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Abstract. We prove a certain inequality for a subsolution of the heat equation
associated with a regular Dirichlet form. As a consequence of this inequality, we
obtain various interesting comparison inequalities for heat semigroups and heat
kernels, which can be used for obtaining pointwise estimates of heat kernels. As
an example of application, we present a new method of deducing sub-Gaussian
upper bounds of the heat kernel from on-diagonal bounds and tail estimates.
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1. Introduction

In this paper, we are concerned with certain inequalities involving heat kernels
on arbitrary metric measure spaces. The motivation comes from the following three
results.

1. Let M be a Riemannian manifold and pt (x, y) be the heat kernel on M asso-
ciated with the Laplace-Beltrami operator ∆. Let {Xt}t≥0 be the diffusion process
generated by ∆. For any open set Ω, denote by ψΩ (t, x) the probability that Xt

exits from Ω before the time t, provided X0 = x. It was proved in [8] that, for any
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two disjoint open subsets U and V of M and for all x ∈ U , y ∈ V , t, s > 0,

pt+s (x, y) ≤ ψU (t, x) sup
s≤t′≤t+s
u∈∂U

pt′ (u, y) + ψV (s, y) sup
t≤t′≤t+s
v∈∂V

pt′ (v, x) (1.1)

(see Fig. 1).
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Figure 1. Any sample path, connecting x and y, either exits from
the set U before time t when starting at x, or exits from the set V
before time s when starting at y.

Similarly, if U ⊂ V then, for all x ∈ U and y ∈ V ,

pt+s (x, y) ≤ pVt+s (x, y)+ψU (t, x) sup
s≤t′≤t+s
u∈∂U

pt′ (u, y)+ψV (s, y) sup
t≤t′≤t+s
v∈∂V

pt′ (v, x) , (1.2)

where pVt (x, y) is the heat kernel in V with the Dirichlet boundary condition in ∂V
(see Fig. 2).
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Figure 2. Any sample path, connecting x and y, either stays in V ,
or exits from the set U before time t when starting at x, or exits from
the set V before time s when starting at y.

The estimates (1.1) and (1.2) were used in [8] to obtain heat kernel bounds on
manifolds with ends.

2. Let now {Xt}t≥0 be a diffusion process on a metric measure space (M,d, µ),
and assume that {Xt} possesses a continuous transition density pt (x, y) that will be
called the heat kernel. It was proved in [11] that, for any open set V ⊂ M and for
all x ∈ V , t > 0,

p2t (x, x) ≤ pV2t (x, x) + 2ψV (t, x) sup
v∈V

pt (v, v) . (1.3)
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In the setting of manifolds, one sees that (1.3) is a particular case of (1.2) where
U = V and x = y since

sup
t≤t′≤2t
v∈∂V

pt′ (v, v) ≤ sup
v∈V

pt (v, v) .

Kigami used (1.3) in [11] to develop a technique for obtaining an upper bound of
pt (x, x), given a certain estimate of the Dirichlet heat kernel pVt (x, x). He then
applied this technique to obtain heat kernel estimates on post-critically finite self-
similar fractals.

3. In the previous setting, but without the continuity of the heat kernel, the
authors proved in [6] the following inequality:

esup
y∈V

pt+s(x, y) ≤ esup
y∈V

pVt (x, y) + ψV (t, x) esup
y,z∈V

ps (y, z) (1.4)

for all t, s > 0 and almost all x ∈ V , where esup stands for the essential supremum.
We refer to the estimates of types (1.1), (1.3), (1.4) as to comparison inequalities

for heat kernels. The purpose of this paper is to prove such inequalities in the
most general setting where the heat semigroups are determined by regular Dirichlet
forms and under minimal a priori assumptions about the underlying space and the
Dirichlet form. Our method applies to local as well as to non-local regular Dirichlet
forms, that is, the associated Hunt process can be a diffusion or not. We prove
the comparison inequalities for the heat semigroups without assuming the existence
of the heat kernels. If the heat kernels do exist, then we obtain the comparison
inequalities for the heat kernels without assuming their continuity. We hope that
this level of generality for comparison inequalities will find applications in diverse
settings of both diffusion and jump processes on abstract metric measure spaces.

Despite the probabilistic motivation, all the proofs in this paper are entirely an-
alytic and are based on the version of the parabolic maximum principle, developed
by the authors [5], [7] in the abstract setting. Our basic result is the inequality
(3.3) of Theorem 3.1, which holds true for a weak subsolution of the heat equation
associated with any regular Dirichlet form. A refinement of Theorem 3.1 for quasi-
local Dirichlet forms is given in Theorem 4.3. It turns out that this basic inequality
(3.3) (and its version (4.4) for quasi-local forms) is a source of various interesting
comparison inequalities for heat semigroups and heat kernels.

For example, the inequality (5.13) of Theorem 5.1 contains (1.1), and the in-
equality (5.12) contains (1.2) and (1.3). General comparison estimates for heat
semigroups are given by Proposition 4.1 for arbitrary regular Dirichlet forms and by
Corollary 4.8 for quasi-local Dirichlet forms.

The structure of this paper is as follows. In Section 2 we give the preliminaries on
Dirichlet forms and weak solutions of the associated heat equation. In Section 3, we
prove the basic Theorem 3.1. The consequences of Theorem 3.1 – various comparison
inequalities, are proved in Section 4 for the heat semigroups and in Section 5 for
the heat kernels. Finally, in Section 6, we give an example of application of the
comparison inequalities deducing the off-diagonal sub-Gaussian upper bound of the
heat kernel from the on-diagonal bound and the tail estimate.
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2. Preliminaries on Dirichlet forms

In this section, we first recall some terminology from the theory of Dirichlet form
(cf. [4]) and prove some further properties of Dirichlet forms, which are of indepen-
dent interest for their own right.

Let (M,d, µ) be a metric measure space, that is, the couple (M,d) is a locally
compact separable metric space and µ is a Radon measure on M with a full support,
that is, µ(Ω) > 0 for any non-empty open subset Ω of M. Let (E ,F) be a Dirichlet
form in L2 := L2(M,µ), that is, F is a dense subspace of L2 and E (f, g) is a bilinear,
symmetric, non-negative definite, closed, and Markovian functional on F ×F . The

closedness of (E ,F) means that F is a Hilbert space with the norm
(
‖f‖2

2 + E(f)
)1/2

,

where ‖·‖2 is the norm of L2(M,µ) and E(f) := E(f, f). The Markovian property

means that f ∈ F implies f̃ := (f ∨ 0) ∧ 1 ∈ F and E(f̃) ≤ E (f) .
Let ∆ be the generator of (E ,F), that is, an operator in L2 with the maximal

domain dom (∆) ⊂ F such that

E (f, g) = − (∆f, g) for all f ∈ dom (∆) , g ∈ F .

Then ∆ is a non-positive definite self-adjoint operator in L2. Let {Pt}{t≥0} be the

heat semigroup associated with the form (E ,F), that is, Pt = exp (t∆). It follows
that, for any t ≥ 0, Pt is a bounded self-adjoint operator in L2. The relation between
Pt and ∆ is given also by the identity

∆f =L2-lim
t→0

1

t
(Ptf − f) ,

where the limit exists if and only if f ∈ dom(∆). A similar relation takes place
between Pt and E :

E(f, g) = lim
t→0

1

t
(f − Ptf, g) ,

for all f, g ∈ F . The heat semigroup {Pt} of a Dirichlet form is always Markovian,
that is, for any 0 ≤ f ≤ 1 a.e. in M, we have that 0 ≤ Ptf ≤ 1 a.e. in M for any
t > 0.

A family {pt}t>0 of µ×µ-measurable functions on M×M is called the heat kernel
of the Dirichlet form (E ,F) if pt is the integral kernel of the operator Pt, that is, for
any t > 0 and for any f ∈ L2(M,µ),

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) (2.1)

for µ-almost all x ∈M .

The form (E ,F) is regular if the space F ∩ C0(M) is dense both in F and in
C0(M), where C0(M) is the space of all real-valued continuous functions in M with
compact support. For any two subsets U,Ω of M, a cut-off function φ for the couple
(U,Ω) is a function in F ∩ C0(M) such that 0 ≤ φ ≤ 1 in M , φ = 1 in an open
neighborhood of U , and supp (φ) ⊂ Ω. If (E ,F) is a regular Dirichlet form, then
a cut-off function exists for any couple (U,Ω) provided that Ω is open and U is a
compact subset of Ω (cf. [4, p.27]).

Let Ω be a non-empty open subset of M . We identify the space L2 (Ω) as a
subspace of L2 (M) by extending any function f ∈ L2 (Ω) to M by setting f = 0
outside Ω. Denote by F(Ω) the closure of F ∩ C0(Ω) in F -norm. It is known that
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if (E ,F) is regular, then (E ,F(Ω)) is a regular Dirichlet form in L2(Ω) (cf. [4]).
We refer to (E ,F(Ω)) as a restricted Dirichlet form. Denote by

{
PΩ
t

}
{t≥0}

the heat

semigroup of (E ,F(Ω)). It is known that, for any two open subsets Ω1 ⊂ Ω2 of M ,
for any 0 ≤ f ∈ L2, and for any t > 0,

PΩ1
t f ≤ PΩ2

t f a.e. in M.

Also, if {Ωk}
∞
k=1 is an increasing sequence of open sets and Ω =

⋃∞
k=1 Ωk then, for

any t > 0,

PΩk
t f → PΩ

t f a.e.in M as k →∞

(see [5, Lemma 4.17]).
The form (E ,F) is called local if E(f, g) = 0 for any f, g ∈ F with disjoint compact

supports in M, and is strongly local if E(f, g) = 0 for any f, g ∈ F with compact
supports in M such that f is constant in a neighborhood of supp(g).

For some 0 ≤ ρ < ∞, the form (E ,F) is said to be ρ-local if E(f, g) = 0 for any
f, g ∈ F with compact supports in M and such that

dist(supp(f), supp(g)) > ρ.

In particular, if ρ = 0 then ρ-local is the same as local. We say that the form (E ,F)
is quasi-local if it is ρ-local for some ρ ≥ 0.

Let Ω be an open subset of M and I be an open interval in R. A path u : I →
L2 (Ω) is said to be weakly differentiable at t ∈ I if, for any ϕ ∈ L2 (Ω), the function
(u (·) , ϕ) is differentiable at t, that is, the limit

lim
ε→0

(
u (t+ ε)− u (t)

ε
, ϕ

)

exists. If this is the case then it follows from the principle of uniform boundedness
that there is a (unique) function w ∈ L2 (Ω) such that

lim
ε→0

(
u (t+ ε)− u (t)

ε
, ϕ

)

= (w,ϕ) ,

for all ϕ ∈ L2 (Ω). We refer to the function w as the weak derivative of u at t and
write w = ∂u

∂t
.

A path u : I → F is called a weak subsolution of the heat equation in I × Ω, if
the following two conditions are fulfilled:

• the path t 7→ u (t) |Ω is weakly differentiable in L2 (Ω) at any t ∈ I;
• for any non-negative ϕ ∈ F (Ω), we have

(
∂u

∂t
, ϕ

)

+ E (u, ϕ) ≤ 0. (2.2)

Similarly one can define the notions of weak supersolution and weak solution of
the heat equation.

Remark 2.1. Note that, for any f ∈ L2 (Ω), the function PΩ
t f is a weak solution in

(0,∞)× Ω (cf. [5, Example 4.10]) and, hence, in (0,+∞)× U for any open subset
U ⊂ Ω.
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We use the following notation:

f+ := f ∨ 0 and f− = − (f ∧ 0) .

Denote by the sign
H
⇀ a weak convergence in a Hilbert space H and by

H
→ the strong

(norm) convergence in H. The following statements will be used in this paper.

Proposition 2.2 ([6, Proposition 4.9]). Let {uk} be a sequence of functions in F

such that uk
L2

⇀ u ∈ F as k → ∞. If in addition the sequence {E(uk)} is bounded,

then uk
F
⇀ u as k →∞.

Proposition 2.3 ([4, Theorem 1.4.2]). Any Dirichlet form (E ,F) possesses the
following properties:

• If u, v ∈ F then also the following functions u ∧ v, u ∨ v, u ∧ 1, u+, u−, |u|
also belong to F .
• If u, v ∈ F ∩ L∞ (M) then uv ∈ F .

• If 0 ≤ u ∈ F then u ∧ n
F
→ u as n→∞.

• Let φ (s) be a Lipschitz function on R such that φ (0) = 0. Then, for any
u ∈ F , also φ (u) ∈ F . Moreover, if {un}

∞
n=1 is a sequence of functions from

F and un
F
→ u ∈ F as n→∞ then φ (un)

F
⇀ φ (u) .Furthermore, if φ (u) = u

then φ (un)
F
→ φ (u) .

Proposition 2.4 ([5, Lemma 4.4]). Let (E ,F) be a regular Dirichlet form, and let
u ∈ F and Ω be an open subset of M . Then the following are equivalent:

(1). u+ ∈ F (Ω).
(2). u ≤ v in M for some function v ∈ F (Ω).

Proposition 2.5 (parabolic maximum principle [7, Proposition 5.2]). Assume that
(E ,F) is a regular Dirichlet form in L2. For T ∈ (0,+∞] and for an open subset
Ω of M, let u be a weak subsolution of the heat equation in (0, T )×Ω satisfying the
following boundary and initial conditions:

• u+(t, ·) ∈ F(Ω) for any t ∈ (0, T );

• u+ (t, ·)
L2(Ω)
−→ 0 as t→ 0.

Then u(t, x) ≤ 0 for any t ∈ (0, T ) and µ-almost all x ∈ Ω.

Next we prove further general results on Dirichlet forms that will be used later
on and that are of independent interest.

Proposition 2.6. Let Ω be a non-empty open subset of M. Then, for any non-
negative f ∈ L2(Ω), the path u(t) = PΩ

t f is a weak subsolution of the heat equation
in (0,∞)×M.

Proof. We know that u (t) is weakly differentiable in t in L2 (Ω). Let us show that
u (t) is weakly differentiable also in L2 (M). Indeed, for any function ϕ ∈ L2 (M),
we have
(
u (t+ s)− u (t)

s
, ϕ

)

=

(
u (t+ s)− u (t)

s
, ϕ1Ω

)

+

(
u (t+ s)− u (t)

s
, ϕ1Ωc

)

.

(2.3)
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Since ϕ1Ω ∈ L2 (Ω), the first term in the right hand side of (2.3) converges to(
∂u
∂t
, ϕ1Ω

)
where ∂u

∂t
is the weak derivative in L2 (Ω). The second term is obviously

0 whence the convergence of the whole sum to
(
∂u
∂t
, ϕ
)

follows.
Next, let us show that, for any non-negative ψ ∈ F ,

(
∂u

∂t
, ψ

)

+ E (u, ψ) ≤ 0 for any t > 0. (2.4)

Indeed, noting that Psu (t) ≥ PΩ
s u (t) = u (t+ s), we obtain as s→ 0+ that

Es (u, ψ) =
1

s
(u− Psu, ψ)

≤
1

s

(
u− PΩ

s u, ψ
)

=
1

s
(u (t)− u (t+ s) , ψ)

→

(

−
∂u

∂t
, ψ

)

.

Since also Es (u, ψ)→ E (u, ψ) as s→ 0, the desired inequality (2.4) follows.
The following proposition will be used to prove Proposition 2.9.

Proposition 2.7. Let Ω1, Ω2 be two non-empty open subsets of M. Then

F (Ω1) ∩ F (Ω2) = F (Ω1 ∩ Ω2) . (2.5)

Proof. Since F (Ω1 ∩ Ω2) ⊂ F (Ωi) for i = 1, 2, we see that

F (Ω1 ∩ Ω2) ⊂ F (Ω1) ∩ F (Ω2) .

To prove the opposite inclusion, we need to verify that f ∈ F (Ω1) ∩F (Ω2) implies
f ∈ F (Ω1 ∩ Ω2) . Assume first that f ≥ 0. Let {fk}

∞
k=1 and {gk}

∞
k=1 be two sequence

from F ∩C0(Ω1) and F ∩C0(Ω2), respectively, that both converge to f in F -norm.
As f ≥ 0 and, hence, f+ = f , it follows from Proposition 2.3 that

(fk)+

F
→ f and (gk)+

F
→ f as k →∞. (2.6)

Since (fk)+ ∈ F ∩ C0(Ω1) and (gk)+ ∈ F ∩ C0(Ω2), we see that

hk := (fk)+ ∧ (gk)+ ∈ F ∩ C0(Ω1 ∩ Ω2) ⊂ F(Ω1 ∩ Ω2).

Setting uk = (fk)+ − (gk)+ and noticing that uk
F
→ 0 as k → ∞, we obtain by

Proposition 2.3 that |uk|
F
⇀ 0 as k →∞. It follows that

hk =
1

2

[
(fk)+ + (gk)+ −

∣
∣(fk)+ − (gk)+

∣
∣] F⇀ f as k →∞.

Since F (Ω1 ∩ Ω2) is a closed and, hence, weakly closed subspace of F , we conclude
that f ∈ F (Ω1 ∩ Ω2) .

For a signed function f ∈ F (Ω1) ∩ F (Ω2) , we have f+, f− ∈ F (Ω1) ∩ F (Ω2) ,
whence, by the first part of the proof, f+, f− ∈ F (Ω1 ∩ Ω2) and f = f+ − f− ∈
F (Ω1 ∩ Ω2) , which finishes the proof.

Proposition 2.8. Let U be a non-empty open subset of M, and let u ∈ F such that
supp(u) is compact and supp(u) ⊂ U. Then u ∈ F (U) .
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Proof. We can assume that u ≥ 0 because a signed u all follows from the
decomposition u = u+ − u−. Next, we can assume that u is bounded because
otherwise consider a sequence uk := u ∧ k that tends to u in F -norm as k →∞ by
Proposition 2.3; if we already know that uk ∈ F (U) then we can conclude that also
u ∈ F (U).. Hence, we can assume in the sequel that u is non-negative and bounded
in M , say 0 ≤ u ≤ 1.

Let ϕ be a cut-off function for the couple (supp(u), U) . Let {uk}
∞
k=1 be a sequence

from F ∩ C0(M) such that uk
F
−→ u as k →∞. As u ≥ 0, we have by [4, Theorem

1.4.2(v),p.26] that (uk)+

F
−→ u as k →∞ and

∣
∣(uk)+ − ϕ

∣
∣ F⇀ |u− ϕ| as k →∞. It

follows that

(uk)+ ∧ ϕ =
1

2

[
(uk)+ + ϕ−

∣
∣(uk)+ − ϕ

∣
∣]

F
⇀

1

2
[u+ ϕ− |u− ϕ|]

= u ∧ ϕ = u as k →∞.

Since (uk)+∧ϕ ∈ F ∩C0(U) , we conclude that u ∈ F (U) , which finishes the proof.

Proposition 2.9. Let Ω be a precompact open subset of M and U be an open subset
of M , and let K be a closed subset of M such that K ⊂ U (see Fig. 3). Let u ∈ F
be a function such that u+ ∈ F (Ω) and u ≤ ψ in Ω\K for some 0 ≤ ψ ∈ F . Then

(u− ψ)+ ∈ F (Ω ∩ U) . (2.7)

Ω
U

K

Figure 3. Domains Ω, U and K.

Proof. Since u− ψ ≤ u+ ∈ F (Ω), it follows by Proposition 2.4 that (u− ψ)+ ∈
F (Ω) . Let us verify that

(u− ψ)+ ∈ F (U) , (2.8)

which will then imply (2.7) by Proposition 2.7. Indeed, noticing that (u− ψ)+ = 0
in Ω \K and in Ωc, we see that

supp
(
(u− ψ)+

)
⊂ K ∩ Ω ⊂ K ∩ Ω.

On the other hand, the set K ∩ Ω is compact and is contained in U , so that (2.8)
follows from Proposition 2.8.

Remark 2.10. The statement of Proposition 2.9 was proved in [6, Proposition 4.10]
under additional condition that u ∈ L∞(M)∩ F(Ω) and supp (ψ) is compact. The
present proof is also shorter than the one from [6].
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3. Basic comparison theorem

The next theorem is the basic technical result of this paper.

Theorem 3.1. Let (M,d, µ) be a metric measure space and let (E ,F) be a regular
Dirichlet form in L2(M,µ). Let Ω ⊂ M be a precompact open set and U ⊂ M be
an open such that µ(U) < ∞. Let u be a weak subsolution of the heat equation in
(0, T0)× (Ω ∩ U) where T0 ∈ (0,+∞], such that

u+ (t, ·) ∈ F(Ω) for any t ∈ (0, T0) , (3.1)

u+ (t, ·)
L2(Ω∩U)
−→ 0 as t→ 0. (3.2)

Let K be a closed subset of M such that K ⊂ U . Then, for any t ∈ (0, T0) and for
almost all x ∈M ,

u (t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖u+ (s, ·) ‖L∞(Ω\K), (3.3)

provided that sup0<s≤t ‖u+ (s, ·) ‖L∞(Ω\K) <∞.

Remark 3.2. If Ω ⊂ U, then all the conditions of Proposition 2.5 are satisfied, so
that we conclude u ≤ 0 in (0, T0) × Ω. Hence, in this case the inequality (3.3) is
trivially satisfied.

Remark 3.3. If U,Ω are open domains in Rn with smooth boundaries, then one
can rephrase the statement of Theorem 3.1 for strong solutions as follows: if u solves
the heat equation in (0, T0)×Ω∩U and satisfies the initial and boundary conditions

u ≤ 0 on ∂Ω ∩ U (instead of u+ ∈ F(Ω)),

u ≤ m on ∂U ∩ Ω for some m ≥ 0 (instead of u ≤ m on Ω \K),

u(t, ·) → 0 as t→ 0 in Ω ∩ U,

then u ≤
(
1− PU

t 1U(x)
)
m in (0, T0) × (Ω ∩ U) (see Fig 4). Indeed, the function

v =
(
1− PU

t 1
)
m satisfies the heat equation in (0,∞)×U , the boundary conditions

v ≥ 0 on ∂Ω, v = m on ∂U , and the initial condition v (t, ·) → 0 as t → 0 in U .
Applying the classical parabolic maximum principle in Ω ∩ U , we obtain u ≤ v.

u m

u (1- Pt 1)mU

u 0
Ω

U

K

Figure 4. Illustration to Theorem 3.1 in the classical case.



10 GRIGOR’YAN, HU, AND LAU

Proof. Outside Ω the inequality (3.3) is trivial because u ≤ 0 by (3.1). In Ω \ U
(3.3) is also obvious because PU

t 1U = 0 and K ⊂ U . It remains to prove (3.3) in
Ω ∩ U . Fix a number T ∈ (0, T0) and define m by

m = sup
0<t≤T

‖u+ (t, ·)‖L∞(Ω\K) . (3.4)

Let us first prove that, for any t ∈ (0, T ) and for µ-almost all x ∈ Ω ∩ U ,

u(t, x) ≤ m. (3.5)

Let φ be a cut-off function for the couple (Ω,M) and consider the function

w = u−mφ. (3.6)

Then (3.5) will follow if we show that w ≤ 0 in (0, T )× (Ω ∩ U). The latter will be
proved by using the maximum principle of Proposition 2.5. We need to verify the
following conditions.

• The function w is a weak subsolution of the heat equation in (0, T )×(Ω ∩ U).
Indeed, the function φ, considered as a function of (t, x), is a weak superso-
lution of the heat equation in (0,∞)×Ω, since for any non-negative function
ψ ∈ F(Ω),

E(φ, ψ) = lim
t→0

t−1 (φ− Ptφ, ψ) = lim
t→0

t−1 (1− Ptφ, ψ) ≥ 0.

Since u is a weak subsolution in (0, T )× (Ω ∩ U), we see from (3.6) that so
is w.
• For any t ∈ (0, T ), we have w+(t, ·) ∈ F (Ω ∩ U). Indeed, using the facts

that u+ (t, ·) ∈ F(Ω) and u ≤ m = mφ in Ω \K (which is true by (3.4)), we
obtain from Proposition 2.9 that

w+(t, ·) = (u(t, ·)−mφ)+ ∈ F (Ω ∩ U) .

• The initial condition w+(t, ·)
L2(Ω∩U)
→ 0 as t → 0 follows from w+(t, ·) ≤

u+(t, ·) and (3.2).

Therefore, by the parabolic maximum principle of Proposition 2.5, we conclude that
w ≤ 0 in (0, T )× (Ω ∩ U), thus proving (3.5).

We are now in a position to prove the following improvement of (3.5):

u ≤
(
1− PU

t 1U
)
m in (0, T )× (Ω ∩ U) (3.7)

(see Fig. 5 where the case U ⊂ Ω is shown). The path t 7→ u (t, ·) is weakly
differentiable in L2 (Ω ∩ U) and, hence, is strongly continuous in L2 (Ω ∩ U) (see [7,
Lemma 5.1]). The same applies to the path t → PU

t 1U so that the inequality (3.7)
extends to t = T by continuity. Hence, (3.7) implies (3.3). Consider the function

v = u−mφ
(
1− PU

t 1U
)
, (3.8)

where m and φ are the same as above. As µ(U) < ∞, we have 1U ∈ L2(U, µ) and,
hence, PU

t 1U ∈ F(U). We claim that v is a weak subsolution of the heat equation in
(0, T )× (Ω ∩ U). Since u is a weak subsolution, it suffices to show that the function

f := φ
(
1− PU

t 1U
)
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u (1- Pt 1)mU

u 0 in M \

ΩU Kt= 0

t = T

u m in \K

u= 0

Figure 5. Illustration to the proof of (3.7) in the case U ⊂ Ω.

is a weak supersolution in (0, T ) × (Ω ∩ U). Since the both functions φ and PU
t 1U

belong to L∞(M) ∩ F , so does the product φPU
t 1U , whence

f = φ− φPU
t 1U ∈ L

∞(M) ∩ F .

For any t, s ∈ (0, T ), we have that in Ω ∩ U ,

f − Psf = φ
(
1− PU

t 1U
)
− Ps

(
φ
(
1− PU

t 1U
))

≥
(
1− PU

t 1U
)
− Ps

(
1− PU

t 1U
)

= (1− Ps1)− PU
t 1U + Ps

(
PU
t 1U

)
≥ PU

t+s1U − P
U
t 1U ,

which yields that, for any 0 ≤ ψ ∈ F(Ω ∩ U),

E(f, ψ) = lim
s→0

1

s
(f − Psf, ψ)

≥ lim
s→0

1

s

(
PU
t+s1U − P

U
t 1U , ψ

)
=

(
∂

∂t
PU
t 1U , ψ

)

.

On the other hand,
(
∂f

∂t
, ψ

)

=

(

−φ
∂

∂t
PU
t 1U , ψ

)

= −

(
∂

∂t
PU
t 1U , ψ

)

.

Therefore,
(
∂f

∂t
, ψ

)

+ E(f, ψ) ≥ 0,

showing that f is a weak supersolution. Hence, we have proved that v is a weak
subsolution.

Since v ≤ u, it follows from (3.2) that

v+(t, ·)
L2(U∩Ω)
→ 0 as t→ 0.
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It remains to verify the boundary condition: v+(t, ·) ∈ F(Ω ∩ U) for any t ∈ (0, T ).
Observe that

u−mφ ≤ 0 in M (3.9)

because

(1) u−mφ ≤ 0 in M \ Ω by (3.1),
(2) u−mφ = u−m ≤ 0 in Ω \ U by (3.4),
(3) u−mφ = u−m ≤ 0 in Ω ∩ U by (3.5).

Using (3.9), we obtain that in M

v = u−mφ
(
1− PU

t 1U
)
≤ mφPU

t 1U ≤ mPU
t 1U .

Since the function PU
t 1U belongs to F(U), we conclude by using Proposition 2.4

that also v+ ∈ F (U). On the other hand, we have

v = u−mφ
(
1− PU

t 1U
)
≤ u ≤ u+ ∈ F (Ω) ,

whence it follows that v+ ∈ F (Ω) . Therefore, by 2.7 we obtain that v+ ∈ F(U ∩
Ω), thus proving the boundary condition. Finally, we conclude by the maximum
principle of Proposition 2.5 that v ≤ 0 in (0, T )× (Ω ∩ U) whence (3.7) follows.

Remark 3.4. The boundary condition (3.1) in Theorem 3.1 can be relaxed as
follows:

u+ (t, ·) ∈ F(Ω) for any t ∈ (0, T0) ∩Q, (3.10)

provided one assumes in addition that

t 7→ u(t, ·) is weakly continuous in L2 (Ω) , (3.11)

t 7→ E(u(t, ·)) is locally bounded, (3.12)

for t ∈ (0, T0). Under the hypotheses (3.10)-(3.12) , the inequality (3.3) can be
replaced by a stronger one:

u (t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t,
s∈Q

‖u+ (s, ·) ‖L∞(Ω\K). (3.13)

The proof goes exactly as above except that in the definition (3.4) of the constant
m the supremum is taken only over rational t ∈ (0, T ]. Then we need to verify that
the functions w and v, defined by (3.6), (3.8), respectively, satisfy the boundary
condition (3.1) for all real t ∈ (0, T ) in order to be able to use the maximum
principle of Proposition 2.5. Indeed, for any t ∈ (0, T ), let {tk}

∞
k=1 be a sequence of

rationals such that tk → t as k →∞. By (3.6) and (3.11), we have

w(tk, ·)− w(t, ·) = u(tk, ·)− u(t, ·)
L2(Ω)
⇀ 0,

and thus

w+(tk, ·)
L2(Ω)
⇀ w+(t, ·).

By (3.12), E(w(tk, ·)) is bounded as k → ∞. Hence, we obtain by Proposition 2.2
that

w+(tk, ·)
F
⇀ w+(t, ·).

Since w+ (tk, ·) ∈ F(Ω) by (3.10), we conclude that w+ (t, ·) ∈ F(Ω). Similarly, one
has v+ (t, ·) ∈ F (Ω) for all real t ∈ (0, T ), which finishes the proof.
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The inequality (3.3) gives a rise to various interesting comparison inequalities for
heat semigroups and heat kernels that will be presented in the next sections. Before
that, let us state a useful particular case of Theorem 3.1 when U ⊂ Ω (cf. Fig. 5).

Corollary 3.5. Let (M,d, µ) be a metric measure space and let (E ,F) be a regular
Dirichlet form in L2(M,µ). Let Ω ⊂M be a precompact open set and U be an open
subset of Ω. Let u be a weak subsolution of the heat equation in (0, T0) × U where
T0 ∈ (0,+∞], such that

u+ (t, ·) ∈ F(Ω) for any t ∈ (0, T0) , (3.14)

u+ (t, ·)
L2(U)
−→ 0 as t→ 0.

Then the conclusion of Theorem 3.1 holds for any compact subset K of U , any
t ∈ (0, T0) and almost all x ∈M .

4. Comparison results for the heat semigroups

In this section, we give various applications of Theorem 3.1 to the semigroup
solutions, including a specific case of quasi-local Dirichlet form.

4.1. General regular Dirichlet forms.

Proposition 4.1. Let (E ,F) be a regular Dirichlet form in L2(M,µ), and let Ω,
U be two non-empty open subsets of M such that µ(U) < ∞. Let K be any closed
subset of M such that K ⊂ U . Then, for any 0 ≤ f ∈ L2(Ω) and for all t > 0 and
almost all x ∈M ,

PΩ
t f(x)− PU

t f(x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖PΩ
s f‖L∞(Ω\K). (4.1)

Proof. Without loss of generality, assume that 0 ≤ f ∈ L∞(Ω) (otherwise, apply
(4.1) to function fk = f ∧ k and then pass to the limit as k → ∞). Let {Ωi} be a
sequence of precompact open subsets exhausting Ω. Consider the function

u(t, ·) := PΩi
t f − PΩi∩U

t f

and verify that u satisfies all the hypothesis of Theorem 3.1 with the sets Ωi and U .
Indeed, u is a weak subsolution of the heat equation in (0,∞)× (Ωi ∩ U) because so
are PΩi

t f and PΩi∩U
t f (cf. Remark 2.1). Next, u (t, ·) ∈ F (Ωi) because both PΩi

t f

and PΩi∩U
t f belong to F (Ωi). Since both PΩi

t f and PΩi∩U
t f converge to f as t→ 0

in L2 (Ωi ∩ U), we obtain u (t, ·)
L2(Ωi∩U)
→ 0 as t → 0. By Theorem 3.1, we obtain

that

PΩi
t f − PΩi∩U

t f ≤
(
1− PU

t 1U
)

sup
0<s≤t

‖PΩi
s f − PΩi∩U

s f‖L∞(Ωi\K)

≤
(
1− PU

t 1U
)

sup
0<s≤t

‖PΩ
s f‖L∞(Ω\K).

Noticing that PΩi∩U
t f ≤ PU

t f and passing to the limit as i → ∞, we obtain (4.1).
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Remark 4.2. Let us mention for comparison that the following inequality was
proved in [6, Proposition 4.7]:

PΩ
t f(x)− PU

t f(x) ≤ sup
0<s≤t

‖PΩ
s f‖L∞(Ω\K). (4.2)

Obviously, (4.1) is an improvement of (4.2). On the other hand, the estimate (4.2)
was proved in [6] for arbitrary open set U without the hypotheses of the finiteness
of its measure. For applications of (4.2) see [6, Theorem 5.12].

4.2. Quasi-local Dirichlet forms. Given an open set U ⊂ M and non-negative
real ρ, define the ρ-neighborhood Uρ of U as follows:

Uρ = {x ∈M : d(x, U) < ρ} if ρ > 0,

Uρ = U if ρ = 0,

where d (x, U) = infy∈U d (x, y).

Theorem 4.3. Assume that (E ,F) is a ρ-local regular Dirichlet form in L2 (M,µ)
where ρ ≥ 0. Let U be an open subset of M such that Uρ is precompact, and let u be
a weak subsolution of the heat equation in (0, T0)× U where T0 ∈ (0,+∞]. Assume
that, for any t ∈ (0, T0), u (t, ·) ∈ L∞ (M) and

u+ (t, ·)
L2(U)
−→ 0 as t→ 0. (4.3)

Then, for any compact subset K of U , for all t ∈ (0, T0), and almost all x ∈ Uρ,

u (t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖u+ (s, ·) ‖L∞(Uρ\K), (4.4)

provided sup0<s≤t ‖u+ (s, ·) ‖L∞(Uρ\K) <∞.

Proof. Since PU
t 1U = 0 outside U , the inequality (4.4) is trivially satisfied if

x ∈ Uρ \ U . Hence, it suffices to prove (4.4) if x ∈ U . Fix an open subset W of U
such that W ⊂ U . Then Wρ ⊂ Uρ so that Wρ is precompact. Let φ be a cut-off
function for the couple (Wρ, Uρ). Let us show that the function w = uφ satisfies all
the hypothesis of Corollary 3.5 where the domains Ω, U are replaced by Uρ and W
respectively. Note that the function u does not satisfy the condition (3.14) so that
we have to use w instead.

Let us first show that w is a weak subsolution of the heat equation in (0, T0)×W .
Indeed, since u (t, ·) , φ ∈ F ∩ L∞(M) for any t ∈ (0, T0) × W , it follows that
w (t, ·) ∈ F . Since u is a subsolution in (0, T0) ×W and φ ≡ 1 in W , we have, for
any non-negative function ψ ∈ F(W ),

(
∂w

∂t
, ψ

)

=

(

φ
∂u

∂t
, ψ

)

=

(
∂u

∂t
, ψ

)

≤ −E(u, ψ)

= −E(w,ψ) + E ((φ− 1)u, ψ) = −E(w,ψ), (4.5)

where we have used the fact that E ((φ− 1)u, ψ) = 0 by the ρ-locality of E , because
supp(ψ) ⊂ W , and the function (φ−1)u is compactly supported outside Wρ, so that
the distance between the supports of ψ and (φ− 1)u is larger than ρ.

Since suppϕ ⊂ Uρ and, hence, suppw (t, ·) ⊂ Uρ, we see that w (t.·) ∈ F (Uρ)
and, hence, w+(t, ·) ∈ F (Uρ) .Moreover, it follows from (4.3) that

w+(t, ·) = φu+(t, ·)
L2(W )
→ 0 as t→ 0.
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Hence, w satisfied the required boundary and initial conditions, and by Theorem
3.1 we obtain from (3.3) that in (0, T0)×W

u(t, x) = w (t, x) ≤
(
1− PW

t 1W (x)
)

sup
0<s≤t

‖w+ (s, ·) ‖L∞(Uρ\K)

≤
(
1− PW

t 1W (x)
)

sup
0<s≤t

‖u+ (s, ·) ‖L∞(Uρ\K).

Taking an exhaustion of U by sets like W and passing to the limit when W → U ,
we obtain (4.4).

Remark 4.4. If function u in Theorem 4.3 further satisfies (3.11) and (3.12) with
Ω = Uρ, then we conclude from Remark 3.4 that the inequality (4.4) can be replaced
by a stronger one:

u (t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t,
s∈Q

‖u+ (s, ·) ‖L∞(Uρ\K). (4.6)

For the case of local Dirichlet forms, we obtain the following improvement of
Theorem 4.3 where the condition of the compactness of Uρ is dropped.

Corollary 4.5. Assume that (E ,F) is a local regular Dirichlet form in L2 (M,µ).
Let U be an open subset of M and let u be a weak subsolution of the heat equation in
(0, T0)× U where T0 ∈ (0,+∞]. Assume that, for any t ∈ (0, T0), u (t, ·) ∈ L∞ (M)
and

u+ (t, ·)
L2(U)
−→ 0 as t→ 0.

Then, for any compact subset K of U , for all t ∈ (0, T0), and almost all x ∈ U ,

u (t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖u+ (s, ·) ‖L∞(U\K). (4.7)

provided sup0<s≤t ‖u+ (s, ·) ‖L∞(U\K) <∞.

Proof. Let {Ui}
∞
i=1 be an exhaustion of U by precompact open sets Ui such that

K ⊂ Ui for all i. By Theorem 4.3, we obtain the estimate (4.7) for Ui instead of U ,
and then pass to the limit as i→∞.

Remark 4.6. A particular case of the estimate (4.7) with K = ∅ was proved in
[6, Lemma 4.3]. However, having an arbitrary K can be an advantage in certain
situations. For example, if U is precompact and u (t, ·) is continuous in U then
taking exhaustion of U by compact sets K ⊂ U, one can replace the L∞-norm in
(4.7) by sup∂U u+.

Remark 4.7. If (E ,F) is ρ-local with ρ > 0 and in addition all metric balls in M
are precompact then the hypothesis of the compactness of Uρ in Theorem 4.3 can
be also dropped. Indeed, firstly, it suffices to assume that U is precompact, since it
implies that Uρ is precompact. Then one extends the result to all open sets U as in
the proof of Corollary 4.5.

As another consequence of Theorem 4.3, we obtain the following useful comparison
inequality for heat semigroups.
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Corollary 4.8. Assume that (E ,F) is a ρ-local regular Dirichlet form in L2 (M,µ)
where ρ ≥ 0. Let U,Ω be two open subsets of M such that Uρ is precompact and
Uρ ⊂ Ω. Then, for any 0 ≤ f ∈ L∞(M), for all t > 0 and almost all x ∈ Uρ,

PΩ
t f(x)− PU

t f(x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖PΩ
s f‖L∞(Uρ\K) (4.8)

for any compact subset K of U .
Moreover, if ρ = 0, that is, (E ,F) is local then the same is true without assuming

that Uρ is precompact. In this case, (4.8) becomes

PΩ
t f(x)− PU

t f(x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖PΩ
s f‖L∞(U\K). (4.9)

Proof. Consider the function

u(t, ·) = PΩ
t f(·)− PU

t f(·),

that is bounded on M for any t > 0, is a weak subsolution of the heat equation in
(0,∞)×U , and satisfies the initial condition (4.3). Hence, if follows from (4.4) that,
for all t > 0 and almost all x ∈ Uρ,

PΩ
t f(x)− PU

t f(x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t

‖PΩ
s f − P

U
s f‖L∞(Uρ\K),

whence (4.8) follows.
In the case of a local form, one passes from precompact U to arbitrary U as in

the proof of Corollary 4.5.

Remark 4.9. In fact, the inequality (4.8) can be improved as follows:

PΩ
t f(x)− PU

t f(x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t,
s∈Q

‖PΩ
s f‖L∞(Uρ\K), (4.10)

because the function u = PΩ
t f − P

U
t f automatically satisfies conditions (3.11) and

(3.12). Indeed, since U ⊂ Ω, it suffices to verify that the function u = PΩ
t f satisfies

(3.11) and (3.12). Then (3.11) follows from the strong continuity of the semigroup{
PΩ
t

}
in L2 (Ω) and (3.12) follows from the fact that E

(
PΩ
t f
)

is a decreasing function
of t, the latter being a consequence of the identity

E
(
PΩ
t f
)

=

∫ ∞

0

λe−2λtd (Eλf, f) ,

where {Eλ} is the spectral resolution of the operator LΩ.
Hence, (4.10) follows from (4.6).

Remark 4.10. The estimate (4.9) with K = ∅ was proved also in [6, (4.10) in
Corollary 4.4]. Let us mention a useful particular case of (4.9) is when the function
f vanishes in U . In this case, (4.8) becomes

PΩ
t f(x) ≤

(
1− PU

t 1U(x)
)

sup
0<s≤t

‖PΩ
s f‖L∞(Uρ\K). (4.11)
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5. Comparison results for heat kernels

In this section we will prove a symmetric comparison inequality for the heat kernel
of a ρ-local Dirichlet form. The motivation is as follows. Let (E ,F) be an arbitrary
regular Dirichlet form and U, V ⊂ Ω be three open subsets of M such that U∩V = ∅.
We claim that, for all t, s > 0 and µ-almost all x ∈ U , y ∈ V ,

pΩ
t+s(x, y) ≤

[
1− PU

t 1U(x)
] ∥∥pΩ

s (·, y)
∥
∥
L∞(Ω\U)

+
[
1− P V

s 1V (y)
] ∥∥pΩ

t (·, x)
∥
∥
L∞(Ω\V )

. (5.1)

Indeed, noticing that
∫

Ω\U

pΩ
t (x, z)dµ(z) ≤ 1− PΩ

t 1U (x) ≤ 1− PU
t 1U(x),

we obtain that∫

Ω\U

pΩ
t (x, z)pΩ

s (z, y)dµ(z) ≤
∥
∥pΩ

s (·, y)
∥
∥
L∞(Ω\U)

∫

Ω\U

pΩ
t (x, z)dµ(z)

≤
[
1− PU

t 1U(x)
] ∥∥pΩ

s (·, y)
∥
∥
L∞(Ω\U)

. (5.2)

In a similar way, we have
∫

Ω\V

pΩ
t (x, z)pΩ

s (z, y)dµ(z) ≤
[
1− P V

s 1V (y)
] ∥∥pΩ

t (·, x)
∥
∥
L∞(Ω\V )

. (5.3)

Therefore, by the semigroup property,

pΩ
t+s(x, y) =

∫

Ω

pΩ
t (x, z)pΩ

s (z, y)dµ(z)

≤
∫

Ω\U

pΩ
t (x, z)pΩ

s (z, y)dµ(z) +

∫

Ω\V

pΩ
t (x, z)pΩ

s (z, y)dµ(z),

which together with (5.2) and (5.3) yields (5.1).
The purpose of the next theorem is to use the ρ-locality in order to replace in

(5.1) the L∞ norms in Ω \ U , Ω \ V by those in smaller sets, which is frequently
critical for applications.

Theorem 5.1. Let (E ,F) be a ρ-local regular Dirichlet form in L2 (M,µ) where
ρ ≥ 0, and let U, V,Ω be three open subsets of M such that Uρ, Vρ are precompact
and Uρ, Vρ ⊂ Ω. Assume that all the Dirichlet heat kernels pUt , pVt , pΩ

t exist and that
pΩ
t (x, y) is locally bounded in R+ × Ω × Ω. Then, for all t, s > 0 and µ-almost all
x ∈ U , y ∈ V ,

pΩ
t+s(x, y) ≤

∫

Ω

pUt (x, z)pVs (z, y)dµ(z) +
[
1− PU

t 1U(x)
]

sup
s<t′≤t+s

∥
∥pΩ

t′ (·, y)
∥
∥
L∞(Uρ\K1)

+
[
1− P V

s 1V (y)
]

sup
t<t′≤t+s

∥
∥pΩ

t′ (·, x)
∥
∥
L∞(Vρ\K2)

,

(5.4)

where K1, K2 are any compact subsets of U and V , respectively.
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In the case ρ = 0, that is, when (E ,F) is local, the assumption of the compactness
of Uρ, Vρ can be dropped.

Proof. Let v be a non-negative function from L∞∩L1 (V ). Setting f = PΩ
s v and

noticing that all the hypotheses of Corollary 4.8 are satisfied, we obtain by (4.10)
that the following inequality is true in U for all t > 0:

PΩ
t+sv ≤ PU

t

(
PΩ
s v
)

+
[
1− PU

t 1U
]

sup
0<t′≤t,
t′∈Q

‖PΩ
t′+sv‖L∞(Uρ\K1)

= PU
t

(
PΩ
s v
)

+
[
1− PU

t 1U
]

sup
s<t′≤t+s,
t′∈Q

‖PΩ
t′ v‖L∞(Uρ\K1) (5.5)

where we have used that PΩ
t f = PΩ

t+sv. Consider the function

F (y) := sup
s<t′≤t+s,
t′∈Q

esup
z∈Uρ\K1

pΩ
t′ (z, y) ,

which is bounded in V . Note that F (y) is measurable as the supremum of a countable
family of measurable functions of y since

y 7→ esup
z∈Uρ\K1

pΩ
t′ (z, y)

is measurable by Proposition 7.1, and t′ varies in Q. We have then

sup
s<t′≤t+s,
t′∈Q

‖PΩ
t′ v‖L∞(Uρ\K1) = sup

s<t′≤t+s,
t′∈Q

esup
z∈Uρ\K1

∫

V

pΩ
t′ (z, y) v(y) dµ(y)

≤
∫

V

F (y)v(y)dµ(y). (5.6)

Multiplying (5.5) by a non-negative function u ∈ L∞ ∩ L1 (U) and integrating over
U , we obtain

(
PΩ
t+sv, u

)
≤
(
PU
t

(
PΩ
s v
)
, u
)

+

∫ ∫

U×V

[
1− PU

t 1U(x)
]
F (y)u(x)v(y)dµ(x)dµ(y). (5.7)

On the other hand, observe that
(
PU
t

(
PΩ
s v
)
, u
)

=
(
PΩ
s v, P

U
t u
)

=
(
v, PΩ

s P
U
t u
)
. (5.8)

Using (4.10) again, now with f = PU
t u and with V in place of U , we obtain the

following inequality in V :

PΩ
s P

U
t u = PΩ

s f ≤ P V
s f +

[
1− P V

s 1V
]

sup
0<t′≤s,
t′∈Q

∥
∥PΩ

t′ f
∥
∥
L∞(Vρ\K2)

. (5.9)

Observing that PU
t u ≤ PΩ

t u, we obtain that

PΩ
t′ f = PΩ

t′ P
U
t u ≤ PΩ

t′ P
Ω
t u = PΩ

t′+tu.

Similarly to (5.6), we have

sup
t<t′≤t+s
t′∈Q

∥
∥PΩ

t′ u
∥
∥
L∞(Vρ\K2)

≤
∫

U

G(x)u(x)dµ(x)
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where

G(x) := sup
t<t′≤t+s
t′∈Q

esup
z∈Vρ\K2

pΩ
t′ (z, x)

is a bounded measurable function on U . Substituting into (5.9), we obtain that in
V

PΩ
s P

U
t u ≤ P V

s

(
PU
t u
)

+
[
1− P V

s 1V
] ∫

U

G(x)u(x) dµ(x). (5.10)

Multiplying (5.10) by v and integrating over V , we obtain

(
v, PΩ

s P
U
t u
)
≤
(
v, P V

s

(
PU
t u
))

+

∫ ∫

U×V

[
1− P V

s 1V (y)
]
G(x)u(x)v(y)dµ(x)dµ(y).

Combining this with (5.7) and (5.8), we obtain
(
PΩ
t+sv, u

)
≤

(
v, P V

s

(
PU
t u
))

+

∫ ∫

U×V

[
1− PU

t 1U(x)
]
F (y)u(x)v(y)dµ(x)dµ(y)

+

∫ ∫

U×V

[
1− P V

s 1V (y)
]
G(x)u(x)v(y)dµ(x)dµ(y).

Since
(
v, P V

s

(
PU
t u
))

=

∫ ∫

U×V

(∫

Ω

pUt (x, z)pVs (z, y)dµ(z)

)

u(x)v(y)dµ(x)dµ(y)

we can rewrite the previous inequality in the form
∫ ∫

U×V
pΩ
t+s(x, y)u(x)v(y)dµ(x)dµ(y) ≤

∫ ∫

U×V
Φ (x, y) u(x)v(y)dµ(x)dµ(y),

(5.11)
where

Φ (x, y) =

∫

U∩V
pUt (x, z)pVs (z, y)dµ(z) +

[
1− PU

t 1U(x)
]
F (y) +

[
1− P V

s 1V (y)
]
G(x).

Obviously, Φ (x, y) is a bounded measurable function on U ×V . By [6, Lemma 3.4],
the inequality (5.11) implies

pΩ
t+s (x, y) ≤ Φ (x, y)

for almost all x ∈ U and y ∈ V , which proves (5.4).
In the case of a local form (E ,F), one obtains the claim for arbitrary open sets

U, V by passing to the limit when exhausting U and V by precompact open sets.

Remark 5.2. If U ⊂ V , it follows that
∫

M

pUt (x, z)pVs (z, y)dµ(z) ≤
∫

M

pVt (x, z)pVs (z, y)dµ(z) = pVs+t(x, y).

Therefore, we obtain from (5.4) that

pΩ
t+s(x, y) ≤ pVs+t(x, y) +

[
1− PU

t 1U(x)
]

sup
s<t′≤t+s

∥
∥pΩ

t′ (·, y)
∥
∥
L∞(Uρ\K1)

+
[
1− P V

s 1V (y)
]

sup
t<t′≤t+s

∥
∥pΩ

t′ (·, x)
∥
∥
L∞(Vρ\K2)

. (5.12)
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On the other hand, if U ∩ V = ∅, then using the fact that pVs (z, y) = 0 for µ-almost
all z ∈ U , we obtain that

∫

M

pUt (x, z)pVs (z, y)dµ(z) =

∫

U

pUt (x, z)pVs (z, y)dµ(z) = 0,

so that (5.4) becomes

pΩ
t+s(x, y) ≤

[
1− PU

t 1U(x)
]

sup
s<t′≤t+s

∥
∥pΩ

t′ (·, y)
∥
∥
L∞(Uρ\K1)

+
[
1− P V

s 1V (y)
]

sup
t<t′≤t+s

∥
∥pΩ

t′ (·, x)
∥
∥
L∞(Vρ\K2)

. (5.13)

6. Pointwise off-diagonal estimates of heat kernels

In this section we introduce a techniques for self-improvement of pointwise upper
estimates of the heat kernel of a local, conservative, regular Dirichlet form. This
issue was addressed in [10, 11, 5, 6] on abstract metric measure spaces, and in
[1, 2, 9] on some fractals sets. Motivated by the application of symmetric comparison
inequalities for the heat kernels in [8], we here present an alternative approach to
such results, which is based on Theorem 5.1.

Let {Pt}t≥0,
{
PΩ
t

}
t≥0

be the semigroups of the Dirichlet forms (E ,F) , (E ,F(Ω))

respectively as before. For any x ∈M and r > 0, define the metric ball

B (x, r) = {y ∈M : d (x, y) < r} .

For any ball B = B (x, r) and any positive constant λ, denote by λB the ball
B (x, λr).

Recall that a Dirichlet form (E ,F) in L2(M,µ) is called conservative if the heat
semigroup {Pt}t≥0 of (E ,F) satisfies the following property:

Pt1 = 1 in M for any t > 0.

Lemma 6.1. Assume that (E ,F) is a conservative, regular Dirichlet form in L2(M,µ),
and let {Pt}t≥0 be the heat semigroup of (E ,F). Assume that φ (r, t) is a non-negative
function on (0,∞)× (0,∞) such that φ(r, ·) is increasing in (0,∞) for every r > 0.
If, for any t > 0 and any ball B in M of radius r,

Pt1Bc ≤ φ(r, t) in
1

4
B, (6.1)

then

1− PB
t 1B ≤ 2φ

(r
4
, t
)

in
1

4
B. (6.2)

Remark 6.2. A version of this statement appeared in [1, proof of Lemma 3.9]
where a probabilistic proof was given. We follow the argument of [5, Theorem 3.1],
[6, Theorem 5.13] where this statement was proved with some additional restrictions.

Proof. Applying the estimate (4.2) with Ω = M , U = B, K = 3
4
B and f = 1 1

2
B,

we obtain that, for any t > 0 and almost everywhere in M ,

PB
t 1 1

2
B ≥ Pt1 1

2
B − sup

0<s≤t
||Ps1 1

2
B||L∞(( 3

4
B)c). (6.3)
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For any x ∈ 1
4
B, we have that B(x, r/4) ⊂ 1

2
B (see Fig. 6). Using the identity

Pt1 = 1, we have that, for any x ∈ 1
4
B,

Pt1 1
2
B = 1− Pt1( 1

2
B)

c ≥ 1− Pt1B(x,r/4)c .

Applying (6.1) for the ball B (x, r/4), we see that

Pt1B(x,r/4)c ≤ φ(r/4, t) in B (x, r/16) .

It follows that, for any x ∈ 1
4
B,

Pt1 1
2
B ≥ 1− φ(r/4, t) in B (x, r/16) .

Covering 1
4
B by a countable family of balls B (xk, r/16) where xk ∈ 1

4
B, we obtain

that

Pt1 1
2
B ≥ 1− φ(r/4, t) in

1

4
B. (6.4)

y

1/4B

B

1/2B

x

3/4B

B(y, 1/4 r)

B(x, 1/4 r)

B(y,1/16 r)

B(x,1/16 r)

Figure 6. Illustration to the proof of Lemma 6.1

On the other hand, for any y ∈
(

3
4
B
)c

, we have that 1
2
B ⊂ B (y, r/4)c, and so

Ps1 1
2
B ≤ Ps1B(y,r/4)c .

Applying (6.1) for the ball B (y, r/4) at time s and using the monotonicity of φ(r, s)
in s, we obtain that, for any 0 < s ≤ t,

Ps1B(y,r/4)c ≤ φ(r/4, s) ≤ φ(r/4, t) in B (y, r/16) .

It follows that, for any y ∈
(

3
4
B
)c

and any 0 < s ≤ t,

Ps1 1
2
B ≤ φ(r/4, t) in B (y, r/16) ,

which implies that

Ps1 1
2
B ≤ φ(r/4, t) in

(
3

4
B

)c
. (6.5)
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Combining (6.3), (6.4) and (6.5), we obtain that, for any t > 0,

PB
t 1B ≥ PB

t 1 1
2
B ≥ 1− 2φ(r/4, t) in

1

4
B, (6.6)

which was to be proved.
In the next statement, we use a function F : M ×M × (0,∞)→ (0,∞) with the

following properties:

(F1): F (x, y, s) = F (y, x, s) for all x, y ∈M and s > 0;
(F2): F (x, y, s) is decreasing in s for any x, y ∈M ;
(F3): there exist α,C > 0 such that

F (z, y, s)

F (x, y, s)
≤ C

(

1 +
d(x, z)

s

)α
(6.7)

for all x, y, z ∈M and s > 0.

Theorem 6.3. Let (E ,F) be a conservative, local, regular Dirichlet form in L2(M,µ).
Let h be a positive increasing function on (0,+∞). Assume in addition that the fol-
lowing two conditions hold:

(1) The heat kernel pt of (E ,F) exists and satisfies the inequality

pt (x, y) ≤ F (x, y, h(t)) , (6.8)

for all t > 0, µ-almost all x, y ∈ M , where F is a function that satisfies the
conditions (F1)-(F3) above.

(2) There exist ε ∈
(
0, 1

2

)
and δ > 0 such that, for any ball B of radius r > 0

and for any t > 0, we have

Pt1Bc ≤ ε in
1

4
B (6.9)

whenever h (t) ≤ δr.

Then, for all λ, t > 0 and µ-almost all x, y ∈M,

pt (x, y) ≤ CF

(

x, y, h

(
t

2

))

exp
(
−c′tΨ

(cr
t

))
(6.10)

where r = d (x, y), the constant C0 is the same as in (6.7), and Ψ is defined by

Ψ (s) = sup
λ>0

{
s

h(1/λ)
− λ

}

. (6.11)

Proof. Fix t > 0, two distinct points x0, y0 ∈M and set r = 1
2
d (x0, y0). Applying

(5.13) with U = B (x0, r) , V = B (y0, r), Ω = M and ρ = 0, we obtain that, for
µ-almost all x ∈ B (x0, r) and y ∈ B (y0, r),

pt (x, y) ≤ [1− PU
t/21U (x)] sup

t/2<s≤t
esup

z∈B(x0,r)

ps (z, y) (6.12)

+[1− P V
t/21V (y)] sup

t/2<s≤t
esup

z∈B(y0,r)

ps (z, x) . (6.13)

In what follows, we estimate the term on the right-hand side of (6.12), while the
term in (6.13) can be treated similarly. We claim that, for all λ > 0,

1− PU
t/21U ≤ C exp

(

c′λt−
cr

h(1/λ)

)

in
1

4
U. (6.14)
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Indeed, we see from (6.9) that the hypothesis (6.1) of Lemma 6.1 is satisfied with

φ(r, t) =

{
ε, if h (t) ≤ δr,
1, otherwise.

Therefore, by Lemma 6.1, we obtain that, for all balls B of radius r,

1− PB
t 1B ≤ 2φ

(r
4
, t
)
≤ 2ε in

1

4
B,

provided that h (t) ≤ δr/4. It follows from [5, Theorem 3.4] (see also [6, Theorem
5.7]) that, for any ball B of radius r and for any λ > 0,

Pt1Bc ≤ C exp

(

c′λt−
cr

h(1/λ)

)

in
1

2
B.

Using Lemma 6.1 again, this time with the function

φ(r, t) = C exp

(

c′λt−
cr

h(1/λ)

)

,

we obtain

1− PB
t 1B ≤ 2C exp

(

c′λt−
cr/4

h(1/λ)

)

in
1

4
B,

which proves (6.14).
On the other hand, for all z ∈ B (x0, r) and x ∈ B (x0, r), we have that z ∈

B (x, 2r), whence by condition (F3)

F (z, y, h(t/2))

F (x, y, h(t/2))
≤ C0

(

1 +
2r

h(t/2)

)α
≤ 2αC0

(

1 +
r

h(t/2)

)α
.

Noting that h is increasing and F (x, y, ·) is decreasing, we have from (6.8) that, for
all t

2
≤ s ≤ t and for µ-almost all z ∈ B (x0, r) and y ∈ B (y0, r),

ps (z, y) ≤ F (z, y, h(s)) ≤ F (z, y, h(t/2))

= F (x, y, h(t/2))
F (z, y, h(t/2))

F (x, y, h(t/2))
≤ 2αC0F (x, y, h(t/2))

(

1 +
r

h(t/2)

)α
.

Therefore, we have, for almost all y ∈ B (y0, r),

sup
t/2<s≤t

esup
z∈B(x0,r)

ps (z, y) ≤ CF (x, y, h(t/2))

(

1 +
r

h(t/2)

)α
. (6.15)

Combining (6.14) and (6.15) and estimating similarly the term in (6.13), we obtain
from (6.12)-(6.13) that, for µ-almost all x ∈ B

(
x0,

1
4
r
)
, y ∈ B

(
y0,

1
4
r
)
,

pt (x, y) ≤ CF (x, y, h(t/2))

(

1 +
r

h(t/2)

)α
exp

(

c′λt−
cr

h(1/λ)

)

. (6.16)

In order to absorb the middle term to the exponential on the right-hand side in
(6.16), fix r, t and consider the function

G(λ) :=
c′r

h(1/λ)
− cλt.

Using this with λ = 2/t and the elementary inequality

α log (1 + s) ≤
c′

2
s+ c′′, s ≥ 0,
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where c′ is as above and c′′ = c′′ (c′, α) is large enough, we obtain that

α log

(

1 +
r

h(t/2)

)

≤
1

2

c′r

h(t/2)
+ c′′

=
1

2
G (2/t) + c+ c′′ ≤

1

2
sup
λ>0

G(λ) + c+ c′′.

Therefore,
(

1 +
r

h(t/2)

)α
exp

(

− sup
λ>0

G(λ)

)

≤ exp

(

−
1

2
sup
λ>0

G(λ) + c+ c′′
)

≤ C exp

(

−
1

2
sup
λ>0

G(λ)

)

≤ C exp

(

−
1

2
G(λ)

)

.

Therefore, we obtain from (6.16) that, for any λ > 0 and µ-almost all x ∈ B
(
x0,

1
4
r
)
,

y ∈ B
(
y0,

1
4
r
)
,

pt (x, y) ≤ CF (x, y, h(t/2)) exp

(

−
1

2
G(λ)

)

. (6.17)

Since M×M\diag can be covered by a countable family of sets B
(
x0,

1
4
r
)
×B

(
y0,

1
4
r
)

as above, it follows that (6.17) holds for µ-almost all x, y ∈M . Taking sup in λ > 0,
we obtain (6.10).

Let us give an example to illustrate Theorem 6.3. Set

V (x, r) := µ (B (x, r))

and assume in the sequel that the following volume doubling condition (V D) is
satisfied: there is a constant CD ≥ 1 such that

V (x, 2r) ≤ CDV (x, r) . (6.18)

for all x ∈M and r > 0. It is known that (V D) implies the existence of a constant
α > 0 such that

V (x,R)

V (y, r)
≤ CD

(
d(x, y) + R

r

)α
(6.19)

for all x, y ∈M and 0 < r ≤ R (see, for example, [6]).
Define functions h and F as follows:

h(t) = t1/β

and

F (x, y, s) =
C

√
V (x, h(s))V (y, h(s))

,

for all t, s > 0 and x, y ∈ M , where β > 1 is some constant. It follows from (6.19)
that F satisfies conditions (F1)-(F3). It is easy to see that the supremum in (6.11)

is attained at λ = cs
β
β−1 so that

Ψ (s) = cs
β
β−1 .
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The estimate (6.10) becomes

pt (x, y) ≤
C

√
V (x, t1/β)V (y, t1/β)

exp

(

−c

(
d(x, y)

t1/β

) β
β−1

)

,

for all t > 0 and almost all x, y ∈ M . Using (6.19) again and applying the same
argument as in the proof of Theorem 6.3, we obtain that

pt (x, y) ≤
C

V (x, t1/β)
exp

(

−c

(
d(x, y)

t1/β

) β
β−1

)

. (6.20)

In particular, if V (x, r) ' rα for some α > 0, then (6.20) becomes

pt (x, y) ≤
C

tα/β
exp

(

−c

(
d(x, y)

t1/β

) β
β−1

)

. (6.21)

Remark 6.4. The estimate of type (6.21) was obtained in [3] for the Sierpinski
gasket, and in [2] for the Sierpinski carpet, and in [9] for a certain class of post-
critically finite self-similar sets. The estimate (6.20) with β = 2 was obtained by
Li and Yau [13] for Riemannian manifolds of non-negative curvature, and with any
β > 1 by Kigami [12] for some general class of self-similar sets.

7. Appendix

Proposition 7.1. Let F (x, y) be a non-negative µ-measurable function of x, y ∈M .
Then the function

f(x) = esup
y

F (x, y)

is measurable.

Proof. Fix a pointwise realization of F . Assume first that F is bounded. For
any x ∈ M , consider the mapping

L1 3 ϕ 7−→ Tϕ(x) :=

∫

M

F (x, y)ϕ(y)dµ(y)

which is a bounded linear functional on L1. We have

f(x) = sup
‖ϕ‖1≤1

Tϕ(x).

Since T is continuous in ϕ, the supremum can be replaced by the one over a dense
subset S ⊂ L1, that is,

f(x) = sup
‖ϕ‖1≤1,ϕ∈S

Tϕ(x).

Since Tϕ is a measurable function, the supremum over a countable family is also
measurable, and hence, the function f is measurable.

For an arbitrary F , consider Fk = F ∧ k, we have from above that fk(x) :=
esupy Fk(x, y) is measurable. Note that the sequence {fk}

∞
k=1 increases and converges

to f pointwise as k →∞. Hence, the function f is measurable.
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