we obtain

gΩ (x, y) ≤ C log
1

ρ
,

which proves (15.54) for the case n = 2.

15.8. If M satisfies the relative Faber-Krahn inequality then, by Theorem
15.21, the volume function V (x, r) is doubling and

pt (x, y) ≤
C

V
(
x,
√
t
) exp

(

−c
d2 (x, y)

t

)

.

By Exercise 13.36, we obtain, for all x 6= y,

g (x, y) ≤ C
∫ ∞

d(x,y)

rdr

V (x, r)
<∞,

which was to be proved.
If the Green function is finite then by Exercise 13.30 the manifold M is

non-parabolic, and by Theorem 11.14, we obtain
∫ ∞ rdr

V (x, r)
<∞
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for all x ∈M .

15.9. See [154, Theorem 5.9].

Solutions to Chapter 16

16.1. (a) Extend γ(t) to (0,+∞) by setting γ(t) = γ(T−) for all t ≥ T .
It is easy to see that the doubling property (16.24) holds for all t > 0 so
that γ is regular on (0,+∞) in the sense of Definition 16.1. Since pt(x, x)
decreases in t, we conclude that (16.23) holds for all t > 0.

Theorem 16.3 yields that, for all D > 2 and t > 0,

ED(t, x) ≤
C

γ(ct)
.

Using again the doubling property of γ, we obtain γ(ct) ≥ εγ(t) where
ε = ε(c) > 0, which finishes the proof.

16.2. By Theorem 7.7, for any x ∈M there exists a finite constant C (x)
such that, for all t > 0,

pt(x, x) = ‖pt/2,x‖
2 ≤ C (x)

(
1 + t−σ

)2
. (B.252)

Hence, by Exercise 16.1, ED (t, x) admits the upper bound

ED (t, x) ≤ C (x)
(
1 + t−σ

)2
, (B.253)

whence the finiteness of ED (t, x) follows.

16.3. Set

F (t, x) =
√
ED(1

2 t, x). (B.254)

By Exercise 16.2, this function is finite. By Theorem 12.1, the function
F (t, x) is decreasing in t. By Lemma 15.13, we have the inequality

pt (x, y) ≤ F (t0, x)F (t0, y) exp (λmint0) exp

(

−
d2(x, y)

2Dt
− λmint

)

,

(B.255)
for all t ≥ t0 > 0. Set

Φ (t, x) = exp

(
1

2
λmin

){
F (t, x) , t < 1,
F (1, x) , t ≥ 1.

Obviously, this function is decreasing in t. We claim that the required
inequality (16.26) holds with this function Φ. Indeed, if t ≥ 1 then (16.26)
follows from (B.255) with t0 = 1. If t < 1 then (16.26) follows from (B.255)
with t0 = t.

16.4. By Theorem 14.19, we have, for all x ∈M and t > 0,

pt (x, x) ≤
4

γ (t/2)
.

Then the claim follows from Corollary 16.4.
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16.5. By Exercise 16.1, we have

ED (t, x) ≤
C

V
(
x,
√
t
) ,

for all x ∈M and t ∈ (0, T ), and by Lemma 15.13

pt (x, y) ≤
C

V
(
x,
√
t
)1/2

V
(
y,
√
t
)1/2 exp

(

−
d2 (x, y)

2Dt

)

.

Finally, using the estimate

V
(
x,
√
t
)

V
(
y,
√
t
) ≤ C

(

1 +
d2 (x, y)

t

)c

which follows from the doubling property of V (x, r), we finish the proof.

Solutions to Appendix A

A.1. Using the bilinearity of the inner product, we obtain

(xk, yk)− (x, y) = (xk, yk)− (xk, y) + (xk, y)− (x, y)

= (xk, yk − y) + (xk − x, y)

whence, by the triangle inequality and the Cauchy-Schwarz inequality,

|(xk, yk)− (x, y)| ≤ ‖xk‖ ‖yk − y‖+ ‖xk − x‖ ‖y‖ .

Since ‖yk − y‖ and ‖xk − x‖ tend to 0 and ‖xk‖ remains bounded, the claim
follows.

A.2. Passing to a subsequence, we can assume that lim ‖xk‖ exists. Using
the definition of the weak convergence and the Cauchy-Schwarz inequality,
we obtain

‖x‖2 = (x, x) = lim
k→∞

(x, xk) ≤ lim
k→∞

‖x‖‖xk‖,

whence the claim follows.

A.3. (a) The fact, that the strong convergence implies the weak one
and the convergence of the norms, is obvious. Conversely, if xk ⇀ x and
‖xk‖ → ‖x‖ then

lim
k→∞

‖x−xk‖
2 = lim

k→∞

(
‖x‖2 + ‖xk‖

2 − 2 (x, xk)
)

= ‖x‖2+‖x‖2−2 (x, x) = 0,

that is, xk → x.
(b) That the weak convergence implies the boundedness of the norms

follows from the principle of uniform boundedness; the convergence “in dis-
tribution” is obvious. Conversely, in order to prove that xk ⇀ x, we must
show that

(xk, y)→ (x, y) for all y ∈ H.

Set C = supk ‖xk‖ and let {yi} be a sequence from D such that yi → y as
i→∞. Then we have

(xk, y) = (xk, yi) + (xk, y − yi)
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whence, for any index i,

lim sup
k→∞

(xk, y) ≤ lim
k→∞

(xk, yi) + C‖y − yi‖ = (x, yi) + C‖y − yi‖.

Letting now i→∞, we obtain

lim sup
k→∞

(xk, y) ≤ (x, y) .

In the same way one proves that

lim inf
k→∞

(xk, y) ≥ (x, y) ,

whence the claim follows.

A.4. (a) We need to prove that, for any y ∈ H,

ck := (vk, y)→ 0 as k →∞.

Indeed, by Bessel’s inequality
∑

k

|ck|
2 ≤ ‖y‖2 <∞

whence it follows that ck → 0.
(b) By the definition of weak convergence, we have, for any y ∈ H,

(x, y) =
∑

k

ck (vk, y) .

In particular, setting y = vi, we obtain

(x, vi) = ci.

Setting y = x, we obtain

‖x‖2 =
∑
|ck|

2 ,

that is, x satisfies Parseval’s identity. It follows that the identity

x =
∑

ckvk

holds also in the strong sense.

A.5. Let S be a closed subspace of H. and let S⊥ be the orthogonal

complement of S. Since S =
(
S⊥
)⊥

, the condition x ∈ S is equivalent to

x⊥S⊥, that is,
(x, y) = 0 for all y ∈ S⊥. (B.256)

Clearly, the condition (B.256) is stable under weak convergence; that is, if
every xk satisfies it and xk ⇀ x then also x satisfies it. Therefore, S contains
all weak limits of its sequences, which means that S is weakly closed.

A.6. It suffices to prove (A.9) since (A.10) follows from (A.9) by changing
f to −f . Denote by S the set of indicator functions of subsets of M with
finite measures. Then we have, for any measurable function f ,

esup f = sup
A⊂M,

0<µ(A)<∞

1

µ (A)

∫

A

f dµ = sup
ϕ∈S\{0}

(f, ϕ)

‖ϕ‖L1

.



SOLUTIONS TO APPENDIX A 171

Since (fk, ϕ)→ (f, ϕ) as k →∞, we obtain

esup f = sup
ϕ∈S\{0}

lim
k→∞

(fk, ϕ)

‖ϕ‖L1

≤ lim sup
k→∞

(

sup
ϕ∈S\{0}

(fk, ϕ)

‖ϕ‖L1

)

= lim sup
k→∞

(esup fk) .

Passing to a subsequence of {fk}, one can replace lim sup by lim inf.

A.7. We have

‖f2
k − f

2‖L1 =

∫

M

∣
∣f2
k − f

2
∣
∣ dµ =

∫

M

|fk − f | |fk + f | dµ

≤

(∫

M

|fk − f |
2 dµ

)1/2(∫

M

|fk + f |2 dµ

)1/2

= ‖fk − f‖L2‖fk + f‖L2 .

Since
‖fk + f‖L2 ≤ ‖fk‖L2 + ‖f‖L2

remains bounded as k → ∞ and ‖fk − f‖L2 → 0, we obtain that ‖f2
k −

f2‖L1 → 0, which was to be proved.
The second claim follows from

∫

M

∣
∣f2g − f2

kg
∣
∣ dµ ≤ ‖f2 − f2

k‖L1‖g‖L∞ .

A.8. (a) This is obvious. Note that A−1A is not necessarily equal to id
because dom

(
A−1A

)
⊂ domA where as dom id = H.

(b) For any x ∈ H, we have A (Bx) = x. In particular, this implies
ranA = H. For any x ∈ domA, we have B (Ax) = x. It follows that
kerA = {0} because Ax = 0 implies x = B0 = 0. Hence, A−1 exists. The
equation Ay = x has solution y = Bx for any x ∈ H whence it follows that
A−1x = Bx and A−1 = B.

A.9. Set
a := sup

x∈domA,‖x‖≤1,‖y‖≤1
(Ax, y)

and note that a ≥ 0. By the Cauchy-Schwarz inequality, if ‖x‖ ≤ 1 and
‖y‖ ≤ 1 then

(Ax, y) ≤ ‖Ax‖‖y‖ ≤ ‖A‖,

whence a ≤ ‖A‖. Assume now that a < ‖A‖. Then there exists x ∈ domA

with ‖x‖ = 1 and such that ‖Ax‖ > a. Setting y = Ax
‖Ax‖ , we obtain

(Ax, y) = (Ax,
Ax

‖Ax‖
) = ‖Ax‖ > a,

which contradicts the definition of a.
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A.10. By definition, domA∗ consists of those y ∈ H for which the linear
functional x 7→ (Ax, y) is bounded. Since

|(Ax, y)| ≤ ‖Ax‖‖y‖ ≤ ‖A‖‖y‖‖x‖,

we see that this functional is bounded for any y. Hence, domA∗ = H.
It follows from (A.18) and (Ax, y) = (x,A∗y) that

‖A‖ = sup
‖x‖≤1,‖y‖≤1

(Ax, y) = sup
‖x‖≤1,‖y‖≤1

(x,A∗y) = sup
‖x‖≤1,‖y‖≤1

(A∗y, x) = ‖A∗‖.

In particular, A∗ is bounded. The identity ‖A‖ = ‖A∗‖ implies

‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2.

On the other hand, taking x = y in (A.18) we obtain

‖A∗A‖ ≥ sup
‖x‖≤1

‖Ax‖2 = ‖A‖2.

Hence, we conclude ‖A∗A‖ = ‖A‖2.

A.11. (a) Since A is non-negative definite, we have, for all x, y ∈ domA
and for any real t,

(A(x+ ty), x+ ty) ≥ 0.

Using the linearity of A and the symmetry, we obtain

(A(x+ ty), x+ ty) = (Ax, x) + 2t(Ax, y) + t2(Ay, y),

whence

(Ax, x) + 2t(Ax, y) + t2(Ay, y) ≥ 0. (B.257)

If (Ay, y) > 0 then the left hand side of (B.257) is a quadratic function of t
that is non-negative for all real t, whence we conclude

(Ax, y)2 ≤ (Ax, x) (Ay, y) . (B.258)

If (Ay, y) = 0 then (B.257) becomes

(Ax, x) + 2t(Ax, y) ≥ 0

which can be true for all real t only if (Ax, y) = 0 whence (B.258) follows
again.

(b) It follows from (A.18) and (A.19) that

‖A‖ = sup
x,y∈domA,‖x‖≤1,‖y‖≤1

(Ax, y)

≤ sup
x,y∈domA,‖x‖≤1,‖y‖≤1

√
(Ax, x) (Ay, y) = sup

x∈domA,‖x‖≤1
(Ax, x) .

The opposite inequality trivially follows from (A.18) by setting y = x.

A.12. (a) If x ∈ (ranA)⊥ then x⊥ ranA, that is, (x,Ay) = 0 for y ∈
domA. Hence, we have

(Ax, y) = (x,Ay) = 0
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so that Ax⊥ domA. Since domA is dense in H, we conclude Ax = 0 and

hence x ∈ kerA, which proves that (ranA)⊥ ⊂ kerA. For the opposite
inclusion, for any x ∈ kerA and y ∈ domA, we have

(x,Ay) = (Ax, y) = 0

whence x⊥Ay and hence x ∈ (ranA)⊥. Thus, we have (ranA)⊥ = kerA.

Taking the orthogonal complements to both parts, we obtain ranA = (kerA)⊥.
(b) If A−1 exists and is bounded then there exists C > 0 such that, for

all y ∈ H,

‖A−1y‖ ≤ C‖y‖.

Setting y = Ax, we obtain (A.20) with c = C−1.
Let us prove the converse. The hypothesis (A.20) implies kerA = {0},

and by part (a) we obtain

ranA = (kerA)⊥ = H,

so that ranA is dense in H. Let us show that in fact ranA = H. For
any y ∈ H, there is a sequence {yk} ⊂ ranA such that yk → y. For some
xk ∈ domA, we have yk = Axk. By hypothesis, we obtain that

‖Axk −Axl‖ ≥ c‖xk − xl‖

whence it follows that the sequence {xk} is Cauchy and, hence, converges
to a vector x ∈ H. Let us show that x ∈ domA and y = Ax, which would
imply y ∈ ranA and ranA = H. For any z ∈ domA, we have

(Axk, z) = (xk, Az)→ (x,Az) .

Since Axk → y, we conclude that

(Az, x) = (z, y) .

In particular, we see that the linear functional z 7→ (Az, x) is bounded,
which implies, by the definition of the adjoint operator, that x ∈ domA∗

and A∗x = y. Since A = A∗, we conclude x ∈ domA and Ax = y, which
was claimed.

Hence, the operator A is injective and surjective and hence, the inverse
A−1 exists with domain H. The boundedness of A−1 immediately follows
from (A.20).

A.13. (a) Let us show that (Az, x) is a bounded linear functional in
z ∈ domA, which will implies that x ∈ domA∗ = domA. Indeed, we have,
for any z ∈ domA.

(Az, x) = lim
k→∞

(Az, xk) = lim
k→∞

(z,Axk) = (z, y) .

Indeed, (z, y) is a bounded linear functional in z, whence it follows that
x ∈ domA. Since

(Az, x) = (z,Ax) ,

comparing the above two lines, we conclude Ax = y.
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(b) The symmetry and the non-negative definiteness of A easily imply
that the bilinear form

(x, y) + (Ax,Ay)

in domA satisfies the axioms of an inner product. Let {xk} be a Cauchy
sequence in domA. Then {xk} and {Axk} are Cauchy sequences in H so
that xk → x and Axk → y for some x, y ∈ H. By part (a), we obtain
x ∈ domA and y = Ax, which means that the sequence {xk} converges to x
in the norm of the space domA, whence the completeness of domA follows.

A.14. The fact that FU is σ-additive implies that, for any increasing
sequence {Uk} of Borel sets,

F∪kUk = lim
k→∞

FUk ,

and, for any decreasing sequence {Uk},

F∩kUk = lim
k→∞

FUk .

Hence, the required results follow from F[a,b) = F (b)−F (a) and the follow-
ing observations:

(a, b) =
⋃

λ→a+

[λ, b),

[a, b] =
⋂

λ→b+

[a, λ),

{a} =
⋂

λ→a+

[a, λ),

and (a, b] = [a, b] \ {a}.

A.15. (a) The fact that F is increasing is obvious from (A.25). If {λn}
is a monotone increasing sequence that converges to λ from the left then
the sequence of sets {k : sk < λn} increases and the union of all these sets
is {k : sk < λ} . Therefore, we obtain that

F (λn)→ F (λ)

and hence F is left-continuous. If λn → +∞ then the union of the sets
{k : sk < λn} is the set of all integers so that

F (+∞) = lim
n→∞

F (λn) =
∑

k∈Z

tk <∞.

Finally, if λn → −∞ then the intersection of all the sets {k : sk < λn} is
empty and we obtain F (−∞) = 0.

(b) Denote by SU the right hand side of (A.26). Clearly, SU is a measure
of the σ-ring of all Borel sets. For any interval [a, b) we have

S[a,b) =
∑

{k:a≤sk<b}

tk =
∑

{k:sk<b}

tk −
∑

{k:sk<a}

tk = F (b)− F (a) .
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We see that S[a,b) = F[a,b) and, hence, by the uniqueness of the extension,
SU = FU for all Borel sets U .

(c) If ϕ = 1U then (A.27) follows from (A.26). The the identity (A.27)
extends by linearity to finite linear combinations of indicator functions, that
is, to functions ϕ of the form

ϕ =
n∑

k=1

αk1Uk . (B.259)

Observe that the both parts of (A.27) survive when taking monotone limit
of a sequence of functions ϕ. Since any non-negative Borel function is a
monotone limit of functions like (B.259), we conclude that (A.27) holds for
all non-negative Borel functions ϕ.

(d) This immediately follows from (c).

A.16. If ϕ = 1[a,b) then the left hand side of (A.28) is equal to
∫

1[a,b)dF (λ) = F[a,b) = F (b)− F (a) ,

and the right hand side of (A.28) is equal to
∫ b

a

F ′ (λ) dλ = F (b)− F (a) .

Hence, (A.28) holds for all indicator functions. By linearity, (A.28) extends
to all finite linear combinations of indicator functions. Finally, by taking
monotone limits of such functions, we extend (A.28) to all non-negative
Borel functions.

A.17. (a) If F is a monotone function then it is obvious that the right
hand side of (A.29) does not depend on {λk} and is equal to |F (+∞)− F (−∞)|.
Hence, a bounded monotone function has a finite total variation. It also fol-
lows from (A.29) that varF = var (−F ) and

var (F +G) ≤ var (F +G) .

Hence, the sum and the difference of two functions with finite total varia-
tion is again a function of this class. Hence, the difference of two bounded
monotone functions has a finite total variation.

Now, let varF < ∞ and let us prove that F is the difference of two
bounded increasing monotone functions. Define the total variation of F on
(−∞, a] by

var
(−∞,a]

F = sup
{λk}

+∞∑

k=0

|F (λk+1)− F (λk)|

where {λk}k≥0 is a decreasing sequence such that

λ0 = a and λk → −∞ as k → +∞. (B.260)

Clearly, the function
G (a) := var

(−∞,a]
F (B.261)
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is non-negative and is bounded by varF . Let us show that the functions
G and G− F are increasing, which will finish the proof because both these
functions are bounded and

F = G− (G− F ) .

Indeed, for any pair a < b and for any decreasing sequence {λk}k≥0 satisfying

(B.260), we obtain by the definition of var(−∞,b] F that

G (b) = var
(−∞,b]

F ≥
+∞∑

k=0

|F (λk+1)− F (λk)|+ |F (b)− F (a)|

whence

G (b) ≥ G (a) + |F (b)− F (a)| .

This implies that G (b) ≥ G (a) and

G (b) ≥ G (a) + F (b)− F (a) ,

that is,

G (b)− F (b) ≥ G (a)− F (a) .

(b) If F is the difference of two functions satisfying (A.21) then F is left-
continuous and, by part (a), varF < ∞. To prove the converse, consider
the function G defined by (B.261) and H := G − F . As was shown above,

both G and H are bounded monotone increasing functions. Let G̃ be the
left-continuous modification of G, that is,

G̃ (λ) = G (λ−) .

Note that G̃ and G coincide everywhere except for the set of points of jumps

of G, which is at most a countable set. Defining the same way H̃, we

conclude that G̃ − H̃ is a left-continuous function on R, which coincides
with F = G − H outside a countable set. Since function F is also left-
continuous, we conclude that F = G̃ − H̃ at all points, which finishes the
proof.

(c) and (d) Left to the reader

A.18. Let us first show that, for any two functions F (1) and F (2) satis-
fying (A.21) and for any non-negative Borel function ϕ,

∫ +∞

−∞
ϕdF (1) +

∫ +∞

−∞
ϕdF (2) =

∫ +∞

−∞
ϕd
(
F (1) + F (2)

)
. (B.262)

It suffices to show that, for any Borel set U ⊂ R,

F
(1)
U + F

(2)
U =

(
F (1) + F (2)

)

U
.

By uniqueness of the extension in the Carathéodory Extension Theorem, it
suffices to prove this for U = [a, b), which is obvious because

F
(1)
U +F

(2)
U = F (1) (b)−F (1) (a)+F (2) (b)−F (2) (a) =

(
F (1) + F (2)

)
(b)−

(
F (1) + F (2)

)
(a) .
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Let now G(1) and G(2) be another pair of functions satisfying (A.21) and

such that F = G(1)−G(2) and ϕ is integrable against G(1) and G(2). Let us
prove that
∫ +∞

−∞
ϕ (λ) dF (1) (λ)−

∫ +∞

−∞
ϕ (λ) dF (2) (λ) =

∫ +∞

−∞
ϕ (λ) dG(1) (λ)−

∫ +∞

−∞
ϕ (λ) dG(2) (λ) .

(B.263)
Since the integral of ϕ is defined as the difference of the integrals of ϕ+ and
ϕ−, it suffices to prove the same identity separately for ϕ+ and ϕ . Hence,
we can assume without loss of generality that ϕ ≥ 0. Then (B.263) follows
from
∫ +∞

−∞
ϕ (λ) dF (1) (λ)+

∫ +∞

−∞
ϕ (λ) dG(2) (λ) =

∫ +∞

−∞
ϕ (λ) dG(1) (λ)+

∫ +∞

−∞
ϕ (λ) dF (2) (λ) ,

(B.264)

while (B.264) holds by (B.262) because F (1) +G(2) = G(1) + F (2).

A.19. (a) Let S = ranP so that Px is determined by the conditions

Px ∈ S and x− Px⊥S. (B.265)

If x ∈ S then Px = x. Therefore, for any x ∈ H,

P (Px) = Px

and hence P 2 = P .
If x− Px⊥S and y − Py⊥S then also

(x− Px) + (y − Py)⊥S,

that is
(x+ y)− (Px+ Py)⊥S,

whence it follows that Px+Py = P (x+ y). Similarly, one proves P (λx) =
λPx whence the linearity follows.

Let us prove that P is symmetric, that is,

(Px, y) = (x, Py) . (B.266)

Since Py ∈ S and x− Px⊥S, we have

(x− Px, Py) = 0,

whence
(x, Py) = (Px, Py) .

By switching x and y, we obtain

(y, Px) = (Py, Px) ,

which together with the previous line implies (B.266).
(b) Let us first verify that ranA is closed. For any x ∈ ranA we have

Ax = x because, for some y ∈ H, x = Ay and hence Ax = A2y = Ay = x.
Let {xk} be a sequence from ranA that converges to x ∈ H. Then we have
Axk = xk, and xk → x implies by the boundedness of A than Axk → Ax.
Hence, Ax = x and x ∈ ranA, which shows that ranA is closed.
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Observe that kerA⊥ ranA because for any x ∈ kerA and y ∈ ranA, we
have y = Az for some z and hence

(x, y) = (x,Az) = (Ax, z) = 0.

On the other hand, for any x ∈ H, we have x−Ax ∈ kerA because

A (x−Ax) = Ax−A2x = Ax−Ax = 0.

Therefore, x−Ax is orthogonal to ranA. Since Ax ∈ ranA, we obtain that
A is the projection onto ranA.

(c) By (B.265), we have

(x− Px, Px) = 0

whence
(x, Px) = (Px, Px) ≥ 0.

Hence, P is non-negative definite. The above identity also yields

‖Px‖2 = (x, Px) ≤ ‖x‖‖Px‖,

whence ‖Px‖ ≤ ‖x‖ and hence

‖P‖ ≤ 1.

If P 6= 0 then ranP contains a non-zero vector, say x. For this vector, we
have Px = x and ‖Px‖ = ‖x‖ whence ‖P‖ = 1.

A.20. Let {ui} an orthonormal basis in ranP . Then

Pvk =
∑

i

(vk, ui)ui

and, applying twice the Parseval Identity, we obtain

‖Pvk‖
2 =

∑

i

(vk, ui)
2

and
∑

k

‖Pvk‖
2 =

∑

k

∑

i

(vk, ui)
2 =

∑

i

∑

k

(vk, ui)
2 =

∑

i

‖ui‖
2 =

∑

i

1 = dim ranP .

A.21. (a) By definition, Ea and Eb are a projector, and ranEa ⊂ ranEb.
Therefore, for any vector x,

x− Ebx⊥ ranEa

so that Ea (x− Ebx) = 0 and hence Eax = EaEbx. Since Eax ∈ ranEb, we
conclude also that Eax = Eb (Eax) = EbEax.

(b) The operator Eb − Ea is bounded and self-adjoint, so to prove that

it is a projector it suffices to verify that (Eb − Ea)
2 = Eb − Ea, which

immediately follows from (A.39):

(Eb − Ea)
2 = E2

b − EbEa − EaEb + E2
a = Eb − 2Ea + Ea = Eb − Ea.

In fact, one can show that ran (Eb − Ea) is the orthogonal complement of
ranEa in ranEb.
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Let us prove that ‖Eax‖ ≤ ‖Ebx‖. We have:

‖Ebx‖
2 − ‖Eax‖

2 = (Ebx, x)− (Eax, x) = ((Eb − Ea)x, x) ≥ 0,

because Eb − Ea is a projector and, hence, is non-negative definite.
(c) By the definition of the numerical Lebesgue-Stieltjes integration, we

have, for any x ∈ H,
∫

[a,b)
d‖Eλx‖

2 =

∫ +∞

−∞
1[a,b)d‖Eλx‖

2 = ‖Ebx‖
2 − ‖Eax‖

2 = ‖ (Eb − Ea)x‖
2,

where we have also used (A.39). Therefore, for all x, y ∈ H,
∫

[a,b)
d (Eλx, y) =

1

4

∫

[a,b)
d‖Eλ (x+ y) ‖2 −

1

4

∫

[a,b)
d‖Eλ (x− y) ‖2

=
1

4

(
‖ (Eb − Ea) (x+ y)‖2 − ‖ (Eb − Ea) (x− y)‖2

)

= ((Eb − Ea)x, (Eb − Ea) y)

= ((Eb − Ea)x, y) ,

whence it follows that ∫

[a,b)
dEλ = Eb − Ea.

(d) For any two projectors P and Q such that PQ = 0, we have
P (ranQ) = {0} which implies ranP⊥ ranQ. Hence, to prove that ranE[a1,b1)

and ranE[a2,b2) are orthogonal, it suffices to verify that E[a1,b1)E[a2,b2) = 0.
Assuming for simplicity that a1 < b1 ≤ a2 < b2 and using (A.39) and (A.40),
we obtain

(Eb1 − Ea1) (Eb2 − Ea2) = Eb1Eb2 − Eb1Ea2 − Ea1Eb2 + Ea1Ea2

= Eb1 − Eb1 − Ea1 + Ea1 = 0.

A.22. Note that P 2
i = Pi and PiPj = 0 for i 6= j. Therefore, when

expanding the expression

Am =

(
k∑

i=1

λiPi

)m

,

all the terms coming from the products of projectors Pi with different indices
i will vanish, and the term Pmi will amount to Pi. Hence, we obtain

Am =
k∑

i=1

λmi Pi.

By linearity, we obtain

ϕ (A) =
k∑

i=1

ϕ (λi)Pi.

Note that operators A and ϕ (A) are bounded.
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Finally, for any x ∈ H,

‖ϕ (A) ‖2 = (ϕ (A)x, ϕ (A)x) =




k∑

i=1

ϕ (λi)Pix,
k∑

j=1

ϕ (λj)Pjx





=
k∑

i.j=1

ϕ (λi)ϕ (λj) (Pix, Pjx) .

If i 6= j then
(Pix, Pjx) = (x, PiPjx) = 0,

whence it follows that

‖ϕ (A) ‖2 =
k∑

i.j=1

ϕ (λi)
2 (Pix, Pix) .

The identity (A.42) obviously follows from (A.41). The identity (A.43)
is also implied by (A.41) as follows:

ϕ (A)ψ (A) =
k∑

i=1

ϕ (λi)Pi

k∑

j=1

ψ (λj)Pj

=
k∑

i,j=1

ϕ (λi)ψ (λj)PiPj =
k∑

i=1

ϕ (λi)ψ (λi)Pi = (ϕψ) (A) ,

where we have used the following properties of the projectors: PiPj = 0 if
i 6= j and P 2

t = Pi.

A.23. (a) As it follows from (A.55), it suffices to verify that

domϕ (A) ∩ domψ (A) ⊃ dom (ϕ+ ψ) (A) . (B.267)

By (A.48), we have

domϕ (A) =

{

x :

∫
|ϕ (λ)|2 d‖Eλx‖

2 <∞

}

,

and the similar expressions for domψ (A) and dom (ϕ+ ψ) (A). Hence,
(B.267) will follow if we prove that

max
(
ϕ2, ψ2

)
≤ C1 + C2 (ϕ+ ψ)2 , (B.268)

for some positive constants C1, C2. If functions ϕ and ψ are non-negative
then

ϕ2 + ψ2 ≤ (ϕ+ ψ)2 ,

and we are done. If one of them is bounded, say, |ψ| ≤ 1, then

(ϕ+ ψ)2 ≥ ϕ2 + 2ϕψ ≥ ϕ2 −

(
1

2
ϕ2 + 2ψ2

)

≥
1

2
ϕ2 − 2

and
2 (ϕ+ ψ)2 + 4 ≥ ϕ2,

whence (B.268) follows.
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(b) By (A.56), it suffices to prove that

dom (ϕψ) (A) ∩ domψ (A) ⊃ dom (ϕψ) (A) ,

which is obviously true because ψ is bounded and hence domψ (A) = H.

A.24. (a) Since A−1 exists and is bounded, 0 is a regular value of A and
hence 0 /∈ specA. Since specA is closed, this means that a small neigh-
bourhood of 0 is also outside specA, which implies that function ψ (λ) = 1

λ

is continuous and bounded on specA. Hence, ψ (A) = 1
A is a bounded

self-adjoint operator. Let ϕ (λ) = λ. Since ϕψ ≡ 1, (A.56) implies

ϕ (A)ψ (A) = id and ψ (A)ϕ (A) ⊂ id .

Therefore, ϕ (A) = A has the inverse ψ (A), which was to be proved. Con-
sequently, we see that A−1 is a bounded self-adjoint operator.

(b) Since specA ⊂ [0, a], the function ψ (λ) =
√
λ is defined on specA.

Setting X = ψ (A) =
√
A, we obtain by (A.56)

X2 ⊂ A and domX2 = domA ∩ domX.

Let us show that domA ⊂ domX, which will imply domX2 = domA and
hence X2 = A. Indeed, by (A.48),

domA =

{

x ∈ H :

∫

specA
λ2d‖Eλx‖

2 <∞

}

and

domX =

{

x ∈ H :

∫

specA
λd‖Eλx‖

2 <∞

}

.

Then domA ⊂ domX follows from λ ≤ λ2 + 1. The operator X is non-
negative definite because, by the Spectral Mapping Theorem,

specX = ψ (specA) ⊂ [0,+∞).

(c) Set ϕ (λ) = λ and ψ (λ) = e−λ so that ϕ (A) = A and ψ (A) = e−A.
The function ψ is bounded on specA whence by Exercise A.23

ϕ (A)ψ (A) = (ϕψ) (A) .

The function ϕψ (λ) = λe−λ is also bounded on specA whence we obtain
dom (ϕψ) (A) = H. This implies that dom (ϕ (A)ψ (A)) = H and hence
ranψ (A) ⊂ domϕ (A), which was to be proved.

A.25. Obviously, all eigenvalues λk belong to specA. Let us show that
λ is a real number that is not equal to any λk or 0 then λ is a regular value
of A.

For any x ∈ H, denote by x0 the projection of x onto kerA, and by x⊥

the projection of x onto (kerA)⊥, so that x = x0 +x⊥. Assuming that {vk}
is an orthonormal basis in (kerA)⊥, we obtain the expansion

x⊥ =
∑

k

xkvk,
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where

xk =
(
x⊥, vk

)
= (x, vk) .

Therefore,

x = x0 +
∑

k

xkvk,

which implies that

Ax =
∑

k

λkxkvk, (B.269)

where we have used Ax0 = 0 and Avk = λkvk.
The inverse operator (A− λ id)−1 can be explicitly constructed as fol-

lows. Define operator B in H by

Bx = −
1

λ
x0 +

∑

k

1

λk − λ
xkvk. (B.270)

The sequence {λk} is either finite or tends to 0; therefore, the differences
|λk − λ| are separated from 0. Set

α := min

(

|λ| ,min
k
|λk − λ|

)

> 0.

Then the coefficients 1
λ and 1

λk−λ
in (B.270) are all bounded by α−1, which

implies that the series in (B.270) converges for all x ∈ H and

‖Bx‖ ≤ α−1‖x‖.

Using (B.269) and (B.270), we obtain

(A− λ id)Bx =
∑

k

λk
λk − λ

xkvk − λ

(

−
1

λ
x0 +

∑

k

1

λk − λ
xkvk

)

= x0 +
∑

k

xkvk = x,

and, similarly, B (A− λ id)x = x. Hence, B is the inverse of A−λ id, which
finishes the proof.

A.26. (a) Let us show that if A is non-negative definite then specA ⊂
[0,+∞). It suffices to show that B = A + λ id is invertible for any λ > 0
and the inverse B−1 is bounded. Since B is self-adjoint, it suffice to prove
B satisfies the condition (A.20) of Exercise A.12, that is, for some c > 0,

‖Bx‖ ≥ c‖x‖ for all x ∈ domB = domA.

Indeed, we have

(Bx,Bx) = (Ax,Ax) + 2λ (Ax, x) + λ2 (x, x) ,

and the hypothesis (Ax, x) ≥ 0 implies

‖Bx‖ ≥ λ‖x‖.
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Assume now that specA ⊂ [0,+∞) and show that A is non-negative definite.
Indeed, by (A.46), we have

(Ax, x) =

∫

specA
λd (Eλx, x) ≥ 0,

because the function λ 7→ (Eλx, x) is monotone increasing and λ ≥ 0 in the
domain of integration specA.

(b) By the definition of a, the operator A − a id is non-negative defi-
nite. By part (a), its spectrum is contained in [0,+∞), which implies that
specA ⊂ [a,+∞) and, hence,

a′ := inf specA ≥ a. (B.271)

By the definition of a′, the spectrum of the operator A − a′ id is contained
in [0,+∞) and, hence, this operator is non-negative definite, which implies
that

(Ax, x) ≥ a′‖x‖2,

for all x ∈ domA. Therefore,

a = inf
x∈domA
‖x‖=1

(Ax, x) ≥ a′,

which together with (B.271) proves that a = a′. The supremum of the
spectrum is handled in the same way.

A.27. (a) Since function ϕ (l) = 1U (λ) is bounded, EU is a bounded self-
adjoint operator. To prove that it is a projector, it suffices to verify that
E2
U = EU , which follows from ϕ2 = ϕ. If U = [a, b) then, for all x, y ∈ H,

(EUx, y) =

∫ ∞

−∞
1U (λ) d (Eλx, y) =

∫

[a,b)
d (Eλx, y) = (Eλx, y) ,

whence EU = Eλ.
(b) Since 1U21U1 = 1U1 , we obtain EU2EU1 = EU1 whence

EU2 (ranEU1) = ranEU1 ,

whence the claim follows.
(c) Since 1U11U2 = 0, we obtain EU1EU2 = 0, whence the claim follows.
(d) In the both cases, we have the pointwise convergence 1Ui → 1U and

the sequence {1Ui} is uniformly bounded. Hence, Lemma 4.8 yields that,
for all x ∈ H, ∫ +∞

−∞
1UidEλx→

∫ +∞

−∞
1UdEλx,

whence EUix→ EUx, which was to be proved.

A.28. (a) Let S = ker (A− a id) be the eigenspace of a. Let us show that
x ∈ S if and only if E{a}x = x, which will settle the claim. If x ∈ S then
‖Ax− ax‖ = 0. On the other hand, we have

Ax− ax =

∫ +∞

−∞
(λ− a) dEλx
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and

‖Ax− ax‖2 =

∫ +∞

−∞
(λ− a)2 d‖Eλx‖

2.

The function (λ− a)2 is positive everywhere except for λ = a. Since function
λ → ‖Eλx‖2 is increasing, the only way the above integral can be equal to
0 is that the function λ → ‖Eλx‖2 is identical constant for λ < a and for
λ > a. Letting λ→ −∞ and λ→ +∞ we conclude that

‖Eλx‖ =

{
0, λ < a,
‖x‖, λ > a.

This implies, that

Eλx =

{
0, λ < a,
x, λ > a,

whence

E{a}x = lim
ε→0+

E(a−ε,a+ε)x = lim
ε→0+

(Ea+εx− Ea−εx) = x− 0 = x.

To prove the converse, consider first functions ϕ (λ) = λ and ψ (λ) =
1{a} (λ). We have ϕψ = aψ whence

ϕ (A)ψ (A) = aψ (A) ,

that is

AE{a} = aE{a}.

Therefore, if E{a}x = x then AE{a}x = Ax and

AE{a}x = aE{a}x = ax,

that is, Ax = ax and x ∈ S.
(b) By part (a), x ∈ ranE{α}. By Exercise A.27, this implies that

EUx = 0 for any Borel set U ⊂ R that does not contain α. It follows that

ϕ (A)x =

∫

R
ϕ (λ) dEλx =

∫

{α}
ϕ (λ) dEλx = ϕ (α)E{α}x = ϕ (α)x,

which was to be proved.

A.29. It follows from (A.46) that

A =

∫ +∞

−∞
λ1specAdEλ =

k∑

i=1

∫ +∞

−∞
λ1{λi}dEλ =

k∑

i=1

λiE{λi}.

By Exercise A.28, E{λi} = Pi, which finishes the proof.

A.30. Since |ϕ (λ)| ≤ Φ (λ) and

domϕ (A) =

{

x ∈ H :

∫ ∞

0
|ϕ (λ)|2 d‖Eλx‖

2 <∞

}

,

we obtain that x ∈ domϕ (A). In the same way, we have also x ∈ domϕn (A).
Since

|ϕ (λ)− ϕn (λ)|2 ≤ 4Φ2 (λ)
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where the function Φ2 (λ) is integrable against the measure d‖Eλx‖2, the
Lebesgue dominated convergence theorem implies that

‖ϕ (A)x− ϕn (A)x‖2 =

∫ ∞

0
|ϕ (λ)− ϕn (λ)|2 d‖Eλx‖

2 −→ 0 as n→∞,

which was to be proved.


