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Abstract

Let (X, d,u) be a metric measure space satisfying the volume doubling condition. Given
ajump measure (k, dy), consider the symmetric bilinear for&defined by its quadratic part

&(u,U) 1= fX fX 1U(x) — u(y)2 I(x, dy) (),

whereu is in the natural domaif := {u € L?(X,u) : &(u,u) < oo}. The purpose of this
paper is to provide conditions that ensure ti&tR) is aregular Dirichlet form. Our main
result - Theoren?.9, says that&, ) is a regular Dirichlet form provided the jump measure
satisfies the following three hypotheses: thedres-Barlow conditioffAB), the Poincaré
inequality (P)y, and thetail estimate(TJ)y, whereW = W(x,r) (x € X,r > 0) is a certain
scaling function

Combining with the known heat kernel estimates, we obtain the following result stated in
Theorem2.15 the conjunction of the hypotheses (AR)(Pw, and (TJy is equivalentto
the fact that &, ) is a regular Dirichlet form and its heat kernel satisfies certain upper and
lower estimates.

For example, let measupebea-regularW(x, r) = r? (wheres > 0) and the jump measure
be given by the jump kernel(x,y) =~ d(x,y)"@*. In this case the corresponding bilinear
form is denoted by&g, 7). Then the Poincé&rinequality and the tail estimate are satisfied
automatically, and we conclude th&j( 7;) is a regular Dirichlet form provided the Andres-
Barlow condition (AB) is satisfied. The latter condition holds triviallygf< 2, and is highly
non-trivial if 8 > 2.

Moreover, by Theorer.22, the condition (AB} is equivalento the fact that&s, 75) is a
regular Dirichlet form and its heat kernpl(x, y) satisfies the following two-sidestable-like

} - d(xy) \~(@+B)
estimate:pi(x.y) = & (1+ H2) .
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1 Introduction

1.1 Dirichlet forms and their regularity

Let (X, d) be a separable metric space such that every closed ball is compaethé atRadon
measure orX with full support. Such a tripleX, d, ) will be referred to as anetric measure
space

A symmetric bilinear form€ with domain¥ is called aDirichlet form on L2(X) := L(X, u)
(cf. [19) if F is a dense subspacelof(X) and €, F) satisfies the following properties:

- (&, F) isclosed that is,F is complete with respect to the norm

lulle, := (I, ) + E(U. V).

- (&, F) is Markovian that is, for anyu € #, also the functiov = uv 0 A 1 belongs toF and
&E(v,V) < &(u, u).

Any Dirichlet form has the generator that is a positive definite self-adjoint opetatorL2(X)
with a maximal domain Dori£) c # such that

(Lf,g9)=&(f,g) forall f e Dom(L) andge F.

A Dirichlet form (&, ) is calledregularif ¥ N C¢(X) is dense both igF with respect to the norm
Il - lle, and inCc(X) with respect to the sup-norm.
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Here are two examples of regular Dirichlet formsRift alocal form
E(u,v) = f Vu(x) - Vv(x) dx
Rn

with the domainfF = Wzl(R”), and anon-localone: for anygs € (0, 2),

(u(x) — u(y)(V(x) — v(y))
Es(u, V) = dydx 1.1
s(U) Lgmﬁn X -y Y 1)
with the domainfF = B’;’/S(R”). The former one has the generape= -A = -3 ai, while the

generator of the latter one is the fractional Laplace opetfter(—A)?/2.

The existence of a Dirichlet form provides a certaiffetiential structure on the underlying
metric measure space and can serve as a starting point for development of analysis on such spaces
(see,e.q.1,3,4,8,17, 19, 21, 31, 32, 30, 33, 34)).

Much of the theory and applications of Dirichlet forms concerns with regular forms. The
regularity of a Dirichlet form, in particular, guarantees the existence of the associated Hunt process
(X} on X (see [L9]), whose transition probability is determined by theat semigroupe £} as
follows: for any Borel sefA C X,

Py(X; € A) = e L1p(X).

Therefore, it is extremely important to have tools for deciding whether a given symmetric bilinear
form (&, F) is aregular Dirichlet form.
In this paper we deal with non-local bilinear forms of the type

&) = fX fX (U9 — U V(R) — V() I(x, dy) (), 12)

whereJ(x, dy) is a jump measure, and the domainSo 7 := {u € L?(X) : &(u, u) < oo},

Our main result — TheorerR.9, provides the following sfiicient condition for €, ¥) to be
a regular Dirichlet form: if the measugeis doubling and if €, ¥) satisfies the following three
conditions:

e the Andres-Barlow conditiolfAB)y,
e thePoincaré inequalityPl)y,

o thetail estimate(TJ),

whereW = W(x,r) (x € X,r > 0) is a certain scaling function, the&,(F) is a regular Dirichlet
form. These three conditions are stated in details in the next section.
As far as we know, the result of this kind is entirely new and has no previous analogue.
As an example, consider the following specific bilinear fofinthat frequently occurs in
applications. Denote bB(x, r) an open metric ball oX of radiusr centered ax, that is,

B(x,r):={yeX: d(y,x) <r}.
For anyx,y € X andr > 0, set

V(X r) = u(B(xr)) and V(xY):=V(xd(xy) + V(y,d(xYy)). (1.3)
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Fix a parametes € (0, o) and define the following symmetric bilinear form ah

(09— u) (9 - Vi)
Extu) = [ [ SO BEI O duy)ct (L4)

with the domain
Fp = {ue LX) : Ep(u.u) < oo} (1.5)

That is, the jump measuiXx, dy) of &g is determined by thgimp kernel

1
BN = oy docyp

In particular, if the spaceX, d, u) is a-regular, that is, for some > 0
V(x,r)=r® forall xe X, r € (0,diam(X))

then
Jp(x,y) = d(x,y) @)

(as in (L.2) in the case oR"). The sign~ means that the ratio of the both sides is bounded by
positive constants from above and below.

The following natural question arises:
for which valueg3 € (0, o) the bilinear form(&Eg, 73) is a regular Dirichlet form?

If 75 is dense irL2(X) then €, F5) is a Dirichlet form. However, for large enougithe domain
¥ as in (L.5 may not be dense ib?(X) (for example, this happens Rf" for 8 > 2), or even if it
is dense, &g, 3) may not be regular.

Denote by(AB)g, (Pl)s, (TJ)s the above conditions with respect &( 73), which corresponds
to the scaling functioW(x,r) = rf. It turns out that the hypotheséBl); and(TJ); are in this
case satisfied automatically (Lemrd). It follows from Theoren®.9 that €z, 3) is a regular
Dirichlet form provided/AB)g holds.

The remaining question about the validity @B)z is rather complicated and is left for the
future research. It is easy to check tf@aB); is always satisfied fg8 < 2 (Lemma3.2) but so far
there are no practical tools for verification(@B), for g > 2.

1.2 Heat kernels

Let us now discuss the connection between the condi(iaB3w, (Phw, (TIw and the heat
kernel estimates.

Let (&, %) be a regular Dirichlet form. If, for any > 0, the operatoe < is an integral
operator inL?(X) then its integral kernel is referred to as theat kernebf £ (or that of €, 7))
and is denoted by (x,y). The heat kernel also serves as the transition density of the associated
Hunt process.

There is a vast literature devoted to the existence and estimates of heat kernels of regular
Dirichlet forms (see, e.g.5[ 6, 7, 9, 17, 21, 27, 13, 11, 14, 15, 16]). Recall that the heat kernel
satisfies the following properties for all (or almost all) values of the variables involved:

(P1) Markov property:for anyt > 0, pi(X,y) is a measurable nonnegative functiorxpy, and

fX pe(x.y) du(y) < 1; (1.6)
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(P2) symmetry: gxy) = p(y, X);
(P3) semigroup property
| P 2Pz 42 = prstx

(P4) approximation of identityfor any f € L%(X),

fX B V) FY) duy) — f(x) ast - 0,

where the convergence is irf(X).

The heat kernel is callestochastically completiéthe integral in (.6) is identically equal to 1.
Conversely, any functiop(x, y) satisfying (P1)-(P4) gives rise to a heat semigroup

P(X) = fX pe(%y) F () du(y)

acting inL?(X), and the heat semigroup determines a Dirichlet form in a standard wayl@ge [
Let us first discuss heat kernel estimatesreregular spaces. The dichotomy property of heat
kernel estimates (se@§]) states that there are only two kinds s¥lf-similar estimates for heat
kernel{pt}~0 ON ana-regular metric measure space, @, u).
The first kind is thesub-Gaussian estimaf€G), 4, of the form

d(x.y) |1
) (SG),.q,

_ C
pr(X,y) < WeXp -C Er

for all x,y € X andt > 0, where the sigsx means that botk and> hold but with diferent values
of positive constant€, c. Hered,, is a parameter from [20) that is called thavalk dimensiorof
the heat kernel. Besides, the Dirichlet for&) §) is in this case local.

The second kind is thetable-like estimat@JLE), ; of the form

1 d(x,y)\ @*?
pt(X,Y)— ta/_/ﬁ(l+ tl/ﬁ )

for all x,y € X andt > 0, where the parametgre (0, «) is called theindexof the heat kernel.
The Dirichlet form €, F) is in this case non-local.

In thea-regular space the jump kerng) of the Dirichlet form €g, 75) from (1.4) admits the
estimate

(ULE)y 5

Jp(x.y) =~ d(x )",

and this estimate is a necessary condition for the heat kernel bQUb&S, ;. If g € (0, 2), then
all Lipschitz functions onX with compact supports belong #, which implies that&g, 75) is a
regular Dirichlet form. Moreover, in this case the heat kefpgl.o of (Es, F5) exists and satisfies
(ULE), 4 (see [L2, 17, 21]).

Let B € [2,00) and assume a priori thaf, F5) is a regular Dirichlet form (it is known that
this situation can actually occur on fractal spaces). In order to obtain the heat kernel estimate
(ULE), 3, Chen-Kumagai-Wandl[/] and Grigor'yan-Hu-Hu 21] introduced independently some
analytic condition (called @ut-gf Sobolev inequalitypr a generalized capacity conditiprand
proved that this condition is equivalent@dLE), ;. We use this condition in the form ¢AB)g.
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Combining these results with ours we conclude {A&); is equivalento the fact thatgs, 75)
is a regular Dirichlet form and its heat kernel satis{ie&E),, 4.

In our second main result - Theoretr?2 we prove a similar equivalence in a higher gener-
ality, for the bilinear form &z, ¥3) as given in {.4)-(1.5 assuming that measugesatisfies the
volume doubling and the reverse volume doubling conditions.

Moreover, our most general Theorérl5says that a non-local bilinear forr&,(7) with an
arbitrary jump measuré(x, dy) (as in (L.2)) is a regular Dirichlet form and its heat kernel satisfies
certain upper and lower estimates if and only if all the hypothé&&3y, (Pw, and(TJ)y are
fulfilled.

1.3 Notation

We use the following notation throughout the paper.
e N={0,1,2,...,}.
e For any se€ C X, E denotes the closure &, andEC = X \ E.

e For any functionf : X — R, its support supp is the complement of the largest open set
wheref = O u-a.e.

e For anyu-measurable séf ¢ X with u(E) > 0 and anyu-integrable functionf : E — R,
set

1
JCEfd,l_ @fEf(x)d,u(x).

e C(X) denotes the space of all continuous functionXo@:(X) is the subspace @f(X) that
consists of functions with compact supports and is endowed with the sup-norm.

e The lettersC andc are used to denote positive constants that are independent of the variables
in question, but may vary at each occurrence. The relatignv (resp.,u > V) between
functionsu andv means thati < Cv (resp.,u > Cv) for a positive constant and for a
specified range of the variables. We write: vif u s v g u.

e Foranya, b € R, setaA b = min{a, b} anda v b = maxa, b}.

2 Statement of the main results

2.1 Conditions(TJ)w, (Phw, (AB)w

We begin with the following setup of a bilinear fori@,(7) and a jump measurix, dy) du(x).
Let B(X) denote the family of Borel sets oXi.

Definition 2.1. Let J(-,-) : X X B(X) — R, := [0, o) be a function such that

- foreachx € X, A J(x, A) is a measure of3(X);

- for eachA € B(X), x — J(x, A) is a nonnegative measurable functionXdn
Let J satisfy also the following two conditions:

(J1) for anyr > 0, J(x, B(x, r)C) is, as a function ok € X, locally integrable with respect 1@
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(J2) for all nonnegative Borel measurable functiangon X,
[ w0 [ v 36x ) e = [ v [ ) x ) et
X X X X

Then we refer tal as gjump measure

It was shown in 19, Example 1.2.4, p. 14] that any jump measu¢r, dy) determines a sym-
metric Radon measurédx, dy) = J(x, dy) du(x) on B(X x X) and, for allf € C(X x X),

f fX 10 06y 60 = f fx 1009 3069 du(0,

Note that the term “jump measure” refers usually to the measuBg slightly abusing the termi-
nology, we use this term with respect to the functibon
Any jump measurd gives rise to the following symmetric bilinear forr&,(#):

&u.v) = f fX (009 = U ~ v) I 6) )

F ={ue L?X): u is Borel measurable o, &(u, u) < co}.

(2.1)

It was also shown in]9, Example 1.2.4, p. 14] that:
(a) If uis Borel measurable ok andu = 0 y-a.e. onX, then&(u, u) = 0.
(b) If ue Fandvis a Borel measurable function dhsatisfying
VXl < u(x)l  and [v(x) —v(y)l < u(X) —u(y)l  forall xye X,
thenv e ¥ and&(v, v) < &(u, u). In particular, €, ¥) satisfies Markov property.
(c) (&, F)is closed.

In other words, the bilinear form&( #) defined in .1) is a Dirichlet form onlL?(X) provided#
is dense in_2(X).

Throughout the whole paper, we always assume Jdhata jump measure as defined above,
and €, F) is the bilinear form as defined i2 (). We will investigate sfiicient (angor necessary)
conditions of €, ¥) to be aregular Dirichlet form.

If the measurd(x, dy) du(x) has a density with respectdn(x) du(y) then the density function
will be denoted byJ(x,y) and referred to as jwmp kernel Clearly, any nonnegative symmetric
Borel functionJ(x,y) on X x X determines a jump measure

J(x, dy) du(x) = I(x, y) du(y) du(x)
provided the function
X = o JxY) duty)

B(x,r)
is locally integrable for any > O.
Definition 2.2. A functionW : X x [0, o) — [0, o) is calleda spacgime scaling functiorif
- foranyx € X, the functionr — W(X, -) is continuous and strictly increasing on ¢0);

- W(x,0) = 0 and lim_,., W(X,r) = oo;
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- there exist three positive numbe&g, 31, 8, whereB; < B», such that, forallc r < R< o0
andx,y € X withd(x,y) < R,

it (B < peeB < (B @2)

It follows that, for anyx € X, the inverse functioMV-1(x, ) of W(x, -) exists and satisfies the
following inequalities, for all < r < R< oo and allx € X,

o1/ (B)l/ﬁz WX R) cls (B)l/ﬁl .
W \r T Wixr) T W \r
An example of a spagime scaling function isV(x, r) = rf for all (x,r) € X x (0, ), where
B € (0, ). In this examplaV is independent of the space variak|dut there exist other interest-
ing examples oWV that depend om. We refer the reader to Secti@rbelow for more discussions.
Let us fix for now a scaling functiow/(x, r) and a jump measurdx, dy).

Definition 2.3. (Tail of jump measuleWe say that) satisfies conditiorfTJ)y if there exists a
constanC > 0 such that, for alk € X andR > 0,

xxmnm%zj\)ﬁuﬂws

B(xR W(x,R)’
Remark 2.4. Note that conditior{TJ)y and @.2) imply condition (J1).

Definition 2.5. (Poincaré inequalityWe say that] satisfies théoincaré inequalityPl)y if there
exist constant€ > 0 andx € [1, o) such that, for any balB := B(xg, R) with xg € X, R € (0, o)
and for any functioru € N L*(X),

fIU(X) — ugl* du(¥) < CW(x0, R) Ju(x) — uI* I(x, dy) du(x), (2.3)
B (xkB)x(xB)

whereug = ﬁ J5 u(x) du(x) denotes the arithmetic meanwbverB.

Definition 2.6. Let U be an open subset &f and A be any Borel subset df. A function¢ €
Cc(X) is called acutgf functionof the pair @, U) if it satisfies the following properties:

() 0<g¢p<lonk;
(i) p=1inA;
(iii) ¢ =00nUC.
Denote by cutfi(A, U) the collection of all cutfi functions of the pairA, U).

We define below a conditioAB). It is named after Andres and Barlow because they first
introduced in B] a similar condition forlocal Dirichlet forms (which was referred to ir2] as
(CSA) —a cutgf Sobolev inequality in anngli For jump-type Dirichlet forms and with the scaling
functionW(x, r) = r?, this condition was introduced ir2]] where it was used to characterize the
two-sided stable-like estimates of the heat kernel.
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Definition 2.7. (Andres-Barlow conditionSet
F':=F +{cons} = {u+c:ueF andcis a constant

We say that a jump measudesatisfies conditiofAB), if there exist positive constandsandC
such that, for any € ¥ N L*(X) and for any three concentric balls

Bo = B(%o, R);
B = B(Xp, R+71); (2.4)
Q = B(xo, R),

with xg € X and 0< R< R+r < R < oo, there exists a functiog € cutaf(Bp, B) such that
[ 1601809 - 6092 3 )t
QxQ

C
< l6(X)[2u(x) — uy)|? I(x, dy) du(x) + su
¢ ] 109RI09 ~ U 3 ) ) + sup
Definition 2.8. (Volume doubling conditionWe say that a measugeon a metric spaceX, d)
satisfies thevolume doublingondition, denoted byMD), if there exists a constaflp > 1 such
that, for allx € X and allr > O,

fg A, (2.5)

V(x, 2r) < CpV(Xr). (2.6)

Note that £.6) holds if and only if there exists constai@§ € (1, o) anda, > 0 such that, for
allx,ye XandO<r <R,

V(X,R) ., [d(xy)+R\"

VoL <Cp (—r ) . (2.7)
Condition /D) also implies that, for alk, y € X,

V(xy) < (Cp + 1)V(x, d(x.Y)), (2.8)

whereV(x,y) is defined by {.3).
The main result of this paper is the following theorem.

Theorem 2.9. (Main theorem)For any bilinear form(&E, F) (as defined in2.1)) with a jump
measure (x, dy) and any scaling function \the following implication holds:

(VD) + (TI)w + (AB)w + (Phw = (&,F) is aregular Dirichlet form on B(X). (2.9)

2.2 Relation to heat kernel bounds

Next, we combine Theore9with the previously known results about heat kernel estimate to
obtain some interesting consequences. In particular, in our next result, we replace the implication
sign in .9 by the equivalence sign, at expense of adding a certain heat kernel estimate in the
right hand side. For that we need some more definitions.

Definition 2.10. The measurg is said to satisfy theeverse volume doubling conditigRVD) if
there exist constant@gp € (0, ) anda_ > 0 such that

V(x, R) R\*- .
V<D > Crp (?) forall x e X and O< r < R < diam(X).
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The reverse volume doubling conditioR\(D) is a rather mild assumption. Indeed,¥,(d, u)
is connected and the exterior of any ball is non-empty thém)(implies RVD) (see R6, Propo-
sition 5.2]). Clearly, if both YD) and RVD) are satisfied then & a_ < «a,, and if (RVD) is
satisfied them({x}) = 0 for anyx € X, so that X, d, 1) is non-atomic.

Definition 2.11. We say that the conditioAB’)y holds, if there exist > 0 andC > 0 such that
for anyu € ¥’ n L*(X) and for any three concentric balBy, B, Q given in 2.4), there exists a
function¢ e cutdf(By, B) satisfying

Ilﬂgmmﬂam—¢wauﬂwmAw
C

2 2 5
<{ f f( (@150 (I Iu(x) = u(y)l J(x,dy)du(x)+§€quW fg u(x)I* du(x). (2.10)

The diference betweer2(5) and .10 is that for the latter the integration in the middle term is
done over a smaller annul@s, By. Hence, we havéAB’)wy = (AB)w. The converse implication
(AB)w = (AB’)w is true under some additional assumptions (see Cordldrgy.

Assume that&, ) is a regular Dirichlet form. For any open getc X, set

F(Q) =F NCe(Q), (2.11)

where the closure is taken with respect@pnorm. By [19, Theorem 4.4.3]7(Q) is a dense
subspace of2(Q) and €, F(Q)) is a regular Dirichlet form on.2(Q). If it has the heat kernel
then the latter is called thirichlet heat kernein Q and is denoted bp(x, y).

Definition 2.12. (Localized lower estimajaVe say that a regular Dirichlet forn&(F) satisfies
condition(LLE)yy if the following two properties are satisfied:

(i) for any bounded open s€ c M, the Dirichlet heat kernepi*(x,y) exists and is locally
Holder continuous inX, y,t) € Q x Q x (0, c0);

(i) there existC > 0 ands € (0, 1) such that, for any baB := B(xp, R) with R > 0, for any
t < W(xg, 6R) and for allx, y € B(xg, SW1(Xo, 1)),

-1

V(x0, W-(xo, 1))

pE(x.y) >

Our second main result is as follows.

Theorem 2.13. Assume thafVD), (RVD), (TJ)y are satisfied. Then, the following three condi-
tions are equivalent:

() (AB)w + (Phw
(i) (AB)w + (Phw
(i) (&,F) is aregular Dirichlet form satisfyingLLE)y.

Moreover, if any of the condition®), (ii), (iii) holds, then the heat kerngb}io of (&, F) exists
and is stochastically complete, that is, for any (0, c0) and xe M,

fmmwwm=1
X
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Our next Theoren?2.15is a modification of Theoreri.13where(TJ)y is removed from the
list of standing assumptions and included into the statements (i) and (ii). In order to state it, we
need one more definition.

Definition 2.14. (Tail estimate of heat semigroujVe say that a Dirichlet form&, F) satisfies
condition(TP)y if, for any ball B = B(x, R) with x € X, R € (0, o) and anyt € (0, o),

Ct 1

Piloc < —— in=B
e S WxR 4
for a positive constar@ independent oB, t.

Theorem 2.15. Assume thafvD) and (RVD) are satisfied. Then, the following three conditions
are equivalent:

() (TIw + (AB )w + (Phw
(i) (TIw + (AB)w + (Phw
(iii) (&, ) is aregular Dirichlet form satisfyingLLE)w + (TP)w.
Finally, the next statement is a direct consequence of The@rg®or 2.15

Corollary 2.16. Under(VD), (RVD), (TI)w and(Pl)w, the following equivalence holds:

(AB)W (=4 (AB,)W.

2.3 Special scaling function

Fix someg € (0, ). As an application of the above theorems, let us consider a special case
when the scaling function is

W(x,r) =r# forall xe X andr € [0, ), (2.12)

and thgump kernel Jx,y) := % exists and satisfies the following conditi@f)s.

Definition 2.17. We say that the jump kernd(x, y) satisfies conditioijJ)s if

1
V(X Y)d(x, y)8

Let us introduce the following family of Besov function spaces.

J(xy)

for all distinctx,y € X.

Definition 2.18. For anys € (0, =), define thehomogeneous Besov spai:}jz()() as the collection
of all locally integrable function$ on X such that

F(x) — f(y)P :
1l 00 ::( fx X—\'/ ()(:(;) _ (x(,)3|25 duly) dﬂ(x)) < co.

Define thenhomogeneous Besov spdne

A3 o) = {F € L0 < Ifllg ) < o).
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For the scaling function2.12) and the jump kerned(x,y) satisfying(J);, the domains of
the associated bilinear for& in Definition 2.1 coincides with the inhomogeneous Besov space
Ag’/g()(). In this setting, we rename the conditio@B) and (AB")w to (AB)s and (AB')s,
respectively. For convenience of the reader, we state here the following independent definitions of
(AB)ﬁ and(AB’)ﬁ.

Definition 2.19. We say that a metric measure spaded, u) satisfies conditiofAB)s if there
exist > 0 andC > 0 such that, for any function

u e (A5/5(X) + {const) N L(X)
and for any three concentric bal, B, Q given in 2.4), there exist® € cutdf(Bo, B) such that
ff UPIP(X) — SY)I* du(y) du(x)
QxQ

d(x, ) V(X,Y)
I$OIPIU) — uy)? du(y) du(x) | C 2
ngfsxa d(x, y)? V(xy) 1P fg O™ du(X).- (2.13)

Condition(AB’)g is defined similarly and is obtained frofAB) by replacing the integration area
B x Bin the first integral on the right hand side @ {3 by (B \ Bp) x (B \ By).

Definition 2.20. (Upper and lower estimates of the heat kern&k say that the Dirichlet form
(€, F) satisfies the conditioULE); if its heat kernelipi}-o exists and satisfies the following
estimate: for alk,y € X andt > 0,

p(xy) =

-B
1 (1+ dix, y)) . (ULE),

V(x, tV8 + d(x,y)) tl/e
Remark 2.21. Itis easy to see that if the measurés a-regular then the conditioULE); coin-
cides with(ULE), ;. Recall also that the heat kernel is related to the jump kernel by the identity

pt(X,Y)
2t

Jxy) =1lim
which easily yields thatULE),; implies (J)s.

The next result (that is essentially a consequence of TheoPe®n2.13 together with the
previously known heat kernel estimates) shows that, for a bilinear f6ra) satisfying(J)s, any
of the conditiongAB)g or (AB’)z can be used to prove tha,(7) is a regular Dirichlet form, as
well to obtain its heat kernel bounds.

Theorem 2.22.Assume thafvD) and(RVD) are satisfied. Then, for arg/e (0, =), the following
conditions are equivalent:

(i) (AB')g
(i) (AB)g
(iif) For any jump kernel J satisfyin@)s, the following bilinear form
&) 1= [ [ (00 = us)E) ~ I 3) duts) () (2.14)
XJX
with domain
Fi={f e LX(X): &(f, ) < oo (2.15)

is a regular Dirichlet form satisfyingULE),.
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(iv) There exists a jump kernel J satisfyi(d); such that the bilinear forn&, ¥) given by
(2.14-(2.19 is aregular Dirichlet form satisfyingULE)p.

Moreover, if any one of the above statemdijt§iv) holds, then the heat kernfgh}i.o of (E, ) is
jointly continuous onX x X and stochastically complete.

According to Remark3.3 below, if 0 < g < 2, then both(AB);z and (AB’)z hold; hence, all
conclusions of Theorerd.22are true when & g < 2.

2.4 Organization of the paper

In Sections3.1 and 3.2 we present some examples of (absolutely continuous and singular)
jump measures satisfying the conditidiid)y, (Pw and(AB)w.

In Section3.3, we discuss a product jump measure on a product mspacesX;,i = 1,...,m,
where each metric measure spagés endowed with a jump-type regular Dirichlet form that sat-
isfies the conditionéT J)w, (PDw, (AB)w. Note that the product jump measure is always singular.
We show in TheorerB.7that the corresponding product Dirichlet form also satisfies the condition
(TI)w, (Phw, (AB)w and, hence, it is regular and its heat kernel satigtie&)\w and(TP)y.

Section4 contains the proof of our main Theorer®. In Sectiord.1, we establish a relation
between(AB)w and(AB’)w. In Section4.2we prove a self-improvement property of condition
(AB)w. In Section4.3we construct a partition of unity o by using the cutfy functions from
the condition(AB)w or (AB’)w. Finally, Theoren2.9is proved in Sectiod.4.

In Section5, we apply Theoren2.9to prove Theorem.13 2.15and2.22 We first establish
the implicationg(S)y = (AB’)w and(LLE)w = (S)w + (Plw in Sections5.1and5.2, respec-
tively. Based on them, we give the proofs of Theoredris3 2.15and?2.22in Sectionss.3, 5.4
and>5.5, respectively.

3 Examples of jump measures

In this section, we provide various examples of non-singular and singular jump measures (see
Sections3.1 and 3.2). In Section3.3, the conditiongTJ)y, (Pl)w and (AB)w are proved on
product spaces.

3.1 Jump measures with density

Let the scaling functioWV be as in Definitior2.2 Let a jump measur@ admit a jump kernel,
that is,

J(x. dy) du(x) = I(xy) du(y) du(X),
whereJ(x,y) is a symmetric jointly measurable function satisfying

1 .
J(x,y) = WK A< y)) V(<) for all distinctx, y € X. (3.1)

Note that by 2.2)

W(x, d(x.y)) = W(y, d(x.y)), (3.2)

so that the right hand side d3.Q) is “almost” symmetric irnx, y.
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Lemma 3.1. Assume thafVD) is satisfied and that the jump kernel J satisfigd). Then both
(TI)w and (Pl are satisfied.

Proof. Let us verify first the conditioiTJ)y. Using VD) and @.2), we obtain, for any € X and

anyR> 0,
du(y)
J(x, dy) ~ f
c () diy=R WX, d(X, ¥)) V(X.Y)

J(x B(x, R)C) = f

B(x,R)

3 [ du(y)
a ]:0 Zide(x,y)<21'+1R W(X’ d(x’ y)) V(X’ d(X, y))

8

IA

f _d,u(Y) _
— J2ir<d(xy)<2i+tiR W(X, 2IR) V(x, 2IR)

W(x, R\V(x, 21*IR)
= W(x R) Z 4 W(X, 2IR)V(x, 2IR)

iB1
< W(X 3 Zchwz

N 1
WX R)’

which provegTJ).
Let us now provePl)y. For any ballB with centerxg € X and radiusk € (0, «), and for any
functionu € ¥ N L*(X), applying the Hblder inequality, we obtain

fB U - Ul () = [ | f [U(x)

<f (#(B)f () - U@ du(y)) du(x)

_ f Ju(x) — uI* W(x, d(x,)) V(x,y) duly) du(x)
g W(X d(x.y)) V(%o R) V(xy) -

By means of 2.7) and @.8) we obtain that, for alk,y € B,

2
du(x)

V(Xy) V(x,d(x,y)) , (A% y) +d(x, x0) \** -
Voo R < 2CDW < 2CpC = < 2CpCp3™ .

Moreover, it follows from 2.2) that

W(x, d(x,y))  WI(x, 2R) X
Woo.R = WooR) = W2

Consequently, we obtain

2 ) s B Ju(x) — u(y)I? du(y) du(X)
fB Ju(X) — ugl® du(x) < 2CwCpCpH3™ 2’2W(x0, R) fB j; Wodooy) Vi)

~ W(xo. R) f fB (U0 = U 30 ) du)

which provegPl)y. |
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Lemma 3.2. Assume thafVD) is satisfied and that the jump kernel J satisfi@d). If g2 < 2
then both(AB)w and (AB’)y are satisfied (wherg, is the exponent i(2.2)).

Proof. Consider ballBy = B(xp,R), B = B(Xo, R+ r) andQ = B(xp, R), wherexp € X, Rr €
(0, ) andR’ > R+ r. Sinced is a metric, by the classical Urysohn lemma, there exists a function
¢ € cutdf(Bp, B) such that

$(X) — ¢(¥)| < Crtd(x,y) (3.3)

for all x,y € X and for some constaftt € (0, ). Using this and the fact that

UCYPlp(x) — S
Q W(Xa d(Xv y)) V(Xv y)

we see that bottAB) and(AB’)w follow directly from the estimate

f f URIB(X) — H)PIX.Y) duy) du(x) ~ f dhu(y) du().
QJQ Q

¢(¥) — s 1
X W(x, d(x, y)) V(X,y) d/J(y) < m forall xe X. (34)

To verify (3.4), we use the argument from the proof(@J)y in Lemma3.1and the fact that
0 < ¢ < 1, which yields

lp(X) — p(Y)I? du(y) 1
fdmzr Wex doey) Vixy) HO) < fdmzr W dOcy) VY S Wik

Next, using ¥D), (3.3) and the assumptigsy < 2, we obtain

600 —¢OP 2 dxy?* |
fd(x,y)<r W Ay ViKY S fd(x,y)« Wex doxy) Vi y) H0)

LT 4%y
~r? f d
,ZO ez W% 006 Y) Vixy) HO)

PAN 27y
<r . . d
JZ:(:) L‘J-lrsd(x,y)<2-ir W(x, 271-1r) V(x, 2-1-1r) k)

. 1 iz_zj W(x,r)  V(x27r)
i=0

W(x,r) W(x, 2-1-1r) V(x, 2-1-1r)

1 .
< 2‘](2_ﬁ2)
W(X,r) JZ:(:)

N 1
WX, r)’

which implies @.4). m|

Remark 3.3. Let 8 € (0, o0) andW(x,r) = rf for all (x,r) € X x (0, ). In this case, the jump
kernelJ(x,y) in (3.1) automatically satisfiegl);. Assume that\(D) holds. It follows then from
Lemmag3.1that both(TJ)w and(Pl)w hold. Moreover, ifs < 2, then by Lemm&.2 both (AB)g
and(AB’); are satisfied.
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3.2 Singular jump measures

Here we give examples of singular jump measures suchT3ag;, (P)w and(AB)w are all
satisfied.

Example 3.4. Fix a1, ap > 0 andB > 0. Let (Xi,d;,u), i = 1,2 be two ultrametric spaces
satisfying the conditions

Hi(Bi(x,r)) ~r* forall x e Xj andr > 0,

whereBj(x,r) = {y € Xj : di(x,y) < r}. Let us consider the product spa¥e= X1 x X, with the
metricd and product measugedefined as follows:

d(x,y) := irgi':l;«di(m,yi)}, M= g1 X o,

wherex = (Xg, X2), Y = (Y1, Y2) € X. Clearly, (X, d) is an ultrametric space andsatisfies
u(B(x,r)) ~r* forall xe M andr > 0,

where

a = a1+ az.

Define the kernel(x, dy) on X x 8(X) by

u2(dys)

. ta(dy)
J(x,dy) := d d(xo, yo)2th

W5xz (dy») +

Ox, (dy1)

Then, it was proved inl[0, Section 15] that conditiong J)y, and(Pl)y are satisfied for
W(x,r) :=rf forall xe X andr > 0.
Moreover, it was proved ir?2, Example 4.1 and Lemma 6.2] th@B)y is also satisfied.

Example 3.5. Let X = RZ andW(x, r) = r for somes < 2. For anyx = (XY, x?) e R x R and
y = (YD, y@) e R x R, consider the following jump measure

dy® dy>

. 2) 1)
J(X’ dy) L |X(l) _ y(1)|1+‘3(sx(2)(dy( ) + |X(2) _ y(2)|1+ﬁéx(1)(d% )

that generates a cylindrical stable proces®&énOne can use the same method as in Exadgle

to prove that) satisfies(TJ) and(Pl)w. Moreover, it was proved in2b, Proposition 7.1] that
(AB)w is also satisfied.

In the above Examplez4and3.5, the functionW is independent of the space variable. Next,
we give an example of a jump kerngkatisfying(TJ)w, (PDw and(AB)w with the scaling func-
tion W(x,r) essentially depending on the space variablgollowing the ideas of 25, Section
7.21).

tAlthough the Dirichlet form theory was used i29, Section 7.2], the idea of construction bstill works without
using Dirichlet form.
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Example 3.6. Let (X, d) be an arbitrary metric space, andbe a measure o with full support
satisfying ¥D) andu(X) = 0. Fix a pointo € X and let 0< & < 8 < 2. For anyx € X and

r € (0, ), set
d(o, x) + r) o
r

W(X,r) := (

By a direct computation one can verify that this functidisatisfies2.2) withg; =8 —¢,82 =8
andCy = 2¢. The following jump kernel

1 1
+
VX y)W(x. d(xy)) ~ V(y, )W(y, d(x, y))
satisfiegTJ)w and (Pl)w by Lemma3.1 and(AB)yw by Lemma3.2 Now we construct another
jump kernelJ that satisfies the same conditions but which is much largerdfian

For that, we use two sequencfs,}, {Fn} of Borel subsets oX satisfying the following
properties:

Pxy) =

() Allthe sets{E,, Fn}n=1 are mutually disjoint;
(i) Foranyn>1, 1< u(Ey) <2and 1< u(Fy) < 25 (3.5)
(iii) d(En, Fn) » o0 asn — oo.

An example of such sequences will be given below. Using the sequéigesFn} as in 3.9), let
us define the following jump kernel

Iooy) = 0k y) + Z( Lexr,(%Y) - LewEd (Y. ) (3.6)

Z\W(x d(xy)) * W(y.d(x.y)

and prove that it satisfies all the conditiaffsl)y, (P1)w and(AB).
SinceJ? < J andJ° satisfiegPl)w, it follows thatJ also satisfie¢Pl)y. Let us verify thatJ
satisfieg TJ)w. By (3.2), we have

1E,xFo (X Y) + 1FxE, (X, Y)
W(x,d(x,y))

I y) = Pxy) + Y

n>1

(3.7)

For anyx € X, by the mutually disjointness ¢E,, Fn}nen, there exists at most omg, or at most
onemy such thatx € Ep, or x € F, . Note thatx can not lie in botrE, andFp, simultaneously.
So, we may as well assume the¢ E, .. Then we have

1 1 1
f Z EnXFn(X, y) + FnXEn(X’ y) d/.l(y) < f an (y) d (y)
Bn® 71 B

W(x, d(x ) ot WO dOGY))

< - u(B(x, r)C NFp) <

W(x, 1) W(x,r)

This implies that) satisfiegTJ)y since so doegP.
Let us prove thad satisfieAB). Fix three concentric ballBy = (X0, R), B = B(Xo, R+ 1)
andQ = B(xp, R) with Xp e Xand O< R< R+ r < R. Let

R+ r —d(xg, X)
r

d(X):=1A vO0 forall xeX.

Clearly,¢ € cutdf(Bg, B). Following the arguments in the proof of Lemr82, in order to prove
thatJ satisfieAB)yy, it suffices to verify that, for anx € X,

10 - 609303 i) < o
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By Lemma3.2and @3.7), we only need to show that, for amye X,

2 O LEnxF, (X% Y) + 1F xEq (X Y)
J o0 - o 37 SEEREE Ee S ) <

Wor (3.8)

Indeed, for any, y € X andr € (0, ), observe that

$(9) — )] < min{1, rd(x,y)}

wWixr)y (r Y 1+ 200 ro\ dx,y)\°
o 65~ (0531 (1+% < () m{x (7]

Consequently, for any € X, using the notatiomy as above (assuming without loss of generality
thatx € E,), we then derive

_ 2 lEnXFn(X’ y) + anXEn(X$ y)
1069 - 009 > iy )

~ > 1g, ()
< [ 1609~ 6P g s )

1 . ) roy d(x,y)\°
WD Je, m'”{l’rzd(x’y)z}(d(x,y)) max{l’( : )}d“(y)

1
W(x, r)#(an)

2
< —5
~ W(x,r)

and

<

<

where the penultimate step holds becatise 8 < 2 implies that the integrand is bounded by 1.
This proves 8.8). Hence, we conclude thdtsatisfiedAB) .

Now let us construct sequencs,}, {Fn} satisfying @.5). Recall thato € X is a fixed point
andCp,, a, are the constants i”2(7). Let 1 > 0 be large enough such that

2.9%C, < V(0. A).

Let Xp := 0. We are about to construct a sequence of bd|s:= B(xk, r)}k=1 satisfying the
following properties: for ank € N,

(i) d(x,0) > maxa, 2d(X-1,0)};
(i) 1 <u(By) <2
(iii) re < d(x, 0)/4;
(iv) UK_; Bm c B(0, 5d(x, 0)/4).

(3.9)

Indeed, sincg(X) = o and every ball has finite measure bY), we haveB(o, r)C # (0 for any
r € (0,). Thus, we can inductively take a sequence of pofriey that satisfy (i) of 8.9).
From (i), it follows easily thatd(xk, 0)}ken iS increasing and that

d(x, 0) > 21 forallk e N. (3.10)
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Once we have these point&}keay, then for eactk € N we can choose a valug € (0, o) such
that 1< u(B(x, r)) < 2, which induces (ii) of 8.9). Moreover, by the choice of, (VD) and by
(i) and (i) of (3.9), we have

V(o, 1) - V(o, d(Xk, 0) + I') <c 2d(xx, 0) + ri \**
= —_ D 1)
2 V (X, k) M

9"C) <

which is equivalent toy < d(xk,0)/4, thereby leading to (iii) of3.9). To see that (iv) of .9
holds, ifz € By, for somem € {1,2,...,k}, then by the increasing property (X, 0)}kenr and
(iii), we obtain

0(2.0) < 0(2 Xe) + 00 0) < T + Ak ) S 2. 0) < (4, 0)

and, hencey}! | B is contained in the balB(0, %d(xk, 0)). In this way, we have constructed a
sequence of ballBy}ken satisfying (i)-(ii)-(iii)-(iv) of (3.9).
For anyk € Z, if X € Byy1 andy € Uﬁhle, then we have by (i), (iii) and (iv) in3.9) that

d(x.y) 2 d(Xcr1,0) — d(x+1,X) — d(0,)
d(%+1,0) _ 5d(X, 0)

> d(Xkr1,0) — 4 4
_ 3d(X;:1+1, 0 5d(>;k, 0 d(XLk{ 9) k3, (3.11)

This shows that the distance betwedn; and Ulr(n:le goes to infinity ak — oo. In particular,
the sequencBylken are mutually disjoint. Thus, for anye N, upon letting

we see thatEn}nay, {Fnlnen are exactly two sequences of Borel sets satisfyt) (

Let us emphasize that, for the s}y and {Fnlnew in (3.12), the corresponding jump
kernelJ from (3.6) is essentially larger thad® on a large set. Indeed, for anye N and &, y) €
En X Fp, it follows from (3.10 and @.11) that

d(Xzn-1, 0)

d(x,y) > dist(En, Fn) = dist(Bzn, Bon-1) > > 2204y,

which combined with3.10 andB;,_1 ¢ B(0, 5d(X2n-1, 0)/4) (see (iv) of 8.9)) yields that for any
z e B(0,22"4)),

d(z x) < d(z 0) + d(0,y) + d(y, X) < 2241 + gd(xzn_l, 0) + d(y, X) < 7d(x, y),

so thatB(o0, 22"41) c B(x, 7d(x,y)) and, hence,
V(0,22"42) < V(x, 7d(x,Y)) < CSV(X, Y).
Thus, for any &, y) € E, x F, we obtain using3.2) andV(x,y) ~ V(y, X) (see ¥D)) that

lexr(xy) 1
W(x,d(x.y)) JO(x,y)

This together with the assumptipuX) = co implies that, for the seA = |\ (En X Fn),

= V(x,y) 2 V(0,2 *).

inf 20Y)

- - 2N-4 3y _
I\IIILnoo (x,yeA JO(x, y)) < I\III—r>noo V(.2 A) = eo.
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Observe that the séthas an infinite measure:
(X m)(A) = > u(En)u(Fr) = oo,
n=N
which follows from the mutually disjointness ¢gE,, x Fn}neny and Property (i) of 8.5).

3.3 Product spaces

In this subsection, we study the conditidiid)y, (AB)w, (Pl)w on product spaces. We show
in Theorem3.7 below that if on each metric measure spa&e ¢i, 1), all the conditiongTJ)w,
(AB)w, (P are satisfied with a common scaling functidf{r) (independent of space variable
X), then the same conditions are satisfied also on the product spase with the same scaling
functionW(r).

Letm e N. For anyi € {1,2,...,m}, suppose thatX, di, 4) is a doubling metric measure
space. We consider the product space

X=X xXoX--- X Xnm.

An elementx € X can be written ax = (Xg,..., Xm), wherex; € X foranyi € {1,2,...,m}. If
Xi,¥i € Xj andr € (0, =), we still adopt the notation

Vi(xi, 1) = wi(Bi(x,r)) and Vi(x,yi) := ui(Bi(xi, di(xi, 1)),
where eactBi(x,r) = {y € Xj : di(x,y) < r}. Define onX the following metric:
d(x,y) := maxdi(xi, yi).
1<ism

Clearly, for anyx € X andr € (0, ), the ballB(x, r) in X takes the form of

m
B(x,r) = l_[ Bi(Xi,r) = B1(X1,r) X Ba(X2, 1) X - -+ X By(Xm, ).
i=1
Consider on the product spa&ethe product measuge

du = dug X -+ - X dum.

Then, for anyx € X andr € (0, ),
uBOn) = [ [ui@i0an) =] [vioen.
i=1 i=1

Clearly, volume doubling conditio’/D) is satisfied on this product spac¥, @, u). Moreover, if
each K, d, i) satisfies RVD) then (X, d, i) also satisfiesKVD) but with different constants.

For anyi € {1,2,...,m}, let J(x, dy;) be a jump measure oK. As in Definition2.1, each
Ji(x;, dy;) determines a bilinear forn€(, 7;). Let dy, be the Dirac measure i; at the pointx;.
Define theproduct jump measure(3, dy) on X by

306 dy) = ) G, (Ayn) -+ Oy (AYi-2) H(X Ayt) Sy (Do) = O (AYin)- (3.13)
i=1



REGULARITY OF JUMP-TYPE DIRICHLET FORMS 21

Itis easy to verify thal(x, dy) in (3.13 satisfies Definitior2. 1 If f is a Borel measurable function
onX x X, then it follows from @.13 that

fx fx Fx;y) I(x, dy) du(x)

= Z ‘[Xj; F(X Y)0x (dy1) - -+ 0x_,(dYi-1) Ji(X, dY) Ix,; (AYis1) -+ Iy (AYm) Ae(X)
i=1

m
3 O K X X, ) SR
i=1 VA VA

Consequently, thproduct bilinear form(&, #) associated td(x, dy) in (3.13 is as follows: for
any Borel measurable functionsv on X,

V) = fx fX (U() — U(Y)) (V) — V() I(x, dy) (¥

m
= Zf (UK -+ Xen) = UK - X1, s Xt -5 Xin)
izl X Xi

X (V(X1, - - oy Xm) = V(X2s - o5 Xim1, Vis Xis1s - - -5 Xm)) Ji(X, dyi) du(X). (3.14)

Assuming Theorem3.9, 2.13and2.15for the moment, we obtain the following result for the
product bilinear form and its heat kernel.

Theorem 3.7. Let me N. Foranyie {1,2,...,m}, suppose tha{X;j, d;, i) is a metric measure
space satisfyingvD) and (RVD). Moreover, on ever{Xj, d;, i), there is a bilinear form{&;, i),
which is determined by a jump measuréxd dy;) du; (). If for some spagime scaling function
r — W(r) that is independent of the space variable x, the conditions

(TIw + (PDw + (AB)w (3.15)

are all satisfied for eaclf&;, i) and J(x, dy) dui(X%), then the product kernel(¥, dy) du(x) in
(3.13 also satisfieq3.15. As a consequence, the associated product bilinear f@j#) in
(3.14) is a regular Dirichlet form on B(X) and the corresponding heat kerrgk}io is stochastic
complete and satisfigsLE)y and (TP)y.

Proof. Once we have obtained that the product jump mea3{xedy) satisfieqTI)w + (Pl)w +
(AB)w, then applying Theorer®.9we obtain the regularity off, 7). Further, applying Theorems
2.13and2.15we obtain(LLE)yy, (TP)w and the stochastic completenes$mfi-o.

Hence, let us show that the product jump measi(re dy) satisfieqTI)w + (PDw + (AB)w.
For simplicity, we consider only the case= 2 as the proof for a generalis similar. Form = 2,
we have

J(X, dy) = J1(X1, dy1) 6x,(dy2) + Ox, (dy1) Jo(X2, dy2) (3.16)

and
&(U,v) = fX fx (U0 X2) — Uy, X2)) (V0. X2) — V(Y. X2)) Ju(xa, dlya) ()

+ f f (U(X1, X2) = U(X1, Y2))(V(X1, X2) = V(X1,Y2)) J2(X2, dy2) du(X). (3.17)
x Jx,
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SinceW is independent of the space variakléelow we will simply writeW(r).

Step 1. Let us provgTJ)y. For anyx = (X1, X2) € X andR € (0, o0), we write

J(x, B(x, R)C) = fB - J(x, dy)

J1(x1, dyr) 6x,(dys)

v[(‘/\’1></\’2)\(Bl(X1,R)><Bz(Xz,R))

f 5x, (dy1) Jo(x2, dyo)
(X1xX2)\(B1(x1,R)xB2(x2,R))

[ 31, dyn) Gy (dye) + | 520 (Ay) (%0, dyo)
B2(x2.R) JX1\B1(x1.R) B1(x1.R) JX2\B2(x2.R)

f Ji(Xe, dy1) + f Jo(%2, dyn)
X1\B1(x1,R) X2\B2(x2,R)
1

< —’
~W(R)
as desired.

Step 2. Let us provgPl)y. We will use the following formula: for any measurable Eet X
andu e L1(E) n L%(E),

CuRdy L U2
fE - el b = 5o f fE U = U ) ) (3.18)

whereug = ﬁ Jg udu. Indeed, 8.18 follows from the following identities:
lu—Ugl’ = U7 + (Ug)® - 2ute  and [u(X) — u(y)P® = UP(x) + UZ(y) — 2u(Yu(y).
Fix a pointa = (a1, ap) € X, wherea; € X1 anday € X». Take a balB(a,r) C X. In this step,

we use the notation
B=B(ar)=B1x By,

whereB; := Bi(a,r) € X1 andB; := By(ap, r) € X».
Suppose that € F N L*(X). By (3.17), we then have

&(u,u) = f); 2 fx 1 fx 1|U(X1, X2) — U(Y1, X2)I? J1(Xa, X, dy1) dua(X1) dua(x2)

+f f (X1, X2) — U(X1, Y2)I* Ja(X1, Xz, dy2) dua(X2) dua (X1)
X1 JX2 JXo

< 00.

From this, it follows that these two triple-integrals are finite. In particularufea.a.x; € X,

f f U(Xe, X2) — U(Y1, X2)I? Jn(X1, Xo, dyr) dua(X1) < oo
X1 JX:

and foruj-a.a.x; € X1,

f f U(X1, X2) — U(X1, Y2)I? J2(X1, X2, dys) dua(Xp) < oo,
Xo JXo
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which implies that
U, () = U(, %) € Fa N LP(X1) and u™(:) := u(Xq, ) € F2 N L2(X2).

Further, since eachi(x, dy,) duj(x) and the associated bilinear for; (F;) satisfies(Pl)y, by
(3.18, we deduce that fgti,-a. a.xp € Xo,

1 2
2B ffB lX&IU(xl, X2) — U(Y1, X2)|° dua(X1) deea(yr)
- fB Uy, — (U, Pt (3.19)
1
<CWR) Uy, (X1) = Uy, (Y1)I? J1(X1, dyr) dua(X1)
(kB1)x(xBy)

and forui-a. a.y; € X1,

1
2u(By)

<CWR) f U (00) — W (2) Jo(, ) dpa(0),
(kB2)x(xB2)

f f U(y1, X2) — (Y1, y2)I? dua(X2) dua(yz)
BaxB, (3.20)

where the constanise [1, «0) andC € (0, o) are as in Definitior2.5. In both sides of .19, by
integrating ovemB, with respect to the variabbe; and the measumu,, we then obtain

1
2u(By)

fB fjl; B Ju(Xe, X2) — (Y1, X2)I? Az (X1) s (1) duaa(X2)
< CW(R) fB f f( B(<BY) Ju(X1, X2) = U(Y1, X2)I? Ja(xa, dyr) dua(x1) dz(x2)
= U0k, %) = Uy, Y2)I° 10, dyr) S, (dlye) dua (o) dua(xe). - (3.21)

(kB)x(«xB)

Similarly, in both sides of3.20), by integrating oveB; with respect to the variablg and the
measuralus, we then obtain

1
2u(By)

f f f U(Y1, X2) — U(Y1, Y2)[? dua(X2) dua(yz) dus(ys)
By Box By
<CWR) f f f Uy X2) — (Y2, Y2)2 Ja(xa, dye) chaz(x2) duaa(y2)
By (kB2)x(xBp)
- CW(R) f f f U0, X2) — Uk, Y2)2 Ja(xa, dy2) duaa(2) chaa (x2)
B1 (kB2)x(xB2)
<CWR) f( o 08270 U0 Y T2, 2) 3 () i) s ). (.2)
K X(K

Meanwhile, using .18, (3.21), (3.22 and the following inequality: for anx = (X1, X2), y =
(V1. Y2) € B=B1 x By,

[U(X) = u(Y)l = [u(X1, X2) = U(Y1, Y2)I < [U(X1, X2) = U(Y1, X2)| + [U(Y1, X2) — U(y1, ¥2)l,

we obtain

fB 1U(x) — Ugl? du(¥)
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_ m fB . f fB ) ~ . ) s ) ) )
< m fB 5, f fB " (X1, X2) — U(Y1, X2)|? A (X1) dpea (Y1) Az (X2) dua(yz)
+m fB N f fB 100 Y2 a2 Gty dty) i)

) 2#(151) fs ffs g, U0 Y2) ~ UL, x2)[? A1 (x1) daa (ya) Gpea(xe)

2/1(152) fB ffB 10072, 2) = Uy, Y2l chaz(2) dualyz) dha(v2)

< CWR) f( P R R A R G ALACOERCALICS
kB)x(xB

+

+CWR) [ ulu.50) ~ U, Yo ol ) (03) i) cis )
(kB)x(xB)
- CWR) f U(x1, X2) — Uy, Y2)I% J(x. dy) dhea(x2) cus(x0).  (by (3.16)
(kB)x(xB)

This proves thad(x, dy) satisfiegPl).

Step 3. Let us prove(AB)y. Let0< R< R+r < R < o anda = (a1, az) € X, where
a; € X; anday € X». Take three concentric balls in the product sp&ce X; x X», say

Bo = B(&, R) = Bi(a1, R) X Ba(az, R);
B=B(a,R+r)=Bi(a;,R+r) x By(ag, R+r);
Q = B(a,R) = By(a1, R) x Bz(a, R).

To simplify the notation, below we s& := Bj(a;, R) andB; := Bj(aj, R+ r), wherei = 1, 2.
Letu e ¥'NL*(X), where we recall thgt” = {¥ +c : cis a constant Just like the arguments
in the beginning ofstep 2 we now have

U() = UG x) € F7 N L (XD) and uS() 1= u(xi. ) € F5 0 L2(Xo),

where eaclF; is defined in a similar manner.

Fix i € {1, 2}. Since on eachXj, d;, i) the conditions\/D), (RVD), (TJ)w, (P)w and(AB)w
are satisfied, we derive that Theor@x(iii) holds for each £, d;, ;). Then, using Lemmas.5
and5.3from Sectiorb below (see also Remakk4therein), we obtain that there exists a universal
cutaf function

¢i € cutdf(Bi(a, R), Bi(aj, R+T))
such that for alu € 7" N L= (Xj),

f ﬁs s |, (1) Plp1.(x1) — pa(y2)I* Ju(xa. dys) Az (xa)

< fffleBl Ip1.(X0) PlUx, (X2) — Uy (Y2)[2 Jn(Xe, dyn) daa (xa)

C

2
G Jy PP ebax) (3:23)
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and

fj;, . U (%) Plp2(%2) = 2(y2)I” Ja(¥e, dys) duua(xe)
= Kfj; : |p2(X2) PIU* (X2) — U™ (y2)[2 J2(X2, dY2) duz(X2)

C X1 2
G Jy 10 bt (3:24)
Now, for anyx = (X1, Xo) € X, define

#(X) = (X1, X2) = P1(X1)d2(X2).

Note thatp = 1 on By = Bi(a1, R) x Bx(az, R). Also, supp¢ € By x B, = B. The continuity ofp
on X is obvious. Hencep € cutdf(Bg, B). For anyx = (X1, X2) € X andy = (Y1, Y2) € X, it holds

lp(X1, X2) — (Y1, X2)| = |¢1(X1) — p1(yD)llp2(x2)|
and

lp(X1, X2) = ¢(X1, Y2)| = Ip1(Xa)llp2(X2) — p2(Y2)I.
By these and3.16), we write

[ 101003 - 6607 3¢ i)
= f [ff |, (X0) Plg2(X2) — pa(y2)[PJn(xa. dya) d,ul(xl)) I62(%) [ duz(X2)
B, B)xB;

+ fB ,1 ( f fB o FOPI00) ~ 02)F 0.02) d/Jz(Xz)] 16100 Plur (x0).

If we integrate in both sides oB(23 with respect tdgs(x2)? dux(X2), and also integrate in both
sides of B8.24) with respect tdg1(x1)[% du1(X1), then we continue the above estimate via

[ 161000 - 627 36 )
X4 fB , f fB . 11.(X1) b2 (X2) 2|Uxy (X1) — Uy ()12 J1(X1, dys) A (X1) dua(x2)

+{ fE; , f fE; 5, 1p1.(X1)p2(X)IPIU* (%2) — U (y2)[? J2(%2, dyz) duua(X2) dua (1)

2C

+ WO . fB ’1 |u(X1, X2)I? dea (1) dua(X2).

From suppg € B and @.16), it follows that the sum of the first two terms is equal to

¢ f fB 809U — U, 0) ().
We therefore obtain

[ 11009 - 97 3.6 0t
<< f fBXBlfl’(X)lzlu(X)—U(y)IZJ(X,dy)dﬂ(X)+% fQ () dpe(X).

This proves the validity ofAB)y for the product jump measux, dy). |
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4 Regularity of Dirichlet forms

This section is devoted to the proof of the main Theo&fh The key ingredients are a self
improvement property ofAB)y and a partition of unity based on ctitéunctions.

4.1 A comparison of(AB) and (AB")w

It is obvious that the conditioAB’)\y is stronger thaifAB). Next, we show the following
equivalent versions dfAB)w and(AB’)w.

Lemma 4.1. Lett € (0, o). Under(TJ)w, the formulag?2.5) and(2.10 can be improved into the
following:

[[ o 16071809 — 6092 3 ) i

d(xy)<tr

1
2 _ 2 dwd : 2d |
<¢ jfd oo lp(X)1°1u(X) = u(y)|*I(x, dy)du(x) + C iquW(z, 9 fg Ju(x)| du(x) (4.1)

and
ff o UGPIB0) — S I(x dy) du(X)
d(xy)<rr

1

=¢ ﬁa\%>x(B\Bo) [$0J1Zu(x) = uE)IZI(x, dy)du(x) + C- EGUQPW L lu()? du(x), (4.2)

d(x.y)<tr

respectively, where (s a positive constant depending oibut independent of the main parame-
ters involved.

Proof. We will prove here only4.1) as the proof of4.2) goes in a similar way.
Note that anyp € cutdf(Bo, B) satisfies 0< ¢ < 1. From(TJ)w and @.2), we derive that

I . 100000 = 660 0 < [ o [ (Xy)>rJ(X’dy)) du(x)

doepyar
Ju(X)P?
<C ) Woxm #X
1
< CCwmaxt?, r 72} su flu X)|2 du(X),
W zerW(Z r) Q () ﬂ()

whereCyy andpi, B2 are the constants ir2(2). Similarly, we have

[[ 1o 16002000 - w2 30c a9 < 2 [ [ (OO + 1)) 0 83 i)

d(xy)=tr d(xy)=tr
—4 [ ,, 1u09R x ) cht
d(xy)ztr
u(x)?
4
<4 g W(X, 1) dhi(x)
1
< ACCy maxt 1, r P2y su fuxzd X).
wmaxt 1, T }zeBpW(Z,r) BI()I u(X)

Thus, we obtain4.1), which finishes the proof. O
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Now we show that botlAB) and(AB’) imply that there are dficiently many cuté func-
tions in the domair of the bilinear formé&.

Lemma 4.2. Under the assumption ¢T J)y, if either (AB)w or (AB’)w holds, then the function
¢ in (2.5 or (2.10 can be taken to satisfy e 7.

Proof. We prove this only for the conditiofAB’)\ as the same argument works {&B).
Suppose that the conditigAB’)yy holds andu € F/ N L*(X). Forxp € X and 0< R <
R+r < R < oo, set the three concentric balB, B,Q as in .4). Our main aim is to find a
function¢ € cutof(By, B) N ¥ satisfying .10, but with different constantg andC.
To this end, for any given € (0, =), via applying(AB’)w to the function

Ue = Ul + €,

we find a functionp© € cutof(By, B) such that

f f U OORI6° (%) — ¢ )2 I(x, dy) du(x)
QxQ

_ 2 2
<¢ f f(B\BO)X(B\BO)m (OR1U) - U W) I(x dY)du(X)+§€UQpW( - f U

Further, from

()12 + €2 < [U(X)1% < 2(u(X)? + £2)

and
U(X) = Ue(Y)l = U] = [uW)Il < [u(x) = u(y)l,
it follows that

f f UOIPIF (%) — 6“2 I(x, dy) du(x)
QxQ

2 2
<¢ ff(B\BO)X(B\BO) 0PI ~ U 0y )+ Supgr )( IC dwgﬂ(g))
(4.3)

Choose a numbeg € (0, o) that satisfies

2_ 1 2
%= 5 | IUO9R 8o,
For this speciaky, we derive from 4.3) that
f fQ 00209 = 60D 10, 6h) ()
€ _ 2 2
<L o OO0 ~ U 306 0 ) + supis [ 909 (4.4

and
2 €0 _ 460 2
€0 f fg - p(X) — ¢ (Y)I~ I(x, dy) du(X)
4 f f(B\B )X(B\Bo)iwx)—u(y>|2J<x,dy>du(x)+supwi‘§r) fg URdu(x).  (4.5)

zeQ)
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Observe that4.4) exactly shows that the cufdfunction ¢ satisfies 2.10).

It remains to show thap® € F. Clearly,¢© e L2(X). Note thatp® e cutof(By, B), which
implies that supp® < B and, henceg¢®(x) — ¢<(y) # 0 only if x € Bory € B. By this and
symmetry, we then obtain

€ 460\ — € _ € 2
E(¢%, ¢) = fX fX 1(x) — g(y)[2 I(x, dy) du(¥)
€ ) 2
<2 fB fX 16900 — 622 I(x, dy) du(x). (4.6)
If xe Bandd(y,x) < R — (R+r), then

d(y. %) < d(y, x) +d(x %) <R

and, hencey € Q = B(xg, R). Combining @.5) andu € ¥’ N L*(X) gives

€ _ 460 2 -2 4C 2 00
J; 1700 - 07007 a0 i) < 52 (¢80 + sup Ui ) <o, (4.7)

where the last finiteness property follows frothd) and the fact that
1 Cw (R)ﬁz

sup < —

zzo W(ZT) — W(xo,R) \ r

Meanwhile, by 0< ¢ < 1 and(TJ)w, we obtain

f f 16903 — 692 I dy) du(x) < f f 30 dy) du(¥)
B Jd(y,x)>R —(R+r) B Jd(y,x)>R —(R+r)

C
< fB W R - R+ ) KO

Cu(B)
SHPWeR-Rr) < 49

Inserting @.7) and @.8) into (4.6) leads to

€0 €0 € _ €0 2 0.
&6, ¢ )s2( fB fQ + fB fd (y’X)ZR,_(RH))w (%) — 92(3) I(x, dy) du(¥) <

Letting ¢ = ¢, we conclude thap € cutaf(Bg, B) N ¥ satisfies 2.10. This ends the proof. O

4.2 Self improvement property of(AB)w

In the next lemma we prove that the ¢lbeient, > 0 on the right hand side oR(5) can be
made arbitrarily small. This self-improvement property of condi(jaB) was first observed by
Andres and Barlow ind] for local Dirichlet forms. For jump-type Dirichlet form this property
was proved in22] but in a more restricted setting.

Lemma 4.3. Under the assumptions ¢TJ)y and (AB)w, the following holds: for anyl > 0,
there exists C1) > 0 such that, for any

ue 7 N LX)
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and for any three concentric balls

Bo = B(x0, R);
B = B(Xp, R+7);
Q = B(xo, R),

with xp € X and0 < R< R+r < R < oo, there exist$® e cutaof(By, B) N such that
[} 1earI6 60 = 90220
X

D ()2 _ 2 C(1) )
<af, fBXBW’ CIPIU0) = U ) du() + SUp=s fg U du(9.  (4.9)

Proof. The argument here is similar to the proof @2] Lemma 7.1], but does not rely on the
regularity of the Dirichlet form.

Let By, B, Q, X0, I, R, R andu be as in the statement of this lemmaul& 0 holdsu-a.e. on
Q, theng = 0 satisfies4.9). So, in the rest of the proof, we may assume flufitz ;) > 0. Let

1

1 fz )?
g=—= | u-d and u;:=|u +e.

(u(Q) o

Fix a numbeiq € (1, «). For any integek > 0, define the sequences

ne= (1-q7r;

Si= =T = (@ - 1)gvr;
Bk := B(Xg, R+ r);

Uk := Bisa \ Bxk.

Note thatrk T r and, henceBy T B ask — +co. Moreover,u.? ,Ux = B\ By1. Applying (AB)w
to the functionu, and to each tripleBy, Bx.1, Q2), we obtain that there existg € cutof(By, Bx.1)
such that

f fg 09 - AP0 A i)

2 _ 2
<[ BP0 = 00 ) A0+ sup

C 2
——— | uidy,
26 W(Z Sc1) fg =
where/, C are universal constants in the definition of condit{é). Since

Us(X) = Ug(Y)I < Ju(x) — u(y)l forall x,y € X,
and

fugd,u32fu2d,u+232,u(§2)=4fu2d,u,
Q Q Q

we have

f fg R0 - 5O, Ay ()

: gf«kauXBku ¢k(X) (U(X) U(y)) \](X’ dy) dﬂ(X) * fequW(Z Sk+l) «fQ “ dﬂ‘ (4'10)
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Setbp := 1. LetB, be the exponent determined &.2). For anyk > 1, define the sequences
b := g2
a 1= by = by = (o2 - 1)
and the function -
¢ =99 = > agk.
k=1
Since eaclypy is continuous and

iak=b0=1,
k=1

we have thaE’lz‘:l akpk — ¢ uniformly asN — oo, and thenp € C(X). In particular,

0<¢p<1l ongk;
¢=1 onBy;
¢=0 onBC.

That is,¢ € cutdf(Bp, B). It remains to prove the following:
(i) ¢ €F;
(ii) there is somey € (1, o) such thatp satisfies 4.9).

To verify (i), for anyk > 1, sinceu, > ¢ and 0< ¢k < 1, we derive from4.10 that

ff (A9 — de(¥))2I0% dy) du(x) < Z&~28(u, U) + su 4C—S_qu2d
axQ P hy. P DO = ’ pW(Z,Sk+1) Q H

zeQ)

From @.2), it follows that

W(zr)
W(Z, Sc+1) =C (

whereCyy andg, are the same constants as2ij. This, together with the fact that sugpR € B
and the symmetryd(x, dy) du(x) = J(y, dX) du(y), yields that

r B2 qk+1 B2
=C , 4.11
w SM) W( * 1) (4.11)

b ) = f fX (0409 = 69)° 0. 0 )
- f fg ()~ B ) i)

2 2
+ ffBXQC Br(x)I(x, dy) du(x) + foCXquk(y)J(x, dy) du(x)
ACCye2qk+12 1 , ,
(q- 1) ?equW(Z, 9 fg udu +2 f j; o B()I(x, dy) du(x).

Note that 0< ¢ < 1 andd(B,QC) > R = (R+r) > 0. The latter, combined witl2(2) and the
condition(TJ)w, gives

< re728(u, u) +

1 CCwu(B) R \*
ffmc FL9I0x Ay du(x) < CfBW(x, R-®Rer) M= W R) (R’ “R+ r)) <
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whereC is the constant given i(TJ)y. Consequently, there exigts:= C(u,q, X, R, R r,&) > 0
(it depends on all variables in question exceptidprsuch that

8(¢k’ ¢k) < C(u’ q, Xo, R,, R, r, 8).

Moreover, sincep = 327 ; axpx and} .’ ; ax = 1, we obtain that

VE$.9) < > &g ) < (U, G, %0, R, R T,8) < o,
k=1

which finishes the proof of (i).

For the proof of (ii), applying4.10, (4.11) and(TJ)w, one can follow the second part of the
proof of [22, Lemma 7.1] (see the arguments 2] p. 138-142], and see also the arguments in
[21, pp. 456-459]) to obtain that

f f UGG — By)2 I(x, dy) du(x)
QxQ

2B2(f2 —
<o 2D (11 00009 - w6 I, )t

q* 1 f 2
su u” du.
(A= 1Pz a Wzn) Jo o

Here we omit the details. Moreover, for any- 0, we can choosegy € (1, o) suficiently close to

+ CCW

1 such that 2 qB
2 2
-1
T i (20 .
c@ +1
In this case, the function = ¢(%) satisfies 4.9). This completes the proof. m|

Remark 4.4. Under(TJ)w, the inequality 2.5) is equivalent to the following inequality:

f f UOIRI6(X) — )2 I(x. dy) da(¥)
QxQ

< - 2 ¢
<[] 1009~ U 30k e )+ sup
(although 2.5) is a priori stronger than4(12). That is, the integration ared x B in the first
integral on the right hand side o2.6) can be replaced b§ x Q and there is n@(x)? in the first
integral on the right hand side o4 .(L2).

Now, we verify that 4.12 implies 2.5. With By, B andQ as in .4), we observe that for
B’ = B(xo, R+ §) there exists som¢ € cutdf(Bo, B') that satisfies4.12) with Q therein replaced
by B = B(Xp, R+ r). This can be applied to estimate the first double-integral in the right hand side
of the forthcoming formula:

ffgxg U PB(X) — ¢ ()12 I(x, dy) du(x) = (ffl;><8+ ff(g\a)xBJrffBX(g\B))m ’

in which the latter two double-integrals can be treated by uidyy and suppp € B’. Thus, we
obtain that 4.12 is equivalent to

fg URdu)  (4.12)

f f URI6(X) — ()2 I(x. dy) dha(¥)
QxQ
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C
B 2
<[] 1000 - U 30 ) 6 + sup

Then, one can repeat the proof of Lemrha& by using the above inequality instead &%) to
obtain @.9). Finally, observe that(.9) implies 2.5).

f OO ().
Q

Remark 4.5. Lemma4.3 will be used to approximate elements 9 via bounded compactly
supported functions of (see Lemma.10below).

4.3 Partition of unity under (AB) or (AB")w

This subsection is devoted to construction of a partition of unityXohy using the cutfi
functions from the conditiofAB)\ or (AB’)w. Due to similarity, we state and prove the result
only for the condition(AB).

Proposition 4.6. Suppose thatvD), (TJ) and(AB)w hold. Then, for any € (0, ), there exists
a family of maximak-separated pointgx;}ic; in X, where | is a countable index set, such that

() {Bi = B(X, €)}iel is a covering ofX;
>i) {B(x,e/2)}il is pairwise disjoint;

(iii) for any given number € [1, o), there exists a positive constant-=NN(x), independent of
{Xi}ier ande, such that

Z 1g(x, 15¢) < N. (4.13)

iel

Consequently, for any @ ¥’ N L*°(X), there is a family of functiongs;}ic; in ¥ such that the
following hold:

(@) foreachie |, ¢; € Cc(X), 0 < ¢ < 1 and suppd¢; C 2B;;
(b) for any xe X, it holds} ¢ #i(X) = 1;

(c) for each ie I, settingA; := {j € | : 3B; N 3B; # 0} and w, = fBi udu = /ﬁf& u du, then

f f U() — U 2161 (%) — i ()2 I(x. dy) du(x)
(3Bi)x(3B)

Y 1 I
< C(J; ff(zaj)stj) Ju(x) = u(y)I“ I(x, dy) du(x) + Wk 9 fmi lu-—ug| d,u],
(4.14)

where the constant €@ (0, «) is independent of u; and {X;}ic;. Moreover, the cardinality
of Aj is bounded by N.

Proof. Let{X}ic) be a family of maximak-separated points iX, that is
i_r;f d(x,xj) >e and _inlfd(x, X) < e.
i#] ie

Then, it is easy to validate (i) and (ii). The countable propertyisfguaranteed by (ii) and/Q).
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To show (iii), we fix a numbek € [1, o). For anyx € X, suppose thax € 15B; for some
i € I. So, the proof of (iii) falls into validating that the cardinality{gfe | : (15Bj)N(15B;) # 0}
is bounded by a numb@\. To this end, if (1&B;) N (15B;) # 0, thend(x;, X;) < 30ke, so that

B; = B(X}. £/2) € B(x;, 31ke) = 31xB;
and, hence, byZ7),

31«B; , (A(xi, X)) + 3Lke\* «
HEIB) <C} (J—) £ (1226)%,

u(zB) £/2

whereCp, anda, are as defined in2(7). This, along with the mutually disjointness thj}ja
from (ii), yields that

1B,
A(( e 1 (15¢Bj) N (15¢B) # 0)) < Cp(122™ u(38)

(jel: (15B)N(15B1)%0) H(31xBy)
< Cp (12207, (4.15)

Thus, settingN = N(x) = C[,(122)*+ gives (iii).
From @.15), it follows directly thatiA; < N. The proof of (a)-(b)-(c) is splitinto the following
three steps.

Step 1: construction of{¢;}ic;. Suppose thati € ¥’ N L*(X). For anyi € I, if we apply
(AB)w to the function
= |u—ug|+ > lug - ug|,
j€eA;
with xg = X, R=¢,r = ¢/4 andR = 3¢ therein, then there exisig € cutaf(B;, %Bi) N F such
that

f f BRI — v ()12 3%, dy) du(¥)
(3Bi)x(3B)

(D218 (%) — T (V)2 C P
<< f(3 5138, i (171G (%) — Ti(y)I= I(x, dY)d,U(X)+W( 3 f3 ; 18 ()% d(X),

where the constantsandC are nonnegative and independentipfx;}ic; ande. Note that here;
can be required to belong 6 because of Lemmé.2 Moreover, here we also used the fact that
for anyt > 1 the assumptior2(2) implies that

L o
S PWz e = " Wk.e)

Next, from the fact that
15 (X) — Ti(Y)l = llu(X) — ug| — [u(y) — ug ]l < [u(x) — u(y)l,

we then derive

[ 9 -uaie Y e, - vaun(9 - iR . dy) et
(3Bi)x(3B)

jeA;
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. 2 _ 2
<{ f f(S 8e(38) i (Q12U(x) — u(y)? I(x, dy) du(X)

2C
W(Xi 5 8) 3B;

2
U6 - g, () + %[JZ s, uBi|] NERTS

+

Before going further, we deal with the third term in the right hand sideldfgj. For anyi € |
andj € Aj, we haved(x;, X)) < 6, so that

Bj = B(Xj,s) C B(x;, 7¢) = 7B;.
From this, the Wlder inequality and\(D), we deduce
2
|qu - uBil2 = [ (U - UBi) d/.l]

Bj
2
< lu— ug|” du
j

B
1
<—— | lu-ugldu
u(Bj) J7s
<c? - ug, | du, (4.17)

which, along with 4.15 and§{A; < N, further yields

12
[Z lug, —ugl| <C3 [Z (ﬁB lu—ug|? d,u) < C3N? Jgs lu—ug |*du.

JeA jeAi

2

Thus, the formula4.16 amounts to saying that

[ 09— ual+ Y e, - a0 - iR (. dy) ety
(3B1)x(3B) ien

1
W(X;, €)

) 2 _ 2 ~ )
] OO0 O 05 ) ) + I, 109 - vaPauc. a0

Now, for anyx € X, define

W = ) v,

iel
By (4.13 and 0< ¢; < 1pg, we know immediately that ¥ ¥(x) < N. Moreover, let

- i

$i(X) = TR

It is obvious that¢;}ic; satisfy (a) and (b). So, we are left to validgtes ¥ and @.14) in (c).
Step 2: verification that ¢; € 7. Clearly, eachp; € L?(X). Fixi € | and let

A= 1\A = {jel: B(xj,3) N B(x,3) = 0}.



REGULARITY OF JUMP-TYPE DIRICHLET FORMS 35

For anyx, y € X, write

oo [F Q) - vi()F(X)
161(X) — di(y)l = 0070 ‘

< Wi () - wi)P)
< Wi = iIPY) + F() = YW i)
< N0 = i)+ D w09 = wim| wi(x). (4.19)

jel
If j € A{, then by suppp = suppy; B(xi,%s), we obtainy(X)yi(x) = 0 andd(xj, X)) > 3e,

where the latter implies that;(y)yi(x) # 0 only if d(y, X) > e. From this and4.19), it follows
that

16109 = i < NWwi() vl + D i) —wi»| s+ > wiywi(x). (4.20)

JEA; {jeA{ d(xy)>e}

Combining @.20 with the Minkowski inequality yields

m=( fX fX 16109 — 41 () I(x, dy)dmx))%

) . 2 %
sN( fx fx Wi — )R 0% dy)du(X))

+Z( fx fx 959 — ¢ ()26, (%) I(x dy)du(X))%

j€eA;

[,
d(xy)>e

Note that the first two terms in the right hand side 4£2() is bounded by

NVEW,vi) + D \JEW. vy),

JEA

2 2
J(x, dy) d,u(x)] . (4.22)

D wiowi)

jeA]

which is a finite number (may depend Qrby terms offA; < N and eachyj € #. For the third
term in the right hand side o#(21), we have by (iii),(TJ)w and @.2) that

f j;(x,y)>s

2

> wiwie)

jen;

2
J(x, dy) du(x) < f2 fd - [Z 1zsj<y)] J(x, dy) du(x)
i Xy)>e jEAi,

< N2 f f J(x, dy) du(X)
2B; Jd(xy)>e
) 1
<N due(x)

28, W(X, &)

> 1(2B;)
T W(x, ) )

So, it follows from @.21) that&(¢i, ¢i) < 0 and, henceg; € F.
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Step 3: proof of (4.14). Since we have assumé@ld)y, the argument in the proof of Lemma
4.1shows that it sfiices to verify that

] e 1169 = U P13 = )P 30, ey )

d(xy)<e/4

can be controlled by the right hand side df14). Based on4.20), we write

ff@a)x@a) u(X) — g PIi(x) — 812 I(x. dy) da(x)

d(xy)<e/4

<N \[:ﬁ?’Bi)X@Bi) IU(X) — Up, |2|¢i(x) — i (y)|2 ‘](Xv dY) d/,t(X)

d(xy)<e/4

#1909~ 0 500 = 50D 30, ) i)

JEeA d(xy)<e/4

=11+l

Invoking (4.18 and the fact &< ¢; < 1,g(X), we get

2 1 2
N ([ 00 -u0) e e+ s [ 00— ua ).

as desired.
To estimate Il, for anyj € Aj, we have € Aj, 3B; € 9Bj and

JU(X) = Ug| < JU(X) — Ug| + |us; — Ug,| < U(X) — Ug,| + > lug, — U, = 0.
kEAj

Note that, ifd(x,y) < /4 andyj(x) — ¢j(y) # O, then by supw; C %Bj, we derive that both
X,y € 2Bj. Thus, applying4.18 we obtain that, for any € Aj,

[y 1909 = P00 = P 30, ) )

d(xy)<e/4

< f f 1850912 (%) — ()12 I(x, dy) du(x)

(ZBJ')X(ZBJ')
d(xy)<e/4
1
< ff ; (QPIU(x) = uy)I? I(x, dy) du(X) + Wix. f u(x) — ug, I* du(x). (4.22)
(3B))x(38}) (X}, €) J7s

If j € A, thend(x;, ;) < 6e and, hence, B; € 13B;. Combining this with 4.17) and (/D) yields
f u(x) — ug,|* du(x) < 2 f (u(x) — ug|* + |ug — ug; ) du(x)
7B; 7B;j
< [ 106 - va P du(x.
13B;

Meanwhile, by the aforementioned fad;7C 13B; and @.2), we see that

W(xi, €) = W(Xj, &).
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Using this, let us sum up i € A;j the both sides of4.22). Applying also 4.15 and the fact
0 < yj < 1zp,, we obtain

s> f f Ju(x) = uy)® I(x, dy) du(x) + W(ii 5 g MO - Ug | du(X).

jeAi (3Bj)x(3Bj)
A combination of the above upper estimates of | and Il impli&g4). o

Remark 4.7. The proof of Propositiod.6 gives also a corresponding partition of unity under the
condition(AB’)w. Indeed, if(AB’)w holds, then items (i)-(ii)-(iii) and (a)-(b) of Propositigh6
remain true, but with (c) therein replaced by the following):(c

(¢’) foreachi €1,

f f3 o U0~ ug, Pl () — ¢i(IZ I(x, dy) du(x)

1
<C [Z fj;,-xs,- lu(X) — u(y)I? I(x, dy) du(x) + U(X) - Ug 2 du(x)],

&= W(Xi, &) J1sg,
whereS; := B(xj, 5¢/4) \ B(Xj, €).
The proof follows from the same arguments as that of Propositi6nbut now we uséAB’)w
instead of(AB)w.
4.4 Proof of main Theorem2.9

Assuming ¥D) + (TI)w + (Phw + (AB)w, we need to prove that the bilinear ford, ) is
a regular Dirichlet form, which amounts to the following three statemeftss dense in_(X),
F NCc(X) is dense irCc(X) as well as inF. These statements are proved in ProposittbBs4.9,
4.11below, thus constituting the proof of Theore®.

Proposition 4.8. If cutaf(B;, By) N F # 0 for all open balls B, B, with B; € By, thenF N Cc(X)
is dense irC¢(X). In particular, if the conditionAB) holds, ther¥ N C.(X) is dense irCc(X).

Proof. Since(AB)w holds, we have by Lemmé.2 that cutdf(B;, By) N F is non-empty for all
balls By, B, with B; € By. Thus, it siffices to prove the density Gf N C¢(X) in Cc(X) under the
assumption of cut®(B;, By) N ¥ # 0 for all balls By, B, with B; € Bs.

Fix Xo € X. Let.«/ be the closure of N C¢(X) in Co(X) under the nornfj - [|L=(x), where

Co(X) = {f € C(X) : d(x’li(zr)l_m f(x) = O}.
According to the Stone-Weierstrass theorem (48ed. 147, Corollary 8.3]), we have
A = Co(X),
provided thate satisfies the following properties:
(a) 7 is a subalgebra a@@o(X), thatis,fge o if f,ge &
(b) for anyxi, X2 € X with X3 # Xo, there exist® € 7 such thatp(x1) # ¢(x2);

(c) foranyx € X, there exist® € &7 such thatp(x) # 0.
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Once we have proved (a)-(b)-(c), we then derive fiogX) < Co(X) thatF N C.(X) is dense in
Ce(X).

To see (), it is obvious that for arfyg € ¥ N C¢(X) we havefg € C¢(X) and, moreover, the
Minkowski inequality implies

&(fg. fg) = fX fX 119900 — F()a)2 I(x. dy) du(x)
3 2
<2 fX fX 1191909 — g2 I(x. dy) du(¥)

_ 2
+2 fx fX [F) — FWI1am)R Ix. dy) du(x)
< 20l ) €9, 9) + 210l ) ECF ),

thatis,fg € 7. In general, iff, g € o7, then there exist sequendds}jexr and{gj}jer i F NCc(X)
that respectively converges foandg under theL>-norm. Note that every;g; € ¥ N Cc(X) and
{f;0j}jen converges td g under]| - ||L~(x). This proves thatg € <7, so that (a) holds.
To show (b), for anyy, X € X with X1 # X, we consider two disjoint ballBy := B(x,r) and
B := B(x1, 2r) with r < d(x1, X2)/3 and obtain by the assumption cfi{®,, B) N ¥ # 0, that there
exists a cutff function
¢ € cutof(Bg, B) N F.

Obviously,¢ € <. Moreover,¢ separates the poinig andx,, since
$(x1) = 1# 0 = ¢(x2).

This last formula also indicates thatdoes not vanish on any poiri € X, which implies (c).
Thus, we complete the proof of Propositiér3.
i

Proposition 4.9. If cutaof(By, Bo) N F # 0 for all open balls B, B, with B; € By, thenF N C¢(X)
is dense in B(X). In particular, if (AB)w holds, ther¥ n C¢(X) is dense in B(X).

Proof. As in the proof of Propositiodt.8, it suffices to show the density ¢F N C¢(X) in L2(X)
under the assumption that c@@, B,) N F # 0 for all open ballsBs, B, with B; € Bs.

Suppose thaf € L?(X). It is known thatC¢(X) is dense in_?(X). Thus, for anye € (0, ),
there exists a functiog € C.(X) such that

If = dllLzx) <€

Sinceg € C¢(X), we may as well assume that sugE B for some ballB of X. By Proposition
4.8, there exists a functioh € ¥ N C¢(X) such that

Il = gliex) < (2u(2B)) Ze.
This last estimate implies
suplh(x) - g(X)| < (24(2B)) 2¢ and suph(X)| < (2u(2B)) 2e.
XeB X¢B
Further, by the assumption, there exists a function

¢ € cutdof(B, 2B) N F.
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Consider the functiony = h¢. Clearly,y € C¢(X). From the statement (a) in the proof of
Proposition4.8, it follows thaty € . Moreover, usings € cutdf(B, 2B) and suppg € B, we

derive
f|w—g|2du=f|h—g|2dﬂ+f g2 du
X B (2B)\B

< u(B) suplh(x) — g(3)I* + u((2B) \ B) suph(x)I* < &7,
xeB X¢B
thereby leading to

I = flizey < W = dllzge + 119 = fllzey < 2e.
This proves the density oF N Cc(X) in L2(X). O

Before the proof of density @.(X)NF in ¥, we will apply (AB)w and the self-improvement
property of(AB)\ of Lemma4.3to establish the following lemma.

Lemma 4.10. Suppose that the conditiofidB) and (TJ)y hold. Then, for any & ¥, there
exists a sequence of bounded and compactly supported funftighns; ¢ ¥ such that

lim (||u - unllfz(x) +8(U = Up,U— un)) = 0.
Proof. For anyu € ¥ andn € N, defineu,, := u A n, which are bounded functions and satisfy
[Un(X) — un(Y)| < Ju(x) — u(y)] forall x,y e X.
Thus,u, € £ and, moreover, the dominated convergence theorem for integrals shows that

lim &u—uy,u—u,) = 0.

nN—oo

Thus, we may as well assume thi¢ ¥ N L*°(X) and we need to approximateby a sequence of
bounded and compactly supported functimgnen in .

To this end, we fix a reference poirt € X. For anyk € N, setBy := B(Xo,2¥). In what
follows, we will often use the following fact that

1
Su ~ s
e WZ2) T Wk 29

which follows from @.2). By Lemma4.3, given anyd > 0, there exists a consta@{1) > 0 such
that for any integek > 3, there existsz(kﬂ) € cutdf(By, Bk+1) N F such that

f fB 0PI 00 - () 30c. dy) )

cw)
W(Xo, 2¢) Jg,.s

Note that botm andC(2) are independent o, k andu. Define

<a [ PP - )R . dy) e + WP (). (4.23)
By+3XBk+3
ul = up .
Clearly, eacmﬁ is in L*(X) and has bounded support. So, iffstes to show that

. . o a0l ) —
Llinogm(llu UllLzgx + E(U— Ui, u uk))—O.
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Obviously, for anya > 0, applymgw(” = 1 onB(Xo, 2¥) yields that

lim [ju—u! =0.
Jim | il

Moreover, we write
au-ylu-u) = [ [ u6at-u09) - ua - | 3¢ dy dut

For anyx,y € X, observe that
u(x)(L — O (x)) = u@ — P YN < 1ux) — uIL - P )+ U (K) - w P

By u € ¥ and the fact thay/(”) = 1 onB(xo, 2¥), we apply the dominated convergence theorem to

deduce that

Jim [ 1009~ uPIL - P 30, ) )
= [ [ {im 160 - ORI - 0§ 007) 30 ey ) -
x Jx k—>°°

So, the proof of
lim lim &(u-ul,u-u) =

A—-0k—o0

is reduced to proving that
tm fim [ [ 00709 - PP . ) ) = 0 (4.24)

In (4.24), we may restrict the integral domain to thogey € X x X such that
v - v ) # 0.

Hence, the fact supw(‘) C B(%o, 2€1) implies that eithed(x, o) < 21 or d(y, Xo) < 2¢*1,
In the casel(x, y) < 2K-2 we havex, y € B(xo, 2€*3), which, alongside with4.23) yields

[ 1 09200 - PP . )t

d(xy)<2k-2
- ff | OPWE (9 = v )P I(x, dy) du(x)
d(xy)<2k-2
(D 12 _ 2 C(/l) 5
<1, fBB WO OIFIUC) ~ U Ik ) o) + e o | U9 )
(4.25)

C(1)
< A8(u,u) + —————||u
> ( )+ W(X0,2k)” ||L2(X)

Consider now the casi{x,y) > 2<2. If d(x, X) < 21, then usingu € L2(X), 0 < ¢! < 1
(TI)Ww and @.2), we obtain that
WP () = oGP I(x, dy) du(x)

d(xy)>2¢—2
d(x,x0)<2k+1

. f ( f 3% dy)) WO du(x)
d(X,Xo)<2%+1 \Jd(x,y)>2%-2
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<o T
d(x,Xo)<2k+1 W(X, 2¢= )

C 2
< WHUHLZ(A’) (4.26)

U du(X)

holds for some constaft > 0 independent df andu.
Still in the cased(x,y) > 22, let nowd(x, Xo) > 2€1. Then

w0 - w0 = v ),
which is nonzero only ifl(y, x,) < 2¢1. From this and
UG < 2u(x) — u(y)I? + 2lu(y)i®

it follows that

sz WO () = wP W) I(x, dy) du(x)

d(x.y)=
d(x,x0)22+1
2
< d(x,xo)<2k+1 |U(X)| ‘](X’ dy) d/l(X)
d(xy)=2k-2
<2 f f Ju(x) — u(y)I* I(x, dy) du(x) + 2 f ﬁ o1 U I6 dy) du(®).  (4.27)
d(x,y)=2k-2 (¥.x0)<

d(xy)=2k-2

For the second term, applying the symmetry property (I2)y and @.2), we proceed the argu-
ments in ¢.26) and obtain

UOIP 30 D) = [ [, IUOOE 30, ) i)

d(y,x0)<2K+1
d(xy)>2k-2 d(y,x)=2k-2
C 2
< ——||u . 4.28
W(Xo, 2k) ” ||L2(X) ( )

Combining é.25-(4.26-(4.27)-(4.29 yields

f fX OO0~ w9 . o) e

3C + C()

S/lg u,u _—
9+ Woe 29

U, ) +2 f f U(x) — U(y)2 I(x, dy) du(x).
) d(x,y)=>2k-2

In both sides of the last formula, lettihg— co and using lim_,., W(Xo, ) = oo yields

i [ ORI ~ w20 () < (.

Due to the arbitrariness of, we find that .24 holds. This concludes the proof of Lemma
4.10 O

Proposition 4.11. If (VD), (AB)w, (TJ)w and (Pl hold, thenF N C¢(X) is dense inF.

Proof. Given anyu € ¥, we need to find an approximation sequenc&im C¢(X). In view of
Lemma4.10 we may as well assume further the¢ L*(X) has bounded support.
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Lete € (0,1). According to Propositiod.6, there exists a family of functionig;}ic; which
form a partition of unity. In the succedent argument, we adopt all the notation used in (i)-(ii)-(iii)
and (a)-(b) of Propositiod.6. Define
Ug = Z ug, éi.

i€l

By the fact thatu has bounded support; € Cq(X), suppg; C 2B; and{%Bi}id are mutually
disjoint, we find that the summation in definiog is valid for a finite number of, which further
induces that

U € F NCe(X).

We will prove thatu, is the desired approximation sequence.
For anyx € X, we applyYic ¢i = 1 to write

UO) = Us(x) = >~ (U — Ug) ¢i(¥) = )" ti(X)i (). (4.29)
iel iel
Denote byk the constant determined in the conditi@®)y. Let N = N(x) be the number that
is determined in Propositiof.&(iii), which is independent of. Then, there is a partitioh]j}g\‘:1
of the index set, such that for anyj € {1,2,..., N}, the family of balls{15B;}ic;, are pairwise
disjoint.
We first prove thatju — Ug|l 2(x)y — 0 ase — 0. Indeed, by the construction af, we can

choose a bounded skétc X such that supp € K and suppu, € K for all € € (0, 1). Moreover,
sinceu, is bounded by sup, [u(X)| uniformly in ¢ € (O, 1), we have

lu—ug| < 2suplu(X)| - 1x < oo.
xeX

Hence, to prove that li;,o [lu — Ucll 2(x) = O, by the dominated convergence theorem, flises
to prove that

u-— U "2%0 ass - 0. (4.30)
Indeed, for any € X, by (4.29 we write

N

U = UG < D7 " U9 — g [i(X).

j=1 ieJ;
Note thatN is independent of, supp¢;i C 2B; and{2B;}ic,; are mutually disjoint. So, there exists
one and only ong € J; such that B;, > x, which implies that
B, < B(X,3¢) C 4B,
By (VD), we haveu(B(x, 3g)) < C%,u(Bix). Using these and the above inequality, we obtain for
anyx € X,

2

__ D B
(B0 39)) Sy "0 T HON D).

N
) = 1 < ) 16 - I ch) <
j=1 +/Bix

Therefore, by Lebesgue’sftiérential theorem (se@9, Eq. (2.8), p. 12]), we obtaird(30. This
proves thati can be approximated by the sequefigg,.o in L2(X).
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We still need to validate that

Iinz)&(u —Ug,U—-U,) =0.

Indeed, since supp, C 2By, it follows thatu (X)¢(X) — ui(y)¢i(y) # 0 implies that eithex € 2B
ory e 2B;, whence

U (X)¢1(X) — U (Y)d I < Tu(X)i(x) — u(y)d1(Y)l(12g (X) + L2 (Y))-
This, together with the symmetrd(x, dy) du(x) = J(y, dx) du(y) and the Minkowski inequality,

further induces
N
D2 W) - i)

E(U— U, U—U,)? = ff
X JX T2 ey

N 2
< 2, [LL{ZM(X)@(X)—U|(Y)¢|(y)|123|(x)] J(X,dy)dﬂ(x)]

j leJ;

2 2
J(x, dy) du(X)]

i
2

1
2

N 2
+ ;{ fX fX [;‘?M(XWI(X) = u(y)¢i(y)l1zs (y)‘ J(x, dy) dﬂ(x)J
N
- ZJ;[ fX fX

Further, invoking the fact tha2B;}ic;; are mutually disjoint, we obtain

2

2
3 10910 -t (51 () Lzs, (x)‘ J(x.dy) dﬂ(X)] .

leJ;

2
[Z U (X)e1(X) = U (Y (y)I 12, (X)} = Z |ui Q)¢ (%) — i ()1 (¥)1* 128, (X).

leJ; leJ;

thereby deriving

N
8(u—ug,u—u8)% < ZZ[

=1

> |u|(x)¢|(x)—ul(y)¢|(y)|2128.(x)J(x,dy)du(x)J . @31
X JX

leJ;

To continue, for anyj € {1,2,..., N}, we write

! :=§ fX fX U1 (%) — U ()N Y) P18, () I(x, dy) du(x)

52Z];BlfX|UI(X)|2|¢|(X)—<15|()/)|2J(x,dy)d,u(x)

leJ;
’ 2;? fzs. fx () — u )PP I dy) du(x) =: 2Yj + 2Z;. (4.32)

Noting thatu(x) — ui(y) = u(x) — u(y) and 0< ¢ < 1,g, we then apply the mutually disjoint-
edness of2B, }i¢;, to derive

2= [ 1000 - w30 0 )

leJ;
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3 2
<[ 900~ UOIP 06 ) )
— [ [ 60 - v 3¢ dy) )
X JB(x 4¢)

which tends to zero as— O.
In order to estimate ¥, for anyl € J;, we first write

Vi = fz i fx U2A1(%) — )2 I(x, dy) dpa(¥)

= (f f +f f ) J(x, dy) du(x) =: Y(.:P + Y(‘2|)-
ZB| (SB|)C ZB| SB| i i

Recall that in 4.29 we have defined; = u—ug. If x € 2B andy ¢ 3B, thend(x,y) > . So,
applying(TJ)w and @.2) gives

(@)} 2
Vs [ oo ([ atcan) ducy

lu(X)I2
ﬂﬁmm()
C

<
~ W(X, &)

Ju(x) — U, |* du(X).
2B
Meanwhile, combining4.14) with the fact thau = u — ug, yields
YO < [[ uRe0 - 40) Iy duo
(3B1)x(3By)

0 [ 1809 WOV 06 ) + s [ 1060 — v ).

foa VY (38)x(3B))

By the definitions ofA; in Propositiord.6, we know that B; C 9B, wheneverj € A;. From this
and the mutually disjointness @Bj}jca,, implies

2 f f IU(X) = u(y)I? I(x, dy) du(x)

oh I (38))x(38))

f f u() = u(y)[? I(x, dy) du(x)
J€A| 3Bj Jd(xy)<6e
_ 2
< f . L (X’ykeglu(x) u(y)© J(x, dy) du(x). (4.33)

Next, for anyl € | andx € 13B;, we have by YD) (see also4.7)) and the Hblder inequality
that

[u(x) — ug| < [u(X) — U3g | + |Ug, — U1z

< |u(X) — ugsg | + Ji lu(2) — u13g | du(2)

<U(X) - Uyag | + C f U@ - Uras, | du(?)
13B
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< |u(X) - ugsg |+ C (ﬁsB lu(X) — ug3g? d,u(x))z ,

which, together witl{PI)y, and the Minkowski inequality, further yields

(flss. Ju(X) - Upag | d,u(x))%

1
2
< (wx. 139 ] 1409 = W) 0 ) )|
(13«B))x(13«B))
Consequently, byX.2), we have

1 2 W(x, 13¢) ,
W, 8) Jiss u(x) — ug | du(X) $ ——— W o) f f (1) Iu(X) — u(y)l? I(x, dy) du(x)

< f f U() - U I dy) du(¥).  (4.34)
1B, (x.y)<26xe

1

( [ I olu(x))z

A

Inserting @.33 and @.34) into the estimates of ?%') and Y(JZI) we then conclude that

Yii < f f 1u(x) - u(y)I2 I(x, dy) du(x),
13%B) Jd(xy)<26ke

which, combined with the mutually disjointness of the family of ba]J§KB|}|EJJ., leads to

Y= ZY,.<Zf

leJ; leJ; 13By

— ulw)2 q
s*f)(~£1(><,y)<2<5«slu(x) u(y)I= J(x, dy) du(x).

Sinceu € ¥, it is obvious that this last double-integral tends to zere as 0.
From the estimates of Yand Z, we derive from 4.32 and @.31) that

f (%) — u(y)I2 I(x. dy) du(x)
(X.y)<26xe

Eu-u;,u-u)—>0 ase— 0.
Summarizing all, we complete the proof of Propositibhl |
Remark 4.12. In the following comments, we assume thdiX), (TJ)y and(PIl)w are satisfied.

(i) Since (AB")w is stronger thar{AB)yy, it follows directly that all the conclusions in this
subsection are true if we replace the hypothéaB)\y by (AB’)w. Consequently, under
(VD), (TI)w and(Pl)w,

(AB)w = “(&,) is aregular Dirichlet form om?(X)". (4.35)

(i) One may show4.35) directly without referring to the self improvement property(AB)y.
To see this, observe that the arguments in the proofs of Propositi®asd4.9run smoothly
under(AB’)w. Regarding Lemmd.10 note that the self-improvement property(éiB)w
is only used in 4.29. Now, instead of 4.23, we apply the conditioifAB’)\ to find a
functionyy € cutdf(By, Bk+1) N F such that

f fB ORI ~ () 30y du)
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<¢ ][ w000 - w6 00 ) 0 + s [ 100 o,

whereSy := By.2 \ Bk, and the constantg C are positive and independent xf, k andu.
With this, we can replacel(25 by the following estimate:

[ e 1092000 = 1) 30 83 et

d(xy)<2K-2

_ f f UOORIK() — viey)I2 I(x, dy) du(¥)

By+3%By13
d(xy)<2K-2

< [[ 109 -t 36 8 09 + g [ OO e

SkxSk
Note that the right hand side of the above formula tends to K as « asu € ¥ and
lim; e W(X, 1) = co. This crucial estimate implies the conclusion of Lem#haQ In
this argument, we only have us@dB’) but do not use the self-improvement property of
(AB)w in Lemma4.3. As for Propositiord.11, we now apply the partition of unity under
(AB")w that is given in Remark.7.

2k)

(i) In view of the arguments in (ii), we may say th&B’) is a replacement of bottAB)w
and its self improvement property in Lemmza.

5 Heat kernel estimates

In this section, we apply Theoreth9to prove Theorem&.13 2.15and2.22

5.1 From(S)y to (AB’)w

Proposition 5.1. Suppose thais, ¥) is a bilinear form on B(X). If ¥ N C(X) is dense irCc(X),
then, for any compact set K and any openQetith K C Q, we have

F N cutdf(K, Q) # 0.
In particular, the above statement is true wh&h¥) is a regular Dirichlet form.

Proof. Since (X, d) is locally compact an& is compact, it is known that there exigtg € Cc(X)
such that

0<¢o<1 on;
¢po=1 onk;
$o=0 onQC.

By the density off N C(X) in C¢(X), there existg; € F N C(X) such that
1
suplgo(X) — 1(X)| < 3
xeX
In particular,2 < ¢1 < 4 onK and-1 < ¢; < 1 onQC. Let

$2 =1 - (% A ¢1) v (—%) € C(X).
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It follows from [19, Theorem 1.4.2(iv)] thap, € ¥. Moreover,¢, > % onK and¢, =0 onQC.
Define

¢:=C3p)A1leF,
and we have € cutdf(K, Q), that is,F N cutof(K, Q) # 0. |
Suppose that, ¥) is a regular Dirichlet form. For any non-empty openQet X, let 7 (Q)

be as in 2.11). Then &, 7(Q)) is also a regular Dirichlet form. Denote the corresponding heat
semigroup and heat kernel (if it exists) respectively B&}bo and{ptg}t>o.

Definition 5.2. We say that aurvival condition(S)y is satisfied if there exist constardss > 0
such that, for any baB := B(xo, r) € X of radiusr € (0, diamX) the following inequality holds:

essinfPE1 > ¢,
iB
7

provided that < §W(Xo, ).

As can be seen from the following lemma, for a regular Dirichlet form, the cond{&g
implies (AB’)w provided tha{TJ)y holds.

Lemma 5.3. Suppose that, ¥) in (2.1) is a regular jump-type Dirichlet form. Then
(TIhw + (S = (AB')w.

Proof. The proof follows essentially ideas fror], Lemma 2.4] and17, Proposition 3.6]. Let

Bo = B(Xo, R);

B = B(Xp, R+ r);

B; := B(Xg, R+ 2r/5);

U := B(Xp, R+ 4r/5) \ B(xo, R);

Ug := B(Xp, R+ 3r/5) \ B(xg, R+ r/5);
Q = B(xo, R),

wherexg € X and 0< R< R+r1 < R < co. We divide the the proof into three steps.
Step 1: estimatingGY 1, for
-1
1= (inf W(z. r)) .
zeB

According to L9, p.17, Eq. (1.3.3)], we Ieteg }ye(0.0) D€ the resolvent associated with the
regular Dirichlet form €, F(U)). Firstly, it follows from [19, Theorem 4.4.1] that

Gyly e F(U)C F.
Secondly, by 19, p. 17, Eq. (1.3.1)]), for any & f € L1(U), we have

(GY1y. f) = fo e (PP 1y, f)dt < [Ifllxy) fo e tdt= || fllauyd ™ = inf Wz D)l flluy).

Since 0< f € LY(U) is arbitrary and3Y 1y = 0 u-a.e. outside o), we obtain that

GY1ly < infW(zr)  p-ae onX. (5.1)
ze
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For anyx € Ug, we haveBy := B(x,r/5) € U, and hence, b{S)y, forany 0< f € Ll(%lBX),
GV10.1)> (6F1a. 1) = [ & (PPLs, e
0
SW(X,r/5)
> f e (PP1g,, f) dt
0

SW(X,r/5)
> 8”f”L1(%BX) L e_/lt dt

_ % (1 _ e—/hSW(x,r/S))I
> 3 (1 _ e infreu, W(x,r/s))

AUEIET®

Hf“Ll(%BX)‘

Moreover, by the right inequality ir2(2), we haveW(x, 5/r) > 5#2C;}W(x,r), and hence,
i —B20-1 ; G201 ;
XlenJOW(x, 5/r) > 572Cy, X|€nJOW(x, r)>572Cy !(Q‘,;W(X’ r.

Combining the above two inequalities, we obtain

U € (1 -265P2C inf g W(XT)
GY1u.f)= ~(1-e w e WD) [1£]1 11,

_ ~57P2C 16\ ;
= &(1-e® ") inf Wz NIIflys,)-
Due to the arbitrariness of 8 f € Ll(%le), we obtain from the above inequality that
s 1
GY1y > g(1 - e %"2CW9) infW(zr)  p-ae. inZ B
ze

Moreover, sincéJy can be covered by finitely many balls Ii%@x, we obtain
GY1y > (1 - e %"2CW9) infW(zr)  p-ae. inUo. (5.2)
zZe

Let us show thaBY 1y € C(X). Indeed, it follows from 21, Theorem 2.10, p. 460 and Lemma
5.12, p. 504] thaP! 1, () is jointly continuous in{, X) € (0, ) x U sincely € LY(X) N L%(X).
Then, by the dominated convergence theorem and the facPHTﬁl(x) < 1lforallt> 0and
X € X, we obtain thaG{ 1y(X) = fow e PP 1y (x) dtis continuous i € X.

Step 2: constructing a function
¢ € cutof (B(xo, R+ 3r/5), B(Xo, R+ 4r/5)) N F C cutdf(By, B) N F.

Define
1 KG'/‘{l 1y

k:=— and =Y.
(1 — e57?Cwd) 9% infes Wiz 1)

SinceGhJ 1y € F N C(X), so doeg. Moreover, by §.1) and 6.2), we have
0<g<k ongk;

g=>1 onUyg;
g=0 onUC.
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By the regularity of &, #) and Propositiorb.1, there exists
$ € cutoF(B(xo, R+ 2r/5), B(xo, R+ r/5)) N F.

Now, we define
o =@+9g AL (5.3)
It follows from ¢,g € # and [19, Theorem 1.4.2(i)] thap € ¥. Moreover, sincep = 1 on
B(xo, R+ r/5) andg > 1 onUg = B(Xg, R+ 3r/5) \ B(xg, R+ r/5), we have
¢=1 on B(Xy, R+ 3r/5).
Sinceg = 0 onB(xo, R+ 2r/5)C andg=0 onUC = B(xo, R+ 4r/5)C U B(Xo, R), we have
$=0 on B(xo,4r/5)C.

This gives the desired result.

Step 3: verification that ¢ satisfies the inequality in(AB”)y for all ue ¥’ N L*(X).

Recall thatB; = B(xp, R+ 2r/5) andB = B(xp, R+ r). Underd(x,y) < r/5, if eitherx € B; or
y € By, then we always have bot)y € B(xg, R+ 3r/5) and, hencep(x) = ¢(y) = 1. Moreover,
still underd(x,y) < r/5, if eitherx ¢ Bory ¢ B, then we always have botyy ¢ B(Xo, R+ 4r/5)
and, henceg(x) = ¢(y) = 0. From these observations, we derive thak(K y) < r/5 then

[Bp(X) —o(Y)| 0 onlyif x,ye B\ B;.

Therefore,
UOQRIB(X) — S I(x. dy) duu(¥) = ff +ff
[ w609 - o2 30¢ iy [ USRS |
SUf I, ]”‘::'HIZ.
W JJEBx(@\BY

By (TJ)w and 0< ¢ < 1, we have

2 C 2
I < fg u(x) ( fd e J(x,dy)) () < s fg U du(x).

To estimate, sinceg is supported irB;, we have by the definitiorb(3) of ¢ that
1B(%) — o)l = 1(9(X) A 1) = (9(y) A 1) < [g(x) —9g(y)| forall x,y € B\ Bi.
This, together with the symmetd(x, dy) du(x) = J(y, dx) du(y), yields
2= [ UOORI00 — S I(x. dy) du(¥)
(B\B1)x(B\By)
<[ UOIPI0) - g I(x. dy) ()
(B\B1)x(B\By)

2 _ 2 avd
= f f(B\BO)X(B\BO) U()I719(x) — g(Y)I* I(x, dy) du(x)

_1 ) , o
) 2ff(B\B@x(B\Bo)(lu(x)l + U)IDIGR) = gY)I= I(x. dy) du(X).
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Moreover, for anyx, y € X, the following pointwise inequality

2P + DG — )
< 2(9(x) — g)) (LPOIIX) - v (VIM)) + 2(gP(x) + g*(¥)) (U(x) - u(y))
holds (see the proof of Lemma 2.2 &1 p. 447]). Hence,
_ 2 2
I <2 f f( NN L) (W(x)g(x) - W(Y)g(y)) I(x. dy) du(x)

4 f f PO — )P I(x dy) du(¥)
(B\Bo)x(B\Bo)
=2 lo1 + 4 1oo.

Sinceg < «¢ by the definition §.3), we have

2 2 _ 2
2 < f f(B\BO)X(B\BO)cb(x»u(x) U(Y) 2 J(x, dy) du(x),

which is just the first term in the right hand side @10 in the (AB’)y condition.
Consider now the estimate gfil Note that ifx,y ¢ B\ Bg, then by the fact

suppg € U = B(xo, R+ 4r/5)\ B(xo,R) € B\ By,
we see thag(x) = g(y) = 0, which further implies that

meeigo- ([ off ([
(B\Bo)Cx(B\Bo) (B\Bo)x(B\Bo)C (B\Bo)Cx(B\Bo)C

— 2 _ 2 2
SR | R SO CEVLTE

_ ff WP(X)g?(x) I(x, dy) du(X)
(B\Bo)x(B\Bo)C
< &(U?g, 9).

For anyu, v € ¥, define
Ea(u,v) = E(U, V) + A(u, v). (5.4)
Further, it follows from the definition of, [19, Theorem 4.4.1(i)] and the fact that k¢ that

&(U79. 9) < E(U2g, ) + AP, 0) = Sup—— &, (P9, GY 1y)

28 W(ZT)

K
= Su
zeBpW(Z, I’)
2

(W?g, 1y)

(UPg, 1u)

K
<su
zeBpW(L r

<su s f u’d
=W Juy
Finally, combining the estimates of, ll, 121 and by, we prove that the functios defined in
(5.9 satisfies the inequality in conditiqAB’). This completes the proof. m|

Remark 5.4. Note that we have proved in Lemma3 a conclusion that is stronger théfB’ ).
Indeed, we see in the above proof that the funcgion (2.10 and, hence, in.5), can be chosen
to be independent of the functiane #’ N L*(X).
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5.2 From (LLE)w to (S)y and (Pl

The following lemma was proved 2, Lemma 7.14].
Lemma 5.5. Under(VD), we haveLLE)w = (S)w.

The stochastic completeness comes as a consequeri&of The following lemma was
proved in R2, Corollary 8.9(2) and Remark 2.15].

Lemma5.6. Suppose thai&, 7) in (2.1) is a regular jump-type Dirichlet form. [[S)y is satisfied,
then(&, ) is conservative.

The remaining part of this subsection is devoted to the pro@floE)yw = (Pl)w (see Lemma
5.10below). Note that this implication was proved @2 Subsections 7.3 and 7.4] under a more
general setting, where some deep Dirichlet form theory was used. Here we give a direct and
self-contained proof. .

Indeed, for any balB ¢ X, we will construct a regular pure jump-type Dirichlet fo(& #) on
L2(B), whereBiis the closure oB, and then uséS, ¥) to prove the implicatiofLLE)w = (Plw.

Define

V) = f fg 009 = U = W) I ) ci() 55

Dom(E) := {u e L%(B) : uis Borel measurablenB, &E(u, u) < o},
whenever the above double integral makes sense for Borel measurable funptions. Let
Flg = {ue L(B) : there existw € ¥ such thatu = V| y-a.e.onB}.

In other words, each functiamin ¥z is the restriction of some function ifi on B. In this case,
we use the same lettare ¥ to denote its restrictioon B. It follows from the definitionof & that

E(Ulg, Ulg) = &(U, U) < E(U,U) < oo forallue F.
Hence, 3
Flg € Dom(E).

We remark that functions iBom(€) may not be defined outside B, but each function iFlgis
corresponding to an elementdnthat is defined on the whole spa¥e

Note that the kernel(x, dy) satisfies condition (J2) in Definitioh 1 Following the arguments
after Definition2.1, we obtain thatE, Dom(g)) is a Dirichlet form on_2(B) provided thaDom(E)
is dense inL%(B). Moreover, since&, 7) is regular, we have thalz N Ce(B) is dense irL2(B).
This, together with the fact that

(FIg N Ce(B)) € Flg < DomE),

implies thatDom(g) is also dense ih?(B). Therefore(E, Dom(g)) is indeed a Dirichlet form on
L2(B). Moreover, setting
P rgne® 50
we have thafE, ) is also a Dirichlet form o.2(B). Here, ford > 0, &, is defined as follws:
Ea(U,V) = E(U,V) + AU, V) o for allu,v e Dom(E)

and

_ - |g 2 7=
||u||84 = \/8(u, u) +/1||u||L2® for all u e Dom(g).
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Proposition 5.7. Let (&, F) in (2.1) be a regular jump-type Dirichlet form. L&E,F) be the
Dirichlet form defined in(5.5) and(5.6). Then, the following hold:

(i) (& F)is aregular Dirichlet form on B(B);

(i) FlgcF.
Proof. Let us first show (i). Sinc& g N Cc(B) € F, by the definitionof  in (5.6), we know
that# N C¢(B) is densdn F with respect td| - llg,-norm. For anyu € Cc(B), we can extend it
to a function inC¢(X), which is also denoted hy. Since €, ) is regular, there exist&in}ney in

F N Cc(X) such that

suplun(X) —u(x)) - 0 asn— oo,
xeX

For eachn € N, it is clear that
Unlg € (Fig N Ce(B)) € (F N Ce(B))

and
suplun(X) —u(x)) = 0  asn— oo,
xeB

Thatis, F N Cc(B) is dense irC.(B). Therefore(&, ) is a regular Dirichlet form or.2(B).
Next, we show (ii). Fixu € Flg. Since €, F) is regular, there exists a sequeniuginey in
F N Cc(X) such that
r!mo E1(up —u,up—u) = 0.

For eachn € N, observe thaltiy|5 € Flg N Cc(B) and
E1(Unlg — U, Unlg — U) < E1(Un — U, Uy — ).
From this and the definitionf  in (5.6), we deduce thai € #. This proves thaf |5 C F. o

Now, let us consider the paof & on the open balB, that is, the part Dirichlet forngS, 7 (B))
of (&€, ) on the open balB, where

lg,

F(B) =7 NCelB) (5.7)
Lemma 5.8. F(B) = m”'”&
Proof. Sincef g C F by Propositiorb. 7(ii), we have by 6.7) that

FlsNCoB) ' C F(B).

It suffices to prove the converse part. To this end, weaifix 7(B) and will show thatu can be
approximated by functions |z N Cc(B) with respect to th¢ - llg,-norm.

Step 1.By (5.7), we chooséVy}nen € F N Ce(B) such that
lim E1(Vn — U, vy, — U) = 0.
Step 2.Fix n € N. By the definition §.6) of 7, we cho0S&Wm}men € Flgn Cc(B) such that

lim &1(Wim — Vi, Wim — V) = 0.
m— oo
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Sincev, is boundedn B, by [19, Theorem 1.4.2(v)], we can assume that

sUpSUple(X)| < ||Vr|”|_oo(§)-
meN xeB

Step 3.Sincev, € C¢(B) and(&, ) is regular, by PropositioB.1, we can choose
¢ € cutof(suppvn, B) N F.
Then, by L9, Theorem 1.4.2(ii)], we have
SUPE (P, $Wir) < SUP(2/4l gy E1 (W, W) + 2l gy E1(¢ )

< 2061l gy SUPEL(Wen, Wer) + 2Vl gyE2(0. 9) < eo.
me.

From this and the Banach-Alaoglu theorem, it follows that there exists a subsedqugicg; of
{Wm}men such thaf¢wpm, }ien convegesél-weakly to a certain elememt € . Consequently, the
Cesaro mean of a subsequence{@ivim Jicn (Still denoted it by{¢wi, liew) Satisfies that

On the other hand, b8tep 2 we have
1 &

Hence, we haver = v, and then

lim &1(Wg — Vi, Wi — V) = 0.
k— oo

Step 4.For anye > 0, by Step 1, choosev, € F N C¢(B) suchthat
E1(Vn— U, Vy — U) < €.
For this specifim, by Step 3 we may choos& large enough (depending orande) suchthat
E1(Wi — Vi, Wi — Vi) < &.
Combining the last two formulae derivisat
E1(Wi — U, Wi — U) < 261 (Vn — U,V — U) + 281 (Wi — Vi, Wi — V) < 4e.

This gives _
I(Iim E1(Wy — u, Wy — u) = 0.

Since{Wmimen € Flg N Cc(B) and suppy C B, by the definition ofwi, we have
Wi € 7’~|§ N C¢(B).

Hence, we obtaini € 715 N Co(B) . Consequently7(B) € 715 N Co(B) 7. o
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Let {Pile0, {I3tB l-0 and{PB};.o be the heat semigroups associated &), (€, 7 (B)) and
(&, F(B)), respectively. One may compare the domains of these three Dirichlet forms. Indeed, by
(5.6, Lemmab.8 and the definition ofF (B), we hae

I lle,

— — s — [ DT -
F=Fl5nCB) . F(B)=TFlgnCo® = and F(B)=7 nCu(B)

Suppose thaf € L%(X). Then it is obvious thaflg € L?(B) and f|g € L?(B). Since{Piois a
semigroup defined oh?(B), we take it for grantedhat P;f = Py(flg). In a similar manner, we

understood_fo andPBf asl?’tB(ﬂB) andPE(f|g), respectively.
Proposition 5.9. For any te (0, o) and0 < f € L2(X), it holdsthat
Pf>P f>PEf onB

Proof. Itis clearthatP;f = Py(flg) > I3tB(f|B) = ﬁBf. It suffices to prove the second inequality.
Indeed, by N C¢(B) € Flg N Cc(B) and the facithatgl(ulg, ulg) < &i(u,u), we then apply
Lemmab5.8to derive that .

F(B)lg € F(B). (5.8)

Fix1>0,0< f € L% X) and 0< g € ¥ N Cc(B). Let {Gf}bo and{G?} .o be the resolvents
of (€, 7(B)) and €, ¥ (B)), respectively. It follows from.8) and [L9, Theorem 4.4.1(i)] that for

GBflge F(BlgC 7 (B), GyfC7(B)

and
— —B
EiG, 1, dg) = (F, dlp) 2 = (F Dz = EGET, Q). (5.9)

We remarkthat@?f andGBf respectivelyneanﬁ?(flg) andG?(f|g). The valueof @Bf outside

of B is not defined becauder & everything happens inside the closeall B. But Gﬁ‘f has a
precise value at each point &fand, moreover, one h&?f € L?(X) wheneverf € L%(X).
By (5.5 and the definition o&, (see 6.4)), we hae

&G g = [[ @19~ CITOE00 - o0) A + 2 [ 661
and

&5 0= [[ @109 -G 10609 - 90) A A + 1 | 663
This last two formulae, together with Q) the fact supp C B, furtheryields

- _B
&G, f - G,?flg, alg)
= 8/1(G,? f’ g) - g/1 (G,? f |§7 g|§)

=( [+ L+ L XEC) (@1 109 =G T()(G0) — 90)) Ix. dy) du()

=2 [ [ 6R1(900 Ix ¢y dut
> 0.
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Sinceglg € Flg N Cc(B) andF g N Cc(B) is densen #(B), it follows that the above inequality
holds true also for allj € 7(B). In particular, for all 0< h € L2(B), we have
—B B —= =B B —B
(G, f -G}flg, h) = &G, f -G} flg, Gyh) >0.
Since 0< h € L2(B) is arbitrary, we obtaitthat
—B, =B
G, f =G, (flg) 2 (GZf)Is.
Applying this inequality and the fa@®f < L?(X) yields
—B (=B —B —B
G: (Grf) =Gy ((G51)1g) = G2 (G51) > (65 (G5 1)) Ig = ((GD?M) g
For generah € N, repeating this argumenttimes gives
—B\"
(Gﬂ) t>(GH)lg

Moreover, sincel > 0 is arbitrary, it follows from 19, p. 20, (1.3.5)}hat

d n
Pt = lim —“Z (L" (/IG,I) 2 lim ety " (1GE)" t =PBt on B

This ends the proof. m|

Lemma 5.10. Let (&, F) in (2.1) be a regular jump-type Dirichlet form. Then, undgfD), we
have
(LLE)W = (P|)W.

Proof. Suppose that € ¥ N L*(X). To show tha(Pl)w holds under{D) and(LLE)w, we fix a
ball B := B(xo, R) with xp € X andR € (0, «0). Let (€,F) be the regular Dirichlet form oh?(B)
defined in 6.5 and 6.6). Sinceulz € Iz € ¥ by Propositiorb. 7(ii), we have for anyt > 0,

L w00 - i ax ) et
= B(ulg, Ug) > 7 (U ~ Pl Ug)  (by [19, Lemma 1.3.4())
> % fg (PLOYUP(x) + Pe(U?)(X) - 20)Pu(¥)) du(x)  (by Pl < 1)
— 55 [P0 - u0?) 09
z% fB PE ((u(®) — u(-))?) () du(x)  (by Propositiorb.9)
~ o [} [ BB - w2 ) ). by (LLEW)

Lets € (0,1) be the constant frofiLLE)y. Settingt := W(xo, 6R) (that is,W~1(xg, t) = 6R) in the
above inequality, we obtain

fﬁ ~[u(¥) = u(y)I? I(x, dy) du(x)
BxB



56 Jun Cao, ALEXANDER GRIGOR’ YAN, ErRYAN Hu, LiGuanG L1u

1 B o
= % fézB f§zBpt(x,y)(u(x) u(y))? du(y) du(x)

1 _C 2
> ST fé N fé Vg U09 ~ U ) ) (BY (LLE)w)

LB 6ZB(U(X)—U(y))zdu(y)du(x). (by (VD) and @.2) (5.10)

C
>
~ W(x0, °R)V(X0, 6°R)

Next, for anyn € N, we letR, = R— % ThenR, T RandBy, := B(Xp,R,) T Basn — .
Applying (5.10 for eachBy,, we obtain

f fB 100 = Uy 30 ) ()
B 2
> f fE 1000~ U 30 09 6t

c

_ 2
= Wi, 2Ro)V (0. 52Ry) f(szan féan UG — uy)I* duy) du(3)
c _ 2
= Wi 2RV (30, 0°R) LBH fmn U(X) = u(y)I? du(y) dua(x).

Passing to the limit yields

C

_ 2 _ 2
109~ U0 300 8 600 2 e [ [ 1060~ W) ) ).

By the above inequality an@(18 (for E = §°B), we obtain the inequality?(3) in condition(Pl)w
for x := 62 and for the balk—'B. SinceB andu are arbitrary, we obtaitP!)y. |

5.3 Proof of Theorem2.13

Proof of Theoren2.13 The implication of (i) = (ii) is obvious. Assuming (ii), we then apply
Theorem2.9and derive that&, ¥) is a regular Dirichlet form. Hence, to show that (# (iii), it
remains to observe that, und&f§) and RVD), the following implication holds

(AB)w + (TIw + (Phw = (LLE)w, (5.11)

which was proved in34, Theorem 2.10].
Let us show that (iii)= (i). If (&, F) is a regular Dirichlet form, then Lemm&s3 and5.5

imply

(VD) + (LLE)w = (S)w (5.12)
= (AB)w,

while by Lemmab.10 we have
(VD) + (LLE)w = (Phw.

Finally, if any of the conditions (i), (ii), (iii) holds, then Lemnta6 (see alsoZ0, Lemma 4.6])
yields the stochastic completenesq @f-o. O
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5.4 Proof of Theorem2.15

Proof of Theoren2.15 Again, the implication of (i)= (ii) is obvious. To prove the implication
(i) = (iii), by Theorem2.13it suffices to show that

(AB)w + (TIw + (Phw = (TP)w,

which follows from 6.11), (5.12 and PR3, Theorem 10.5].
It remains to show that (iii}» (i). Again by Theoren®.13it suffices to verify that if €, ¥) is
regular, then

(TPWw = (TIw,

which was proved ind3, Lemma 10.1]. m|

5.5 Proof of Theorem2.22

Proof of Theoren2.22 Note that the implications of (i} (ii) and (iii) = (iv) are obvious.

Let us show that (ii)= (iii). Based on the discussions in Secti®r, we observe that, under
the hypothesigJ);, the jump measure satisfi€8J)y and (Pl)w with W(x,r) = rA. Since also
(AB)yy is satisfied, Theorerd.9 yields that the bilinear form&, ) given by @.14-(2.19 is a
regular Dirichlet form. Moreover, by24, (2.33)] (see alsol, Theorem 2.10] andl]7, Theorem
1.13]), we have in this setting that

(AB)g & (ULE)s. (5.13)

Thus, the heat kerngpy}r-o of (&, F) satisfieULE)j.

Let us verify (iv)= (i). Suppose thai, ¥) defined in 2.14) and .15 is a regular jump-type
Dirichlet form, whose jump kernel satisfies(J); and heat kernelpt}i-o satisfies(ULE);. By
(5.13 (see also17, Theorem 1.13]), we see th@&B);z holds, which together with Corollai8.16
gives alsqAB’)s.

Finally, if any of the conditions (i), (ii), (iii) and (iv) holds, then we obtain by Theor2mh3
that the heat kerndlp;}i-o is jointly Holder continuous (by]7, Lemma 5.6]) and stochastically
complete.

This concludes the proof of Theorez22 |
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