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INTRODUCTION 

This article considers Riemannian manifolds that can be graphically repre

sented in the following manner: a finite number n of curved tubes running to in

finity (the tubes can expand) is "drawn out" of a bounded domain in Rd. We desig

nate the resultant domain as R and examine the problem of finding all positive 

harmonic functions in R satisfying the homogeneous Neumann condition at the 

boundary of R. It turns out that, ,if the tubes are domains of the "cone type" 

(see Sec. 1), two situations are possible: either any positive harmonic function 

is a ~onstant (i.e., the Liouville theorem holds) or it is a linear combination 

with nonnegative coefficients of n fixed harmonic functions. The first situation 

occurs if all the tubes do not expand sufficiently rapidly (e.g., if the volume 

of that portion of R included in a sphere of radius r with a fixed center does not 

exceed const r2), while the second is realized if this is not the case (see Sec. 

1 for the exact formulation and Sec. 2-3 for the proof). 

Despite the similarity of their formulations, the Dirichlet and Neumann prob

lems differ qualitatively. In the case of D~richlet conditions, the set of posi

tive,solutions is apparently n-dimensional regardless of the degree of expansion 

of R. 

The results of the present study were reported at the All-Union School 

on Complex Methods in Mathematical Physics in Donetsk in 1984. 
© 1987 by Allerton Press, Ine. 
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1. FORMULATION OF FUNDAMENTAL RESULTS 

Let R be a d-dimensional smooth bounded noncompact Riemannian manifold with 

the edge aR (possibly empty). 

Definition 1. If n is an open subset of ~, we will use the term "harmonic 

function in n" to refer to any function u continuous together with its first de

rivatives up to the edge oROQ, that satisfies in f2,,",oR the Laplace-Beltrami equa

tion ~u = 0 and the Neumann condition 

(1) 

at the edge oROIl, where \) is a normal to aR (definitions of tlie operators ~. o/in 

and other concepts in Riemannian geometry are given by Kobayasi and Nomidzu [lJ). 

Satisfaction of boundary condition (1) is thus included in the.definition 

of a harmonic function, i.e., functions not satisfying this condition will not 

be considered. 

Definition 2. That portion of the boundary of the set f2c::R oo9=d90(R,,-dR) 

will be called its interior boundary. 

Definition 3. The function pE~(R) will be called the stripping ~unction if, 

for anytE(-oo, +00), the set Ir<t} is a compactum. 

If D is a subset of R, we will call sets D(t) = DO {p = t} sections of D. It fol

lows fr6m Sard's theorem that sections R(t) are smooth submanifolds of R trans

Verse to the edge aR for almost all t. We will henceforth assume that the strip

Ping function p(x) is specified on the manifold R. 

We will now describe how the manifold R should be constructed. We will as

sume tliat the set {p> -l} consists of n connecti vi ty components Dl , ... , Dn; each 

component Di is a domain of the "cone type." 

Definition 4. Let D be one of the components Di' ... , Dn' We call the set D 

a domain of the cone type' if, for some N> 0, A> 0, any section D(t), t:> 0, can be cov

el;'ed b . Y N charts, and: a) in each chart, all eigenvalues of quadratic form I lie 

i~ th . -1 e lnterval (A, A ); b) in each chart, we can select a pair of concentric 
EUcl' ldean spheres (or hemispheres, if the chart adjoins the edge aR) with a radius 
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ratio of 1:2 such that the smaller spheres (and hemispheres) in aggregate cover 

the section D(t). For example, the surface of rotation in the Rd+l graph of a 

Lipschitz function is a domain of the cone type. 

We will distinguish parabolic ~nd hyperbolic domains among Di . Let D be 

one component of Di . We denote by vk a harmonic function in the ~ domain DO {O < p <kl. 

that satisfies the conditions 

As k + 00, the sequence vk increases and converges to the function v, 0 < v ~ 1, 

harmonic in D, which we call the capacity potential of set D. 

Definition 5. A component D is called parabolic if its capacity potential 

is exactly equal to 1 and hyperbolic otherwise (see also [2J). 

It is easily understandable that the definition does not depend on the choice 

of stripping function. These concepts can be defined in precisely the same man

ner for the entire manifold R. It is obvious that a manifold is parabolic when 

and only when all Di are parabolic. See the commentary below for more on Defini

tion 5. 

Definition 6. We call the number 

Um! =- Um! (x) 
D p(x)-oo 

xeD 

the limit of the function I(x) if the limit on the right exists. 

Definition 7. We call the number 

stru - - da . S OU 
D O'f 

. AA 

the flow of the harmonic function u over the region D, where v is the unit normal 

to D(t) running in the direction of increasing p; da is a (d - l)-dimensional 

volume element on the submanifold D(t); t > 0 is any regular value of the func

tions P. p loR' 
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The definition of the flow is independent of t by virtue of Green's formula. 

AC t ually, if t, < ts• Q .... Dn It, < p < tt}. then 

O SA •• ..1 Sou d S ou j ~ ou· S OU S OU = "'UU1l.... - a- - ua + - da- -da- -da 
. 0... iN iN ih '0" 

Q D(J,) D(JJ oR Q D(JiJ O(t,) 

(d~ is a d-dimensional volume element on R). 

Finally, we formulate the basic result. 

Theorem. Let 'on manifold R s regions of the cone type be parabolic and l 

regions be hyperbolic, s + t = n. Let t ~ 1, i.e., the manifold R be hyperbolic. 

Then for each collection of nonnegati ve real numbers (al ..... as. bl' .... bl ). not simul

taneously vanishing, there also exists a unique positive function on the manifold 

R such that 

stru-a,. i=-t. 2 ..... s; llmu=b,.j==t. 2 .... , l 
A, B) 

(here lImu = + 00. if a i > 0, and llmu exists and is finite if a i = 0) and there are 
At A, 

no other positive harmonic functions. 

Corollary 1. There exists a unique (up to transposition and multiplication 

by a constant) collection of n positive harmonic functions u l ' ... , un such that 

any positive harmonic function u on R is represented (uniquely) in the form 

/J 

u ...... 2:: a.,p". where a.,,:;;" O. 
X-I 

Corollary 2. The minimum Martin boundary of manifold R consists of n points 

(see [3J for the appropriate definitions). 

Commenta ri es . 1. The concept s of parabolic and hyperbolic manifolds arose as 

generalizations of the corresponding notions for two-dimensional surfaces (see 

[2,4J). Any positive superharmonic function equals a constant on parabolic mani

fOlds and the Liouville theorem specifically holds. If, under the conditions of 

the theorem, all domains Di are parabolic, i.e., t = 0, then any positive harmonic 
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function on R therefore equals a constant. In the language of potential theory, 

this means that, when Z = 0, the minimal Martin boundary consists of a single 

point and, when Z ~ 1, it consists of n points regardles~ of the ratio of sand 

The geom~tric conditions for parabolicity are of great interest (see [4-7]). 

For example, if p is a Lipschitz function and the size of the set DO {p < t) does not 

exceed const t 2 , then the domain D is parabolic. 

2. We wish to clarify why the cone type condition is required. Let a com

ponent D be a domain of the cone type. For any section D(t)~ we then find a 

neighborhood U(t) such that, if u is a positive harmonic function in U(t), the 

Harnack inequality 

'supa", Plnf a 
DIi, . D(t) 

(2 ) 

holds, where the constant P depends only on N. A. d. Actually, we can take as U( t) 

the combination of all the charts mentioned in paragraph b of Definition 4 and 

apply Moser's theorem [8] in each sphere of lesser radius selected. It can be 

assumed that the neighborhoods U(t) "move out"- to infinity as t-oo in the follow

ing sense: Int.p-oo (this can be achieved by reducing the radii of the spheres 
U(t) 1_ ~',' . 

under consideration, increasing their number and hence the constant P). Thus, we 

need the cone type condition only for satisfaction of the Harnack inequality (2) 

(here it can be assumed that the constant P is the same for all domains D). If 

this inequality is satisfied for any other reason, the theorem holds as before. 

The assertion of the theorem is invalid without the Harnack inequality or some 

condition that replaces it. For more information on the Harnack inequality see 

[9,10]. 

2. PROOF OF EXISTENCE 

We will term any (d - I)-dimensional submanifold in R transversal to the 

edge aR a hypersurface. 

Lemma 1. Let Q be a precompact open set in R whose interior boundary ao
Q 

consists of nonintersecting compact hypersurfaces Fl and F2 . Let u be a harmonic 
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function in Q continuous in IT; all'; <0, ulF• >,0. Then 

Sau sau' ;;:; do == - ;;:; do > 0, 
,·'1 ,·'1 

where v is the interior unit normal. 

Proof. Let E: be a regular value of the function u; 0 <e < mina. Consider 
1', 

the open set &l, == {a> e} and part of its boundary S.={U=i}. Since the function u in 

Q£ reaches its minimum at SE:' by the normal derivative lemma [11] 

• I= da>O. ( 4 ) 

where v is a normal interior with respect to Q. Applying Green's formula in the 
E: 

domains Qe: and Q, we find that each of the integrals in (3) equals integral (4). 

Propos it ion 1. Let u be a positive harmonic function in the cone type do-

main Dc:R. There then exists the finite or infinite limit 

IIma=oowhen and only when stru>O and D is a parabolic domain. 
D D 

Proof. Assume M(t)==s~u, 

met) -Infu, M' .... UmM (t). m-Urn m (t). 
Dl/) ";::;; r.;;; 

Um a. 
D 

In this case, 

If for some to>OM(to)<M. then by the maximum principle M(t) < M with t > to and 

M(t)_M(t-+oo). Applying the Harnack' inequality to the harmonic function M - u 

on the section D(t) with suffiCiently large t, we obtain M-m(t)<PX(M-M<t». 

Whence m(t)-M(t-+oo). limu =M-:-In. The case M = 00 is even simpler to consider. 
D 

Let for all t>O M(t»M and, analogously, met) ~ m. The function M(t) is 

then diminishing, whiie met) is increasing. For some to ~ 0 we apply the Harnack 

inequality to the function u - m(t O) on the section D(t), t»to: 

M (t) - m <to) -< P(m (t) - m (to». 
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M - m (.to) -< P(m - m. (to». 

As to + 00 we obtain m.(to)-M. UgllL=M=m. 

We will now prove the second part of Proposition 1. Consider the following 

two cases. 

a) D is a hyperbolic domain. Let (1 - v) be its capacity potential. Assume 

w = av + b, where 

Then a - 'W 10(0) -< 0. str (a - 'W) '9 O. 
o 

a =- str a/str 'V • . b == sup a. 
o 0 D(O} 

By Lemma 1, on each section D(t), t > 0, . 

Inf (a - 'W) -< 0. Inf a -< 'sup 'W. 
, D(I) D(t)~) 

whence by Harnack's inequality 

sup'a -< Psup 'W. 
0(1) O(t) 

Since the function w is bounded, boundedness of the function u and specifically 

Hma < 00 follows. 
D 

b) D is a parabolic domain. 

Lemma 1 str a> O. 
o 

Let Hma<oo. then for some C 
D 

If lIma=CIO. then with large t Infa:>supa.and by D _ _ 

We will prove that stra-<O. 
o 

Actually, let vk(x) be a sequence of harmonic functions specified by the condi

tions 

Then {vk } decreases and converges to zero, so that str7JA--O. Since the function 
D .11 ..... 

CVk - u is negative on D(O) and positive on D(k), by Lemma 1 

sir (C'V.t -It) > 0. sIr It -< Cslr 'Oil' 
ODD 
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k + 00, we obtain sDtr u -< O. 
v/ben 

corollary 3. The flow over a parabolic domain is nonnegative for a positive 

harmonic function. 

Corollary 4. If v is the capacity potential of the hyperbolic domain D, 

then Urn 7J = 0. str'V < O. 
D D 

The proofs of Corollaries 3 and 4 are obvious. 

Proposition 2. Under the conditions of the theorem, for any collection of 

nonnegative numbers (al' .... as' bl' .... b/). that do not vanish simultaneously there ex-

ists a positive harmonic function u on R for which 

sft a = a,. i = 1.2 ..... 9; Urn a = bJ. 'l- 1. 2 .... , I. 
~. ~. . . 

Proof. It is sufficient to consider two cases. 

a) bl = 1 and all other numbers ai' b j equal zero. We relabel Bl as Dl , 

Let Vex) be a function harmonic in the domain bounded by the hypersurfaces 

D,'VJ. i = 1. 2, ... ,n, here 

Successively tending t,-oo, t2 -oo, ... , we obtain at the limit the function u sought, 

The flow U over the paraboiic domains equals zero by virtue of the boundedness 

Of u (see Proposition 1), while the limit for the hyperbolic domains equals 0 or 

1 (for Dl ) as a consequence of the existence of barriers, i.e., capacity poten

tials tending to zero (Corollary 4). 

b) a l = 1 and the other numbers equal O. As in the prec.eding paragraph, we 
fiJ:>s t 

construct the harmonic function V' (.l:) such that V'IAIN == I, and the limits VT 

zero over all the hyperbolic domains, ·as do the flows over all the parabol
ic d 

omains except Al' 
rl' yc 

We will prove that the family of functions {UT}, where ....-stryc' are compact. " ' <lom~lns 
Since stru~=I, the sum of the flows UT over the hyperbolic 

AI 

Let :1l'-"he 
equals -1, whence it follows that, for any hyperbolic domain B, slru~>-l. 

8 

a function proportional to the capacity potential B, with str'V=-I. Since 
8 
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'tI(x)+s>s>u'(x) andstr('tI+s)<stru' at large p(x), it follows from Lemma 1 that at some 
8 8 

point xEB(t) 'tI(x) + s > u'(x). By virtue of the arbitrary choice of € > 0, we obtain 

SUp'tl> Intu', and by the Harnack inequality (2) 
8(1) 8(1) 

SUPu" <. PSUp'tl, 
8f/) 8(1) (5 ) 

whence compactness of {UT} follows. Let u be the limit function as T + 00. Then 

limu-O, j::al, 2, ... , I, by (5)and slru=I; stru-O. i>2, so that {UT} exhibits uniform 
8J . A, Al _ 

local convergence with the first derivatives. 

Propositions 1 and 2 contain two assertions of the theorem. We will now turn 

to proof of the third, fundamental part of the theorem, i.e., the uniqueness of 

the function u with specified (str u, Umu). 
A" 8J 

3. PROOF OF UNIQUENESS 

Central to the entire proof is 

Lemma 2. Let u and v be positive harmonci functions in a cone-type para

bolic doma,in A and let u-'tIIA(o)' stru== str'tl >0. Then U5't1. 
A A 

Proof. Let {vk } be a sequence of numbers growing with sufficient rapidity 

(i.e., it is necessary that, for any section A(t) intersecting the hypersurface 

E,,-{'v='tIlt}, the neighborhood U(t) from Sec. 1 lies in the domain ('tI~,<'tI<'tIfI+l})' We 

will prove that, if w is a positive harmonic function in the domain ('tI < 'tIHtl. the 

Harnack inequality on the hypersurface Ek holds for it: 

maX11fJ<.P·mlnw. 
Elt E" (6) 

Assume M==maxw. m=mlnw.· Let tl and t2 be such that the minimum point 11fJ1E" 
Elt elt 

lies on the section A(t l ) and the maximum point on A(t 2 ). Let tl < t2 for the 

sake of definiteness. Consider the function 

2 On the sections A(t l ) and A(t 2), the function Vex) assumes the value P m at cer-

tain points (since Ek intersects A(t l ,2)) and, since V is positive in the domain 

(11 > 'tIlI-tl, the Harnack inequality 

p
3
m> VIA(tuUA(t'» Pm 

is satisfied on the sections A(t l ), A(t 2 ). On the other hand, we again have 

wIA(t,) '" Pm by virtue of the Harnack inequality, so that 

Further, on the set Ek_ l the function V = 0 and w > 0, Le., V<wIEII-
1
' Therefore 

by Lemma 1 

str V> str11fJ. 
A • A (8 ) 

We now compare V and w on the section A(t 2 ). By (7) and (8), at some pOint 

.tEA (t2) V (x) >- w (:c). Since 

hence PSm>P-'M, M<.P·m. 

We no.w turn directly to proof that u!Sid,. 

the functions u and v in the domain !;!,,=i'tl<v,,}. 

Let M.== maxu. rn,,= mla u. Compare 
Elt ell 

It should be noted that 

iN:)·" = A (0) U E". Since 'tIIA(o»uIA(o).stru=str'tl. at some point xEE" 'tI(x»'a(x), by Lemma 1, 

Whence vk ~ mk . Similarly, Mk ~ v
k

. 

Now compare the functions u and (mk/vk)v in Qk' Since uIA(o) ='tIIA(O):>' (h.',J'tI,J 'tIIA(o)' 

.ale·> m,,= (m,J'tI,J'tIIE' 
" • 11 

'then by the maximum principle u ~ (mk/vk)v in Qk' We apply to the function 

~ U - (mk/vk)v the Harnack inequality on Ek_l : 
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or, by virtue of the fact that M.t-t :> v.t- t ' 

(9) 

Analogously, 

(10) 

Adding (9) and (10), we find 

(M" - m,J 'V,,_t/VII - (M,,_t - mll_t) :> P-~ (M" - m,,) vlI_l/v", 

(1 - P-4)(M~ - m,,)/vlI :> (M.II_I - m.ll_I)/"vlI_l· . 

Hence we obtain by successive iterations 

Since (M.II+q-m.ll+q)/v.II+q<'P\ by the Harnack inequality, as q ..... 00 we obtain MII-m,,=O, 

M.II = m.ll = v.II' i. e . , U a v. The lemma has been proved. 

Corollary 5. Let u and v be positive harmonic functions in the cone-type 

domain D and let w = u - v. There then exists the finite or infinite limit 

Um 'W. 
D 

Proof. If D is a hyperbolic domain, then llm'W'=llmu-llmv, since both limits 
D. D D 

on the right are finite. The argument proceeds in the same manner if D is a 

parabolic domain and one of the flows Slfu, ~tr7J.equals zero. Now let SDtrU:;;..sgV>O. 

It can be assumed that "ID(O»v/D(O) (the function u + const otherwise being 

considered in place of u). We construct the positive harmonic function Wo such 

that 

'Wo 1£)(0) = u - v, str Wo = str " - str v :;;.. 0 
D' ,D D 

C i t t d the limit of solutions of appropriate Dirichlet problems). Wo s cons ruc e as 

However, we then have v + Wo = u by Lemma 2, whence Wo = w. The function w 
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fore has a limit by Proposition 1. 

Proof of Theorem (Uniqueness). Let u and v be positive harmonic fUnctions 

on R for which the collections of numbers (str. Um) coincide. Assume w = u - v; 
A, SJ 

We will prove that w ~ O. By Corollary 5, there exist the then llmw.=O, 
sJ ; 

strw=O. A, 
Umi t s Hm·w. A, If they are not all negative, then w ~ 0 by the maximum principle. 

Let same of them be less than O. We denote by I the collection of indices i, 

1 ..:s. i ..$.. s, for which the limit llmw is minimal. We find a negative number -€ that 
At 

is greater than this minimum but less than the other limits l1m'W, Uti (and that is 
A, 

a regular value of the function u). Consider for sufficiently large t the domain 

bounded by all sections AiCt), Bj(t). On the sections A,(t),iE/, we have ~<-e, 

while on other sec tions w> -e. By Lemma 1, -Estrw > 0, which contradicts· the con
telA, 

dition strw-O. Thus, w ~ O. Similarly w .s. 0, so that ";a v. 
At 

Proof of Corollary 1. The theorem establishes a linear one-to-one corre-

spondence between positive harmonic functions on R and points of an octant in 

Rn. The assertions of Corollary 1 follow from the corresponding facts of linear 

algebra. For example, the uniqueness of the collection u
l

' ... , un follows from 

the fact that an (n - I)-dimensional simplex has n extremal pOints. 

Corollary 2 is a reformulation of Corollary 1. 
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