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1 Laplace operator and heat kernel

A weighted manifold is a couple (M,μ) where M is a Riemannian manifold and μ
is a measure on M with smooth positive density with respect to the Riemannian
measure μ0; that is, dμ = h2dμ0 where h ∈ C∞ (M), h > 0.

The weighted Laplace operator Δ on M is defined by

Δ =
1

h2
div
(
h2∇

)
.

Observe that Δ is a symmetric operator with respect to measure μ. Indeed, for all
f, g ∈ C∞

0 (M),

∫

M

(Δf) gdμ =

∫

M

div
(
h2∇f

)
gdμ0 = −

∫

M

h2 〈∇f,∇g〉 dμ0
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whence ∫

M

(Δf) gdμ =

∫

M

fΔgdμ.

Furthermore, the operator Δ with the domain C∞
0 (M) is admits the Friedrichs

extension to a self-adjoint operator in L2 (M,μ), which will also be denoted by Δ.
The heat semigroup {exp (tΔ)}t≥0 is defined by means of spectral theory as a

family of operators exp (tΔ) in L2 (M,μ), and the heat kernel pt (x, y) is a unique
smooth positive function of t > 0 and x, y ∈ M such that

etΔf (x) =

∫

M

pt (x, y) f (y) dμ (y) ,

for all f ∈ L2 (M,μ) . It is known that pt (x, y) exists on any weighted manifold
and coincides with the minimal positive fundamental solution of the heat equation
∂u
∂t

= Δu on R+ × M . Besides, the heat kernel satisfies the following properties.

• symmetry: pt (x, y) = pt (y, x) .

• the semigroup identity:

pt+s (x, y) =

∫

M

pt (x, z) ps (z, y) dμ (z) . (1)

•
∫

M
pt (x, y) dμ (y) ≤ 1.

Recall that in Rn with the Lebesgue measure μ, Δ is the classical Laplace oper-
ator Δ =

∑n
k=1

∂2

∂x2
k
, and its heat kernel is given by the Gauss-Weierstrass formula

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

Explicit formulas for the heat kernel exist also in hyperbolic spaces Hn (when μ is
the Riemannian measure). For example in H3

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

. (2)

For arbitrary Hn the formula looks complicated, but it implies the following estimate,
for all t > 0 and x, y ∈ Hn:

pt (x, y) '
(1 + r + t)

n−3
2 (1 + r)

tn/2
exp

(

−λt −
r2

4t
−
√

λr

)

, (3)

where λ = (n−1)2

4
is the bottom of the spectrum of the Laplace operator on Hn.
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2 Uniform Faber-Krahn inequality

Let (M,μ) be a weighted manifold. For any relatively compact open set Ω ⊂ M ,
denote by λ1 (Ω) the smallest eigenvalue of the (weak) Dirichlet problem for Δ in
Ω.

Let Λ be a function on (0, +∞). We say that a weighted manifold (M,μ) sat-
isfies the (uniform) Faber-Krahn inequality with function Λ if, for any non-empty
relatively compact open set Ω ⊂ M ,

λ1 (Ω) ≥ Λ (μ (Ω)) . (4)

For example, Rn satisfies the Faber-Krahn inequality with function Λ (v) =
cv−2/n. Also, any Cartan-Hadamard manifold of dimension n satisfies the Faber-
Krahn inequality with the same function Λ (but possibly with a different constant c).
If K is a k-dimensional compact manifold then the Riemannian product M = Rm×K
satisfies the Faber-Krahn inequality with function

Λ (v) = c

{
v−2/n, v ≤ 1,
v−2/m, v ≥ 1,

(5)

where n = dim M = k + m. Any n-dimensional manifold with bounded geometry
satisfies the Faber-Krahn inequality with the function

Λ (v) = c

{
v−2/n, v ≤ 1,
v−2, v ≥ 1.

(6)

Theorem 1 Assume that (M,μ) satisfies the Faber-Krahn inequality (4) with a
positive continuous decreasing function Λ such that

∫

0

dv

vΛ (v)
< ∞. (7)

Then, for all t > 0,

sup
x∈M

pt (x, x) ≤
4

γ(t/2)
, (8)

where the function γ is defined by the identity

t =

∫ γ(t)

0

dv

vΛ(v)
. (9)

Approach to the proof. Assuming that (4) holds, one deduces the following
Nash type inequality: for any non-zero function u ∈ D,

∫

M

|∇u|2 dμ ≥ (1 − ε) ‖u‖2
L2Λ

(
2

ε

‖u‖2
L1

‖u‖2
L2

)

, (10)

for any ε ∈ (0, 1). Then one applies Nash’s argument: extending (10) to u = pt (x, ∙)
and noticing that

∫

M

|∇u|2 dμ = −
∫

M

uΔudμ = −
1

2

d

dt
‖u‖2

L2 (11)

and ‖u‖L1 ≤ 1, one obtains from (10) and (11) a differential inequality for ‖u‖2
L2 =

p2t (x, x), whence the result follows.
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3 Gaussian upper bounds

Fix some value D ∈ (0, +∞] and consider the following weighted integral of the heat
kernel:

E(t, x) :=

∫

M

p2
t (x, z) exp

(
d2(x, z)

Dt

)

dμ(z). (12)

A priori, the value of E (t, x) may be +∞. For example, in Rn E (t, x) = ∞ if D ≤ 2.

Lemma 2 For all x, y ∈ M , t > 0, the following inequality holds

pt(x, y) ≤
√

E(t/2, x)E(t/2, y) exp

(

−
d2(x, y)

2Dt

)

. (13)

Proof. For any points x, y, z ∈ M, let us denote α = d(y, z), β = d(x, z) and
γ = d(x, y). By the triangle inequality, α2 + β2 ≥ 1

2
γ2.

 

β 

α 

γ 

x 

z 

y 

Figure 1:

We have then

pt(x, y) =

∫

M

pt/2(x, z)pt/2(y, z)dμ(z)

≤
∫

M

pt/2(x, z)e
β2

Dt pt/2(y, z)e
α2

Dt e−
γ2

2Dt dμ(z)

≤

(∫

M

p2
t/2(x, z)e

2β2

Dt dμ(z)

) 1
2
(∫

M

p2
t/2(y, z)e

2α2

Dt dμ(y)

) 1
2

e−
γ2

2Dt

=
√

E(t/2, x)E(t/2, y) exp

(

−
d2(x, y)

2Dt

)

,

which was to be proved.

Lemma 3 If D ≥ 2 then for any x ∈ M , the function E(t, x) is decreasing in t. In
particular, if E(t, x) < ∞ for some t = t0 then E(t, x) < ∞ for all t > t0.

Approach to the proof. The proof of the monotonicity of E (t, x) amounts
to verifying that its time derivative is non-positive. It is essential for the proof that

|∇d (x, ∙)| ≤ 1, which implies that the function ξ (t, x) = d2(x,y)
Dt

satisfies

∂ξ

∂t
+

D

4
|∇ξ|2 ≤ 0. (14)

4



Theorem 4 Assume that, for some x ∈ M and for all t > 0,

pt(x, x) ≤
C

γ(t)
, (15)

where γ(t) is an increasing positive function on R+ satisfying the doubling condition:

γ (2t) ≤ Aγ (t) for all t > 0 (16)

for some constant A > 1. Then, for any D > 2 and all t > 0,

E(t, x) ≤
C ′

γ(εt)
, (17)

for some ε = ε (D) > 0 and C ′ = C ′ (A,C,D) .

By putting together Theorem 4 and Lemma 2, we obtain the following result.

Corollary 5 Assume that, for some points x, y ∈ M and for all t > 0,

pt(x, x) ≤
C

γ1(t)
and pt(y, y) ≤

C

γ2(t)
, (18)

where γ1 and γ2 are increasing positive function on R+ both satisfying (16). Then,
for any D > 2 and all t > 0,

pt(x, y) ≤
C ′

√
γ1(εt)γ2(εt)

exp

(

−
d2(x, y)

2Dt

)

. (19)

Corollary 6 On any weighted manifold (M,μ) and for any D > 2, E(t, x) is finite
for all t > 0, x ∈ M . Moreover, the function t 7→ E (t, x) is continuous and
monotone decreasing.

Sketch of proof. By Theorem 4 and Lemma 3, it suffices to prove that for
any x ∈ M there exist positive constants C and T such that

pt(x, x) ≤ Ct−n/2, for all 0 < t < T, (20)

where n = dim M .
Fix a small relatively compact open set Ω containing the point x. By compact-

ness argument, the weighted manifold (Ω, μ) satisfies the following Faber-Krahn
inequality: for all open sets U ⊂ Ω, such that μ (U) ≤ 1

2
μ (Ω),

λ1 (U) ≥ cμ (U)−2/n ,

where c > 0 depends on Ω. Hence, by a slight modification of Theorem 1, we obtain
that the heat kernel pΩ

t of (Ω, μ) satisfies the estimate

pΩ
t (x, x) ≤ Ct−n/2, for all t ∈ (0, T ) ,
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where C and T depend on Ω.
Consider the function

u(t, y) = pt(x, y) − pΩ
t (x, y)

and extend it to t ≤ 0 by setting u (t, y) ≡ 0. This function satisfies in R × Ω the
equation ∂u

∂t
= Δu and hence it is C∞-smooth in R× Ω. In particular, the function

t 7→ u(t, x) is bounded on [0, T ], say u(t, x) ≤ C. Then we obtain, for all 0 < t < T ,

pt(x, x) = pΩ
t (x, x) + u(t, x) ≤ Ct−n/2 + C,

whence (20) follows.

Theorem 7 On any weighted manifold (M,μ) and for any D > 2, there exists a
positive continuous function Φ(t, x) on R+ × M , which is decreasing in t and such
that the following inequality holds

pt(x, y) ≤ Φ(t, x)Φ(t, y) exp

(

−λmint −
d2(x, y)

2Dt

)

, (21)

for all x, y ∈ M and t > 0, where λmin is the bottom of the spectrum of −Δ on M .

Proof. Let us first set

Φ(t, x) =

√

E(
1

2
t, x). (22)

By Corollary 6, this function is finite. By Lemma 3, the function Φ(t, x) is decreasing
in t. By Lemma 2, we obtain

pt(x, y) ≤ Φ(t, x)Φ(t, y) exp

(

−
d2(x, y)

2Dt

)

. (23)

This estimates still does not match (21) because of the lack of the term λmint. To
handle it, let us find a positive smooth function h satisfying on M the equation

Δh + λh = 0

where λ = λmin. Consider the measure μ̃ defined by dμ̃ = h2dμ and the heat kernel
p̃t on the weighted manifold (M, μ̃) . Applying (23) on (M, μ̃), we obtain that there

exists a function Φ̃(t, x) decreasing in t such that

p̃t(x, y) ≤ Φ̃(t, x)Φ̃(t, y) exp

(

−
d2(x, y)

2Dt

)

. (24)

Using the relation between the heat kernels

pt(x, y) = p̃t(x, y)h(x)h(y)e−λt,

and (24), we obtain (21) with Φ (t, x) = Φ̃(t, x)h (x).

Remark. As it follows from the construction of the function Φ (t, x) and from the
proof of Corollary 6, for any compact set K ⊂ M there exist positive constants C
and T such that

Φ (t, x) ≤ Ct−n/4 for all x ∈ K and 0 < t < T . (25)
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4 Mean-value property

Here we present an alternative method of obtaining Gaussian upper bounds, which
avoids using E(t, x) and, instead, is based on a certain integral estimate of the heat
kernel and the mean-value property.

The following theorem shows that the Gaussian exponential term appears natu-
rally in the heat kernel upper estimates on arbitrary manifolds.

Theorem 8 Let (M,μ) be a weighted manifold and let A and B be two μ-measurable
sets on M . Then

∫

A

∫

B

pt(x, y)dμ(x)dμ(y) ≤
√

μ(A)μ(B) exp

(

−
d2(A,B)

4t

)

, (26)

where d(A,B) is the geodesic distance between sets A and B.

To obtain pointwise bounds from (26) one needs to combine it with a mean-value
property.

Definition. We say that the manifold M admits the mean-value property (MV ) if,
for all t > τ > 0, x ∈ M and for any positive solution u(s, η) of the heat equation
in the cylinder (t − τ , t] × B(x,

√
τ), we have

u(t, x) ≤
C

τV (x,
√

τ)

t∫

t−τ

∫

B(x,
√

τ)

u(s, z)dμ(z)ds. (27)
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t 
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Figure 2:

Theorem 9 Assume that the mean-value property (MV ) holds on the manifold M .
Then, for all x ∈ M and t > 0,

pt(x, x) ≤
C

V (x,
√

t)
. (28)
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Moreover, for all x, y ∈ M , t > 0, D > 2,

pt(x, y) ≤
C ′

√
V (x,

√
t/2)V (y,

√
t/2)

exp

(

−
d2(x, y)

2Dt

)

. (29)

Theorem 9 admits a localized version. We say that the manifold M admits a
restricted mean-value property (MV xyτ 0), for some x, y ∈ M and τ 0 ∈ R+, if the
inequality (27) holds for all τ ∈ (0, τ 0] in each of the balls B (x,

√
τ) and B (y,

√
τ) .

If M admits (MV xyτ 0) then similarly to the above theorem we obtain

pt(x, y) ≤
C ′

√
V (x,

√
τ)V (y,

√
τ)

exp

(

−
d2(x, y)

2Dt

)

(30)

where τ = min(t/2, τ 0).
Observe that the property (MV xyτ 0) holds on any manifold: for any given

x, y ∈ M , there exists τ 0 such that (MV xyτ 0) is true. However, the constant C in
the mean-value inequality (27) depends on the certain geometric properties of the
balls B(x,

√
τ 0) and B(y,

√
τ 0).

Definition. We say that a weighted manifold (M,μ) satisfies the volume doubling
property if, for all x ∈ M and r > 0,

V (x, 2r) ≤ CV (x, r) .

It is known that the volume doubling condition implies the volume comparison
condition: for all 0 < r < R and x ∈ M ,

V (x,R)

V (x, r)
≤ C

(
R

r

)N

, (31)

with some N > 0. Assuming (31), one can improve the estimate (29) as follows.

Theorem 10 Assume that (M,μ) satisfies the mean-value property (MV ) and the
volume comparison (31). Then, for all x, y ∈ M and t > 0,

pt(x, y) ≤
C ′

√
V (x,

√
t)V (y,

√
t)

(

1 +
d
√

t

)N−1

exp

(

−
d2

4t

)

(32)

where d = d(x, y).

Note for comparison that on Sn the heat kernel at the poles x, y admits the
estimate

pt(x, y) ∼
c

tn/2

(

1 +
d
√

t

)n−1

exp

(

−
d2

4t

)

, t → 0,

which shows the sharpness of (32).
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5 Relative Faber-Krahn inequality

Let (M,μ) be a geodesically complete weighted manifold.

Definition. We say that (M,μ) satisfies the relative Faber-Krahn inequality if there
exist positive constants δ, c such that, for any geodesic ball B (x, r) on M and for
any non-empty relatively compact open set Ω ⊂ B (x, r),

λ1 (Ω) ≥
c

r2

(
V (x, r)

μ (Ω)

)δ

. (33)

For example, the relative Faber-Krahn inequality holds in Rn with δ = 2/n since
V (x, r) = crn and hence (33) amounts to the uniform Faber-Krahn inequality (4)
with Λ (v) = cv−2/n.

Theorem 11 If M has non-negative Ricci curvature and μ is the Riemannian vol-
ume then (M,μ) satisfies the relative Faber-Krahn inequality.

Approach to the proof. The following key property of manifolds of non-
negative Ricci curvature is used in the proof of this theorem. For any x, y ∈ M
let γx,y : [0, L] → M be a shortest geodesic between x and y, where L = d (x, y),
γx,y (0) = x and γx,y (L) = y. For any x ∈ M and 0 < s < 1, define a homothety
Γx

s : M → M by Γx
s (y) = γx,y (sL) .

x

y

AΓx
s(A)

Γx
s(y)

Figure 3: Homothety Γx
s

Then there exists c > 0 such that for any 1
2
≤ s ≤ 1 and any Borel set A ⊂ M ,

μ (Γx
s (A)) ≥ cμ (A) . (34)

Furthermore, if a homothety with the property (34) can be defined on some
manifold (M,μ) then this manifold satisfies the relative Faber-Krahn inequality.

The class of weighted manifolds with the relative Faber-Krahn inequality is much
wider than those with non-negative Ricci curvature. In particular, this class is stable
under quasi-isometry. Another example of stability: a connected sum of k copies of
the same manifold satisfying the relative Faber-Krahn inequality also satisfies the
relative Faber-Krahn inequality.
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Theorem 12 The relative Faber-Krahn inequality implies the volume doubling and
the mean value property.

Combining with Theorem 9 or 10, we obtain heat kernel bounds under the rela-
tive Faber-Krahn inequality.

Theorem 13 The following conditions are equivalent:

(a) (M,μ) satisfies the relative Faber-Krahn inequality.

(b) (M,μ) satisfies the volume doubling property and the heat kernel on (M,μ)
admits the estimate

pt (x, x) ≤
C

V
(
x,
√

t
) , (35)

for all x ∈ M and t > 0.

(c) (M,μ) satisfies the volume doubling property and the heat kernel on (M,μ)
admits the estimate

pt (x, y) ≤
C

V
(
x,
√

t
) exp

(

−c
d2 (x, y)

t

)

, (36)

for all x, y ∈ M and t > 0.

The constant c in the exponential in (36) can be made arbitrarily close to 1
4
. In

fact, it can be taken exactly 1
4

at the expense of additional factors as in the following
statement.

Theorem 14 Let (M,μ) satisfy the relative Faber-Krahn inequality. Assume in
addition that for some N > 0 and for all 0 < r < R and x ∈ M ,

V (x,R)

V (x, r)
≤ C

(
R

r

)N

. (37)

Then, for all x, y ∈ M and t > 0,

pt(x, y) ≤
C

√
V (x,

√
t)V (y,

√
t)

(

1 +
d (x, y)
√

t

)N−1

exp

(

−
d (x, y)2

4t

)

. (38)

Note that the volume comparison (37) follows from the relative Faber-Krahn
inequality (33) with N = 2

δ
. However, N in (37) does not have to be 2

δ
.
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6 On-diagonal lower estimate

The following result allows to obtain an on-diagonal lower bound from an upper
bound.

Theorem 15 Assume that for some point x ∈ M ,

V (x, 2r) ≤ CV (x, r) for all r > 0

and

pt (x, x) ≤
C

V
(
x,
√

t
) , for all t > 0.

Then, for all t > 0,

pt (x, x) ≥
c

V
(
x,
√

t
) . (39)

Corollary 16 The following conditions are equivalent:

(a) (M,μ) satisfies the relative Faber-Krahn inequality.

(b) The heat kernel on (M,μ) satisfies the estimates

pt (x, y) ≤
C

V
(
x,
√

t
) exp

(

−c
d2 (x, y)

t

)

. (40)

for all x, y ∈ M and t > 0, and

pt (x, x) ≥
c

V
(
x,
√

t/2
) , (41)

for all x ∈ M and t > 0.

Corollary 17 If M has non-negative Ricci curvature and μ is the Riemannian vol-
ume then the heat kernel on (M,μ) satisfies the upper bounds (36), (38) and the
lower bound (39).

7 Harnack inequality and Li-Yau estimate

In this section we assume that (M,μ) is a geodesically complete weighted manifold.
We say that the heat kernel on (M,μ) satisfies the Li-Yau estimate if, for all x, y ∈ M
and t > 0,

pt (x, y) �
C

V
(
x,
√

t
) exp

(

−c
d2 (x, y)

t

)

. (42)

P. Li and S.-T. Yau proved this estimate on geodesically complete Riemannian man-
ifolds with non-negative Ricci curvature using the gradient estimates (see Theorem
22 below).
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We say that (M,μ) satisfies the (uniform parabolic) Harnack inequality if, for
any ball B (z, r) on M and for any positive solution u (t, x) of the heat equation in
the cylinder C = (0, r2) × B (z, r), the following holds:

sup
C−

u (t, x) ≤ C inf
C+

u (t, x)

where C− =
(

1
4
r2, 1

2
r2
)
× B

(
z, 1

2
r
)

and C+ =
(

3
4
r2, r2

)
× B

(
z, 1

2
r
)
.

3/4r2

r2

-

+

B(z,r)

1/2r2

1/4r2

B(z,1/2r)0

Figure 4: Cylinders C+ and C−

It is well known that the Harnack inequality holds for uniformly parabolic equa-
tions in Rn. The relation to heat kernels is given by the following statement.

Theorem 18 A manifold (M,μ) satisfies the Li-Yau estimate if and only if it sat-
isfies the uniform Harnack inequality.

To characterize manifolds with the Harnack inequality, we need one more notion.
We say that a weighted manifold satisfies the (weak) Poincaré inequality if there
exists ε ∈ (0, 1) such that for any ball B (z, r) and for any function u ∈ C1 (B (z, r)),

inf
s∈R

∫

B(z,εr)

(u − s)2 dμ ≤ Cr2

∫

B(z,r)

|∇u|2 dμ. (43)

(The term “weak” refers here to the factor ε < 1).

Theorem 19 A manifold (M,μ) satisfies the Harnack inequality if and only if it
satisfies the doubling volume property and the Poincaré inequality.

Hence, the Li-Yau estimate holds if and only if the doubling volume property
and the Poincaré inequality hold.

Theorem 19 admits a localized version: Harnack inequality holds in all balls of
radii ≤ R if and only if the doubling volume property and Poincaré inequality hold
in all balls of radii ≤ R′.

The proof of Theorem 19 uses the following result, which is of its own interest.
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Theorem 20 If (M,μ) satisfies the Poincaré inequality and the volume doubling
property then it satisfies the relative Faber-Krahn inequality.

Note that the converse to Theorem 20 is not true: it is possible to show that
a connected sum of two copies of Rn, n ≥ 3, satisfies the relative Faber-Krahn
inequality but not the Poincaré inequality.

Using Corollary 16, we obtain that the Poincaré inequality and the doubling
volume property imply the upper bound and the on-diagonal lower bound in (42).
The off-diagonal lower bound requires additional tools, which we do not touch here
and which are similar to Moser’s original proof of the Harnack inequality in Rn.

Connection to the Ricci curvature comes from the following statement.

Theorem 21 If M has non-negative Ricci curvature and μ is the Riemannian vol-
ume then (M,μ) satisfies the Poincaré inequality and the volume doubling property.

In fact, both Poincaré inequality and volume doubling property come from the
property (34) of the homothety on such manifolds. Clearly, Theorems 21 and 20
imply Theorem 11.

Successive application of Theorems 21, 19, and 18 yields the following result.

Theorem 22 If M has non-negative Ricci curvature and μ is the Riemannian vol-
ume then the heat kernel on (M,μ) satisfies the Li-Yau estimate (42).

The above results are schematically presented on the diagram:

Homothety
property

⇐= Ricci≥ 0 =⇒ Gradient estimates

⇓ ⇓ ⇓

Vol doubling &
Poincaré

⇐⇒
Harnack
inequality

⇐⇒ pt (x, y) �
C exp

(
−c

d2(x,y)
t

)

V (x,
√

t)

⇓ ⇓ ⇓

Relative
Faber-Krahn
inequality

⇐⇒
Vol doubling &
MV inequality

⇐⇒
pt (x, y) ≤

C exp

(
−c

d2(x,y)
t

)

V (x,
√

t)
pt (x, x) ≥ c

V (x,
√

t)
Vol doubling

8 Estimates of derivatives of the heat kernel

Fix some D ∈ (2, +∞] and consider again the quantity

E(t, x) =

∫

M

p2
t (x, y) exp

(
d2(x, y)

Dt

)

dμ(y),

as well as

E1 (t, x) =

∫

M

|∇pt|
2 (x, y) exp

(
d2(x, y)

Dt

)

dμ(y)
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and

E2 (t, x) =

∫

M

|Δpt|
2 (x, y) exp

(
d2(x, y)

Dt

)

dμ(y)

where both operators ∇ and Δ act on the variable y. More generally, set

En (t, x) =

∫

M

|∇npt|
2 (x, y) exp

(
d2(x, y)

Dt

)

dμ(y)

where

∇n =

{
Δn/2, n even,

∇Δ
n−1

2 , n odd.

The quantity En can be used to obtain pointwise estimates for the time derivative
of the heat kernel. The following inequality is similar to Lemma 2.

Lemma 23 For all x, y ∈ M and t > 0, we have

∣
∣
∣
∣
∂npt(x, y)

∂tn

∣
∣
∣
∣ ≤

√
E2n(t/2, x)E(t/2, y) exp

(

−
d2(x, y)

2Dt

)

.

Approach to proof. Using the semigroup identity

pt(x, y) =

∫

M

pt−s(x, z)ps(y, z)dμ(z),

we obtain

∂n

∂tn
pt(x, y) =

∫

M

∂n

∂tn
pt−s(x, z)ps(y, z)dμ(z)

=

∫

M

Δn
z pt−s(x, z)ps(y, z)dμ(z).

Taking s = t/2 and using Cauchy-Schwarz inequality as in Lemma 2, we finish the
proof.

This method does not work for estimating |∇xpt (x, y)| as we would need ∇z

under the integral. However, if one knows a priori that

|∇xpt (x, z)| ' |∇zpt (x, z)|

then one can obtain in the same way a pointwise estimate for |∇xpt (x, y)| .
Our next purpose is to obtain the estimates for En (t, x) .

Theorem 24 For any x ∈ M , the function t 7→ En (x, t) is a finite, continuous,
and decreasing (as long as D > 2).

Theorem 25 Assume that, for some x ∈ M and all t ∈ (0, T )

E (x, t) ≤
1

f (t)

14



where f (t) is some positive L1
loc function on (0, T ). Define a function fn (t) on (0, T )

by induction as follows:

f0 = f, fn+1 (t) =

∫ t

0

fn (τ) dτ .

Then, for all t ∈ (0, T ),

En (x, t) ≤
c−n

fn (t)

where c = D−2
D/2+8

.

In fact, fn can be defined explicitly by

fn (t) =

∫ t

0

(t − τ)n−1

(n − 1)!
f (τ) dτ .

For example, if f (t) = tα then fn (t) = Cntα+n.

Corollary 26 If (M,μ) satisfies the relative Faber-Krahn inequality (33) then for
all x, y ∈ M and t > 0

∣
∣
∣
∣
∂n

∂tn
pt

∣
∣
∣
∣ (x, y) ≤

C
(
1 + d(x,y)√

t

)N+n+1

tn
√

V (x,
√

t)V (y,
√

t)
exp

(

−
d (x, y)2

4t

)

,

where N is the exponent of the volume comparison condition (37).
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