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1 Introduction

This note is about the heat kernel on a connected sum M of non-compact man-
ifolds My, M, ..., M, assuming that one knows enough about the heat kernels
for each M; individually (which is the case when M; are complete manifolds of
non-negative Ricci curvature). We announce here matching uniform upper and
lower bounds for the heat kernel on such manifolds M. The proofs will be given
elsewhere.

For an arbitrary Riemannian manifold M, denote by A the Laplace operator
of the Riemannian metric of M and by p(t,z,y) the heat kernel, that is, the
smallest positive fundamental solution to the heat equation u; = Au on R, x M
(here z,y € M and t > 0). Alternatively, p(¢,z,y) can be defined as the kernel
of the semigroup exp (tA). Yet another definition of p(t,z,y) is that it is the
density of the transition probability of the Brownian motion on M generated by
the operator A.

In R"™, the heat kernel is given by the classical formula

_ 1 jz —y|’
p(t,l‘,y) - (47Tt)n/2 eXp <_ At > . (1)
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On a general manifold M, one may hope to obtain some estimates of the heat
kernel related to the geometry of M. In the past two decades, this question has
received considerable attention from many authors. This was partially motivated
by various important applications of heat kernel bounds although the question of
understanding the interplay between the heat kernel and the geometry is inter-
esting by itself. The celebrated theorem of Li and Yau [16] says that if M is a
geodesically complete manifold with non-negative Ricci curvature then

me}{p (_dQ(Cxt, y)> < p(t.x.y) < ﬁexp (—dQ(g;y)> )

Here V(z,r) is the Riemannian volume of the geodesic ball B(x,r) of radius r
centered at x € M; d(z,y) is the geodesic distance between the points z,y € M;
C, c are positive constants. There are many other settings when certain heat
kernel bounds are known - see for example [1], [3], [4], [7], [8], [11], [12], [18], [17].

In most known estimates the heat kernel is controled by two multiplicative
terms: a Gaussian factor exp(—%) and a long time decay term which is some
function of time ¢ as in (1) and (2). The reason is that in most situations con-
sidered previously the manifold M possesses a certain degree of homogeneity so
that p(¢, z,y) depends on = and y mainly via the distance d(z,y). At the present
time, there are no methods yielding satisfactory heat kernel bounds for highly
inhomogeneous manifolds having substantially different geometric properties in
different parts. The manifolds with ends considered in this note can be regarded
as the simplest case of such non-homogeneous manifolds.

The main results are Theorems 1 and 4. Since the results are not simple,
we first explain them for connected sums of Euclidean spaces (Section 2). The
general case is considered in Sections 3 and 4.

2 Connected sums of Euclidean spaces

Let My, Ms,.., My be a finite family of geodesically complete non-compact Rie-
mannian manifolds. We say that a manifold M is a connected sum of M;’s and
write

M = M, #Mydt.. 4 M,

if, for some compact K C M (which will be called the central part of M), the
exterior M \ K is a disjoint union of open sets Ej, Es,..., such that each E; is
isometric to M; \ K;, for some compact K; C M; (in fact, we will identify E; and
M; \ K;). In other words, in order to obtain M, one cuts out holes K; in each M;
and glues together the rest of M;, that is E;, over some compact K. Of course,
a connected sum is not uniquely defined. When writing M;#Ms#..., we refer to
any manifold which can be obtained in this way.

Another point of view is to regard M as a manifold with ends F; assuming
that each end FE; can be closed to a complete manifold M;. Sometimes it is
convenient to say that M;’s are the ends of M.



The connected sum R"#R"™ was considered by Kuz’menko and Molchanov
[15] as early as in 1979 as an example of a manifold where the Liouville property
for bounded harmonic functions fails. However, even for this simple manifold,
no uniform bounds of the heat kernel was known, except for partial estimates
2], [19]. Our main results - Theorems 1 and 4, provide sharp uniform heat
kernel estimates for a rather wide class of connected sums M;#Ms#...4#M;. In
particular, they cover (but are not restricted to) the case when M; are manifolds
with non-negative Ricci curvature.

In this section, we will explain our results in the situation when each M; is
similar, at infinity, to an Euclidean space. To be precise, let us fix some (large)
integer N and define the manifold R™ := R"xS¥~", for all integers n from 1 to N.
Clearly, R"™ has topological dimension N whereas, on a large scale, it resembles
R”. It is natural to say that the asymptotic dimension of R™ is n. It makes sense
to consider the connected sums of R"’s with different n since all those manifolds
have the same topological dimension N. Hence, the main example of this section
is the manifold M = R™ #R™#.. . H#R"-.

E.B.Davies [9] considered certain one-dimensional model spaces with ends
having asymptotic dimensions ni, ns, .... and observed some interesting phenom-
ena for the heat kernel long time behavior. For example, he showed that, if all
n; # 2 and some n; > 2 then, for a fixed point z and for ¢ — oo,

p(t,z,x) < Ct™/?

where
n =min {2+ |n; — 2|} .

In particular, the contributions to n of the ends with the asymptotic dimensions
1 and 3 are equal. Indeed, if n; = 1 or 3 then 2 + |n; — 2| = 3. E.B.Davies con-
jectured that the same is true for connected sums of manifolds, and the positive
answer to his conjecture follows from our results (see Corollary 5). Moreover,
one can see that there is a certain duality between the manifolds of asymptotic
dimensions less than 2 and greater than 2.

For the manifold M = R", the following estimate of the heat kernel is well-
known:

1 d*(,y)
t = T
p(t,z,y) (N2, 777) eXp( ” ) : (3)

d(x,y) being the geodesic distance on M. Here the sign < means that the ratio
of the right-hand side and of the left-hand side is bounded from above and from
below by some positive constants, for all values of x,y € M and ¢t > 0. We always
follow the convention that the constant ¢ in the Gaussian exponential term may
be different for the upper and for the lower bounds.

Consider now the manifold M = R"#R™ where both n,m > 2. If t < 1 then
the estimate (3) holds again. Assume in the sequel ¢t > 1. For any point = € M,
denote

|z| := supd(z, z).
zeK



The point = € M lies either in the central part K or in one of two ends R" \ K,
R™\ K. Let x € R"\ K and y € R™ \ K. Then we claim that

1 1 d*(x,y)
t = - ’ 4
p( 7$ay) (tm/2 |x|n72 + tn/z |y|m2) eXp ( ct ) ( )

which is a special case of Theorem 1 below. However, even (4) exhibits some new
phenomena. Let us consider two asymptotic regimes.

(a) Long time regime when t — oo whereas |z| and |y| stay bounded. Clearly,
(4) implies
1
p(t,z,y) < ()2
so that the long time behaviour of the heat kernel is determined by the end
with the smallest asymptotic dimension.

(b) Medium time regime when t — oo and |z| < |y| < vt. Then (4) implies
1
p(t,z,y) < /a1 (5)

In particular, for the manifold M = R"#R", in the medium time regime, we
have

1
pt,2,y) = . (6)

Note that even this estimate is new (see [2] for an upper bound and [19] for a
lower bound in the medium time regime). For comparison, if z and y stay in the
same end and |z| < |y| < v/t then p(t, z,y) < t7"/? as for the heat kernel of R"
(see (8) below). Since n — 1 > n/2, the estimate (6) reflects a bottleneck effect:
for |z| < |y| < v/, the heat kernel p(t, z,y) is substantially smaller if x,y are in
different ends than if they are in the same end.

Each term in (4) has a clear probabilistic meaning. Let X; be the Brownian
motion on M, that is, the diffusion generated by the Laplace operator A. Then
p(t,z,y) is the density of the probability that X hits y at time ¢ after starting
at . Roughly speaking, there are two possibilities for a continuous path to get
from x to y: either X; spends most time in R™ or in R™. The probability of the
former is of the order W and of the latter is of the order W

Another new effect can be observed when considering connected sums of at
least three manifolds. Let

M = RMHAR™ 4L, R

where all n; > 2. Denote
n = minn,;.
(]

Assuming as above that ¢t > 1, z € R™ \ K and y € R™ \ K where i # j, we
have the following estimate

1 1 1 _d*@w)
p(t,x,y) = ( n;—2 + + n;—2 |y|nj2> € . (7)

/2 |2 /2 |y|nr2 /2 |z
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The first two terms here have the same interpretation as above. The third term
is dominated by one of the first two if n = n; or n = n; (which is the case, in
particular, when k = 2). However, if n < n; and n < n; (which may happen
only if £ > 3) then the third term dominates, for ¢ large enough. It roughly
corresponds to the probability that X; goes from x to y spending a long time
in the end with the smallest asymptotic dimension n. Hence, the most probable
way of getting from x to y is by looping through the smallest end!

If both points z, y belong to the same end R™ \ K, then we have, for all ¢ > 1,

1 =Py 1 Eew

t =~ c e = . 8
p( 71'73/) tn/z |l"ni_2 ‘y|ni—26 t + tni/2€ t ( )

Let us emphasize that in all the estimates above, we have assumed n; > 2
for all 7. If n; < 2 for some i then the heat kernel behaves differently as will be
discussed in Section 4 - see Theorem 4 and Corollary 5.

The condition n; > 2 is equivalent to the non-parabolicity of R™. A manifold
M is called parabolic if the Brownian motion X; on M is recurrent, and non-
parabolic otherwise. The non-parabolicity is equivalent to the existence of a
positive fundamental solution of the Laplace operator (see the survey [13] for
detailed account of parabolicity).

In our main results - Theorems 1 and 4 below, we will distinguish the cases
when all the ends M; are non-parabolic or not.

3 The case when all the ends are non-parabolic

For any manifold M;, denote by d; the geodesic distance on M;, by B;(x,r) the
geodesic ball on M; of the radius r centered at x, and by V;(z,r) the Riemannian
volume of that ball. Also, let p; be the heat kernel of M;. Note that the non-
parabolicity of M; is equivalent to

/00 pi(t, z, x)dt < oo, 9)

for some/all x € M;. If M; is geodesically complete and, for some x € M;,

/OOL =00 (10)

then M, is parabolic - see [5], [10], [14], [20].
Let us introduce the following hypotheses, which in general may be true or
not.

(i) The volume doubling condition: for some C' > 0 and for all » > 0, z € M;,

Vi(z,2r) < CVi(z,r).



(ii) The on-diagonal upper bound of the heat kernel: for some C' > 0 and for all
t>0,x€ M,

pi(t,z,x) < ¢

= Vilz, V)

(iii) The off-diagonal lower bound of the heat kernel: for some C' > 0 and for all
t>0,x,ye M,

(11)

c-! d?(z,y)
pi(t,z,y) > mexp (—Cf) . (12)

For example, all the hypotheses (i), (ii) and (iii) hold if M; has non-negative
Ricci curvature - see [16]. Note that, under the hypotheses (i) and (ii), the
condition (10) is not only sufficient but also necessary for the parabolicity of
M;. Let us also mention that (i) and (ii) imply an off-diagonal upper bound for
the heat kernel matching (12) (see [12]) as well as an on-diagonal lower bound
matching (11) (see [6]). The necessary and sufficient conditions for (i) and (ii)
are given in terms of a relative Faber-Krahn inequality - see [12]. The hypotheses
(i),(ii) and (iii) are equivalent to a parabolic Harnack inequality, which, in turn,
is equivalent to the volume doubling (i) and a Poincaré inequality - see [17] and
[11].

In order to state the heat kernel upper bound on the manifold M, let us
introduce the following notation. Denote as above

|7| = supd(z, z)
zeK

and define the new distances:

1. dy(z,y) is the infimum of lengths of smooth curves connecting = and y in
M and intersecting K;

2. dy(z,y) is the infimum of lengths of smooth curves connecting z and y in
M and not intersecting K.

Clearly, both dy(z,y) and dyg(x,y) are larger than or equal to the geodesic
distance d(z,y), and one of them is equal to d(z,y). If z and y are at different
ends then dy(z,y) = oo.

For each i > 1, fix a reference point o; € 0K N M;, set

Wi(r) = Vi(oi,7), (13)
Wonia(r) = min W (r) (14)
and define the function W (z,r) by

. VVZ‘(T’), T € Ez‘,
W(x’r> n { min('r)a re K.

6
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In words, W;(r) is the volume growth function for the manifold M;, Wy, (r) is the
smallest volume growth, and W (x,r) switches between W; and Wy, depending
on the location of z.

Finally, let us define the function H(z,t), for all ¢ > 0 and z € M, by

T = |x|2 t ds ifx ;
H(x,t) +( o WZ(\/§>)+ , ifze kb, (16)

H(z,t) = 1, ifre K. (17)
Theorem 1 Assume that all M;, i = 1,2, ..., k, are complete non-compact non-
parabolic manifolds satisfying (i), (ii) and (iii). Then the heat kernel p(t,z,y)

on the connected sum M = My#Ms#....4# M, admits the following estimate: for
allt >0 and x,y € M,

pt,z,y) = (

H(z,1) H(y,t) H(x,t)H (y,t) 7@
W (y, V) * W (x, V1) + Wonin (V/2) > € (18)

_dg(=w)

e e, (19)

1
+

where the term in (19) refers to the case when both xz,y belong to the same end
E; (otherwise dy = o).

If all M; satisfy only (i) and (i1) (but not necessarily (iii)) then the upper
bound in (18)-(19) is still valid.

In particular, if z € E; and y € E; where ¢ # j then (18)-(19) yield

H(x,t H(y,t) H(xz,t)H(y,t 2(2.y
o= (250 | Ho) | Mo OHG0) e
WiV WiVt Wain(VE)
because in this case dy(z,y) = oo and dy(x,y) = d(x,y). If x and y lie at the
same end, that is, 7 = j then we obtain

2|2 y2 2 z,y
H(x,t)H(y,t)eg 21y 1 - Lz (21)
Wmln(\/a V;(JZ', \/E)

Let us show examples of computation of the function H.

(20)

pt,z,y) =

Example 1 Suppose that, for all 7, the volume growth on M; is given by
Wi(r) <™, forr > 1,

where all n; > 2. The latter implies, in particular, (9) whence M; is non-parabolic.
Next, we have
Wmin = rn,
where n = min; n;. Assuming = € E; and |z| > 1, we compute H(z,t) by
t
. ds 2—m.
Hl‘,tszm—l—/— = |z,
o<t ([ 5) <

Hence, the estimates (20) and (21) become (7) and (8), respectively.
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Example 2 Suppose now that, for all 7, the volume growth function is as follows
Wi(r) < r*log®r, r> 2,
where «; > 1 (which ensures the non-parabolicity of M;). Then
Wnin = 72 log® r

where
o = min q;.
(]

Assuming x € E; and |z| > 2, we compute H(z,t) by

o t ds
H(.T,t) = log™™ |x| + (/ : slog™ S)
x +

=< log™" |z| + (log" ™ |z|* — log! ™ t)+.

If |z| > v/t then H(z,t) < log”® |z|. Assuming y € F; and |z| < |y| < v/t (where
i # 7) we obtain from (20) the following medium time asymptotic

1

tlog®itei¢’

p(t,z,y) <

If |z| << v/t then H(z,t) < log' ™ |z|. Assuming that |z|,|y| remain bounded
while ¢ — 0o, we obtain the long time asymptotic

1
tlog“t

p(t,z,y) <

4 The mixed case with both parabolic and non-
parabolic ends

We will need here the following additional hypothesis.

(iv) Connectedness of the annuli: for all R large enough, the annulus B;(0;,4R)\
Bi(0;, R/4) is connected®.

So far we have not required that the end E; is connected. Clearly, the con-
nectedness of the annuli is even stronger assumption than the connectedness of
E;. Basically, the hypothesis (iv) prohibits the situation when M; consists of two
“nearly” disjoint unbounded parts connected only by a rare sequence of small
tubes.

It is easy to see that any two-dimensional convex surface in R? satisfies all the
hypotheses (i), (ii), (iii) and (iv), provided it is complete and unbounded. Also,
all manifolds R"™ introduced above satisfy these hypotheses.

We start with the following lemma.

IThis hypothesis can be slightly relaxed as follows: for any two points x, v both at distance
R from o;, there is a continuous path connecting x to y and staying in the annulus B;(0;,4R) \
Bi(os, R/4).



Lemma 2 Suppose that all M;, i = 1,2,....k are geodesically complete mani-
folds satisfying (i), (ii), (1) and (iv). Assume that at least one of them is
non-parabolic. Then there exists a positive harmonic function h(x) on M =
My#Mo#...# My, such that, for all x € M,

o s
h(x)x1+< . m)
’ +

where W is defined by (13)-(15).

In particular, h(x) =< 1 if z stays in a non-parabolic end whereas h(x) — oo
if ¥+ — oo within a parabolic end.

For any smooth positive function h(z) on M, one may consider the weighted
manifold M = (M, h*) which means that, in addition to the Riemannian struc-
ture, M is endowed with the measure fv defined by dji = h*dp where p is the
Riemannian measure on M. There is a natural weighted Laplace operator on M
defined by B

A = h™2div(h*V),
which is formally self-adjoint with respect to g. Denote by p the heat kernel of
A. If h(x) is, in addition, harmonic then it is easy to see that

A=h"loAoh

which implies
- p(t, z,y)
pt, 2, y) = T3~
20 = i aghiy)
Let us define the function h;(x) on M; as follows: h;(x) = h(z) if z € E; and
h; is extended to K; somehow, to remain smooth and positive. Clearly, we have,

for all x € M;,
* g
hi(z) <1+ . 23
@ ( wm>>+ %)

Consider the weighted manifold M; = (M;, h?) and introduce similarly 7, A; and
pi (since h; is not necessarily harmonic on M;, the kernel p; does not necessarily
satisfies the analogue of (22)). Denote V;(z,r) = p,(B;(x,r)).

(22)

Lemma 3 Suppose that all M;, i = 1,2,....k are geodesically complete man-
ifolds satisfying (i), (ii), (1i) and (). Assume that at least one of them is
non-parabolic. Let h and h; be the functions defined as above. Then each ]\Z
is non-parabolic and satisfies the conditions (i), (ii) and (iii) (where one should
naturally replace V; by \71 and p; by p;).

In fact, Theorem 1 remains true for weighted manifolds. Therefore, by Lemma
3, one can apply Theorem 1 to the above setting, estimate p, and then recover p



by (22). To state the result which we obtain in this way, we need the following
notation. Let us set . B

Wi(r) := Vi(oi, 1)
and define Wmm(r), W(x,r) and H(z,t) analogously to (14), (15) and (16)-(17)
where W; must be replaced everywhere by W;.

Theorem 4 Assume that all M;, i = 1,2, ..., k, are complete non-compact man-
ifolds satisfying (i), (ii), (ii1), (iv), and at least one of M;’s is non-parabolic.
Then the heat kernel p(t,x,y) on the connected sum M = My#Ms#....4#M;, ad-
mits the following estimate: for allt > 0 and x,y € M,

= h(x ﬁ(l’, t) H(y, t) ( )H(y, t) o diiﬂ;,y)
plt, 2, 5) < h(z)h(y) (W(% sl A0 )

Mohly)
Vi, VOV

y, V1)
r ds
7“).—1+< 1 Wz-(\/5)>+' (24)

Then (23) implies h;(x) =< n,(|z|). It is possible to prove that

d%(zyy)
ct

Denote

—~

Wi(r) =< ni(r)Wi(r) (25)
and, if z € E;,
2o || 1 " ds
HEt) = ot () b o (el o (79) ( » Wi<¢§>)+' 20)

Let us show some examples how to apply Theorem 4 using (24)—(26).

Example 3 Let M; = R! := R, x S¥ !, M, = R? and consider the connected
sum M = R'#R3. We have, for r > 1,

Wi(r) <r and Wy(r) <r®.
By (24), we obtain, for r > 1,
ny(r)=<r and ny(r) =<1
Then we compute W; by (25)
Wi(r)=<r® and Wa(r) < r®,

whence

—~

Winin(r) = min(W;(r), Wa(r)) = r®.

10



Finally, let us compute f](m,t) and I:T(y,t) assuming * € Fi, y € FEy and
|z|, ly|,t > 1. By (26), we obtain

H(x,t) = |z[" and H(y,t) <[y "

Hence, Theorem 4 yields, for the chosen x,y and ¢,

1 |z]\ _d®@wn
p(t, z,y) < PEYE) (1 + —) e e (27)

We see that the contributions of both ends R! and R? to the long time behavior
of the heat kernel on M are of the same order t~3/2. This may seem surprising,
in view of the heat estimate (4) for the manifold R"#R™ with n,m > 2, which
contains both terms ¢t~"/2 and t~"/2. The explanation is that what counts for the
manifold R'#R? is the heat kernel long time behavior on R' rather than that
on R'. However, R! has the volume growth Wi(r) < r® and, therefore, the heat
kernel of the order t=2. This effect was first observed by E.B.Davies [9] in a
model situation of a one-dimensional complex.

Example 4 Let us take M; = R? and M, = R3. We compute as in the previous
example, for r > 2 and |z| > 2,

Wi(r) <r* and Wy(r) < r®,
hi(z) <log|z| and he(x) <1,
Wi(r) =< r?log?r and Wa(r) = r?.

If z € Ey and y € B, then, for ¢ > 2, we have H(y,t) =< |y|™" whereas

~ 1 1 1
H(z,t) < + — .
(1) log? || (210g|x| logt)Jr

Hence, for the chosen x,y,t, we obtain

(t.2.9) log || N 1 1 N 1 loglx| _ @)
y Ly =\ T 7379 5 € et
P Y ly|tlog*t — t3/2 |log |z| 2 logt /,

In particular, the long time asymptotic is as follows

(t00) = —
Y :L‘, = Y

b Y tlog?t

whereas the medium time asymptotic (when |2| < |y| < /1) is given by

1

t = .
p(ax7y> t3/210gt

11



In certain situations, the formulas (24), (25) and (26) can be further simplified.
Namely, let us assume that, for r large enough,

7"2

[ Wiisﬁ) S W)

Then we have the following relations, for r large enough,

(28)

2

77z(7") = MZ(T)
Wi(r) = me

H(z,t) = |z Wi|z])

where in the last line x € F; and |z|, ¢ are large enough. For example, (28) holds
if Wi(r) < r® with 0 < a < 2. For this W;, we obtain

mi(r) = r*e
/MZ(T) = i =

H(z,t) = |z|* %=z

*

where

o =4 — a.

We see that ﬁ//l(r) and H(z,t) look like the corresponding functions on a non-
parabolic manifold with volume growth r®". Hence, to some extent, the parabolic
manifold with volume growth r® can be regarded as dual to the non-parabolic
manifold with volume growth r<".

Corollary 5 Under the hypotheses of Theorem 4, assume in addition that each
manifold M; has volume growth of the order r™ where n; # 2. Denote

. 4—7%, n; < 2
' n;, n; > 2

and

n = min n;.
1<i<k

Ifre B,y E; (i#7)and |z|,|y|,t are large enough then

’ | 1 N 1 n 1
piL,r,y = - w " nk— ni— -
e

_d?(z)
ct

« |x\(2_”")+ ‘y|(2—nj)+ e (29)

12



In particular, (29) contains the estimate (7) for the manifold R™ #R"#.. . #R™
when all n; are larger than 2. The estimate (27) for the manifold R'#R3 is also
a straightforward consequence of (29).

The long time asymptotic in (29) is determined by the term ¢~"/*. This was
noticed by Davies [9] for an one-dimensional complex, modelling manifolds with
ends. If all n; > 2 then n/2 can be interpreted as the exponent of the largest
heat kernel of M,’s. However, in general this is not true. It turns out that ¢t /2
is the rate of decay of the Dirichlet heat kernel of F;, that is, the heat kernel on
E; with the vanishing boundary condition on 0F;. Therefore, the term ¢~/ is
determined in general by the largest Dirichlet heat kernel on E;’s. In fact, precise
estimates of the Dirichlet heat kernel on FE; are crucial tools for the proof of the
results described above.

n/2

Assume n; < 2, n; > 2 and consider the medium time asymptotic regime
when |z| < v/t and t — oo, in which case (29) implies

1 1
t,x,y) X ——= + —. 30
p( € y) tnj/2 t‘y|nj72 ( )

If also |y| =< v/t then the first term in (30) is leading. Hence, the medium time
asymptotic is determined only by the larger end, in contrast to the case when
both ends are non-parabolic (cf. (5)).

However, the most interesting paradoxical effect occurs if we let |y| < 1 in
(30). In this case,

p(t,x,y) <t (31)

regardless of the exponents n;, n;! Therefore, if z moves away at the rate /¢ and
y stays near the central part, then the heat kernel p(¢, x,y) given by (31) is larger
than in the long time regime when both x and y stay near the central part.

The explanation is that if x and y are close to the central part and ¢ is large
then the process X; started at x tends to escape to infinity within the larger
end so that its chances to loop back to y are relatively small. On the contrary,
if X, starts at the point z located at the smaller end at the distance v/t from
the central part, then it cannot escape to infinity within this end because of its
parabolicity. Hence, it moves towards the central part and hits y in time ¢ with a
higher probability.

The hypothesis of Theorem 4 and Corollary 5 that at least one end M; is
non-parabolic is equivalent to the non-parabolicity of M - see [10]. If all M;’s are
parabolic and, thus, M is also parabolic, then the estimate (29) cannot be true.
Indeed, the long time decay ¢~™/2 given by (29) implies (9), which contradicts the
parabolicity of M.

The case when all M; are parabolic will be addressed elsewhere.

ACKNOWLEDGMENT Both authors were supported by the travel grants of the
EU Stochastic Analysis Network.

13



References

[1] Anker J-Ph., Ji L., Heat kernel and Green function estimates on non-
compact symmetric spaces, preprint

[2] Benjamini I., Chavel 1., Feldman E.A. Heat kernel lower bounds on
Riemannian manifolds using the old ideas of Nash, Proceedings of London
Math. Soc., 72 (1996) 215-240.

[3] Cheeger J., Gromov M., Taylor M., Finite propagation speed, kernel
estimates for functions of the Laplace operator, and the geometry of complete
Riemannian manifolds, J. Diff. Geom., 17 (1982) 15-53.

[4] Cheeger J., Yau S.-T., A lower bound for the heat kernel, Comm. Pure
Appl. Math., 34 (1981) 465-480.

[5] Cheng S.Y., Yau S.-T., Differential equations on Riemannian manifolds
and their geometric applications, Comm. Pure Appl. Math., 28 (1975)
333-354.

6] Coulhon T., Grigor’yan A., On-diagonal lower bounds for heat kernels
on non-compact manifolds and Markov chains, Duke Math. J., 89 (1997)
no.l, 133-199.

[7] Davies E.B., Explicit constants for Gaussian upper bounds on heat kernels,
Amer. J. Math., 109 (1987) 319-334.

[8] Davies E.B., Gaussian upper bounds for the heat kernel of some second-
order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988)
16-32.

9] Davies E.B., Non-Gaussian aspects of heat kernel behaviour, J. London
Math. Soc., 55 (1997) no.1, 105-125.

[10] Grigor’yan A., On the existence of positive fundamental solution of the
Laplace equation on Riemannian manifolds, (in Russian) Matem. Sbornik,
128 (1985) no.3, 354-363. Engl. transl. Math. USSR Sb., 56 (1987) 349-
358.

[11] Grigor’yan A., The heat equation on non-compact Riemannian manifolds,
(in Russian) Matem. Sbornik, 182 (1991) no.1, 55-87. Engl. transl. Math.
USSR Sb., 72 (1992) no.1, 47-77.

[12] Grigor’yan A., Heat kernel upper bounds on a complete non-compact
manifold, Revista Matematica Iberoamericana, 10 (1994) no.2, 395-452.

[13] Grigor’yan A., Analytic and geometric background of recurrence and non-
explosion of the Brownian motion on Riemannian manifolds, Bull. Amer.
Math. Soc., 36 (1999) 135-249.

14



[14] Karp L., Subharmonic functions, harmonic mappings and isometric immer-
sions, in: “Seminar on Differential Geometry”, Ed. S.T.Yau, Ann. Math.
Stud. 102, Princeton, 1982.

[15] Kuz’menko Yu.T., Molchanov S.A., Counterexamples to Liouville-type
theorems, (in Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1979) no.6,
39-43. Engl. transl. Moscow Univ. Math. Bull., 34 (1979) 35-39.

[16] Li P., Yau S.-T., On the parabolic kernel of the Schrodinger operator,
Acta Math., 156 (1986) no.3-4, 153-201.

[17] Saloff-Coste L., A note on Poincaré, Sobolev, and Harnack inequalities,
Duke Math J., 65 no.3, Internat. Math. Res. Notices, 2 (1992) 27-38.

[18] Saloff-Coste L., Uniformly elliptic operators on Riemannian manifolds, J.
Diff. Geom., 36 (1992) 417-450.

[19] Semenov Yu.A., Heat kernel bounds. L'-iterative techniques. The Nash
algorithm, preprint

[20] Varopoulos N.Th., Potential theory and diffusion of Riemannian mani-
folds, in: “Conference on Harmonic Analysis in honor of Antoni Zygmund.
Vol I, I1.”, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983. 821-
837.

15



