Mathematical riddles of COVID-19

Alexander Grigor'yan

Abstract. We construct a simple model of a coronavirus epidemic by using a recurrence equation.
This approach involves rather elementary mathematical tools (like roots of polynomials) but may
be instructive both from mathematical and practical points of view, in particular, for prediction
of the further course of the epidemic.

1. INTRODUCTION. In 2020, the world was shaken by the coronavirus pandemic.
Charts showing the numbers of infected by countries became a symbol of this year. In
this note we look aside from the ominous meaning of those diagrams and will deal with
them as mathematical objects.

One of such diagrams is presented onEig/e denote here hy,, the number of cases
of infection that are detected during the dayn the country in question. The diagram
on Fig. 1 shows the subgraph of a piecewise constant functipnSuch diagrams will
be referred to ag-diagrams
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Figure 1. z-diagram for Italy: the numbers of actually registered daily cases

Denote byy, the cumulative number of detected cases from the beginning of the
epidemic by the beginning of the day that is,

yn+1 - yn + L.

The graph of a piecewise linear interpolation of the sequéngé is shown on Fig2.
Such diagrams will be referred to agliagrams
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Figure 2. y-diagram for Italy: the cumulative numbers of registered cases

In this note we construct a simple model of a coronavirus epidemic by using a recur-
rence equation. This involves rather elementary mathematical tools but may be instruc-
tive both from mathematical and practical points of view, for example, for prediction of
the further course of the epidemic.

The models for individual countries are based on reported numbeof detected
cases rather than on the actual number of infected individuals, which is unknown. While
this may not give a complete picture, it still gives a good idea of the state of an epidemic.

Of course, there exist comprehensive mathematical models of epidemics created and
used by professional epidemiologists, see, for exam#le 9], [10], [11], [12], [13] and
many others sources. However, such models require much more information about the
disease, whereas in our model we manage without a priori knowledge and use the infor-
mation that can be extracted from theandy-diagramsonly. Consequently, our model
is accessible to undergraduate students with basic knowledge of Algebra and Analysis.

In Section2, we present a simple recurrence equationifpthat models an epidemic
for periods of time of invariable quarantine conditions. This equation contains three nu-
merical parameters that can be determined by comparing the model with the actual data
for the initial 3-4 weeks of the period in question. Usually the model agrees well with
the actual course of the epidemic also after the initial weeks and, hence, can be used for
predictions.

In Section3, we discuss positive solutions of linear recurrence equations with constant
coefficients. The long time behavior of such solutions is determined big#ukng root
— aroot of the characteristic polynomial with the maximal absolute value. We prove in
Theorenb that, for the above model, the leading root is always a positive reat,, sayd
that any positive solution,, is asymptotically equivalent teonst ™ asn — oo. This
result explains why the decay phase of the epidemic is relatively long: because it is an
exponential with the baseclose tol.

In Theorem?7 we give some estimates ofthat are useful for numerical computation
of r. In particular, we obtain the following relation between the leading roatd the
basic reproductive raté?, that is a main characteristic of an epidemic in epidemiology:

1
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Hereq is the latent period of the disease asvdmeans that the right hand side dj) (
can be used as the initial approximation in Newton’s method for computatien laf
practice already the first iteration gives a satisfactory value.for

In Sectiord, we consider random perturbations of the basic model. The reported num-
bersz,, of daily cases are significantly affected by random events in the society, and we
try to take them into account by adding to a basic recurrence equation a random term. We
use theGreen functiorof the recurrence equation in order to solve a randomly perturbed
equation and to produce a confidence interval for a random solution (Thdd)eihe
results of computations are shown for a number of countries.

In Section5, we consider a modification of the basic model when the paramegard
b are periodic functions of.. This is motivated by observation that, in some countries,
the sequence,, exhibits clear periodic patterns, probably, due to a weekly rhythm of life.
For such countries, the model with periodic parameters provides a better approximation
than a basic model.

In Section6, we discuss a two-phase model that covers two periods of an epidemic
with different sets of parameters — the first phase of a fast growth and the second phase
of a decay. We provide the two-phase models for a number of countries, where the peak
of COVID-19 occured in March-May 2020.

Acknowledgement. All the data of the coronavirus epidemic by countries/territories
were taken from the following source$][[6], [7], [8].

All numerical computations and diagrams were done by using Microsoft Excel and
Scientific Workplace.

I am grateful to Sergey Grigorian for a number of useful conversations on the topic of
this paper and for explaining me basics of epidemiology. In particular, Sergey suggested
me a way of computation dR, for a basic model that is implemented in Lemha

2. ABASIC MODEL. Let us make the following simple assumptions about spread of
an epidemic in a certain county or territory. We use three parametersy, a > 0 and
be (0,1).
(I) Any infected person becomes ill and infectious ongkta day after infectior.
(A) During each day, each ill person at large infects on avesagber persons.

(B) During each day, a fractiob of ill people at large gets isolated (hospitalized or
otherwise) and withdrawn from a further spread of the epidemic.
In order to derive the equation of expansion of the epidemic, let us introduce the
following notation.

* z,, — the number of infected people that are detected and isolated during the day

* v, — the cumulative number of detected cases from the beginning of epidemic by the
beginning of the day:;

* 2, —the number of ill people at large by the beginning of the d#that is, those who
were infected at leagtdays ago and stay unisolated);

* u,, —the number of people newly infected during the day
Clearly, we have

yn-‘rl == yn + Ty -

1The number of days before an infected person becomes infectious is calletttit@eriod and before he/she
becomes symptomatically ill — tHacubation period Here we assume for simplicity that these two periods are
equal.
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Sincebz,, people are isolated during the daywe haver,, = bz,,. Sinceaz,, people get
infected during the day, we haveu,, = az,. Observe also that

Zn+1 = Zn — In + Up—g- (2)

because during the daythe number,, of ill people get isolated, while new,_, people
become ill (ass,,, is the number of people infected during the day- ¢).
It follows from the above equations that

Zny1 = (1 =) 2, + az,—q.
Usingx,, = bz, we obtain the following equation far,,:
Tpt1 = (1 — b))z, + az,—g. 3

This is a recurrence equation of the ordef 1 that is valid for alln > ¢. In order to
solve it inductively, we need to know the initial conditions fay; . . ., z,.

Denote byz; the actual number of infected people that are detected and isolated
during the dayL, while the notatione,, will be reserved for a solution o8], that is, for
a model. Then we impose the following initial conditions:

x, =z, forn=0,1,...,q, 4)

which together with §) allows to determine uniquely the entire sequeficg} .
Denote byy;: the reported cumulative number of cases by therdayhen we deter-
mine the model numbey,, by

Yo=Yy and Y11 = Yp + Tp, 1> 0.

It follows from (4) thaty,, =y foralln =0,...,¢ + 1.

Note that the numbers’ andy; are observables as their values are widely reported,
while the values of the parametersh, ¢ cannot be measured directly. Nevertheless, one
can determine them at least approximately by comparing the actual data with the model
data. For that we use the normalizediorm:

1 N
|z — 2~ izN—HZ\fﬂn—xn!a (5)

n=0

where N need to be chosen so that > ¢. Usually V is taken to be the maximal
value ofn for which z* is available. Similarly one definélg/* — y||. One can attempt to
determine the values af, b, ¢ by minimizing the differences

|z — || and [y —y"||. (6)

Usually it is impossible to minimize simultaneously two functions at the same point,
but some numerical compromise would give a reasonable approximatiantoy. Of
course, the so determined values of the parameters may depeMdasrwell as on the
choice of the initial date, and adjustment maybe needed later when more data become
available.

We show below on some examples how this approach works. Typically an epidemic
in a given country has two phases: a phase of an initial fast growth and a phase of decay,
after imposing of quarantine measures. Obviously, the values of the parameigd$



are different for these two phases. Therefore, the present model makes sense only for the
periods of time within one phase. A two-phase model will be considered in Séktion

In practice one can distinguish the two phases by looking at the convexity gf the
diagram: it is convex in the first phase and concave in the second phase. Hence, the
borderline between the two phases is around the inflection point.

For most of examples in this paper, the valuesig, ¢ had been computed in the
second half of April 2020. The values of the distand®ssfiown on the diagrams below
were computed by using the latest available actual data at the beginning of June 2020
when this paper was completed (only minor adjustment afidb were needed then).

Example 1. One can see on Figithat the second phase in Italy starts around March 26 so
that we seth = 0 for that day. The results of numerical minimization of the differences
(6) are shown on Fig3 and4.
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Figure 3. Comparison of the basic model with the actual data, Itatgiagram)
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Figure 4. Comparison of the basic model with the actual data, Itatdiagram)
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Example 2. A similar analysis for the USA gives the results shown on bignd®é.
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Figure 5. Comparison of the basic model with the actual data, USAliagram)
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Figure 6. Comparison of the basic model with the actual data, UgAiagram)

Here we see a surprisingly good matchygfandy;: with an error less thah%.

Example 3. The actual data and a model for Germany are shown o Bigl8.
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=e=basic model, x,=new cases/day; a=0.218, b=0.355, q=7; r=0.952; ||x*-x||=299
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Figure 7. Comparison of the basic model with the actual data, Germasiggram)
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Figure 8. Comparison of the basic model with the actual data, Germgggram)

In the abover-diagrams, alongside the valuesab, ¢, there is one more parameter
r. Itis a function ofa, b, ¢ whose meaning will be explained in the next section.

3. THE LEADING ROOT. Consider a general linear recurrence equation with con-
stant coefficients:

Tpt1 = ATy + G1Tp_1 + Q2Tp_o + ...+ QTp_g, (7)
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wheregq is a positive integer and;, are non-negative reals, # 0. The equation )
represents a model of an epidemic with a distributed latent period. Indeed, let us keep the
assumptiong A) and (B) of the basic model of Sectiod and modify the assumption

(1) as follows.

(I') Any infected person becomes ill and infectious on the Hay 1,2,. .., ¢ after in-
fection with probabilityc;,, wherec; +c; + ... + ¢, = 1.

Arguing as in Sectior2, we obtain for the number of daily cases the equation?)
with

a=1—-banda,=ac, k=1,...,q.

In particular, we have; + ...+ a, = a.

Let us recall some mathematical facts about the recurrence equgtidwai are valid
for arbitrary real coefficients,, (cf. [1]). Any solution of (7) is uniquely determined by
g + 1 initial values ofz,, ..., z,, so that the set of all solutions of)(is a (g + 1)-
dimensional vector space. A basis in this space can be determined with help of the char-
acteristic polynomial of 7):

FO) =X —ap\ —a X7 — a7 — L — . (8)

Indeed, any roof\ of (8), real or complex, gives a solutiory, = A" (note that\ # 0
due toa, # 0). If all the roots off are simple therf hasq + 1 different complex roots
Aos - - -, Ag, and we obtairy + 1 linearly independent solutions

Aoy ALy oee s AL 9

q

of (7). The general solution of off} is then
T, = CoAg + ... + C A7, (10)

whereCy, ..., C, are arbitrary complex constants. If a robt is multiple, say, with
multiplicity m > 1, then them instances of\;, in (9) and (L0) should be replaced by the
following m independent solutions:

AL AL, L T (11)

We are interested only in real solutions @).(If A, is complex then\, is also a root
of f of the same multiplicity, and each pair of the complex solutiahs;’, anZ can
be replaced by real solutionsg Re \; andn’ Im A}, thus yielding agaim + 1 linearly
independent real solutions.

A typical solutionz,, of (7) contains all the termsl() with non-zero coefficients.
Hence, the long time behavior af, is determined by a rook of f with the maximal
absolute valu¢)| (see Theorerd below for a precise statement).

Definition 4. A root \ of f with the maximal absolute valye | will be referred to as a
leading rootof (7).

From now let us assume that all the coefficiemtsan (7) are non-negative reals and
ag > 0. Then any solutiomn:,, with positive initial values remains positive forever. Deter-
mination of the leading root of7§ is in this case of paramount importance for prediction
of the course of the epidemic that is modelled by this equation.



Theorem 5. Leta, > Oforall k =0,...,qanday > 0.

(a) (Cauchy, 1829)he polynomialf (A) has exactly one positive real root Besides,
the rootr is simple and, for any other root € C, we have \| < r. Consequently;
is the leading root of7).

(b) For any positive solution:,, of (7), there exists” > 0 such that
x, ~ Cr" asn — oo. 12)

It follows from (12) that if » < 1 then the epidemic fades away, whereasif 1 then
it spreads unlimited.
Proof. (a) Although this statement is not new, we give here the proof as it is quite simple
and a part of the argument will be used below. The equatich) = 0 is equivalent to

Q, a a
1:T0+A_;+"'+xzil' (13)

Sincea, > 0, the right hand side is strictly monotone decreasing in 0, tends to+oo

as\ — 0+ and to0 as\A — +oc0. Hence, there is exactly one positive value= r that
satisfies this equation, that is,

_ G @ Qq

l=—"+ 5+t

Let A € C\ {0} be another root of . We obtain from {3) that

(14)

[4%) aq Qg
1< =+ —=+...+ ——=
=T + ’)\|2 + ...+ |)\‘q+1

which implies thaA\| < r. If |A\| = r then comparison with1@) and (4) shows that
|A\| = A and, hence) = r.

Let us verify that the root is simple. If¢ = 0 then there is nothing to prove. Let
q > 1. Then the polynomialqi—lf’ (M) satisfies the hypotheses of the present theorem
and, by the above argumerft, (A) has exactly one positive root. Let us denote itrhy
and verify that”’ < r, which will, in particular, imply that- is simple. Ifr' = 0 then all
is clear. Ifr’ > 0 then it follows fromf’ (') = 0 that

1= qag (g—1Day QAg—1
@+ (qg+1)(r)° (g+1) ()
Qg aq Ag—1
< — 4 +...+ ,
() ()

whencer’ < r.
(b) Let A1, \o, . .. be all other distinct roots of apart fromr (so that\; are negative
or imaginary). Any solutior,, of (7) has the form
x, = Cr" +z,, (15)

whereZ,, is a linear combination of the functioms \;. Since by(a) we havel\;| < r,
it follows that

|Z,| = o(r") asn — oc. (16)

Sincex,, > 0, it follows from (15) and (6) thatC > 0.
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Let us verify thatC' > 0, which will settle the claim. It is tempting to say that if
C = 0 thenz, = 7, is a linear combination of terms of the forn¥ p" sin ¢n and
n’ p™ cos pn and, therefore, cannot stay positive. However, it is not easy to make this ar-
gument rigorous because different rootsfahay have the same absolute vajuand an
uncontrollable cancellation of the terms can occur. We employ here a different, simpler
approach that takes advantage of nonnegative coeffigignts

To that end, consider a new sequence

X, =2
/,477.
that obviously satisfies the equation
Xn+1 - AOXn + Aan,1 + ...+ Aan,q (17)

with A;, = a/r**1. Sincer is a root of f, we have
Ag+ A +...+ A, =1. (18)
Setc := min (X4,...,X,+1) > 0. Then we obtain fromX7) and (L8) by induction that
X, > c foralln € N,
which implies
T, > cr”.

Comparing with 15) and (L6), we conclude thaf® > ¢ > 0. m

Let us discuss a numerical procedure for computing.df course, there are many
software packages that compute instantaneously all the roots of a polynomial, but a rea-
sonably quick computation of can be done by Newton’s method. Choose some initial
valuer, > 0 and define a sequenge,, } by

f(rn)

T’ﬂJrl:rniW? TLZO (19)
We will show below that the sequenée, } converges ta for a simple choice of;.
It follows from Theorenbthatf (A\) < 0for0 < A < randf (\) > 0forA > r. As
in the proof of Theorend, letr’ be the largest non-negative root 8f(\), and similarly
r” —the largest non-negative root ff ().

G ; r

%\ s r‘,,

Figure 9. Polynomialf ()
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By the argument in the proof of Theoreswe have
<y < (20)

Lemma6. If ry > 7' thenr,, — r asn — oo.

Proof. It follows from (20) that the functionf () is monotone increasing and convex in
the intervall = (1, 00). It is known that, in the case of a convex functipnNewton’s
method converges to provided bothrq andr; belong tol (cf. [3]). Sincery € I by
hypotheses, it remains to verify that > »'. If o < r thenf (ry) < 0 and

=T — JJ:/((:Z)) >ro >
Letro > r. Thenr; < ry and we have for somg € (r, ) that
_ / _ _ ey L0
fr)=f(ro)+ f (&) (ri —ro) = f(ro) = f () F o)’

Sincef’ (¢) < f' (ro), it follows thatf (1) > 0 and, hencey; > > 1. m
The next statement gives a simple estimate for the leading-rtait can be used to
set up the initial value,.

Theorem 7. Leta, > Oforall £ =0,...,q. Denotea = a; + ... +a,, b =1—ag
and assume that > 0,b € (0,1).

(a) We have the equivalences< 1 < a <b andr > 1< a > b.
(b) Letm > 1besuchthat, =...=a,,_; =0anda,, > 0. Then

min (1, (%)1/m> < r < max <1, <%>1/m> . (22)

Remark 8. Although there are in the literature plenty of estimates of the leading roots of
polynomial (see, for example?]), none of them seems to impl2Q). The latter is very
useful for a basic model as we will see below in an example.

Proof. (a) We havef (1) =1 —ag —a; — ... — a, = b — a, whence
r<lef(l)>0ca<bandr>1< f(1)<0<a>bh.
(b) The equatiory (r) = 0 is equivalent to
= b a4 ag = =t a,rT L+ ay
Hence, ifr > 1thenr?** — r¢ > 0 and, hence,

bri <apr™™ 4. tag < (@p+...+a,)r?™ <arim,

SO

Similarly, if » < 1 thenr > (%)Um , which implies 1). m

In epidemiology the main characteristic of an epidemic islthsic reproductive rate
R, that is defined as an average number of persons infected by one ill person before the
latter gets isolated. One of the principles of epidemiology says that the epidemic fades
away if and only ifRy < 1.

whence
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Lemma 9. For the model described by equati¢r) we have

a
Ry = —.
b
Proof. Let u be the number of people infected on some day, Ga@n the dayk =
1,...,q the numberc,u of them become ill and can infect other people. On the day

k + 1 they infectac,u people whilebc,u of them get isolated. On the d&y+ 1, the
remaining(1 — b) ¢, u people infect furthen (1 — b) c,u people. Continuing this way,
we obtain that this group af,u people infects in total

acku+a(1—b)cku+a(1—b)zcku+...:%cku.

Hence, the initial group of people infects in total

q

> au=7
—CcLuU = —Uu
b b’

k=1

sothatky = . m

Theoremsb and 7 imply that the epidemic fades away if and onlysif< 1, which
gives for the model?) a justification of the aforementioned conditiéyy < 1. However,
for the model {), a more important and relevant characteristic is the leadingrtiwit
determines precisely the dynamics of the epidemic.

Let us return to the equatioB) that is, to

Tpp1 = (1 —b)z, + ax,_g, (22)
whereb € (0, 1) anda > 0. The characteristic polynomial is
fO)=X" -1 -b)N —a.

Letr be its leading root. By Theorewith m = ¢, we obtain that

win (1,(5) ") < r < max (1.(5)")).

Hence, we could take, to be equal to the arithmetic mean band (%)w . However,
many numerical examples show that a better approximation is generally achieved by
using thegeometric mearthat is, by

1/(29)
o= (7)) =R/ (23)

The derivativef’ (\) = (¢ 4+ 1) A\? — (1 — b) ¢\?"" has a positive root

T/:q<1_b).
qg+1

By Lemmas, if rq > r’ (which is the case in all examples of interest) then— r as
n — oco. In practice, already; or r, provide good enough approximationsrof
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Example 10. Let ¢ = 7, a = 0.218 and b = 0.355 as on Fig.7 modelling the de-
cay phase of the epidemic in Germany. BB we obtainr, = 0.96577. Sincer’ =

22 — 0.56438, we haver, > 7/, which implies that-, — r. We obtain by {9)

r1 = 0.95296, r, = 0.95219, r3 = 0.95219,
so that- = 0.95219. Of course, for practical purposes is enough to haxe0.95 which

predicts the decay rate of the epideriiié per day. On Fig10 we show ther-diagram
together with a functio”'r”.

8,000

7,000 @ Germany, X,*=new cases/day

=e=hasic model, x,=new cases/day; a=0.218, b=0.355, q=7; r=0.952; ||x*-x||=299
Cr", r=0.952, C=6913
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Figure 10. Comparison ofc};, z,, andCr™, Germany

Example 11. On Fig. 11 we show a model for the initial phase of the epidemic in the
USA.

45,000

[ USA, x,*=new cases/day
=e=bhasic model, x,=new cases/day; a=0.79, b=0.077, q=7; r=1.176; |[x*-x||=2026
40,000 G, r=1.176, C=1160
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Figure 11. Comparison ofc},, z,, andCr™, USA
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Hereq =7, a = 0.79 andb = 0.077. By (23) we obtainr, = 1.1809, and then by
(19

r = 1.1765, 1o =1.1764, 13 = 1.1764

so thatr = 1.1764, which gives the growth rat&€7.6% per day.

Example 12. For comparison, consider a recurrence equation witkgativecoefficient:
Tpy1 = 1.6, + 0.1z, 1 — 0.7322,,_,. (24)
Its characteristic polynomiaf () = A* — 1.6A% — 0.1\ + 0.732 has the roots
Ao =-0.6, \y =1.1+0.14, Ay =1.1-0.17

and, hence, no positive root. Consequently, all solutignare oscillating. In particular,
consider a solution

T, = p"sinnyp,

wherep = || = 1.1045 andp = arg A; = 0.09066. The graph of this solution is
shown on Fig12.

Figure 12. An oscillating solution of 24)

The solution takes its maximum at

1
n = (77 — arctan i) — = 26.496
Inp/ ¢

and then vanishes at= 7/ = 34.652. If (24) were a model of an epidemic then this

epidemic would have stopped abruptly, shortly after its peak. Of course, in our models
such a situation can never happen, but we do not exclude that this phenomenon might

occur for other diseases with a high self-recovery rate.
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4, A MODEL WITH RANDOM PERTURBATIONS. Here we consider a random
perturbation in the basic model. In fact, the results apply to any recurrence equation with
constant coefficients:

Tpil = Ty + A1 Tp_1 + A2Tp 2+ ... + Aqlpn—q, (25)

wherea,, are reals. Denote by, } _, the sequence that satisfi@s)(foralln > ¢+ 1

with the initial conditions

nez

g, =0 forn=0,1,...,¢ and g,41 = 1.

The solutiong,, is called theGreen functionof the equationZ5). An example of the
Green function is shown on Fid3.

=8=Creen function g,,; a=0.218, b=0.356, q=7

0.8
0.6 &
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0.2

0.0

02 4 6 810121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92

Figure 13. The Green functiom,, for the equationc, 11 = (1 — b) zn, + axn—q.

In what follows we use the Kronecker symbol
5o ::{ 1, k=n,
0, k # n.
Lemma 13. The Green function satisfies for all€ Z the equation
Int1 = Q0Gn + Q1Gn—1 + Q2Gn—2+ ... + QgGn—q + Ong- (26)
Proof. If n < ¢ then all the terms in§) vanish. Ifn > ¢ + 1 thend,,, = 0 and @6)

is satisfied by the definition of the Green function. Finallypit= g theng,,.; = 1,
0, = 1 while all other terms vanish, and the equation is again satisied.

Lemma 14. Let{f,}, ., be any sequence of reals such that

Jo=fi=...=f-1=0.
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Then the sequence

2= Gnkrali 27)
k=0
satisfies the equation
Zpt1 = QoZn + 012p—1 + A2%p_o+ ...+ QgZn_q+ fr, N >q (28)
and the initial conditions
o=z =...=24=0. (29)

Proof. Sincef;, = 0 for k < ¢ andg, = 0, the summands ir2¢) with £ < g andk = n
always vanish, so that

n—1

Zn = Zgnkarqfk‘ (30)
k=q

In particular, ifn < ¢ then the set of summands is empty and, henge= 0, which
proves 29).
In order to prove 28), observe that

fa=3" 015

By linearity, it suffices to prove28) when f,, = 4,,; for somej > gq. In this case we
obtain by @7)

n

Zn = E Gn—k+q0kj = Gn—jtq-
k=0

If j = qthenz, = g,, and @8) follows from 26). If 7 > ¢ then setm = j — ¢ and
observe that the sequence

Zn = 9n—j+q = Gn—-m
satisfies by 26) the equation
In—m+1 = Q0Gn—m + 01 Gn-—m—1 + Q20n—m—2 + - .- + QgGn-—m+q + O (n—m)q-
Since
O(n—m)q = On(g+m) = Ony,
we conclude that,, = g,,_,, satisfies the equation
Znp1 = QpZp + 012p—1 + Q2Zp_2 + ...+ QgZn_q + Onj,

which was to be proveds

16



Consider now the following random perturbation of the equatith):
Xpt1 = QoXp + G1Xpo1 + @2Xp0 + ...+ X +&,, N >4, (31)
where{¢,, } is a sequence of independent random variables with
EE, =0,
and{x, } is a random sequence satisfying the deterministic initial conditions
x, =z, forn=0,...,q.
Let {x, } solve the unperturbed equatid?bf with the same initial conditions
z, =z, forn=0,...,q.

Theorem 15. We have, for alh > 0,

Ex, = x, (32)
and
n—1
Var (x,) = > g2y, Var (&) . (33)
k=q

Besides, if all¢,, are normally distributed then atk,, with n > ¢ are also normally
distributed.

Proof. It follows from (31) andE¢,, = 0 thate,, := Ex,, satisfies
€n+1 = Qp€p + a1€p—1 +...+ Ag€p—gq, N 2 q,

and the initial conditions,, = x;, for n < q. Henceg,, = z,,, which proves §2).
Consider now the difference

Zn =X, — T, =X, — Ex,,.
Clearly, z,, satisfies the equation
Znp1 = QoZn + 012n—1 + ...+ Qg2n_g +&,, 1 >q,
and the initial conditions
z, =0 forn=0,1,...,q.

By the identity @0) of Lemmal4 we obtain

n—1
Zn = Zgn—k+q§k' (34)
k=q
Using the independence ¢f, } we obtain that
n—1
Var (x,,) = Var (z,,) = Z 9p g Var (&) .
k=q
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If all ¢, are normally distributed then it follows fron84) that alsox,, with n > ¢ is
normally distributed.m

Let us now specify the choice of the random variablé€s}. Let {n,} be an i.i.d.
sequence of random variables with

En, =0 ando? := En? < oco.
Fix somes > 0 and set
& = €N, Ty
so that
Var§, = e?o’z?.

If eo is small therg,, can be regarded as a small perturbation comparedwyitiClearly,
we have in this case by8)

n—1

2.2 E 2 2
Var (Xn) =&0 gnfkjtq‘rk'

k=q

Set

n—1 1/2
Un =V Var (Xn) = &0 <Z gik+qxi>

k=q

and consider for som& > 0 a confidence intervdk:,, — Kv,, x,, + Kv,,) for x,,.
If ,, are Gaussian thex,, ~ N (z,,,v2) and we obtain that

Kup 2
t
P(x, € (z, — Kv,,z, + Kv,)) = 2 exp | ———= | dt = erf (K \/5),
( ( )) ) /_27T?1n P( 21}%) /

where

2 S
erf (s) = ﬁ/ et
0

is the error function. For example, fé&f = 2 we have

erf (2/v/2) = 0.95450.

However, in numerical experiments it is more convenient to use the random varjgbles
that are uniformly distributed if-1, 1] sincen,, is bounded. Then we have

1/t 1
P=c | Pdt =<
7 2/1 3’

and we choose = 0.2 andK = 2.

The numerical computation with these parameters were done in Excel by means of a
generatoRAND() of random numbers. The results are shown on the next pictures: the
blue columns represent the actual daja the green and yellow lines are the graphs of
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z, + Kv, andx,, — Kv,, respectively, and the read line is a sample grapk,ofit is
random and changes at each instance of computation). The data for Moscow and the rest
of Russia are separated because of different dynamics of the epidemic there.

7,000
@B Germany, x,*=new cases/day
6,000 —0—x,+2V,
X2V,
—&—random model, a=0.218, b=0.355, q=7, £=0.2
5,000
4,000
3,000
2,000
1,000
0
Figure 14. Random simulation, Germany
50,000
N USA, x,*=new cases/day
45,000
——X,+2V,
X2V,
40,000 —e—random model, a=0.3, b=0.328, ¢=7, £=0.2
35,000
30,000
25,000
20,000
15,000
10,000
5,000

hhhhhhhhhh > > > > > > > > > > c £ £ £ £E £E £E £E £E £ 5 5 5 5 5 3 5
5 5 58 5 5558558533333 33333 5555555555335335°535°¢S3-3
T I S T3 T fE3 I3 ==2=====2==2=232232323223222224d48sx2322
R = 3 = < <

888 T LP2NIRNBLLERIeEIxaksd88-IERREReSe=Se -~ =«

Figure 15. Random simulation, USA
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8,000

X2V

0.178, b=0.314, ¢=7, £=0.2

—e—random model, a:

7,000
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Figure 16. Random simulation, Spain
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Figure 17. Random simulation, Italy
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—e—random model, a=0.23, b=0.343, q

5,000

4,000

3,000

2,000

1,000

Figure 18. Random simulation, United Kingdom
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—&—random model, a=0.255, b
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Figure 19. Random simulation, Moscow
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I Russia, x,*=new cases/day ﬁ

20,000 ——X,+2V,
Xn-2Vn
—e—random model, a=0.35, b=0.321, q=7, £=0.2

15,000

10,000

5,000

19-Aug ]

04-Aug
07-Aug
10-Aug ]
13-Aug ]
16-Aug

12-May
15-May |
18-May
21-May
24-May

Figure 20. Random simulation, Russia outside Moscow

5. AMODEL WITH VARIABLE COEFFICIENTS. Letus consider a generalization
of the basic model where the parameteendb become variable. More precisely, while
keeping the assumptidd ) of the basic model, we repla¢el) and(B) by the following

assumptions.

(A,) Duringn-th day each ill person at large infeets other persons.
(B,) Duringn-th day a fractiorb,, of ill people at large gets isolated.

Herea, > 0 andb,, € (0, 1) for all n. Using the same notation as in Sect@®nwe
obtain the following relationsz,, = b,z, andu,, = a,z,. Substituting into 2), we

obtain
Zn+1 = (1 - bn) Zp Tt An—gin—q-

Usingzx,, = b, 2,, we obtain the following equation far,,:

b 1-b b
Tpp1 = %xn i %%_q‘ (35)
n n—q

The initial conditions should be the same as above, thd)is (
As an example, consider the case when the coefficientdb,, are periodic:

a, =a (1 =+ ¢ sin (f,_f (n— ”1)>)
and
b =b(1+ cosin (22 (n—my)))

where as above > 0, b € (0, 1) while ¢;, p;, n; are new parameters. By minimizing
the differenced|x — 2*|| and||y — y*||, we try to obtain the best values for all the pa-

rameters involved.
For some countries the sequengeshows certain periodic patterns. For those coun-

tries, the periodic model provides a better match than the basic model. Moreover, the
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periodic modelz,, provides frequently a better approximatiorutp than even thenov-
ing averageslo. Denote by:? (1) a simple moving average af;, that is,

* * *
xn—l + xn + xn—i—l
3 )

andz} (1) = @ Define inductivelyr’ (k) as a moving average of, (k — 1) . Then

x} (3) is a7-day moving average af’ that is frequently used as a natural mollification
of x7.

On the next diagrams we compare the actual dgtavith the basic model, periodic
model and the moving averages(3), where in some cases we have

l — 2" << =7 (3) — 27|

for periodic modelse,,. The corresponding-diagrams are not shown here becayse
andy; in all these cases are practically indistinguishable on the pictures.

It is interesting to observe that, for periodic models, the valueisfusually smaller
than that for basic models, that is, a periodic pattern has a positive effect for suppressing
the epidemic. A mathematical explanation for that is yet to be found.

50,000

& USA, x,*=new cases/day

45,000
=e=basic model, x,=new cases/day; a=0.3, b=0.328, ¢=7; r=0.991; ||x*-x||=2906

40,000 —e=periodic model, x,=new cases/day; a=0.3, b=0.321, q=7; ||x*-x||=1977; |
¢,=0.08, p,=7, n,=1; ¢,=0.044, p,=7, n,=6;
X*(3); [Ix*(3)-x*||=2296
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Figure 21. Comparison of basic and periodic models with moving averages, USA
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Figure 22. Comparison of basic and periodic models with moving averages,
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Figure 23. Comparison of basic and periodic models with moving averages,
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9 Germany, x,*=new cases/day

=e=hasic model, x,=new cases/day; a=0.218, b=0.355, q=7; r=0.952; ||x*-x||=299

=e=periodic model, x,=new cases/day; a=0.218, b=0.335, q=7; ||x*-x||=172;
¢,=0.2, p1=7, n,=7; ¢,=0.09, p,=7, n,=5;
H

x(@3); X @)x1=226
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8 Moscow, x,*=new cases/day

=e=basic model, x,=new cases/day, a=0.255, b=0.379, q=7; r=0.96; ||x*-x||=276

=e=periodic model, x,=new cases/day; a=0.255, b=0.382, q=7; ||x*-x||=243;
¢,=0.03, p;=7, n;=2; ¢,=0.03, p,=6, n,=3;
X*(3); IIx*(3)-x*(1=201
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6,000

B UK, x,*=new cases/day

=e=hasic model, xn=new cases/day; a=0.23, b=0.343, q=8; r=0.964; ||x*-x||=272;

5,000
=e=periodic model, x,=new cases/day; a=0.23, b=0.332, q=8, ||x*-x||=268;
¢,=0.21, p1=7, n1=1; ¢,=0.1, po=7, n=1;
X(3); ¢ (3)|=425

4,000

3,000

2,000

1,000

=
S

Figure 24. Comparison of basic and periodic models with moving averages, UK

6. A TWO-PHASE MODEL. In the setting of the model with variable coefficients
an, b,, assume that

! /
) a, n<ng Y, n<ng
a”_{a, n > ng andb”_{b, n > ng

for someny > 0, a,a’ > 0 andb, b’ € (0,1). In other words, we have two phases of
the epidemic with different pairs of parametéas, b') and(a, b) .
The equation35) becomes as follows:

T =0=-b0)xp 1 +dz,_ g1, ¢+1<n<ny,
Tpn=0=-bzp1+ar,_y1, n>ng+q-+1,

and

b
Ty = y (1 — b,) Tp_1+ ga/xn—q—ly n =mny

Tp=(1=0)zp_ 1+ ga’xn_q_l, ng <n <mng+q.
Hence, forn < ny we obtain the equation with coefficieni§ v/, forn > ng + g + 1
we obtain the equation with coefficientsb, whereas for transition values afbetween
no andng + g the coefficients may be quite wild because the r#timay be very large.
This may be a reason why this model does not give good mateh ahdz], within the
transition period.

In practice, the change of the values of the parametghsoccurs not overnight but
during some period. Therefore, it is necessary to do some smoothing of the coefficients
in the transition period. This is done by capping them by certain values, sayany by
replacing them by the moving averages. On top of that, we apply some weighted averag-
ing of the initial values ofc,, in the first phase, towards increasing their values. Indeed,
the epidemic is caused at the initial stage by external sources that are not accounted for
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in the equation. To compensate for that and to improve a matchagithve increase
appropriately the initial data.

Finally, in order to take into account periodic patterns, we make a periodic perturba-
tion of the equation35) as follows. Rewrite 5) in the form

Tny1 = (]- - Bn) Ty + Anxn—q

and replacel,, by A, (1 + &, sin (np; +,)) andB,, by B,, (1 + &2 sin (ngp, + 1,)),
where the new parameteps, ¢; ande; are also to be determined in the process of min-
imization of || — z*|| and|jy — v*|| .

Without going into further details, let us show the final results for two-phase periodic
models for various countries. The dates are shown in the forddatsm and dd-mmm.

8,000

[0 Germany, x,*=new cases/day, actual il 8.6.2020;
=e=periodic 2-phase model, x,=new cases/day: (I) from 5.3; (Il) from 27.3; ||x*-x||=349;
(l) a=0.62, b=0.068; (Il) a=0.22, b=0.273; ¢=7;
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3,000

2,000
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200,000

180,000

160,000

140,000

120,000

100,000

80,000 " "
—e— Germany, y,*=cumulative cases, actual il 9.6.2020;

—e—periodic 2-phase model, y,=cumulative cases: (I) from 5.3; (Il) from 27.3; |ly*-y||=2028;

60,000
(I) a=0.62, b=0.068; (ll) a=0.22, b=0.273; q=7;

40,000
20,000

0

::::::

Figure 26. A two-phase periodic model, Germanydiagram)
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ENUSA, x,*=new cases/day, actual til 8.6.2020;
=e=periodic 2-phase model, x,=new cases/day: () from 5.3; (Il) from 27.3; ||x*-x||=2451;

(1) a=0.79,b=0.077;  (Il) a=0.3, b=0.323; q=T;
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Figure 27. A two-phase periodic model for the USA-diagram)

—e— USA, y,*=cumulative cases, actual til 9.6.2020;

2,250,000 == periodic 2-phase model, y,=cumulative cases: (I) from 5.3; (Il) from 27.3; ||y*-y||=7916;

(I) a=0.79,b=0.077; (Il a=0.3, b=0.323; q=7;
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Figure 28. A two-phase periodic model, USA{diagram)
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I Moscow, x,*=new cases/day, actual til 8.6.2020;
=e=periodic 2-phase model, x,=new cases/day: (I} from 6.4; (II) from 1.5; ||x*-x||=320;
(1) a=0.2296, b=0.102;  (Il) a=0.255, b=0.39; q=7;
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Figure 29. A two-phase periodic model, Moscow-diagram)

250,000
200,000
150,000
100,000
—o— Moscow, y,*=cumulative cases, actual til 9.6.2020;
—e—periodic 2-phase model, y,=cumulative cases: (1) from 6.4; (Il) from 1.5; ||y*-y||=1538;
(1) a=0.2296, b=0.102; (Il) a=0.255, b=0.39; q=7;
50,000
0

Figure 30. A two-phase periodic model, Moscow-fliagram)
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UK, x,*=new cases/day, actual til 8.6.2020;

=e=periodic 2-phase model, x,=new cases/day: (1) from 7.3; (Il) from 4.4; ||x*-x||=893;

() @=0.8,b=0.031; (ll) @=0.23, b=0.297; q=8;
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Figure 31. A two-phase periodic model, UKzfdiagram)

—o— UK, y,*=cumulative cases, actual til 9.6.2020;
—&—periodic 2-phase model, y,=cumulative cases: (I) from 7.3; (Il) from 4.4; ||y*-y||=6228;

(1) a=0.8,b=0.031;  (ll) a=0.23, b=0.297;
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Figure 32. A two-phase periodic model, UKyfdiagram)

29



8,000

0,
N
f=}
I
©
e}
=
=
2
j=3
©
>
©
=
2
@D
<
o
=
)
2
1
N
=
<
=
=
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=e=periodic 2-phase model, x,=new cases/day: () from 21.2; (Il) from 21.3; ||x*-x||=300;

0.321; ¢=7,
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=0.44, b=0.046;
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Figure 33. A two-phase periodic model, Italycfdiagram)
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Figure 34. A two-phase periodic model, Italy{diagram)
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10,000

ESpain, x,*=new cases/day, actual il 8.6.2020;
=e=periodic 2-phase model, x,=new cases/day: (I) from 13.3; (Il) from 30.3; ||x*-x||=523;

() a=0.685,b=0.09; () a=0.178, b=0.328; q=7;
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Figure 35. A two-phase periodic model, Spain-giagram)
250,000
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100,000 —e— Spain, y,*=cumulative cases, actual til 9.6.2020;
—e—periodic 2-phase model, y,=cumulative cases: (1) from 13.3; (Il) from 30.3; ||ly*-y||=1744;
(i) a=0655,b=0.09; (Il) a=0.178, b=0.328; g=7;
50,000
0 el
SEZZZZf 22222 riresiEEEsEEEE525555555353
282K EFSEBLLELIIRNBBIILgZdBd I Inge8ad8 Iy
Figure 36. A two-phase periodic model, Spaig-fiagram)
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