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Chapter 1

The notion of the heat kernel

1.1 Examples of heat kernels

1.1.1 Heat kernel in Rn

The classical Gauss-Weierstrass heat kernel is the following function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

, ((1))

where x, y ∈ Rn and t > 0. This function is a fundamental solution of the heat
equation

∂u

∂t
= ∆u,

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator. Moreover, if f is a continuous bounded

function on Rn then the function

u (t, x) =

∫

Rn
pt (x, y) f (y) dy

solves the Cauchy problem {
∂u
∂t

= ∆u
u (0, x) = f (x)

.

This also can be written in the form

u (t, ·) = exp (−tL) f ,

where L here is a self-adjoint extension of −∆ in L2 (Rn) and exp (−tL) is understood
in the sense of the functional calculus of self-adjoint operators. This means that
pt (x, y) is the integral kernel of the operator exp (−tL).

The function pt (x, y) has also a probabilistic meaning: it is the transition density
of Brownian motion {Xt}t≥0 in Rn. The graph of pt (x, 0) as a function of x is shown
here:
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6 CHAPTER 1. THE NOTION OF THE HEAT KERNEL
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Figure 1.1: The Gauss-Weierstrass heat kernel at different values of t

The term |x−y|2

t
determines the space/time scaling : if |x− y|2 ≤ Ct then pt (x, y)

is comparable with pt (x, x), that is, the probability density in the C
√
t-neighborhood

of x is nearly constant.

1.1.2 Heat kernels on Riemannian manifolds

Let (M, g) be a connected Riemannian manifold, and ∆ be the Laplace-Beltrami
operator on M . Then the heat kernel pt (x, y) is can be defined as the integral kernel
of the heat semigroup {exp (−tL)}t≥0 where L is the Dirichlet Laplace operator, that
is, the minimal self-adjoint extension of −∆ in L2 (M,µ), and µ is the Riemannian
volume. Alternatively, pt (x, y) is the minimal positive fundamental solution of the
heat equation

∂u

∂t
= ∆u.

The function pt (x, y) can be used to define Brownian motion {Xt}t≥0 on M . Namely,
{Xt}t≥0 is a diffusion process (that is, a Markov process with continuous trajecto-
ries), such that

Px (Xt ∈ A) =

∫

A

pt (x, y) dµ (y)

for any Borel set A ⊂M .
Let d (x, y) be the geodesic distance on M . It turns out that the Gaussian type

space/time scaling d2(x,y)
t

appears in heat kernel estimates on general Riemannian
manifolds:

1. (Varadhan) For an arbitrary Riemannian manifold,

log pt (x, y) ∼ −
d2 (x, y)

4t
as t→ 0,

2. (Davies) For an arbitrary manifold M , for any two measurable sets A,B ⊂M
∫

A

∫

B

pt (x, y) dµ (x) dµ (y) ≤
√
µ (A)µ (B) exp

(

−
d2 (A,B)

4t

)
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Figure 1.2: The Brownian motion Xt hits a set A

Technically, all these results depend upon the following property of the geodesic
distance: |∇d| ≤ 1.

It is natural to ask the following question:

Are there settings where the space/time scaling is different from Gaussian?

1.1.3 Heat kernels of fractional powers of Laplacian

Easy examples can be constructed using another operator instead of the Laplacian.
As above, let L be the Dirichlet Laplace operator on a Riemannian manifold M ,
and consider the evolution equation

∂u

∂t
+ Lβ/2u = 0,

where β ∈ (0, 2). The operator Lβ/2 is understood in the sense of the functional
calculus in L2 (M,µ) . Let pt (x, y) be now the heat kernel of Lβ/2, that is, the integral
kernel of exp

(
−tLβ/2

)
.

The condition β < 2 leads to the fact that the semigroup exp
(
−tLβ/2

)
is

Markovian, which, in particular, means that pt (x, y) > 0 (if β > 2 then pt (x, y)
may be signed). Using the techniques of subordinators, one obtains the following
estimate for the heat kernel of Lβ/2 in Rn:

pt (x, y) �
C

tn/β

(

1 +
|x− y|
t1/β

)−(n+β)

�
C

tn/β

(

1 +
|x− y|β

t

)−n+β
β

. ((2))

(the symbol � means that both ≤ and ≥ are valid but with different values of the
constant C).

The heat kernel of
√
L in Rn (that is, the case β = 1) is known explicitly:

pt(x, y) =
cn

tn

(

1 +
|x− y|2

t2

)−n+1
2

=
cnt

(
t2 + |x− y|2

)n+1
2

,



8 CHAPTER 1. THE NOTION OF THE HEAT KERNEL

where cn = Γ
(
n+1

2

)
/π(n+1)/2. This function coincides with the Poisson kernel in

the half-space Rn+1
+ and with the density of the Cauchy distribution in Rn with the

parameter t.

As we see, the space/time scaling is given by the term dβ(x,y)
t

where β < 2.
The heat kernel of the operator Lβ/2 is the transition density of a symmetric stable
process of index β that belongs to the family of Levy processes. The trajectories
of this process are discontinuous, thus allowing jumps. The heat kernel pt (x, y) of
such process is nearly constant in a Ct1/β-neighborhood of y. If t is large then

t1/β � t1/2,

that is, this neighborhood is much larger than that for the diffusion process, which
is not surprising because of the presence of jumps. The space/time scaling with
β < 2 is called super-Gaussian.

1.1.4 Heat kernels on fractal spaces

A rich family of heat kernels for diffusion processes has come from Analysis on
fractals. Loosely speaking fractals are subsets of Rn with certain self-similarity
properties. One of the best understood fractals is the Sierpinski gasket (SG). The
construction of the Sierpinski gasket is similar to the Cantor set: one starts with a
triangle as a closed subset of R2, then eliminates the open middle triangle (shaded
on the diagram), then repeats this procedure for the remaining triangles, etc.

Figure 1.3: Construction of the Sierpinski gasket

Hence, SG is a compact connected subset of R2. The unbounded SG is obtained
from SG by merging the latter (at the left lower corner of the next diagram) with
two shifted copies and then by repeating this procedure at larger scales.

Barlow and Perkins ’88, Goldstein ’87 and Kusuoka ’87 have independently con-
structed by different methods a natural diffusion process on SG that has the same
self-similarity as SG. Barlow and Perkins considered random walks on the graph
approximations of SG and showed that, with an appropriate scaling, the random
walks converge to a diffusion process. Moreover, they proved that this process has
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Figure 1.4: The unbounded SG is obtained from SG by merging the latter (at the
left lower corner of the diagram) with two shifted copies and then by repeating this
procedure at larger scales.

a transition density pt (x, y) with respect to a proper Hausdorff measure µ of SG,
and that pt satisfies the following estimate:

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, ((3))

where d (x, y) = |x− y| and

α = dimH SG =
log 3

log 2
, β =

log 5

log 2
> 2.

Similar estimates were proved by Barlow and Bass for other families of fractals,
including Sierpinski carpets, and the parameters α and β in (3) are determined by
the intrinsic properties of the fractal. In all cases, α is the Hausdorff dimension
(which is also called the fractal dimension). The parameter β, that is called the
walk dimension, is larger than 2 in all interesting examples.

The heat kernel pt (x, y), satisfying (3) is nearly constant in a Ct1/β-neighborhood
of y. If t is large then

t1/β � t1/2,

that is, this neighborhood is much smaller than that for the diffusion process, which
is due to the presence of numerous holes-obstacles that the Brownian particle must
bypass. The space/time scaling with β > 2 is called sub-Gaussian.

1.1.5 Summary of examples

Observe now that in all the above examples, the heat kernel estimates can be unified
as follows:
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pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

, ((4))

where α, β are positive parameters and Φ (s) is a positive decreasing function on
[0,+∞). For example, the Gauss-Weierstrass function (1) satisfies (4) with α = n,
β = 2 and

Φ (s) = exp
(
−s2

)

(Gaussian estimate).
The heat kernel (2) of the symmetric stable process in Rn satisfies (4) with α = n,

0 < β < 2, and
Φ (s) = (1 + s)−(α+β)

(super-Gaussian estimate).
The heat kernel (3) of diffusions on fractals satisfies (4) with β > 2 and

Φ (s) = exp
(
−s

β
β−1

)

(sub-Gaussian estimate).
There are at least two questions related to the estimates of the type (4):

1. What values of the parameters α, β and what functions Φ can actually occur
in the estimate (4)?

2. How to obtain estimates of the type (4)?

To give these question a precise meaning, we must define what is a heat kernel.

1.2 Abstract heat kernels

Let (M,d) be a locally compact separable metric space and µ be a Radon measure
on M with full support. The triple (M,d, µ) will be called a metric measure space.

Definition. A family {pt}t>0 of measurable functions pt(x, y) on M ×M is called
a heat kernel if the following conditions are satisfied, for µ-almost all x, y ∈M and
all s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.

(ii) The total mass inequality:

∫

M

pt(x, y)dµ(y) ≤ 1.

(iii) Symmetry: pt(x, y) = pt(y, x).
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(iv) The semigroup property:

ps+t(x, y) =

∫

M

ps(x, z)pt(z, y)dµ(z).

(v) Approximation of identity: for any f ∈ L2 := L2 (M,µ),

∫

M

pt(x, y)f(y)dµ(y)
L2

−→ f(x) as t→ 0 + .

If in addition we have, for all t > 0 and almost all x ∈M ,

∫

M

pt(x, y)dµ(y) = 1

then the heat kernel pt is called stochastically complete (or conservative).

1.3 A heat semigroup

Any heat kernel gives rise to the family of operators{Pt}t≥0 where P0 = id and Pt
for t > 0 is defined by

Ptf(x) =

∫

M

pt(x, y)f(y)dµ(y),

where f is a measurable function on M . It follows from (i)− (ii) that the operator
Pt is Markovian, that is, f ≥ 0 implies Ptf ≥ 0 and f ≤ 1 implies Ptf ≤ 1. It
follows that Pt is a bounded operator in L2 and, moreover, is a contraction, that is,
‖Pt‖L2→L2 ≤ 1.

The symmetry property (iii) implies that the operator Pt is symmetric and,
hence, self-adjoint. The semigroup property (iv) implies that PtPs = Pt+s, that is,
the family {Pt}t≥0 is a semigroup of operators. It follows from (v) that

s- lim
t→0

Pt = id = P0

where s-lim stands for the strong limit. Hence, {Pt}t≥0 is a strongly continuous,
symmetric, Markovian semigroup in L2. We say shortly that {Pt} is a heat semi-
group.

Conversely, if {Pt} is a heat semigroup and if it has the integral kernel pt (x, y)
then the latter is a heat kernel in the sense of the above Definition.

Given a heat semigroup Pt in L2, define the infinitesimal generator L of the
semigroup by

Lf := lim
t→0

f − Ptf
t

,
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where the limit is understood in the L2-norm. The domain dom(L) of the generator
L is the space of functions f ∈ L2 for which the above limit exists. By the Hille–
Yosida theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive
definite operator, which immediately follows from the fact that the semigroup {Pt}
is self-adjoint and contractive. Moreover, Pt can be recovered from L as follows

Pt = exp (−tL) ,

where the right hand side is understood in the sense of spectral theory.
Heat kernels and heat semigroups arise naturally from Markov processes. Let(

{Xt}t≥0 , {Px}x∈M
)

be a Markov process on M , that is reversible with respect to
measure µ. Assume that it has the transition density pt (x, y), that is, a function
such that, for all x ∈M , t > 0, and all Borel sets A ⊂M ,

Px (Xt ∈ A) =

∫

M

pt (x, y) dµ (y) .

Then pt (x, y) is a heat kernel in the sense of the above Definition.

1.4 The Dirichlet form

Given a heat semigroup {Pt} on a metric measure space (M,d, µ), define for any
t > 0 a bilinear form Et on L2 by

Et (u, v) :=

(
u− Ptu

t
, v

)

=
1

t
((u, v)− (Ptu, v)) ,

where (·, ·) is the inner product in L2. Since Pt is symmetric, the form Et is also
symmetric. Since Pt is a contraction, it follows that

Et (u) := Et (u, u) =
1

t
((u, u)− (Ptu, u)) ≥ 0,

that is, Et is a positive definite form.
In terms of the spectral resolution {Eλ} of the generator L, Et can be expressed

as follows

Et (u) =
1

t
((u, u)− (Ptu, u)) =

1

t

(∫ ∞

0

d‖Eλu‖
2
2 −

∫ ∞

0

e−tλd‖Eλu‖
2
2

)

=

∫ ∞

0

1− e−tλ

t
d‖Eλu‖

2
2,

which implies that Et (u) is decreasing in t, since the function t 7→ 1−e−tλ

t
is decreas-

ing. Define for any u ∈ L2

E (u) = lim
t ↓ 0
Et (u)

where the limit (finite or infinite) exists by the monotonicity, so that E (u) ≥ Et (u).

Since 1−e−tλ

t
→ λ as t→ 0, we have

E (u) =

∫ ∞

0

λd‖Eλu‖
2
2.
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Set
F : = {u ∈ L2 : E (u) <∞} = dom

(
L1/2

)
⊃ dom (L)

and define a bilinear form E (u, v) on F by the polarization identity

E (u, v) :=
1

4
(E (u+ v)− E (u− v)) ,

which is equivalent to
E (u, v) = lim

t→0
Et (u, v) .

Note that F contains dom(L). Indeed, if u ∈ dom(L) then we have for all v ∈ L2

lim
t→0
Et (u, v) =

(

lim
t→0

u− Ptu
t

, v

)

= (Lu, v) .

Setting v = u we obtain u ∈ F . Then choosing any v ∈ F we obtain the identity

E(u, v) = (Lu, v) for all u ∈ dom(L) and v ∈ F .

The space F is naturally endowed with the inner product

[u, v] := (u, v) + E (u, v) .

It is possible to show that the form E is closed, that is, the space F is Hilbert.
Furthermore, dom (L) is dense in F .

The fact that Pt is Markovian implies that the form E is also Markovian, that is

u ∈ F ⇒ ũ := min(u+, 1) ∈ F and E (ũ) ≤ E (u) .

Indeed, let us first show that for any u ∈ L2

Et (u+) ≤ Et (u) .

We have

Et (u) = Et (u+ − u−) = Et (u+) + Et (u−)− 2Et (u+, u−) ≥ Et (u+)

because Et (u−) ≥ 0 and

Et (u+, u−) =
1

t
(u+, u−)−

1

t
(Ptu+, u−) ≤ 0.

Assuming u ∈ F and letting t→ 0 we obtain

E (u+) = lim
t→0
Et (u+) ≤ lim

t→0
Et (u) = E (u) <∞

whence E (u+) ≤ E (u) and, hence, u+ ∈ F .
Similarly one proves that ũ = min(u+, 1) belongs to F and E (ũ) ≤ E (u+).



14 CHAPTER 1. THE NOTION OF THE HEAT KERNEL

Conclusion. Hence, (E ,F) is a Dirichlet form, that is, a bilinear, symmetric,
positive definite, closed, densely defined form in L2 with Markovian property.

If the heat semigroup is defined by means of a heat kernel pt, then Et can be
equivalently defined by

Et (u) =
1

2t

∫

M

∫

M

(u(x)− u(y))2
pt(x, y)dµ(y)dµ(x)+

1

t

∫

M

(1− Pt1(x)) u2(x)dµ(x).

((5))
Indeed, we have

u(x)− Ptu(x) = u (x)Pt1 (x)− Ptu (x) + (1− Pt1(x)) u (x)

=

∫

M

(u(x)− u(y)) pt(x, y)dµ(y) + (1− Pt1(x)) u (x)

whence

Et (u) =
1

t

∫

M

∫

M

(u(x)− u(y)) u(x)pt(x, y)dµ(y)dµ(x)

+
1

t

∫

M

(1− Pt1(x)) u2(x)dµ(x).

Interchanging the variables x and y in the first integral and using the symmetry of
the heat kernel, we obtain also

Et (u) =
1

t

∫

M

∫

M

(u(y)− u(x)) u(y)pt(x, y)dµ(y)dµ(x)

+
1

t

∫

M

(1− Pt1(x)) u2(x)dµ(x),

and (5) follows by adding up the two previous lines.
Note that Pt1 ≤ 1 so that the second term in the right hand side of (5) is non-

negative. If the heat kernel is stochastically complete, that is, Pt1 = 1, then that
term vanishes and we obtain

Et (u) =
1

2t

∫

M

∫

M

(u(x)− u(y))2
pt(x, y)dµ(y)dµ(x). ((6))

Definition. The form (E ,F) is called local if E (u, v) = 0 whenever the functions
u, v ∈ F have compact disjoint supports. The form (E ,F) is called strongly local if
E (u, v) = 0 whenever the functions u, v ∈ F have compact supports and u ≡ const
in an open neighborhood of supp v.

For example, if pt (x, y) is the heat kernel of the Laplace-Beltrami operator on a
complete Riemannian manifold then the associated Dirichlet form is given by

E (u, v) =

∫

M

〈∇u,∇v〉dµ, ((7))
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and F is the Sobolev space W 1
2 (M). Note that this Dirichlet form is strongly local

because u = const on supp v implies ∇u = 0 on supp v and, hence, E (u, v) = 0.
If pt (x, y) is the heat kernel of the symmetric stable process of index β in Rn,

that is, L = (−∆)β/2, then

E (u, v) = cn,β

∫

Rn

∫

Rn

(u (x)− u (y)) (v (x)− v (y))

|x− y|n+β
dxdy,

and F is the Besov space B
β/2
2,2 (Rn) = {u ∈ L2 : E (u, u) <∞}. This form is clearly

non-local.
Denote by C0 (M) the space of continuous functions on M with compact sup-

ports, endowed with sup-norm.

Definition. The form (E ,F) is called regular if F ∩ C0 (M) is dense both in F
(with [·, ·]-norm) and in C0 (M) (with sup-norm).

All the Dirichlet forms in the above examples are regular.
Assume that we are given a Dirichlet form (E ,F) in L2 (M,µ). Then one can

define the generator L of (E ,F) by the identity

(Lu, v) = E (u, v) for all u ∈ dom (L) , v ∈ F ((8))

where dom (L) ⊂ F must satisfy one of the following two equivalent requirements:

1. dom (L) is a maximal possible subspace of F such that (8) holds

2. L is a densely defined self-adjoint operator.

Clearly, L is positive definite so that specL ⊂ [0,+∞). Hence, the family of
operators Pt = e−tL, t ≥ 0, forms a strongly continuous, symmetric, contraction
semigroup in L2. Moreover, using the Markovian property of the Dirichlet form
(E ,F), it is possible to prove that {Pt} is Markovian, that is, {Pt} is a heat semi-
group. The question whether and when Pt has the heat kernel requires additional
investigation.

1.5 More examples of heat kernels

Let us give some examples of stochastically complete heat kernels that do not satisfy
(4).

Example. (A frozen heat kernel) Let M be a countable set and let {xk}
∞
k=1 be the

sequence of all distinct points from M . Let {µk}
∞
k=1 be a sequence of positive reals

and define measure µ on M by µ ({xk}) = µk. Define a function pt (x, y) on M ×M
by

pt (x, y) =

{ 1
µk
, x = y = xk

0, otherwise.
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Easy to check that pt (x, y) is a heat kernel. For example, let us check the approxi-
mation of identity: for any function f ∈ L2 (M,µ), we have

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) = pt (x, x) f (x)µ ({x}) = f (x) .

This identity implies also the stochastic completeness. The Dirichlet form is

E (f) = lim
t→0

(
f − Ptf

t
, f

)

= 0.

The Markov process associated with the frozen heat kernel is very simple: Xt =
X0 for all t ≥ 0 so that it is a frozen diffusion.

Example. (The heat kernel in H3) The heat kernel of the Laplace-Beltrami oper-
ator on the 3-dimensional hyperbolic space H3 is given by the formula

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

,

where r = d (x, y) is the geodesic distance between x, y. The Dirichlet form is (7).

Example. (The Mehler heat kernel) Let M = R, measure µ be defined by

dµ = ex
2

dx,

and the operator L be given by

L = −e−x
2 d

dx

(

ex
2 d

dx

)

= −
d2

dx2
− 2x

d

dx
.

Then the heat kernel of L is given by the formula

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t − x2 − y2

1− e−4t
− t

)

.

The associated Dirichlet form is given by (7) .
Similarly, for the measure

dµ = e−x
2

dx

and for the operator

L = ex
2 d

dx

(

e−x
2 d

dx

)

= −
d2

dx2
+ 2x

d

dx
,

we have

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t − (x2 + y2) e−4t

1− e−4t
+ t

)

.
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1.6 Summary of Chapter 1

Given a metric measure space (M,d, µ), we have defined the notion of a heat kernel
pt (x, y) as a family of functions on M ×M that satisfies certain properties. It gives
rise to the family of operators Pt : L2 → L2

Ptf =

∫

M

pt (x, y) f (y) dµ (y)

that forms a heat semigroup {Pt}t≥0. The latter determines the generator L, defined
by

Lu = L2- lim
t→0

u− Ptu
t

with dom (L) = {u ∈ L2: the above limit exists} , which is a positive definite self-
adjoint operator in L2.

The heat semigroup determines also a Dirichlet form (E ,F) where E as a quadratic
form is defined by

E (u) := lim
t→0
Et (u) = lim

t→0

(
u− Ptu

t
, u

)

and F = {u ∈ L2:the above limit is finite} ⊃ dom (L).
Note that Et (u) monotone increases as t ↓. In terms of the heat kernel we have

Et (u) =
1

2t

∫

M

∫

M

(u(x)− u(y))2
pt(x, y)dµ(y)dµ(x)+

1

t

∫

M

(1− Pt1(x)) u2(x)dµ(x).

Conversely, given a Dirichlet form (E ,F) in L2, one defines the generator L by
the identity

(Lu, v) = E (u, v) for all u ∈ dom (L) , v ∈ F

and the requirement that dom (L) must be a maximal possible subspace of F . Then
the heat semigroup is defined by Pt = e−tL. The existence of the heat kernel (=the
integral kernel of Pt) requires additional investigation.

The Dirichlet form (or the heat semigroup) determines a Markov process ({Xt} , {Px})
on M such that

Ex (f (Xt)) = Ptf (x)

for all f ∈ Bb (M), t > 0 and almost all x ∈M . The process Xt is a diffusion if and
only if (E ,F) is local.

We have seen examples of heat kernels satisfying the estimates of the type

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

with the following functions Φ:
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1. Φ (s) = exp (−s2) (Gaussian estimates, Brownian motion in Rn)

2. Φ (s) = (1 + s)−(α+β), 0 < β < 2 (super-Gaussian estimates, symmetric stable
processes in Rn)

3. Φ (s) = exp(−s
β
β−1 ), β > 2 (sub-Gaussian estimates, diffusions on fractals)



Chapter 2

Consequences of heat kernel
bounds

In this Chapter we assume that pt (x, y) is a heat kernel on a metric measure space
(M,d, µ) that satisfies certain upper and/or lower estimates, and investigate the
consequences of these estimates.

2.1 Identifying Φ in the non-local case

Fix two positive parameters α and β and a monotone decreasing function Φ :
[0,+∞)→ [0,+∞).

Theorem 2.1. (AG, T.Kumagai ’09) Let pt be a heat kernel on (M,d, µ).

(a) If the heat kernel satisfies the estimate

pt (x, y) ≤
1

tα/β
Φ

(
d (x, y)

t1/β

)

,

for all t > 0 and almost all x, y ∈M , then either the associated Dirichlet form
(E ,F) is local or

Φ (s) ≥ c (1 + s)−(α+β)

for all s > 0 and some c > 0.

(b) If the heat kernel satisfies the estimate

pt (x, y) ≥
1

tα/β
Φ

(
d (x, y)

t1/β

)

,

then
Φ (s) ≤ C (1 + s)−(α+β)

for all s > 0 and some C > 0.

19
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(c) Consequently, if the heat kernel satisfies the estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

,

then either the Dirichlet form E is local or

Φ (s) ' (1 + s)−(α+β)
.

(The symbol ' means that the ratio of the left hand side and right hand side is
bounded between two positive constants).

Proof of (b). Let u be a non-constant function from L2 (M,µ). Choose a ball
Q ⊂M where u is non-constant and let a > b be two real values such that the sets

A = {x ∈ Q : u (x) > a} and B = {x ∈ Q : u (x) < b}

have positive measures.

A={ u>a}

B={ u<b}

Figure 2.1: Sets A and B

D = diamQ then we have, for almost all x, y ∈ Q,

pt (x, y) ≥
1

tα/β
Φ

(
D

t1/β

)

,

whence for any t > 0

E (u) ≥ Et (u) ≥
1

2t

∫

A

∫

B

(u(x)− u (y))2
pt(x, y)dµ(y)dµ(x)

≥ (a− b)2
µ (A)µ (B)

1

2t1+α/β
Φ

(
D

t1/β

)

=
c′

t1+α/β
Φ

(
D

t1/β

)

,
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where c′ > 0. If the inequality Φ (s) ≤ C (1 + s)−(α+β) fails then there exists a
sequence {sk} → ∞ such that

sα+β
k Φ (sk)→∞ as k →∞.

Define a sequence {tk} from the condition

sk =
D

t
1/β
k

so that tk → 0 as k →∞. We have

1

t
1+α/β
k

Φ

(
D

t
1/β
k

)

= D−(α+β)sα+β
k Φ (sk)→∞ as k →∞,

whence E (u) =∞.
Hence, we have arrived at the conclusion that the domain F of the form E may

contain only constants. Since F is dense in L2 (M,µ), this is not possible, which
finishes the proof.

2.2 Volume of balls

Denote by B (x, r) a metric ball in (M,d), that is

B(x, r) := {y ∈M : d(x, y) < r} .

Theorem 2.2. (AG, J.Hu, K.-S. Lau ’03) Let pt (x, y) be a heat kernel on
(M,d, µ). Assume that it is stochastically complete and that it satisfies the two-
sided estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

. ((1))

Then, for all x ∈M and r > 0,

µ(B(x, r)) ' rα,

that is, µ is α-regular.
Consequently, dimH (M,d) = α and µ ' Hα on all Borel subsets of M , where

Hα is the Hausdorff measure of the dimension α in M .

In particular, the parameter α is the invariant of the metric space (M,d), and
measure µ is determined (up to a factor ' 1) by the metric space (M,d).

Proof. For all r, t > 0 and for almost all x ∈M we have

∫

B(x,r)

pt(x, y)dµ(y) ≤ 1. ((2))
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It follows from (2) that

µ(B(x, r)) ≤

(

einf
y∈B(x,r)

pt(x, y)

)−1

.

Choose ε > 0 so that Φ (ε) > 0. Choosing t from the identity r = c−1εt1/β we obtain

einf
y∈B(x,r)

pt(x, y) ≥
C

tα/β
Φ
(
c
r

t1/β

)
= c′r−αεαΦ (ε) ,

whence
µ (B (x, r)) ≤ Crα. ((3))

To prove the lower bound for µ (B (x, r)), we first show that for all 0 < t ≤ εrβ

and almost all x ∈M , ∫

M\B(x,r)

pt(x, y)dµ(y) ≤
1

2
, ((4))

provided ε > 0 is sufficiently small. Setting rk = 2kr and using the monotonicity of
Φ and (3) we obtain

∫

M\B(x,r)

pt(x, y)dµ(y) =
∞∑

k=0

∫

B(x,rk+1)\B(x,rk)

pt (x, y) dµ(y)

≤
∞∑

k=0

∫

B(x,rk+1)\B(x,rk)

Ct−α/βΦ
( rk

t1/β

)
dµ(y)

≤
∞∑

k=0

Crαk+1t
−α/βΦ

( rk

t1/β

)

= C ′
∞∑

k=0

(
2kr

t1/β

)α
Φ

(
2kr

t1/β

)

≤ C ′
∫ ∞

1
2
r/t1/β

sαΦ(s)
ds

s
. ((5))

By Theorem 2.1(b), the integral (5) converges. Hence, its value can be made arbi-
trarily small provided rβ/t is large enough, whence (4) follows.

By the stochastic completeness of the heat kernel and (4) we conclude that,
under the condition 0 < t ≤ εrβ,

∫

B(x,r)

pt(x, y)dµ(y) ≥
1

2
,

whence

µ(B(x, r)) ≥
1

2

(

esup
y∈B(x,r)

pt(x, y)

)−1

.
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Finally, choosing t = εrβ and using the upper bound

pt(x, y) ≤ Ct−α/βΦ(0) = Cr−αε−α/βΦ (0) ,

we obtain
µ (B (x, r)) ≥ crα,

which finishes the proof.

2.3 Besov spaces

Fix α > 0, σ > 0 and introduce the following seminorms on L2 = L2 (M,µ):

Nα,σ
2,∞ (u) = sup

0<r≤1

1

rα+2σ

∫∫

{x,y∈M :d(x,y)<r}

|u(x)− u(y)|2 dµ(x)dµ(y)

and

Nα,σ
2,2 (u) =

∫ ∞

0

dr

r

1

rα+2σ

∫∫

{x,y∈M :d(x,y)<r}

|u(x)− u(y)|2 dµ(x)dµ(y)

Define the space
Λα,σ

2,∞ =
{
u ∈ L2 : Nα,σ

2,∞(u) <∞
}

and the norm in this space by

‖u‖2
Λα,σ2,∞

= ‖u‖2
2 +Nα,σ

2,∞(u).

Similarly, one defines the space Λα,σ
2,2 . More generally one can define Λα,σ

p,q for p ∈
[1,+∞) and q ∈ [1,+∞].

In the case of Rn, we have the following relations

Λn,σ
p,q (Rn) = Bσ

p,q (Rn) , 0 < σ < 1,

Λn,1
2,∞ (Rn) = W 1

p (Rn) ,

Λn,1
2,2 (Rn) = {0} ,

Λn,σ
p,q (Rn) = {0} , σ > 1.

where Bσ
p,q is the Besov space and W 1

p is the Sobolev space. The spaces Λα,σ
p,q will

also be called Besov spaces.

Theorem 2.3. (Jonsson ’96, Pietruska-Paluba ’00, AG, J.Hu, K.-S. Lau ’03) Let
pt be a heat kernel on (M,d, µ). Assume that it is stochastically complete and that
it satisfies the following estimate for all t > 0 and almost all x, y ∈M :

1

tα/β
Φ1

(
d(x, y)

t1/β

)

≤ pt (x, y) ≤
1

tα/β
Φ2

(
d(x, y)

t1/β

)

, ((6))
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where α, β be positive constants, Φ1 and Φ2 monotone decreasing functions from
[0,+∞) to [0,+∞) such that Φ1 (s) > 0 for some s > 0 and

∫ ∞
sα+βΦ2(s)

ds

s
<∞. ((7))

Then, for any u ∈ L2,

E (u) ' N
α,β/2
2,∞ (u),

and, consequently, F = Λ
α,β/2
2,∞ .

By Theorem 2.1, the upper bound in (6) implies that either (E ,F) is local or

Φ2 (s) ≥ c (1 + s)−(α+β)
.

Since the latter contradicts (7), the form (E ,F) must be local. For non-local forms

the statement is not true. For example, for the operator (−∆)β/2 in Rn we have

F = B
β/2
2,2 = Λ

n,β/2
2,2 that is strictly smaller than B

β/2
2,∞ = Λ

n,β/2
2,∞ . This case will be

covered by another theorem.

Theorem 2.4. (Stós ’00) Let pt be a stochastically complete heat kernel on
(M,d, µ) satisfying estimate (6) with functions

Φ1 (s) ' Φ2 (s) ' (1 + s)−(α+β)
.

Then, for any u ∈ L2,

E (u) ' N
α,β/2
2,2 (u)

and, consequently, F = Λ
α,β/2
2,2 .

2.4 Subordinated semigroup

Let L be the generator of a heat semigroup {Pt}. Then for any δ ∈ (0, 1) the
operator Lδ is also a generator of a heat semigroup, that is, the semigroup e−tL

σ

is a heat semigroup. Furthermore, there is the following relation between the two
semigroups

e−tL
δ

=

∫ ∞

0

e−sLηt (s) ds

where ηt (s) is a subordinator. Using the known estimates for ηt (s), one obtain the
following result.

Theorem 2.5. Let a heat kernel pt satisfy the estimate (6) where Φ1 (s) > 0 for
some s > 0 and ∫ ∞

0

sα+β′Φ2 (s)
ds

s
<∞,
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where β′ = δβ, 0 < δ < 1. Then the heat kernel qt (x, y) of operator Lδ satisfies the
estimate

qt (x, y) '
1

tα/β
′

(

1 +
d (x, y)

t1/β
′

)−(α+β′)

' min

(

t−α/β
′
,

t

d (x, y)α+β′

)

,

for all t > 0 and almost all x, y ∈M .

2.5 The walk dimension

It follows from definition that the Besov seminorm

Nα,σ
2,∞ (u) := sup

0<r≤1

1

rα+2σ

∫∫

{x,y∈M :d(x,y)<r}

|u(x)− u(y)|2 dµ(x)dµ(y)

increases when σ increases, which implies that the space

Λα,σ
2,∞ :=

{
u ∈ L2 : Nα,σ

2,∞ (u) <∞
}

shrinks. For a certain value of σ this space can become trivial. For example, as was
already mentioned, Λn,σ

2,∞ (Rn) = {0} for σ > 1, while Λn,σ
2,∞ (Rn) is non-trivial for

σ ≤ 1.

Definition. Fix α > 0 and set

β∗ := sup
{
β > 0 : Λ

α,β/2
2,∞ is dense in L2 (M,µ)

}
. ((8))

The number β∗ ∈ [0,+∞] is called the critical exponent of the family
{

Λ
α,β/2
2,∞

}

β>0

of Besov spaces.

Note that the value of β∗ is an intrinsic property of the space (M,d, µ), which is
defined independently of any heat kernel. For example, for Rn with α = n we have
β∗ = 2.

Theorem 2.6. (A.Jonsson ’96, K.Pietruska-Paluba ’00, AG, J.Hu, K.-S. Lau
’03) Let pt be a heat kernel on a metric measure space (M,d, µ). If the heat kernel
is stochastically complete and satisfies (6), that is,

1

tα/β
Φ1

(
d(x, y)

t1/β

)

≤ pt (x, y) ≤
1

tα/β
Φ2

(
d(x, y)

t1/β

)

, (copy of (6))

where Φ1 (s) > 0 for some s > 0 and
∫ ∞

sα+β+εΦ2(s)
ds

s
<∞ ((9))

for some ε > 0, then β = β∗.
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By Theorem 2.1, (9) implies that the Dirichlet form (E ,F) is local. For non-local
forms the statement is not true: for example, in Rn for symmetric stable processes
we have β < 2 = β∗.

Corollary 2.7. Under the hypotheses of Theorem 2.6, the values of the parameters
α and β are the invariants of the metric space (M,d) alone. Moreover, we have

µ ' Hα and E ' N
α,β/2
2,∞ .

Consequently, both measure µ and the energy form E are determined (up to a factor
' 1) by the metric space (M,d) alone.

Example. Consider in Rn the Gauss-Weierstrass heat kernel

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

and its generator L = −∆ in L2 (Rn) with the Lebesgue measure. Then α = n,
β = 2, and

E (u) =

∫

Rn
|∇u|2 dx.

Consider now another elliptic operator in Rn:

L = −
1

m (x)

n∑

i,j=1

∂

∂xi

(

aij (x)
∂

∂xj

)

,

where m (x) and aij (x) are continuous functions, m (x) > 0 and the matrix (aij (x))
is positive definite. The operator L is symmetric with respect to measure

dµ = m (x) dx,

and its Dirichlet form is

E (u) =

∫

Rn
aij (x)

∂u

∂xi

∂u

∂xj
dx.

Let d (x, y) = |x− y| and assume that the heat kernel pt (x, y) of L satisfies the
conditions of Theorem 2.6. Then we conclude by Corollary 2.7 that α and β must
be the same as for the Gauss-Weierstrass heat kernel, that is, α = n and β = 2;
moreover, measure µ must be comparable to the Lebesgue measure, which implies
that m ' 1, and the energy form must admit the estimate

E (u) '
∫

Rn
|∇u|2 dx,

which implies that the matrix (aij (x)) is uniformly elliptic. Hence, the operator L
is uniformly elliptic.
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By Aronson’s theorem the heat kernel for uniformly elliptic operators satisfies
the estimate

pt (x, y) '
C

tn/2
exp

(

−c
|x− y|2

t

)

.

What we have proved implies the converse to Aronson’s theorem: if the Aronson
estimate holds for the operator L then L is uniformly elliptic.

The next theorem handles the non-local case.

Theorem 2.8. Let pt be a heat kernel on a metric measure space (M,d, µ). If
the heat kernel satisfies the lower bound

pt (x, y) ≥
1

tα/β
Φ1

(
d (x, y)

t1/β

)

,

where Φ1 (s) > 0 for some s > 0, then β ≤ β∗.

Proof. In the proof of Theorem 2.3 one shows that the lower bound of the heat
kernel implies F ⊂ Λ

α,β/2
2,∞ (and the opposite inclusion follows from the upper bound

and stochastic completeness). Since F is dense in L2, it follows that β ≤ β∗.

2.6 Inequalities for the walk dimension

Definition. We say that a metric space (M,d) satisfies the chain condition if there
exists a (large) constant C such that for any two points x, y ∈M and for any positive
integer n there exists a sequence {xi}

n
i=0 of points in M such that x0 = x, xn = y,

and

d(xi, xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, ..., n− 1. ((10))

The sequence {xi}
n
i=0 is referred to as a chain connecting x and y.

Theorem 2.9. (AG, J.Hu, K.-S. Lau ’03) Let (M,d, µ) be a metric measure space
and assume that

µ(B(x, r)) ' rα ((11))

for all x ∈M and 0 < r ≤ 1. Then

β∗ ≥ 2.

If in addition (M,d) satisfies the chain condition then

β∗ ≤ α + 1.

Observe that the chain condition is essential for the inequality β∗ ≤ α+ 1 to be
true. Indeed, assume for a moment that the claim of Theorem 2.9 holds without the
chain condition, and consider a new metric d′ on M given by d′ = d1/γ where γ > 1.
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Let us mark by a dash all notions related to the space (M,d′, µ) as opposed to those
of (M,d, µ). It is easy to see that α′ = αγ and β∗′ = β∗γ. Hence, if Theorem 2.9
could apply to the space (M,d′, µ) it would yield β∗γ ≤ αγ+1 which implies β∗ ≤ α
because γ may be taken arbitrarily large. However, there are spaces with β∗ > α,
for example SG.

Clearly, the metric d′ does not satisfy the chain condition; indeed the inequality
(10) implies

d′(xi, xi+1) ≤ C
d′(x, y)

n1/γ
,

which is not good enough. Note that if in the inequality (10) we replace n by n1/γ

then the proof of Theorem 2.9 will give β∗ ≤ α + γ instead of β∗ ≤ α + 1.
Proof. To prove that β∗ ≥ 2, it suffices to show that Λα,1

2,∞ is dense in L2. Let
u be a Lipschitz function with a bounded support A and let L be the Lipschitz
constant of u. Then, for any r ∈ (0, 1],

1

rα+2

∫

M

∫

B(x,r)

(u(x)− u(y))2
dµ(y)dµ(x)

≤
1

rα+2

∫

A1

∫

B(x,r)

Lr2dµ(y)dµ(x)

≤ Cµ (A1) ,

where Ar denotes the closed r-neighborhood of A. It follows that

Nα,1
2,∞ (u) ≤ Cµ (A1) <∞,

whence we conclude that u ∈ Λα,1
2,∞.

Let now A be any bounded closed subset of M . For any positive integer n,
consider the function on M

fn (x) = (1− nd (x,A))+ ,

which is Lipschitz and is supported in A1/n. Hence, fn ∈ Λα,1
2,∞. Clearly, fn → 1A

in L2 as n→∞, whence it follows that 1A ∈ Λα,1
2,∞, where the bar means closure in

L2. Since the linear combinations of the indicator functions of bounded closed sets
form a dense subset in L2, it follows that Λα,1

2,∞ = L2, which was to be proved.
Now let us prove that β∗ ≤ α+ 1 assuming the chain condition. The hypothesis

(11) implies that the space L2 (M,µ) is ∞-dimensional. The inequality β∗ ≤ α + 1

will be proved if we show that, for any β > α + 1, the space Λ
α,β/2
2,∞ contains only

constants, that is, N
α,β/2
2,∞ (u) <∞ implies u ≡ const.

By definition of N
α,β/2
2,∞ we have, for any 0 < r ≤ 1,

N
α,β/2
2,∞ (u) ≥ r−α−β

∫∫

{ d(x,y)<r}

|u(x)− u(y)|2dµ(y)dµ(x).
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Fix some 0 < r ≤ 1 and assume that we have a sequence of disjoint balls {Bk}
l
k=0

of the same radius 0 < ρ < 1, such that for all k = 0, 1, ..., l − 1

dmax (Bk, Bk+1) := sup {d(x, y) : x ∈ Bk, y ∈ Bk+1} < r. ((12))

Then we have

N
α,β/2
2,∞ (u) ≥ r−α−β

l−1∑

k=0

∫

Bk

∫

Bk+1

|u(x)− u(y)|2 dµ(y)dµ(x).

Now use the following notation

uA :=
1

µ(A)

∫

A

u dµ

and observe that, for any two measurable sets A,B ⊂ M of finite measure, the
following inequality takes place

∫

A

∫

B

|u(x)− u(y)|2 dµ(x)dµ(y) ≥ µ(A)µ(B) |uA − uB|
2
,

which is proved by a straightforward computation.
It follows that

N
α,β/2
2,∞ (u) ≥ r−α−β

l−1∑

k=0

µ (Bk)µ (Bk+1)
∣
∣uBk − uBk+1

∣
∣2

≥ cr−α−βρ2α

l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣2

≥ cr−α−βρ2α1

l

(
l−1∑

k=0

(
uBk − uBk+1

)
)2

= cr−α−βρ2α1

l
(uB0 − uBl)

2
.

Now we construct such a sequence {Bk}. Fix two distinct points x, y ∈ M and
recall that, by the chain condition, for any positive integer n there exists a sequence
of points {xi}

n
i=0 such that x0 = x, xn = y, and

d(xi, xi+1) < C
d(x, y)

n
:= ρ, for all 0 ≤ i < n.

It is possible to show that, for large enough n, there exists a subsequence {xik}
l
k=0

such that xi0 = x, xil = y, the balls {B (xik , ρ)} are disjoint, and

d(xik , xik+1
) < 5ρ,
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for all k = 0, 1, ..., l − 1. Setting Bk := B (xik , ρ) and noticing that

dmax (Bk, Bk+1) < 5ρ+ 2ρ = 7ρ =: r

and that r < 1 provided n is large enough, we obtain

(
uB(x,ρ) − uB(y,ρ)

)2
= (uB0 − uBl)

2

≤ CN
α,β/2
2,∞ (u) rβ+αρ−2αl

≤ CN
α,β/2
2,∞ (u) ρβ−αn

≤ CN
α,β/2
2,∞ (u) ρβ−α−1d (x, y) .

By the Lebesgue theorem, we have, for almost all x ∈M ,

lim
ρ→0

uB(x,ρ) = u(x),

Letting n→∞ (that is ρ→ 0) we obtain, for almost all x, y ∈M ,

(u(x)− u(y))2 ≤ C N
α,β/2
2,∞ (u)

(

lim
ρ→0

ρβ−α−1

)

d (x, y) = 0.

Since N
α,β/2
2,∞ (u) <∞ and β > α+ 1, the above limit is equal to 0 whence u ≡ const.

Corollary 2.10. AG, J.Hu, K.-S. Lau ’03) Let pt be a stochastically complete heat
kernel on (M,d, µ) such that

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

.

(a) If for some ε > 0 ∫ ∞
sα+β+εΦ(s)

ds

s
<∞ ((11))

then β ≥ 2.

(b) If (M,d) satisfies the chain condition then β ≤ α + 1.

Proof. By Theorem 2.2 µ is α-regular so that Theorem 2.9 applies.
(a) By Theorem 2.9 β∗ ≥ 2 and by Theorem 2.6, β = β∗, whence β ≥ 2.
(b) By Theorem 2.9 β∗ ≤ α+ 1 and by Theorem 2.8 β ≤ β∗, whence β ≤ α+ 1.

Note that the condition (11) can occur only for a local Dirichlet form E . If both
(11) and the chain condition are satisfied then we obtain

2 ≤ β ≤ α + 1. ((12))
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α

2

β

1

1 2 3 4

Figure 2.2: The set 2 ≤ β ≤ α + 1

This inequality was stated by M.Barlow ’98 without proof.
The set of couples (α, β) satisfying (12) is shown on the diagram:
Barlow ’04 proved that any couple of α, β satisfying (12) can be realized for the

heat kernel estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

((13))

For a non-local form, we can only claim that

0 < β ≤ α + 1

(under the chain condition). In fact, any couple α, β in the range

0 < β < α + 1

can be realized for the estimate

pt (x, y) '
1

tα/β
′

(

1 +
d (x, y)

t1/β
′

)−(α+β′)

.

Indeed, if L is the generator of a diffusion with parameters α and β satisfying (13)
then the operator Lδ, δ ∈ (0, 1), generates a jump process with the walk dimension
β′ = δβ and the same α (cf. Theorem 2.5). Clearly, β′ can take any value from
(0, α + 1).

It is not known whether the walk dimension for a non-local form can be equal
to α + 1.



32 CHAPTER 2. CONSEQUENCES OF HEAT KERNEL BOUNDS

2.7 Identifying Φ in the local case

Theorem 2.11. (AG, T.Kumagai ’09) Assume that the metric space (M,d) satis-
fies the chain condition and all metric balls are precompact. Let pt be a stochastically
complete heat kernel in (M,d, µ). Assume that the associated Dirichlet form (E ,F)
is regular, and the following estimate holds with some α, β > 0 and Φ : [0,+∞) →
[0,+∞):

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

.

Then the following dichotomy holds:

• either the Dirichlet form E is local, 2 ≤ β ≤ α+1, and Φ (s) � C exp(−cs
β
β−1 ).

• or the Dirichlet form E is non-local, β ≤ α + 1, and Φ (s) ' (1 + s)−(α+β).

Proof. The non-local case as well as the inequality β ≤ α + 1 follow from
Corollary 2.10 and Theorem 2.1. We only need to treat the local case: to show that

β ≥ 2 and Φ (s) � C exp(−cs
β
β−1 ).

Integrating the heat kernel over B (x, r)c we obtain as in the proof of Theorem
2.2 ∫

B(x,r)c
pt (x, y) dµ (y) ≤ C

∫ ∞

1
2
r/t1/β

sαΦ(s)
ds

s
,

where the integral converges by Theorem 2.1(b): Φ (s) ≤ (1 + s)−α−β. Therefore,
for any ε > 0 there is K > 0 such that the following estimate holds

∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε ((14))

for almost all x ∈M , whenever r ≥ Kt1/β.
The estimate (14) allows self-improvement similarly to bootstrapping argument

of Barlow for
Px
(
τB(x,r) ≤ t

)
≤ ε.

Technically we use a modification of the method of Hebisch and Saloff-Coste ’01
(here the regularity of the Dirichlet form is used) and obtain the following: for all
t, r, λ > 0 ∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(
λt− crλ1/β

)
((15))

(AG, J.Hu ’08 and ’10).
If β < 1 then letting in (15) λ→∞, we obtain that the right hand side in (15)

goes to 0. Letting then r → 0, we obtain that, for almost all x ∈M ,
∫

M\{x}
pt (x, y) dµ (y) = 0,
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which is not possible under the present hypotheses. This contradiction proves that
β ≥ 1.

Setting in (15)

λ =






(cr
2t

) β
β−1

, if β > 1,

t−1, if β = 1

we obtain that, for all positive r, t and almost all x ∈M ,

∫

B(x,r)c
pt (x, y) dµ (y) ≤





C exp

(

−c
(
rβ

t

) 1
β−1

)

, if β > 1

C exp
(
−c r

t

)
, if β = 1

Using the semigroup identity, we have, for all t > 0, almost all x, y ∈ M , and
r := 1

2
d (x, y),

pt (x, y) =

∫

M

p t
2

(x, z) p t
2

(z, y) dµ(z)

≤

(∫

B(x,r)c
+

∫

B(y,r)c

)

p t
2

(x, z) p t
2

(z, y) dµ(z)

≤ esup
z∈M

p t
2

(z, y)

∫

B(x,r)c
p t

2
(x, z) dµ(z)

+ esup
z∈M

p t
2

(x, z)

∫

B(y,r)c
p t

2
(y, z) dµ(z).

Using esup pt ≤ Ct−α/β, we obtain, for almost all x, y ∈M ,

pt (x, y) ≤






C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

, if β > 1

C

tα
exp

(
−c

r

t

)
, if β = 1

It follows that pt satisfies the two-sided estimate (6) with functions

Φ1 (s) := CΦ (cs)

and

Φ2 (s) :=

{
C exp

(
−cs

β
β−1

)
, if β > 1,

C exp (−cs) , if β = 1.

Then Theorem 2.6 applies and yields β = β∗. By Theorems 2.2 and 2.9 we have
β∗ ≥ 2 whence β ≥ 2.

Consequently, we obtain the upper bound

pt (x, y) ≤
C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

.
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By hypothesis we have the lower bound

pt (x, y) ≥ ct−α/β provided d (x, y) ≤ st1/β

where s > 0 is such that Φ (s) > 0. The standard chaining argument using the chain
condition yields then

pt (x, y) ≥
C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

for almost all x, y. Combining with the upper bound, we obtain

Φ (s) � C exp(−cs
β
β−1 ),

which finishes the proof.



Chapter 3

Upper bounds of the heat kernel

3.1 Ultracontractive semigroups

Let (M,d, µ) be a metric measure space and (E ,F) be a Dirichlet form in L2 (M,µ)
and {Pt} be the associated heat semigroup, Pt = e−tL where L is the generator of
(E ,F). The question to be discussed here is whether Pt possesses the heat kernel,
that is, a function pt (x, y) that is non-negative, jointly measurable in (x, y), and
satisfies the identity

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y)

for all f ∈ L2, t > 0, and almost all x ∈M . Usually the conditions that ensure the
existence of the heat kernel give at the same token some upper bounds.

Given two parameters p, q ∈ [0,+∞], define the Lp → Lq norm of Pt by

‖Pt‖Lp→Lq = sup
f∈Lp∩L2\{0}

‖Ptf‖q
‖f‖p

.

In fact, the Markovian property allows to extend Pt to an operator in Lp so that
the range Lp ∩ L2 of f can be replaced by Lp. Also, it follows from the Markovian
property that ‖Pt‖Lp→Lp ≤ 1 for any p.

Definition. The semigroup {Pt} is said to be Lp → Lq ultracontractive if there
exists a positive decreasing function γ on (0,+∞), called the rate function, such
that, for each t > 0

‖Pt‖Lp→Lq ≤ γ (t) .

By the symmetry of Pt, if Pt is Lp → Lq ultracontractive, then Pt is also Lq
∗
→

Lp
∗

ultracontractive with the same rate function, where p∗ and q∗ are the Hölder
conjugates to p and q, respectively. In particular, Pt is L1 → L2 ultracontractive if
and only if it is L2 → L∞ ultracontractive.

Theorem 3.1.

35
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(a) The heat semigroup {Pt} is L1 → L2 ultracontractive with a rate function γ,
if and only if {Pt} has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t/2)2 for all t > 0

(b) The heat semigroup {Pt} is L1 → L∞ ultracontractive with a rate function γ,
if and only if {Pt} has the heat kernel pt satisfying the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t) for all t > 0.

This result is “well-known” and can be found in many sources. However, there
are hardly complete proofs of the measurability of the function pt (x, y) in (x, y),
which is necessary for many applications, for example, to use Fubini. Normally
the existence of the heat kernel is proved in some specific setting where pt (x, y) is
continuous in (x, y), or one proves just the existence of a family of functions pt,x ∈ L2

so that

Ptf (x) = (pt,x, f) =

∫

M

pt,x (y) f (y) dµ (y)

for all t > 0 and almost all x. However, if one defines pt (x, y) = pt,x (y), then this
function does not have to be jointly measurable. The proof of the existence of a
jointly measurable version can be found in a preprint AG, J.Hu “Upper bounds of
heat kernels on doubling spaces”, 2010. Most of the material of this chapter can
also be found there.

3.2 Restriction of the Dirichlet form

Let Ω be an open subset of M . Define the function space FΩ by

FΩ = {f ∈ F : supp f ⊂ Ω}
F
.

Clearly, FΩ is a closed subspace of F and a subspace of L2 (Ω).

Lemma 3.2. If (E ,F) is a regular Dirichlet form in L2 (M) then (E ,FΩ) is a
regular Dirichlet form in L2 (Ω). If (E ,F) is (strongly) local then so is (E ,FΩ).

The regularity is used, in particular, to ensure that FΩ is dense in L2 (Ω). From
now on let us assume that (E ,F) is a regular Dirichlet form. Other consequences of
this assumptions are as follows:

1. The existence of cutoff functions: for any compact set K and any open set
U ⊃ K, there is a function ϕ ∈ F ∩ C0 (U) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in
an open neighborhood of K.

2. The existence of a Hunt process
(
{Xt}t≥0 , {Px}x∈M

)
associated with (E ,F).
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(see Fukushima, Oshima, Takeda “Dirichlet forms and symmetric Markov pro-
cesses”).

Hence, for any open subset Ω ⊂ M , we have the Dirichlet form (E ,FΩ) that is
called a restriction of (E ,F) to Ω.

Example. Consider in Rn the canonical Dirichlet form

E (u) =

∫

Rn
|∇u|2 dx

in F = W 1
2 (Rn). Then FΩ = C1

0 (Ω)
W 1

2
=: H1

0 (Ω) .

Using the restricted form (E ,FΩ) corresponds to imposing the Dirichlet boundary
conditions on ∂Ω (or on Ωc), so that the form (E ,FΩ) could be called the Dirichlet
form with the Dirichlet boundary condition.

Denote by LΩ the generator of (E ,FΩ) and set

λmin (Ω) := inf specLΩ = inf
u∈FΩ\{0}

E (u)

‖u‖2
2

. ((1))

Clearly, λmin (Ω) ≥ 0 and λmin (Ω) is decreasing when Ω expands.

Example. If (E ,F) is the canonical Dirichlet form in Rn and Ω is the bounded
domain in Rn then the operator LΩ has the discrete spectrum λ1 (Ω) ≤ λ2 (Ω) ≤
λ3 (Ω) ≤ ... that coincides with the eigenvalues of the Dirichlet problem

{
∆u+ λu = 0
u|∂Ω = 0,

so that λ1 (Ω) = λmin (Ω).

3.3 Faber-Krahn and Nash inequalities

Continuing the above example, we have by a theorem of Faber-Krahn

λ1 (Ω) ≥ λ1 (Ω∗)

where Ω∗ is the ball of the same volume as Ω. If r is the radius of Ω∗ then we have

λ1 (Ω∗) =
c′

r2
=

c

|Ω∗|2/n
=

c

|Ω|2/n

whence
λ1 (Ω) ≥ cn |Ω|

−2/n
.

It turns out that this inequality, that we call the Faber-Krahn inequality, is intimately
related to the existence of the heat kernel and its upper bound.

Theorem 3.3. Let (E ,F) be a regular Dirichlet form in L2 (M,µ). Fix some
constant ν > 0. Then the following conditions are equivalent:
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(i) ( The Faber-Krahn inequality) There is a constant a > 0 such that, for all
non-empty open sets Ω ⊂M ,

λmin (Ω) ≥ aµ (Ω)−ν . ((2))

(ii) ( The Nash inequality) There exists a constant b > 0 such that

E (u) ≥ b‖u‖2+2ν
2 ‖u‖−2ν

1 , ((3))

for any function u ∈ F \ {0}.

(iii) ( On-diagonal estimate of the heat kernel) The heat kernel exists and satisfies
the upper bound

esup
x,y∈M

pt (x, y) ≤ ct−1/ν ((4))

for some constant c and for all t > 0.

The relation between the parameters a, b, c is as follows:

a ' b ' c−ν

where the ratio of any two of these parameters is bounded by constants depending
only on ν.

In Rn ν = 2/n.
(ii)⇒ (iii) Nash ’58
(iii)⇒ (ii) Carlen-Kusuoka-Stroock ’87
(i)⇔ (iii) AG ’94, Carron ’94.
Proof of (i)⇒ (ii)⇒ (iii). Observe first that (ii)⇒ (i) is trivial: choosing in

(3) a function u ∈ FΩ \ {0} and applying the Cauchy-Schwarz inequality

‖u‖1 ≤ µ (Ω)1/2 ‖u‖2 ,

we obtain

E (u) ≥ bµ (Ω)−ν ‖u‖2
2 ,

whence (2) follow by the variational principle (1).
The opposite inequality (i) ⇒ (ii) is a bit more involved, and we prove it for

functions 0 ≤ u ∈ F ∩ C0 (M) (a general u ∈ F requires some approximation
argument). By the Markovian property, we have (u− t)+ ∈ F ∩ C0 (M) for any
t > 0 and

E (u) ≥ E
(
(u− t)+

)
.

Consider for any s > 0 the set

Us := {x ∈M : u (x) > s} ,
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which is clearly open and precompact. If t > s then (u− t)+ is supported in Us,
whence (u− t)+ ∈ FUs . It follows from (1)

E
(
(u− t)+

)
≥ λmin (Us)

∫

Us

(u− t)2
+ dµ.

Set for simplicity A = ‖u‖1 and B = ‖u‖2
2. Since u ≥ 0, we have

(u− t)2
+ ≥ u2 − 2tu,

which implies that
∫

Us

(u− t)2
+dµ =

∫

M

(u− t)2
+dµ ≥ B − 2tA.

On the other hand, we have

µ(Us) ≤
1

s

∫

Us

u dµ ≤
A

s
,

which together with the Faber-Krahn inequality implies

λmin (Us) ≥ aµ (Us)
−ν ≥ a

( s
A

)ν
.

Combining the above lines, we obtain

E (u) ≥ λmin (Us)

∫

Us

(u− t)2
+ dµ ≥ a

( s
A

)ν
(B − 2tA) .

Letting t→ s+ and then choosing s = B
4A

, we obtain

E (u) ≥ a
( s
A

)ν
(B − 2sA) = a

(
B

4A2

)ν
B

2
=

a

4ν2
Bν+1A−2ν ,

which is exactly (3) .
To prove (ii)⇒ (iii), choose f ∈ L2∩L1, and consider u = Ptf . Since u = e−tLf

and d
dt
u = −Lu, we have

d

dt
‖u‖2

2 =
d

dt
(u, u) = −2 (Lu, u) = −2E (u, u) ≤ −2b‖u‖2+2ν

2 ‖u‖−2ν
1 ≤ −2b‖u‖2+2ν

2 ‖f‖−2ν
1 ,

since ‖u‖1 ≤ ‖f‖1 . Solving this differential inequality, we obtain

‖Ptf‖
2
2 ≤ ct−1/v ‖f‖2

1 ,

that is, the semigroup Pt is L1 → L2 ultracontractive with the rate function γ (t) =√
ct−1/v. By Theorem 3.1 we conclude that the heat kernel exists and satisfies (4).
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Let M be a Riemannian manifold with the geodesic distance d and the Rieman-
nian volume µ. Let (E ,F) be the canonical Dirichlet form on M . The heat kernel
on manifolds always exists and is a smooth function. In this case the estimate (4)
is equivalent to the on-diagonal upper bound

sup
x∈M

pt (x, x) ≤ ct−1/ν .

It is known (but non-trivial) that the on-diagonal estimate implies the Gaussian
upper bound

pt (x, y) ≤ Ct−1/ν exp

(

−
d2 (x, y)

(4 + ε) t

)

,

for all t > 0 and x, y ∈ M , which is due to the specific property of the geodesic
distance function that |∇d| ≤ 1.

More about heat kernels on manifolds can be found in

Figure 3.1:

In the context of abstract metric measure space the distance function does not
have to satisfy this property and typically it does not (say, on fractals). Conse-
quently, one needs some additional conditions that would relate the distance function
to the Dirichlet form and imply the off-diagonal bounds.

3.4 Off-diagonal upper bounds

From now on let (E ,F) be a regular local Dirichlet form, so that the associated
Hunt process

(
{Xt}t≥0 , {Px}x∈M

)
is a diffusion. Recall that it is related to the heat
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semigroup {Pt} of (E ,F) by means of the identity

Ex (f (Xt)) = Ptf (x)

for all f ∈ Bb (M), t > 0 and almost all x ∈M .
Fix two parameters α > 0 and β > 1 and introduce some conditions.

(Vα) (Volume regularity) For all x ∈M and r > 0,

µ (B (x, r)) ' rα.

(FK) (The Faber-Krahn inequality) For any open set Ω ⊂M ,

λmin (Ω) ≥ cµ (Ω)−β/α .

For any open set Ω ⊂M define the first exist time from Ω by

τΩ = inf {t > 0 : Xt /∈ Ω} .

x

Xt
Xτ

Figure 3.2: First exit time τ

A set N ⊂M is called properly exceptional, if it is a Borel set of measure 0 that
is almost never hit by the process Xt starting outside N . In the next conditions N
denotes some properly exceptional set.

(Eβ) (An estimate for the mean exit time from balls) For all x ∈M \N and r > 0

ExτB(x,r) ' rβ

(the parameter β is called the walk dimension of the process).
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(EΩ) (An isoperimetric estimate for the mean exit time) For any open subset Ω ⊂
M ,

sup
x∈Ω\N

Ex (τΩ) ≤ Cµ (Ω)β/α .

If both (Vα) and (Eβ) are satisfied then we obtain for any ball B ⊂M

sup
x∈B\N

Ex (τB) ' rβ ' µ (B)β/α .

It follows that the balls are in some sense optimal sets for the condition (EΩ).

Example. If Xt is Brownian motion in Rn then it is known that

ExτB(x,r) = cnr
2

so that (Eβ) holds which satisfies with β = 2. This can also be rewritten in the form

ExτB = cn |B|
2/n

where B = B (x, r).
It is also known that for any open set Ω ⊂ Rn with finite volume and for any

x ∈ Ω
Ex (τΩ) ≤ Ex

(
τB(x,r)

)
,

provided ball B (x, r) has the same volume as Ω; that is, for a fixed value of |Ω|, the
mean exist time is maximal when Ω is a ball and x is its center. It follows that

Ex (τΩ) ≤ cn |Ω|
2/n

so that (EΩ) is satisfied with β = 2 and α = n.

Finally, introduce notation for the following estimates of the heat kernel:

(UE) (Sub-Gaussian upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

for all t > 0 and almost all x, y ∈M .

(ΦUE) (Φ-upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤
1

tα/β
Φ

(
d (x, y)

t1/β

)

for all t > 0 and almost all x, y ∈M , where Φ is a decreasing positive function
on [0,+∞) such that ∫ ∞

0

sαΦ (s)
ds

s
<∞.
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(DUE) (On-diagonal upper estimate) The heat kernel exists and satisfies the estimate

pt (x, y) ≤
C

tα/β

for all t > 0 and almost all x, y ∈M .

Clearly,
(UE)⇒ (ΦUE)⇒ (DUE) .

Theorem 3.4. Let (M,d, µ) be a metric measure space and let (Vα) hold. Let
(E ,F) be a regular, local, conservative Dirichlet form in L2(M,µ). Then, the fol-
lowing equivalences are true:

(UE) ⇔ (ΦUE)

⇔ (FK) + (Eβ)

⇔ (EΩ) + (Eβ)

Let us emphasize the equivalence

(UE)⇔ (EΩ) + (Eβ)

where the right hand side means the following: the mean exit time from all sets Ω
satisfies the isoperimetric inequality, and this inequality is optimal for balls (up to
a constant multiple). Note that the latter condition relates the properties of the
diffusion (and, hence, of the Dirichlet form) to the distance function.

Conjecture. Under the hypotheses of Theorem 3.4,

(UE)⇔ (FK) +
{
λmin (Br) ' r−β

}

Indeed, the Faber-Krahn inequality (FK) can be regarded as an isoperimetric
inequality for λmin (Ω), and the condition

λmin (Br) ' r−β

means that (FK) is optimal for balls (up to a constant multiple).
Theorem 3.4 is an oversimplified version of a result of AG, J.Hu ’10 where instead

of (Vα) one uses the volume doubling condition, and other hypotheses must be
appropriately changed.

The following lemma is used in the proof of Theorem 3.4.

Lemma 3.5. For any open set Ω ⊂M

λmin (Ω) ≥
1

esupx∈Ω Ex (τΩ)
.
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Proof. Let GΩ be the Green operator in Ω, that is,

GΩ = L−1
Ω =

∫ ∞

0

e−tLΩdt.

We claim that

Ex (τΩ) = GΩ1 (x)

for almost all x ∈ Ω. We have

GΩ1 (x) =

∫ ∞

0

e−tLΩ1Ω (x) dt

=

∫ ∞

0

Ex
(
1Ω

(
XΩ
t

))

=

∫ ∞

0

Ex
(
1{t<τΩ}

)
dt

= Ex

∫ ∞

0

(
1{t<τΩ}

)
dt

= Ex (τΩ) .

Setting

m = esup
x∈Ω

Ex (τΩ)

we obtain that GΩ1 ≤ m, so that m−1GΩ is a Markovian operator. Therefore,
‖m−1GΩ‖L2→L2 ≤ 1 whence specGΩ ∈ [0,m]. It follows that specLΩ ⊂ [m−1,∞)
and λmin (Ω) ≥ m−1.

Proof of Theorem 3.4 ‘⇐’. We have the implications

(EΩ)
L.3.5
⇒ (FK)

T.3.3
⇒ (DUE) .

In particular, we see that the heat kernel exists under any of the hypotheses of
Theorem 3.4.

The next observation is that

(Eβ)⇒ Px
(
τB(x,r) ≤ t

)
≤ ε ((5))

for some ε ∈ (0, 1) provided r ≥ Kt1/β (like in Barlow’s lectures), which in turn
yields ∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε. ((6))

It is easy to see that also (ΦUE)⇒ (6) just by direct integration as in the proof of
Theorem 2.2.
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The condition (6) implies by bootstrapping

∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(

−c

(
rβ

t

) 1
β−1

)

((7))

for all t, r > 0 and almost all x ∈ M , as it was mentioned in the proof of Theorem
2.11.

Hence, any set of the hypothesis of Theorem 3.4 imply both (DUE) and (7). By
an argument in the proof of Theorem 2.11 we conclude

(DUE) + (7)⇒ (UE) .
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Chapter 4

Two-sided bounds of the heat
kernel

4.1 Using elliptic Harnack inequality

Now we would like to extend the results of Ch.3 to obtain also the lower estimates of
the heat kernel. As before, (M,d, µ) is a metric measure space, and assume in addi-
tion that all metric balls are precompact. Let (E ,F) is a local regular conservative
Dirichlet form in L2 (M,µ).

Definition. We say that a function u ∈ F is harmonic in an open set Ω ⊂M if

E (u, v) = 0 for all v ∈ F (Ω) .

For example, if M = Rn and (E ,F) is the canonical Dirichlet form in Rn then
we obtain the following definition: a function u ∈ W 1

2 (Rn) is harmonic in an open
set Ω ⊂ Rn if ∫

Rn
〈∇u,∇v〉dx = 0

for all v ∈ H1
0 (Ω) ⇔ v ∈ C∞0 (Ω). This of course implies that ∆u = 0 in a weak

sense in Ω and, hence, u is harmonic in Ω in the classical sense. However, unlike the
classical definition, we a priori require u ∈ W 1

2 (Rn) .

Definition. We say that M satisfies the elliptic Harnack inequality (H) if there
exist constants C > 1 and δ ∈ (0, 1) such that for any ball B (x, r) and for any
function u ∈ F that is non-negative and harmonic in B (x, r),

esup
B(x,δr)

u ≤ C einf
B(x,δr)

u.

Theorem 3.6. (AG, A.Telcs ’10) If the hypotheses (Vα)+(Eβ)+(H) are satisfied,
then the heat kernel pt (x, y) exists, is Hölder continuous in x, y ∈ M , and satisfies
for all t > 0 and all x, y ∈M the following estimates:

47
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(UE) a sub-Gaussian upper estimate

pt (x, y) ≤
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

,

(NLE) and the near-diagonal lower estimate

pt (x, y) ≥
c

tα/β
provided d (x, y) ≤ ηt1/β,

where η > 0 is a small enough constant.

Furthermore, we have the equivalence

(Vα) + (UE) + (NLE)⇔ (Vα) + (Eβ) + (H) .

This theorem is proved in AG, A.Telcs ’10 in a more general setting of volume
doubling instead of (Vα).

Approach to the proof. First one shows that (Vα) + (Eβ) + (H) ⇒ (FK),
which is quite involved and uses, in particular, Lemma 3.5. Having (Vα) + (Eβ) +
(FK) we obtain (UE) by Theorem 3.4.

Using the elliptic Harnack inequality, one obtain in a standard way the oscillating
inequality for harmonic functions and then for functions of the form u = GΩf (that
solves the equation LΩu = f) in terms of ‖f‖∞ .

If now u = PΩ
t f then u satisfies the equation

d

dt
u = −LΩu

whence

u = −GΩ

(
d

dt
u

)

.

Knowing an upper bound for u, that follows from the upper bound for the heat ker-
nel, one obtains also an upper bound for d

dt
u in terms of u. Applying the oscillation

inequality one obtains the Hölder continuity of u and, hence, of the heat kernel.
Let us prove the on-diagonal lower bound

pt (x, x) ≥ ct−α/β.

As in the proof of Theorem 2.2, (UE) and (Vα) imply that

∫

B(x,r)

pt (x, y) dµ (y) ≥
1

2
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provided r ≥ Kt1/β. Choosing r = Kt1/β, we obtain

p2t (x, x) =

∫

M

p2
t (x, y) dµ (y)

≥
1

µ (B (x, r))

(∫

B(x,r)

pt (x, y) dµ (y)

)2

≥
c

rα
=

c′

tα/β
.

Then (NLE) follows from the upper estimate for

|pt (x, x)− pt (x, y)|

when y close to x, which follows from the oscillation inequality.
Assuming that the heat kernel exists, define the Green kernel g (x, y) by

g (x, y) =

∫ ∞

0

pt (x, y) dt.

If the Green kernel is finite then it is the integral kernel of the Green operator
G = L−1. If the heat kernel satisfies (UE) and (NLE) and α > β (a strongly
transient case), then it follows that

g (x, y) ' d (x, y)β−α . ((G))

For example, in Rn we have g (x, y) = cn |x− y|
2−n

, n > 2.

Corollary 3.7. (The transient case) Assume α > β > 1. If (Vα) is satisfied then

(G)⇔ (UE) + (NLE)

In the proof one verifies that (G)⇒ (H) + (Eβ).

4.2 Matching upper and lower bounds

The purpose of this section is to improve both (UE) and (NLE) in order to obtain
matching upper and lower bounds for the heat kernel. The reason why (UE) and
(NLE) do not match, in particular, why (NLE) contains no information about
lower bound of pt (x, y) for distant x, y is the lack of chaining properties of the
distance function, that is an ability to connect any two points x, y ∈ M by a chain
of balls of controllable radii so that the number of balls in this chain is also under
control.

For example, the chain condition considered above is one of such properties. If
(M,d) satisfies the chain condition then as we have already mentioned, (NLE) im-
plies the full sun-Gaussian lower estimate by the chain argument and the semigroup
property.
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Here we consider a setting with weaker chaining properties. For any ε > 0
introduce a modified distance dε (x, y) by

dε (x, y) = inf
{xi} is ε-chain

N∑

i=1

d (xi, xi−1) ((8))

where ε-chain is a sequence {xi}
N
i=0 of points in M such that

x0 = x, xN = y, and d(xi, xi−1) < ε for all i = 1, 2, ..., N.

Clearly, dε (x, y) is decreases as ε increases and dε (x, y) = d (x, y) if ε > d (x, y). As
ε ↓ 0, dε (x, y) increases and can go to ∞ or even become equal to ∞. It is easy to
see that dε (x, y) satisfies all properties of a distance function except for finiteness,
so that it is a distance function with possible value +∞.

It is easy to show that

dε (x, y) ' εNε (x, y) ,

where Nε (x, y) is the smallest number of balls in a chain of balls of radii ε connecting
x and y:

x0=x

xN=yxi

Figure 4.1: Chain of balls connecting x and y

Nε can be regarded as the graph distance on a graph approximation of M by an
ε-net.

If d is geodesic then the points {xi} of an ε-chain can be chosen on the shortest
geodesic, whence dε (x, y) = d (x, y). If the distance function d satisfies the chain

condition then one can choose in (8) an ε-chain so that d (xi, xi+1) ≤ C d(x,y)
N

, whence
dε (x, y) ≤ Cd (x, y). In general, dε (x, y) may go to ∞ as ε → 0, and the rate of
growth of dε (x, y) as ε → 0 can be regarded as a quantitative description of the
chaining properties of d.

We need the following hypothesis
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Cβ Chaining property: for all x, y ∈M ,

εβ−1dε (x, y)→ 0 as ε→ 0,

or equivalently,
εβNε (x, y)→ 0 as ε→ 0.

For x 6= y we have εβ−1dε (x, y) → ∞ as ε → ∞ which implies under (Cβ) that
there is ε = ε (t, x, y) that satisfies the identity

εβ−1dε (x, y) = t ((9))

(always take the maximal possible value of ε). If x = y then set ε (t, x, x) =∞.

Theorem 3.8. If (Vα) + (Eβ) + (H) and (Cβ) are satisfied then

pt (x, y) �
C

tα/β
exp

(

−c

(
dβε (x, y)

t

) 1
β−1

)

((10))

�
C

tα/β
exp (−cNε (x, y)) , ((11))

where ε = ε (t, x, y).

Since dε (x, y) ≥ d (x, y), the upper bound in (10) is an improvement of (UE);
similarly the lower bound in (10) is an improvement of (NLE). The proof of the
upper bound in (10) follows the same line as the proof of (UE) with careful tracing
all places where the distance d (x, y) is used and making sure that it can be replaced
by dε (x, y). The proof of the lower bound in (11) uses (NLE) and the semigroup
identity along the chain with Nε balls connecting x and y. Finally, observe that (10)
and (11) are equivalent, that is

Nε '

(
dβε (x, y)

t

) 1
β−1

,

which follows by substituting here Nε ' dε/ε and t = εβ−1dε (x, y) .

Example. A good example to illustrate Theorem 3.8 is the class of post critically
finite (p.c.f.) fractals. For connected p.c.f. fractals with regular harmonic structure
the heat kernel estimate (11) was proved by Hambly and Kumagai ’99. In this setting
d (x, y) is the resistance metric of the fractal M and µ is the Hausdorff measure of
M of dimension α := dimHM . Hambly and Kumagai proved that (Vα) and (Eβ)
are satisfied with β = α + 1. The condition (Cβ) follows from their estimate

Nε (x, y) ≤ C

(
d (x, y)

ε

)β/2
,

because
εβNε (x, y) ≤ Cd (x, y)β/2 εβ/2 → 0 as ε→ 0.
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The Harnack inequality (H) on p.c.f. fractals was proved by Kigami ’01. Hence,
Theorem 2.8 applies and gives the estimates (10)-(11).

The estimate (11) means that the diffusion process goes from x to y in time t
in the following way. The process firstly “computes” the value ε (t, x, y), secondly
“detects” a shortest chain of ε-balls connecting x and y, and then goes along that
chain.

x

y

Figure 4.2: Two shortest chains of ε-ball for two distinct values of ε provide different
routes for the diffusion from x to y for two distinct values of t.

This phenomenon was first observed by Hambly and Kumagai on p.c.f. fractals,
but it seems to be generic. Hence, to obtain matching upper and lower bounds,
one needs in addition to the usual hypotheses also the following information, en-
coded in the function Nε (x, y): the graph distance between x and y on any ε-net
approximation of M .

Example of computation of ε. Assume that the following bound is known for
all x, y ∈M and ε > 0

Nε (x, y) ≤ C

(
d (x, y)

ε

)γ
,

where 0 < γ < β, so that (Cβ) is satisfied (since Nε ≥ d (x, y) /ε, one must have
γ ≥ 1). Since by (9) we have εβNε ' t, it follows that

εβ
(
d (x, y)

ε

)γ
≥ ct,

whence

ε ≥ c

(
t

d (x, y)γ

) 1
β−γ

.

Consequently, we obtain

Nε (x, y) ≤ Cd (x, y)γ ε−γ ≤ Cd (x, y)γ
(
d (x, y)γ

t

) γ
β−γ

=

(
d (x, y)β

t

) γ
β−γ
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and

pt (x, y) ≥
c

tα/β
exp



−

(
d (x, y)β

ct

) γ
β−γ



 .

Similarly, the lower estimate of Nε

Nε (x, y) ≥ c

(
d (x, y)

ε

)γ

implies an upper bound for the heat kernel

pt (x, y) ≤
C

tα/β
exp



−

(
d (x, y)β

Ct

) γ
β−γ



 .

Remark. Assume that (Vα) holds and all balls in M of radius ≥ r0 are connected,
for some r0 > 0. We claim that (Cβ) holds with any β > α. The α-regularity of
measure µ implies by the classical ball covering argument, that any ball Br of radius
r can be covered by at most C

(
r
ε

)α
balls of radii ε ∈ (0, r). Consequently, if Br

is connected then any two points x, y ∈ Br can be connected by a chain of ε-balls
containing at most C

(
r
ε

)α
balls, so that

Nε (x, y) ≤ C
(r
ε

)α
.

Since any two points x, y ∈ M are contained in a connected ball Br (say, with
r = r0 + d (x, y)), we obtain

εβNε (x, y) ≤ Cεβ−αrα → 0

as ε→ 0, which was claimed.

4.3 Further results

We discuss here some consequences and extensions of the above results.

Corollary 3.9. If (M,d) satisfies the chain condition then (Vα) + (Eβ) + (H) is
equivalent to the two-sided estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

. ((12))

Proof. The implication

(Vα) + (Eβ) + (H)⇒ (12)
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holds by Theorem 3.8 because dε ' d. For the opposite implication observe that

(12)⇒ (Vα)

by Theorem 2.2 and

(12)⇒ (UE) + (NLE)⇒ (Eβ) + (H)

by Theorem 3.6.

Conjecture. The condition (Eβ) above can be replaced by

λmin (B (x, r)) ' r−β. ((λβ))

In fact, (Eβ) in all statements can be replaced by the resistance condition:

res(Br, B2r) ' rβ−α ((resβ))

where Br = B (x, r). In the strongly recurrent case α < β it alone implies the elliptic
Harnack inequality (H) so that heat kernel two sided estimates are equivalent to
(Vα)+(resβ) as was proved by Barlow, Coulhon, Kumagai ’05 (in a setting of graphs)
and was discussed in M. Barlow’s lectures.

An interesting (and obviously hard) question is characterization of the elliptic
Harnack inequality (H) in more geometric terms - so far nothing is known, not even
a conjecture.

One can consider also a parabolic Harnack inequality (PHI), which uses caloric
functions instead of harmonic functions. Then in a general setting and assuming
the volume doubling condition (V D) (instead of (Vα)), the following holds:

(PHI)⇔ (UE) + (NLE)

(AG, Barlow, Kumagai in preparation). On the other hand, (PHI) is equivalent to

Poincaré inequality + cutoff Sobolev inequality

(Barlow, Bass, Kumagai ’05).

Conjecture. The cutoff Sobolev inequality here can be replaced by (λβ) and/or
(resβ) .


