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Abstract

The cohomology of digraphs were introduced for the first by Dimakis and Müller-
Hoissen. Their algebraic definition is based on a differential calculus on an algebra
A of functions on the set of vertices with relations that follow naturally from the
structure of the set of edges. A dual notion of homology of digraphs based on the
notion of path complex was introduced in [7], where the first methods for computing
the cohomology groups were developed. The interest to cohomology on the digraphs
is motivated by physical applications and relations between algebraic and geometri-
cal properties of quivers. The digraphs BS of the partially ordered set of simplexes
of a simplicial complex S has the graph homology that are isomorphic to simplicial
homology of S. In the present paper, we introduce a digraph GS , that is a subgraph
of BS , with a natural cubical structure and whose homologies are isomorphic to the
simlicial homologies of S.
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1 Introduction

In a recent paper [7] the authors developed the theory of homology of path complexes,
that can be considered as a natural generalization of a simplicial homology theory (see,
for example, [9], [11], and [12]). This approach allows to define the notion of homology
for digraphs that is dual to the notion of cohomology of [2], [3], and [8].

Any graph can be naturally regarded as an one-dimensional simplicial complex, so that
its simplicial homologies of all dimensions n ≥ 2 are trivial. However, as it was shown in
[7] on many examples, the graph homologies of a digraph can be highly non-trivial for any
n, as this theory detects automatically higher dimensional substructures of the digraph,
for example, a graphical simplex or cube with an appropriate direction of edges.

Generally speaking, a digraph G can be turned into a simplicial complex S in many
ways, by spanning on some of its cliques1 higher dimensional simplexes, that however do
not have to match the higher dimensional substructures of G that are predetermined by
G (see, for example, [10] and [1]).

On the other hand, any simplicial complex S determines naturally a (undirected)
graph S1 that is the 1-skeleton of S. The graph S1 can be turned into a digraph by
choosing arbitrarily directions of the edges. Simple examples show that the simplicial
homologies of S and the graph homologies of S1 can be different regardless of the choice
of the digraph structure on S1 (see Example in Section 3.3).

Now let S be a finite simplicial complex. Consider a graph BS with the set of vertices
V that coincides with the set of simplexes from S and we have an arrow σ → τ if and only
if (τ ⊂ σ)&(τ 6= σ). Then the dual chain complex to the complex for graph cohomology
of BS is isomorphic to the simplicial chain complex of the first barycentric subdivision of
S (see [8]).

In this paper, for any finite simplicial complex S we construct in a canonical natural
way another finite digraph GS such that the homology groups H∗(S) and H∗(GS) over a
field K are isomorphic, where H∗ (S) refers to the simplicial homologies of S and H∗ (GS)
refers to the graph homologies of GS. The digraph GS is a subgraph of BS, and it has
a natural cubical structure associated with a certain cubical complex. In particular, this
provides a possibility of computing homologies of complicated cubical graphs.

The set of vertices of GS coincides with the set of all simplexes from S, and two
simplexes s, t are connected in GS by a directed edge s→ t if and only if

s ⊃ t and dim s = dim t + 1. (1.1)

1A clique in a graph is a subset of its vertices such that every two vertices in the subset are connected
by an (undirected) edge.
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(a)  simplicial complex S  (b) digraph GS based on BS 

(d)  cubical complex QS  (c) abstract digraph GS 

Figure 1: A simplicial complex S, the digraph GS realized on the barycenters and ab-
stractly, and the cubical complex QS

The graph GS can be realized geometrically as follows. Denote by bs the barycenter of a
simplex s ∈ S, and consider the set BS of the barycenters of all s ∈ S. Define the edges
bs → bt between two barycenters by the same rule (1.1), which makes BS into a digraph
(see Fig. 1(b)).

Furthermore, it is not difficult to see that BS is an 1-skeleton of a natural cubical
complex associated with S, that will be denoted by QS. More precisely, QS can be
constructed as follows. For each simplex s ∈ S consider a full barycentric subdivision
sb of s and for any vertex v of s take the union of all the elements of sb containing v.
This union is topological cube, and the family of all such cubes of all simplexes s ∈ S
forms a cubical complex QS that is a cubillage of S (cf. [4, §5]). Thus we obtain new
relation between graph homologies, cubical lattices of topological spaces (see [4] and [6]
for physical applications of cubical lattices).

The complexes S and QS have the same topological realization, which implies that
their cell homologies are the same. On the other hand, we prove in Section 5 that the
cell homology chain complex of QS and the graph homology chain complex of GS are
isomorphic, which implies the isomorphism of H∗ (S) and H∗ (GS).

It is worth mentioning that the assignment S 7→ GS is a functor from the category of
simplicial complexes with inclusion maps to the category of digraphs with inclusion maps.

In Section 2, we give necessary preliminary material about simplicial and cubical
complexes and their homology properties following [5] and [12]. In particular, we discuss
in details the procedure of constructing of the cubical complex QS mentioned above. In
Section 3 we give a brief account of the graph homology theory following [7]. In Section 4,
we construct the digraph GS and describe explicitly the associated chain complex, using
specific properties of the graph GS. Finally, in Section 5 prove the main result – Theorem
5.1.
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2 Simplicial and cubical complexes

In this section we state necessary material about simplicial and cubical complexes and
describe the construction of a cubical complex associated with a given simplicial complex.
The details can be found in [12] and [5].

By an n-dimensional simplex we mean a non-degenerate affine image of a standard
simplex

Δn =
{
(x0, x1, ..., xn) ∈ Rn+1 : x0 + x1 + ... + xn = 1, xi ≥ 0 for all i = 0, ..., n

}

in some space RN . Recall, that a finite simplicial complex S is a finite family of simplexes
in RN (possibly, of various dimensions) such that the following conditions are satisfied:

1. if S contains a simplex s then S contains all the faces2 of s;

2. if s1, s2 are two simplexes from S then the intersection s1 ∩ s2 is either empty or a
simplex from S.

Let us describe a less known notion of a cubical complex. A standard n-dimensional
cube In is defined for n ≥ 1 by:

In = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n},

and for n = 0 by I0 = {0}. A n-dimensional cube q is a non-degenerate piecewise linear
image of In in some RN . A k-dimensional face of In is any of the k-cubes

{(x1, . . . , xn) ∈ In : xi1 = ε1, ..., xin−k
= εn−k}

where 1 ≤ i1 < ... < in−k ≤ n and εj = 0 or 1, and a k-dimensional face of q is the image
under the same mapping In → RN of one of the k-dimensional faces of In.

A finite cubical complex Q is a finite collections of cubes in some RN such that

(i) if Q contains a cube q then Q contains all the faces of q;

(ii) if q1, q2 are two cubes from Q then the intersection q1 ∩ q2 is either empty or a cube
from Q.

In this paper we will consider only finite simplicial and cubical complexes, so that the
adjective “finite” will be omitted. Clearly, both simplicial and cubical complexes have an
underlaying structure of a topological space and even a structure of a polyhedron. Denote
by |S| the union of all simplexes from a simplicial complex S and similarly by |Q| – the
union of all cubes from Q. Both |S| and |Q| will be regarded as topological spaces with
the induced topology from the ambient space RN .

Fix a field K. It is well known that each simplicial complex S gives rise to a chain
complex C∗ (S) over K with a boundary operator ∂, and, hence, to the simplicial homolo-
gies H∗ (C∗ (S)). The construction of cubical homologies is not commonly known and will
be outlined below. In in the essence, one obtains a cubical chain complex C∗ (Q) over K

2Contrary to a common convention, we do not regard ∅ as a face.
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2-simplex s 

vertex v 

2-cube qs,v 

Figure 2: Construction of a cube qs,v

with a boundary operator ∂ and the corresponding cubical homologies H∗ (C∗ (Q)) . In
the both cases one has the fundamental isomorphisms of homology groups

H∗ (C∗ (S)) ∼= H∗ (|S|) and H∗ (C∗ (Q)) ∼= H∗ (|Q|) (2.1)

where H∗ (|S|) and H∗ (|Q|) are the singular homologies of the topological spaces |S| and
|Q|, respectively.

For any simplicial complex S, we will construct an associated cubical complex QS with
the same underlying topological space, that is,

|S| = |QS| . (2.2)

Denote by Sb the barycentric subdivision of S that is defined as follows. For any simplex
s ∈ S let us connect its barycenter by segments to the barycenters of all the faces of s
thus dividing s into a collection sb of smaller simplexes of the same dimension. Then set
Sb =

⋃
s∈S sb. It is easy to see that Sb is also a simplicial complex, and |S| =

∣
∣Sb
∣
∣. Now

for any k-simplex s ∈ S and a vertex v of s define a set qs,v by

qs,v =
⋃

{t∈sb: v∈t}
t,

that is, qs,v is the union of all simplexes from sb that contain the vertex v. It is not difficult
to see that qs,v is a k-cube (see [4] and [13] for the details). It is also clear that s is the
union of all the cubes qs,v over all vertices v of s (cf. Fig. 2).

The collection of all cubes {qs,v} over all s ∈ S and v ∈ s is then a cubical complex
that will be denoted by QS. It is clear from the construction that it satisfies (2.2), which
implies by (2.1) that

H∗ (C∗ (S)) ∼= H∗ (C∗ (QS)) . (2.3)

By construction, the set of vertices of QS coincides with the set BS of the barycenters
of all simplexes of S. The one-dimensional skeleton of the cubical complex QS can be
described as follows. Given two simplexes s, t of S, let us connect their barycenters bs

and bt by a segment [bs, bt] if and only if s = t ∪ {v} for some vertex v /∈ t. Then the
one-dimensional skeleton of QS is given by the union of all such segments [bs, bt] (cf. Fig.
1).

Now we briefly describe (to the extend that we need in the proof) construction of
homology groups over a field K of a cubical complex Q that is a particular case of homology
groups of cell complexes. An orientation in Rn is one of the two equivalence classes of the
basis in Rn, where two basis ~f = {f1, . . . , fn} and ~g = {g1, . . . , gn} are called equivalent if
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the matrix A of transformation A~f = ~g has a positive determinant. The orientation that
is determined by a basis ~f will be denoted by [~f ]. An orientation of a cubical complex Q
is determined by an arbitrary choice of orientations of all constituent cubes of Q. Let D
be an arbitrary n-cube from Q. Let ϕ : D → In be a piecewise linear mapping that exists
by definition of a n-cube, and [~f ] = [{f1, . . . , fn}] be an orientation of Rn. Then the pair

(ϕ, [~f ]) determines an orientation of D.
Let D′ be a (n− 1)-dimensional face of D, and let its orientation be given by a pair

(ψ, [~g]) where ψ : D′ → In−1 is a piecewise linear mapping and ~g = {g1, g2, . . . , gn−1} is
a basis of Rn−1. Let us identify In−1 with a face of In by means of the following through
map:

Φ : In−1 ψ−1

→ D′ inclusion
→ D

ϕ
→ In.

Considering In−1 as a face of In, denote by g0 the outer normal unit vector to In−1. The
map Φ induces the orientation

[{g0, dΦ (g1) , dΦ (g2) , ..., dΦ (gn−1)}]

of Rn. If this orientation is the same as [~f ] then we set O (D,D′) = 1,and if it is different,
then set O (D,D′) = −1. We refer to O (D,D′) as the relative orientation of D′ in D.

In order to define the homology groups of a cubical complex Q, fix first an orientation
of every cube of the complex, where we do not assume that the orientations of the cubes
are agreed in any way. For any n ≥ 0, let Cn(Q) be the space of n-chains of Q, that is,
the K-linear space formed by all formal linear combinations of all n-dimensional cubes of
Q. Also set C−1 (Q) = {0}. Define for any n ≥ 1 the boundary map

∂ : Cn (Q)→ Cn−1 (Q)

first for any n-cube D ∈ Q by

∂D =
∑

D′

O (D,D′) D′, (2.4)

where the sum is taken over all (n− 1)-faces D′ of D, and then extend ∂ to all elements
of Cn (Q) by linearity. For n = 0 set by definition ∂D = 0.

Then one proves that ∂2 = 0 so that C∗ (Q) = {Cn (Q)} with the boundary maps ∂
is a chain complex, and the homology groups of the chain complex C∗ (Q) are isomorphic
to H∗ (|Q|) (see [12, §1.5.2]).

3 Homologies of digraphs

In this section we cite a necessary material from [7]. As before, K is a fixed field.

3.1 Forms and paths on finite sets

Let V be a finite set, whose elements will be called vertices. A p-form on V is a K-valued
function on V p+1. For example, 0-forms are just functions on V, 1-forms are functions
on V × V , etc. The set of all p-forms is a linear space over K that is denoted by Λp (V )
or simply by Λp.
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Denote by ei0...ip the p-form that takes value 1 at the point (i0, i1, ..., ip) and 0 at all
other points. Let us refer to ei0...ip as an elementary p-form. The family {ei0...ip} of all
elementary p-forms forms a basis in Λp and, for any ω ∈ Λp, we have an expansion

ω =
∑

i0,...,ip∈V

ωi0...ipe
i0...ip

where ωi0...ip = ω (i0, ..., ip) .
Define the exterior derivative d : Λp → Λp+1 by

(dω)i0...ip+1
=

p+1∑

q=0

(−1)q ωi0...îq ...ip+1
, (3.1)

where ω ∈ Λp and the hat îq means omission of the index iq. For example, for a function
f ∈ Λ0 we have

(df)ij = fj − fi,

and for 1-form ω ∈ Λ1

(dω)ijk = ωjk − ωik + ωij .

It follows from (3.1) that

dei0...ip =
∑

k∈V

p+1∑

q=0

(−1)q ei0i1...iq−1kiq ...ip .

For example, we have

dei =
∑

k∈V

(
eki − eik

)
,

deij =
∑

k∈V

(
ekij − eikj + eijk

)
.

An easy calculation shows that, for any p ≥ 0 and all ω ∈ Λp,

d2ω = 0.

An elementary p-path on a finite set V is any (ordered) sequence i0, ..., ip of p + 1
vertices of V that will be denoted by i0...ip or by ei0...ip . Denote by Λp = Λp (V ) the linear
space of all formal linear combination of all elementary p-paths ei0...ip with coefficients
from K. The elements of Λp are called p-paths. By definition, each p-path v ∈ Λp has the
form

v =
∑

i0,...,ip∈V

vi0i1...ip ei0i1...ip ,

where vi0i1...ip are the coefficients of v. For example, 0-paths are linear combinations of
the vertices ei:

v =
∑

i∈V

viei,
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and 1-paths are linear combinations of pairs of vertices eij :

v =
∑

i,j∈V

vijeij .

For any p-form ω ∈ Λp and p-path v ∈ Λp there is a natural pairing

(ω, v) :=
∑

i0,...,ip∈V

ωi0...ipv
i0...ip ,

which implies, in particular, that the spaces Λp and Λp are dual.
The operator d : Λp → Λp+1 has then the dual boundary operator ∂ : Λp+1 → Λp that

is given by

∂ei0...ip+1 =

p+1∑

q=0

(−1)q ei0...îq ...ip+1
. (3.2)

For example,

∂eij = ej − ei

∂eijk = ejk − eik + eij .

It follows from (3.2) that, for any v ∈ Λp+1,

(∂v)i0...ip =
∑

k∈V

p+1∑

q=0

(−1)q vi0...iq−1kiq ...ip

This formula holds for all p ≥ 0. We need also the operator ∂ : Λ0 → Λ−1 where we set
Λ−1 = {0} and ∂v = 0 for all v ∈ Λ0.

If v is an 1-path, then ∂v is given by

(∂v)i =
∑

k∈V

(
vki − vik

)
.

If v is a 2-path then

(∂v)ij =
∑

k∈V

(
vkij − vikj + vijk

)
.

By duality, we have (dω, v) = (ω, ∂v) for any ω ∈ Λp−1 and any v ∈ Λp. It follows
that, for any p-path v,

∂2v = 0.

An elementary p-path ei0...ip (the same is i0...ip) is called regular if ik 6= ik+1 for all
k. We would like to define the boundary operator ∂ on the subspace of Λp spanned by
regular elementary paths. Just restriction of ∂ does not work as ∂ is not invariant on this
subspace.

Let Ip be the subspace of Λp that is spanned by all irregular ei0...ip . Consider the
quotient space

Rp = Rp (V ) = Λp/Ip.
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The elements of Rp are the equivalence classes v mod Ip where v ∈ Λp, and they are
called regularized p-paths. One verifies that the boundary operator ∂ is well-defined for
regularized paths. Clearly, Rp is linearly isomorphic to the space of regular p-paths:

span
{
ei0...ip : i0...ip is regular

}
.

For simplicity of notation, we will identify Rp with this space, by setting all irregular
p-paths to be equal to 0.

3.2 Forms and paths on digraphs

A digraph is a pair G = (V,E) where V is an arbitrary set and E is a subset of V ×V \diag .
In this paper the set V will be always assumed non-empty and finite. The elements of V
are called vertices and the elements of E are called (directed) edges.

The edge starting at a vertex a and ending at b will be denoted by ab. The fact that
there exists an edge starting at a and ending at b will be denoted by a→ b.

Let i0...ip be a regular elementary p-path on V . It is called allowed if ik−1 → ik for
any k = 1, ..., p, and non-allowed otherwise. We say that an elementary p-form ei0...ip is
allowed if i0...ip is allowed, and non-allowed if i0...ip is non-allowed.

We would like to reduce the space Rp of regular p-paths on V to adapt it to the
digraph structure G. Denote by Ap = Ap (G) the subspace of Rp spanned by the allowed
elementary p-paths, that is,

Ap = span
{
ei0...ip : i0...ip is allowed

}
.

The elements of Ap are called allowed p-paths. Note that A0 consists of linear combination
of vertices, and A1 consists of linear combinations of the edges.

In general, the spaces Ap are not invariant for operator ∂. For example, if ab and bc
are edges then eabc ∈ A2 while

∂eabc = ebc − eac + eab

is non-allowed if ac is not an edge.
Consider the following subspace of Ap

Ωp = Ωp (G) = {v ∈ Ap : ∂v ∈ Ap−1} . (3.3)

Then the family {Ωp} is ∂-invariant. Indeed, if v ∈ Ωp then ∂v ∈ Ap−1 and ∂ (∂v) = 0 ∈
Ap−2 whence ∂v ∈ Ωp−1. The elements of Ωp are called ∂-invariant p-paths.

We obtain a chain complex

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (3.4)

and the notion of homology groups of the digraph G:

Hp (G) := ker ∂|Ωp

/
Im ∂|Ωp+1 .

Let G′ = (V ′, E ′) be a subgraph of G, that is, V ′ is a subset of V and

E ′ = {ab ∈ E : a, b ∈ V ′} . (3.5)
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It is frequently useful to know that any ∂-invariant path v in G′ is also ∂-invariant in G.
Indeed, any allowed path in G′ is allowed in G by (3.5). Denoting by ∂′ the boundary
operator in G′, let us verify that ∂′v = ∂v. Indeed, it follows from (3.2) that, for an
elementary p-path ei0...ip in G′, both ∂′ei0...ip and ∂ei0...ip are determined by the (p− 1)-
paths ei0...îq ...ip+1

that are the same in G′ and G. Hence, ∂′v = ∂v follows, which by (3.3)
implies that v is ∂-invariant in G.

Now we would like to reduce the space Rp of regular p-forms on V according to the
digraph structure. Denote by Ap = Ap (G) the subspace of Rp, spanned by the allowed
elementary p-forms:

Ap = span
{
ei0...ip : i0...ip is allowed

}
,

and by N p = N p (G) the subspace of Rp, spanned by the non-allowed elementary p-forms:

N p = span
{
ei0...ip : i0...ip is non-allowed

}
.

Consider the following subspace of Rp:

J p = J p (G) = N p + dN p−1, (3.6)

and observe that dJ p ⊂ J p+1. Hence, the operator d is well-defined on the quotient spaces

Ωp = Ωp (G) = Rp /J p .

The elements of Ωp are called d-invariant p-forms. In other words, the elements of Ωp are
the equivalence classes of regular p-forms under the following equivalence relations:

ω1 ' ω2 ⇔ ω1 − ω2 ∈ J
p. (3.7)

Using (3.6), we can rewrite the definition of ' more explicitly as follows:

ω1 ' ω2 ⇔ ω1 − ω2 = ϕ + dψ for some ϕ ∈ N p, ψ ∈ N p−1. (3.8)

Since Rp = Ap ⊕ N p, every equivalence class contains a representative from Ap, so
that Ωp is the space of equivalence classes of allowed p-forms.

We obtain a cochain complex

0 −→ Ω0 d
−→ . . .

d
−→ Ωp d

−→ Ωp+1 d
−→ . . . (3.9)

which allows us to define the cohomologies of the digraph G by

Hp (G) := ker d|Ωp /Im d|Ωp−1 .

It is possible to show that the spaces Ωp (G) and Ωp (G) are dual (in particular, their
dimensions are the same), and so are the operators d and ∂. Therefore, the cochain
complex (3.9) and the chain complex (3.4) are dual, and so are the K-linear spaces Hp (G)
and Hp (G). We will refer to Hp (G) and Hp (G) as the graph (co)homologies, in order to
distinguish from other theories of (co)homologies.
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3.3 Some examples

Let G = (V,E) be a finite digraph as before. The space Ω0 has always the basis {ea}a∈V

and Ω1 has the basis {eab}ab∈E . Let us give examples of ∂-invariant paths in Ωn with
n ≥ 2.

Example 3.1 Let us call by a triangle a sequence {a, b, c} of three distinct vertices a, b, c
of G such that ab, bc, ac are edges:

a• → •c
↘
•
b

↗ . (3.10)

The triangle determines a 2-path eabc ∈ Ω2 as eabc ∈ A2 and

∂eabc = ebc − eac + eab ∈ A1.

More generally, a graphical n-simplex is a sequence {ak}
n
k=0 of n+1 distinct vertices from

V such that ai → aj for all i < j. Then ea0...an and ∂ea0...an are allowed so that the n-path
ea0...an is ∂-invariant. One can say that this n-path determines the simplex.

Example 3.2 Let us called by a square a sequence {a, b, b′, c} of four distinct vertices
a, b, b′, c ∈ V such that ab, bc, ab′, b′c are edges:

b′• −→ •c

↑ ↑
a• −→ •b

The square determines a 2-path

v = eabc − eab′c ∈ Ω2

as v ∈ A2 and

∂v = (ebc − eac + eab)− (eb′c − eac + eab′)

= eab + ebc − eab′ − eb′c ∈ A1.

Example 3.3 More generally, a graphical n-cube is a set C of 2n vertices of V that any
vertex α ∈ C can be identified with a sequences (α1...αn) of binary digits so that α→ β
if and only if the sequence (β1...βn) is obtained from (α1...αn) by replacing a digit 0 by
1 at exactly one position. The digraph • → • is an 1-cube, a square is a 2-cube, and a
3-cube is shown on Fig. 3.3.

With any graphical n-cube one can associate a ∂-invariant n-path as it was shown in
[7, Example 6.7] (cf. Section 4.2 below). For example, for 3-cube as on Fig. 3.3 this is

v = e0457 − e0157 + e0137 − e0467 + e0267 − e0237.

It is easy to see that

∂v = (e457 − e467)− (e013 − e023) + (e015 − e045)

− (e237 − e267) + (e137 − e157)− (e026 − e046) .

In other words, ∂v is an alternating sum of six 2-paths each of them corresponding to a
geometric face of the cube. This observation will be put in a general context in Section
4.2, and it is a key to the proof of our main Theorem 5.1.
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4=(001) 5=(101) 

7=(111) 6=(011) 

Figure 3: A graphical 3-cube. The binary representations of the vertices are shown in
brackets
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Figure 4: A digraph with linearly dependent squares

Example 3.4 It is clear that the ∂-invariant 2-paths associated to different triangles,
are linearly independent. Let us give an example showing that the ∂-invariant 2-paths
associated to different squares can form a linear dependence. Consider the digraph on
Fig. 3.4.

It has three squares {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4} that give rise to the following
three ∂-invariant 2-paths

e014 − e024, e014 − e034, e024 − e034,

that are obviously linearly dependent. It is possible to show that in this case dim Ω 2 = 2
(cf. [7, Proposition 5.2]).

Example 3.5 Consider a (undirected) graph G on Fig. 3.5 with 6 vertices and 12 edges.
As an one-dimensional simplicial complex, G has simplicial homologies H∗ (C∗ (G)).

On the other hand, let us introduce arbitrarily a set D of directions on the edges of G, so
that (G,D) is a digraph and, hence, has the graph homologies H∗ (G,D). We claim that
for, any choice of D,

H1 (C∗ (G)) 6= H1 (G,D) . (3.11)

As above let {Ωn} be the chain complex of the digraph (G,D) . In particular, dim Ω0 =
6 that is the number of vertices, and dim Ω1 = 12 that is the number of edges. By
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Figure 5: Graph G in two representations: embedded on the Möbius band (left) and in
R3 (right). On the left picture the vertices with the same number are merged.

homological algebra, we have the following universal identity

dim H1 (Ω)− dim H0 (Ω) = dim Ω1 − dim Ω0 − dim ∂Ω2

(see, for example, [7, Lemma 3.4]) and an analogous identity for the simplicial homologies.
Since the graph G is connected, we have dim H0 (Ω) = 1 (cf. [7, Proposition 4.2]). It
follows that

dim H1 (Ω) = 7− dim ∂Ω2.

A similar formula holds for the simplicial homologies:

dim H1 (C∗ (G)) = 7− dim ∂C2 (G) .

Since C2 (G) is trivial, we obtain

dim H1 (C∗ (G)) = 7

(the same can be seen using the homotopy invariance of simplicial homologies as the 1-
dimensional simplicial complex G is homotopy equivalent to a wedge sum of seven circles
S1).

It remains to show that the space ∂Ω2 is non-trivial for any choice D of the edge
directions, which will yield

dim H1 (G,D) ≤ 6

and, hence, (3.11). For that it suffices to verify that there is at least one triangle {a, b, c}
in (G,D) in the sense of Example 3.1 since then eabc ∈ Ω2 and ∂eabc 6= 0. Indeed, let us
try to define directions D on the edges of G so that (G,D) contains no triangles. Then

any undirected triangle in G must become a cycle
• ←− •

↘
•
↗ or

• −→ •
↖
•
↙ rather than

a triangle (3.10).
Given a direction of the edge 03, this requirement determines uniquely the directions

of all other edges (cf. Fig. 3.5), up to the edge 23. However, with any direction on 23 the
sequence {0, 2, 3} will become a triangle, which finishes the proof.
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Figure 6: An attempt to introduce on G the direction of edges. Any direction of the edge
23 will create a triangle

4 Digraphs associated with simplicial complexes

4.1 Cubical graphs

Let M be a finite set with m elements. Let us introduce in the power set 2M of M
the structure of a digraph as follows: for arbitrary two sets s1, s2 ∈ 2M define the edge
between them by the rule

s1 → s2 ⇔ s2 is obtained from s1 by removing of exactly one element. (4.1)

Denote this digraph by GM . Let us fix an enumeration of the elements of M by integers
0, 1, ...,m− 1, in fact, identify M with the set {0, 1, ...,m − 1}. For any set s ∈ 2M define
its anti-indicator N (s) by

N (s) =
∑

i∈M\s

2i.

For example, N (∅) = 2m − 1 and N (M) = 0. Clearly, if s1 → s2 then

N (s2) = N (s1) + 2i (4.2)

where i is the unique element in s1 \ s2.
Let S be a family of subsets of M , that is, S ⊂ 2M . Denote by GS,M the digraph with

the vertex set S, whose edges are all the edges from GM with the endpoints in S. If no
confusion arrises, we write shortly GS instead of GS,M .

Definition 4.1 The digraph GS is called cubical if the family S ⊂ 2M possesses the
following property: if s, t are two elements of S then any subset u of M such that s ⊂ u ⊂ t,
is also an element of S.

For example, the full digraph GM is a cubical graph. The reason for the term “cubical”
is that GM is, in fact, a graphical m-cube. Indeed, with each element s ∈ 2M consider
N (s) as a binary number, which provides an one-to-one correspondence between 2M and
the sequences of m binary digits. Moreover, s1 → s2 means by (4.2) that N (s2) is obtained
from N (s1) by replacing one binary digit 0 by 1. Hence, GM is a graphical m-cube (cf.
Fig. 4.1). In fact, GM is nothing other than the inverted Hasse diagram of the partially
ordered set 2M .
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N({0,1,2})=0 

{0,1,2} 
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Figure 7: The cubical graph GM for M = {0, 1, 2} drawn in two ways. On the right
picture each vertex s is assigned the number N (s)

Example 4.2 With any simplicial complex S we associate a cubical digraph as follows.
Denote by M the set of all vertices of S (with a fixed enumeration as above). Then
any k-simplex in S can be regarded as a (k + 1)-subset of M , and S can be regarded
as a subset of 2M . By the above construction, we obtain a digraph GS. It satisfies the
definition of a cubical graph because by definition of a simplicial complex, if a subset s of
M is a simplex from S then any non-empty subset s′ of s is also a simplex of S.

Equivalently, one can describe the graph GS of a simplicial complex S as follows. The
set of vertices of GS coincides with the set of all simplexes from S. The edges in GS are
defined by (4.1) or, equivalently, by

s→ t⇔ s ⊃ t and dim s = dim t + 1, (4.3)

where s, t are simplexes from S (cf. Fig. 1 in Introduction).

In this section we prove certain properties of general cubical digraphs that will be
applied in the proof of Theorem 5.1 to special cubical digraphs that arise from simplicial
complexes.

4.2 ∂-invariant paths associated with cubes

Fix a set M = {0, 1, ...,m − 1} as above, and consider the digraph GM . Let {αk}
n
k=0 be

an allowed path in GM , that is, αk−1 → αk for all k = 1, ..., n. Define a non-negative
integer σ (α) as follows. Since αk−1 → αk, there is a unique value ik ∈ {0, 1, ...,m − 1}
such that

αk−1 \ αk = {ik} ,

or, equivalently,
N (αk) = N (αk−1) + 2ik . (4.4)

Then define σ (α) as the number of inversions in the sequence {i1, ..., in} (cf. Fig. 4.2).

Lemma 4.3 Let α = {αk}
n
k=0 be an allowed path in GM .
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Figure 8: For the path α = 0237, the sequence {i1, i2, i3} is {1, 0, 2}, and it has one
inversion. Hence, σ (α) = 1

(a) Denote by α′ the truncated sequence {αk}
n
k=1 so that α′ is an allowed path. Then

the difference σ (α)− σ (α′) depends only on α0, α1, αn.

(b) Denote by α′ the truncated sequence {αk}
n−1
k=0 so that α′ is an allowed path. Then

the difference σ (α)− σ (α′) depends only on α0, αn−1, αn

Proof. Indeed, let ik be as in (4.4). Then σ (α) is the number of inversions in the se-
quence {i1, i2, ..., in} while σ (α′) is the number of inversions in the sequence {i2, i3, ..., in}.
Therefore, the difference σ (α) − σ (α′) is the number of inversions of i1 in {i1, i2, ..., in},
that is, the number of the values i2, ..., in that are smaller than i1. Since by (4.4)

N (αn)−N (α1) = 2i2 + 2i3 + ... + 2in ,

and all ik are different, the values of i2, ..., in (but not the order) are uniquely determined
by N (αn)−N (α1). Since i1 is determined by N (α1)−N (α0), the number of the values
i2, ..., in that are smaller than i1 is determined by N (αn)−N (α1) and N (α1)−N (α0),
which finishes the proof of (a). Part (b) is proved similarly.

For any two subsets s, t of M , such that t ⊂ s, denote by Ds,t the family of all subsets
u ⊂ M such that t ⊂ u ⊂ s. We consider Ds,t as a digraph with the edges as in (4.1).
Clearly, Ds,t is a subgraph of GM and Ds,t is isomorphic to the full digraph Gs\t so that
Ds,t is a graphical n-cube, where n = |s| − |t|. Note that if S ⊂ 2M satisfies the property
of Definition 4.1 and s, t are two elements of S such that t ⊂ s then Ds,t is a subgraph of
S.

For any n-cube Ds,t ⊂ GM denote by P (Ds,t) the set of all allowed paths {αk}
n
k=0

such that α0 = s and αn = t. Then t ⊂ αk ⊂ s for any k, so that all αk belong to Ds,t.
Any path α ∈ P (Ds,t) is called a full chains in Ds,t. With each n-cube D = Ds,t let us
associate a n-path ω = ω (D) by

ω (D) =
∑

α∈P (D)

(−1)σ(α) eα. (4.5)
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Since each n-path eα = eα0...αn is allowed in D, the n-path ω (D) is also allowed. We will
show below that ω (D) is, in fact, is ∂-invariant in D.

Let D = Ds,t be an n-cube in GM . For any (n− 1)-cube D′ ⊂ D define the number
σ (D,D′) as follows. For D′ there are two possibilities:

1. either D′ = Ds′,t where s→ s′,

2. or D′ = Ds,t′ where t′ → t.

In the first case consider any full chain α ∈ P (D) with α1 = s′ and set α′ = {αk}
n
k=1

so that α′ ∈ P (D′) . Then define

σ (D,D′) = σ (α)− σ (α′) . (4.6)

In the second case consider a full chain α ∈ P (D) with αn−1 = t′ and set α′ = {αk}
n−1
k=0

so that α′ ∈ P (D′). Then define

σ (D,D′) = (−1)n (σ (α)− σ (α′)) . (4.7)

Note that by Lemma 4.3 the value of σ (D,D′) in the both cases does not depend on the
choice of α: in the first case σ (D,D′) depends on s, s′, t, in the second case – on s, t′, t.

Lemma 4.4 For any n-cube D in GM we have

∂ω (D) =
∑

D′⊂D

(−1)σ(D,D′) ω (D′) (4.8)

where the sum is taken over all (n− 1)-cubes D′ ⊂ D. Consequently, ω (D) is a ∂-
invariant path in the digraph D.

Proof. We have

∂ω =
∑

α

(−1)σ(α) ∂eα0α1...αn

=
∑

α

(−1)σ(α)
n∑

k=0

(−1)k eα0...α̂k...αn

=
∑

α

(−1)σ(α) eα1...αn + (−1)n
∑

α

(−1)σ(α) eα0...αn−1

+
n−1∑

k=1

(−1)k
∑

α

(−1)σ(α) eα0...α̂k...αn .

Observe that for any k = 1, ..., n − 1
∑

α

(−1)σ(α) eα0...α̂k...αn = 0.

Indeed, it suffices to show that
∑

αk

(−1)σ(α) eα0...α̂k...αn = 0.
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Since αk−1 and αk+1 are fixed, for αk there are only two possibilities, and σ (α) for these
two possibilities have different parity, so that the term eα0...α̂k...αn cancel out.

Denoting by s′ any successor of s and by t′ any predecessor of t, we obtain

∂ω =
∑

α

(−1)σ(α) eα1...αn + (−1)n
∑

α

(−1)σ(α) eα0...αn−1

=
∑

s′

∑

α:α1=s′

(−1)σ(α) eα1...αn + (−1)n
∑

t′

∑

αn−1=t′

(−1)σ(α) eα0...αn−1 .

The sequence α1...αn with α1 = s′ and αn = t determines a (n− 1)-subcube D′ = Ds′,t

of Ds,t. Denoting α′ = α1...αn that is a full chain of Ds′,t, we obtain

∑

α:α1=s′

(−1)σ(α) eα1...αn =
∑

α′∈P (D′)

(−1)σ(α) eα′
1...α′

n

=
∑

α′∈P (D′)

(−1)σ(α)−σ(α′) (−1)σ(α′) eα′
1...α′

n

= (−1)σ(σ,σ) ω (D′)

where we have used (4.6). Hence,

∑

α

(−1)σ(α) eα1...αn =
∑

D′⊂D

(−1)σ(D,D′) ω (D′) (4.9)

where the summation extends to all (n− 1)-cubes D′ ⊂ D with the same target t.
Similarly, a sequence α0...αn−1 with αn−1 = t′ determines a (n− 1)-subcube D′ = Ds,t′

of Ds,t. Denoting α′ = α0...αn−1 we obtain

(−1)n
∑

α′∈P (D′)

(−1)σ(α) eα′
0...α′

n−1
= (−1)σ(D,D′) ω (D′)

where we have used (4.7). Therefore,

(−1)n
∑

α

(−1)σ(α) eα0...αn−1 =
∑

D′⊂D

(−1)σ(D,D′) ω (D′) (4.10)

where the summation extends to all (n− 1)-cubes D′ ⊂ D with the same source s.
Combining together (4.9) and (4.10) we obtain (4.8).

Finally, since all ω (D′) are allowed paths in D, we obtain that ∂ω (D) is allowed and,
hence, ω is ∂-invariant.

4.3 Spaces of n-forms and n-paths on cubical graphs

The main result of this section is the following lemma.

Lemma 4.5 Let GS be a cubical graph based in a set M . Denote by Kn the number of
n-cubes that are contained in the graph GS. Then

dim Ωn (GS) = dim Ωn (GS) = Kn.
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Figure 9: A full chain α and its transposition α′ (dashed)

Remark 4.6 This statement is not true for a general digraph. Although any n-cube D
in an arbitrary digraph always gives rise to the ∂-invariant n-path ω (D) as in Lemma
4.4, the paths ω (D) associated with different cubes D can be linearly dependent as it was
shown in Example 3.4.

Proof. The identity of dim Ωn and dim Ωn is a consequence of the duality of these
spaces. As follows from Lemma 4.4, for any n-cube D from GS, the n-path ω (D) is
∂-invariant in D and, hence, in GS. If D1, D2, ..., DKn are all different n-cubes in GS then
the corresponding n-paths ω (Dj) are linearly independent because the sets of the basis
elements of Ωn that are used in each ω (Dj) are disjoint, which follows from the obvious
fact that the families P (Di) and P (Dj) of the full chains are disjoint provided i 6= j.
Hence, we obtain

dim Ωn ≥ Kn.

Let us prove that
dim Ωn ≤ Kn.

Any allowed n-path α in GS is a full chain in a n-cube Ds,t with s = α0 and t = αn.
Consider the associated allowed n-form eα = eα0...αn and show that if α and β are full
chains in the same cube Ds,t then

eα ' ±eβ (4.11)

(see (3.7) for the definition of the equivalence relation ').
Given a full chain α in Ds,t and some index k = 1, ..., n − 1, define another full chain

α′ as follows. Observe that the cube Dαk−1αk+1
is a square that has among the vertices

αk−1, αk, αk+1. Denote by α′
k the forth vertex of this square (see Fig. 4.3) and define α′

j

for j 6= k simply by setting α′
j = αj . Hence, we obtain a full chain α′ in Ds,t that will be

called the transposition of α at position k.
Let us show that

eα ' −eα′
. (4.12)

For that consider a regular form ψ = eα0...αk−1αk+1...αn where the index αk is dropped out,
and observe that ψ is non-allowed because αk−1αk+1 is not an edge (this is a consequence
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of the fact that GS contains no triangles). Next, we have

dψ =
∑

τ∈S

eτα0...αk−1αk+1...αn −
∑

τ∈S

eα0τα1...αk−1αk+1...αn + ... (4.13)

+ (−1)k−1
∑

τ∈S

eα0...αk−1ταk+1...αn (4.14)

+... + (−1)n
∑

τ∈S

eα0...αk−1αk+1...αnτ . (4.15)

All the terms in the right hand side of (4.13) and (4.15) are non-allowed because αk−1αk+1

is not an edge. The term in (4.14) is equal to

(−1)k−1
(
eα0...αk−1αkαk+1...αn + eα0...αk−1α′

kαk+1...αn

)
+ non-allowed terms,

where we have used the fact that the only values of τ for which αk−1 → τ → αk+1 are
τ = αk and τ = α′

k. It follows that

dψ = (−1)k−1
(
eα + eα′

)
+ ϕ

where both ϕ and ψ are non-allowed. By (3.8) this means that eα + eα′
' 0, which proves

(4.12).
Since any full chain β in Ds,t can be obtained from α by a sequence of transpositions,

we see that (4.11) follows from (4.12). Hence, all the full chains of the same cube determine
the same (up to a multiple) element of the space Ωn, which implies dim Ωn ≤ Kn.

5 Identity of homologies of S and GS

Now we can prove the main result of this paper stated in Introduction. All homologies
are considered over a fixed field K.

Theorem 5.1 For any finite simplicial complex S and for any n ≥ 0, we have isomor-
phism

Hn (C∗ (S)) ∼= Hn (GS) .

Proof. Let QS be the cubical complex associated with S, and C∗ (QS) be the corre-
sponding chain complex as described in Section 2. Then by (2.3) we have

Hn (C∗ (S)) ∼= Hn (C∗ (Q)) . (5.1)

As it follows from the construction of QS in Section 2 and GS in Section 4.1, the graph GS

can be embedded into QS so that the vertices of GS become the vertices of QS, and the
edges of GS become the 1-dimensional cubes in QS. Moreover, this embedding provides
a bijection between the set of (geometric) n-cubes in QS and the set of discrete n-cubes
in GS.

For simplicity of notation, let us identify the cubes from QS and GS. For example,
one can always assume that the vertices of GS are the barycenters of the simplexes from
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S (cf. Fig. 1). As before, denote by M = {1, ...,m} the set of vertices of S, so that any
simplex of S is determined by a subset of M .

Let us establish an one-to-one correspondence between the space Cn ≡ Cn (QS) of
n-chains on QS and the space Ωn of ∂-invariant n-paths on GS. Indeed, for any cube
D ∈ QS we have defined in (4.5) ω (D) ∈ Ωn. Extending the mapping ω by K-linearity,
we obtain a linear mapping ω : Cn → Ωn. As it follows from Lemma 4.5, this mapping is
bijective, so that the spaces Cn and Ωn are K-linearly isomorphic.

Let us show that the boundary operators ∂ on Cn and on Ωn commute with this
isomorphism, that is, the following diagram is commutative:

Cn−1
∂
←− Cn

↓ω ↓ω

Ωn−1
∂
←− Ωn

(5.2)

By (4.5) we have, for any n-cube D from QS,

∂ω (D) = ω

(
∑

D′⊂D

(−1)σ(D,D′) D′

)

,

where D′ runs over all (n− 1)-subcubes of D. Hence, it remains to show that

∑

D′⊂D

(−1)σ(D,D′) D′ = ∂D,

which by (2.4) amounts to verifying that (−1)σ(D,D′) coincides with the relative orientation
O (D,D′).

So far we have not yet defined any orientation of the cubes in QS. Let us choose the
orientation as follows. Each n-cube D has the form D = Ds,t where s and t are two
simplexes of S such that s ⊃ t and |s \ t| = n. Let us define a mapping ϕ : Ds,t → Rn

such that the image ϕ (Ds,t) is the unit cube In in Rn. It suffices to define ϕ on the
vertices of Ds,t and check that the images are all the vertices of In. Let us enumerate the
elements of the set s \ t (that are integers from 1 to m) in the increasing order as follows:
i1, ..., in. For any vertex u ∈ Ds,t,the set s \ u has the form

s \ u = {ik1 , ik2 , ..., ikl
}

where l = |s \ u| and k1 < k2 < ... < kl; in other words, the number N (u) satisfies the
identity

N (u)−N (s) = 2ik1 + ... + 2ikl . (5.3)

Denoting by e1, ..., en the standard basis in Rn, define ϕ (u) by

ϕ (u) = ek1 + ek2 + ... + ekl
. (5.4)

For example, for the vertex s the sequence
{
ikj

}
is empty, that is l = 0, and, hence,

ϕ (s) = 0, while for the vertex t the sequence
{
ikj

}l

j=1
coincides with the full sequence

{ik}
n
k=1 so that ϕ (t) = e1 + ... + en (cf. Fig. 5). Clearly, ϕ maps Ds,t onto In. Then

define the orientation of Ds,t by the sequence of vectors {e1, ..., en}.
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Figure 10: A 3-cube D = Ds,t embedded in R3, its face D′ = Ds′,t, a full chain (dashed)
from s to t, and the orientations of D,D′. For any vertex u of D, the set s \ u is written
near u.

Let D′ be a face of D attached to t, that is, D′ = Ds′,t with s→ s′. Then

N (s′) = N (s) + 2iγ

for some γ, which implies that ϕ (s′) = eγ . For any vertex u ∈ D′, the expansion (5.3)
contains the term 2iγ , which implies that ϕ (u) in (5.4) contains the term eγ . Hence, u
lies on the face

In
γ = In ∩ {xγ = 1}

of In. Clearly, ϕ (D′) coincides with the set of all vertices of In
γ (cf. Fig. 5 where γ = 2).

Identifying Rn−1 with the hyperplane {xγ = 1} of Rn, we see that the orientation of D′

is determined by the sequence of vectors

{e1, ...eγ−1, eγ+1, ..en} .

Since eγ is the outer normal to D′, the relative orientation of D′ in D is given by the
orientation of the sequence

{eγ , e1, ..., eγ−1, eγ+1, ...en}

that is
O (D,D′) = (−1)γ−1 .

Let us show that
σ (D,D′) = γ − 1, (5.5)

that will settle the claim. Indeed, consider the sequence α = {αk}
n
k=0 such that α0 = s

and each of αk is obtained from the previous one by successive removal of the following
elements of M , in the specified order:

iγ , i1, ..., iγ−1, iγ+1, ..., in. (5.6)

In particular, αn = t and, hence, α is a full chain in D = Ds,t. Since α1 = s′, we see that
the sequence α′ = {αk}

n
k=1 is a full chain in D′ = Ds′,t. By definition, σ (α) is equal to

the number of inversions in the sequence (5.6), whence

σ (α) = γ − 1.
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Similarly, σ (α′) is equal to the number of inversions in the truncated sequence (5.6)
without the first term iγ , whence σ (α′) = 0. By (4.6) we obtain (5.5). The case when
the face D′ is attached to s is handled similarly.

The commutative diagram (5.2) implies that the chain complexes C∗ and Ω∗ are iso-
morphic. Hence, we have

Hn (C∗) ∼= Hn (Ω∗) ∼= Hn (GS) ,

which together with (5.1) finishes the proof.
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