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Abstract

Let (X,d, μ) be a metric measure space satisfying the volume doubling condition. Given
a jump measure J(x,dy), consider the symmetric bilinear formE defined by its quadratic part

E(u,u) :=
∫

X

∫

X
|u(x) − u(y)|2 J(x,dy) dμ(x),

whereu is in the natural domainF := {u ∈ L2(X, μ) : E(u,u) < ∞}. The purpose of this
paper is to provide conditions that ensure that (E,F ) is a regular Dirichlet form. Our main
result - Theorem2.9, says that (E,F ) is a regular Dirichlet form provided the jump measure
satisfies the following three hypotheses: theAndres-Barlow condition(AB)W, thePoincaré
inequality(PI)W and thetail estimate(TJ)W, whereW = W(x, r) (x ∈ X, r > 0) is a certain
scaling function.

Combining with the known heat kernel estimates, we obtain the following result stated in
Theorem2.15: the conjunction of the hypotheses (AB)W, (PI)W, and (TJ)W is equivalentto
the fact that (E,F ) is a regular Dirichlet form and its heat kernel satisfies certain upper and
lower estimates.

For example, let measureμ beα-regular,W(x, r) = rβ (whereβ > 0) and the jump measure
be given by the jump kernelJ(x, y) ' d(x, y)−(α+β). In this case the corresponding bilinear
form is denoted by (Eβ,Fβ). Then the Poincaré inequality and the tail estimate are satisfied
automatically, and we conclude that (Eβ,Fβ) is a regular Dirichlet form provided the Andres-
Barlow condition (AB)β is satisfied. The latter condition holds trivially ifβ < 2, and is highly
non-trivial if β ≥ 2.

Moreover, by Theorem2.22, the condition (AB)β is equivalentto the fact that (Eβ,Fβ) is a
regular Dirichlet form and its heat kernelpt(x, y) satisfies the following two-sidedstable-like

estimate:pt(x, y) ' 1
tα/β

(
1+

d(x,y)
t1/β

)−(α+β)
.
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1 Introduction

1.1 Dirichlet forms and their regularity

Let (X,d) be a separable metric space such that every closed ball is compact. Letμ be a Radon
measure onX with full support. Such a triple (X,d, μ) will be referred to as ametric measure
space.

A symmetric bilinear formE with domainF is called aDirichlet form on L2(X) := L2(X, μ)
(cf. [19]) if F is a dense subspace ofL2(X) and (E,F ) satisfies the following properties:

- (E,F ) is closed, that is,F is complete with respect to the norm

‖u‖E1 :=
√
‖u‖2

L2(X)
+ E(u,u).

- (E,F ) is Markovian, that is, for anyu ∈ F , also the functionv = u∨0∧1 belongs toF and
E(v, v) ≤ E(u,u).

Any Dirichlet form has the generator that is a positive definite self-adjoint operatorL in L2(X)
with a maximal domain Dom(L) ⊂ F such that

(L f ,g) = E ( f ,g) for all f ∈ Dom(L) andg ∈ F .

A Dirichlet form (E,F ) is calledregular if F ∩Cc(X) is dense both inF with respect to the norm
‖ ∙ ‖E1 and inCc(X) with respect to the sup-norm.
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Here are two examples of regular Dirichlet forms inRn: a local form

E(u, v) :=
∫

Rn
∇u(x) ∙ ∇v(x) dx

with the domainF = W1
2(Rn), and anon-localone: for anyβ ∈ (0,2),

Eβ(u, v) :=
∫

Rn

∫

Rn

(u(x) − u(y))(v(x) − v(y))
|x− y|n+β

dy dx (1.1)

with the domainF = Bβ/22,2(Rn). The former one has the generatorL = −Δ = −
∑n

i=1 ∂
2
xi

, while the

generator of the latter one is the fractional Laplace operatorL = (−Δ)β/2.
The existence of a Dirichlet form provides a certain differential structure on the underlying

metric measure space and can serve as a starting point for development of analysis on such spaces
(see, e.g. [1, 3, 4, 8, 17, 19, 21, 31, 32, 30, 33, 34]).

Much of the theory and applications of Dirichlet forms concerns with regular forms. The
regularity of a Dirichlet form, in particular, guarantees the existence of the associated Hunt process
{Xt} onX (see [19]), whose transition probability is determined by theheat semigroup{e−tL}t≥0 as
follows: for any Borel setA ⊆ X,

Px(Xt ∈ A) = e−tL1A(x).

Therefore, it is extremely important to have tools for deciding whether a given symmetric bilinear
form (E,F ) is aregular Dirichlet form.

In this paper we deal with non-local bilinear forms of the type

E(u, v) :=
∫

X

∫

X
(u(x) − u(y))(v(x) − v(y))J(x,dy) dμ(x), (1.2)

whereJ(x,dy) is a jump measure, and the domain ofE isF := {u ∈ L2(X) : E(u,u) < ∞}.
Our main result – Theorem2.9, provides the following sufficient condition for (E,F ) to be

a regular Dirichlet form: if the measureμ is doubling and if (E,F ) satisfies the following three
conditions:

• theAndres-Barlow condition(AB)W,

• thePoincaré inequality(PI)W,

• thetail estimate(TJ)W,

whereW = W(x, r) (x ∈ X, r > 0) is a certain scaling function, then (E,F ) is a regular Dirichlet
form. These three conditions are stated in details in the next section.

As far as we know, the result of this kind is entirely new and has no previous analogue.
As an example, consider the following specific bilinear formEβ that frequently occurs in

applications. Denote byB(x, r) an open metric ball onX of radiusr centered atx, that is,

B(x, r) := {y ∈ X : d(y, x) < r}.

For anyx, y ∈ X andr > 0, set

V(x, r) := μ(B(x, r)) and V(x, y) := V(x,d(x, y)) + V(y,d(x, y)). (1.3)
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Fix a parameterβ ∈ (0,∞) and define the following symmetric bilinear form onX:

Eβ(u, v) :=
∫

X

∫

X

(u(x) − u(y)) (v(x) − v(y))
V(x, y) d(x, y)β

dμ(y) dμ(x), (1.4)

with the domain

Fβ :=
{
u ∈ L2(X) : Eβ(u,u) < ∞

}
. (1.5)

That is, the jump measureJ(x,dy) of Eβ is determined by thejump kernel

Jβ(x, y) =
1

V(x, y) d(x, y)β
.

In particular, if the space (X,d, μ) is α-regular, that is, for someα > 0

V(x, r) ' rα for all x ∈ X, r ∈ (0,diam(X))

then
Jβ(x, y) ' d(x, y)−(α+β)

(as in (1.1) in the case ofRn). The sign' means that the ratio of the both sides is bounded by
positive constants from above and below.

The following natural question arises:

for which valuesβ ∈ (0,∞) the bilinear form(Eβ,Fβ) is a regular Dirichlet form?

If Fβ is dense inL2(X) then (Eβ,Fβ) is a Dirichlet form. However, for large enoughβ, the domain
Fβ as in (1.5) may not be dense inL2(X) (for example, this happens inRn for β > 2), or even if it
is dense, (Eβ,Fβ) may not be regular.

Denote by(AB)β, (PI)β, (TJ)β the above conditions with respect to (Eβ,Fβ), which corresponds
to the scaling functionW(x, r) = rβ. It turns out that the hypotheses(PI)β and(TJ)β are in this
case satisfied automatically (Lemma3.1). It follows from Theorem2.9 that (Eβ,Fβ) is a regular
Dirichlet form provided(AB)β holds.

The remaining question about the validity of(AB)β is rather complicated and is left for the
future research. It is easy to check that(AB)β is always satisfied forβ < 2 (Lemma3.2) but so far
there are no practical tools for verification of(AB)β for β ≥ 2.

1.2 Heat kernels

Let us now discuss the connection between the conditions(AB)W, (PI)W, (TJ)W and the heat
kernel estimates.

Let (E,F ) be a regular Dirichlet form. If, for anyt > 0, the operatore−tL is an integral
operator inL2(X) then its integral kernel is referred to as theheat kernelof L (or that of (E,F ))
and is denoted bypt(x, y). The heat kernel also serves as the transition density of the associated
Hunt process.

There is a vast literature devoted to the existence and estimates of heat kernels of regular
Dirichlet forms (see, e.g. [5, 6, 7, 9, 17, 21, 27, 13, 11, 14, 15, 16]). Recall that the heat kernel
satisfies the following properties for all (or almost all) values of the variables involved:

(P1) Markov property:for anyt > 0, pt(x, y) is a measurable nonnegative function ofx, y, and
∫

X
pt(x, y) dμ(y) ≤ 1; (1.6)
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(P2) symmetry: pt(x, y) = pt(y, x);

(P3) semigroup property: ∫

X
pt(x, z)ps(z, y) dμ(z) = pt+s(x, y);

(P4) approximation of identity: for any f ∈ L2(X),
∫

X
pt(x, y) f (y) dμ(y)→ f (x) as t → 0,

where the convergence is inL2(X).

The heat kernel is calledstochastically completeif the integral in (1.6) is identically equal to 1.
Conversely, any functionpt(x, y) satisfying (P1)-(P4) gives rise to a heat semigroup

Pt f (x) :=
∫

X
pt(x, y) f (y) dμ(y)

acting inL2(X), and the heat semigroup determines a Dirichlet form in a standard way (see [19]).
Let us first discuss heat kernel estimates onα-regular spaces. The dichotomy property of heat

kernel estimates (see [28]) states that there are only two kinds ofself-similarestimates for heat
kernel{pt}t>0 on anα-regular metric measure space (X,d, μ).

The first kind is thesub-Gaussian estimate(SG)α, dw
of the form

pt(x, y) �
C

tα/dw
exp


−c

(
d(x, y)

t1/dw

) dw
dw−1


 (SG)α, dw

for all x, y ∈ X andt > 0, where the sign�means that both≤ and≥ hold but with different values
of positive constantsC, c. Heredw is a parameter from [2,∞) that is called thewalk dimensionof
the heat kernel. Besides, the Dirichlet form (E,F ) is in this case local.

The second kind is thestable-like estimate(ULE)α, β of the form

pt(x, y) '
1

tα/β

(

1+
d(x, y)

t1/β

)−(α+β)

(ULE)α, β

for all x, y ∈ X andt > 0, where the parameterβ ∈ (0,∞) is called theindexof the heat kernel.
The Dirichlet form (E,F ) is in this case non-local.

In theα-regular space the jump kernelJβ of the Dirichlet form (Eβ,Fβ) from (1.4) admits the
estimate

Jβ(x, y) ' d(x, y)−(α+β),

and this estimate is a necessary condition for the heat kernel bounds(ULE)α, β. If β ∈ (0,2), then
all Lipschitz functions onX with compact supports belong toFβ, which implies that (Eβ,Fβ) is a
regular Dirichlet form. Moreover, in this case the heat kernel{pt}t>0 of (Eβ,Fβ) exists and satisfies
(ULE)α, β (see [12, 17, 21]).

Let β ∈ [2,∞) and assume a priori that (Eβ,Fβ) is a regular Dirichlet form (it is known that
this situation can actually occur on fractal spaces). In order to obtain the heat kernel estimate
(ULE)α, β, Chen-Kumagai-Wang [17] and Grigor’yan-Hu-Hu [21] introduced independently some
analytic condition (called acut-off Sobolev inequalityor a generalized capacity condition) and
proved that this condition is equivalent to(ULE)α, β. We use this condition in the form of(AB)β.
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Combining these results with ours we conclude that(AB)β is equivalentto the fact that (Eβ,Fβ)
is a regular Dirichlet form and its heat kernel satisfies(ULE)α, β.

In our second main result - Theorem2.22, we prove a similar equivalence in a higher gener-
ality, for the bilinear form (Eβ,Fβ) as given in (1.4)-(1.5) assuming that measureμ satisfies the
volume doubling and the reverse volume doubling conditions.

Moreover, our most general Theorem2.15says that a non-local bilinear form (E,F ) with an
arbitrary jump measureJ(x,dy) (as in (1.2)) is a regular Dirichlet form and its heat kernel satisfies
certain upper and lower estimates if and only if all the hypotheses(AB)W, (PI)W, and(TJ)W are
fulfilled.

1.3 Notation

We use the following notation throughout the paper.

• N = {0,1,2, . . . , }.

• For any setE ⊆ X, E denotes the closure ofE, andE{ = X \ E.

• For any functionf : X → R, its support suppf is the complement of the largest open set
where f = 0 μ-a.e.

• For anyμ-measurable setE ⊆ X with μ(E) > 0 and anyμ-integrable functionf : E → R,
set

?

E
f dμ =

1
μ(E)

∫

E
f (x) dμ(x).

• C(X) denotes the space of all continuous functions onX; Cc(X) is the subspace ofC(X) that
consists of functions with compact supports and is endowed with the sup-norm.

• The lettersC andc are used to denote positive constants that are independent of the variables
in question, but may vary at each occurrence. The relationu . v (resp.,u & v) between
functionsu andv means thatu ≤ Cv (resp.,u ≥ Cv) for a positive constantC and for a
specified range of the variables. We writeu ' v if u . v . u.

• For anya,b ∈ R, seta∧ b = min{a,b} anda∨ b = max{a,b}.

2 Statement of the main results

2.1 Conditions(TJ)W, (PI)W, (AB)W

We begin with the following setup of a bilinear form (E,F ) and a jump measureJ(x,dy) dμ(x).
LetB(X) denote the family of Borel sets onX.

Definition 2.1. Let J(∙, ∙) : X × B(X) 7→ R+ := [0,∞) be a function such that

- for eachx ∈ X, A 7→ J(x,A) is a measure onB(X);

- for eachA ∈ B(X), x 7→ J(x,A) is a nonnegative measurable function onX.

Let J satisfy also the following two conditions:

(J1) for anyr > 0, J(x, B(x, r){) is, as a function ofx ∈ X, locally integrable with respect toμ;
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(J2) for all nonnegative Borel measurable functionsu, v onX,
∫

X
u(x)

∫

X
v(y) J(x,dy) dμ(x) =

∫

X
v(x)

∫

X
u(y) J(x,dy) dμ(x).

Then we refer toJ as ajump measure.

It was shown in [19, Example 1.2.4, p. 14] that any jump measureJ(x,dy) determines a sym-
metric Radon measurej(dx,dy) = J(x,dy) dμ(x) onB(X × X) and, for all f ∈ Cc(X × X),

"

X×X
f (x, y) J(x,dy) dμ(x) =

"

X×X
f (y, x) J(x,dy) dμ(x).

Note that the term “jump measure” refers usually to the measurej. By slightly abusing the termi-
nology, we use this term with respect to the functionJ.

Any jump measureJ gives rise to the following symmetric bilinear form (E,F ):




E(u, v) =
"

X×X
(u(x) − u(y))(v(x) − v(y)) J(x,dy) dμ(x);

F = {u ∈ L2(X) : u is Borel measurable onX, E(u,u) < ∞}.
(2.1)

It was also shown in [19, Example 1.2.4, p. 14] that:

(a) If u is Borel measurable onX andu = 0 μ-a.e. onX, thenE(u,u) = 0.

(b) If u ∈ F andv is a Borel measurable function onX satisfying

|v(x)| ≤ |u(x)| and |v(x) − v(y)| ≤ |u(x) − u(y)| for all x, y ∈ X,

thenv ∈ F andE(v, v) ≤ E(u,u). In particular, (E,F ) satisfies Markov property.

(c) (E,F ) is closed.

In other words, the bilinear form (E,F ) defined in (2.1) is a Dirichlet form onL2(X) providedF
is dense inL2(X).

Throughout the whole paper, we always assume thatJ is a jump measure as defined above,
and (E,F ) is the bilinear form as defined in (2.1). We will investigate sufficient (and/or necessary)
conditions of (E,F ) to be aregular Dirichlet form.

If the measureJ(x,dy) dμ(x) has a density with respect todμ(x) dμ(y) then the density function
will be denoted byJ(x, y) and referred to as ajump kernel. Clearly, any nonnegative symmetric
Borel functionJ(x, y) onX × X determines a jump measure

J(x,dy) dμ(x) = J(x, y) dμ(y) dμ(x)

provided the function

x 7→
∫

B(x,r){
J(x, y) dμ(y)

is locally integrable for anyr > 0.

Definition 2.2. A functionW : X × [0,∞)→ [0,∞) is calleda space/time scaling functionif

- for anyx ∈ X, the functionr 7→W(x, ∙) is continuous and strictly increasing on [0,∞);

- W(x,0) = 0 and limr→∞W(x, r) = ∞;
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- there exist three positive numbersCW, β1, β2 whereβ1 ≤ β2, such that, for all 0< r ≤ R< ∞
andx, y ∈ X with d(x, y) ≤ R,

C−1
W

(R
r

)β1

≤
W(x,R)
W(y, r)

≤ CW

(R
r

)β2

. (2.2)

It follows that, for anyx ∈ X, the inverse functionW−1(x, ∙) of W(x, ∙) exists and satisfies the
following inequalities, for all 0< r ≤ R< ∞ and allx ∈ X,

C−1/β2
W

(R
r

)1/β2

≤
W−1(x,R)
W−1(x, r)

≤ C1/β1
W

(R
r

)1/β1

.

An example of a space/time scaling function isW(x, r) = rβ for all (x, r) ∈ X × (0,∞), where
β ∈ (0,∞). In this exampleW is independent of the space variablex, but there exist other interest-
ing examples ofW that depend onx. We refer the reader to Section3 below for more discussions.

Let us fix for now a scaling functionW(x, r) and a jump measureJ(x,dy).

Definition 2.3. (Tail of jump measure) We say thatJ satisfies condition(TJ)W if there exists a
constantC > 0 such that, for allx ∈ X andR> 0,

J(x, B(x,R){) =
∫

B(x,R){
J(x,dy) ≤

C
W(x,R)

.

Remark 2.4. Note that condition(TJ)W and (2.2) imply condition (J1).

Definition 2.5. (Poincaré inequality) We say thatJ satisfies thePoincaré inequality(PI)W if there
exist constantsC > 0 andκ ∈ [1,∞) such that, for any ballB := B(x0,R) with x0 ∈ X, R ∈ (0,∞)
and for any functionu ∈ F ∩ L∞(X),

∫

B
|u(x) − uB|

2 dμ(x) ≤ CW(x0,R)
"

(κB)×(κB)
|u(x) − u(y)|2 J(x,dy) dμ(x), (2.3)

whereuB := 1
μ(B)

∫
B

u(x) dμ(x) denotes the arithmetic mean ofu overB.

Definition 2.6. Let U be an open subset ofX andA be any Borel subset ofU. A function φ ∈
Cc(X) is called acutoff functionof the pair (A,U) if it satisfies the following properties:

(i) 0 ≤ φ ≤ 1 onX;

(ii) φ ≡ 1 in A;

(iii) φ ≡ 0 onU{.

Denote by cutoff(A,U) the collection of all cutoff functions of the pair (A,U).

We define below a condition(AB)W. It is named after Andres and Barlow because they first
introduced in [2] a similar condition forlocal Dirichlet forms (which was referred to in [2] as
(CSA) –a cutoff Sobolev inequality in annuli). For jump-type Dirichlet forms and with the scaling
functionW(x, r) = rβ, this condition was introduced in [21] where it was used to characterize the
two-sided stable-like estimates of the heat kernel.
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Definition 2.7. (Andres-Barlow condition) Set

F ′ := F + {const} = {u+ c : u ∈ F andc is a constant}.

We say that a jump measureJ satisfies condition(AB)W, if there exist positive constantsζ andC
such that, for anyu ∈ F ′ ∩ L∞(X) and for any three concentric balls





B0 = B(x0,R);

B = B(x0,R+ r);

Ω = B(x0,R′),

(2.4)

with x0 ∈ X and 0< R< R+ r < R′ < ∞, there exists a functionφ ∈ cutoff(B0, B) such that
"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
"

B×B
|φ(x)|2|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

C
W(z, r)

∫

Ω

|u(x)|2 dμ(x). (2.5)

Definition 2.8. (Volume doubling condition) We say that a measureμ on a metric space (X,d)
satisfies thevolume doublingcondition, denoted by (VD), if there exists a constantCD ≥ 1 such
that, for allx ∈ X and allr > 0,

V(x,2r) ≤ CDV(x, r). (2.6)

Note that (2.6) holds if and only if there exists constantsC′D ∈ (1,∞) andα+ > 0 such that, for
all x, y ∈ X and 0< r ≤ R,

V(x,R)
V(y, r)

≤ C′D

(
d(x, y) + R

r

)α+
. (2.7)

Condition (VD) also implies that, for allx, y ∈ X,

V(x, y) ≤ (CD + 1)V(x,d(x, y)), (2.8)

whereV(x, y) is defined by (1.3).

The main result of this paper is the following theorem.

Theorem 2.9. (Main theorem)For any bilinear form(E,F ) (as defined in(2.1)) with a jump
measure J(x,dy) and any scaling function W, the following implication holds:

(VD) + (TJ)W + (AB)W + (PI)W ⇒ (E,F ) is a regular Dirichlet form on L2(X). (2.9)

2.2 Relation to heat kernel bounds

Next, we combine Theorem2.9with the previously known results about heat kernel estimate to
obtain some interesting consequences. In particular, in our next result, we replace the implication
sign in (2.9) by the equivalence sign, at expense of adding a certain heat kernel estimate in the
right hand side. For that we need some more definitions.

Definition 2.10. The measureμ is said to satisfy thereverse volume doubling condition(RVD) if
there exist constantsCRD ∈ (0,∞) andα− > 0 such that

V(x,R)
V(x, r)

≥ CRD

(R
r

)α−
for all x ∈ X and 0< r ≤ R< diam(X).
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The reverse volume doubling condition (RVD) is a rather mild assumption. Indeed, if (X,d, μ)
is connected and the exterior of any ball is non-empty then (VD) implies (RVD) (see [26, Propo-
sition 5.2]). Clearly, if both (VD) and (RVD) are satisfied then 0< α− ≤ α+, and if (RVD) is
satisfied thenμ({x}) = 0 for anyx ∈ X, so that (X,d, μ) is non-atomic.

Definition 2.11. We say that the condition(AB′)W holds, if there existζ > 0 andC > 0 such that
for anyu ∈ F ′ ∩ L∞(X) and for any three concentric ballsB0, B,Ω given in (2.4), there exists a
functionφ ∈ cutoff(B0, B) satisfying

"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
"

(B\B0)×(B\B0)
|φ(x)|2|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

C
W(z, r)

∫

Ω

|u(x)|2 dμ(x). (2.10)

The difference between (2.5) and (2.10) is that for the latter the integration in the middle term is
done over a smaller annulusB\B0. Hence, we have(AB′)W ⇒ (AB)W. The converse implication
(AB)W ⇒ (AB′)W is true under some additional assumptions (see Corollary2.16).

Assume that (E,F ) is a regular Dirichlet form. For any open setΩ ⊂ X, set

F (Ω) = F ∩ Cc(Ω), (2.11)

where the closure is taken with respect toE1-norm. By [19, Theorem 4.4.3],F (Ω) is a dense
subspace ofL2(Ω) and (E,F (Ω)) is a regular Dirichlet form onL2(Ω). If it has the heat kernel
then the latter is called theDirichlet heat kernelin Ω and is denoted bypΩt (x, y).

Definition 2.12. (Localized lower estimate) We say that a regular Dirichlet form (E,F ) satisfies
condition(LLE)W if the following two properties are satisfied:

(i) for any bounded open setΩ ⊂ M, the Dirichlet heat kernelpΩt (x, y) exists and is locally
Hölder continuous in (x, y, t) ∈ Ω × Ω × (0,∞);

(ii) there existC > 0 andδ ∈ (0,1) such that, for any ballB := B(x0,R) with R > 0, for any
t ≤W(x0, δR) and for allx, y ∈ B(x0, δW−1(x0, t)),

pB
t (x, y) ≥

C−1

V(x0,W−1(x0, t))
.

Our second main result is as follows.

Theorem 2.13. Assume that(VD), (RVD), (TJ)W are satisfied. Then, the following three condi-
tions are equivalent:

(i) (AB′)W + (PI)W

(ii) (AB)W + (PI)W

(iii) (E,F ) is a regular Dirichlet form satisfying(LLE)W.

Moreover, if any of the conditions(i), (ii) , (iii) holds, then the heat kernel{pt}t>0 of (E,F ) exists
and is stochastically complete, that is, for any t∈ (0,∞) and x∈ M,

∫

X
pt(x, y) dμ(y) = 1.
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Our next Theorem2.15is a modification of Theorem2.13where(TJ)W is removed from the
list of standing assumptions and included into the statements (i) and (ii). In order to state it, we
need one more definition.

Definition 2.14. (Tail estimate of heat semigroup) We say that a Dirichlet form (E,F ) satisfies
condition(TP)W if, for any ball B = B(x,R) with x ∈ X, R ∈ (0,∞) and anyt ∈ (0,∞),

Pt1B{ ≤
Ct

W(x,R)
in

1
4

B

for a positive constantC independent ofB, t.

Theorem 2.15.Assume that(VD) and (RVD) are satisfied. Then, the following three conditions
are equivalent:

(i) (TJ)W + (AB′)W + (PI)W

(ii) (TJ)W + (AB)W + (PI)W

(iii) (E,F ) is a regular Dirichlet form satisfying(LLE)W + (TP)W.

Finally, the next statement is a direct consequence of Theorem2.13or 2.15.

Corollary 2.16. Under(VD), (RVD), (TJ)W and(PI)W, the following equivalence holds:

(AB)W ⇔ (AB′)W.

2.3 Special scaling function

Fix someβ ∈ (0,∞). As an application of the above theorems, let us consider a special case
when the scaling function is

W(x, r) = rβ for all x ∈ X andr ∈ [0,∞), (2.12)

and thejump kernel J(x, y) := J(x,dy) dμ(x)
dμ(y) dμ(x) exists and satisfies the following condition(J)β.

Definition 2.17. We say that the jump kernelJ(x, y) satisfies condition(J)β if

J(x, y) '
1

V(x, y)d(x, y)β
for all distinctx, y ∈ X.

Let us introduce the following family of Besov function spaces.

Definition 2.18. For anys ∈ (0,∞), define thehomogeneous Besov spaceΛ̇s
2,2(X) as the collection

of all locally integrable functionsf onX such that

‖ f ‖Λ̇s
2,2(X) :=

(∫

X

∫

X

| f (x) − f (y)|2

V(x, y)d(x, y)2s
dμ(y) dμ(x)

) 1
2

< ∞.

Define theinhomogeneous Besov spaceby

Λs
2,2(X) :=

{
f ∈ L2(X) : ‖ f ‖Λ̇s

2,2(X) < ∞
}
.
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For the scaling function (2.12) and the jump kernelJ(x, y) satisfying(J)β, the domainF of
the associated bilinear formE in Definition 2.1 coincides with the inhomogeneous Besov space
Λ
β/2
2,2(X). In this setting, we rename the conditions(AB)W and (AB′)W to (AB)β and (AB′)β,

respectively. For convenience of the reader, we state here the following independent definitions of
(AB)β and(AB′)β.

Definition 2.19. We say that a metric measure space (X,d, μ) satisfies condition(AB)β if there
existζ > 0 andC > 0 such that, for any function

u ∈
(
Λ
β/2
2,2(X) + {const}

)
∩ L∞(X)

and for any three concentric ballsB0, B,Ω given in (2.4), there existsφ ∈ cutoff(B0, B) such that
"

Ω×Ω

|u(x)|2|φ(x) − φ(y)|2

d(x, y)β
dμ(y) dμ(x)

V(x, y)

≤ ζ
"

B×B

|φ(x)|2|u(x) − u(y)|2

d(x, y)β
dμ(y) dμ(x)

V(x, y)
+

C

rβ

∫

Ω

|u(x)|2 dμ(x). (2.13)

Condition(AB′)β is defined similarly and is obtained from(AB)β by replacing the integration area
B× B in the first integral on the right hand side of (2.13) by (B \ B0) × (B \ B0).

Definition 2.20. (Upper and lower estimates of the heat kernel)We say that the Dirichlet form
(E,F ) satisfies the condition(ULE)β if its heat kernel{pt}t>0 exists and satisfies the following
estimate: for allx, y ∈ X andt > 0,

pt(x, y) '
1

V(x, t1/β + d(x, y))

(

1+
d(x, y)

t1/β

)−β
. (ULE)β

Remark 2.21. It is easy to see that if the measureμ is α-regular then the condition(ULE)β coin-
cides with(ULE)α, β. Recall also that the heat kernel is related to the jump kernel by the identity

J(x, y) = lim
t→0

pt(x, y)
2t

,

which easily yields that(ULE)β implies(J)β.

The next result (that is essentially a consequence of Theorems2.9, 2.13 together with the
previously known heat kernel estimates) shows that, for a bilinear form (E,F ) satisfying(J)β, any
of the conditions(AB)β or (AB′)β can be used to prove that (E,F ) is a regular Dirichlet form, as
well to obtain its heat kernel bounds.

Theorem 2.22.Assume that(VD) and(RVD) are satisfied. Then, for anyβ ∈ (0,∞), the following
conditions are equivalent:

(i) (AB′)β

(ii) (AB)β

(iii) For any jump kernel J satisfying(J)β, the following bilinear form

E(u, v) :=
∫

X

∫

X
(u(x) − u(y))(v(x) − v(y))J(x, y) dμ(y) dμ(x) (2.14)

with domain
F :=

{
f ∈ L2(X) : E( f , f ) < ∞

}
(2.15)

is a regular Dirichlet form satisfying(ULE)β.
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(iv) There exists a jump kernel J satisfying(J)β such that the bilinear form(E,F ) given by
(2.14)-(2.15) is a regular Dirichlet form satisfying(ULE)β.

Moreover, if any one of the above statements(i)-(iv) holds, then the heat kernel{pt}t>0 of (E,F ) is
jointly continuous onX × X and stochastically complete.

According to Remark3.3 below, if 0 < β < 2, then both(AB)β and(AB′)β hold; hence, all
conclusions of Theorem2.22are true when 0< β < 2.

2.4 Organization of the paper

In Sections3.1 and3.2 we present some examples of (absolutely continuous and singular)
jump measures satisfying the conditions(TJ)W, (PI)W and(AB)W.

In Section3.3, we discuss a product jump measure on a productX of mspacesXi , i = 1, ...,m,
where each metric measure spaceXi is endowed with a jump-type regular Dirichlet form that sat-
isfies the conditions(TJ)W, (PI)W, (AB)W. Note that the product jump measure is always singular.
We show in Theorem3.7that the corresponding product Dirichlet form also satisfies the condition
(TJ)W, (PI)W, (AB)W and, hence, it is regular and its heat kernel satisfies(LLE)W and(TP)W.

Section4 contains the proof of our main Theorem2.9. In Section4.1, we establish a relation
between(AB)W and(AB′)W. In Section4.2 we prove a self-improvement property of condition
(AB)W. In Section4.3 we construct a partition of unity onX by using the cutoff functions from
the condition(AB)W or (AB′)W. Finally, Theorem2.9 is proved in Section4.4.

In Section5, we apply Theorem2.9to prove Theorems2.13, 2.15and2.22. We first establish
the implications(S)W ⇒ (AB′)W and(LLE)W ⇒ (S)W + (PI)W in Sections5.1 and5.2, respec-
tively. Based on them, we give the proofs of Theorems2.13, 2.15and2.22 in Sections5.3, 5.4
and5.5, respectively.

3 Examples of jump measures

In this section, we provide various examples of non-singular and singular jump measures (see
Sections3.1 and 3.2). In Section3.3, the conditions(TJ)W, (PI)W and (AB)W are proved on
product spaces.

3.1 Jump measures with density

Let the scaling functionW be as in Definition2.2. Let a jump measureJ admit a jump kernel,
that is,

J(x,dy) dμ(x) = J(x, y) dμ(y) dμ(x),

whereJ(x, y) is a symmetric jointly measurable function satisfying

J(x, y) '
1

W(x, d(x, y)) V(x, y)
for all distinctx, y ∈ X. (3.1)

Note that by (2.2)

W(x, d(x, y)) 'W(y, d(x, y)), (3.2)

so that the right hand side of (3.1) is “almost” symmetric inx, y.
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Lemma 3.1. Assume that(VD) is satisfied and that the jump kernel J satisfies(3.1). Then both
(TJ)W and(PI)W are satisfied.

Proof. Let us verify first the condition(TJ)W. Using (VD) and (2.2), we obtain, for anyx ∈ X and
anyR> 0,

J(x, B(x,R){) =
∫

B(x,R){
J(x,dy) '

∫

d(y,x)≥R

dμ(y)
W(x, d(x, y)) V(x, y)

≤
∞∑

j=0

∫

2 jR≤d(x,y)<2 j+1R

dμ(y)
W(x, d(x, y)) V(x,d(x, y))

≤
∞∑

j=0

∫

2 jR≤d(x,y)<2 j+1R

dμ(y)
W(x,2 jR) V(x,2 jR)

≤
1

W(x,R)

∞∑

j=0

W(x,R)V(x,2 j+1R)
W(x,2 jR) V(x,2 jR)

≤
1

W(x,R)

∞∑

j=0

CDCW2− jβ1

'
1

W(x,R)
,

which proves(TJ)W.
Let us now prove(PI)W. For any ballB with centerx0 ∈ X and radiusR ∈ (0,∞), and for any

functionu ∈ F ∩ L∞(X), applying the Ḧolder inequality, we obtain

∫

B
|u(x) − uB|

2 dμ(x) =
∫

B

∣∣∣∣∣
1

μ(B)

∫

B
[u(x) − u(y)] dμ(y)

∣∣∣∣∣

2

dμ(x)

≤
∫

B

(
1

μ(B)

∫

B
|u(x) − u(y)|2 dμ(y)

)

dμ(x)

=

∫

B

∫

B

|u(x) − u(y)|2

W(x, d(x, y))
W(x, d(x, y)) V(x, y)

V(x0,R)
dμ(y) dμ(x)

V(x, y)
.

By means of (2.7) and (2.8) we obtain that, for allx, y ∈ B,

V(x, y)
V(x0,R)

≤ 2CD
V(x,d(x, y))

V(x0,R)
≤ 2CDC′D

(
d(x, y) + d(x, x0)

R

)α+
≤ 2CDC′D3α+ .

Moreover, it follows from (2.2) that

W(x, d(x, y))
W(x0,R)

≤
W(x,2R)
W(x0,R)

≤ CW2β2.

Consequently, we obtain

∫

B
|u(x) − uB|

2 dμ(x) ≤ 2CWCDC′D3α+2β2W(x0,R)
∫

B

∫

B

|u(x) − u(y)|2

W(x, d(x, y))
dμ(y) dμ(x)

V(x, y)

'W(x0,R)
"

B×B
(u(x) − u(y))2 J(x,dy) dμ(x),

which proves(PI)W. �
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Lemma 3.2. Assume that(VD) is satisfied and that the jump kernel J satisfies(3.1). If β2 < 2
then both(AB)W and(AB′)W are satisfied (whereβ2 is the exponent in(2.2)).

Proof. Consider ballsB0 = B(x0,R), B = B(x0,R+ r) andΩ = B(x0,R′), wherex0 ∈ X, R, r ∈
(0,∞) andR′ > R+ r. Sinced is a metric, by the classical Urysohn lemma, there exists a function
φ ∈ cutoff(B0, B) such that

|φ(x) − φ(y)| ≤ Cr−1d(x, y) (3.3)

for all x, y ∈ X and for some constantC ∈ (0,∞). Using this and the fact that

∫

Ω

∫

Ω

|u(x)|2|φ(x) − φ(y)|2J(x, y) dμ(y) dμ(x) '
∫

Ω

∫

Ω

|u(x)|2|φ(x) − φ(y)|2

W(x,d(x, y)) V(x, y)
dμ(y) dμ(x),

we see that both(AB)W and(AB′)W follow directly from the estimate

∫

X

|φ(x) − φ(y)|2

W(x,d(x, y)) V(x, y)
dμ(y) .

1
W(x, r)

for all x ∈ X. (3.4)

To verify (3.4), we use the argument from the proof of(TJ)W in Lemma3.1 and the fact that
0 ≤ φ ≤ 1, which yields

∫

d(x,y)≥r

|φ(x) − φ(y)|2

W(x,d(x, y)) V(x, y)
dμ(y) ≤

∫

d(x,y)≥r

dμ(y)
W(x,d(x, y)) V(x, y)

.
1

W(x, r)
.

Next, using (VD), (3.3) and the assumptionβ2 < 2, we obtain

∫

d(x,y)<r

|φ(x) − φ(y)|2

W(x,d(x, y)) V(x, y)
. r−2

∫

d(x,y)<r

d(x, y)2

W(x,d(x, y)) V(x, y)
dμ(y)

' r−2
∞∑

j=0

∫

2− j−1r≤d(x,y)<2− j r

d(x, y)2

W(x,d(x, y)) V(x, y)
dμ(y)

. r−2
∞∑

j=0

∫

2− j−1r≤d(x,y)<2− j r

(2− j r)2

W(x,2− j−1r) V(x,2− j−1r)
dμ(y)

.
1

W(x, r)

∞∑

j=0

2−2 j W(x, r)
W(x,2− j−1r)

V(x,2− j r)
V(x,2− j−1r)

.
1

W(x, r)

∞∑

j=0

2− j(2−β2)

'
1

W(x, r)
,

which implies (3.4). �

Remark 3.3. Let β ∈ (0,∞) andW(x, r) = rβ for all (x, r) ∈ X × (0,∞). In this case, the jump
kernelJ(x, y) in (3.1) automatically satisfies(J)β. Assume that (VD) holds. It follows then from
Lemma3.1 that both(TJ)W and(PI)W hold. Moreover, ifβ < 2, then by Lemma3.2 both(AB)β
and(AB′)β are satisfied.
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3.2 Singular jump measures

Here we give examples of singular jump measures such that(TJ)W, (PI)W and(AB)W are all
satisfied.

Example 3.4. Fix α1, α2 > 0 andβ > 0. Let (Xi ,di , μi), i = 1,2 be two ultrametric spaces
satisfying the conditions

μi(Bi(x, r)) ' rαi for all x ∈ Xi andr > 0,

whereBi(x, r) = {y ∈ Xi : di(x, y) < r}. Let us consider the product spaceX := X1 × X2 with the
metricd and product measureμ defined as follows:

d(x, y) := max
i=1,2
{di(xi , yi)}, μ := μ1 × μ2,

wherex = (x1, x2), y = (y1, y2) ∈ X. Clearly, (X,d) is an ultrametric space andμ satisfies

μ(B(x, r)) ' rα for all x ∈ M andr > 0,

where

α = α1 + α2.

Define the kernelJ(x,dy) onX × B(X) by

J(x,dy) :=
μ1(dy1)

d(x1, y1)α1+β
δx2(dy2) +

μ2(dy2)
d(x2, y2)α2+β

δx1(dy1)

Then, it was proved in [10, Section 15] that conditions(TJ)W and(PI)W are satisfied for

W(x, r) := rβ for all x ∈ X andr > 0.

Moreover, it was proved in [22, Example 4.1 and Lemma 6.2] that(AB)W is also satisfied.

Example 3.5. LetX = R2 andW(x, r) = rβ for someβ < 2. For anyx = (x(1), x(2)) ∈ R × R and
y = (y(1), y(2)) ∈ R × R, consider the following jump measure

J(x,dy) :=
dy(1)

|x(1) − y(1)|1+β
δx(2)(dy(2)) +

dy2

|x(2) − y(2)|1+β
δx(1)(dy(1))

that generates a cylindrical stable process onR2. One can use the same method as in Example3.4
to prove thatJ satisfies(TJ)W and(PI)W. Moreover, it was proved in [25, Proposition 7.1] that
(AB)W is also satisfied.

In the above Examples3.4and3.5, the functionW is independent of the space variable. Next,
we give an example of a jump kernelJ satisfying(TJ)W, (PI)W and(AB)W with the scaling func-
tion W(x, r) essentially depending on the space variablex (following the ideas of [25, Section
7.2]1).

1Although the Dirichlet form theory was used in [25, Section 7.2], the idea of construction ofJ still works without
using Dirichlet form.
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Example 3.6. Let (X,d) be an arbitrary metric space, andμ be a measure onX with full support
satisfying (VD) andμ(X) = ∞. Fix a pointo ∈ X and let 0< ε < β < 2. For anyx ∈ X and
r ∈ (0,∞), set

W(x, r) :=

(
d(o, x) + r

r

)ε
rβ.

By a direct computation one can verify that this functionW satisfies (2.2) with β1 = β − ε, β2 = β

andCW = 2ε. The following jump kernel

J0(x, y) :=
1

V(x, y)W(x,d(x, y))
+

1
V(y, x)W(y,d(x, y))

satisfies(TJ)W and(PI)W by Lemma3.1 and(AB)W by Lemma3.2. Now we construct another
jump kernelJ that satisfies the same conditions but which is much larger thanJ0.

For that, we use two sequences{En}, {Fn} of Borel subsets ofX satisfying the following
properties: 




(i) All the sets{En, Fn}n≥1 are mutually disjoint;

(ii) For anyn ≥ 1, 1≤ μ(En) ≤ 2 and 1≤ μ(Fn) ≤ 2;

(iii) d(En, Fn)→ ∞ asn→ ∞.

(3.5)

An example of such sequences will be given below. Using the sequences{En}, {Fn} as in (3.5), let
us define the following jump kernel

J(x, y) := J0(x, y) +
∑

n≥1

(
1En×Fn(x, y)

W(x,d(x, y))
+

1En×Fn(y, x)

W(y,d(x, y))

)

(3.6)

and prove that it satisfies all the conditions(TJ)W, (PI)W and(AB)W.
SinceJ0 ≤ J andJ0 satisfies(PI)W, it follows thatJ also satisfies(PI)W. Let us verify thatJ

satisfies(TJ)W. By (3.2), we have

J(x, y) ' J0(x, y) +
∑

n≥1

1En×Fn(x, y) + 1Fn×En(x, y)

W(x,d(x, y))
. (3.7)

For anyx ∈ X, by the mutually disjointness of{En, Fn}n∈N, there exists at most onenx or at most
onemx such thatx ∈ Enx or x ∈ Fmx. Note thatx can not lie in bothEnx andFmx simultaneously.
So, we may as well assume thatx ∈ Enx. Then we have

∫

B(x,r){

∑

n≥1

1En×Fn(x, y) + 1Fn×En(x, y)

W(x,d(x, y))
dμ(y) ≤

∫

B(x,r){

1Fnx
(y)

W(x,d(x, y))
dμ(y)

≤
1

W(x, r)
∙ μ(B(x, r){ ∩ Fnx) ≤

2
W(x, r)

.

This implies thatJ satisfies(TJ)W since so doesJ0.
Let us prove thatJ satisfies(AB)W. Fix three concentric ballsB0 = (x0,R), B = B(x0,R+ r)

andΩ = B(x0,R′) with x0 ∈ X and 0< R< R+ r < R′. Let

φ(x) := 1∧
R+ r − d(x0, x)

r
∨ 0 for all x ∈ X.

Clearly,φ ∈ cutoff(B0, B). Following the arguments in the proof of Lemma3.2, in order to prove
thatJ satisfies(AB)W, it suffices to verify that, for anyx ∈ X,

∫

X
|φ(x) − φ(y)|2J(x, y) dμ(y) .

1
W(x, r)

.
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By Lemma3.2and (3.7), we only need to show that, for anyx ∈ X,

∫

X
|φ(x) − φ(y)|2

∑

n≥1

1En×Fn(x, y) + 1Fn×En(x, y)

W(x,d(x, y))
dμ(y) ≤

2
W(x, r)

. (3.8)

Indeed, for anyx, y ∈ X andr ∈ (0,∞), observe that

|φ(x) − φ(y)| ≤ min
{
1, r−1d(x, y)

}

and

W(x, r)
W(x,d(x, y))

=

(
r

d(x, y)

)β 
1+

d(o,x)
r

1+
d(o,x)
d(x,y)




ε

≤

(
r

d(x, y)

)β
max

{

1,

(
d(x, y)

r

)ε}

.

Consequently, for anyx ∈ X, using the notationnx as above (assuming without loss of generality
thatx ∈ Enx), we then derive

∫

X
|φ(x) − φ(y)|2

∑

n≥1

1En×Fn(x, y) + 1Fn×En(x, y)

W(x,d(x, y))
dμ(y)

≤
∫

X
|φ(x) − φ(y)|2

1Fnx
(y)

W(x,d(x, y))
dμ(y)

≤
1

W(x, r)

∫

Fnx

min
{
1, r−2d(x, y)2

} ( r
d(x, y)

)β
max

{

1,

(
d(x, y)

r

)ε}

dμ(y)

≤
1

W(x, r)
μ(Fnx)

≤
2

W(x, r)
,

where the penultimate step holds becauseε < β < 2 implies that the integrand is bounded by 1.
This proves (3.8). Hence, we conclude thatJ satisfies(AB)W.

Now let us construct sequences{En}, {Fn} satisfying (3.5). Recall thato ∈ X is a fixed point
andC′D, α+ are the constants in (2.7). Let λ > 0 be large enough such that

2 ∙ 9α+C′D ≤ V(o, λ).

Let x0 := o. We are about to construct a sequence of balls{Bk := B(xk, rk)}k≥1 satisfying the
following properties: for anyk ∈ N,





(i) d(xk,o) ≥ max{λ, 2d(xk−1,o)};

(ii) 1 ≤ μ(Bk) ≤ 2;

(iii) rk ≤ d(xk,o)/4;

(iv) ∪k
m=1 Bm ⊂ B(o, 5d(xk,o)/4).

(3.9)

Indeed, sinceμ(X) = ∞ and every ball has finite measure by (VD), we haveB(o, r){ , ∅ for any
r ∈ (0,∞). Thus, we can inductively take a sequence of points{xk}k∈N that satisfy (i) of (3.9).
From (i), it follows easily that{d(xk,o)}k∈N is increasing and that

d(xk,o) ≥ 2k−1λ for all k ∈ N. (3.10)
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Once we have these points{xk}k∈N, then for eachk ∈ N we can choose a valuerk ∈ (0,∞) such
that 1≤ μ(B(xk, rk)) ≤ 2, which induces (ii) of (3.9). Moreover, by the choice ofλ, (VD) and by
(i) and (ii) of (3.9), we have

9α+C′D ≤
V(o, λ)

2
≤

V(o, d(xk,o) + rk)
V(xk, rk)

≤ C′D

(
2d(xk,o) + rk

rk

)α+
,

which is equivalent tork ≤ d(xk,o)/4, thereby leading to (iii) of (3.9). To see that (iv) of (3.9)
holds, if z ∈ Bm for somem ∈ {1,2, . . . , k}, then by the increasing property of{d(xk,o)}k∈N and
(iii), we obtain

d(z,o) ≤ d(z, xm) + d(xm,o) < rm + d(xm,o) ≤
5
4

d(xm,o) ≤
5
4

d(xk,o)

and, hence,∪m
k=1Bm is contained in the ballB(0, 5

4d(xk,o)). In this way, we have constructed a
sequence of balls{Bk}k∈N satisfying (i)-(ii)-(iii)-(iv) of (3.9).

For anyk ∈ Z, if x ∈ Bk+1 andy ∈ ∪k
m=1Bm, then we have by (i), (iii) and (iv) in (3.9) that

d(x, y) ≥ d(xk+1,o) − d(xk+1, x) − d(o, y)

≥ d(xk+1,o) −
d(xk+1,o)

4
−

5d(xk,o)
4

=
3d(xk+1,o)

4
−

5d(xk,o)
4

≥
d(xk,o)

4
≥ 2k−3λ. (3.11)

This shows that the distance betweenBk+1 and∪k
m=1Bm goes to infinity ask → ∞. In particular,

the sequence{Bk}k∈N are mutually disjoint. Thus, for anyn ∈ N, upon letting

En := B2n and Fn := B2n−1, (3.12)

we see that{En}n∈N, {Fn}n∈N are exactly two sequences of Borel sets satisfying (3.5).
Let us emphasize that, for the sets{En}n∈N and {Fn}n∈N in (3.12), the corresponding jump

kernelJ from (3.6) is essentially larger thanJ0 on a large set. Indeed, for anyn ∈ N and (x, y) ∈
En × Fn, it follows from (3.10) and (3.11) that

d(x, y) ≥ dist(En, Fn) = dist(B2n, B2n−1) ≥
d(x2n−1,o)

4
≥ 22n−4λ,

which combined with (3.10) andB2n−1 ⊂ B(o,5d(x2n−1,o)/4) (see (iv) of (3.9)) yields that for any
z ∈ B(o,22n−4λ),

d(z, x) ≤ d(z,o) + d(o, y) + d(y, x) < 22n−4λ +
5
4

d(x2n−1,o) + d(y, x) < 7d(x, y),

so thatB(o,22n−4λ) ⊂ B(x, 7d(x, y)) and, hence,

V(o,22n−4λ) ≤ V(x,7d(x, y)) ≤ C3
DV(x, y).

Thus, for any (x, y) ∈ En × Fn, we obtain using (3.2) andV(x, y) ' V(y, x) (see (VD)) that

1En×Fn(x, y)

W(x,d(x, y))
∙

1
J0(x, y)

' V(x, y) & V(o,22n−4λ).

This together with the assumptionμ(X) = ∞ implies that, for the setA =
⋃∞

n=N(En × Fn),

lim
N→∞

(

inf
x,y∈A

J(x, y)
J0(x, y)

)

& lim
N→∞

V(o,22N−4λ) = ∞.
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Observe that the setA has an infinite measure:

(μ × μ)(A) =
∞∑

n=N

μ(En)μ(Fn) = ∞,

which follows from the mutually disjointness of{En × Fn}n∈N and Property (ii) of (3.5).

3.3 Product spaces

In this subsection, we study the conditions(TJ)W, (AB)W, (PI)W on product spaces. We show
in Theorem3.7 below that if on each metric measure space (Xi ,di , μi), all the conditions(TJ)W,
(AB)W, (PI)W are satisfied with a common scaling functionW(r) (independent of space variable
x), then the same conditions are satisfied also on the product space (X,d, μ) with the same scaling
functionW(r).

Let m ∈ N. For anyi ∈ {1,2, . . . ,m}, suppose that (Xi ,di , μi) is a doubling metric measure
space. We consider the product space

X := X1 × X2 × ∙ ∙ ∙ × Xm.

An elementx ∈ X can be written asx = (x1, . . . , xm), wherexi ∈ Xi for any i ∈ {1,2, . . . ,m}. If
xi , yi ∈ Xi andr ∈ (0,∞), we still adopt the notation

Vi(xi , r) := μi(Bi(xi , r)) and Vi(xi , yi) := μi(Bi(xi , di(xi , yi))),

where eachBi(x, r) = {y ∈ Xi : di(x, y) < r}. Define onX the following metric:

d(x, y) := max
1≤i≤m

di(xi , yi).

Clearly, for anyx ∈ X andr ∈ (0,∞), the ballB(x, r) in X takes the form of

B(x, r) =
m∏

i=1

Bi(xi , r) = B1(x1, r) × B2(x2, r) × ∙ ∙ ∙ × Bm(xm, r).

Consider on the product spaceX the product measureμ:

dμ := dμ1 × ∙ ∙ ∙ × dμm.

Then, for anyx ∈ X andr ∈ (0,∞),

μ(B(x, r)) =
m∏

i=1

μi(Bi(xi , r)) =
m∏

i=1

Vi(xi , r).

Clearly, volume doubling condition (VD) is satisfied on this product space (X,d, μ). Moreover, if
each (Xi ,di , μi) satisfies (RVD) then (X,d, μ) also satisfies (RVD) but with different constants.

For anyi ∈ {1,2, . . . ,m}, let Ji(xi ,dyi) be a jump measure onXi . As in Definition2.1, each
Ji(xi ,dyi) determines a bilinear form (Ei ,Fi). Let δxi be the Dirac measure inXi at the pointxi .

Define theproduct jump measure J(x,dy) onX by

J(x,dy) :=
m∑

i=1

δx1(dy1) ∙ ∙ ∙ δxi−1(dyi−1) Ji(x, dyi) δxi+1(dyi+1) ∙ ∙ ∙ δxm(dym). (3.13)
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It is easy to verify thatJ(x,dy) in (3.13) satisfies Definition2.1. If f is a Borel measurable function
onX × X, then it follows from (3.13) that

∫

X

∫

X
f (x; y) J(x,dy) dμ(x)

=

m∑

i=1

∫

X

∫

X
f (x; y)δx1(dy1) ∙ ∙ ∙ δxi−1(dyi−1) Ji(x, dyi) δxi+1(dyi+1) ∙ ∙ ∙ δxm(dym) dμ(x)

=

m∑

i=1

∫

X

∫

Xi

f (x1, . . . , xm; x1, . . . , xi−1, yi , xi+1, . . . , xm)Ji(x, dyi) dμ(x).

Consequently, theproduct bilinear form(E,F ) associated toJ(x, dy) in (3.13) is as follows: for
any Borel measurable functionsu, v onX,

E(u, v) :=
∫

X

∫

X
(u(x) − u(y))(v(x) − v(y)) J(x,dy) dμ(x)

=

m∑

i=1

∫

X

∫

Xi

(u(x1, . . . , xm) − u(x1, . . . , xi−1, yi , xi+1, . . . , xm))

× (v(x1, . . . , xm) − v(x1, . . . , xi−1, yi , xi+1, . . . , xm)) Ji(x, dyi) dμ(x). (3.14)

Assuming Theorems2.9, 2.13and2.15for the moment, we obtain the following result for the
product bilinear form and its heat kernel.

Theorem 3.7. Let m∈ N. For any i ∈ {1,2, . . . ,m}, suppose that(Xi ,di , μi) is a metric measure
space satisfying(VD) and(RVD). Moreover, on every(Xi ,di , μi), there is a bilinear form(Ei ,Fi),
which is determined by a jump measure Ji(xi ,dyi) dμi(xi). If for some space/time scaling function
r 7→W(r) that is independent of the space variable x, the conditions

(TJ)W + (PI)W + (AB)W (3.15)

are all satisfied for each(Ei ,Fi) and Ji(xi ,dyi) dμi(xi), then the product kernel J(x, dy) dμ(x) in
(3.13) also satisfies(3.15). As a consequence, the associated product bilinear form(E,F ) in
(3.14) is a regular Dirichlet form on L2(X) and the corresponding heat kernel{pt}t>0 is stochastic
complete and satisfies(LLE)W and(TP)W.

Proof. Once we have obtained that the product jump measureJ(x, dy) satisfies(TJ)W + (PI)W +

(AB)W, then applying Theorem2.9we obtain the regularity of (E,F ). Further, applying Theorems
2.13and2.15we obtain(LLE)W, (TP)W and the stochastic completeness of{pt}t>0.

Hence, let us show that the product jump measureJ(x, dy) satisfies(TJ)W + (PI)W + (AB)W.
For simplicity, we consider only the casem= 2 as the proof for a generalm is similar. Form= 2,
we have

J(x, dy) = J1(x1, dy1) δx2(dy2) + δx1(dy1) J2(x2, dy2) (3.16)

and

E(u, v) =
∫

X

∫

X1

(u(x1, x2) − u(y1, x2))(v(x1, x2) − v(y1, x2)) J1(x1, dy1) dμ(x)

+

∫

X

∫

X2

(u(x1, x2) − u(x1, y2))(v(x1, x2) − v(x1, y2)) J2(x2, dy2) dμ(x). (3.17)
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SinceW is independent of the space variablex, below we will simply writeW(r).

Step 1. Let us prove(TJ)W. For anyx = (x1, x2) ∈ X andR ∈ (0,∞), we write

J(x, B(x,R){) =
∫

B(x,R){
J(x,dy)

=

∫

(X1×X2)\(B1(x1,R)×B2(x2,R))
J1(x1, dy1) δx2(dy2)

+

∫

(X1×X2)\(B1(x1,R)×B2(x2,R))
δx1(dy1) J2(x2, dy2)

=

∫

B2(x2,R)

∫

X1\B1(x1,R)
J1(x1, dy1) δx2(dy2) +

∫

B1(x1,R)

∫

X2\B2(x2,R)
δx1(dy1) J2(x2, dy2)

=

∫

X1\B1(x1,R)
J1(x1, dy1) +

∫

X2\B2(x2,R)
J2(x2, dy2)

.
1

W(R)
,

as desired.

Step 2. Let us prove(PI)W. We will use the following formula: for any measurable setE ⊆ X
andu ∈ L1(E) ∩ L2(E),

∫

E
|u− uE|

2 dμ =
1

2μ(E)

"

E×E
|u(x) − u(y)|2 dμ(x) dμ(y), (3.18)

whereuE = 1
μ(E)

∫
E

u dμ. Indeed, (3.18) follows from the following identities:

|u− uE|
2 = u2 + (uE)2 − 2uuE and |u(x) − u(y)|2 = u2(x) + u2(y) − 2u(x)u(y).

Fix a pointa = (a1,a2) ∈ X, wherea1 ∈ X1 anda2 ∈ X2. Take a ballB(a, r) ⊆ X. In this step,
we use the notation

B = B(a, r) = B1 × B2,

whereB1 := B1(a1, r) ⊆ X1 andB2 := B2(a2, r) ⊆ X2.
Suppose thatu ∈ F ∩ L∞(X). By (3.17), we then have

E(u,u) =
∫

X2

∫

X1

∫

X1

|u(x1, x2) − u(y1, x2)|2 J1(x1, x2, dy1) dμ1(x1) dμ2(x2)

+

∫

X1

∫

X2

∫

X2

|u(x1, x2) − u(x1, y2)|2 J2(x1, x2, dy2) dμ2(x2) dμ1(x1)

< ∞.

From this, it follows that these two triple-integrals are finite. In particular, forμ2-a.a.x2 ∈ X2,
∫

X1

∫

X1

|u(x1, x2) − u(y1, x2)|2 J1(x1, x2, dy1) dμ1(x1) < ∞

and forμ1-a.a.x1 ∈ X1,
∫

X2

∫

X2

|u(x1, x2) − u(x1, y2)|2 J2(x1, x2, dy2) dμ2(x2) < ∞,
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which implies that

ux2(∙) := u(∙, x2) ∈ F1 ∩ L∞(X1) and ux1(∙) := u(x1, ∙) ∈ F2 ∩ L∞(X2).

Further, since eachJi(xi ,dyi) dμi(xi) and the associated bilinear form (Ei ,Fi) satisfies(PI)W, by
(3.18), we deduce that forμ2-a. a.x2 ∈ X2,

1
2μ(B1)

"

B1×B1

|u(x1, x2) − u(y1, x2)|2 dμ1(x1) dμ1(y1)

=

∫

B1

|ux2 − (ux2)B1 |
2 dμ1

≤ CW(R)
"

(κB1)×(κB1)
|ux2(x1) − ux2(y1)|2 J1(x1, dy1) dμ1(x1)

(3.19)

and forμ1-a. a.y1 ∈ X1,

1
2μ(B2)

"

B2×B2

|u(y1, x2) − u(y1, y2)|2 dμ2(x2) dμ2(y2)

≤ CW(R)
"

(κB2)×(κB2)
|uy1(x2) − uy1(y2)|2 J2(x2,dy2) dμ2(x2),

(3.20)

where the constantsκ ∈ [1,∞) andC ∈ (0,∞) are as in Definition2.5. In both sides of (3.19), by
integrating overB2 with respect to the variablex2 and the measuredμ2, we then obtain

1
2μ(B1)

∫

B2

"

B1×B1

|u(x1, x2) − u(y1, x2)|2 dμ1(x1) dμ1(y1)dμ2(x2)

≤ CW(R)
∫

B2

"

(κB1)×(κB1)
|u(x1, x2) − u(y1, x2)|2 J1(x1, dy1) dμ1(x1) dμ2(x2)

≤ CW(R)
"

(κB)×(κB)
|u(x1, x2) − u(y1, y2)|2 J1(x1, dy1) δx2(dy2) dμ1(x1) dμ2(x2). (3.21)

Similarly, in both sides of (3.20), by integrating overB1 with respect to the variabley1 and the
measuredμ1, we then obtain

1
2μ(B2)

∫

B1

"

B2×B2

|u(y1, x2) − u(y1, y2)|2 dμ2(x2) dμ2(y2) dμ1(y1)

≤ CW(R)
∫

B1

"

(κB2)×(κB2)
|u(y1, x2) − u(y1, y2)|2 J2(x2,dy2) dμ2(x2) dμ1(y1)

= CW(R)
∫

B1

"

(κB2)×(κB2)
|u(x1, x2) − u(x1, y2)|2 J2(x2,dy2) dμ2(x2) dμ1(x1)

≤ CW(R)
"

(κB)×(κB)
|u(x1, x2) − u(y1, y2)|2 J2(x2,dy2) δx1(dy1) dμ2(x2) dμ1(x1). (3.22)

Meanwhile, using (3.18), (3.21), (3.22) and the following inequality: for anyx = (x1, x2), y =

(y1, y2) ∈ B = B1 × B2,

|u(x) − u(y)| = |u(x1, x2) − u(y1, y2)| ≤ |u(x1, x2) − u(y1, x2)| + |u(y1, x2) − u(y1, y2)|,

we obtain
∫

B
|u(x) − uB|

2 dμ(x)
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=
1

2μ(B1)μ(B2)

"

B1×B2

"

B1×B2

|u(x1, x2) − u(y1, y2)|2 dμ1(x1) dμ2(x2) dμ1(y1) dμ2(y2)

≤
1

2μ(B1)μ(B2)

"

B2×B2

"

B1×B1

|u(x1, x2) − u(y1, x2)|2 dμ1(x1) dμ1(y1) dμ2(x2) dμ2(y2)

+
1

2μ(B1)μ(B2)

"

B1×B1

"

B2×B2

|u(y1, x2) − u(y1, y2)|2 dμ2(x2) dμ2(y2) dμ1(y1) dμ1(x1)

=
1

2μ(B1)

∫

B2

"

B1×B1

|u(x1, x2) − u(y1, x2)|2 dμ1(x1) dμ1(y1) dμ2(x2)

+
1

2μ(B2)

∫

B1

"

B2×B2

|u(y1, x2) − u(y1, y2)|2 dμ2(x2) dμ2(y2) dμ1(y1)

≤ CW(R)
"

(κB)×(κB)
|u(x1, x2) − u(y1, y2)|2 J1(x1, dy1) δx2(dy2) dμ1(x1) dμ2(x2)

+ CW(R)
"

(κB)×(κB)
|u(x1, x2) − u(y1, y2)|2 J2(x2,dy2) δx1(dy1) dμ2(x2) dμ1(x1)

= CW(R)
"

(κB)×(κB)
|u(x1, x2) − u(y1, y2)|2 J(x,dy) dμ2(x2) dμ1(x1). (by (3.16))

This proves thatJ(x, dy) satisfies(PI)W.

Step 3. Let us prove(AB)W. Let 0 < R < R+ r < R′ < ∞ anda = (a1,a2) ∈ X, where
a1 ∈ X1 anda2 ∈ X2. Take three concentric balls in the product spaceX = X1 × X2, say





B0 = B(a,R) = B1(a1,R) × B2(a2,R);

B = B(a,R+ r) = B1(a1,R+ r) × B2(a2,R+ r);

Ω = B(a,R′) = B1(a1,R′) × B2(a2,R′).

To simplify the notation, below we setB′i := Bi(ai ,R′) andBi := Bi(ai ,R+ r), wherei = 1,2.
Let u ∈ F ′∩L∞(X), where we recall thatF ′ = {F +c : c is a constant}. Just like the arguments

in the beginning ofStep 2, we now have

ux2(∙) := u(∙, x2) ∈ F ′1 ∩ L∞(X1) and ux1(∙) := u(x1, ∙) ∈ F
′
2 ∩ L∞(X2),

where eachF ′i is defined in a similar manner.
Fix i ∈ {1,2}. Since on each (Xi ,di , μi) the conditions (VD), (RVD), (TJ)W, (PI)W and(AB)W

are satisfied, we derive that Theorem2.9(iii) holds for each (Xi ,di , μi). Then, using Lemmas5.5
and5.3from Section5 below (see also Remark5.4therein), we obtain that there exists a universal
cutoff function

φi ∈ cutoff(Bi(ai ,R), Bi(ai ,R+ r))

such that for allu ∈ F ′i ∩ L∞(Xi),

"

B′1×B′1

|ux2(x1)|2|φ1(x1) − φ1(y1)|2 J1(x1,dy1) dμ1(x1)

≤ ζ
"

B1×B1

|φ1(x1)|2|ux2(x1) − ux2(y1)|2J1(x1,dy1) dμ1(x1)

+
C

W(r)

∫

B′1

|ux2(x1)|2 dμ1(x1) (3.23)
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and
"

B′2×B′2

|ux1(x2)|2|φ2(x2) − φ2(y2)|2 J2(x2,dy2) dμ2(x2)

≤ ζ
"

B2×B2

|φ2(x2)|2|ux1(x2) − ux1(y2)|2J2(x2,dy2) dμ2(x2)

+
C

W(r)

∫

B′2

|ux1(x2)|2 dμ2(x2). (3.24)

Now, for anyx = (x1, x2) ∈ X, define

φ(x) = φ(x1, x2) = φ1(x1)φ2(x2).

Note thatφ ≡ 1 onB0 = B1(a1,R) × B2(a2,R). Also, suppφ ⊆ B1 × B2 = B. The continuity ofφ
onX is obvious. Hence,φ ∈ cutoff(B0, B). For anyx = (x1, x2) ∈ X andy = (y1, y2) ∈ X, it holds

|φ(x1, x2) − φ(y1, x2)| = |φ1(x1) − φ1(y1)||φ2(x2)|

and
|φ(x1, x2) − φ(x1, y2)| = |φ1(x1)||φ2(x2) − φ2(y2)|.

By these and (3.16), we write
"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

=

∫

B′2




"

B′1×B′1

|ux2(x1)|2|φ1(x1) − φ1(y1)|2J1(x1, dy1) dμ1(x1)


 |φ2(x2)|2 dμ2(x2)

+

∫

B′1




"

B′2×B′2

|ux1(x2)|2|φ2(x2) − φ2(y2)|2 J2(x2,dy2) dμ2(x2)


 |φ1(x1)|2dμ1(x1).

If we integrate in both sides of (3.23) with respect to|φ2(x2)|2 dμ2(x2), and also integrate in both
sides of (3.24) with respect to|φ1(x1)|2 dμ1(x1), then we continue the above estimate via

"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
∫

B′2

"

B1×B1

|φ1(x1)φ2(x2)|2|ux2(x1) − ux2(y1)|2J1(x1,dy1) dμ1(x1) dμ(x2)

+ ζ

∫

B′1

"

B2×B2

|φ1(x1)φ2(x2)|2|ux1(x2) − ux1(y2)|2J2(x2,dy2) dμ2(x2) dμ1(x1)

+
2C

W(r)

∫

B′2

∫

B′1

|u(x1, x2)|2 dμ1(x1) dμ2(x2).

From suppφ ⊆ B and (3.16), it follows that the sum of the first two terms is equal to

ζ

"

B×B
|φ(x)|2|u(x) − u(y)|2J(x,dy) dμ(x).

We therefore obtain
"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
"

B×B
|φ(x)|2|u(x) − u(y)|2J(x,dy) dμ(x) +

2C
W(r)

∫

Ω

|u(x)|2 dμ(x).

This proves the validity of(AB)W for the product jump measureJ(x,dy). �
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4 Regularity of Dirichlet forms

This section is devoted to the proof of the main Theorem2.9. The key ingredients are a self
improvement property of(AB)W and a partition of unity based on cutoff functions.

4.1 A comparison of(AB)W and (AB′)W

It is obvious that the condition(AB′)W is stronger than(AB)W. Next, we show the following
equivalent versions of(AB)W and(AB′)W.

Lemma 4.1. Letτ ∈ (0,∞). Under(TJ)W, the formulae(2.5) and(2.10) can be improved into the
following:

"

Ω×Ω
d(x,y)<τr

|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
"

B×B
d(x,y)<τr

|φ(x)|2|u(x) − u(y)|2J(x,dy)dμ(x) + Cτ sup
z∈Ω

1
W(z, r)

∫

Ω

|u(x)|2 dμ(x) (4.1)

and
"

Ω×Ω
d(x,y)<τr

|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
"

(B\B0)×(B\B0)
d(x,y)<τr

|φ(x)|2|u(x) − u(y)|2J(x,dy)dμ(x) + Cτ sup
z∈Ω

1
W(z, r)

∫

Ω

|u(x)|2 dμ(x), (4.2)

respectively, where Cτ is a positive constant depending onτ but independent of the main parame-
ters involved.

Proof. We will prove here only (4.1) as the proof of (4.2) goes in a similar way.
Note that anyφ ∈ cutoff(B0, B) satisfies 0≤ φ ≤ 1. From(TJ)W and (2.2), we derive that

"

Ω×Ω
d(x,y)≥τr

|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x) ≤
∫

Ω

|u(x)|2
(∫

d(x,y)≥τr
J(x,dy)

)

dμ(x)

≤ C
∫

Ω

|u(x)|2

W(x, τr)
dμ(x)

≤ CCW max{τ−β1, τ−β2} sup
z∈Ω

1
W(z, r)

∫

Ω

|u(x)|2 dμ(x),

whereCW andβ1, β2 are the constants in (2.2). Similarly, we have
"

B×B
d(x,y)≥τr

|φ(x)|2|u(x) − u(y)|2 J(x,dy) dμ(x) ≤ 2
"

B×B
d(x,y)≥τr

(|u(x)|2 + |u(y)|2) J(x,dy) dμ(x)

= 4
"

B×B
d(x,y)≥τr

|u(x)|2 J(x,dy) dμ(x)

≤ 4C
∫

B

|u(x)|2

W(x, τr)
dμ(x)

≤ 4CCW max{τ−β1, τ−β2} sup
z∈B

1
W(z, r)

∫

B
|u(x)|2 dμ(x).

Thus, we obtain (4.1), which finishes the proof. �
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Now we show that both(AB)W and(AB′)W imply that there are sufficiently many cutoff func-
tions in the domainF of the bilinear formE.

Lemma 4.2. Under the assumption of(TJ)W, if either (AB)W or (AB′)W holds, then the function
φ in (2.5) or (2.10) can be taken to satisfyφ ∈ F .

Proof. We prove this only for the condition(AB′)W as the same argument works for(AB)W.
Suppose that the condition(AB′)W holds andu ∈ F ′ ∩ L∞(X). For x0 ∈ X and 0< R <

R+ r < R′ < ∞, set the three concentric ballsB0, B,Ω as in (2.4). Our main aim is to find a
functionφ ∈ cutoff(B0, B) ∩ F satisfying (2.10), but with different constantsζ andC.

To this end, for any givenε ∈ (0,∞), via applying(AB′)W to the function

uε := |u| + ε,

we find a functionφε ∈ cutoff(B0, B) such that
"

Ω×Ω
|uε(x)|2|φε(x) − φε(y)|2 J(x,dy) dμ(x)

≤ ζ
"

(B\B0)×(B\B0)
|φε(x)|2|uε(x) − uε(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

C
W(z, r)

∫

Ω

|uε |
2 dμ.

Further, from
|u(x)|2 + ε2 ≤ |uε(x)|2 ≤ 2(|u(x)|2 + ε2)

and
|uε(x) − uε(y)| = ||u(x)| − |u(y)|| ≤ |u(x) − u(y)|,

it follows that
"

Ω×Ω
|uε(x)|2|φε(x) − φε(y)|2 J(x,dy) dμ(x)

≤ ζ
"

(B\B0)×(B\B0)
|φε(x)|2|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

2C
W(z, r)

(∫

Ω

|u|2 dμ + ε2μ(Ω)

)

.

(4.3)

Choose a numberε0 ∈ (0,∞) that satisfies

ε2
0 =

1
μ(Ω)

∫

Ω

|u(x)|2 dμ(x).

For this specialε0, we derive from (4.3) that
"

Ω×Ω
|u(x)|2|φε0(x) − φε0(y)|2 J(x,dy) dμ(x)

≤ ζ
"

(B\B0)×(B\B0)
|φε0(x)|2|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

4C
W(z, r)

∫

Ω

|u(x)|2 dμ(x) (4.4)

and

ε2
0

"

Ω×Ω
|φε0(x) − φε0(y)|2 J(x,dy) dμ(x)

≤ ζ
"

(B\B0)×(B\B0)
|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

4C
W(z, r)

∫

Ω

|u(x)|2 dμ(x). (4.5)
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Observe that (4.4) exactly shows that the cutoff functionφε0 satisfies (2.10).
It remains to show thatφε0 ∈ F . Clearly,φε0 ∈ L2(X). Note thatφε0 ∈ cutoff(B0, B), which

implies that suppφε0 ⊆ B and, hence,φε0(x) − φε0(y) , 0 only if x ∈ B or y ∈ B. By this and
symmetry, we then obtain

E(φε0, φε0) =
∫

X

∫

X
|φε0(x) − φε0(y)|2 J(x,dy) dμ(x)

≤ 2
∫

B

∫

X
|φε0(x) − φε0(y)|2 J(x,dy) dμ(x). (4.6)

If x ∈ B andd(y, x) < R′ − (R+ r), then

d(y, x0) ≤ d(y, x) + d(x, x0) < R′

and, hence,y ∈ Ω = B(x0,R′). Combining (4.5) andu ∈ F ′ ∩ L∞(X) gives

∫

B

∫

Ω

|φε0(x) − φε0(y)|2 J(x,dy) dμ(x) ≤ ε−2
0

(

ζE(u,u) + sup
z∈Ω

4C
W(z, r)

‖u‖2L2(X)

)

< ∞, (4.7)

where the last finiteness property follows from (2.2) and the fact that

sup
z∈Ω

1
W(z, r)

≤
CW

W(x0,R′)

(
R′

r

)β2

< ∞.

Meanwhile, by 0≤ φε0 ≤ 1 and(TJ)W, we obtain
∫

B

∫

d(y,x)≥R′−(R+r)
|φε0(x) − φε0(y)|2 J(x,dy) dμ(x) ≤

∫

B

∫

d(y,x)≥R′−(R+r)
J(x,dy) dμ(x)

≤
∫

B

C
W(x,R′ − (R+ r))

dμ(x)

≤ sup
x∈B

Cμ(B)
W(x,R′ − (R+ r))

< ∞. (4.8)

Inserting (4.7) and (4.8) into (4.6) leads to

E(φε0, φε0) ≤ 2

(∫

B

∫

Ω

+

∫

B

∫

d(y,x)≥R′−(R+r)

)

|φε0(x) − φε0(y)|2 J(x,dy) dμ(x) < ∞.

Lettingφ = φε0, we conclude thatφ ∈ cutoff(B0, B) ∩ F satisfies (2.10). This ends the proof. �

4.2 Self improvement property of(AB)W

In the next lemma we prove that the coefficient ζ > 0 on the right hand side of (2.5) can be
made arbitrarily small. This self-improvement property of condition(AB)W was first observed by
Andres and Barlow in [2] for local Dirichlet forms. For jump-type Dirichlet form this property
was proved in [22] but in a more restricted setting.

Lemma 4.3. Under the assumptions of(TJ)W and (AB)W, the following holds: for anyλ > 0,
there exists C(λ) > 0 such that, for any

u ∈ F ′ ∩ L∞(X)
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and for any three concentric balls





B0 = B(x0,R);

B = B(x0,R+ r);

Ω = B(x0,R′),

with x0 ∈ X and0 < R< R+ r < R′ < ∞, there existsφ(λ) ∈ cutoff(B0, B) ∩ F such that
"

Ω×Ω
|u(x)|2|φ(λ)(x) − φ(λ)(y)|2J(x, dy) dμ(x)

≤ λ
"

B×B
|φ(λ)(x)|2|u(x) − u(y)|2J(x, dy) dμ(x) + sup

z∈Ω

C(λ)
W(z, r)

∫

Ω

|u(x)|2 dμ(x). (4.9)

Proof. The argument here is similar to the proof of [22, Lemma 7.1], but does not rely on the
regularity of the Dirichlet form.

Let B0, B, Ω, x0, r, R, R′ andu be as in the statement of this lemma. Ifu = 0 holdsμ-a.e. on
Ω, thenφ ≡ 0 satisfies (4.9). So, in the rest of the proof, we may assume that‖u‖L2(Ω) > 0. Let

ε :=

(
1

μ(Ω)

∫

Ω

u2 dμ

) 1
2

and uε := |u| + ε.

Fix a numberq ∈ (1,∞). For any integerk ≥ 0, define the sequences





rk := (1− q−k)r;

sk := rk − rk−1 = (q− 1)q−kr;

Bk := B(x0,R+ rk);

Uk := Bk+1 \ Bk.

Note thatrk ↑ r and, hence,Bk ↑ B ask → +∞. Moreover,∪∞k=1Uk = B \ B1. Applying (AB)W

to the functionuε and to each triple (Bk, Bk+1,Ω), we obtain that there existsφk ∈ cutoff(Bk, Bk+1)
such that

"

Ω×Ω
u2
ε(x)(φk(x) − φk(y))2J(x, dy) dμ(x)

≤ ζ
"

Bk+1×Bk+1

φk(x)2(uε(x) − uε(y))2J(x, dy) dμ(x) + sup
z∈Ω

C
W(z, sk+1)

∫

Ω

u2
ε dμ,

whereζ,C are universal constants in the definition of condition(AB)W. Since

|uε(x) − uε(y)| ≤ |u(x) − u(y)| for all x, y ∈ X,

and ∫

Ω

u2
ε dμ ≤ 2

∫

Ω

u2 dμ + 2ε2μ(Ω) = 4
∫

Ω

u2 dμ,

we have
"

Ω×Ω
u2
ε(x)(φk(x) − φk(y))2J(x, dy) dμ(x)

≤ ζ

"

Bk+1×Bk+1

φk(x)2(u(x) − u(y))2J(x, dy) dμ(x) + sup
z∈Ω

4C
W(z, sk+1)

∫

Ω

u2 dμ. (4.10)



30 Jun Cao, Alexander Grigor’yan, Eryan Hu, Liguang Liu

Setb0 := 1. Letβ2 be the exponent determined in (2.2). For anyk ≥ 1, define the sequences



bk := q−β2k;

ak := bk−1 − bk = (qβ2 − 1)q−β2k,

and the function

φ := φ(q) :=
∞∑

k=1

akφk.

Since eachφk is continuous and
∞∑

k=1

ak = b0 = 1,

we have that
∑N

k=1 akφk → φ uniformly asN→ ∞, and thenφ ∈ C(X). In particular,





0 ≤ φ ≤ 1 onX;

φ = 1 onB0;

φ = 0 onB{.

That is,φ ∈ cutoff(B0, B). It remains to prove the following:

(i) φ ∈ F ;

(ii) there is someq ∈ (1,∞) such thatφ satisfies (4.9).

To verify (i), for anyk ≥ 1, sinceuε ≥ ε and 0≤ φk ≤ 1, we derive from (4.10) that
"

Ω×Ω
(φk(x) − φk(y))2J(x, dy) dμ(x) ≤ ζε−2E(u,u) + sup

z∈Ω

4Cε−2

W(z, sk+1)

∫

Ω

u2 dμ.

From (2.2), it follows that

W(z, r)
W(z, sk+1)

≤ CW

(
r

sk+1

)β2

= CW

(
qk+1

q− 1

)β2

, (4.11)

whereCW andβ2 are the same constants as in (2.2). This, together with the fact that suppφk ⊆ B
and the symmetry:J(x,dy) dμ(x) = J(y,dx) dμ(y), yields that

E(φk, φk) =
"

X×X
(φk(x) − φk(y))2J(x, dy) dμ(x)

=

"

Ω×Ω
(φk(x) − φk(y))2J(x, dy) dμ(x)

+

"

B×Ω{
φ2

k(x)J(x, dy) dμ(x) +
"

Ω{×B
φ2

k(y)J(x, dy) dμ(x)

≤ ζε−2E(u,u) +
4CCWε

−2q(k+1)β2

(q− 1)β2
sup
z∈Ω

1
W(z, r)

∫

Ω

u2 dμ + 2
"

B×Ω{
φ2

k(x)J(x, dy) dμ(x).

Note that 0≤ φk ≤ 1 andd(B,Ω{) ≥ R′ − (R+ r) > 0. The latter, combined with (2.2) and the
condition(TJ)W, gives

"

B×Ω{
φ2

k(x)J(x, dy) dμ(x) ≤ C
∫

B

1
W(x,R′ − (R+ r))

dμ(x) ≤
CCWμ(B)
W(x0,R′)

(
R′

R′ − (R+ r)

)β2

< ∞,
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whereC is the constant given in(TJ)W. Consequently, there existsC := C(u,q, x0,R′,R, r, ε) > 0
(it depends on all variables in question except fork), such that

E(φk, φk) ≤ C(u,q, x0,R
′,R, r, ε).

Moreover, sinceφ =
∑∞

k=1 akφk and
∑∞

k=1 ak = 1, we obtain that

√
E(φ, φ) ≤

∞∑

k=1

ak

√
E(φk, φk) ≤

√
C(u,q, x0,R′,R, r, ε) < ∞,

which finishes the proof of (i).
For the proof of (ii), applying (4.10), (4.11) and(TJ)W, one can follow the second part of the

proof of [22, Lemma 7.1] (see the arguments in [22, p. 138-142], and see also the arguments in
[21, pp. 456-459]) to obtain that

"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x, dy) dμ(x)

≤ 6ζ
q2β2(qβ2 − 1)

qβ2 + 1

"

B×B
φ2(x)(u(x) − u(y))2 J(x, dy) dμ(x)

+ CCW
q2β2

(q− 1)β2
sup
z∈Ω

1
W(z, r)

∫

Ω

u2 dμ.

Here we omit the details. Moreover, for anyλ > 0, we can chooseq0 ∈ (1,∞) sufficiently close to
1 such that

6ζ
q2β2

0 (qβ2
0 − 1)

qβ2
0 + 1

= λ.

In this case, the functionφ = φ(q0) satisfies (4.9). This completes the proof. �

Remark 4.4. Under(TJ)W, the inequality (2.5) is equivalent to the following inequality:
"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤ ζ
"

Ω×Ω
|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

C
W(z, r)

∫

Ω

|u(x)|2 dμ(x) (4.12)

(although (2.5) is a priori stronger than (4.12)). That is, the integration areaB × B in the first
integral on the right hand side of (2.5) can be replaced byΩ × Ω and there is noφ(x)2 in the first
integral on the right hand side of (4.12).

Now, we verify that (4.12) implies (2.5). With B0, B andΩ as in (2.4), we observe that for
B′ = B(x0,R+ r

2) there exists someφ ∈ cutoff(B0, B′) that satisfies (4.12) with Ω therein replaced
by B = B(x0,R+ r). This can be applied to estimate the first double-integral in the right hand side
of the forthcoming formula:

"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x) =

("

B×B
+

"

(Ω\B)×B
+

"

B×(Ω\B)

)

∙ ∙ ∙ ,

in which the latter two double-integrals can be treated by using(TJ)W and suppφ ⊆ B′. Thus, we
obtain that (4.12) is equivalent to

"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)
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≤ ζ
"

B×B
|u(x) − u(y)|2 J(x,dy) dμ(x) + sup

z∈Ω

C
W(z, r)

∫

Ω

|u(x)|2 dμ(x).

Then, one can repeat the proof of Lemma4.3 by using the above inequality instead of (2.5) to
obtain (4.9). Finally, observe that (4.9) implies (2.5).

Remark 4.5. Lemma4.3 will be used to approximate elements inF via bounded compactly
supported functions ofF (see Lemma4.10below).

4.3 Partition of unity under (AB)W or (AB′)W

This subsection is devoted to construction of a partition of unity onX by using the cutoff
functions from the condition(AB)W or (AB′)W. Due to similarity, we state and prove the result
only for the condition(AB)W.

Proposition 4.6. Suppose that(VD), (TJ)W and(AB)W hold. Then, for anyε ∈ (0,∞), there exists
a family of maximalε-separated points{xi}i∈I in X, where I is a countable index set, such that

(i) {Bi = B(xi , ε)}i∈I is a covering ofX;

(ii) {B(xi , ε/2)}i∈I is pairwise disjoint;

(iii) for any given numberκ ∈ [1,∞), there exists a positive constant N= N(κ), independent of
{xi}i∈I andε, such that

∑

i∈I

1B(xi ,15κε) ≤ N. (4.13)

Consequently, for any u∈ F ′ ∩ L∞(X), there is a family of functions{φi}i∈I in F such that the
following hold:

(a) for each i∈ I, φi ∈ Cc(X), 0 ≤ φi ≤ 1 and suppφi ⊆ 2Bi;

(b) for any x∈ X, it holds
∑

i∈I φi(x) ≡ 1;

(c) for each i∈ I, settingΛi := { j ∈ I : 3Bj ∩ 3Bi , ∅} and uBi :=
>

Bi
u dμ = 1

μ(Bi )

∫
Bi

u dμ, then

"

(3Bi )×(3Bi )
|u(x) − uBi |

2|φi(x) − φi(y)|2 J(x, dy) dμ(x)

≤ C




∑

j∈Λi

"

(3Bj )×(3Bj )
|u(x) − u(y)|2 J(x, dy) dμ(x) +

1
W(xi , ε)

∫

13Bi

|u− uBi |
2 dμ


 ,

(4.14)

where the constant C∈ (0,∞) is independent of u,ε and {xi}i∈I . Moreover, the cardinality
ofΛi is bounded by N.

Proof. Let {xi}i∈I be a family of maximalε-separated points inX, that is

inf
i, j

d(xi , xj) ≥ ε and inf
i∈I

d(x, xi) < ε.

Then, it is easy to validate (i) and (ii). The countable property ofI is guaranteed by (ii) and (VD).
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To show (iii), we fix a numberκ ∈ [1,∞). For anyx ∈ X, suppose thatx ∈ 15κBi for some
i ∈ I . So, the proof of (iii) falls into validating that the cardinality of{ j ∈ I : (15κBj)∩(15κBi) , ∅}
is bounded by a numberN. To this end, if (15κBj) ∩ (15κBi) , ∅, thend(xj , xi) < 30κε, so that

1
2

Bj = B(xj , ε/2) ⊆ B(xi ,31κε) = 31κBi

and, hence, by (2.7),

μ(31κBi)

μ(1
2Bj)

≤ C′D

(
d(xi , xj) + 31κε

ε/2

)α+
≤ C′D(122κ)α+ ,

whereC′D andα+ are as defined in (2.7). This, along with the mutually disjointness of{12Bj} j∈I
from (ii), yields that

]({ j ∈ I : (15κBj) ∩ (15κBi) , ∅}) ≤ C′D(122κ)α+
∑

{ j∈I : (15κBj )∩(15κBi ),∅}

μ(1
2Bj)

μ(31κBi)

≤ C′D(122κ)α+ . (4.15)

Thus, settingN = N(κ) = C′D(122κ)α+ gives (iii).
From (4.15), it follows directly that]Λi ≤ N. The proof of (a)-(b)-(c) is split into the following

three steps.

Step 1: construction of{φi}i∈I . Suppose thatu ∈ F ′ ∩ L∞(X). For anyi ∈ I , if we apply
(AB)W to the function

ũi := |u− uBi | +
∑

j∈Λi

|uBj − uBi |,

with x0 = xi , R = ε, r = ε/4 andR′ = 3ε therein, then there existsψi ∈ cutoff(Bi ,
5
4Bi) ∩ F such

that
"

(3Bi )×(3Bi )
|ũi(x)|2|ψi(x) − ψi(y)|2 J(x, dy) dμ(x)

≤ ζ
"

(3Bi )×(3Bi )
|ψi(x)|2|ũi(x) − ũi(y)|2 J(x, dy) dμ(x) +

C
W(xi , ε)

∫

3Bi

|ũi(x)|2 dμ(x),

where the constantsζ andC are nonnegative and independent ofu, {xi}i∈I andε. Note that hereψi

can be required to belong toF because of Lemma4.2. Moreover, here we also used the fact that
for anyτ ≥ 1 the assumption (2.2) implies that

sup
z∈τBi

1
W(z, ε)

≤ CW
τβ2

W(xi , ε)
.

Next, from the fact that

|ũi(x) − ũi(y)| = ||u(x) − uBi | − |u(y) − uBi || ≤ |u(x) − u(y)|,

we then derive
"

(3Bi )×(3Bi )
(|u(x) − uBi | +

∑

j∈Λi

|uBj − uBi |)
2|ψi(x) − ψi(y)|2 J(x, dy) dμ(x)
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≤ ζ
"

(3Bi )×(3Bi )
|ψi(x)|2|u(x) − u(y)|2 J(x, dy) dμ(x)

+
2C

W(xi , ε)

∫

3Bi

|u(x) − uBi |
2dμ(x) +

2Cμ(3Bi)
W(xi , ε)




∑

j∈Λi

|uBj − uBi |




2

. (4.16)

Before going further, we deal with the third term in the right hand side of (4.16). For anyi ∈ I
and j ∈ Λi , we haved(xj , xi) < 6ε, so that

Bj = B(xj , ε) ⊆ B(xi ,7ε) = 7Bi .

From this, the Ḧolder inequality and (VD), we deduce

|uBj − uBi |
2 =




?

Bj

(u− uBi ) dμ



2

≤
?

Bj

|u− uBi |
2 dμ

≤
1

μ(Bj)

∫

7Bi

|u− uBi |
2 dμ

≤ C3
D

?

7Bi

|u− uBi |
2 dμ, (4.17)

which, along with (4.15) and]Λi ≤ N, further yields




∑

j∈Λi

|uBj − uBi |




2

≤ C3
D




∑

j∈Λi

(?

7Bi

|u− uBi |
2 dμ

) 1
2




2

≤ C3
DN2

?

7Bi

|u− uBi |
2 dμ.

Thus, the formula (4.16) amounts to saying that

"

(3Bi )×(3Bi )
(|u(x) − uBi | +

∑

j∈Λi

|uBj − uBi |)
2|ψi(x) − ψi(y)|2 J(x, dy) dμ(x)

.
"

(3Bi )×(3Bi )
|ψi(x)|2|u(x) − u(y)|2 J(x, dy) dμ(x) +

1
W(xi , ε)

∫

7Bi

|u(x) − uBi |
2 dμ(x). (4.18)

Now, for anyx ∈ X, define

Ψ(x) :=
∑

i∈I

ψi(x).

By (4.13) and 0≤ ψi ≤ 12Bi , we know immediately that 1≤ Ψ(x) ≤ N. Moreover, let

φi(x) :=
ψi(x)
Ψ(x)

.

It is obvious that{φi}i∈I satisfy (a) and (b). So, we are left to validateφi ∈ F and (4.14) in (c).

Step 2: verification that φi ∈ F . Clearly, eachφi ∈ L2(X). Fix i ∈ I and let

Λ′i := I \ Λi =
{
j ∈ I : B(xj ,3ε) ∩ B(xi ,3ε) = ∅

}
.
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For anyx, y ∈ X, write

|φi(x) − φi(y)| =
∣∣∣∣∣
ψi(x)Ψ(y) − ψi(y)Ψ(x)

Ψ(x)Ψ(y)

∣∣∣∣∣

≤ |ψi(x)Ψ(y) − ψi(y)Ψ(x)|

≤ |ψi(x) − ψi(y)|Ψ(y) + |Ψ(x) − Ψ(y)|ψi(y)

≤ N |ψi(x) − ψi(y)| +
∑

j∈I

∣∣∣ψ j(x) − ψ j(y)
∣∣∣ψi(x). (4.19)

If j ∈ Λ′i , then by suppφi = suppψi ⊆ B(xi ,
5
4ε), we obtainψ j(x)ψi(x) = 0 andd(xj , xi) ≥ 3ε,

where the latter implies thatψ j(y)ψi(x) , 0 only if d(y, x) > ε. From this and (4.19), it follows
that

|φi(x) − φi(y)| ≤ N |ψi(x) − ψi(y)| +
∑

j∈Λi

∣∣∣ψ j(x) − ψ j(y)
∣∣∣ 12Bi (x) +

∑

{ j∈Λ′i : d(x,y)>ε}

ψ j(y)ψi(x). (4.20)

Combining (4.20) with the Minkowski inequality yields

√
E(φi , φi) =

(∫

X

∫

X
|φi(x) − φi(y)|2 J(x, dy) dμ(x)

) 1
2

≤ N

(∫

X

∫

X
|ψi(x) − ψi(y)|2 J(x, dy) dμ(x)

) 1
2

+
∑

j∈Λi

(∫

X

∫

X
|ψ j(x) − ψ j(y)|212Bi (x) J(x, dy) dμ(x)

) 1
2

+




"

d(x,y)>ε

∣∣∣∣∣∣∣∣

∑

j∈Λ′i

ψ j(y)ψi(x)

∣∣∣∣∣∣∣∣

2

J(x, dy) dμ(x)




1
2

. (4.21)

Note that the first two terms in the right hand side of (4.21) is bounded by

N
√
E(ψi , ψi) +

∑

j∈Λi

√
E(ψ j , ψ j),

which is a finite number (may depend oni) by terms of]Λi ≤ N and eachψ j ∈ F . For the third
term in the right hand side of (4.21), we have by (iii),(TJ)W and (2.2) that

"

d(x,y)>ε

∣∣∣∣∣∣∣∣

∑

j∈Λ′i

ψ j(y)ψi(x)

∣∣∣∣∣∣∣∣

2

J(x, dy) dμ(x) ≤
∫

2Bi

∫

d(x,y)>ε




∑

j∈Λ′i

12Bj (y)




2

J(x, dy) dμ(x)

≤ N2
∫

2Bi

∫

d(x,y)>ε
J(x, dy) dμ(x)

. N2
∫

2Bi

1
W(x, ε)

dμ(x)

. N2 μ(2Bi)
W(xi , ε)

< ∞.

So, it follows from (4.21) thatE(φi , φi) < ∞ and, hence,φi ∈ F .
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Step 3: proof of (4.14). Since we have assumed(TJ)W, the argument in the proof of Lemma
4.1shows that it suffices to verify that

"

(3Bi )×(3Bi )
d(x,y)<ε/4

|u(x) − uBi |
2|φi(x) − φi(y)|2 J(x, dy) dμ(x)

can be controlled by the right hand side of (4.14). Based on (4.20), we write

"

(3Bi )×(3Bi )
d(x,y)<ε/4

|u(x) − uBi |
2|φi(x) − φi(y)|2 J(x, dy) dμ(x)

≤ N
"

(3Bi )×(3Bi )
d(x,y)<ε/4

|u(x) − uBi |
2|ψi(x) − ψi(y)|2 J(x, dy) dμ(x)

+
∑

j∈Λi

"

(3Bi )×(3Bi )
d(x,y)<ε/4

|u(x) − uBi |
2|ψ j(x) − ψ j(y)|2 J(x, dy) dμ(x)

=: I + II .

Invoking (4.18) and the fact 0≤ ψi ≤ 12Bi (x), we get

I . N

("

(3Bi )×(3Bi )
|u(x) − u(y)|2 J(x, dy) dμ(x) +

1
W(xi , ε)

∫

7Bi

|u(x) − uBi |
2 dμ(x)

)

,

as desired.
To estimate II, for anyj ∈ Λi , we havei ∈ Λ j , 3Bi ⊆ 9Bj and

|u(x) − uBi | ≤ |u(x) − uBj | + |uBj − uBi | ≤ |u(x) − uBj | +
∑

k∈Λ j

|uBk − uBj | = ũj .

Note that, ifd(x, y) < ε/4 andψ j(x) − ψ j(y) , 0, then by suppψ j ⊆ 5
4Bj , we derive that both

x, y ∈ 2Bj . Thus, applying (4.18) we obtain that, for anyj ∈ Λi ,

"

(3Bi )×(3Bi )
d(x,y)<ε/4

|u(x) − uBi |
2|ψ j(x) − ψ j(y)|2 J(x, dy) dμ(x)

≤
"

(2Bj )×(2Bj )

d(x,y)<ε/4

|ũj(x)|2|ψ j(x) − ψ j(y)|2 J(x, dy) dμ(x)

.
"

(3Bj )×(3Bj )
|ψ j(x)|2|u(x) − u(y)|2 J(x, dy) dμ(x) +

1
W(xj , ε)

∫

7Bj

|u(x) − uBj |
2 dμ(x). (4.22)

If j ∈ Λi , thend(xj , xi) < 6ε and, hence, 7Bj ⊆ 13Bi . Combining this with (4.17) and (VD) yields

∫

7Bj

|u(x) − uBj |
2 dμ(x) ≤ 2

∫

7Bj

(|u(x) − uBi |
2 + |uBi − uBj |

2) dμ(x)

.
∫

13Bi

|u(x) − uBi |
2 dμ(x).

Meanwhile, by the aforementioned fact 7Bj ⊆ 13Bi and (2.2), we see that

W(xi , ε) 'W(xj , ε).
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Using this, let us sum up inj ∈ Λi the both sides of (4.22). Applying also (4.15) and the fact
0 ≤ ψ j ≤ 12Bj , we obtain

II .
∑

j∈Λi

"

(3Bj )×(3Bj )
|u(x) − u(y)|2 J(x, dy) dμ(x) +

1
W(xi , ε)

∫

13Bi

|u(x) − uBi |
2 dμ(x).

A combination of the above upper estimates of I and II implies (4.14). �

Remark 4.7. The proof of Proposition4.6gives also a corresponding partition of unity under the
condition(AB′)W. Indeed, if(AB′)W holds, then items (i)-(ii)-(iii) and (a)-(b) of Proposition4.6
remain true, but with (c) therein replaced by the following (c′):

(c′) for eachi ∈ I ,
"

3Bi×3Bi

|u(x) − uBi |
2|φi(x) − φi(y)|2 J(x, dy) dμ(x)

≤ C




∑

j∈Λi

"

Sj×Sj

|u(x) − u(y)|2 J(x, dy) dμ(x) +
1

W(xi , ε)

∫

13Bi

|u(x) − uBi |
2 dμ(x)


 ,

whereSj := B(xj ,5ε/4) \ B(xj , ε).

The proof follows from the same arguments as that of Proposition4.6, but now we use(AB′)W

instead of(AB)W.

4.4 Proof of main Theorem2.9

Assuming (VD) + (TJ)W + (PI)W + (AB)W, we need to prove that the bilinear form (E,F ) is
a regular Dirichlet form, which amounts to the following three statements:F is dense inL2(X),
F ∩Cc(X) is dense inCc(X) as well as inF . These statements are proved in Propositions4.8, 4.9,
4.11below, thus constituting the proof of Theorem2.9.

Proposition 4.8. If cutoff(B1, B2)∩F , ∅ for all open balls B1, B2 with B1 b B2, thenF ∩Cc(X)
is dense inCc(X). In particular, if the condition(AB)W holds, thenF ∩ Cc(X) is dense inCc(X).

Proof. Since(AB)W holds, we have by Lemma4.2 that cutoff(B1, B2) ∩ F is non-empty for all
ballsB1, B2 with B1 b B2. Thus, it suffices to prove the density ofF ∩ Cc(X) in Cc(X) under the
assumption of cutoff(B1, B2) ∩ F , ∅ for all ballsB1, B2 with B1 b B2.

Fix xo ∈ X. Let A be the closure ofF ∩ Cc(X) in C0(X) under the norm‖ ∙ ‖L∞(X), where

C0(X) =

{

f ∈ C(X) : lim
d(x, xo)→∞

f (x) = 0

}

.

According to the Stone-Weierstrass theorem (see [18, p. 147, Corollary 8.3]), we have

A = C0(X),

provided thatA satisfies the following properties:

(a) A is a subalgebra ofC0(X), that is, f g ∈ A if f ,g ∈ A ;

(b) for anyx1, x2 ∈ X with x1 , x2, there existsφ ∈ A such thatφ(x1) , φ(x2);

(c) for anyx ∈ X, there existsφ ∈ A such thatφ(x) , 0.
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Once we have proved (a)-(b)-(c), we then derive fromCc(X) ⊆ C0(X) thatF ∩ Cc(X) is dense in
Cc(X).

To see (a), it is obvious that for anyf ,g ∈ F ∩ Cc(X) we havef g ∈ Cc(X) and, moreover, the
Minkowski inequality implies

E( f g, f g) =
∫

X

∫

X
| f (x)g(x) − f (y)g(y)|2 J(x, dy) dμ(x)

≤ 2
∫

X

∫

X
| f (x)[g(x) − g(y)]|2 J(x, dy) dμ(x)

+ 2
∫

X

∫

X
|[ f (x) − f (y)]g(y)|2 J(x, dy) dμ(x)

≤ 2‖ f ‖2L∞(X)E(g,g) + 2‖g‖2L∞(X)E( f , f ),

that is, f g ∈ F . In general, iff ,g ∈ A , then there exist sequences{ f j} j∈N and{gj} j∈N in F ∩Cc(X)
that respectively converges tof andg under theL∞-norm. Note that everyf jgj ∈ F ∩ Cc(X) and
{ f jgj} j∈N converges tof g under‖ ∙ ‖L∞(X). This proves thatf g ∈ A , so that (a) holds.

To show (b), for anyx1, x2 ∈ X with x1 , x2, we consider two disjoint ballsB0 := B(x1, r) and
B := B(x1,2r) with r < d(x1, x2)/3 and obtain by the assumption cutoff(B0, B)∩F , ∅, that there
exists a cutoff function

φ ∈ cutoff(B0, B) ∩ F .

Obviously,φ ∈ A . Moreover,φ separates the pointsx1 andx2, since

φ(x1) = 1 , 0 = φ(x2).

This last formula also indicates thatφ does not vanish on any pointx1 ∈ X, which implies (c).
Thus, we complete the proof of Proposition4.8.

�

Proposition 4.9. If cutoff(B1, B2)∩F , ∅ for all open balls B1, B2 with B1 b B2, thenF ∩Cc(X)
is dense in L2(X). In particular, if (AB)W holds, thenF ∩ Cc(X) is dense in L2(X).

Proof. As in the proof of Proposition4.8, it suffices to show the density ofF ∩ Cc(X) in L2(X)
under the assumption that cutoff(B1, B2) ∩ F , ∅ for all open ballsB1, B2 with B1 b B2.

Suppose thatf ∈ L2(X). It is known thatCc(X) is dense inL2(X). Thus, for anyε ∈ (0,∞),
there exists a functiong ∈ Cc(X) such that

‖ f − g‖L2(X) < ε.

Sinceg ∈ Cc(X), we may as well assume that suppg ⊆ B for some ballB of X. By Proposition
4.8, there exists a functionh ∈ F ∩ Cc(X) such that

‖h− g‖L∞(X) < (2μ(2B))−
1
2ε.

This last estimate implies

sup
x∈B
|h(x) − g(x)| < (2μ(2B))−

1
2ε and sup

x<B
|h(x)| < (2μ(2B))−

1
2ε.

Further, by the assumption, there exists a function

φ ∈ cutoff(B, 2B) ∩ F .
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Consider the functionψ = hφ. Clearly, ψ ∈ Cc(X). From the statement (a) in the proof of
Proposition4.8, it follows thatψ ∈ F . Moreover, usingφ ∈ cutoff(B, 2B) and suppg ⊆ B, we
derive

∫

X
|ψ − g|2 dμ =

∫

B
|h− g|2 dμ +

∫

(2B)\B
|hφ|2 dμ

≤ μ(B) sup
x∈B
|h(x) − g(x)|2 + μ((2B) \ B) sup

x<B
|h(x)|2 ≤ ε2,

thereby leading to

‖ψ − f ‖L2(X) ≤ ‖ψ − g‖L2(X) + ‖g− f ‖L2(X) < 2ε.

This proves the density ofF ∩ Cc(X) in L2(X). �

Before the proof of density ofCc(X)∩F in F , we will apply(AB)W and the self-improvement
property of(AB)W of Lemma4.3to establish the following lemma.

Lemma 4.10. Suppose that the conditions(AB)W and (TJ)W hold. Then, for any u∈ F , there
exists a sequence of bounded and compactly supported functions{un}n∈N ⊂ F such that

lim
n→∞

(
‖u− un‖

2
L2(X) + E(u− un,u− un)

)
= 0.

Proof. For anyu ∈ F andn ∈ N, defineun := u∧ n, which are bounded functions and satisfy

|un(x) − un(y)| ≤ |u(x) − u(y)| for all x, y ∈ X.

Thus,un ∈ F and, moreover, the dominated convergence theorem for integrals shows that

lim
n→∞
E(u− un,u− un) = 0.

Thus, we may as well assume thatu ∈ F ∩ L∞(X) and we need to approximateu by a sequence of
bounded and compactly supported functions{un}n∈N in F .

To this end, we fix a reference pointxo ∈ X. For anyk ∈ N, setBk := B(xo,2k). In what
follows, we will often use the following fact that

sup
z∈Bk+3

1

W(z,2k)
'

1

W(xo,2k)
,

which follows from (2.2). By Lemma4.3, given anyλ > 0, there exists a constantC(λ) > 0 such
that for any integerk ≥ 3, there existsψ(λ)

k ∈ cutoff(Bk, Bk+1) ∩ F such that
"

Bk+3×Bk+3

|u(x)|2|ψ(λ)
k (x) − ψ(λ)

k (y)|2 J(x, dy) dμ(x)

≤ λ
"

Bk+3×Bk+3

|ψ(λ)
k (x)|2|u(x) − u(y)|2 J(x, dy) dμ(x) +

C(λ)

W(xo,2k)

∫

Bk+3

|u(x)|2 dμ(x). (4.23)

Note that bothλ andC(λ) are independent ofxo, k andu. Define

uλk := uψ(λ)
k .

Clearly, eachuλk is in L∞(X) and has bounded support. So, it suffices to show that

lim
λ→0

lim
k→∞

(
‖u− uλk‖L2(X) + E(u− uλk,u− uλk)

)
= 0.
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Obviously, for anyλ > 0, applyingψ(λ)
k ≡ 1 onB(xo,2k) yields that

lim
k→∞
‖u− uλk‖L2(X) = 0.

Moreover, we write

E(u− uλk,u− uλk) =
∫

X

∫

X

∣∣∣∣u(x)(1− ψ(λ)
k (x)) − u(y)(1− ψ(λ)

k (y))
∣∣∣∣
2

J(x, dy) dμ(x).

For anyx, y ∈ X, observe that

|u(x)(1− ψ(λ)
k (x)) − u(y)(1− ψ(λ)

k (y))| ≤ |u(x) − u(y)||1− ψ(λ)
k (y)| + |u(x)||ψ(λ)

k (x) − ψ(λ)
k (y)|.

By u ∈ F and the fact thatψ(λ)
k ≡ 1 onB(xo,2k), we apply the dominated convergence theorem to

deduce that

lim
k→∞

∫

X

∫

X
|u(x) − u(y)|2|1− ψ(λ)

k (x)|2 J(x, dy) dμ(x)

=

∫

X

∫

X

(
lim
k→∞
|u(x) − u(y)|2|1− ψ(λ)

k (x)|2
)

J(x, dy) dμ(x) = 0.

So, the proof of
lim
λ→0

lim
k→∞
E(u− uλk,u− uλk) = 0

is reduced to proving that

lim
λ→0

lim
k→∞

∫

X

∫

X
|u(x)|2|ψ(λ)

k (x) − ψ(λ)
k (y)|2 J(x, dy) dμ(x) = 0. (4.24)

In (4.24), we may restrict the integral domain to those (x, y) ∈ X × X such that

ψ(λ)
k (x) − ψ(λ)

k (y) , 0.

Hence, the fact suppψ(λ)
k ⊆ B(xo,2k+1) implies that eitherd(x, xo) < 2k+1 or d(y, xo) < 2k+1.

In the cased(x, y) < 2k−2 we havex, y ∈ B(xo,2k+3), which, alongside with (4.23) yields
"

X×X
d(x,y)<2k−2

|u(x)|2|ψ(λ)
k (x) − ψ(λ)

k (y)|2 J(x, dy) dμ(x)

=

"

Bk+3×Bk+3
d(x,y)<2k−2

|u(x)|2|ψ(λ)
k (x) − ψ(λ)

k (y)|2 J(x, dy) dμ(x)

≤ λ
"

Bk+3×Bk+3

|ψ(λ)
k (x)|2|u(x) − u(y)|2 J(x, dy) dμ(x) +

C(λ)

W(xo,2k)

∫

Bk+3

|u(x)|2 dμ(x)

≤ λE(u,u) +
C(λ)

W(xo,2k)
‖u‖2L2(X). (4.25)

Consider now the cased(x, y) ≥ 2k−2. If d(x, xo) < 2k+1, then usingu ∈ L2(X), 0 ≤ ψ(λ)
k ≤ 1,

(TJ)W and (2.2), we obtain that
"

d(x,y)≥2k−2

d(x,xo)<2k+1

|u(x)|2|ψ(λ)
k (x) − ψ(λ)

k (y)|2 J(x, dy) dμ(x)

≤
∫

d(x,xo)<2k+1

(∫

d(x,y)≥2k−2
J(x, dy)

)

|u(x)|2 dμ(x)
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≤
∫

d(x,xo)<2k+1

C

W(x,2k−2)
|u(x)|2 dμ(x)

≤
C

W(xo,2k)
‖u‖2L2(X) (4.26)

holds for some constantC > 0 independent ofk andu.
Still in the cased(x, y) ≥ 2k−2, let nowd(x, xo) ≥ 2k+1. Then

|ψ(λ)
k (x) − ψ(λ)

k (y)| = ψ(λ)
k (y),

which is nonzero only ifd(y, xo) < 2k+1. From this and

|u(x)|2 ≤ 2|u(x) − u(y)|2 + 2|u(y)|2

it follows that
"

d(x,y)≥2k−2

d(x,xo)≥2k+1

|u(x)|2|ψ(λ)
k (x) − ψ(λ)

k (y)|2 J(x, dy) dμ(x)

≤
"

d(x,xo)<2k+1

d(x,y)≥2k−2

|u(x)|2 J(x, dy) dμ(x)

≤ 2
"

d(x,y)≥2k−2
|u(x) − u(y)|2 J(x, dy) dμ(x) + 2

"

d(y,xo)<2k+1

d(x,y)≥2k−2

|u(y)|2 J(x, dy) dμ(x). (4.27)

For the second term, applying the symmetry property (J2),(TJ)W and (2.2), we proceed the argu-
ments in (4.26) and obtain

"

d(y,xo)<2k+1

d(x,y)≥2k−2

|u(y)|2 J(x, dy) dμ(x) =
"

d(x,xo)<2k+1

d(y,x)≥2k−2

|u(x)|2 J(x, dy) dμ(x)

≤
C

W(xo,2k)
‖u‖2L2(X). (4.28)

Combining (4.25)-(4.26)-(4.27)-(4.28) yields
"

X×X
|u(x)|2|ψ(λ)

k (x) − ψ(λ)
k (y)|2 J(x, dy) dμ(x)

≤ λE(u,u) +
3C + C(λ)

W(xo,2k)
‖u‖2L2(X) + 2

"

d(x,y)≥2k−2
|u(x) − u(y)|2 J(x, dy) dμ(x).

In both sides of the last formula, lettingk→ ∞ and using limr→∞W(xo, r) = ∞ yields

lim
k→∞

"

X×X
|u(x)|2|ψ(λ)

k (x) − ψ(λ)
k (y)|2 J(x, dy) dμ(x) ≤ λE(u,u).

Due to the arbitrariness ofλ, we find that (4.24) holds. This concludes the proof of Lemma
4.10. �

Proposition 4.11. If (VD), (AB)W, (TJ)W and(PI)W hold, thenF ∩ Cc(X) is dense inF .

Proof. Given anyu ∈ F , we need to find an approximation sequence inF ∩ Cc(X). In view of
Lemma4.10, we may as well assume further thatu ∈ L∞(X) has bounded support.
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Let ε ∈ (0,1). According to Proposition4.6, there exists a family of functions{φi}i∈I which
form a partition of unity. In the succedent argument, we adopt all the notation used in (i)-(ii)-(iii)
and (a)-(b) of Proposition4.6. Define

uε :=
∑

i∈I

uBiφi .

By the fact thatu has bounded support,φi ∈ Cc(X), suppφi ⊆ 2Bi and {12Bi}i∈I are mutually
disjoint, we find that the summation in defininguε is valid for a finite number ofi, which further
induces that

uε ∈ F ∩ Cc(X).

We will prove thatuε is the desired approximation sequence.
For anyx ∈ X, we apply

∑
i∈I φi ≡ 1 to write

u(x) − uε(x) =
∑

i∈I

(
u(x) − uBi

)
φi(x) =:

∑

i∈I

ui(x)φi(x). (4.29)

Denote byκ the constant determined in the condition(PI)W. Let N = N(κ) be the number that
is determined in Proposition4.6(iii), which is independent ofε. Then, there is a partition{Jj}Nj=1
of the index setI , such that for anyj ∈ {1,2, . . . ,N}, the family of balls{15κBl}l∈Jj are pairwise
disjoint.

We first prove that‖u − uε‖L2(X) → 0 asε → 0. Indeed, by the construction ofuε, we can
choose a bounded setK ⊆ X such that suppu ⊆ K and suppuε ⊆ K for all ε ∈ (0,1). Moreover,
sinceuε is bounded by supx∈X |u(x)| uniformly in ε ∈ (0,1), we have

|u− uε| ≤ 2 sup
x∈X
|u(x)| ∙ 1K < ∞.

Hence, to prove that limε→0 ‖u− uε‖L2(X) = 0, by the dominated convergence theorem, it suffices
to prove that

u− uε
μ-a.e.
→ 0 asε→ 0. (4.30)

Indeed, for anyx ∈ X, by (4.29) we write

|u(x) − uε(x)| ≤
N∑

j=1

∑

i∈Jj

|u(x) − uBi |φi(x).

Note thatN is independent ofε, suppφi ⊆ 2Bi and{2Bi}i∈Jj are mutually disjoint. So, there exists
one and only onei x ∈ Ji such that 2Bix 3 x, which implies that

Bix ⊆ B(x,3ε) ⊆ 4Bix.

By (VD), we haveμ(B(x,3ε)) ≤ C2
Dμ(Bix). Using these and the above inequality, we obtain for

anyx ∈ X,

|u(x) − uε(x)| ≤
N∑

j=1

?

Bix

|u(x) − u(y)| dμ(y) ≤
NC2

D

μ(B(x,3ε))

∫

B(x,3ε)
|u(x) − u(y)| dμ(y).

Therefore, by Lebesgue’s differential theorem (see [29, Eq. (2.8), p. 12]), we obtain (4.30). This
proves thatu can be approximated by the sequence{uε}ε>0 in L2(X).
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We still need to validate that

lim
ε→0
E(u− uε,u− uε) = 0.

Indeed, since suppφl ⊆ 2Bl , it follows thatul(x)φl(x) − ul(y)φl(y) , 0 implies that eitherx ∈ 2Bl

or y ∈ 2Bl , whence

|ul(x)φl(x) − ul(y)φl(y)| ≤ |ul(x)φl(x) − ul(y)φl(y)|
(
12Bl (x) + 12Bl (y)

)
.

This, together with the symmetryJ(x,dy) dμ(x) = J(y,dx) dμ(y) and the Minkowski inequality,
further induces

E(u− uε,u− uε)
1
2 =




∫

X

∫

X

∣∣∣∣∣∣∣∣

N∑

j=1

∑

l∈Jj

(ul(x)φl(x) − fl(y)φl(y))

∣∣∣∣∣∣∣∣

2

J(x,dy) dμ(x)




1
2

≤
N∑

j=1




∫

X

∫

X




∑

l∈Jj

|ul(x)φl(x) − ul(y)φl(y)|12Bl (x)




2

J(x,dy) dμ(x)




1
2

+

N∑

j=1




∫

X

∫

X




∑

l∈Jj

|ul(x)φl(x) − ul(y)φl(y)|12Bl (y)




2

J(x,dy) dμ(x)




1
2

= 2
N∑

j=1




∫

X

∫

X




∑

l∈Jj

|ul(x)φl(x) − ul(y)φl(y)|12Bl (x)




2

J(x,dy) dμ(x)




1
2

.

Further, invoking the fact that{2Bl}l∈Jj are mutually disjoint, we obtain




∑

l∈Jj

|ul(x)φl(x) − ul(y)φl(y)|12Bl (x)




2

=
∑

l∈Jj

|ul(x)φl(x) − ul(y)φl(y)|212Bl (x),

thereby deriving

E(u− uε,u− uε)
1
2 ≤ 2

N∑

j=1




∑

l∈Jj

∫

X

∫

X
|ul(x)φl(x) − ul(y)φl(y)|212Bl (x) J(x,dy) dμ(x)




1
2

. (4.31)

To continue, for anyj ∈ {1,2, . . . ,N}, we write

I j :=
∑

l∈Jj

∫

X

∫

X
|ul(x)φl(x) − ul(y)φl(y)|212Bl (x) J(x,dy) dμ(x)

≤ 2
∑

l∈Jj

∫

2Bl

∫

X
|ul(x)|2|φl(x) − φl(y)|2 J(x,dy) dμ(x)

+ 2
∑

l∈Jj

∫

2Bl

∫

X
|ul(x) − ul(y)|2|φl(y)|2 J(x,dy) dμ(x) =: 2Y j + 2Z j . (4.32)

Noting thatul(x) − ul(y) = u(x) − u(y) and 0≤ φl ≤ 12Bl , we then apply the mutually disjoint-
edness of{2Bl}l∈Jj to derive

Z j ≤
∑

l∈Jj

∫

2Bl

∫

2Bl

|ul(x) − ul(y)|2 J(x,dy) dμ(x)
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≤
∫

X

∫

B(x,4ε)
|ul(x) − ul(y)|2 J(x,dy) dμ(x)

=

∫

X

∫

B(x,4ε)
|u(x) − u(y)|2 J(x,dy) dμ(x)

which tends to zero asε→ 0.
In order to estimate Yj , for anyl ∈ Jj , we first write

Y j,l :=
∫

2Bl

∫

X
|ul(x)|2|φl(x) − φl(y)|2 J(x,dy) dμ(x)

=

(∫

2Bl

∫

(3Bl ){
+

∫

2Bl

∫

3Bl

)

. . . J(x,dy) dμ(x) =: Y(1)
j,l + Y(2)

j,l .

Recall that in (4.29) we have definedul = u − uBl . If x ∈ 2Bl andy < 3Bl , thend(x, y) > ε. So,
applying(TJ)W and (2.2) gives

Y(1)
j,l ≤

∫

2Bl

|ul(x)|2
(∫

d(x,y)≥ε
J(x,dy)

)

dμ(x)

≤ C
∫

2Bl

|ul(x)|2

W(x, ε)
dμ(x)

≤
C

W(xl , ε)

∫

2Bl

|u(x) − uBl |
2 dμ(x).

Meanwhile, combining (4.14) with the fact thatul = u− uBl yields

Y(2)
j,l ≤

"

(3Bl )×(3Bl )
|ul(x)|2|φl(x) − φl(y)|2 J(x,dy) dμ(x)

.
∑

j∈Λl

"

(3Bj )×(3Bj )
|u(x) − u(y)|2 J(x,dy) dμ(x) +

1
W(xl , ε)

∫

13Bl

|u(x) − uBl |
2 dμ(x).

By the definitions ofΛl in Proposition4.6, we know that 3Bj ⊆ 9Bl wheneverj ∈ Λl . From this
and the mutually disjointness of{3Bj} j∈Λl , implies

∑

j∈Λl

"

(3Bj )×(3Bj )
|u(x) − u(y)|2 J(x,dy) dμ(x)

≤
∑

j∈Λl

∫

3Bj

∫

d(x,y)<6ε
|u(x) − u(y)|2 J(x,dy) dμ(x)

≤
∫

9Bl

∫

d(x,y)<6ε
|u(x) − u(y)|2 J(x,dy) dμ(x). (4.33)

Next, for anyl ∈ I andx ∈ 13Bl , we have by (VD) (see also (2.7)) and the Ḧolder inequality
that

|u(x) − uBl | ≤ |u(x) − u13Bl | + |uBl − u13Bl |

≤ |u(x) − u13Bl | +
?

Bl

|u(z) − u13Bl | dμ(z)

≤ |u(x) − u13Bl | + C
?

13Bl

|u(z) − u13Bl | dμ(z)
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≤ |u(x) − u13Bl | + C

(?

13Bl

|u(x) − u13Bl |
2 dμ(x)

) 1
2

,

which, together with(PI)W and the Minkowski inequality, further yields

(∫

13Bl

|u(x) − uBl |
2 dμ(x)

) 1
2

.

(∫

13Bl

|u(x) − u13Bl |
2 dμ(x)

) 1
2

.

(

W(xl ,13ε)
"

(13κBl )×(13κBl )
|u(x) − u(y)|2 J(x,dy) dμ(x)

) 1
2

.

Consequently, by (2.2), we have

1
W(xl , ε)

∫

13Bl

|u(x) − uBl |
2 dμ(x) .

W(xl ,13ε)
W(xl , ε)

"

(13κBi )×(13κBi )
|u(x) − u(y)|2 J(x,dy) dμ(x)

.
∫

13κBl

∫

d(x,y)<26κε
|u(x) − u(y)|2 J(x,dy) dμ(x). (4.34)

Inserting (4.33) and (4.34) into the estimates of Y(1)
j,l and Y(2)

j,l , we then conclude that

Y j,l .
∫

13κBl

∫

d(x,y)<26κε
|u(x) − u(y)|2 J(x,dy) dμ(x),

which, combined with the mutually disjointness of the family of balls{15κBl}l∈Jj , leads to

Y j =
∑

l∈Jj

Y j,l .
∑

l∈Jj

∫

13κBl

∫

d(x,y)<26κε
|u(x) − u(y)|2 J(x,dy) dμ(x)

.
∫

X

∫

d(x,y)<26κε
|u(x) − u(y)|2 J(x,dy) dμ(x).

Sinceu ∈ F , it is obvious that this last double-integral tends to zero asε→ 0.
From the estimates of Yj and Zj , we derive from (4.32) and (4.31) that

E(u− uε,u− uε)→ 0 as ε→ 0.

Summarizing all, we complete the proof of Proposition4.11. �

Remark 4.12. In the following comments, we assume that (VD), (TJ)W and(PI)W are satisfied.

(i) Since (AB′)W is stronger than(AB)W, it follows directly that all the conclusions in this
subsection are true if we replace the hypothesis(AB)W by (AB′)W. Consequently, under
(VD), (TJ)W and(PI)W,

(AB′)W ⇒ “(E,F ) is a regular Dirichlet form onL2(X)” . (4.35)

(ii) One may show (4.35) directly without referring to the self improvement property of(AB)W.
To see this, observe that the arguments in the proofs of Propositions4.8and4.9run smoothly
under(AB′)W. Regarding Lemma4.10, note that the self-improvement property of(AB)W

is only used in (4.25). Now, instead of (4.23), we apply the condition(AB′)W to find a
functionψk ∈ cutoff(Bk, Bk+1) ∩ F such that

"

Bk+3×Bk+3

|u(x)|2|ψk(x) − ψk(y)|2 J(x,dy) dμ(x)
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≤ ζ
"

Sk×Sk

|ψk(x)|2|u(x) − u(y)|2 J(x,dy) dμ(x) +
C

W(xo,2k)

∫

Bk+3

|u(x)|2 dμ(x),

whereSk := Bk+2 \ Bk, and the constantsζ, C are positive and independent ofxo, k andu.
With this, we can replace (4.25) by the following estimate:

"

X×X
d(x,y)<2k−2

|u(x)|2|ψk(x) − ψk(y)|2 J(x,dy) dμ(x)

=

"

Bk+3×Bk+3
d(x,y)<2k−2

|u(x)|2|ψk(x) − ψk(y)|2 J(x,dy) dμ(x)

≤ ζ
"

Sk×Sk

|u(x) − u(y)|2 J(x,dy) dμ(x) +
C

W(xo,2k)

∫

X
|u(x)|2 dμ(x).

Note that the right hand side of the above formula tends to 0 ask → ∞ as u ∈ F and
limr→∞W(xo, r) = ∞. This crucial estimate implies the conclusion of Lemma4.10. In
this argument, we only have used(AB′)W but do not use the self-improvement property of
(AB)W in Lemma4.3. As for Proposition4.11, we now apply the partition of unity under
(AB′)W that is given in Remark4.7.

(iii) In view of the arguments in (ii), we may say that(AB′)W is a replacement of both(AB)W

and its self improvement property in Lemma4.3.

5 Heat kernel estimates

In this section, we apply Theorem2.9to prove Theorems2.13, 2.15and2.22.

5.1 From (S)W to (AB′)W

Proposition 5.1. Suppose that(E,F ) is a bilinear form on L2(X). If F ∩ C(X) is dense inCc(X),
then, for any compact set K and any open setΩ with K ⊆ Ω, we have

F ∩ cutoff(K,Ω) , ∅.

In particular, the above statement is true when(E,F ) is a regular Dirichlet form.

Proof. Since (X,d) is locally compact andK is compact, it is known that there existsφ0 ∈ Cc(X)
such that





0 ≤ φ0 ≤ 1 onX;

φ0 = 1 onK;

φ0 = 0 onΩ{.

By the density ofF ∩ C(X) in Cc(X), there existsφ1 ∈ F ∩ C(X) such that

sup
x∈X
|φ0(x) − φ1(x)| <

1
3
.

In particular,2
3 ≤ φ1 ≤ 4

3 on K and−1
3 ≤ φ1 ≤ 1

3 onΩ{. Let

φ2 := φ1 −

(
1
3
∧ φ1

)

∨

(

−
1
3

)

∈ C(X).
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It follows from [19, Theorem 1.4.2(iv)] thatφ2 ∈ F . Moreover,φ2 ≥ 1
3 on K andφ2 = 0 onΩ{.

Define
φ := (3φ2) ∧ 1 ∈ F ,

and we haveφ ∈ cutoff(K,Ω), that is,F ∩ cutoff(K,Ω) , ∅. �

Suppose that (E,F ) is a regular Dirichlet form. For any non-empty open setΩ ⊆ X, letF (Ω)
be as in (2.11). Then (E,F (Ω)) is also a regular Dirichlet form. Denote the corresponding heat
semigroup and heat kernel (if it exists) respectively by{PΩ

t }t>0 and{pΩt }t>0.

Definition 5.2. We say that asurvival condition(S)W is satisfied if there exist constantsε, δ > 0
such that, for any ballB := B(x0, r) ⊆ X of radiusr ∈ (0,diamX) the following inequality holds:

essinf
1
4 B

PB
t 1 ≥ ε,

provided thatt ≤ δW(x0, r).

As can be seen from the following lemma, for a regular Dirichlet form, the condition(S)W
implies(AB′)W provided that(TJ)W holds.

Lemma 5.3. Suppose that(E,F ) in (2.1) is a regular jump-type Dirichlet form. Then

(TJ)W + (S)W ⇒ (AB′)W.

Proof. The proof follows essentially ideas from [21, Lemma 2.4] and [17, Proposition 3.6]. Let




B0 = B(x0,R);

B = B(x0,R+ r);

B1 := B(x0,R+ 2r/5);

U := B(x0,R+ 4r/5) \ B(x0,R);

U0 := B(x0,R+ 3r/5) \ B(x0,R+ r/5);

Ω = B(x0,R′),

wherex0 ∈ X and 0< R< R+ r < R′ < ∞. We divide the the proof into three steps.

Step 1: estimatingGU
λ 1U for

λ :=
(
inf
z∈B

W(z, r)
)−1

.

According to [19, p. 17, Eq. (1.3.3)], we let{GU
γ }γ∈(0,∞) be the resolvent associated with the

regular Dirichlet form (E,F (U)). Firstly, it follows from [19, Theorem 4.4.1] that

GU
λ 1U ∈ F (U) ⊆ F .

Secondly, by [19, p. 17, Eq. (1.3.1)]), for any 0≤ f ∈ L1(U), we have

(GU
λ 1U , f ) =

∫ ∞

0
e−λt(PU

t 1U , f ) dt ≤ ‖ f ‖L1(U)

∫ ∞

0
e−λtdt = ‖ f ‖L1(U)λ

−1 = inf
z∈B

W(z, r)‖ f ‖L1(U).

Since 0≤ f ∈ L1(U) is arbitrary andGU
λ 1U = 0 μ-a.e. outside ofU, we obtain that

GU
λ 1U ≤ inf

z∈B
W(z, r) μ-a.e. onX. (5.1)
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For anyx ∈ U0, we haveBx := B(x, r/5) ⊆ U, and hence, by(S)W, for any 0≤ f ∈ L1(1
4Bx),

(GU
λ 1U , f ) ≥ (GBx

λ 1Bx, f ) =
∫ ∞

0
e−λt(PBx

t 1Bx, f ) dt

≥
∫ δW(x,r/5)

0
e−λt(PBx

t 1Bx, f ) dt

≥ ε‖ f ‖L1( 1
4 Bx)

∫ δW(x,r/5)

0
e−λt dt

=
ε

λ

(
1− e−λδW(x,r/5)

)
‖ f ‖L1( 1

4 Bx)

≥
ε

λ

(
1− e−λδ inf x∈U0 W(x,r/5)

)
‖ f ‖L1( 1

4 Bx)
.

Moreover, by the right inequality in (2.2), we haveW(x,5/r) ≥ 5−β2C−1
W W(x, r), and hence,

inf
x∈U0

W(x,5/r) ≥ 5−β2C−1
W inf

x∈U0
W(x, r) ≥ 5−β2C−1

W inf
x∈B

W(x, r).

Combining the above two inequalities, we obtain

(GU
λ 1U , f ) ≥

ε

λ

(
1− e−λδ∙5

−β2C−1
W inf x∈B W(x,r)

)
‖ f ‖L1( 1

4 Bx)

= ε
(
1− e−5−β2C−1

W δ
)
inf
z∈B

W(z, r)‖ f ‖L1( 1
4 Bx)

.

Due to the arbitrariness of 0≤ f ∈ L1(1
4Bx), we obtain from the above inequality that

GU
λ 1U ≥ ε(1− e−5−β2C−1

W δ) inf
z∈B

W(z, r) μ-a.e. in
1
4

Bx.

Moreover, sinceU0 can be covered by finitely many balls like14Bx, we obtain

GU
λ 1U ≥ ε(1− e−5−β2C−1

W δ) inf
z∈B

W(z, r) μ-a.e. inU0. (5.2)

Let us show thatGU
λ 1U ∈ C(X). Indeed, it follows from [21, Theorem 2.10, p. 460 and Lemma

5.12, p. 504] thatPU
t 1U(x) is jointly continuous in (t, x) ∈ (0,∞) × U since1U ∈ L1(X) ∩ L2(X).

Then, by the dominated convergence theorem and the fact thatPU
t 1U(x) ≤ 1 for all t > 0 and

x ∈ X, we obtain thatGU
λ 1U(x) =

∫ ∞
0

e−λtPU
t 1U(x) dt is continuous inx ∈ X.

Step 2: constructing a function

φ ∈ cutoff(B(x0,R+ 3r/5), B(x0,R+ 4r/5))∩ F ⊆ cutoff(B0, B) ∩ F .

Define

κ :=
1

ε(1− e−5−β2C−1
W δ)

and g :=
κGU

λ 1U

infz∈B W(z, r)
.

SinceGU
λ 1U ∈ F ∩ C(X), so doesg. Moreover, by (5.1) and (5.2), we have





0 ≤ g ≤ κ onX;

g ≥ 1 onU0;

g = 0 onU{.
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By the regularity of (E,F ) and Proposition5.1, there exists

φ̃ ∈ cutoff(B(x0,R+ 2r/5), B(x0,R+ r/5))∩ F .

Now, we define
φ := (φ̃ + g) ∧ 1. (5.3)

It follows from φ̃, g ∈ F and [19, Theorem 1.4.2(i)] thatφ ∈ F . Moreover, sincẽφ = 1 on
B(x0,R+ r/5) andg ≥ 1 onU0 = B(x0,R+ 3r/5) \ B(x0,R+ r/5), we have

φ = 1 on B(x0,R+ 3r/5).

Sinceφ̃ = 0 onB(x0,R+ 2r/5){ andg = 0 onU{ = B(x0,R+ 4r/5){ ∪ B(x0,R), we have

φ = 0 on B(x0,4r/5){.

This gives the desired result.

Step 3: verification that φ satisfies the inequality in(AB′)W for all u ∈ F ′ ∩ L∞(X).
Recall thatB1 = B(x0,R+ 2r/5) andB = B(x0,R+ r). Underd(x, y) < r/5, if eitherx ∈ B1 or

y ∈ B1, then we always have bothx, y ∈ B(x0,R+ 3r/5) and, hence,φ(x) = φ(y) = 1. Moreover,
still underd(x, y) < r/5, if eitherx < B or y < B, then we always have bothx, y < B(x0,R+ 4r/5)
and, hence,φ(x) = φ(y) = 0. From these observations, we derive that ifd(x, y) < r/5 then

|φ(x) − φ(y)| , 0 only if x, y ∈ B \ B1.

Therefore,

"

Ω×Ω
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x) =




"

Ω×Ω
d(x,y)≥r/5

+

"

(B\B1)×(B\B1)
d(x,y)<r/5


 ∙ ∙ ∙

≤




"

Ω×Ω
d(x,y)≥r/5

+

"

(B\B1)×(B\B1)


 ∙ ∙ ∙ =: I1 + I2.

By (TJ)W and 0≤ φ ≤ 1, we have

I1 ≤
∫

Ω

|u(x)|2
(∫

d(x,y)≥r/5
J(x,dy)

)

dμ(x) ≤
C

infz∈B W(z, r)

∫

Ω

|u(x)|2 dμ(x).

To estimate I2, sinceφ̃ is supported inB1, we have by the definition (5.3) of φ that

|φ(x) − φ(y)| = |(g(x) ∧ 1)− (g(y) ∧ 1)| ≤ |g(x) − g(y)| for all x, y ∈ B \ B1.

This, together with the symmetryJ(x,dy) dμ(x) = J(y,dx) dμ(y), yields

I2 =

"

(B\B1)×(B\B1)
|u(x)|2|φ(x) − φ(y)|2 J(x,dy) dμ(x)

≤
"

(B\B1)×(B\B1)
|u(x)|2|g(x) − g(y)|2 J(x,dy) dμ(x)

≤
"

(B\B0)×(B\B0)
|u(x)|2|g(x) − g(y)|2 J(x,dy) dμ(x)

=
1
2

"

(B\B0)×(B\B0)
(|u(x)|2 + |u(y)|2)|g(x) − g(y)|2 J(x,dy) dμ(x).
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Moreover, for anyx, y ∈ X, the following pointwise inequality

1
2

(|u(x)|2 + |u(y)|2)|g(x) − g(y)|2

≤ 2(g(x) − g(y))
(
u2(x)g(x) − u2(y)g(y)

)
+ 2

(
g2(x) + g2(y)

)
(u(x) − u(y))

holds (see the proof of Lemma 2.2 in [21, p. 447]). Hence,

I2 ≤ 2
"

(B\B0)×(B\B0)
(g(x) − g(y))

(
u2(x)g(x) − u2(y)g(y)

)
J(x,dy) dμ(x)

+ 4
"

(B\B0)×(B\B0)
g2(x)|u(x) − u(y)|2 J(x,dy) dμ(x)

=: 2 I21 + 4 I22.

Sinceg ≤ κφ by the definition (5.3), we have

I22 ≤ κ
2

"

(B\B0)×(B\B0)
φ2(x)|u(x) − u(y)|2 J(x,dy) dμ(x),

which is just the first term in the right hand side of (2.10) in the(AB′)W condition.
Consider now the estimate of I21. Note that ifx, y < B \ B0, then by the fact

suppg ⊆ U = B(x0,R+ 4r/5) \ B(x0,R) ⊆ B \ B0,

we see thatg(x) = g(y) = 0, which further implies that

I21 = E(u2g,g) −

("

(B\B0){×(B\B0)
+

"

(B\B0)×(B\B0){
+

"

(B\B0){×(B\B0){

)

∙ ∙ ∙

= E(u2g,g) −
"

(B\B0){×(B\B0)
u2(y)g2(y) J(x,dy) dμ(x)

−
"

(B\B0)×(B\B0){
u2(x)g2(x) J(x,dy) dμ(x)

≤ E(u2g,g).

For anyu, v ∈ F , define

Eλ(u, v) = E(u, v) + λ(u, v). (5.4)

Further, it follows from the definition ofg, [19, Theorem 4.4.1(i)] and the fact thatg ≤ κφ that

E(u2g,g) ≤ E(u2g,g) + λ(u2g,g) = sup
z∈B

κ

W(z, r)
Eλ

(
u2g,GU

λ 1U

)

= sup
z∈B

κ

W(z, r)
(u2g,1U)

≤ sup
z∈B

κ2

W(z, r)
(u2φ, 1U)

≤ sup
z∈B

κ2

W(z, r)

∫

U
u2 dμ.

Finally, combining the estimates of I1, I2, I21 and I22, we prove that the functionφ defined in
(5.3) satisfies the inequality in condition(AB′)W. This completes the proof. �

Remark 5.4. Note that we have proved in Lemma5.3a conclusion that is stronger than(AB′)W.
Indeed, we see in the above proof that the functionφ in (2.10) and, hence, in (2.5), can be chosen
to be independent of the functionu ∈ F ′ ∩ L∞(X).
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5.2 From (LLE)W to (S)W and (PI)W

The following lemma was proved in [22, Lemma 7.14].

Lemma 5.5. Under(VD), we have(LLE)W ⇒ (S)W.

The stochastic completeness comes as a consequence of(S)W. The following lemma was
proved in [22, Corollary 8.9(2) and Remark 2.15].

Lemma 5.6. Suppose that(E,F ) in (2.1) is a regular jump-type Dirichlet form. If(S)W is satisfied,
then(E,F ) is conservative.

The remaining part of this subsection is devoted to the proof of(LLE)W ⇒ (PI)W (see Lemma
5.10below). Note that this implication was proved in [22, Subsections 7.3 and 7.4] under a more
general setting, where some deep Dirichlet form theory was used. Here we give a direct and
self-contained proof.

Indeed, for any ballB ⊆ X, we will construct a regular pure jump-type Dirichlet form(E,F ) on
L2(B), whereB is the closure ofB, and then use(E,F ) to prove the implication(LLE)W ⇒ (PI)W.
Define





E(u, v) :=
"

B×B
(u(x) − u(y))(v(x) − v(y)) J(x,dy) dμ(x);

Dom(E) := {u ∈ L2(B) : u is Borel measurableon B, E(u,u) < ∞},

(5.5)

whenever the above double integral makes sense for Borel measurable functionsu, v on B. Let

F |B :=
{
u ∈ L2(B) : there existsv ∈ F such thatu = v|B μ-a.e.on B

}
.

In other words, each functionu in F |B is the restriction of some function inF on B. In this case,
we use the same letteru ∈ F to denote its restrictionon B. It follows from the definitionof E that

E(u|B, u|B) = E(u, u) ≤ E(u,u) < ∞ for all u ∈ F .

Hence,
F |B ⊆ Dom(E).

We remark that functions inDom(E) may not be defined outsideof B, but each function inF |B is
corresponding to an element inF that is defined on the whole spaceX.

Note that the kernelJ(x,dy) satisfies condition (J2) in Definition2.1. Following the arguments
after Definition2.1, we obtain that(E,Dom(E)) is a Dirichlet form onL2(B) provided thatDom(E)
is dense inL2(B). Moreover, since (E,F ) is regular, we have thatF |B ∩ Cc(B) is dense inL2(B).
This, together with the fact that

(
F |B ∩ Cc(B)

)
⊆ F |B ⊆ Dom(E),

implies thatDom(E) is also dense inL2(B). Therefore,(E,Dom(E)) is indeed a Dirichlet form on
L2(B). Moreover, setting

F := F |B ∩ Cc(B)
‖ ∙ ‖E1 , (5.6)

we have that(E,F ) is also a Dirichlet form onL2(B). Here, forλ > 0, Eλ is defined as follows:

Eλ(u, v) := E(u, v) + λ(u, v)L2(B) for all u, v ∈ Dom(E)

and

‖u‖Eλ :=

√

E(u,u) + λ‖u‖2
L2(B)

for all u ∈ Dom(E).
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Proposition 5.7. Let (E,F ) in (2.1) be a regular jump-type Dirichlet form. Let(E,F ) be the
Dirichlet form defined in(5.5) and (5.6). Then, the following hold:

(i) (E,F ) is a regular Dirichlet form on L2(B);

(ii) F |B ⊆ F .

Proof. Let us first show (i). SinceF |B ∩ Cc(B) ⊆ F , by the definitionof F in (5.6), we know

thatF ∩ Cc(B) is densein F with respect to‖ ∙ ‖E1
-norm. For anyu ∈ Cc(B), we can extend it

to a function inCc(X), which is also denoted byu. Since (E,F ) is regular, there exists{un}n∈N in
F ∩ Cc(X) such that

sup
x∈X
|un(x) − u(x)| → 0 as n→ ∞.

For eachn ∈ N, it is clear that

un|B ∈
(
F |B ∩ Cc(B)

)
⊆

(
F ∩ Cc(B)

)

and
sup
x∈B

|un(x) − u(x)| → 0 as n→ ∞.

Thatis,F ∩ Cc(B) is dense inCc(B). Therefore,(E,F ) is a regular Dirichlet form onL2(B).
Next, we show (ii). Fixu ∈ F |B. Since (E,F ) is regular, there exists a sequence{un}n∈N in

F ∩ Cc(X) such that
lim
n→∞
E1(un − u,un − u) = 0.

For eachn ∈ N, observe thatun|B ∈ F |B ∩ Cc(B) and

E1(un|B − u,un|B − u) ≤ E1(un − u,un − u).

From this and the definitionof F in (5.6), we deduce thatu ∈ F . This proves thatF |B ⊆ F . �

Now, let us consider the partof E on the open ballB, that is, the part Dirichlet form(E,F (B))
of (E,F ) on the open ballB, where

F (B) := F ∩ Cc(B)
‖ ∙ ‖E1

. (5.7)

Lemma 5.8. F (B) = F |B ∩ Cc(B)
‖ ∙ ‖E1 .

Proof. SinceF |B ⊆ F by Proposition5.7(ii), we have by (5.7) that

F |B ∩ Cc(B)
‖ ∙ ‖E1 ⊆ F (B).

It suffices to prove the converse part. To this end, we fixu ∈ F (B) and will show thatu can be
approximated by functions inF |B ∩ Cc(B) with respect to the‖ ∙ ‖E1

-norm.

Step 1.By (5.7), we choose{vn}n∈N ⊆ F ∩ Cc(B) such that

lim
n→∞
E1(vn − u, vn − u) = 0.

Step 2.Fix n ∈ N. By the definition (5.6) of F , we choose{wm}m∈N ⊆ F |B ∩ Cc(B) such that

lim
m→∞

E1(wm− vn,wm− vn) = 0.
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Sincevn is boundedon B, by [19, Theorem 1.4.2(v)], we can assume that

sup
m∈N

sup
x∈B

|wm(x)| ≤ ‖vn‖L∞(B).

Step 3.Sincevn ∈ Cc(B) and(E,F ) is regular, by Proposition5.1, we can choose

φ ∈ cutoff( suppvn, B) ∩ F .

Then, by [19, Theorem 1.4.2(ii)], we have

sup
m∈N
E1(φwm, φwm) ≤ sup

m∈N

(
2‖φ‖L∞(B)E1(wm,wm) + 2‖wm‖L∞(B)E1(φ, φ)

)

≤ 2‖φ‖L∞(B) sup
m∈N
E1(wm,wm) + 2‖vn‖L∞(B)E1(φ, φ) < ∞.

From this and the Banach-Alaoglu theorem, it follows that there exists a subsequence{wmi }i∈N of
{wm}m∈N such that{φwmi }i∈N convergesE1-weakly to a certain elementw ∈ F . Consequently, the
Ceśaro mean of a subsequence of{φwmi }i∈N (still denoted it by{φwmi }i∈N) satisfies that

w̃k :=
1
k

k∑

i=1

φwmi

‖ ∙ ‖E1
−→ w as k→ ∞.

On the other hand, byStep 2, we have

w̃k =
1
k

k∑

i=1

φwmi

L2(B)
−→ φvn = vn as k→ ∞.

Hence, we havew = vn and then

lim
k→∞
E1(w̃k − vn, w̃k − vn) = 0.

Step 4.For anyε > 0, byStep 1, choosevn ∈ F ∩ Cc(B) suchthat

E1(vn − u, vn − u) < ε.

For this specificn, by Step 3, we may choosek large enough (depending onn andε) suchthat

E1(w̃k − vn, w̃k − vn) ≤ ε.

Combining the last two formulae derivesthat

E1(w̃k − u, w̃k − u) ≤ 2E1(vn − u, vn − u) + 2E1(w̃k − vn, w̃k − vn) < 4ε.

This gives
lim
k→∞
E1(w̃k − u, w̃k − u) = 0.

Since{wm}m∈N ⊆ F |B ∩ Cc(B) and suppφ ⊆ B, by the definition of ˜wk, we have

w̃k ∈ F |B ∩ Cc(B).

Hence, we obtainu ∈ F |B ∩ Cc(B)
‖ ∙ ‖E1 . Consequently, F (B) ⊆ F |B ∩ Cc(B)

‖ ∙ ‖E1 . �
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Let {Pt}t>0, {P
B
t }t>0 and{PB

t }t>0 be the heat semigroups associated with(E,F ), (E,F (B)) and
(E,F (B)), respectively. One may compare the domains of these three Dirichlet forms. Indeed, by
(5.6), Lemma5.8and the definition ofF (B), we have

F = F |B ∩ Cc(B)
‖ ∙ ‖E1 , F (B) = F |B ∩ Cc(B)

‖ ∙ ‖E1 and F (B) = F ∩ Cc(B)
‖ ∙ ‖E1 .

Suppose thatf ∈ L2(X). Then it is obvious thatf |B ∈ L2(B) and f |B ∈ L2(B). Since{Pt}t>0 is a
semigroup defined onL2(B), we take it for grantedthat Pt f = Pt( f |B). In a similar manner, we

understoodP
B
t f andPB

t f asP
B
t ( f |B) andPB

t ( f |B), respectively.

Proposition 5.9. For any t∈ (0,∞) and0 ≤ f ∈ L2(X), it holdsthat

Pt f ≥ P
B
t f ≥ PB

t f on B.

Proof. It is clearthatPt f = Pt( f |B) ≥ P
B
t ( f |B) = P

B
t f . It suffices to prove the second inequality.

Indeed, byF ∩ Cc(B) ⊆ F |B ∩ Cc(B) and the factthatE1(u|B, u|B) ≤ E1(u,u), we then apply
Lemma5.8to derive that

F (B)|B ⊆ F (B). (5.8)

Fix λ > 0, 0≤ f ∈ L2(X) and 0≤ g ∈ F ∩ Cc(B). Let {G
B
λ }λ>0 and{GB

λ }λ>0 be the resolvents

of (E,F (B)) and (E,F (B)), respectively. It follows from (5.8) and [19, Theorem 4.4.1(i)] that for

GB
λ f |B ∈ F (B)|B ⊆ F (B), G

B
λ f ⊆ F (B),

and
Eλ(G

B
λ f , g|B) = ( f , g|B)L2(B) = ( f , g)L2(X) = Eλ(G

B
λ f , g). (5.9)

We remarkthatG
B
λ f andGB

λ f respectivelymeansG
B
λ ( f |B) andGB

λ ( f |B). The valueof G
B
λ f outside

of B is not defined becausefor E everything happens inside the closedball B. But GB
λ f has a

precise value at each point ofX and, moreover, one hasGB
λ f ∈ L2(X) wheneverf ∈ L2(X).

By (5.5) and the definition ofEλ (see (5.4)), we have

Eλ(G
B
λ f , g|B) =

"

B×B
(G

B
λ f (x) −G

B
λ f (y))(g(x) − g(y)) J(x,dy) dμ(x) + λ

∫

B
gG

B
λ f dμ

and

Eλ(G
B
λ f , g) =

"

X×X
(G

B
λ f (x) −G

B
λ f (y))(g(x) − g(y)) J(x,dy) dμ(x) + λ

∫

X
gG

B
λ f dμ.

This last two formulae, together with (5.9) the fact suppg ⊆ B, furtheryields

Eλ(G
B
λ f −GB

λ f |B, g|B)

= Eλ(G
B
λ f , g) − Eλ(G

B
λ f |B, g|B)

=

("

B×B
c
+

"

B
c
×B

+

"

B
c
×B

c

)

(G
B
λ f (x) −G

B
λ f (y))(g(x) − g(y)) J(x,dy) dμ(x)

= 2
∫

B

∫

B
c
GB
λ f (x)g(x) J(x,dy) dμ(x)

≥ 0.
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Sinceg|B ∈ F |B ∩ Cc(B) andF |B ∩ Cc(B) is densein F (B), it follows that the above inequality

holds true also for allg ∈ F (B). In particular, for all 0≤ h ∈ L2(B), we have

(G
B
λ f −GB

λ f |B, h) = Eλ(G
B
λ f −GB

λ f |B, G
B
λh) ≥ 0.

Since 0≤ h ∈ L2(B) is arbitrary, we obtainthat

G
B
λ f = G

B
λ

(
f |B

)
≥

(
GB
λ f

)
|B.

Applying this inequality and the factGB
λ f ∈ L2(X) yields

G
B
λ

(
G

B
λ f

)
≥ G

B
λ

((
GB
λ f

)
|B
)
= G

B
λ

(
GB
λ f

)
≥

(
GB
λ

(
GB
λ f

))
|B =

(
(GB

λ )2 f
)
|B.

For generaln ∈ N, repeating this argumentn-times gives
(
G

B
λ

)n
f ≥

(
(GB

λ )n f
)
|B.

Moreover, sinceλ > 0 is arbitrary, it follows from [19, p. 20, (1.3.5)]that

P
B
t f = lim

λ→∞
e−tλ

∞∑

n=0

(tλ)n

n!

(
λG

B
λ

)n
f ≥ lim

λ→∞
e−tλ

∞∑

n=0

(tλ)n

n!

(
λGB

λ

)n
f = PB

t f on B.

This ends the proof. �

Lemma 5.10. Let (E,F ) in (2.1) be a regular jump-type Dirichlet form. Then, under(VD), we
have

(LLE)W ⇒ (PI)W.

Proof. Suppose thatu ∈ F ∩ L∞(X). To show that(PI)W holds under (VD) and(LLE)W, we fix a
ball B := B(x0,R) with x0 ∈ X andR ∈ (0,∞). Let (E,F ) be the regular Dirichlet form onL2(B)
defined in (5.5) and (5.6). Sinceu|B ∈ F |B ⊆ F by Proposition5.7(ii), we have for anyt > 0,

"

B×B
|u(x) − u(y)|2 J(x,dy) dμ(x)

= E(u|B, u|B) ≥
1
t

(
u|B − Ptu|B, u|B

)
(by [19, Lemma 1.3.4(i)])

≥
1
2t

∫

B

(
Pt1(x)u2(x) + Pt(u

2)(x) − 2u(x)Ptu(x)
)

dμ(x) (by Pt1 ≤ 1)

=
1
2t

∫

B
Pt

(
(u(x) − u(∙))2

)
(x) dμ(x)

≥
1
2t

∫

B
PB

t

(
(u(x) − u(∙))2

)
(x) dμ(x) (by Proposition5.9)

=
1
2t

∫

B

∫

B
pB

t (x, y)(u(x) − u(y))2 dμ(y) dμ(x). (by (LLE)W)

Let δ ∈ (0,1) be the constant from(LLE)W. Settingt := W(x0, δR) (that is,W−1(x0, t) = δR) in the
above inequality, we obtain

"

B×B
|u(x) − u(y)|2 J(x,dy) dμ(x)
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≥
1
2t

∫

δ2B

∫

δ2B
pB

t (x, y)(u(x) − u(y))2 dμ(y) dμ(x)

≥
1

2W(x0, δR)

∫

δ2B

∫

δ2B

c
V(x0, δR)

(u(x) − u(y))2 dμ(y) dμ(x) (by (LLE)W)

≥
c

W(x0, δ2R)V(x0, δ2R)

∫

δ2B

∫

δ2B
(u(x) − u(y))2 dμ(y) dμ(x). (by (VD) and (2.2)) (5.10)

Next, for anyn ∈ N, we letRn = R− 1
n. ThenRn ↑ R andBn := B(x0,Rn) ↑ B asn → ∞.

Applying (5.10) for eachBn, we obtain

"

B×B
|u(x) − u(y)|2 J(x,dy) dμ(x)

≥
"

Bn×Bn

|u(x) − u(y)|2 J(x,dy) dμ(x)

≥
c

W(x0, δ2Rn)V(x0, δ2Rn)

∫

δ2Bn

∫

δ2Bn

|u(x) − u(y)|2 dμ(y) dμ(x)

≥
c

W(x0, δ2R)V(x0, δ2R)

∫

δ2Bn

∫

δ2Bn

|u(x) − u(y)|2 dμ(y) dμ(x).

Passing to the limit yields

"

B×B
|u(x) − u(y)|2 J(x,dy) dμ(x) ≥

c

W(x0, δ2R)V(x0, δ2R)

∫

δ2B

∫

δ2B
|u(x) − u(y)|2 dμ(y) dμ(x).

By the above inequality and (3.18) (for E = δ2B), we obtain the inequality (2.3) in condition(PI)W
for κ := δ−2 and for the ballκ−1B. SinceB andu are arbitrary, we obtain(PI)W. �

5.3 Proof of Theorem2.13

Proof of Theorem2.13. The implication of (i)⇒ (ii) is obvious. Assuming (ii), we then apply
Theorem2.9and derive that (E,F ) is a regular Dirichlet form. Hence, to show that (ii)⇒ (iii), it
remains to observe that, under (VD) and (RVD), the following implication holds

(AB)W + (TJ)W + (PI)W ⇒ (LLE)W, (5.11)

which was proved in [24, Theorem 2.10].
Let us show that (iii)⇒ (i). If (E,F ) is a regular Dirichlet form, then Lemmas5.3 and5.5

imply

(VD) + (LLE)W ⇒ (S)W (5.12)

⇒ (AB′)W,

while by Lemma5.10, we have

(VD) + (LLE)W ⇒ (PI)W.

Finally, if any of the conditions (i), (ii), (iii) holds, then Lemma5.6(see also [20, Lemma 4.6])
yields the stochastic completeness of{pt}t>0. �
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5.4 Proof of Theorem2.15

Proof of Theorem2.15. Again, the implication of (i)⇒ (ii) is obvious. To prove the implication
(ii) ⇒ (iii), by Theorem2.13it suffices to show that

(AB)W + (TJ)W + (PI)W ⇒ (TP)W,

which follows from (5.11), (5.12) and [23, Theorem 10.5].
It remains to show that (iii)⇒ (i). Again by Theorem2.13it suffices to verify that if (E,F ) is

regular, then
(TP)W ⇒ (TJ)W,

which was proved in [23, Lemma 10.1]. �

5.5 Proof of Theorem2.22

Proof of Theorem2.22. Note that the implications of (i)⇒ (ii) and (iii) ⇒ (iv) are obvious.
Let us show that (ii)⇒ (iii). Based on the discussions in Section3.1, we observe that, under

the hypothesis(J)β, the jump measure satisfies(TJ)W and(PI)W with W(x, r) = rβ. Since also
(AB)W is satisfied, Theorem2.9 yields that the bilinear form (E,F ) given by (2.14)-(2.15) is a
regular Dirichlet form. Moreover, by [24, (2.33)] (see also [21, Theorem 2.10] and [17, Theorem
1.13]), we have in this setting that

(AB)β ⇔ (ULE)β. (5.13)

Thus, the heat kernel{pt}t>0 of (E,F ) satisfies(ULE)β.
Let us verify (iv)⇒ (i). Suppose that (E,F ) defined in (2.14) and (2.15) is a regular jump-type

Dirichlet form, whose jump kernelJ satisfies(J)β and heat kernel{pt}t>0 satisfies(ULE)β. By
(5.13) (see also [17, Theorem 1.13]), we see that(AB)β holds, which together with Corollary2.16
gives also(AB′)β.

Finally, if any of the conditions (i), (ii), (iii) and (iv) holds, then we obtain by Theorem2.13
that the heat kernel{pt}t>0 is jointly Hölder continuous (by [17, Lemma 5.6]) and stochastically
complete.

This concludes the proof of Theorem2.22. �
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