Heat Kernels and Besov Spaces on Metric Measure Spaces
Jun Cao and Alexander Grigor’yan

Abstract. Let (M, p, ;) be a metric measure space satisfying the volume doubling condition.
Assume also that (M, p, i) supports a heat kernel satisfying the upper and lower Gaussian bounds.
We study the problem of identity of two families of Besov spaces B, , and Bj;ﬁ, where the former
one is defined using purely the metric measure structure of M, while the latter one is defined
by means of the heat semigroup associated with the heat kernel. We prove that the identity
B,, = Bf;ﬁ holds for a range of parameters p, g, s given by some Hardy-Littlewood-Sobolev-
Kato diagram.
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1 Introduction

1.1 Motivation and background

This work is devoted to the notion of Besov spaces in the setting of metric measure spaces. It

is customary to use various scales of function spaces, in particular, Besov spaces B, ,, in order to

measure the degree of smoothness of functions. Introduction of the Besov spaces in RY was motivated
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by the imbedding and extension problems [8]. Besides, the interpolation of Sobolev spaces leads also
to Besov spaces. For the theory of Besov spaces in R? there is an extensive literature, see, for example,
[4, 15,42, 44, 45, 46, 47, 50].

In a general metric measure space there are various natural ways to define the family of Besov
spaces. One possibility is to use directly the metric and measure of the underlying space in order to
define the Besov seminorm (see (1.6) and (1.7a) below). The function spaces obtained in this way are
called Lipschitz type Besov spaces and are denoted by Bj, ;. Another possibility to define the Besov

L with the generator £ acting in L? (see (1.8)

seminorm arises in the presence of a heat semigroup e
and (1.9a) below). We refer to such spaces as Bf;ﬁ.

The Lipschitz type Besov spaces were considered in [18, 20, 21, 34, 38, 40, 43, 49]) while the
spaces B;,f were dealt with in [9, 10, 17, 28, 29, 33, 36]. For other definitions of Besov spaces, we
refer the reader to [1, 2, 3, 25, 27, 35, 48].

Jonsson [32] introduced the spaces B, , on the Sierpiriski gasket and proved that the domain of the

associated Dirichlet form coincides with Bf g , where 3 is the walk dimension (see also [20, 21] for
an extension of this result to general metric measure spaces). Hu and Zahle [29] proved that, in the
setting of metric measure spaces, B;f coincides with some Bessel potential space H;.

In 2010 Pietruska-Patuba raised in [41] the following question:

Under what conditions the two spaces By, , and Bf;ﬁ are identical?
This question has attracted a lot of attention. In R? with £ = —A, the identity

B, = BS: (1.1)

has been known for long time for all p, ¢ € (1, o) and s € (0, 1) (see [45, 46]). However, in the
case when £ = —div(AV) is a uniformly elliptic operator in R? with real symmetric measurable
coefficients, the identity (1.1) can be only guaranteed when ([—17, s) lies in certain convex polygon
(shaded area on Fig.1), while g € (1, 00) is any (see [11] for the details).

(1o, 1) (1, 1)

Figure 1: the range for p and s for £ = —div(AV)

Here O € (0, 1) is the Holder exponent of the heat kernel as is described in (1.5) below, and o > 2 is
determined by the range of p € (1, co) such that the Riesz transform associated with £ is L” bounded.

Hu and Zihle [29] proved the identity (1.1) on metric measure spaces for p = g = 2 and for all
s € (0, 1) assuming that the heat semigroup ¢~*£ has the heat kernel satisfying certain upper and
lower bounds (see also [41] for a similar result).
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It was shown later in [22] that, under similar hypothesis, (1.1) holds for all p,q € (1, co0) and
s € (0, ®) (see also [49] for some similar results in the setting of RD-space). On Fig. 2, the range of
the parameters p and s is shown for which (1.1) is true according to [22, 29, 41, 49].
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Figure 2: previously known range of p and s Figure 3: the new range of p and s

In the present paper we study the aforementioned problem in the setting of metric measure spaces,
under the hypothesis that the heat kernel satisfies Gaussian upper and lower bounds. Our main result,
Theorem 1.2, says that (1.1) holds for any g € (1, 00] and any (1—1], s) lying in a Hardy-Littlewood-
Sobolev-Kato diagram $(®) as shown on Fig. 3, which clearly significantly enlarges the domain of
p, s from Fig. 2.

Besides, we prove in Theorem 1.3 that the identity (1.1) is true for the full range (%, s) € (0,1)?,
provided a further assumption on the domain of the square root of £ in the L? scale is satisfied.

Our proofs use completely new techniques based on wavelets with almost Lipschitz continuity.
Such wavelets were constructed in [6, 31] merely from the metric structure of the underlying space.
We use the wavelets to determine the interpolation spaces of certain Lipschitz type function spaces,
which together with the hypothesis about the heat kernel estimates enables us to prove some Hardy-
Littlewood-Sobolev-Kato estimates associated with £. These estimates finally give us the range of
the parameters p, s ensuring the validity of (1.1).

This paper is organized as follows. In Section 1.2, we state the main results of this paper: Theorems
1.2 and 1.3 as well as introduce some necessary notions and notation. In Section 2, we give the
wavelet characterizations of the Lipschitz-type function spaces. In Section 3, we establish the real
and complex interpolations of those spaces. Finally, in Section 4, we prove Theorems 1.2 and 1.3.

1.2 Setup and main results

Let (M, p, 1) be a locally compact complete separable metric measure space, where p is a metric
and y is a nonnegative Radon measure with full support on M. We say that (M, p, ) satisfies volume
doubling (VD) if for any x € M and r € (0, 00),

u(B(x,2r)) < Cou(B(x, 1)), (VD)

where B(x,r) :={y € M : p(y,x) < r} denotes the open ball centered at x of radius r and Cy > 1 is a
positive constant independent of x and r. It is easy to see that the condition (VD) implies that, for all
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xeM,re(0,00)and A € (1, 00),
w(B(x, Ar)) < Cod?u(B(x, r)), (1.2)

where d := log, Cp > 0. For any p € [1, o], consider the Lebesgue space LP(M) := LP (M, u).
To conduct a smoothness analysis on (M, p, i), we use the notion of a heat kernel.

Definition 1.1 ([20]). A family {p,};~o of u® u-measurable functions on M x M is called a heat kernel
if the following conditions are satisfied for y-almost all x,y € M and all s, ¢ > 0:

(1) Positivity: p;(x,y) > 0.
(i1) Stochastic completeness: fM pi(x,y)du(y) = 1.
(iii)) Symmetry: p,(x,y) = p:(y, X).
(iv) Semigroup property: py.s(x.y) = [, ps(x, 2)pi(2. y) du(y).

(v) Approximation of identity: for any f € L*(M),
tim [ pif ) duty) = 1
=0+ Jum

in L2(M).

In many occasions, a heat kernel appears as the integral kernel of a heat semigroup {P;};>0 that is
associated with a regular Dirichlet form (&, F) in L2(M) (see [16]). Conversely, given a heat kernel
{p:}>0 as in Definition 1.1, one constructs an associated heat semigroup {P,};>o acting on LZ(M ) by

P f(x) := L P, ) f(y) du(y) (1.3)

for any f € L*(M), t € (0, o) and pu-almost all x € M, and Pof = f. Denote by £ be the generator of
{P:}50 so that P, = e~'£.

The metric measure space (M, p, u) is said to satisfy the Gaussian bounds (GB) if there exists a
heat kernel {p;}~0 on M X M such that

1 cop(x,y)? C, c1p(x, )2
C,14/2 eXp {_7 < px,y) < W exp — (GB)

for u-almost all x, y € M and any ¢ € (0, 00), where C, d, ¢y and c; are positive constants that are
independent of x, y and ¢.
For example, the classical Gaussian-Weierstrass heat kernel in R¢

1 _ 2
PuxY) = s ex {—'x _ } (1.4)

is associated with the Dirichlet form
Ef. ) = f VAP dx
Rd

with domain # = W'P(R9), and its generator is —A, where A is the Laplace operator. Clearly, (1.4)
satisfies (GB).
The condition (GB) implies the following two conditions:
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(i) the volume regularity: for any x € M and r € (0, c0),
u(B(x,r)) = 1,

where the implicit constants are independent of x and r (see [20, Theorem 3.1]). In this case, it

is easy to see (VD) is true and (M) = oo;
(i1) the Holder regularity: the heat kernel {p,};~o satisfies the estimate

4 @ 4
POV L [ elplny )I*
N e [

for any ¢ € (0, o0) and all x, y, y* € M such that p(y,y’) < V1, where the constants O, C,, ¢; are
positive and depend only on M; besides ® € (0, 1) (see [23, Section 5.3]).

1.5)

|pe(x, ¥) = pilx, y)| < Cz(

Now let (M, p, 1) be a metric measure space satisfying (VD). We introduce the Lipschitz Besov
space B}‘;’q for any p € (1,00), g € (1, oo] and s € (0, o0) by

B, = {f € L’(M): Ifllsy, := Ifller +IIfllgy, < oo, (1.6)

00 ae g, 1/q
Ifllg;, = { f r [ f f If(X)—f(y)l”du(y)du(x)} —} (1.7a)
| 0 M JB(x,r) r

with the usual modification when g = co. Here and hereafter,

1
Ji - (B fB
denotes the integral mean over the set B.
Note that this definition of By, , does not depend on the operator L or the heat kernel.
On the other hand, let (M, p, i) be a metric measure space satisfying (GB). We introduce the heat
Besov space B‘;;,g for any p € (1,0), g € (1, o] and s € [0, c0) by

s,L . _ . —
Byt = {£ €170 ¢ Ifllys = Mfll + 1 f gz < oo, (1.8)

where

where

) k ~tL g dr)"?
o -5 —

1l g5 2= { fo [P e o], ] 7} (1.92)
with some k € Z; N (s/2, c0) and we make the usual modification when g = co. As it was pointed
out in [22, Proposition 2.9] (see also [33, Theorem 6.1]), the norms || - || ;5. in (1.8) are equivalent for

P9

different choices of k € Z; N (s/2, o), so that the space Bf;ﬁ does not depend on k. Both Bz,q and

BIS,‘;: are Banach spaces. We refer to [22, 33, 49] for further properties of these spaces.
We use the Holder exponent ® € (0, 1) from (1.5) in order to define the following domain

1 1 [©, 1, s€ (0, ©),
P(O) := {(1—), s) €O.DXO 1 ¢ {( o o }

(1.10)
3(1-0)° m), s€ [0, 1)

that is a convex polygon in the (1—17, s)-plane as illustrated on Fig. 3. Following the terminology in [5],
we refer to P(0) as a Hardy-Littlewood-Sobolev-Kato diagram.
Our main result is stated in the next theorem.
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Theorem 1.2. Let (M, p, i) be a metric measure space satisfying (GB), and let P(0O) be as on Fig. 3
(see also (1.10)). Then, for any (1/p, s) € P(®) and q € (1, oo], we have the identity

B}, =By%. (1.11)

For the proof of Theorem 1.2 we use the same strategy that we employed in [11] in the setting
of elliptic operators in Euclidean spaces. For that, we first consider the corresponding question for
Triebel-Lizorkin spaces at the endpoint values s = 1 and s < ©, and use interpolation to produce the
desired range of parameters. However, unlike the Euclidean setting, in the present abstract setting
there is no interpolation theory for Lipschitz-type function spaces. To overcome this difficulty, we
apply the technique of wavelets that enables us to establish the desired interpolation. The wavelets on
metric measure spaces were constructed by Hytonen and Tapiola [31]. The almost Lipschitz regularity
of these wavelets is essential in Theorem 1.2 — this allows to extend the range of the parameter s from
s€(0,0)asin[22]to s € (0, 1).

Another difficulty in the metric measure setting occurs at the endpoint s = 1, which is related to
the domain of the square root L2 of the generator L. Recall that, for any p € (1,00) and s € (0, 1],
the domain of the fractional power £*/? of £ in the space L” is defined to be the space

domp(l:s/Z) = {f cLP: Ls/2f c LP} (1.12)
endowed with the norm
1 Ndom, 22y == ILfller + (| L2 1] o - (1.13)

Recall that the fractional power £5/% is defined via the functional calculus (see, for example, [24]).
In the Euclidean case with £ = —div(AV), we usually have

domp(£1/2) =whr

for any p € (1,0) with o > 2 depending on £ (see Figure 1), where W' is the classical Sobolev
space (see [5, Theorem 4.15]). However, in general metric measure spaces, we only have

domy(£L'?) = B},

see [20, Theorem 5.1]. Let us emphasize that the aforementioned difference in the characterizations
of the domain of £!/? leads to the difference in the ranges of the parameters on Fig. 1 and Fig. 2.

To obtain the full range of parameters for the identity (1.11), we introduce the following condition
for the characterization of dom p(Ll/ 2.

(DF). dom,,(L'/?) = B, for any p € (1, ).

The condition (DF) holds true if M = R¢ and £ = A is the Laplace operator. In the general setting
of metric measure space (M, p, i) satisfying (GB), let (€, F) be the Dirichlet form with the generator
L. It was proved in [2, Corollary 4.10] that the condition (DF) holds provided (&, ¥) is strongly local,
regular, and satisfies some strong Bakry-Emery curvature condition. On the other hand, there exist
examples of manifolds and graphs where (DF) is not satisfied for any p # 2 (see [12, Theorem 5.1]).

Under Assumption (DF), the next theorem establishes the identity (1.1) for the full range of pa-
rameters.
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Theorem 1.3. Let (M, p, i) be a metric measure space satisfying (GB) and (DF). Then, for all p €
(1,00), g € (1,00] and s € (0, 1), we have

s _ ps,L
BP"I - BP’KI'

Acknowledgement. This work was done during a stay of the first author at the University of Bielefeld
in 2017-2019. He would like to thank this university for the hospitality. The authors would like to
thank the referee for his/her comments and suggestions to improve the manuscript.

Notation. Let N :={1,2,...} and Z, := N U {0}. For any subset E C M, 1g denotes its characteristic
function. We use C to denote a positive constant that is independent of the main parameters involved,
whose value may differ on each occurrence. On the contrary, the constants with subscripts, such as Cq,
keep the same value during the argument. For any function f on M, let M(f) be its Hardy-Littlewood
maximal function defined by for any x € M by

1
M) 2= sup s

where the supremum is taken over all the balls in M containing x. For nonnegative functions f, g, we
write f < gif f < Cg in a specified range, for some constant C. We write f ~ gif f < g < f. Finally,
we give the following list of symbols of the function spaces used in this paper.

fB )l dy, (1.14)

List of symbols for function spaces

B, 9 Lipschitz Besov space (see page 5)
Byg heat Besov space (see page 5)
Bls,’q homogeneous Lipschitz Besov space (see page 10)
E‘,’q homogeneous Besov sequence space (see page 11)
B;’ 4 modified homogeneous Lipschitz Besov space (see page 13)
B?,,q homogeneous Lipschitz Besov space with zero order smoothness (see page 14)
F, Lipscthiz Triebel-Lizorkin space (see page 11)
Fy heat Triebel-Lizorkin space (see page 32)
Fr, homogeneous Lipschitz Triebel-Lizorkin space (see page 10)
Ira homogeneous Triebel-Lizorkin sequence space (see page 11)
F 2’ homogeneous Lipschitz Triebel-Lizorkin space with zero order smoothness (see page 14)
F ;’g homogeneous heat Triebel-Lizorkin space (see page 32)
é(ﬁ, v) test function class (see page 10)
GB.y) distribution class (see page 10)
LP(Z;‘]') mixed norm Lebesgue space (see page 22)
ly(Ly) mixed norm Lebesgue space (see page 22)

2 Wavelet characterizations

The wavelets on a metric measure space are certain functions with “good” properties that serve
as basic bricks to build objects with more complicated structures. Usually, the wavelets form an or-
thonormal basis in L>(M) provided u(M) = co. The latter condition will be always assumed through-
out the paper. Note that if (M, p, u) satisfies (GB), then u(M) = oco.
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The aim of this section is to establish the wavelet characterizations of the homogeneous Lipschitz-
type function spaces. In Section 2.1 we review some basic properties of wavelets on metric measure
spaces. In Section 2.2, we define the homogeneous Lipschitz-type function spaces and state their
wavelet characterizations. Finally, in Section 2.3, we prove these wavelet characterizations.

2.1 Wavelets on metric measure space

Let (M, p, 1) be a metric measure space satisfying (VD). The following definition of dyadic points
is taken from [31]; this is a collection of reference points in M endowed with a partial order (see also
[6, 13, 30]).

Definition 2.1. Let 6 € (0, 1) and {Ay := {Xko}aer, kez be a sequence of points in M where 7 is a
countable index set. The family {Ay}iez is called a sequence of dyadic points if Ay C Ay and if it
satisfies the following two properties:

(I) Ay is a maximal set of 5*-separated points for any k € Z, namely, for any «, 8 € Iy,

(I-1) p(xka» Xk p) = 5% for any a # 3,

(I-2) minp(x, xiq) < 5 for any x € M,
aely

(D) let K := {(k,a@) : k € Z, a € I;} be the parameter set associated with the dyadic points
{Ai}kez. There exists a partial order < in K such that for any k € Z and ry, € [%6", 154,
(II-1) if Xr+18 € B(xk,(,, re), then (k + 1,8) < (k, @);
(II-2) if (k+ 1, B) < (k, @), then xi41 8 € B(xg o, 47%);

(I1-3) for every (k + 1, ), there exists exactly one (k, @), called its parent, such that (k + 1,8) <
(k, @);

(II-4) for every (k, @), there are between one and Ny pairs (k + 1, 58), called its children, such that
(k+1,8) < (k,a). Here, Ny € N depends only on the doubling constant Cy in (VD);

(II-5) (I,p) < (k,@) if and only if / > k and there exists a chain of ordered pairs (j + 1,yj41) <
(j,yj) for j=k,k+1,...,1-1with y, = @ and y; = 8. In this case, we called (/,5) and
(k, @) are one another’s descendant and ancestor, respectively.

The dyadic points lead to the following definition of dyadic cubes in M that are the analogues of
the dyadic cubes in the Euclidean space.

Definition 2.2. Let ¢ € (0, 1) and {A; }xcz be a sequence of dyadic points in (M, p, ) as in Definition
2.1. A collection of open sets {Qk o Jkez,acr, € M is called a system of (open) dyadic cubes associated
with {Ay}kez if for any k,l € Z and o, B € I,

i) M=, Qk,a/, where Q_k,a denotes the closure of QO q;
(ii) Okae N Qg =0 when a # B;
(111) B(xk,a/y %51() C Qk’a/ C Q_k,(l C B(Xk’a, 36k)’

(iV) Oka = Upp<ta) Qup forany I > k.
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Based on the notion of dyadic cubes, the following definition of wavelets was introduced in [31,
Definition 6.9].

Definition 2.3. Let 6 € (0,1), 7 € [0, 1] and {Qy o }kez,0er, be a system of dyadic cubes associated
with the dyadic points {Ai}iez as in Definition 2.2. For any k € Z, let J; := T4 \ L. A set
of real-valued functions {Y o lkez.0ey, On M is called a basis of wavelets with exp-localization and
Holder-continuous of order n, if the following properties are satisfied for any k € Z and a € J4:

(i) (vanishing mean) fM Yi.o(x)du(x) = 0;

(i1) (localization) for any x € M,

Vo)) < ——=—exp {—p(x—f")} , @.1)
(Bt M) 6

where {xy o}« are the dyadic points as in Definition 2.1 and the constant C3 > 0 is independent
of x, kand «;

(i11) (Holder continuity) for any x,y € M,

Cy P, k) | (P, )
Wk 0 () = Y0 )] < Wexp {— T }( 2 ) ; (2.2)

where the constant C4 > 0 is independent of x, y, k and «;

(iv) (orthonormal basis) the functions {4 ¢ }kez,0cg, form an orthonormal basis of L*(M, ).

The existence of the wavelets satisfying Definition 2.3 is proved in [31, Corollary 6.13].

Proposition 2.4 ([31]). Let (M, p, ) satisfy (VD). For any n € (0, 1), there exist 6 € (0,1) small
enough and a basis of wavelets (Y o }rez,ac g, associated with a system of dyadic cubes {Qy o }kez,0er,
such that (i o Ykez acq, IS exp-localization and Holder-continuous of order n.

Remark 2.5. Let p € (1,0). The wavelets {{kq}kez.qcq, also form an unconditional basis of the
space LP(M) = LP(M, u) (see [6, Corollary 10.2]). This implies that any f € L”(M) has the following
wavelet expansion in LP(M) :

F=0 D Yk (2.3)

keZ (l€jk

The wavelet expansion (2.3) can be extended from L”(M) to a larger class of distributions on M.
For that let us recall the definition of test functions and distributions from [26, 27].

Definition 2.6. Letn € (0, 1) be as in Definition 2.3. A function ¢ : M — R is said to be in the test
function class G(xo,1,3,7y) for some xg € M, r € (0, 00), § € (0, n] and y € (0, o), if the following
three assertions hold:

(i) forany x € M,

y
r
V.(x9) + V(xg, x) (r + p(xo, x)) ’ 2.4)

where V,(xg) := u(B(xg, 1)), V(x9, x) := u(B(xg, p(x0, x))) and the positive C is independent of
X5

(o)l <
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(i1) for any x,y € M satisfying p(x,y) < %(r + p(xp, X)),

r " py) Y
lo(x) — ()| < ( ) ( ’ ) ) (2.5)
PRI Vo) + Vo, 0 \r o, 0 ) \r+ plao, 1)
where the positive C is independent of x and y;
(ifi) [, ¢(x) dpu(x) = 0.
For any ¢ € G(xp, r,[,7v), endow ¢ with a norm by setting
llllgexo.rB,y) := inf{C > 0 : (i) and (ii) hold} . (2.6)

Further properties of the test function class can be found in [26, 27]. It is known that the space
(G(x0, 7,8, 7), |l llg(xo,r8.)) 1s @ Banach space that is invariant under the changes of x¢ and r. Thus, we
can fix a reference point xo € M and denote G(B,y) := G(xo, 1,8,7). It is easy to see the embedding

g(ﬂ” 'Y) C g(ﬁ’ 7) holds for anyﬁ < ﬁ’.
Now for any 8 € (0, 7], let G(B,y) be the completion of the space G(1,y) in the norm of G(8, y).
Then (G(B,7))’ is defined to be the set of all continuous linear functionals £ on G(B,7y) with the

property that, for all ¢ € G(8,7y),

SAMBS o .
EA IIsOIIQ(ﬁ’y)

The following proposition extends the wavelet expansion to the space of distributions.
Proposition 2.7. [26, Corollary 3.5] Let B, y € (0,n). Then the wavelet expansion (2.3) also holds
for any f € (GB,y)).

2.2 Homogeneous function spaces and their wavelet characterizations

The vanishing mean condition in Definition 2.3(i) indicates that the wavelets used in this paper
are mother wavelets. As the mother wavelets characterize homogeneous function spaces (see [37, 42,
50]), we need the following definition of the homogenous version of the Lipschitz Besov space (cf.
(1.6) and (1.7a)).

Definition 2.8. (i) For any p € (1, =), g € (1, o] and s € (0, ), the homogeneous Lipschitz Besov
space Bls,’q is defined to be

By, = {feLf ) : IIfllgy, < oo,

loc

where ||f||3;q is defined as in (1.7a).
(ii) For any p € (1, ), g € (1, o] and s € (0, 00), the homogeneous Lipschitz Triebel-Lizorkin

space F 74 1s defined to be

Frgi=f € L@ 2 fllpy, < o).

00 q l/q
[ f r—W(f If(-)—f(y)ldu(y)) @]
0 B(-r) r

with the usual modification when g = co.

where

A1l 2= 2.7

pq

Lr
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As the spaces B ,and F »,q Share many common properties, we will use the notation AS o to denote
either space B‘ g OF F iy When there is no confusion. In particular, for any p € (1, ), g e (1 oo] and
s € (0, o0), it can be proved that (A / C. Il 4 q) is a Banach space, where AS /C denotes the quotient
space and C is the space of all Constant functlons on M (see [38, Pr0p0s1t10ns 3.1 and 3.2] and [49,
Proposition 2.2]). Furthermore, it is easy to see that for all p € (1, ), g € (1, co] and s € (0, o),

s P »
B, =L'NnB .

For any p € (1, =), g € (1, oo] and s € (0, ), define the inhomogeneous Triebel-Lizorkin space
F ls,’q =IPNF Is,’q endowed with the norm

1A, = 1Al + 17l

For functions in the above homogeneous function spaces, its wavelet coefficients are usually belong
to the following sequence spaces.

Definition 2.9. Let 6 € (0, 1) and {Qk o }kez.0cr, be a system of dyadic cubes as in Definition 2.2. For
any k € Z, denote by S = Lr41 \ 4.

(1) For any p € (1, o), g € (1, co] and s € [0, o), the homogeneous Besov sequence space bz,q is
defined to be the space of all sequences {A o }kez,0cq, C R satisfying

H{/lk,a}kEZ,aejk”b;q = Z 6—ksq
' kezZ

> (0 |Ak,a|)pr w 2.8)
a€Jk

with the usual modification when g = oo.
(i1) For any p € (1, ), g € (1, o] and s € [0, 00), the homogeneous Triebel-Lizorkin sequence
space f[fq is defined to be the space of all sequences {A q}kez,0c7, C R satistying

1
q
< 00 (2.9)

Ly

q
[ateez.acally,, = [Z 5k [ > (Oa) 10, () |Ak,a|]

keZ aeJy

with the usual modification when g = oo.
The next lemma collects some of the basic properties of the aforementioned spaces.

Lemma 2.10. Let p € (1, o), g € (1, o] and B, v € (0,n) withn € (0, 1) being as in (2.2). Then
(1) forany s € (0, 1) and q1, g, € (1, co] with q; < q, then

Bls,q1 C B;qz, (2.10)
@i1) for any s € (0, y),
B, C (GBY); 2.11)
(i) for any s € [0, y) and {Ak o }r.0 € bp . the series
Z Z Aok
k€Z ey

converges in (G(B,v)) .



12 Jun Cao AND ALEXANDER GRIGOR’YAN

Proof. The assertion (iii) was proved in [25, Proposition 1.1], so that we need to prove (i) and (ii).

We first show (i). By (1.7a), we know that

I/p
{5-“ [ f f |f<x>—f<y)|f’du<y>du<x)] }
M JB(x,c%) keZ

for any fixed ¢ > 0. (i) then follows immediately from the increase property of the /2-norm.
We now prove (ii). By applying (i), it suffices to show

1155, =

Ja

B o C(GB.y).
Indeed, let f € BS «- Then, for any g € G(B, y), by Definition 2.6, (VD) and s < y, we have
D y y

| fM FOX0) di)

:‘ [ (f(y)— f f(x)du(X))tp(y)du(y)‘
M B(xo,1)

1
- f(y) — d d
< (B(xo. 1)) o) (j;/[ fO) = fDOl e /l()’)) u(x)

! fG) - f) 1oy r }1/,,
d d
© {u(B(xo, 1) Jaceon UM Vi(xo) + VX0, y) (1 + o, y)) )| du(x)

[Se]

» 1/p
1 .

< 5 JC - d d

: {#(B(xo, 1) JBxo.1) [; p(y.x)<6~U*D O =7 /‘(Y)} u(X)}

O ityms) < P Up
< Q008 { f [f | If(y)—f(x)ldﬂ(y)] d,,t(x)}
j=0 M LI p(y,x)<6=0U+D

(o9

JEZ =0

which implies that (2.12) holds true. This finishes the proof of (ii) and hence Lemma 2.10.

) p 1/p )
< supo” { f [f | If(y)—f(x)ldu(y)} d,u(X)} [Zéf(y‘”]sllfllg;;m,
M [ Jp@,x)<5-0+D ,

(2.12)

O

We now state the first main result of this section that establishes the wavelet characterizations of

the homogeneous Besov and Triebel-Lizorkin spaces B;’ e

Theorem 2.11. Let p € (1, 00), g € (1, co] and s € (0, 1). Assume (M, p, 1) satisfies the condition
(VD) and that (Y olkez.acT, is a basis of wavelets as in Definition 2.3 with n € (s,1). Then the

following assertions hold:
(1) forany f € Bz,q’ let
E(f) == {{fs Vo hiezacy, -
Then E(f) € b, , with
IENy < Cllfls, -

where the positive constant C is independent of f;

(2.13)
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(i) for any (A ohiez.acg, € b}, let

R(Akalea) = ) D" Aatiica- (2.14)

kezZ (I/GJ](

Then R({A.alka) € B, with
[RUAkatka)|l s < C|[fAkatiallys -
P9 Pq
where the positive constant C is independent of { Ay o }k.qa-

Theorem 2.12. Let p € (1, o), g € (1, co] and s € (0, 1). Assume (M, p, i) satisfies the condition
(VD) and that (Yo lkez.acq, is a basis of wavelets as in Definition 2.3 with n € (s,1). Then the
following assertions hold:

(1) forany f € F;’q, let E(f) be as in (2.13). Then E(f) € f.[f’q with

HEHNy, < Cllfl, »
where the positive constant C is independent of f;

(i) for any {Aolkez.aeq € foq let R(Akalia) be as in (2.14). Then R(Axa ko) € ES, with

IR abeallly < € [[1Akatea

foa”
where the positive constant C is independent of { Ak }k.q-

Theorems 2.11 and 2.12 will be proved in Section 2.3. In the remainder of this subsection, we
assume that the two theorems are true and consider their consequences.

Remark 2.13. (i) Forany p € (1, ©), g € (1, o], s € (0, 1) and f € L (M), let

) )4 q/p dr 1/q
Il = { fo r—“f[ fM (fB( )If(x)—f(y)ldu(y)) dﬂ(X)] 7} 2.15)

with the usual modification when g = co. By the Holder inequality, it is easy to see that
Il <l (2.16)
On the other hand, in the proof of Theorem 2.11 (see (2.23) below), we will prove that
IEHHps < IIfIIgirw- (2.17)
By Proposition 2.7 and Lemma 2.10(i1), we know that

RoE=1 (2.18)

N

on B‘]‘,’q. This combined with Theorem 2.11(ii) implies that for any f € Bp’ 2

Uy, < IEl, -
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which together with (2.16) and (2.17) implies the following equivalence of norms:
Iz = 1fllg, (2.19)

(1) In view of Theorem 2.11, we can introduce the homogeneous Besov space Bg’q with zero order
smoothness. To be precise, for any p € (1,00) and g € (1, o], let

B, ={rerl an: E(Heil,). (2.20)

where E(f) is defined as in (2.13). By the increase property of the /9-norm in (2.8), it is easy to see
that for any p € (1, o) and ¢, g2 € (1, oo] with g| < ¢,

10 10
B, cB,. 2.21)

which is a limiting case of Lemma 2.10().
Similarly, for any p € (1,0) and g € (1, oo], the homogeneous Triebel-Lizorkin space Fg,q with
zero order smoothness is defined by

ES ={fell (my: E(fyefi,}. (2.22)

It is easy to see that F’ 02 = LP for any p € (1, c0) due to the Littlewood-Paley square function
characterization of L? (see [26, Theorem 4.3]). These two kinds of spaces will be useful in the
endpoint interpolation of Besov spaces (see the proof of Theorem 3.9 below).

Corollary 2.14. Let p € (1, ), g € (1, o] and s € [0, o). Then

o hs s . . o
@ B, minipgt © Fpa © Bpmaxipgr particular, By, , = F}, ;
i) pS ~s S . TR

(i) b pmin{p.g) & Jpq C bp’max{p’q}. In particular, by, , = f, .

Proof. The proof of Corollary 2.14 is similar to the corresponding result in the classical Euclidean
space (see, for example, [47, Section 11.4 and Proposition 13.6]), the details being omitted.
O

2.3  Proofs of Theorems 2.11 and 2.12

Proof of Theorem 2.11(i). For any f € B‘]‘,’q, let E(f) be as in (2.13). As claimed in Remark 2.13, we
only need to prove

VEDls, < Ml (2.23)

with ||f||§; as in (2.15). By (2.13) and (2.8), we know
pq

g~ =

> (e Hi s, wk,a>|)p}p} . (2.24)

a€Jk

IEHN;s,, = {Z 5ksa

kezZ

We first estimate the term [(f, ¥y ). By Definition 2.3, we know for any k € Z, @ € J and
X € B(xgq, 36Y),

|<f,wk,a>|=‘ fM wk,a(w(f(y)—fg fdu) du(y)‘ (2.25)
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< [uBxa 80| f exp{ P ka) ‘f()— o

< [/J(B(Xk,m(s ) _5 ZL . )exp{ o Xka)} ‘f(y)

where S j(Bra) := B(Xka, 6" 7) \ B(xpa,0°/*1) for any j € N and S(Bia) := B(xtq,6%). Thus by
(2.25), (VD) and Definition 2.2(iii), we conclude that

f du‘ du(y)

S d/l‘ du(y),
Qk @

(B0, 6°7))
M(Qk,a)

x f ( f 1fO) - £ du(y)) du(x)
Ok B(xg.q,057)

< [1(Qra)] %Zexp —o' /67 f (f 1) = f) du(y)) dy(x)
=0 Oka \VB(x;0,677)

(o9

= [1(Qea)] 2 Y exp (8"} 671, (£, Ora):

J=0

(fotra)| s [u(B(xk,a,é"»]‘% > exp{-s'7) (2.26)
j=0

Note that for any k € Z and @ € J, we have

<=

(k)7 T (f, Q) = [(Qk)] Jg (fB( o O = f) dﬂ(y)) ()

y
< [f (JC ) = f&)l du(y)) du(x)] ,
Ok \YB(xp0,6)

which combining (2.24), (2.26), (2.15) and Definition 2.2 implies that
IECH s, , (2.27)

< {Z 6—ksq

keZ

> (1@ L prl)
€Tk

Mg

p
lf) = fl du(y)) du(x)

J=0 kezZ. LaeTs B(xyq,0%7))

Mz

B(x,46))

exp 61 - 6 Jd{Zé_l”q

keZ Lae Ty

p
lfFO) = f()l d,u(Y)) du(x)

j=0

[}
DI
LAf
A

< i P{ St J}(g J(d+&){25 (k— j)“l[

keZ

p
lf) = f(x)l du(y)) du(x)

B(x,46%7)

where in the third inequality, we have used Definition 2.2(iii) and the fact that j > 0. This shows
(2.23) and hence finishes the proof of Theorem 2.11(1).

O
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To prove Theorem 2.11(ii), we need the following lemma.
Lemma 2.15. Forany p € (1, ), g € (1, o], s € [0, ) and B,y € (0, n) with n as in (2.2). Let
{Akatka € bz,q and f := Yz Yaeq, AaWka converge in (G(B,y)). Then f € Lﬁ)c.

Proof. As f € (G(B,7y))’, by Definition 2.6(iii), we know that for any xo € M and [ € Z,

lo—1 o
f= Z Z Ak (‘//k,a - (//k,a(XO)) + Z Z Ak aWka =: i+ f (2.28)
k=—co a€J k=ly aeJ

in (G(B,y))’. Thus, to finish the proof of this lemma, we only need to show that for, any xo € M and
l() €,

I = ( f P du(x))" < oo (2.29)
B(x0,60)

and

I = ( f AP du(x))" < co. (2.30)
B(x0,6'0)

We first prove (2.29). By (2.28), Definition 2.3 and (VD), we have

[ lo—1 n
_1 P(X, Xka) P(X, X0)
I) E E A B , 5k é — :
1 {jl.;(xo,ﬁ’o) i B 87 exp { o } ( o

Lk=—o00 a€Jy
P s
du(x)} .

We now need the following pointwise estimate on the Hardy-Littlewood maximal function from [14,
15] (see also [49, Lemma 3.10]): for any x € M,

P ’
d,u(x)} (2.31)

lo—1

) Z {fM Z |/lk’“|“(Qkﬂ)_%5([°_k)" CXP{_W}

k=—00 N

1 (o (X, Xg.a) 1 (o
> ko] Qi) 26 exp {——5k < }s M[§ || Q)76 ">"1Qk,[,]<x), (2.32)
€T a€Jy

where M denotes the Hardy-Littlewood maximal function as in (1.14). By (2.31), Definition 2.2, the
assumption s < 7 and using Holder’s inequality and the L” boundedness of M, we conclude

lo—1

IlsZ{L

k=—00
1
2 (|/lkﬂ|:u(Qk,a)%_%é([O‘k)ﬂ)p]]

a€Jk
> (Iﬁk,alu(gk,aﬁ‘%)p}

a€J

p »
> |Ak,a|u(Qk,a)-%6<’°"‘>"1Qk,a(x>} du(X)} (2.33)
a€Jy

lo—1

<

k=—0c0

=

lo—1
< Z §Uo=R)1=s5) 5(lo=k)s

k=—00
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4a

Z (|/lk,a|y(Qk’a)]_l}%)p}p

=N

1/q
} < Mkl Ny, < o0

lp—1
<{ Y gt
k=—00

which proves (2.29).
To prove (2.30), by an argument similar to that of (2.33), we see

) p 1_17
I < f du(x)
2 S 1;10{ " H(x }
2 (Iﬂk,alka,w)ﬁ‘%)p]p

a€Jx

ay 1/q
(e} l_l 17 P
< {Z gtho=hsq Z (|/1k,a|/~t(Qk,a)P 2) } } S HAkala llys, < oo

D [ kal 1(Qka) 21, ()
€T

< Z stk=lo)s 5=(k=lo)s
k=l

k=lo aeTi

which proves (2.30) and hence completes the proof of Lemma 2.15.

Now we prove Theorem 2.11(ii) using Lemma 2.15.

Proof of Theorem 2.11(ii). Let (A o)kez,0eq, € Z)‘;’q and f := R({Ax.a}rq) be as in (2.14). By Lemmas

2.10(iii) and 2.15, we know that f € (G(B,y)) N Lﬁ) . (M). Thus, to finish the proof of Theorem
2.11(ii), we only need to show that

1A, S ([ kadeallyy - (2.34)

Forany j € Z and x, y € M satisfying p(x, y) < &/, write

F=2" 00 datbia+ D Y. dkalika = fi + fo. (2.35)

k<j aeJx k>j aeJy

Then, by Definition 2.3, the assumption p(x, y) < 6/ and by (2.32), we have

A = A DS D [kl ka0 = Y0 )]

k<j €Ty

n
S Z Z |/lk,(l|ﬂ(Qk,a/)_l/2 exp{_p(xs;‘k,a)}(/)(;;y))

k<j a€Jx

SOM [ > |kal u(Qk,@”%(f")”leﬂ] (x).

k<j =

This implies that, for any x € M,

djp(fD)(x) := {ﬁ( . /1) = LI dﬂ(y)}p (2.36)



18 Jun Cao AND ALEXANDER GRIGOR’YAN

<3 5 [ 2 Mal uOra)™ 2IQk,a] ().

k<j N

By (1.7a), (2.36) and Young’s convolution inequality (note that {5j<’7_5)}j>0 el'asn > s), we see

1

Allgy, =3 D o i, (2.37)
JEZ
i o L
< Z(s (k==9) 5=ks || M [Z |/lk,(l|lu(Qk,a/)_1/21Qk,a] }
JEZ | k<j a€Jk LP
119
P p
< 26 (k= - &)6—/0 Z (|/lk,a|/vl(Qk,a)l_l7_%) }
JEZ | k<j €T
o\
ksq 1_n\7|”
A2 (et x| H = [ kabially
keZ P

For f,, we have

12(x) = LD < 12001 + [ 2001 - (2.38)
We first estimate |f>(y)|. By (2.35), Definition 2.3, (VD) and (2.32), we obtain

OIS DD ke Qi)™ exp{ 2o x"“)} > M[Z | ko u(Qk,J”ZlQM](y).

k>j aeJy k>j N
Thus, similar to (2.37), we have

VAT
58 ( f RO du(y)) } (2.39)
) y

- q
< {Z D thnsghs IM o M[Z Iﬂk,alka,a)‘”Zleﬂ} ‘ }
L

JEZ | k=] €Tk

Q=

[ 194) 4
b Z Zé(k‘f)s5—kS Z (l/lk,a|ll(Qk,a)ll’_%)p] }

JE€Z | kzj a€J

1

K
> (uk,aw(Qk,aﬁ‘%)p] } = [[Akatkally, -

a€J

< {Z 6fksq

keZ

Similarly, we obtain

J::{Z

JEZ

1

5 ( f AP du(y))p
B(-,07)

q

1
q
} S [[tkatealls, - (2.40)
P

L
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Combining (2.35) and (2.37) through (2.40), we conclude that (2.34) holds true. This finishes the
proof of Theorem 2.11(ii).
O

We now prove Theorem 2.12.

Proof of Theorem 2.12. We first prove Theorem 2.12(i). Let f € F;’q and E(f) be as in (2.13). By
(2.9), we need to show that

"
e [ > HQk) 1o, OIS, wk,a>l) ] S Il 24D

keZ aeTy L

Similar to (2.25), we know that for any k € Z, @ € J; and x € Qi o,

(F o] = ‘ fM Yra(y) (FO) = f(x)) du(y)‘ (2.42)

< (k)2 f exp{ £ (yé"“) }If(y) £ du(y)

1

S [0k EZ f . )exp{ PO "“)}lﬂy) FOOI du(y)

(o)

<Okl Y exp{~677 u(Briar 7)) f 1) = FOO duay)
=0

xkn§ j)

A=
e

A

W@ Y exp -7} £ ) = fl duy)

B( Xy q,40%77)

Il
(=]

J

INgk

(Qea)]? Y exp (=577} 67D o ().

S

]=

By (2.41) together with (2.42) and (2.7), we conclude

o a4
I< [Z 6—’“‘4[2 H(Qta) 10, () (k)] D exp{=677} 67Dy a(F)( )] }
j=0

keZ aeTi L

1
q

Mz

exp —5/ 5 Jj(d+s) Z(g—(k—j)sq (Dj,k,a(f)('))q}

J:() | keZ

L

< Y exp {57} i a-“‘-ﬂ“'(f FG) = £l duC )) }
; { } é B(-46k-J) HY o

S UF N,

which implies that (2.41) holds true and hence completes the proof of Theorem 2.12(i).
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We now prove Theorem 2.12(ii). For any {Ax o }kez.ac7, € flf 7 let f := R({Ak.a}kq) be as in (2.14).

By Corollary 2.14(ii) and Lemma 2.15, we know that f € (G(8,7))’ N Lﬁ) .- Thus, to finish the proof
of Theorem 2.12(i1), it suffices to prove that ||f||F;,,, < ||{/lk,a}k,a||f;q, namely,

[Z 5 ( Ji 1O - £ du(y))q}

(x.67)

1/q
J:= S Hkatkallys, - (2.43)

Lr

By (2.14), write
f= Z Z A aWra + Z Z Aok =: fi+ (2.44)
k<j a€J k<j aeJy

For fi, by (2.36), we know that for any x € M,

dip(f)(x) = { ﬁ A - AN du(y)}"

(x,67)
<35I [ 2 Mal w0 2IQk,a] ().
k<j a€Jy

Combined with the Fefferman-Stein vector valued maximal inequality (see [19, Theorem 1.2]), this
yields

1/q
[Z 5—jsq (dj,p(fl ))‘1‘

JEZ

Lr
_ q1l/q
<[> e [Z 5 kDpm [ 2 [kal m(@ia)™ 21Qk,a)] }
| jeZ k<j €T L
_ q1l/aq
<12 Za-<k-f><n-s>M[Z g7 Ilk,alu(Qk,a)‘”Zle,a]]
| j€Z \ k<j €Ty : Ip
. q11/q
<> M[Z 5 |Ak,a|u(Qk,a>‘”21Qk,p,D‘
| keZ o€y L
_ q1l/q
< Za’“‘f[z |ea| 1(Ora) ™ 21QmJ } S
LkeZ NI LP

The estimates for f; is similar.

3 Real and complex interpolations

In this section, we establish the real and complex interpolations of the homogeneous Lipschitz-
type function spaces and some of their inhomogeneous versions. Throughout this section, we assume
that the underlying metric measure space (M, p, u) is unbounded and satisfy the condition (VD).
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We first in Section 3.1 review some basic facts and properties of interpolation; then in Section 3.2,
we consider the interpolations of the homogeneous Lipschitz-type function spaces with smoothness
parameter s € (0,1). Finally, in Section 3.3, we extend the interpolations of Section 3.2 to the
endpoint case s = 0 and also to some of their inhomogeneous versions.

3.1 Preliminaries on interpolation

Let (Xy, X;) be a compatible couple of Banach spaces, namely, there exists a Hausdorff topological
vector space Y such that for any i € {1, 2}, X; c Y. For any compatible Banach couple (X, X;), the
sum X + X is defined to the Banach space under the norm

llallxy+x, == inf {llaollx, + llaillx, : a = ap + a1 with ap € Xo,a; € X},
For any a € Xy + X and ¢ € (0, o), the K-functional of f is defined by
K(a,t; X0, X)) = inf {llaollx, + tllaillx, : a = ap + a; with ag € Xo,a; € X;}. 3.
Notice that K(a, t; X, X;) is increasing in ¢.

Definition 3.1. Let (X, X;) be a compatible Banach couple and 6 € (0,1), g € (1, o). The real
interpolation space (Xo, X1)g,4 is defined to be the space of all a € Xy + X such that

1
q

1AM, %100, = [fom (t—HK(a, I XO,XI))"% (3.2)
with the usual modification when g = oo.
Let
Sop:={zeC: 0<Rez< 1} 3.3)
be an open strip in the complex plane C and
S :={zeC: 0<Rez<1} (3.4

be its closure. Let A, x,) be the set of all bounded analytic functions F' : So — Xo + X, which
can be extended to continuous functions on S and satisfy that for any j € {0, 1}, the function ¢ —
F(j+it) : R — X is bounded and continuous. For any F' € A(x, x,), endow the space with the norm

IF Nl A, »,, = max {SUP IF'(@D)llx, > sup [|F (1 + if)||xl}~ (3.5)
teR teR

Definition 3.2. Let (X, X;) be a compatible Banach couple and 6 € (0, 1). The complex interpolation
space [Xo, X1] is defined to be the space of all

a e ﬂ(Xo,Xl)(H) = {F(@) : Fe ﬂ(xo,xl)}
endowed with the norm

lallge, 2,3, = 0 {I1Fllzg, ., © FO) =a. (3.6)
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The real and complex interpolations are the two most important interpolation methods in the liter-
ature (see [7, 44]). In particular, they satisfy the following interpolation property (see [7, Theorems
3.1.2 and 4.1.2]).

Lemma 3.3. Ler (X, X ) and (Yo, Y1) be two compatible couples of Banach spaces. Consider a
bounded linear operator T : X; — Y; for j € {0,1}. Then for any 6 € (0,1) and q € (1, o], T
induces a bounded linear operator Ty satisfying

Ty: (Xo,X1)og = (Yo, Y1)eg
and

To: [Xo,X1lo — [Yo,Y1]s

1-6

with the operator norm ||Ty|| < ||T||X0_>Y0||T||g§1_)yl.

Let (Xp,X1) and (Yo, Y1) be two compatible couples of Banach spaces. We recall that (Yo, Y;) is
a retract of (X, X1) if there exist two bounded linear operators such that

(i) E: Y; - X, for je{0,1};
(i) R: X; - Y, for j €{0,1};
(iii) RoE=1TonY; for j€{0,1}.
The following result on the retract of interpolation can be found in [44, p. 22].

Lemma 3.4. Let (Xo,X,) and (Yo,Y1) be two compatible couples of Banach spaces. Assume that
(Yo, Y1) is a retract of (Xo,X1). Then for any 6 € (0,1) and g € (1, oo],

(Yo, Y1)ag = R((Xo, X1)ag)
and
[Yo, Y1]o = R ([Xo,X1]e) -

The advantage of Lemma 3.4 is that it provides an approach to reduce the interpolation of the
spaces (Yo, Y1) to that of (Xp,X;), whose interpolation is usually easier to establish. One typical
example of such X-space is the following mixed norm Lebesgue space. To be precise, for any p €
(1, ), g € (1, o] and s € [0, o0), let

Iy (Lp) = {hOhez = () € LP(M) and I{fiDhrezllsr,y < o}

where

1

||{fk(')}k€Z”1';(Lp) = [Z 6—ksq ||fk()”Zp) (37)

keZ

with 6 € (0, 1).
Let

Ly (I5) = {{eOhez = MAOhezll, ) < o)
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where

Azl ) = (3.8)

{Z 5t |fk<-)|‘f}

keZ

L

The following interpolation of mixed norm Lebesgue spaces can been found in [7, Chapter 5] (see
also [44, Section 1.18]).

Lemma 3.5. Let pg, p1 € (1, o), qo, q1 € (1, 0], 50, 51 € [0, 00) and 8 € (0, 1).

(i) For p € (1, ®), g € (1, ] and s € [0, ) satisfying 117 = % + 1%’ [li - 1z1;09 n q_Hl and
s = (1 =0)sg + sy, it holds
[ (Lo ) B Lp) ], = B3(Lp) (3.9)
and
Lo (I20) Lo (B3)], = Lo (5)- (3.10)

(1) If so # s1, then for any p € (1, ), g € (1, oo] and s € [0, c0) satisfying s = (1 — 0)sg + Os1, it
holds

(i (Lp). BN (L)) 0o = (L) (3.11)
and

(L (i) Ly (l';ll))&q =15 (Ly). (3.12)

3.2 Interpolations of Besov and Triebel-Lizorkin spaces

Let (M, p, u) satisty (VD). The following two theorems give the real and complex interpolations of
the homogeneous Besov and Triebel-Lizorkin spaces with s € (0, 1).

Theorem 3.6. Let pg, p1 € (1, ), go, g1 € (1,00], s, 51 € (0,1) and 6 € (0,1). Then for any

p€(l,:0), ge(1,00] and s € (0, 1) satisfying 1—1] = lp;oe + %, é = lq_—oe + qil and s = (1 — 0)sg + 65y,
[B;?),qo’Blsill,m]g = Bxsz,q (3.13)
and

[F;g,qo, F;g,ql]e =F5,. (3.14)
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Theorem 3.7. Let qo, g1 € (1, 0], sg, s1 € (0, 1) with so # 51 and 0 € (0, 1). Then for any p € (1, ),
q € (1,00] and s € (0, 1) satisfying s = (1 — 0)sg + Osq,

(Bl B )y, = B (3.15)
and
(Fia Fria )y, = Brar (3.16)

We prove Theorems 3.6 and 3.7 by using Lemma 3.4. To this end, we need the following retract
operators. For any sequence {Ay o }kez,.0e7, € R with Ji as in (2.8), let

E ((4kadka) = fihez (3.17)
be a sequence of functions on M with
fo= ) dkalo Q)™ 2, (3.18)
a€Jk

where {Oi o }kez,0c7, denotes the dyadic cubes as in Definition 2.2.

On the other hand, for any sequence of functions { fi}xez in Lll0 . (M), let

R({Ufih) = {Akahezaes (3.19)

be a sequence of numbers in R with
M= Qe [ A0 ). (3:20)
Qk,nr

Lemma 3.8. Let p € (1,0), g € (1,0], s € (0,1) and E, R be respectively as in (3.17) and (3.19).
Then,

(i) E: b5, = E(Lp), fi, — Lp(l5) are bounded;
(ii) R: i;(Lp) - bls,’q, Lp(ifl) - f'lf,q are bounded;
(i) RoE =1Ionbs, and f3,.

Proof. We first prove (iii). For any sequence of numbers {Aiq}iez.0cq, C R, by (3.18), (3.20) and
Definition 2.2(ii), we have

ﬁo E({Ak,(l}k,(t) = E[{ Z /lkvale,};/l(Qk,E)l/z} ]
k

acJ

={Z A fQ IQk,Ax)du(x)u(Qk,a)”%(Qk,a)”z} = {Aala

Eejk k,a

which immediately implies that (iii) holds true.
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Let us now prove (i). We first show that E: bs — [ (Lp) is bounded. Indeed, for any {A o }ka €
by (3.7), (3.17), (3.18) and Definition 2.2, we know

p‘I’
1
9 \q
”E( /lka ka)”l (L ) Z‘S ksq Z /lk,ale,nﬂ(Qk,a)_l/z
keZ €Ty L,

_ e
<A o) S (Meal @i ) | F = kalialy,
keZ laeTy ] e

which implies that E: b]‘7 P Z;(Lp) is bounded. The proof of the boundedness of E: f1§ > L,,(Z;)
is similar, the details being omitted.

We now prove (ii). As in the proof of (i), we only prove one of the claimed boundedness. In
particular, we will show that R: L (l ) — fp q is bounded. Indeed, for any {fi}rez € Lp(l ), by (2.9),
(3.19), (3.20) and (3.7), we see

[ 1
q
RGN, <l 2,07 [ 2. Iitoull, u(Qk,(o”21Qmu<Qk,a)”2J ‘
LkeZ €Tk .
i "
< Zé_kS(J[Z [JC | fi] du(x) le,cz) }
LkeZ aed; LY Cke
Lr
. 1
q
<|ll e m (fk))ﬂ
LkeZ o
. 1
q
S Z 5ks‘1|fk|q} ~ “{fk}k”LP(Z;) .
LkeZ L

This implies that R: Lp(if]) - g,q is bounded. The proof of the boundedness R: i;(Lp) - b;’q is
similar. This finishes the proof of (ii).
Altogether, we finish the proof of Lemma 3.8.

With the help of Lemma 3.8, we now turn to the proof of Theorems 3.6 and 3.7.

Proofs of Theorems 3.6 and 3.7. Let pg, p1 € (1, ), qo, g1 € (1,00] and sg, 57 € (0,1). Let E and R
be respectively as in (2.13) and (2.14). Then by Theorem 2.11, Proposition 2.7 and Lemma 2.10(i1),
we know that for j € {0, 1},

(i) E: B;jj,q, bp «; is bounded;

(i) R: b} , — B} _ is bounded;

Pj4qj Pj4qj

(iii) RoE =1Ton Bp’]qj
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Thus, (B ) is a retract of (b;,% . b]‘,l1 ) as described in Section 3.1. By Lemma 3.4, we

P0:40° m q
know that for any 6 € (0, 1) and g € (1, o0],
(Bpo qo’Bxsn ql)gq = R(( Pos qo’b}val] q1)9q) (3.2
and
[B;% a0 By, ql] =R ([bzsﬂ% q0° b;’II ql]g) (3.22)

On the other hand, let E and R be respectively as in (3.17) and (3.19). By Lemmas 3.8 and 3.4, we
know that for any 6 € (0, 1) and g € (1, o0],

(a3 ) = R (0L 5 L), ) (3.23)
and
B0 B3], = R ([T @, B ), ) - (3.24)

Moreover, by Lemma 3.5, we find for any pg, p1 € (1, o), go, g1 € (1, 0] and s9, 51 € (0, 1),

(a) if so # 51, then for any p € (1, =), g € (1, o] and s € (0, 1) satisfying s = (1 — 6)sg + 051,

(i (Lp). I (Lp))g’q = I5(Lp); (3.25)

(b) for p € (1, ), g € (1, ] and s € (0, 1) satisfying [—1) = 1p—’09 + %, é = lq—’og + qi] and s =
(1 -0)sy + Osy,

[138( ) I“(Lpl)] B(Ly). (3.26)

Note that R o E(Z;(Lp)) = R(B‘;,’q) = Bz,q' This combined with (3.21) through (3.26) implies that

S1 _ )
(BPO‘IO’BM lh)gq BPLI’

[B;%,qo’ p1 ql] = B
and hence proves Theorems 3.6 and 3.7 for the Besov spaces.

The proofs of Theorem 3.6 and 3.7 for the Triebel-Lizorkin spaces are similar, we only need to
replace the sequence spaces Z’Z,q and Z;(Lp) respectively by flf’q and L,,(Z;), the details being omitted.
This finishes the proofs of Theorems 3.6 and 3.7.

O
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3.3 Interpolations at the endpoint case
The next theorem extends some of the interpolations of Section 3.2 to the case s = 1.
Theorem 3.9. Let pg, p1 € (1, o), q1 € (1, oo] and 5,0 € (0, 1). Then,

(@) (L. B}yy,),, = BingSor any g € (1, co);

(ii) [ Po FIS71 ql] = Fgfq with p € (1, 00) satisfying 1—1] = W + o and q € (1,00] satzsfyzng = =

1-6 6
2 LIl

Before proving Theorem 3.9, we need the following wavelet characterization of the Lebesgue
space LP(M) from [26, Theorem 4.3].

Lemma 3.10 ([26]). Suppose B, y € (0,1) and p € (1,0). Then for any f € LP(M),

1Al = l<F D hezaegil o,

where the implicit constants are independent of f.
We now turn to the proof of Theorem 3.9.

Proof of Theorem 3.9. Observe that (ii) follows immediately from Lemma 3.10 and an argument sim-
ilar to the proof of (3.14) in Theorem 3.6. Thus, it suffices to prove (i). To simplify the notation we
set po = p in the remainder of the proof. We divide the proof into three steps.

Step I: we first show that for any g € (max{2, g1}, o] (here we take g = oo if g| = o),

% s6
(.B)2),., € Bra- (3.27)

Indeed, for any f € (L?, B‘V ~)9 cL?+ B‘ _cL?

loc *

with fy € L? and f; € BS Assume first g < oo. By Theorem 2.11, we have

Let f = fo + fi be an arbitrary decomposition

Il < fo 7 o (g p<fo,r)) 4, 1Al (3.28)
< Z 5—/(656] p(fO,(S ) Z 6—k95q Z (,U(Qk a)p : |<f1a Wi, a>|) }
kezZ kezZ €T

where, for any ¢ € (0,c0) and g € L10C

Epg.) = ( fM Ji< 180~ g du(y)du(x))"

As p € (1,00), it is easy to see
Ep(g,0) < Iglle-

This implies that

157 (B (fo,69)' s Y 5Tk, (3.29)

kezZ kezZ
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On the other hand, by (2.8), Lemma 2.10 and Theorem 2.11 again, we find

Z 67k9xq

4
P

> (@) E A, wk,a>|)p]

keZ a€J
1,9
11 r|’
< Zé‘k(e_l)“’ {6_1“ Z (ﬂ(Qk,a)” 2 |<f17¢k,a>|) } }
kezZ aeJy
1,49
11 rl” Ty
ssup{é"“ > (u(Qk,m 2|<f1,wk,a>|) x| Y o7k
keZ = keZ
—k(6—-1)sq q —k(6—-1)sq q
<6 Ifilly, < )0 AN,
keZ keZ P

which combined with (3.28) and (3.29) implies that
q
11, < 6 ifolr + S1All, |
P4 keZ -
By (3.1), (3.2) and the arbitrariness of the decomposition f = fy + f;, we conclude that

. . .o dt
q —kbsq rrq ks. 1p DS ~ -0q rq TP DS wro q
R T R e LTI
’ keZ P
which proves (3.27) for ¢ < co. The case ¢ = oo follows from a similar argument with a minor
modification on the norm || f]| B

Step II: we show that for any 1 < r < min{2, p, g},

05 0 b
B, (B9, B;,J)aq, (3.30)
where Bg’, is as in (2.20).
Indeed, for any f € Bzfq, write
=), [Z ¢, m,@] Yk + ) [ D, m,@] Yk = fo+ i, (3.31)
k>j a€Tk ij N
where j € Z will be determined later.
By Theorem 2.11, we have
Wl < D | 2 (1@ [ foveal]) } = ) & (3.32)
" k=i leeg, k=j+1

0s

By the Holder inequality and the assumption that f € Bp’q,

fo € Bg,r'
Similarly, we have

we know that || f0||;-30 < oo and hence
p.r

J

—k:
Ifilly, < g o
por

k=—oc0

1(Qea)? [ Frta)|) .S 5ksrer (3.33)
>
a€J k=—00
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and fj € Bf,’,. Thus the decomposition in (3.31) is a decomposition of f in Bg’, + B;’,. Combining
(3.1), (3.32) with (3.33), we find

K(F.07 BB, < (I, +6f"||f1||’~;,); [Z &+ 50 Z a*“’fk

k=j+1

This implies that

* dt
1:= f rUKI(f.0B),.B,) — (3.34)
0

SZ:(Sfj(ivq Z §k+5jsr Z 6kvr§k}

jez k=j+1

< Y omin Z fk] + 800 W[Z 6"”’5,(] =1+

JEZ k=j+1 JEZ

ForI,let0 < ap < s < a; < s and o > r satisfying 2 + 2 =1. We find

q 4
Il < Z 6—j95q[ Z 5kazr6—kazr§]:] < Z 5—]95q[ Z 6—k(tzqégz][ Z 6k(t20’} (335)

JEZ k=j+1 JEZ k=j+1 k=j+1
< Z 5—jq<es—az>[ Z 5—kazqu] ~ Z Z 5 Ra05=02) 5-Kbsq 24
JEZL k=j+1 JEZ k=j+1
k-1
~ —(j-k)q(@s—a2)\ s—kOsq #q ., —kOsq #q
=2, 2. (0 U)ot = ) o],
keZ j=—oo keZ

For I, we have

~

[ J
12 < Z(ijq(l—é)) Z 5—k(‘v—al)r6—ka1r§4 (336)
JEZ L k=—c0
C. . 49
Z‘(le)zj:quj:k()a
< 5}.?(] - 5— (Zlqéj 6_ S—a1)0
~ k
JEZ k=—c0 k=—c0
< qu[v(l 0)-s+a] [ Z 5—1«11454
Jjez
< Z Z S j—k)q[x(l—(%)—sﬂt]]} 5kbsq EZ ~ Z 6—k9xqé_uz'
keZ | j=k keZ

Combining (3.33) through (3.36) and Theorem 2.11, we conclude that

°°_ dt
W, = [0 (8, ,) 2 =
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${Z5"9“"f,3}q ={Za’<‘“q D (u(Qk,a)%f% |<f,wk,a>|)p}p} = | flls;, -

keZ keZ a€Jk

This proves (3.30).
Step III: We finally prove (i). Let 1 < r < min{2, p, ¢} be as in Step II. By (2.21) and Corollary
2.14, we have

50 A0 0 _ rp
Bp,r < Bp,min{p,Z} c Fp,2 = L.

This combined with Steps I and II implies that

Hs 0 s P ps ) ( P DS ) 05
By, (ByrBy,),, < (L.By,),, < (L7 B o), < By,

which completes the proof of Theorem 3.9.
O

Based on Theorem 3.9 and Corollary 2.14, we immediately obtain the following endpoint real
interpolation of the homogeneous Triebel-Lizorkin spaces.

Corollary 3.11. Let p € (1, ), g; € (1,00] and s € (0,1). Then, for any 0 € (0,1) and q € (1, o0],
S _ 0s
(LP’FPafIl)g,q - FP,q'
The following theorem establishes the endpoint real interpolation of the inhomogeneous spaces.
Theorem 3.12. Let p € (1,0), g1 € (1,0] and s € (0, 1). Then for any 6 € (0,1) and q € (1, oo},
@ (Lp’Blsqu)g,q = By
(i) (L7 Fg),, = Bha
For the proof of Theorem 3.12, we need the following lemma.

Lemma 3.13. Let p € (1,00) and X C Lﬁ) . (M) be a Banach space satisfying that (L?,X 0 LP) is a
compatible Banach couple. Then for any t € (0, ) and f € L?,

min{L, t}| fllr + K(f, 1, L7, X) = K(f,t; L”, X n LP).

Proof. We prove this lemma using the idea from the proof of [18, Theorem 4.2]. Let f € L?(M). By
(3.1), it is easy to see that K(f, t; L?,X) < K(f,t; LP,X N L?). Moreover, as L” + (X N LP) C LP, we
have

min{L, )| fllr < min{L, I fller+cxniry < K(f, ; L7, XN LP),
which implies that
min{1, #}]|fllr + K(f,t; L7, X) < K(f,t; LP, X N LP). (3.37)
We now prove the opposite inequality. By the definition of K-functional, it is easy to see that

K(f,t; L, X0 LP) < |Ifller.
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Thus, to finish the proof, we only need to show that for any ¢ € (0, 1),
K(f,t; L, XN L") < K(f,t; L?,X) + tl|fl». (3.33)

Indeed, for any € € (0, 1) small enough, let f = fy + fi be a decomposition satisfying fy € L”, fi € X
and

Ifollr + 2l fillx < K(f, 1; L7, X) + €/2.

Since f € L?, we see that fj € X N L?. Since t € (0, 1), we obtain

K(f.t; LP, X0 LP) <l follr + 1 (lfiller + 11f1llx)
<K(f,; L7, X) + tll fill + €/2
< K(f,; LX) + foller + 2l fllee + €/2 < 2K(f, £ LX) + i fllr + €.

Since € is arbitrary, we obtain (3.38) and finish the proof. O
With the help of Lemma 3.13, we now prove Theorem 3.12.

Proof of Theorem 3.12. Without loss of generality, we only prove (i). The inclusion (L”, By, , )g4 C
Os : s _ P s _ pb:

B}’ is an easy consequence of Theorem 3.9(i) and the facts By, , = B}, , N L? and B}, = B, N L”.

To prove the converse inclusion, let f € L?(M). By (3.2), Lemma 3.13 and Theorem 3.9, we have

1
< . g dt q
W lher.p, s = [ fo (FOK(f 17, B, O L) 7]

p.
o0 _ . q dt
s[ f (KL By ,)) —
0

S Wk g oy * W lr = Wl

P:q1 )9,11

1
q
+

f (r min{1, s} fllr)” —t]
0 t

which implies the inclusion Bf,fq C (L”,B;’ql)g,q and hence (i). By (i) and Corollary 2.14(i), we
conclude that (ii) is also satisfied, which finishes the proof of Theorem 3.12.

O

4 Proofs of main results

In this section, we prove the main results of this paper. To that end, we first prove in Section 4.1 a
Hardy-Littlewood-Sobolev-Kato estimates for parameters in () as on Fig. 3; then in Section 4.2,
we prove Theorems 1.2 and 1.3.

4.1 The Hardy-Littlewood-Sobolev-Kato estimates

Let® € (0,1)be asin (1.5) and P(®) be as in (1.10) (see also Figure 3). The following proposition
gives a Hardy-Littlewood-Sobolev-Kato estimates for parameters p and s in P(0).
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Proposition 4.1. Let (M, p,u) be a metric measure space satisfying the condition (GB). Let U :=
(%, s)and N := (é, r) € P(O) as in (1.10). Assume that v € (0,n) and ¢ € &(Z,) is in the extended
Dunford-Riesz class and satisfies the following estimate

WU.N)
”Za ‘/’”Lw(zv) <
with
— d(1 1
aU.N) =2 8(2_ 2, .1
2 2\p ¢

where d denotes the Hausdorff dimension of M as in (GB). Then for any f € F* b

Oy, < [Vl 10 - 42)

To prove Proposition 4.1, we need the following result on the characterization on the domain of
the fractional power of the generator .L.

Lemma 4.2. Let (M, p, i) be a metric measure space satisfying (GB). Then the following is true.

(i) Forany s € (0,1), we have domy (L) = F5 ,. Moreover, for all f € domy(L*/?),
/2 ~ .
L2 [l = 11l

(i1) For any s € (0,0) and p € (1,0), we have domp(.Es/z) = F;,z- Moreover, for all f €
dom,(L£*/?),

2], =,

Proof. The assertion (i) was proved in [20, Corollary 5.5]. Thus, it suffices to prove (ii). As (M, p, u)
satisfies the conditions (VD) and (GB), we have

dom,(L?) = F33
and

122 = 171

where F* SL and F SL = LN F;L denote respectively the homogeneous and inhomogeneous heat
Triebel- leorkln spaces (see [33, Theorem 7.8] and [17, Theorem 6.5]). Moreover, by using an
argument similar to the proof of [11, Theorem 3.1], we obtain that, for any s € (0,®) and p,q €
(1, 00),

s£ s
FSL=F5 4.3)

which implies (i1). Note that although in [11, Theorem 3.1], (4.3) is proved only in the setting of the
Euclidean space, the proof can be extended easily to the present setting by using (VD) and (GB). O

We also need the following result of the boundedness of the Riesz potential £~%/? from L” to L4.
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Lemma 4.3. Let (M, p,u) be a metric measure space satisfying the condition (GB). Then for any
1 <p<g<ooanda € (0,d) satisfying § = 1—17 - é, the Riesz potential £L=%'? is bounded from LP to
L9,

Proof. By the functional calculus for the Riesz potential (see [24, Corollary 3.3.6]), we know that

L—Q/Z — 1 foo tQ/Ze—t.ﬁ ﬂ
T@/2) Jo r

which combined with the condition (GB) implies that £7%/2 has an integral kernel K(-, -) satisfying
that for any x, y € M,

K(x, )| S [ple, »)]* .

This implies that £7%/2 is a generalized fractional integral on M defined as in [39]. By [39, Corollary
2.5], we know that £~%/2 is bounded from L” to L?, which completes the proof of Lemma 4.3. O

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. Let U := (%, s), N := (%I, r) € P(®) be as as in (1.10) and m(U, N) the slop

of the vector U_1>V We consider three cases based on the size of |[m(U, N)|.
Case I: [m(U, N)| = oo. In this case, we always have p = g and hence a(U, N) = %(r— s). If further

p =¢q =2, then forany f € F;z by Lemma 4.2(i), we know

(DN, = | L720Df),2 < A9,

Z%(r—s)(p”

£ 1], = LWl @4

LOO |
which verifies (4.2) in this subcase.

On the other hand, if max{r, s} < O, then by Lemma 4.2(ii) and the bounded H., functional
calculus, we have for any f € F ; 9

e, = 17201, < |2

which shows that (4.2) also holds in this subcase.
If p = g # 2 and max{r, s} > ©, without loss of generality, we assume that |r — s| < ®. Otherwise,

Lo W llEs 4.5)

we may decompose the vector _l7]_\>7 into a finite number of vectors with equally small length < ® and
then use the above estimates by composition (see the proof of [11, Theorem 4.3] in the Euclidean
case). As |r — s| < 0O, we know that there exist Uy := (pio,so), Ny = (plo,ro), U, = (%,sl),
Ny = (%, r1) € P(®) and 6 € (0, 1) satisfying

max{sg, ro} < O,

ro—So=r—s=ry—Si, 4.6)
_ Fr=ro _ S—5
T ori-ro ~ s1—so”

Note that by the definition of $(®) as illustrated on Figure 3, such points always exist. By Theorem
3.6 and (4.6), we find
Flo= [F;%,z’ng 9’
4.7

s _ .80 8]
FP»2 - [FPO,Z’ F2,2](-} )
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Moreover, (4.6) implies that UyNy and U N; belong to the above sub-cases which have already been
dealt with. This yields that

1
5(r=s) H .
2 K
4 . ||fIIFp?)’2 ,

{nspu:)fnpro <
Po-2 .

_(r_S) || "
20| W g

oL fllpn <
which together with (4.6), (4.7) and Lemma 3.3 shows that for any f € F ; 2

209

2

le(Df s, <

Thus (4.2) holds under Case 1.

Case II: |m(U, N)| = 0. In this case, we always have r = s and hence a(U, N) = %’(
consider two subcases: a) r = s € (0,0);b) r = s € [0, 1).

For the case II-a), by Lemmas 4.2(ii) and 4.3, we have that for any f € F 1’7 2

lelO My, < 1€ O,

d/1 1
1G9 H
Z @ o

which verifies (4.2) under Case II-a).
—
For the case II-b), let Uy := (Il], ro) and Ny := (é, ro) with rg € (0,®). It is easy to see that MM

and NgN belong to Case I, while MyN, belong to Case II-a). This implies that for any f € F ; )

Lo WAl

1_1
5 q). Now

d 1

_E(%_a)Lr/ZQO(L)f

< Z%(%_é)(p

~

<

L Lo Wl s

HQO(-E)f”F;z ~ ”L%(”O—r)()D(L)L_%(rO_r)f

s [lecor L2y
2

o i}
qu Fq,Z
4(1

S Ml S

< or
po S LI i
which implies (4.2) under Case II-b) and hence Case II.
. 1 —_— = —

The Case III: |m(U, N)| € (0, ). In this case, let Uy := (a,s). By the fact UN = UUy + UpN,
we know that (4.2) follows from a composition argument similar to that used in Case II-b), the details
being omitted. This finishes the proof of Proposition 4.1.
O

Corollary 4.4. Let (3, 5) € P(®). Then dom,(L*/?) = F3 ..

Proof. For any (Il], s) € P(®), let U := (1-1],0), N := (%, 5), 9(z) := 77%/? and f € dom,(L*/?). By the
fact £L2f e LP = Fg2 and Proposition 4.1, we know that [|f]|z = ”‘p(L)meHFS < L2 fllw.
s P P2

This combined with (1.13) and the fact F 1‘7 ,=LPN F [‘7 , shows that

Il , S 1 laom, £572) »

which implies that inclusion domp(L“/ cF 1‘7 5
On the other hand, for any f € F;72 let U := (%, s), N := (%,0) and @(z) := z*/?. By Proposition
4.1 again, we find
1l < 11l

which implies the converse inclusion F ; , C domp(.ljs/ 2) and hence finishes the proof of Corollary
4.4.
O
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4.2 Proofs of Theorems 1.2 and 1.3

We now prove Theorem 1.2.

Proof of Theorem 1.2. For any (117, s) € P(O) and g € (1, o], let € € (0, 1) small enough such that

(%, s+ €) € P(O). As P(0O) is open, we know that such € exists (see Figure 3). By Corollary 4.4, we
find

dom,,(LU+9/2) = F;j’;. (4.8)
Moreover, from [24, Chapter 6], it follows that there exists 6 = ﬁ € (0, 1) so that

(L7, dom,,(L579%)), = ByL. (4.9)

On the other hand, as 6§ = ﬁ, by Theorem 3.12, we see
(L7, F;f;)e’q =B, (4.10)
Combining (4.8) through (4.10), we conclude that
Lo
B;’q - B;’q,
which completes the proof of Theorem 1.2. O

Finally we prove Theorem 1.3.

Proof of Theorem 1.3. For any p € (1,00), g € (1,00] and s € (0, 1), by [22, Theorem 1.5(a)], we
know that

s 5,1
B;,’q C B;,’q. 4.11)
We now turn to the proof of the converse inclusion. From [24, Chapter 6], it follows that

s,L _ 1/2
By = (L, domy (L), .

This together with (DF) and (3.2) implies that for any f € BSE

pq>
® Y 1 dt é
f 1l e = f KU LB, ) — - (4.12)
P4 0 t
On the other hand, let
E,(f.1) = { f f ) = FOIP du) du(X)}p . (4.13)
M JB(x,t)

For any decomposition f = fy + f] with fy € L? and f; € Bll,’m, it follows from (VD), that E,,(fo,7) <
[l follz» and

>0

Ep(fl,t)stsup{t_l [ fM fm V= Ao du(y)du(x)]"}srnflngll,vm.
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By this, (4.13) and the arbitrariness of the decomposition f = fy + fi, we conclude that, for any
1 € (0, 00),

E,(f,0) s K(f,t; L7, B, ),
which together with (4.12) yields

1
q

1

« dt |
-89 1rq .77 pl ~ .
foz KIF LBy ) = | = Il

© dt
11, = [ f CUENf D~ s
s 0 t
This implies the inclusion B‘;;’g C By, , and hence finishes the proof of Theorem 1.3. O
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