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INTRODUCTION 1
This article considers Riemannian manifolds that can be graphically repre-
sented in the following manner: a finite number n of curved tubes running to in-

finity (the tubes can.expand) is "drawn out" of a bounded domain in Rd.

We desig-
nate phe resultant dqmain as R and examine the problem of finding all positive
harmonic functions in R satisfying the homogeneous Neumann condition at the
boundary of R. It turns out that, -if the tubes are domains of the "cone type"
(see Sec. 1), two situatlons are possible: either any positive harmonic function
is a constant (i.e., the Liouville theorem holds) or 1t is a linear combination
with nonnegative coefficients of n fixed harmonic functions. The first situation
occurs 1f all the tubes doc not expand sufficiently rapidly (e.g., if the volume
of that portion of R included in a sphere of radius r with a fixed center does not
exceed const r2), while the second is realized if this 1s not the case (see Sec.

1 for the exact formulation and Sec. 2-3 for the proof).

Despite the similarity of their formulations, the Dirichlet and Neumann prob-
lems differ qualitatively. In the case of Dirichlet conditions, the set of posi-
tive.solutions is apparently n-dimensional regardless of the degree of expansion
of R. ' '

The results of the present study were repbrted at the All-Union School

on Complex Methods in Mathematical Physics in Donetsk in 1984,
© 1987 by Allerton Press, inc.
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1. FORMULATION OF FUNDAMENTAL RESULTS

Let R be a d-dimensional smooth bounded noncompact Riemannian manifold with
the edge 3R (possibly empty). A

Definition 1. If Q is an open subset of R, we will use the term "harmonic
runctlon in Q" to refer to any function u continuous together with its first de-

rivatives up to the edge ORn&T, that satisfies 1n @\dR the Laplace-Beltrami equa-

tion Au = 0 and the Neumann condition

oujdy =0 (1)

at the edge dRM8, where v is a normal to 3R (definitilons of the operators A, dldv.
and other concepts in Riemannian geometry are given by Kobayasi and Nomidzu [1]).
Satisfaction of boundary condition (1) is thus included in the definition

of a harmonic function, i.e., functions not satisfying this condition will not

be considered.

Definition 2. That portion of the boundary of the set QR 0,2 =02[](RN0OR)
will be called its interior boundary.

Definition 3. The function pEC“(R)will be called the stripping function if,
for any t€(—oo, +c0), the set {p<¢ is a compactum. .

If D is a subset of R, we will cail sets D(®)=D}{p=¢} sections of D. It fol-
lows from Sard's theorem that sections R(t) are smooth submanifolds of R trans-
Verse to the edge 3R for almost all t. We will henceforth assume that the strip-
Ping function p(x) is specified on the manifold R.

We will now describe how the manifold R should be constructed. We will as-

Sume that the set {p>~I1} consists of n connectivity components Dl’ ceny Dn; each

Component D, is a domain of the "cone type."

Definition 4. Let D be one of the compdnents DI’ RN Dn’ We call the set D
a domain of the cone type if, for some N>0, A>0, any section D(), ¢»0,can be cov-
fred by y charts, and: a) in each chart, all eigenvalues of quadratic form I lie
n the interval (X, A"l); b) in each chart, we can select a pair of concentric

R ; .
Ylidean spheres (or hemispheres, i1f the chart adjoins the edge 3R) with a radius

49



ratio of 1:2 such that the smaller spheres (and hemispheres) in aggregate cover

the section D(t). For example, the surface of rotation in the Rd+l

graph of a
Lipschitz function is a domain of the cone type.

We will distinguish parabolic ‘and hyperbolic domalns among Dl‘ Let D be
one component of Dy. We denote by v, a harmonic function in the domain DN{0<p <4,

that satisfles the conditions

""k’o(o)‘ =1, Ulpy= 0.

As k » », the sequencelvk increases and converges to the function v, 0 < v < 1,
harmonic in D, which we call the capaclty potential of set D.

Definition 5. A componént D 1s called parabolic if 1ts capacity potential
is exactly equal to 1 and hyperbolic otherwlise (see also [2]).

It 1s easily understandable that the deflinition does not depend on the choice
of stripping function. These concepts can be defined in precisely the same man-
ner for the entire manifold R. It 1s obvious that a manifold is parabolic when
and only when all Di are parabolic. See the commentary below for more on Defini-
tion 5.

Definition 6. We call the number

Hm f == lim f (x)
D p(:é-;;»
the limit of the function f{x) if the limit on the right exists.

Definition 7. We call the number

- da
storunj‘;'-da
. . Dy

the flow of the harmonic function u over the region D, where v is the unit normal
to D(t) running in the direction of increasing p; do is a (d - 1)-dimensional
volume element on the submanifold D(t); t > 0 is any regular value of the func-

tions p, plyg
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The definition of the flow 1s independent of t by virtue of Green's formula.

pctually, if #<t, Q=D(l{4 <p<#)}, then

on ou ou , . da o
Q Dt D) ar(1Q D) Dty

(du is a d-dimensional volume element on R).
Finally, we formulate the basic result.
Theorem. Let on manifold R s regions of the cone type be parabolic and 7

regions be hyperbolic, s + Z = n. Let 7 > 1, 1.e., the manifold R be hyperbolic.

Then for each collection of nonnegative real numbers (@, .., &, 80, .., &), not simul-

taneously vanishing, there also exists a unique positive function on the manifold

R such that
stre=ay, i==1,2, .., 8 ime=0b,j=1,2, ..,!
A 8y
(here llmug= 400, if a; > 0, and limg exists and is finite if a; = 0) and there are

Ay Ay
no other positive harmonic functions.
Corollary 1. There exists a unique (up to transposition and multiplication

by a constant) collection of n positive harmonic functions u U, such that

19t
any positive harmonic function u on R is represented (uniquely) in the form

o= él a.lL,, where @y > 0,
Corollary 2. The minimum Martin boundary of manifold R consists of n points
(see [3] for the appropriate definitions).

Coﬁmentariesﬂ 1. The conceptsof parabolic and hyperbolic manifolds arose as
88neralizations of the corresponding notions for two-dimensional surfaces (see
[3,“3). Any positive superharmonic function equals a constant on parabolic mani-
folds and the Liouville theorem specifically holds. If, under the conditions of

the theorem, all domains Di are parabolic, i.e., I = 0, then any positive harmonic
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function on R therefore equals a constant. In the language of potential theory,
this means that, when 7 = 0, the minimal Martin boundary consists of a single
point and, when 7 > 1, it consists of n points regardless of the ratio of s and
.

The geometric conditions for parabolicity are of great interest (see C4-71).
For example, if p 1s a Llipschitz function and the size of the seﬁzjn{p<t}does not
exceed const t2, then the domaln D 1s parabolic.

2. We wish to clarify why the cone type condition 1is required. Let a com-
ponent D be a domain of the cone type. For any section D(t); we then find a

neighborhood U(t) such that, 1f u is a positive harmonic function in U(t), the

Harnack inequality

‘supu < Pinf '
ige < Pgt @

holds, where the constant P depends only on N, A d. Actually, we can take as U(t)
the combination of all the charts mentioned in paragraph b of Definition 4 and
apply Moser's theorem [8] in each sphere of lesser radius selected. It can be
assumed that the neighborhoods U(t) "move out™ to infinity as £—oo in the follow-
ing sense: gg@;:fo (this can be achisved by reducing the radil of the spheres
under consideration, increasfng their number and hence the constant P). Thus, we
need the cone type condition only for satisfaction of the Harnack inequality (2)
(here it can be assumed that the constant P is the same for all domains D). If
this inequality 1s satisfied for any other reason, the theorem holds as before.
The assertion of the theorem 1s invalid without the Harnack inequality or some
condition that replaces 1t. For more Informatlon on the Harnack inequality see
[9,10].
2. PROOF OF EXISTENCE

We will term any (d - 1l)-dimensional submanifold in R transversal to the
edge 3R a hypersurface.

Lemma 1. Let 9 be a precompact open set in R whose interior boundary 809 \

consists of nonintersecting compact hypersurfaces Fl and FZ' Let u be a harmonic
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function in Q@ continuous in Q; #l.<0, #],>0. Then

ou o
_L—;dow—sadoo. | (3)

where v 1s the 1interior unit normal.
Proof. Let € be a regular value of the function u; 0<e<minaz Consider
. #y
the open set 8 ={u>e} and part of its boundary S={u=:}., Since the function u in

ﬁé reaches 1ts minimum at Sa’ by the normal derivative lemma [11]

du
[0 ()

wvhere v 1s a normal interior with respect to Qe’ Applying Green's formula in the
domains Qs and @, we find that each of the integrals in (3) equals integral (4).

Proposition 1. LetAu be a posltive harmonic function in the cone type do-
main D= R. There then exists the finite or infinite limit ‘ lgnu. In this case,
llgm:oo when and only when s[t)ru>0 and D is a parabolic domain.

Proof. Assume M(t)=sg(gt;,

m(t)all?“f)u, Mjag%M(t),_'mmggm(t).

If for Sbmeto>(}Adug<:AL.then by the maximum principle M(t) < M with t > ty and
MUL»AdU—»aﬂ. Applying the HarnackAinequality to the harmonic function M - u
°n the section D(t) with sufficilently large t, we obtain M—m() < PX(M—M(t)),
Whence m(t)—‘M(t—»c?o), llgxu-—-=M=.=‘m. The case M' = «» is even simpler to consider.

Let for all ¢>0 A1U)>1M and, analogously, m(t) < m. The function M(t) is
then diminishing, while m(t) is increasing. For some ty 2 0 we apply the Harnack

1r1equality to the funection u - m(to) on the section D(n,t§>g:

M ()~ m (k) < P(m(t) — m(4)),

Whence



M —mty) < P(m — m(t,)).
As to + o we obtain m(i)—M, llgm=M=m.
We will now prove the second part of Proposition 1. Consider the following
two cases.

a) D is a hyperbolic domain. Let (1 - v) be its capaclty potential.

w = av + b, where

a=asiru/stro," bzsu?u.
D D . D

Then u-—'w|D(°)<0, sgr(u—w)==a0. By Lemma 1, on each section D(t), t > 0, -

inf (¢ —w) <0, infu<'supw,
. D) D) o)
whence by Harnack's lnequality
supz < Psup w.
D(t? D«)p

Since the function w is bounded, boundedness of the function u and specifically
llgxu<°° follows. ‘ N _
b)‘ D is a parabolic domain. If lllx)nu=do, then with .large t gr(x‘fujsot(xng, and by
mmm].¥u>a
Let llglu<oo, then for some C suopu<C. We will prove that sgu<0.

Actually, let vk(x) be a sequence of harmonic functions specified by the condi-

tions
'v,]mo, =0, v, ID(,,) =1,

Then {vk} decreases and converges to zero, so that stru,—0. Since the function
D koo

Cv, - u is negative on D(0) and positive on D(k), by Lemma 1

k

str (Cv, — 1) > 0, Wu<Cﬁm%'
D D D
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Assunme

ynen k + ®, we obtain sg'u<0.'

corollary 3. The flow over a parabolic domain is nonnegative for a positive

paymonic function.

cgro]]ary 4, If v is the capacity potentiai of the hyperbollic domain D,

then 111)mv=0, stg'v <0.

The proofs of Corollaries 3 and 4 are obvious.

Proposition 2. Under the conditions of the theorem, for any collection of

nonnegative numbers (@, .., @&, &, .., &), that do not vanlsh simultaneously there ex-

1sts a positive harmonic function u on R for which

sre==q,, i=1,2, ..., s =by j ‘
S p i=1, 2 , liax;xu by, J=12 .,

Proof. It is sufficilent to consider two cases.

a) bl = 1 and all other numbers ay s bj equal zero. We relabel B, as D

1
Let v(x) be a function harmonic in the domain bounded by the hypersurfaces

1
Dit), i=1,2, ..., n, - here

VIDl«I) ==-1’ V‘D‘(l‘) =0, ; > 2. |

Successively tending {—c0, l3—00, .., we obtalin at the limit the function u sought.
The flow U over the paraboiic domains equals zero by virtue of the boundedness
:Of u (see Pfoposition 1), while the limit for the hyperbolic domains equals 0 or
L (for Dl) as a consequence of the existence of barriers, 1.e., capacity poten-
tlals tending to zero (Corollary 4).

b) @; = 1 and the other numbers equal O.

As in the preceding paragraph, we

- Pip :
St construct the harmonic function V*(x) such thatV'l, =1, and the limits vt

1]

- fqual gepg over all the hyperbolic domains, as do the flows over all the parabol-

le denains except Al. We will prove that the family of functions {uT}, where

dom;;;:iare compact. Sincé ﬁfug=1’ the sum of the flows u’ over the hyperbolic
08 equals -1, whence it follows that, for any hyperbolic domain B, sl;u'>—-1:

& function proportional to the capacity potential B, wilith s;r'v,=-—1. Since
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0 (x) +8>8> 4" (X) andstr('v+e)<s;ru' at large p(x)', it follows from Lemma 1 that at some
8
point x€B() v(x)+e>u’(x). By virtue of the arbitrary choice of ¢ > 0, we obtain

s%)v>1nfa‘, and by the Harnack inequality (2)
B BO

<Py ®

whence compactness of {u'} follows. Let u be the limit function as t + ». Then

l})muao, j=1,2 .., !, by (5)and sAtra=I-, itru==0, i>»2, so that {u'} exhibits uniform
7 A 3 L
local convergence with the first derivatives.

-

Propositions 1 and 2 contaln two assertions of the theorem. We will now turn

té proof of the third, fundamental part of the theorem, i.e., thé uniqueness of
the function u with specified @gé,%?uy
3. PROOF OF UNIQUENESS

Central to the entire prcof is

Lemma 2. Let u and v be positive harmonci functions 1n a cone-type para-
bollc domain A and let u==ul,, slltrus-s}r'v>0. Then z=w.

Proof. Let {vk} be a sequence of numbers growing with sufficlent rapidity
(i.g., it 1s necessary that, for any se?tion A(t) intersecting the hyperéurface
E,={v=1,}, the neighborhood U(t) from Sec. 1 lies in the domain {'05..|<v<'v,,+;}). We

will prove that, 1f w is a positive harmonic function in “the domain {v < vy}, the

Harnack inequality on the hypersurface Ek holds for it:

4
néz:xfw<P xxg:lw. (6)

Assume M=rgaxw, m=g1m'w.' Let tl and t2 be such that the minimum point 'wltk
: : % &
lies on the section A(tl) and the maximum point on A(tz). Let t; < t, for the

sake of definiteness. Consider the function

V (£) = P*m (v — 0, )/ (0 — Vpr).
\

On the sections A(tl) and A(t2), the function V(x) assumes the value P2m at cer-

tain points (since Ek intersects A(tl 2)) and, since V is positive in the domain
b

-

(v> U}y the Harnack ihequality

Pm> V|

A«oUA«a> Pm

is satisfiled on the sections A(tl), A(t2). On the other hand, we again have

W|y¢y < Pm by virtue of the Harnack inequality, so that

V>W‘A“|)v.- ’ ’ (7)

Further, on the set Ek-l the function V = 0 and w > 0, i.e., V<w|5k_l. Therefore
by Lemma 1

Vs (8)

We now compare V and w on the section A(’cz). By (7) and (8), at some point

xCA) V) » w(x). Since
Vi <Pm, iy, > P,

hence psm> P~'M, M< P'm._
We now turn directly to proof that g=3%. Let M,=maxua, my=minu. Compare
- £y Ep
the functions u and v in the domain 2 ={v<4®). It should be noted that

02 =AOUE, Since Dl > #lagp Stz =strv, at some point x€E, v(x) >#(x), by Lemma 1,

whence Ve 2 M. Similarly, M 2 V.

Now compare the functions u and (mk/vk)v in Q. Since &g =1vlyq> (17 Vg
g2 > My = (myvg) v lsk'

hen by the maximum principle u > (mk/vk)v in Qk. We apply to'the function .
u - (mk/vk)v the Harnack inequality on Ek—l:

S
My — M/ Vg > P ( My — my0y1/0),
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“or, by virtue of the fact that My > e,

(9)

: —4
My y = MUy i[ V> P77 (Vg — MO/ V)

Analogously,

M0yif g = Myy > P~ (My0x /0y — Vi) (10)

Adding (9) and (10), we find

(M, — ) Vpey/ O — My —my) > P =4 (M — 1ty) Vet Vs '
i-P =Y (M — myp)/vg > Myt = M) Vpmio

Hence we obtailn by successive lterations
My— m) vy < (1 = P~ My = My /041 € oo < (1= PY (Myyg— My ) Vnige

Since (My,q— My /Vese<P', by the Harnack inequality, as q » < we obtain M,—m, =0,

My=my=v,, 1.e.,u=v. The lemma has been proved.

Corollary 5. Let u and v be positive harmonic functions in the cone-type

domain D and let w = u - v. There then exists the finite or infinite limit

-

imw.
D

= llmu —limv, since both limits
Proof. If D is a hyperbolic domain, then %gw gn mo,
on the right are finite. The argument proceeds in the same manner if D is a
parabolic domain and one of the flows sgru, SDtr'O. equals zero. Now let séru>§lt)r'a>0.
It can be assumed that #lp> 2y (the function u + const otherwise being
considered in place of u). We construct the positive harmonic function wg such

that

wolo(o)-’;““'_”' slgr/wo=sotru—-str'v>0

D

(wO is constructed as the limit of solutions of appropriate Dirichlet problems).

The function w thereé~

However, we then have v + Wy = U by Lemma 2, whence Wy = W.
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folds ana

Slons," app.

fore has a limit by Proposition 1.

Proof of Theorem (Uniqueness). Let u and v be positive harmonic functions

on R for which the collections of numbers (str, lim) coincide. Assume w = u - v;’
A B

7

then l;mw.éo, sz=O. We will prove that w > 0.-
7 g 4

1imitsl§nw. If they are not all negative, then w > 0 by the maximum principle.
1

Let some of them be less than 0.

By Corollary 5, there exist the

We denote by I the collection of indices 1,

1<1xgs,

for which the limitlgrw is minimal. We find a negative number -e that

is greater than this minimum but less than the other limits!fuw,i&!(and that is
t

a regular value of the function u). Consider for sufficiently large t the domain

bounded by all sections Ai(t), Bj(t). On the sections A;(f), i€f, we have W < —e,

while on other sections wx»—s By Lemma 1, --i§l's£r'w>0, which contradicts- the con-
!

dition it‘rw—o. Thus, w > 0.

Similarly w < 0, so that #=o.

Proof of Corollary 1. The theorem establishes a linear one-to-one corre-

spondence between positive harmonic functions on R and'points of an octant in
R". The assertions of Corollary 1 follow from the corresponding facts of linear

algebra. For example, the uniqueness of the collection u

cesy U follows fron

1’ n
the fact that an (n - 1)-dimensional simplex has n extremal points.

Corollary 2 is a reformulation of Corollary 1.
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