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This note contains a corrected version of Section 10 of the paper [4]. The purpose of that
section in [4] was to prove the implication (G) = (H) using (G) = (HG) = (H). However,
the proof of the first implication (G) = (HG) contained an error. Despite that, the result
(G) = (H) remains true, which is proved below using a modified definition of (HG).

10 The Harnack inequality and the Green kernel

Recall that the weighted graph (I', u) satisfies the elliptic Harnack inequality (H) if there
exist constants H, K > 1 such that, for all z € I'; R > 1, and for any nonnegative function u
in B(z, KR) which is harmonic in B(z, KR), the following inequality is satisfied®

max v < H min u. (H)
B(z,R) B(z,R)

Note that this inequality always holds for R < 1 because in this case B (z, R) = {z}.
In this section we establish that (H) is implied by the condition (G), where the latter
means that
C7ld(z,y)" < g(a,y) < Cd(z,y)™", Yz #y. (e)

Consider the following Harnack inequality for the Green function? (HG): for some constants
H >1, M >2 forall zeT, R>1, and for any finite set U D B (2, MR),

,2) < H' i ,2). HG
xerjg(%)cgu(x z) < yegégR)gU(y z) (HG)

It is easy to see that (HG) can be equivalently stated as follows:

. < H' i . .
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Proposition 10.1 Assume that (py) hold and the graph (T, u) is transient. Then
(G) = (HG) = (H).

The essential part of the proof is contained in the following lemma.

Tt seems to be unknown whether in general condition (H) with some value of K implies that for a smaller
value of K (but possibly with a larger value of H). However, this is true in the presence of the doubling
volume property.

2A slightly different version of (HG) — denote it by (HG') — was considered in [5] and [1], where in the
right hand side of (HG) one takes the minimum over y € B (z, R) rather than over y € B (z,2R). It was
shown in [1] that (H) = (HG'). Tt is easy to see that (H) + (HG') = (HG) so that in fact (H) = (HQG).
Proposition 10.1 contains the converse to that.



Lemma 10.2 Let Uy C U; C Uy C Us be a sequence of finite sets in T’ such that U; C Uit1,
i =0,1,2. Denote A =U; \ Uy, B=Uy and U = Us. Then, for any function u which is
nonnegative in U and harmonic in U, we have

maxu < Hminu, (10.1)
B B
where
H := max manxM (10.2)
zyeB zeA gy(y, 2)
(see Fig. 1).

Figure 1: The sets B = Uy, A= Uz \ U; and U = Uy

Remark 10.1 Note that no a priori assumption has been made about the graph (T, i) except
for connectedness and unboundedness.

Proof. The following potential-theoretic argument is borrowed from [2]. Given a non-
negative function v in U, which is harmonic in U, denote by .S, the following class of super-
harmonic functions in U:

Su:{v:vZOinU, v>wuin U, and Av <0in U},
and define the function w on U by
w(z) = min{v(z) : v € Sy, }. (10.3)

Clearly, w € S,. Since the function w itself is also in S,, we have w < u in U. On the other
hand, by definition of S,, w > u in Uy, whence we see that « = w in U; (see Fig. 2). In
particular, it suffices to prove (10.1) for w instead of w.

Let us show that w € co(U), that is, w vanish on U\U. Indeed, let v(z) solve the Dirichlet
problem

Av=—-1 inU,
{ v=0 on U\ U.

Since v is superharmonic, by the strong minimum principle v is strictly positive in U. Hence,

for a large enough constant C, we have Cv > u in U; whence Cv € S, and w < Cwv. Since
v=0on U\U, this implies w =0 on U \ U.
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Figure 2: The function wu, a function v € S, and the function w = ming, v. The latter is
harmonic in Uy and in U \ Uj.

Set f := —Aw and observe that by construction f > 0 in U. Since w € ¢o(U), we have,
for any x € U,

w(z) =Y gulw,2)f(2)n(z). (10.4)

zeU

Next we will prove that f = 0 outside A so that the summation in (10.4) can be restricted
to z € A. Given that much, we obtain, for all x,y € B,

w(x)  Deagu(@,2)f(2)p(2)
o) - S g f@u ) =

whence (10.1) follows.
We are left to verify that w is harmonic in Uy and outside Uy. Indeed, if € Uy then

Aw(z) = Au(x) =0,

because w = u in U;. Let Aw(z) # 0 for some x € U \ U;. Since w is superharmonic, we
have Aw(z) < 0 and
w(z) > Pw(z) =) Pz, y)w(y).

Y~

Consider the function w’ which is equal to w everywhere in U except for the point z, and
w’ at x is defined to satisfy

w'(z) =Y Pla,y)w(y).

Yy~
Clearly, w'(z) < w(z), and w’ is superharmonic in U. Since w' = w = u in U;, we have
w' € S,. Hence, by the definition (10.3) of w, w < w’ in U which contradicts w(x) > w'(x).
[

Proof of Proposition 10.1. Let us prove (G) = (HG). It will be sufficient to prove
that if U D B (2, M R) (where M > 2 is to be specified below) then

gu (y,2) 2 59(y,2) forally e B(z2R). (10.5)

N | =

Since also gy < g, hypothesis (G) and (10.5) will imply

max r,z) < max z,z) < C min ,2) <2C  min T, z).
acEB(z,R)CgU( )_weB(z,R)cg( >_ yGB(z,QR)g(y )_ yEB(z,QR)gU( )



The proof of (10.5) follows the approach of [3]. Consider the function u = g (-,2) — gu (-, 2)
which is nonnegative and harmonic in U. Since outside U the function u coincides with
g (+,z), we obtain by the maximum principle and (G) that

— — L)< C(MR)™.
max u = maxu I%acxg(w)_ (MR)

Therefore, for y € B (x,2R),
g(y,2) >C (2R >2C (MR)™" > 2maxu
provided M is large enough, whence it follows that

1
90 (1:2) = gy, 2) — maxu > 59 (y.2).

Let us prove (HG) = (H). Fix a point zg € I and write for shortness B, := B (zg,r).
Let u be a nonnegative harmonic function in U := Bgasr, where R > 1. By Lemma 10.2, we
have

maxu < Hminu, (10.6)
Bn Br
where
H := max maxw, (10.7)

z,yeEBR z€A gU(y,z)

and A = Bsg \ Bygr (see Fig. 1). Let us show that H < H’ where H’ is the constant
from (HG). Indeed, if 2,y € Br and z € A then it is easy to see that € B(z,3R)“ and
y € B(z,6R). Since 5R + 3MR < 6M R, we see that B (z,3MR) C U. By (HG) we obtain,
for all x,y € Bg,

gu(z,2) < H'gu(y, ).

Substituting into (10.7), we obtain that (H) holds with K =6M and H = H'. =
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