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Mathematical riddles of COVID-19
Alexander Grigor’yan

Abstract. We construct a simple model of a coronavirus epidemic by using a recurrence equation.
This approach involves rather elementary mathematical tools (like roots of polynomials) but may
be instructive both from mathematical and practical points of view, in particular, for prediction
of the further course of the epidemic.

1. INTRODUCTION. In 2020, the world was shaken by the coronavirus pandemic.
Charts showing the numbers of infected by countries became a symbol of this year. In
this note we look aside from the ominous meaning of those diagrams and will deal with
them as mathematical objects.

One of such diagrams is presented on Fig1. We denote here byxn the number of cases
of infection that are detected during the dayn in the country in question. The diagram
on Fig.1 shows the subgraph of a piecewise constant functionxn. Such diagrams will
be referred to asx-diagrams.

Figure 1. x-diagram for Italy: the numbers of actually registered daily cases

Denote byyn the cumulative number of detected cases from the beginning of the
epidemic by the beginning of the dayn; that is,

yn+1 = yn + xn.

The graph of a piecewise linear interpolation of the sequence{yn} is shown on Fig.2.
Such diagrams will be referred to asy-diagrams.
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Figure 2. y-diagram for Italy: the cumulative numbers of registered cases

In this note we construct a simple model of a coronavirus epidemic by using a recur-
rence equation. This involves rather elementary mathematical tools but may be instruc-
tive both from mathematical and practical points of view, for example, for prediction of
the further course of the epidemic.

The models for individual countries are based on reported numbersxn of detected
cases rather than on the actual number of infected individuals, which is unknown. While
this may not give a complete picture, it still gives a good idea of the state of an epidemic.

Of course, there exist comprehensive mathematical models of epidemics created and
used by professional epidemiologists, see, for example, [4], [9], [10], [11], [12], [13] and
many others sources. However, such models require much more information about the
disease, whereas in our model we manage without a priori knowledge and use the infor-
mation that can be extracted from thex- andy-diagramsonly. Consequently, our model
is accessible to undergraduate students with basic knowledge of Algebra and Analysis.

In Section2, we present a simple recurrence equation forxn that models an epidemic
for periods of time of invariable quarantine conditions. This equation contains three nu-
merical parameters that can be determined by comparing the model with the actual data
for the initial 3-4 weeks of the period in question. Usually the model agrees well with
the actual course of the epidemic also after the initial weeks and, hence, can be used for
predictions.

In Section3, we discuss positive solutions of linear recurrence equations with constant
coefficients. The long time behavior of such solutions is determined by theleading root
– a root of the characteristic polynomial with the maximal absolute value. We prove in
Theorem5 that, for the above model, the leading root is always a positive real, sayr, and
that any positive solutionxn is asymptotically equivalent toconst rn asn → ∞. This
result explains why the decay phase of the epidemic is relatively long: because it is an
exponential with the baser close to1.

In Theorem7 we give some estimates ofr that are useful for numerical computation
of r. In particular, we obtain the following relation between the leading rootr and the
basic reproductive rateR0 that is a main characteristic of an epidemic in epidemiology:

r ≈ R
1
2q
0 . (1)
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Hereq is the latent period of the disease and≈ means that the right hand side of (1)
can be used as the initial approximation in Newton’s method for computation ofr. In
practice already the first iteration gives a satisfactory value forr.

In Section4, we consider random perturbations of the basic model. The reported num-
bersxn of daily cases are significantly affected by random events in the society, and we
try to take them into account by adding to a basic recurrence equation a random term. We
use theGreen functionof the recurrence equation in order to solve a randomly perturbed
equation and to produce a confidence interval for a random solution (Theorem15). The
results of computations are shown for a number of countries.

In Section5, we consider a modification of the basic model when the parametersa and
b are periodic functions ofn. This is motivated by observation that, in some countries,
the sequencexn exhibits clear periodic patterns, probably, due to a weekly rhythm of life.
For such countries, the model with periodic parameters provides a better approximation
than a basic model.

In Section6, we discuss a two-phase model that covers two periods of an epidemic
with different sets of parameters – the first phase of a fast growth and the second phase
of a decay. We provide the two-phase models for a number of countries, where the peak
of COVID-19 occured in March-May 2020.
Acknowledgement.All the data of the coronavirus epidemic by countries/territories
were taken from the following sources: [5], [6], [7], [8].

All numerical computations and diagrams were done by using Microsoft Excel and
Scientific Workplace.

I am grateful to Sergey Grigorian for a number of useful conversations on the topic of
this paper and for explaining me basics of epidemiology. In particular, Sergey suggested
me a way of computation ofR0 for a basic model that is implemented in Lemma9.

2. A BASIC MODEL. Let us make the following simple assumptions about spread of
an epidemic in a certain county or territory. We use three parameters:q ∈ N, a > 0 and
b ∈ (0, 1) .

(I) Any infected person becomes ill and infectious on theq-th day after infection.1

(A) During each day, each ill person at large infects on averagea other persons.
(B) During each day, a fractionb of ill people at large gets isolated (hospitalized or

otherwise) and withdrawn from a further spread of the epidemic.
In order to derive the equation of expansion of the epidemic, let us introduce the

following notation.

• xn – the number of infected people that are detected and isolated during the dayn;
• yn – the cumulative number of detected cases from the beginning of epidemic by the

beginning of the dayn;
• zn – the number of ill people at large by the beginning of the dayn (that is, those who

were infected at leastq days ago and stay unisolated);
• un – the number of people newly infected during the dayn.

Clearly, we have

yn+1 = yn + xn.

1The number of days before an infected person becomes infectious is called thelatent period, and before he/she
becomes symptomatically ill – theincubation period. Here we assume for simplicity that these two periods are
equal.
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Sincebzn people are isolated during the dayn, we havexn = bzn. Sinceazn people get
infected during the dayn, we haveun = azn. Observe also that

zn+1 = zn − xn + un−q. (2)

because during the dayn the numberxn of ill people get isolated, while newun−q people
become ill (asun−q is the number of people infected during the dayn − q).

It follows from the above equations that

zn+1 = (1 − b) zn + azn−q.

Usingxn = bzn we obtain the following equation forxn:

xn+1 = (1 − b) xn + axn−q. (3)

This is a recurrence equation of the orderq + 1 that is valid for alln ≥ q. In order to
solve it inductively, we need to know the initial conditions forx0, . . . , xq.

Denote byx∗
n the actual number of infected people that are detected and isolated

during the dayn, while the notationxn will be reserved for a solution of (3), that is, for
a model. Then we impose the following initial conditions:

xn = x∗
n for n = 0, 1, . . . , q, (4)

which together with (3) allows to determine uniquely the entire sequence{xn} .
Denote byy∗

n the reported cumulative number of cases by the dayn. Then we deter-
mine the model numberyn by

y0 = y∗
0 and yn+1 = yn + xn, n ≥ 0.

It follows from (4) thatyn = y∗
n for all n = 0, . . . , q + 1.

Note that the numbersx∗
n andy∗

n are observables as their values are widely reported,
while the values of the parametersa, b, q cannot be measured directly. Nevertheless, one
can determine them at least approximately by comparing the actual data with the model
data. For that we use the normalized1-norm:

‖x − x∗‖ :=
1

N + 1

N∑

n=0

|xn − x∗
n| , (5)

whereN need to be chosen so thatN � q. Usually N is taken to be the maximal
value ofn for whichx∗

n is available. Similarly one defines‖y∗ − y‖. One can attempt to
determine the values ofa, b, q by minimizing the differences

‖x − x∗‖ and ‖y − y∗‖ . (6)

Usually it is impossible to minimize simultaneously two functions at the same point,
but some numerical compromise would give a reasonable approximation fora, b, q. Of
course, the so determined values of the parameters may depend onN as well as on the
choice of the initial date, and adjustment maybe needed later when more data become
available.

We show below on some examples how this approach works. Typically an epidemic
in a given country has two phases: a phase of an initial fast growth and a phase of decay,
after imposing of quarantine measures. Obviously, the values of the parametersa andb
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are different for these two phases. Therefore, the present model makes sense only for the
periods of time within one phase. A two-phase model will be considered in Section6.

In practice one can distinguish the two phases by looking at the convexity of they-
diagram: it is convex in the first phase and concave in the second phase. Hence, the
borderline between the two phases is around the inflection point.

For most of examples in this paper, the values ofa, b, q had been computed in the
second half of April 2020. The values of the distances (6) shown on the diagrams below
were computed by using the latest available actual data at the beginning of June 2020
when this paper was completed (only minor adjustment ofa andb were needed then).

Example 1. One can see on Fig2 that the second phase in Italy starts around March 26 so
that we setn = 0 for that day. The results of numerical minimization of the differences
(6) are shown on Fig.3 and4.

Figure 3. Comparison of the basic model with the actual data, Italy (x-diagram)

Figure 4. Comparison of the basic model with the actual data, Italy (y-diagram)
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Example 2. A similar analysis for the USA gives the results shown on Fig.5 and6.

Figure 5. Comparison of the basic model with the actual data, USA (x-diagram)

Figure 6. Comparison of the basic model with the actual data, USA (y-diagram)

Here we see a surprisingly good match ofyn andy∗
n with an error less than1%.

Example 3. The actual data and a model for Germany are shown on Fig7 and8.
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Figure 7. Comparison of the basic model with the actual data, Germany (x-diagram)

Figure 8. Comparison of the basic model with the actual data, Germany (y-diagram)

In the abovex-diagrams, alongside the values ofa, b, q, there is one more parameter
r. It is a function ofa, b, q whose meaning will be explained in the next section.

3. THE LEADING ROOT. Consider a general linear recurrence equation with con-
stant coefficients:

xn+1 = a0xn + a1xn−1 + a2xn−2 + . . . + aqxn−q, (7)
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whereq is a positive integer andak are non-negative reals, aq 6= 0. The equation (7)
represents a model of an epidemic with a distributed latent period. Indeed, let us keep the
assumptions(A) and(B) of the basic model of Section2 and modify the assumption
(I) as follows.

(I ′) Any infected person becomes ill and infectious on the dayk = 1, 2, . . . , q after in-
fection with probabilityck, wherec1 + c2 + . . . + cq = 1.

Arguing as in Section2, we obtain for the number of daily casesxn the equation (7)
with

a0 = 1 − b and ak = ack, k = 1, . . . , q.

In particular, we havea1 + . . . + aq = a.
Let us recall some mathematical facts about the recurrence equation (7) that are valid

for arbitrary real coefficientsak (cf. [1]). Any solution of (7) is uniquely determined by
q + 1 initial values ofx0, . . . , xq, so that the set of all solutions of (7) is a (q + 1)-
dimensional vector space. A basis in this space can be determined with help of the char-
acteristic polynomial of (7):

f (λ) = λq+1 − a0λ
q − a1λ

q−1 − a2λ
q−2 − . . . − aq. (8)

Indeed, any rootλ of (8), real or complex, gives a solutionxn = λn (note thatλ 6= 0
due toaq 6= 0). If all the roots off are simple thenf hasq + 1 different complex roots
λ0, . . . , λq, and we obtainq + 1 linearly independent solutions

λn
0 , λn

1 , . . . , λn
q (9)

of (7). The general solution of of (7) is then

xn = C0λ
n
0 + . . . + Cqλ

n
q , (10)

whereC0, . . . , Cq are arbitrary complex constants. If a rootλk is multiple, say, with
multiplicity m > 1, then them instances ofλn

k in (9) and (10) should be replaced by the
following m independent solutions:

λn
k , nλn

k , . . . , nm−1λn
k . (11)

We are interested only in real solutions of (7). If λk is complex thenλk is also a root
of f of the same multiplicity, and each pair of the complex solutionsnjλn

k , njλ
n

k can
be replaced by real solutionsnj Re λn

k andnj Im λn
k , thus yielding againq + 1 linearly

independent real solutions.
A typical solutionxn of (7) contains all the terms (11) with non-zero coefficients.

Hence, the long time behavior ofxn is determined by a rootλ of f with the maximal
absolute value|λ| (see Theorem5 below for a precise statement).

Definition 4. A root λ of f with the maximal absolute value|λ| will be referred to as a
leading rootof (7).

From now let us assume that all the coefficientsak in (7) are non-negative reals and
a0 > 0. Then any solutionxn with positive initial values remains positive forever. Deter-
mination of the leading root of (7) is in this case of paramount importance for prediction
of the course of the epidemic that is modelled by this equation.
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Theorem 5. Letak ≥ 0 for all k = 0, . . . , q anda0 > 0.

(a) (Cauchy, 1829)The polynomialf (λ) has exactly one positive real rootr. Besides,
the rootr is simple and, for any other rootλ ∈ C, we have|λ| < r. Consequently,r
is the leading root of(7).

(b) For any positive solutionxn of (7), there existsC > 0 such that

xn ∼ Crn asn → ∞. (12)

It follows from (12) that if r < 1 then the epidemic fades away, whereas ifr > 1 then
it spreads unlimited.
Proof. (a) Although this statement is not new, we give here the proof as it is quite simple
and a part of the argument will be used below. The equationf (λ) = 0 is equivalent to

1 =
a0

λ
+

a1

λ2 + . . . +
aq

λq+1 . (13)

Sincea0 > 0, the right hand side is strictly monotone decreasing inλ > 0, tends to+∞
asλ → 0+ and to0 asλ → +∞. Hence, there is exactly one positive valueλ = r that
satisfies this equation, that is,

1 =
a0

r
+

a1

r2
+ . . . +

aq

rq+1
. (14)

Let λ ∈ C \ {0} be another root off . We obtain from (13) that

1 ≤
a0

|λ|
+

a1

|λ|2
+ . . . +

aq

|λ|q+1

which implies that|λ| ≤ r. If |λ| = r then comparison with (13) and (14) shows that
|λ| = λ and, hence,λ = r .

Let us verify that the rootr is simple. If q = 0 then there is nothing to prove. Let
q ≥ 1. Then the polynomial 1

q+1
f ′ (λ) satisfies the hypotheses of the present theorem

and, by the above argument,f ′ (λ) has exactly one positive root. Let us denote it byr′

and verify thatr′ < r, which will, in particular, imply thatr is simple. Ifr′ = 0 then all
is clear. Ifr′ > 0 then it follows fromf ′ (r′) = 0 that

1 =
qa0

(q + 1) r′
+

(q − 1) a1

(q + 1) (r′)2
+ . . . +

aq−1

(q + 1) (r′)q

<
a0

r′
+

a1

(r′)2 + . . . +
aq−1

(r′)q ,

whencer′ < r.
(b) Let λ1, λ2, . . . be all other distinct roots off apart fromr (so thatλk are negative

or imaginary). Any solutionxn of (7) has the form

xn = Crn + x̃n, (15)

wherex̃n is a linear combination of the functionsnjλn
k . Since by(a) we have|λk| < r,

it follows that

|x̃n| = o (rn) asn → ∞. (16)

Sincexn > 0, it follows from (15) and (16) thatC ≥ 0.
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Let us verify thatC > 0, which will settle the claim. It is tempting to say that if
C = 0 then xn = x̃n is a linear combination of terms of the formnjρn sin ϕn and
njρn cos ϕn and, therefore, cannot stay positive. However, it is not easy to make this ar-
gument rigorous because different roots off may have the same absolute valueρ and an
uncontrollable cancellation of the terms can occur. We employ here a different, simpler
approach that takes advantage of nonnegative coefficientsak.

To that end, consider a new sequence

Xn =
xn

rn

that obviously satisfies the equation

Xn+1 = A0Xn + A1Xn−1 + . . . + AqXn−q (17)

with Ak = ak/rk+1. Sincer is a root off , we have

A0 + A1 + . . . + Aq = 1. (18)

Setc := min (X1, . . . , Xq+1) > 0. Then we obtain from (17) and (18) by induction that

Xn ≥ c for all n ∈ N,

which implies

xn ≥ crn.

Comparing with (15) and (16), we conclude thatC ≥ c > 0.
Let us discuss a numerical procedure for computing ofr. Of course, there are many

software packages that compute instantaneously all the roots of a polynomial, but a rea-
sonably quick computation ofr can be done by Newton’s method. Choose some initial
valuer0 > 0 and define a sequence{rn} by

rn+1 = rn −
f (rn)
f ′ (rn)

, n ≥ 0. (19)

We will show below that the sequence{rn} converges tor for a simple choice ofr0.
It follows from Theorem5 thatf (λ) < 0 for 0 < λ < r andf (λ) > 0 for λ > r. As

in the proof of Theorem5, let r′ be the largest non-negative root off ′ (λ), and similarly
r′′ – the largest non-negative root off ′′ (λ) .

Figure 9. Polynomialf (λ)
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By the argument in the proof of Theorem5 we have

r′′ ≤ r′ < r. (20)

Lemma 6. If r0 > r′ thenrn → r asn → ∞.

Proof. It follows from (20) that the functionf (λ) is monotone increasing and convex in
the intervalI = (r′,∞). It is known that, in the case of a convex functionf , Newton’s
method converges tor provided bothr0 andr1 belong toI (cf. [3]). Sincer0 ∈ I by
hypotheses, it remains to verify thatr1 > r′. If r0 ≤ r thenf (r0) ≤ 0 and

r1 = r0 −
f (r0)
f ′ (r0)

≥ r0 > r′.

Let r0 > r. Thenr1 < r0 and we have for someξ ∈ (r1, r0) that

f (r1) = f (r0) + f ′ (ξ) (r1 − r0) = f (r0) − f ′ (ξ)
f (r0)
f ′ (r0)

.

Sincef ′ (ξ) < f ′ (r0), it follows thatf (r1) > 0 and, hence,r1 > r > r′.
The next statement gives a simple estimate for the leading rootr that can be used to

set up the initial valuer0.

Theorem 7. Let ak ≥ 0 for all k = 0, . . . , q. Denotea = a1 + . . . + aq, b = 1 − a0

and assume thata > 0, b ∈ (0, 1) .

(a) We have the equivalences:r < 1 ⇔ a < b and r > 1 ⇔ a > b.
(b) Letm ≥ 1 be such thata1 = . . . = am−1 = 0 andam > 0. Then

min

(

1,
(a

b

)1/m
)

≤ r ≤ max

(

1,
(a

b

)1/m
)

. (21)

Remark 8. Although there are in the literature plenty of estimates of the leading roots of
polynomial (see, for example, [2]), none of them seems to imply (21). The latter is very
useful for a basic model as we will see below in an example.

Proof. (a) We havef (1) = 1 − a0 − a1 − . . . − aq = b − a, whence

r < 1 ⇔ f (1) > 0 ⇔ a < b and r > 1 ⇔ f (1) < 0 ⇔ a > b.

(b) The equationf (r) = 0 is equivalent to

rq+1 − rq = −brq + a1r
q−1 + . . . + aq = −brq + amrq−m + . . . + aq.

Hence, ifr > 1 thenrq+1 − rq > 0 and, hence,

brq < amrq−m + . . . + aq ≤ (am + . . . + aq) rq−m ≤ arq−m,

whence

r <
(a

b

)1/m

.

Similarly, if r < 1 thenr >
(

a
b

)1/m
, which implies (21).

In epidemiology the main characteristic of an epidemic is thebasic reproductive rate
R0 that is defined as an average number of persons infected by one ill person before the
latter gets isolated. One of the principles of epidemiology says that the epidemic fades
away if and only ifR0 < 1.
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Lemma 9. For the model described by equation(7) we have

R0 =
a

b
.

Proof. Let u be the number of people infected on some day, say0. On the dayk =
1, . . . , q the numbercku of them become ill and can infect other people. On the day
k + 1 they infectacku people whilebcku of them get isolated. On the dayk + 1, the
remaining(1 − b) cku people infect furthera (1 − b) cku people. Continuing this way,
we obtain that this group ofcku people infects in total

acku + a (1 − b) cku + a (1 − b)2 cku + . . . =
a

b
cku.

Hence, the initial group ofu people infects in total

q∑

k=1

a

b
cku =

a

b
u,

so thatR0 = a
b
.

Theorems5 and7 imply that the epidemic fades away if and only ifa
b

< 1, which
gives for the model (7) a justification of the aforementioned conditionR0 < 1. However,
for the model (7), a more important and relevant characteristic is the leading rootr that
determines precisely the dynamics of the epidemic.

Let us return to the equation (3), that is, to

xn+1 = (1 − b) xn + axn−q, (22)

whereb ∈ (0, 1) anda > 0. The characteristic polynomial is

f (λ) = λq+1 − (1 − b) λq − a.

Let r be its leading root. By Theorem7 with m = q, we obtain that

min

(

1,
(a

b

)1/q
)

≤ r ≤ max

(

1,
(a

b

)1/q
)

.

Hence, we could taker0 to be equal to the arithmetic mean of1 and
(

a
b

)1/q
. However,

many numerical examples show that a better approximation is generally achieved by
using thegeometric mean, that is, by

r0 =
(a

b

)1/(2q)

= R
1/(2q)
0 . (23)

The derivativef ′ (λ) = (q + 1) λq − (1 − b) qλq−1 has a positive root

r′ =
q (1 − b)

q + 1
.

By Lemma6, if r0 > r′ (which is the case in all examples of interest) thenrn → r as
n → ∞. In practice, alreadyr1 or r2 provide good enough approximations ofr.
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Example 10. Let q = 7, a = 0.218 and b = 0.355 as on Fig.7 modelling the de-
cay phase of the epidemic in Germany. By (23) we obtainr0 = 0.96577. Sincer′ =
q(1−b)

q+1
= 0.56438, we haver0 > r′, which implies thatrn → r. We obtain by (19)

r1 = 0.95296, r2 = 0.95219, r3 = 0.95219,

so thatr = 0.95219. Of course, for practical purposes is enough to haver ≈ 0.95 which
predicts the decay rate of the epidemic5% per day. On Fig.10 we show thex-diagram
together with a functionCrn.

Figure 10. Comparison ofx∗
n, xn andCrn, Germany

Example 11. On Fig.11 we show a model for the initial phase of the epidemic in the
USA.

Figure 11. Comparison ofx∗
n, xn andCrn, USA
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Hereq = 7, a = 0.79 andb = 0.077. By (23) we obtainr0 = 1.1809, and then by
(19)

r1 = 1.1765, r2 = 1.1764, r3 = 1.1764

so thatr = 1.1764, which gives the growth rate17.6% per day.

Example 12. For comparison, consider a recurrence equation with anegativecoefficient:

xn+1 = 1.6xn + 0.1xn−1 − 0.732xn−2. (24)

Its characteristic polynomialf (λ) = λ3 − 1. 6λ2 − 0.1λ + 0.732 has the roots

λ0 = −0.6, λ1 = 1.1 + 0.1i, λ2 = 1.1 − 0.1i

and, hence, no positive root. Consequently, all solutionsxn are oscillating. In particular,
consider a solution

xn = ρn sin nϕ,

whereρ = |λ1| = 1. 1045 andϕ = arg λ1 = 0.09066. The graph of this solution is
shown on Fig.12.

Figure 12. An oscillating solution of (24)

The solution takes its maximum at

n =

(

π − arctan
ϕ

ln ρ

)
1
ϕ

= 26.496

and then vanishes atn = π/ϕ = 34. 652. If (24) were a model of an epidemic then this
epidemic would have stopped abruptly, shortly after its peak. Of course, in our models
such a situation can never happen, but we do not exclude that this phenomenon might
occur for other diseases with a high self-recovery rate.
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4. A MODEL WITH RANDOM PERTURBATIONS. Here we consider a random
perturbation in the basic model. In fact, the results apply to any recurrence equation with
constant coefficients:

xn+1 = a0xn + a1xn−1 + a2xn−2 + . . . + aqxn−q, (25)

whereak are reals. Denote by{gn}n∈Z the sequence that satisfies (25) for all n ≥ q + 1
with the initial conditions

gn = 0 for n = 0, 1, . . . , q and gq+1 = 1.

The solutiongn is called theGreen functionof the equation (25). An example of the
Green function is shown on Fig.13.

Figure 13. The Green functiongn for the equationxn+1 = (1 − b) xn + axn−q .

In what follows we use the Kronecker symbol

δnk :=

{
1, k = n,
0, k 6= n.

Lemma 13. The Green function satisfies for alln ∈ Z the equation

gn+1 = a0gn + a1gn−1 + a2gn−2 + . . . + aqgn−q + δnq. (26)

Proof. If n < q then all the terms in (8) vanish. Ifn ≥ q + 1 thenδnq = 0 and (26)
is satisfied by the definition of the Green function. Finally, ifn = q then gn+1 = 1,
δnq = 1 while all other terms vanish, and the equation is again satisfied.

Lemma 14. Let{fn}n≥0 be any sequence of reals such that

f0 = f1 = . . . = fq−1 = 0.
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Then the sequence

zn =
n∑

k=0

gn−k+qfk (27)

satisfies the equation

zn+1 = a0zn + a1zn−1 + a2zn−2 + . . . + aqzn−q + fn, n ≥ q (28)

and the initial conditions

z0 = z1 = . . . = zq = 0. (29)

Proof. Sincefk = 0 for k < q andgq = 0, the summands in (27) with k < q andk = n
always vanish, so that

zn =
n−1∑

k=q

gn−k+qfk. (30)

In particular, ifn ≤ q then the set of summands is empty and, hence,zn = 0, which
proves (29).

In order to prove (28), observe that

fn =
∞∑

j=q

δnjfj .

By linearity, it suffices to prove (28) whenfn = δnj for somej ≥ q. In this case we
obtain by (27)

zn =
n∑

k=0

gn−k+qδkj = gn−j+q.

If j = q thenzn = gn, and (28) follows from (26). If j > q then setm = j − q and
observe that the sequence

zn = gn−j+q = gn−m

satisfies by (26) the equation

gn−m+1 = a0gn−m + a1gn−m−1 + a2gn−m−2 + . . . + aqgn−m+q + δ(n−m)q.

Since

δ(n−m)q = δn(q+m) = δnj ,

we conclude thatzn = gn−m satisfies the equation

zn+1 = a0zn + a1zn−1 + a2zn−2 + . . . + aqzn−q + δnj ,

which was to be proved.
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Consider now the following random perturbation of the equation (25):

xn+1 = a0xn + a1xn−1 + a2xn−2 + . . . + aqxn−q + ξn, n ≥ q, (31)

where{ξn} is a sequence of independent random variables with

Eξn = 0,

and{xn} is a random sequence satisfying the deterministic initial conditions

xn = x∗
n for n = 0, . . . , q.

Let {xn} solve the unperturbed equation (25) with the same initial conditions

xn = x∗
n for n = 0, . . . , q.

Theorem 15. We have, for alln ≥ 0,

Exn = xn (32)

and

Var (xn) =
n−1∑

k=q

g2
n−k+q Var (ξk) . (33)

Besides, if allξn are normally distributed then allxn with n > q are also normally
distributed.

Proof. It follows from (31) andEξn = 0 thaten := Exn satisfies

en+1 = a0en + a1en−1 + . . . + aqen−q, n ≥ q,

and the initial conditionsen = x∗
n for n ≤ q. Hence,en = xn, which proves (32).

Consider now the difference

zn := xn − xn = xn − Exn.

Clearly,zn satisfies the equation

zn+1 = a0zn + a1zn−1 + . . . + aqzn−q + ξn, n ≥ q,

and the initial conditions

zn = 0 for n = 0, 1, . . . , q.

By the identity (30) of Lemma14we obtain

zn =
n−1∑

k=q

gn−k+qξk. (34)

Using the independence of{ξk} we obtain that

Var (xn) = Var (zn) =
n−1∑

k=q

g2
n−k+q Var (ξk) .
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If all ξn are normally distributed then it follows from (34) that alsoxn with n > q is
normally distributed.

Let us now specify the choice of the random variables{ξn}. Let {ηn} be an i.i.d.
sequence of random variables with

Eηn = 0 andσ2 := Eη2
n < ∞.

Fix someε > 0 and set

ξn = εηnxn

so that

Var ξn = ε2σ2x2
n.

If εσ is small thenξn can be regarded as a small perturbation compared withxn. Clearly,
we have in this case by (33)

Var (xn) = ε2σ2

n−1∑

k=q

g2
n−k+qx

2
k.

Set

vn =
√

Var (xn) = εσ

(
n−1∑

k=q

g2
n−k+qx

2
k

)1/2

and consider for someK > 0 a confidence interval(xn − Kvn, xn + Kvn) for xn.
If ηn are Gaussian thenxn ∼ N (xn, v2

n) and we obtain that

P (xn ∈ (xn − Kvn, xn + Kvn)) = 2
∫ Kvn

0

1
√

2πvn

exp

(

−
t2

2v2
n

)

dt = erf
(
K/

√
2
)

,

where

erf (s) =
2
√

π

∫ s

0

e−t2dt

is the error function. For example, forK = 2 we have

erf
(
2/
√

2
)

= 0.95450.

However, in numerical experiments it is more convenient to use the random variablesηn

that are uniformly distributed in[−1, 1] sinceηn is bounded. Then we have

σ2 =
1
2

∫ 1

−1

t2dt =
1
3
,

and we chooseε = 0.2 andK = 2.
The numerical computation with these parameters were done in Excel by means of a

generatorRAND() of random numbers. The results are shown on the next pictures: the
blue columns represent the actual datax∗

n, the green and yellow lines are the graphs of
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xn + Kvn andxn − Kvn, respectively, and the read line is a sample graph ofxn (it is
random and changes at each instance of computation). The data for Moscow and the rest
of Russia are separated because of different dynamics of the epidemic there.

Figure 14. Random simulation, Germany

Figure 15. Random simulation, USA
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Figure 16. Random simulation, Spain

Figure 17. Random simulation, Italy

20



Mathematical Assoc. of America American Mathematical Monthly 0:6 August 15, 2020 12:45 p.m. coronav.tex page 21

Figure 18. Random simulation, United Kingdom

Figure 19. Random simulation, Moscow
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Figure 20. Random simulation, Russia outside Moscow

5. A MODEL WITH VARIABLE COEFFICIENTS. Let us consider a generalization
of the basic model where the parametersa andb become variable. More precisely, while
keeping the assumption(I) of the basic model, we replace(A) and(B) by the following
assumptions.

(An) Duringn-th day each ill person at large infectsan other persons.
(Bn) Duringn-th day a fractionbn of ill people at large gets isolated.

Herean > 0 andbn ∈ (0, 1) for all n. Using the same notation as in Section2, we
obtain the following relations:xn = bnzn and un = anzn. Substituting into (2), we
obtain

zn+1 = (1 − bn) zn + an−qzn−q.

Usingxn = bnzn, we obtain the following equation forxn:

xn+1 =
bn+1 (1 − bn)

bn

xn +
an−qbn+1

bn−q

xn−q. (35)

The initial conditions should be the same as above, that is (4).
As an example, consider the case when the coefficientsan andbn are periodic:

an = a
(
1 + c1 sin

(
2π
p1

(n − n1)
))

and

bn = b
(
1 + c2 sin

(
2π
p2

(n − n2)
))

where as abovea > 0, b ∈ (0, 1) while ci, pi, ni are new parameters. By minimizing
the differences‖x − x∗‖ and‖y − y∗‖, we try to obtain the best values for all the pa-
rameters involved.

For some countries the sequencex∗
n shows certain periodic patterns. For those coun-

tries, the periodic model provides a better match than the basic model. Moreover, the
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periodic modelxn provides frequently a better approximation tox∗
n than even themov-

ing averagesdo. Denote byx∗
n (1) a simple moving average ofx∗

n, that is,

x∗
n (1) =

x∗
n−1 + x∗

n + x∗
n+1

3
, n ≥ 1

andx∗
0 (1) = x∗

0+x∗
1

2
. Define inductivelyx∗

n (k) as a moving average ofx∗
n (k − 1) . Then

x∗
n (3) is a7-day moving average ofx∗

n that is frequently used as a natural mollification
of x∗

n.
On the next diagrams we compare the actual datax∗

n with the basic model, periodic
model and the moving averagesx∗ (3), where in some cases we have

‖x − x∗‖ << ‖x∗ (3) − x∗‖

for periodic modelsxn. The correspondingy-diagrams are not shown here becauseyn

andy∗
n in all these cases are practically indistinguishable on the pictures.

It is interesting to observe that, for periodic models, the value ofb is usually smaller
than that for basic models, that is, a periodic pattern has a positive effect for suppressing
the epidemic. A mathematical explanation for that is yet to be found.

Figure 21. Comparison of basic and periodic models with moving averages, USA
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Figure 22. Comparison of basic and periodic models with moving averages, Germany

Figure 23. Comparison of basic and periodic models with moving averages, Moscow
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Figure 24. Comparison of basic and periodic models with moving averages, UK

6. A TWO-PHASE MODEL. In the setting of the model with variable coefficients
an, bn, assume that

an =

{
a′, n < n0

a, n ≥ n0
and bn =

{
b′, n < n0

b, n ≥ n0

for somen0 > 0, a, a′ > 0 andb, b′ ∈ (0, 1) . In other words, we have two phases of
the epidemic with different pairs of parameters(a′, b′) and(a, b) .

The equation (35) becomes as follows:

xn = (1 − b′) xn−1 + a′xn−q−1, q + 1 ≤ n < n0,

xn = (1 − b) xn−1 + axn−q−1, n ≥ n0 + q + 1,

and

xn =
b

b′
(1 − b′) xn−1 +

b

b′
a′xn−q−1, n = n0

xn = (1 − b) xn−1 +
b

b′
a′xn−q−1, n0 < n ≤ n0 + q.

Hence, forn < n0 we obtain the equation with coefficientsa′, b′, for n ≥ n0 + q + 1
we obtain the equation with coefficientsa, b, whereas for transition values ofn between
n0 andn0 + q the coefficients may be quite wild because the ratiob

b′
may be very large.

This may be a reason why this model does not give good match ofxn andx∗
n within the

transition period.
In practice, the change of the values of the parametersa, b occurs not overnight but

during some period. Therefore, it is necessary to do some smoothing of the coefficients
in the transition period. This is done by capping them by certain values, say, by1 and by
replacing them by the moving averages. On top of that, we apply some weighted averag-
ing of the initial values ofxn in the first phase, towards increasing their values. Indeed,
the epidemic is caused at the initial stage by external sources that are not accounted for
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in the equation. To compensate for that and to improve a match withx∗
n, we increase

appropriately the initial data.
Finally, in order to take into account periodic patterns, we make a periodic perturba-

tion of the equation (35) as follows. Rewrite (35) in the form

xn+1 = (1 − Bn) xn + Anxn−q

and replaceAn byAn (1 + ε1 sin (nϕ1 + ψ2)) andBn byBn (1 + ε2 sin (nϕ2 + ψ2)),
where the new parametersϕj , ψj andεj are also to be determined in the process of min-
imization of‖x − x∗‖ and‖y − y∗‖ .

Without going into further details, let us show the final results for two-phase periodic
models for various countries. The dates are shown in the formatsdd.mm anddd-mmm.

Figure 25. A two-phase periodic model, Germany (x-diagram)

Figure 26. A two-phase periodic model, Germany (y-diagram)
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Figure 27. A two-phase periodic model for the USA (x-diagram)

Figure 28. A two-phase periodic model, USA (y-diagram)
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Figure 29. A two-phase periodic model, Moscow (x-diagram)

Figure 30. A two-phase periodic model, Moscow (y-diagram)
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Figure 31. A two-phase periodic model, UK (x-diagram)

Figure 32. A two-phase periodic model, UK (y-diagram)
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Figure 33. A two-phase periodic model, Italy (x-diagram)

Figure 34. A two-phase periodic model, Italy (y-diagram)
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Figure 35. A two-phase periodic model, Spain (x-diagram)

Figure 36. A two-phase periodic model, Spain (y-diagram)
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