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0 Introduction: Laplace-Beltrami operator and heat

kernel

Let (M, g) be a connected Riemannian manifold. The Laplace-Beltrami operator Δ is
given in the local coordinates by

Δ = Δg =
1

√
det g

n∑

i,j=1

∂

∂xi

(√
det ggij ∂

∂xj

)

,

where n = dim M , g = (gij) and (gij) = g−1. This operator is symmetric with respect
to the Riemannian measure

dμ =
√

det gdx1...dxn,

that is, for all u, v ∈ C∞
0 (M),

∫

M

(Δu) v dμ = −
∫

M

〈∇u,∇v〉 dμ =

∫

M

uΔv dμ

Furthermore, the operator Δ with the domain C∞
0 (M) is admits the Friedrichs exten-

sion to a self-adjoint operator in L2 (M,μ), which will also be denoted by Δ.
The heat semigroup Pt = exp (tΔ), t ≥ 0, is defined by means of spectral theory

as a family of bounded self-adjoint operators in L2 (M,μ). For any f ∈ L2 (M,μ), the
function

u (t, x) = Ptf (x)
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is a smooth function of (t, x) ∈ R+ × M , satisfies the heat equation ∂u
∂t

= Δu and the
initial condition

u (t, ∙)
L2

→ f as t → 0 + .

The heat kernel pt (x, y) is a function of t > 0 and x, y ∈ M such that

Ptf (x) =

∫

M

pt (x, y) f (y) dμ (y) ,

for all f ∈ L2 (M,μ) . It is known that pt (x, y) exists on any Riemannian manifold and
is unique. Besides, the heat kernel satisfies the following properties.

• Smoothness: pt (x, y) ∈ C∞ (R+ × M × M)

• Positivity: pt (x, y) > 0

• Symmetry: pt (x, y) = pt (y, x);

• The semigroup identity:

pt+s (x, y) =

∫

M

pt (x, z) ps (z, y) dμ (z) . (1)

• Submarkovian property: ∫

M

pt (x, y) dμ (y) ≤ 1.

• For any y ∈ M , the function u (x, t) = pt (x, y) satisfies the heat equation and
the initial condition

u (t, x) → δy (x) as t → 0+,

that is, pt (x, y) is a fundamental solution of the heat equation. Moreover, pt (x, y)
is the smallest positive fundamental solution of the heat equation.

Recall that in Rn, Δ is the classical Laplace operator Δ =
∑n

k=1
∂2

∂x2
k
, and its heat

kernel is given by the Gauss-Weierstrass formula

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

Explicit formulas for the heat kernel exist also in hyperbolic spaces Hn. For example
in H3

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

, (2)

where r = d (x, y) is the geodesic distance between x, y. For arbitrary Hn the formula
looks complicated, but it implies the following estimate, for all t > 0 and x, y ∈ Hn:

pt (x, y) '
(1 + r + t)

n−3
2 (1 + r)

tn/2
exp

(

−λt −
r2

4t
−
√

λr

)

, (3)

where λ = (n−1)2

4
is the bottom of the spectrum of the Laplace operator on Hn.
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1 Uniqueness in the Cauchy problem

Fix 0 < T ≤ ∞ and consider the following Cauchy problem
{

∂u
∂t

= Δu in (0, T ) × M,
u|t=0 = u0,

(4)

where u0 a given initial function, a solution u is sought in the class u ∈ C∞((0, T )×M),
and the initial condition means that u (t, ∙) → u0 as t → 0 in certain sense to be
specified. As it was already mentioned above if u0 ∈ L2 (M) then solution of (4) exists:
u (t, ∙) = Ptu0, and it satisfies the initial condition in L2 sense.

For a more general u0, set

u (t, x) = Ptu0 (x) :=

∫

M

pt (x, y) u0 (y) dμ,

assuming that the integral in the right hand side is finite. For u0 in certain function
classes, it is possible to prove that this function u solves the heat equation and also
satisfies the initial condition in an appropriate sense. For example, if u0 ∈ Cb (M) then
u is finite, solves the heat equation and satisfies the initial condition locally uniformly.
If u0 ∈ Lp (M) with 1 ≤ p < ∞ then u is again a solution and satisfies the initial
condition in Lp sense.

In this section, we investigate uniqueness of solution of (4) in a certain class of func-
tion. Clearly, this is equivalent to the uniqueness of solution u ≡ 0 of the homogeneous
Cauchy problem {

∂u
∂t

= Δu in (0, T ) × M,
u|t=0 = 0,

(5)

where the initial condition will be understood in L2
loc-sense.

As it is well-known, even in Rn the Cauchy problem (5) has non-zero solution, and
in order to ensure the uniqueness one has to restrict a function class where a solution
is sought.

In order to state the main result of this section, we need some notation. Let d (x, y)
be the geodesic distance on M . Denote by B (x, r) the geodesic ball of radius r centered
at x, that is,

B (x, r) = {y ∈ M : d (x, y) < r} .

Recall that a manifold M is geodesically complete if and only if all the geodesic balls
are precompact (theorem of Hopf–Rinow).

Theorem 1 Let (M, g) be a geodesically complete connected Riemannian manifold,
and let u(x, t) be a solution to the Cauchy problem (5). Assume that, for some x0 ∈ M
and for all R > 0,

∫ T

0

∫

B(x0,R)

u2(t, x) dμ(x)dt ≤ exp (f(R)) , (6)

where f(r) is a positive increasing function on (0, +∞) such that
∫ ∞ rdr

f(r)
= ∞. (7)

Then u ≡ 0 in (0, T ) × M .
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Theorem 1 provides the uniqueness class (6) for the Cauchy problem (4). The
condition (7) holds if, for example, f (r) = Cr2, but fails for f (r) = Cr2+ε when ε > 0.

Proof of Theorem 1. Denote for simplicity Br = B(x0, r). Let us extend the
solution u to t = 0 by setting u (0, ∙) = 0. The main technical part of the proof is the
following claim.

Claim. Under the hypotheses of Theorem 1, for all R > 0 and 0 ≤ b < a satisfying
the condition

a − b ≤
R2

8f(4R)
, (8)

the following inequality holds:

∫

BR

u2(a, ∙)dμ ≤
∫

B4R

u2(b, ∙)dμ +
4

R2
. (9)

Let us first show how this Claim allows to prove that u ≡ 0. Fix R > 0 and
t ∈ (0, T ). For any non-negative integer k, set

Rk = 4kR

and, for any k ≥ 1, choose (so far arbitrarily) a number τ k to satisfy the condition

0 < τ k ≤
R2

k−1

8f (4Rk−1)
=

1

128

R2
k

f(Rk)
. (10)

Then define a decreasing sequence of times {tk} inductively by t0 = t and tk = tk−1−τ k

(see Fig. 1).

Figure 1: The sequence of the balls BRk
and the time moments tk.

If tk ≥ 0 then, applying the Claim with a = tk−1 and b = tk, we obtain from (9)

∫

BRk−1

u2(tk−1, ∙)dμ ≤
∫

BRk

u2(tk, ∙)dμ +
4

R2
k−1

, (11)
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which implies by induction that

∫

BR

u2(t, ∙)dμ ≤
∫

BRk

u2(tk, ∙)dμ +
k∑

i=1

4

R2
i−1

. (12)

If it happens that tk = 0 for some k then, by the initial condition in (5),

∫

BRk

u2(tk, ∙)dμ = 0.

In this case, it follows from (12) that

∫

BR

u2(t, ∙)dμ ≤
∞∑

i=1

4

R2
i−1

=
C

R2
.

If we have this inequality for any R > 0, then, by letting R → ∞, we obtain u(t, ∙) ≡ 0.
Hence, to finish the proof of u ≡ 0, it suffices to construct, for any R > 0 and

t ∈ (0, T ), a sequence {tk} as above that vanishes at a finite k. The condition tk = 0
is equivalent to

t = τ 1 + τ 2 + ... + τ k . (13)

The only restriction on τ k is the inequality (10). The hypothesis that f (r) is an
increasing function implies that

∫ ∞

R

rdr

f (r)
=

∞∑

k=0

∫ Rk+1

Rk

rdr

f (r)
≤

∞∑

k=0

R2
k+1,

f (Rk)

which together with (7) yields
∞∑

k=1

R2
k

f(Rk)
= ∞.

Therefore, the sequence {τ k}
∞
k=1 can be chosen to satisfy simultaneously (10) and

∞∑

k=1

τ k = ∞.

By diminishing some of τ k, we can achieve (13) for any finite t, which finishes the proof
of u ≡ 0.

Now we prove the above Claim. Since the integral in
∫

B4R

u2(b, ∙)dμ

is continuous in b ∈ [0, T ) up to b = 0, it suffices to prove (9) for b > 0. In particular,
we can assume that u (t, x) is C∞-smooth in [b, a] × M .

Let ρ(x) be a Lipschitz function on M (to be specified below) with the Lipschitz
constant 1. Fix a real s /∈ [b, a] (also to be specified below) and consider the following
the function

ξ(t, x) :=
ρ2(x)

4(t − s)
,
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which is defined on R×M except for t = s, in particular, on [b, a]×M . The distribu-
tional gradient ∇ρ is in L∞ (M) and satisfies the inequality |∇ρ| ≤ 1, which implies,
for any t 6= s,

|∇ξ (t, x)| ≤
ρ (x)

2 (t − s)
.

Since
∂ξ

∂t
= −

ρ2 (x)

4 (t − s)2 ,

we obtain
∂ξ

∂t
+ |∇ξ|2 ≤ 0. (14)

For a given R > 0, let ϕ be the cutoff function of B2R in B3R (see Fig. 2), that is,

ϕ (x) = min

((
3 − d(x,x0)

R

)

+
, 1

)

Obviously, we have 0 ≤ ϕ ≤ 1 on M , ϕ ≡ 1 in B2R, and ϕ ≡ 0 outside B3R. Since the
function d (∙, x0) is Lipschitz with the Lipschitz constant 1, we obtain that ϕ is Lipschitz
with the Lipschitz constant 1/R. It follows that |∇ϕ| ≤ 1/R. By the completeness of
M , all the balls in M are relatively compact sets, which implies that ϕ has a compact
support.

Figure 2: Function ϕ (x)

Consider the function uϕ2eξ as a function of x for any fixed t ∈ [b, a]. Clearly, this
is a Lipschitz function with compact support. Multiplying the heat equation

∂u

∂t
= Δu

by uϕ2eξ and integrating it over [b, a] × M , we obtain
∫ a

b

∫

M

∂u

∂t
uϕ2eξdμdt =

∫ a

b

∫

M

(Δu) uϕ2eξdμdt. (15)

Since both functions u and ξ are smooth in t ∈ [b, a] and ϕ does not depend on t, the
time integral on the left hand side can be computed as follows:

∫ a

b

∂u

∂t
uϕ2eξdt =

1

2

∫ a

b

∂(u2)

∂t
ϕ2eξdt =

1

2

[
u2ϕ2eξ

]a
b
−

1

2

∫ a

b

∂ξ

∂t
u2ϕ2eξdt. (16)
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Integrating this identity over M , using (15) and (14), we obtain

[∫

M

u2ϕ2eξdμ

]a

b

=

∫ a

b

∫

M

∂ξ

∂t
u2ϕ2eξdμdt + 2

∫ a

b

∫

M

∂u

∂t
uϕ2eξdμdt

≤ −
∫ a

b

∫

M

|∇ξ|2 u2ϕ2eξdμdt + 2

∫ a

b

∫

M

(Δu) uϕ2eξdμdt (17)

Using the Green formula to evaluate the spatial integral on the right hand side of (17),
we obtain ∫

M

(Δu) uϕ2eξdμ = −
∫

M

〈∇u,∇(uϕ2eξ)〉dμ.

Applying the product rule and the chain rule to compute ∇(uϕ2eξ), we obtain

−〈∇u,∇(uϕ2eξ)〉 = − |∇u|2 ϕ2eξ − 〈∇u,∇ξ〉uϕ2eξ − 2〈∇u,∇ϕ〉uϕeξ

≤ − |∇u|2 ϕ2eξ − 〈∇u, u∇ξ〉ϕ2eξ +

(
1

2
|∇u|2 ϕ2 + 2 |∇ϕ|2 u2

)

eξ

= −

(
1

2
|∇u|2 + 〈∇u, u∇ξ〉

)

ϕ2eξ + 2 |∇ϕ|2 u2eξ,

whence

2

∫

M

(Δu) uϕ2eξdμ ≤ −
∫

M

−
(
|∇u|2 + 2〈∇u, u∇ξ〉

)
ϕ2eξdμ + 4

∫

M

|∇ϕ|2 u2eξ.

Substituting into (17), we obtain

[∫

M

u2ϕ2eξdμ

]a

b

≤ −
∫ a

b

∫

M

(
|∇ξ|2 u2 + |∇u|2 + 2〈∇u, u∇ξ〉

)
ϕ2eξdμdt

+4

∫ a

b

∫

M

|∇ϕ|2 u2eξdμdt

= −
∫ a

b

∫

M

(u∇ξ + ∇u)2 ϕ2eξdμdt

+4

∫ a

b

∫

M

|∇ϕ|2 u2eξdμdt

whence [∫

M

u2ϕ2eξdμ

]a

b

≤ 4

∫ a

b

∫

M

|∇ϕ|2 u2eξdμdt. (18)

So far we have used only that ϕ is compactly supported. Using the specific shape of
ϕ, in particular, |∇ϕ| ≤ 1/R, we obtain from (18)

∫

BR

u2(a, ∙)eξ(a,∙)dμ ≤
∫

B4R

u2(b, ∙)eξ(b,∙)dμ +
4

R2

a∫

b

∫

B4R\B2R

u2eξdμdt. (19)

Let us now specify ξ. For that we choose ρ(x) and s as follows. Set ρ(x) to be the
distance function from the ball BR, that is,

ρ(x) = d (x,BR) = (d(x, x0) − R)+

7



Figure 3: Function ρ (x).

(see Fig. 3).
Set s = 2a − b so that, for all t ∈ [b, a],

a − b ≤ s − t ≤ 2 (a − b) ,

whence

ξ(t, x) = −
ρ2(x)

4(s − t)
≤ −

ρ2(x)

8 (a − b)
≤ 0. (20)

Consequently, we can drop the factor eξ on the left hand side of (19) because ξ = 0 in
BR, and drop the factor eξ in the first integral on the right hand side of (19) because
ξ ≤ 0. Clearly, if x ∈ B4R\B2R then ρ(x) ≥ R, which together with (20) implies that

ξ (t, x) ≤ −
R2

8 (a − b)
in [b, a] × B4R\B2R.

Hence, we obtain from (19)

∫

BR

u2(a, ∙)dμ ≤
∫

B4R

u2(b, ∙)dμ +
4

R2
exp

(

−
R2

8 (a − b)

) a∫

b

∫

B4R

u2dμdt.

By (6) we have
a∫

b

∫

B4R

u2dμdt ≤ exp (f(4R))

whence
∫

BR

u2(a, ∙)dμ ≤
∫

B4R

u2(b, ∙)dμ +
4

R2
exp

(

−
R2

8 (a − b)
+ f(4R)

)

.

Finally, applying the hypothesis (8), we obtain (9).

Corollary 2 If M = Rn and u (t, x) is a solution to (5) satisfying the condition

|u(t, x)| ≤ C exp
(
C |x|2

)
for all t ∈ (0, T ) , x ∈ Rn, (21)
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then u ≡ 0. Moreover, the same is true if u satisfies instead of (21) the condition

|u(t, x)| ≤ C exp (f (|x|)) for all t ∈ (0, T ) , x ∈ Rn, (22)

where f (r) is a convex increasing function on (0, +∞) satisfying (7).

Proof. Since (21) is a particular case of (22) for the function f (r) = Cr2, it suffices
to treat the condition (22). In Rn we have

μ (B (x,R)) = cnRn.

Therefore, (22) implies that
∫ T

0

∫

B(0,R)

u2(t, x) dμ(x)dt ≤ CTRn exp (2f (R)) = exp(f̃ (R)),

where
f̃ (r) := 2f (r) + n log r + const .

The convexity of f implies that f (r) ≥ cr for large enough r. Hence, f̃ (r) ≤ Cf (r) for

large r, and the function f̃ also satisfies the condition (7). By Theorem 1, we conclude
u ≡ 0.

The class of functions u satisfying (21) is called the Tikhonov class, and the con-
ditions (22) and (7) define the Täcklind class. The uniqueness of the Cauchy problem
in Rn in each of these classes is a classical result.

2 Stochastic completeness

Consider the Cauchy problem
{

∂u
∂t

= Δu in (0,∞) × M,
u|t=0 = 1.

Clearly, it always has a solution u1 ≡ 1. On the other hand, it also has a solution

u2 (t, x) = Pt1 (x) =

∫

M

pt (x, y) dμ (y) .

Moreover, by the properties of the heat kernel, we have

0 ≤ u2 ≤ 1.

Hence, both u1 and u2 are bounded solutions of the same Cauchy problem. If u1 6≡ u2

then we obtain non-uniqueness of the Cauchy problem in the class of bounded functions.
Of course, the condition u1 6≡ u2 is equivalent to Pt1 6≡ 1, that is, to Pt1 (x) < 1 for
some t and x.

Definition. If Pt1 ≡ 1 then the manifold M is called stochastically complete, and if
Pt1 6≡ 1 then M is called stochastically incomplete.

Since pt (x, y) is the transition density of Brownian motion {Xt}t≥0 on M , the quan-
tity Pt1 (x) is equal to the probability that the Brownian particle stays on M at the
time t. It may be smaller than 1 if the particle escapes to ∞ in finite time. This phe-
nomenon is called explosion of Brownian motion. Hence, the stochastic incompleteness
is equivalent to the explosion.

Let us summarize this discussion in the following statement.
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Proposition 3 If M is stochastically incomplete then the Cauchy problem has non-
uniqueness in the class of bounded functions.

In fact, it is possible to prove that M is stochastically complete if and only if the
Cauchy problem has uniqueness in the class of bounded functions.

Let us introduce the notation

V (x, r) = μ (B (x, r)) .

Theorem 4 If M is geodesically complete and, for some x0 ∈ M ,
∫ ∞ rdr

log V (x0, r)
= ∞, (23)

then M is stochastically complete.

Proof. To prove that M is stochastically complete, it suffices to verify that the
Cauchy problem has a unique solution in the class of bounded functions. Indeed, if u
is a bounded solution of (5) with zero initial function then setting

C := sup |u| < ∞

we obtain, for any T > 0,

∫ T

0

∫

B(x0,R)

u2(t, x)dμ(x) ≤ C2TV (x0, R) = exp (f (R)) ,

where
f(r) := log

(
C2TV (x0, r)

)
= log V (x0, r) + const .

It follows from the hypothesis (23) that the function f satisfies (7), that is,
∫ ∞ rdr

f(r)
= ∞.

Hence, by Theorem 1, we obtain u ≡ 0.
For example, the condition (23) is satisfied if, for large r,

V (x0, r) = exp
(
Cr2

)

and is not satisfied if
V (x0, r) = exp

(
Cr2+ε

)

for some ε > 0.
Our next purpose is to construct examples of stochastically incomplete but geodesi-

cally complete manifolds. For that, we need the following tool.

Lemma 5 Let there exist a non-negative function u ∈ L1 (M) such that

−Δu ≥ f,

where f is a non-negative continuous function on M such that f 6≡ 0. Then Pt1 6≡ 1,
that is, M is stochastically incomplete.
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Proof. For any α > 0, denote by Rα the resolvent operator:

Rα = (−Δ + α)−1 =

∫ ∞

0

1

λ + α
dEλ,

where {Eλ} is the spectral resolution of −Δ. Clearly, we have

− Δu + αu ≥ f. (24)

It is known that the minimal non-negative solution of the inequality (24) is the function
Rαf , so that we obtain

u ≥ Rαf .

Since
1

λ + α
=

∫ ∞

0

e−αte−λtdt,

it follows that

Rα =

∫ ∞

0

e−αtetΔdt =

∫ ∞

0

e−αtPtdt,

so that

u ≥
∫ ∞

0

e−αtPtf dt.

Letting α → 0+, we obtain

u (x) ≥
∫ ∞

0

Ptf (x) dt =

∫ ∞

0

∫

M

pt (x, y) f (y) dμ (y) dt.

Since u ∈ L1 (M), we have ∫

M

u (x) dμ (x) < ∞,

whence ∫

M

∫ ∞

0

∫

M

pt (x, y) f (y) dμ (y) dt dμ (x) < ∞,

that is ∫ ∞

0

∫

M

Pt1 (y) f (y) dμ (y) dt < ∞. (25)

However, if Pt1 ≡ 1 then we have

∫ ∞

0

∫

M

Pt1 (y) f (y) dμ (y) dt =

∫ ∞

0

∫

M

f (y) dμ (y) dt =

∫ ∞

0

‖f‖L1 dt = ∞,

which contradicts (25). Hence, Pt1 6≡ 1, which was to be proved.
Let (r, θ) be the polar coordinates in Rn, that is, for any x ∈ Rn \ {0},

r = |x| ∈ R+ and θ =
x

|x|
∈ Sn−1.

The canonical Euclidean metric

gRn = dx2
1 + ... + dx2

n

11



has in the polar coordinates the form

gRn = dr2 + r2gSn−1 ,

where gSn−1 is the canonical metric of the sphere Sn−1.
Let (M, g) be a model manifold based on Rn, that is, M = Rn as a smooth manifold,

and the metric g has in the polar coordinates (r, θ) in Rn the form

g = dr2 + ψ (r)2 gSn−1 , (26)

where ψ (r) is a smooth positive function on (0, +∞), such that ψ (r) = r for small r.
The geodesic ball B (0, R) of the metric g coincides with the Euclidean ball, and

its volume in (M, g) is equal to

V (R) := μ (B (0, R)) =

∫ R

0

ωnψn−1 (r) dr =

∫ R

0

S (r) dr,

where
S (r) := ωnψn−1 (r) .

The function V (R) is called the volume function of M and S (r) is called the area
function of M . The Laplace-Beltrami operator of (M, g) has in the polar coordinates
the following form:

Δ =
∂2

∂r2
+

S ′ (r)

S (r)

∂

∂r
+

1

ψ2 (r)
ΔSn−1 . (27)

Proposition 6 If on the model manifold M

∫ ∞ V (r)

S (r)
dr < ∞, (28)

then M is stochastically incomplete. Consequently, the Cauchy problem on M features
non-uniqueness in the class of bounded solutions.

Proof. By Lemma 5, it suffices to construct on M a non-negative function u ∈
L1 (M) such that

− Δu = f, (29)

where f ∈ C∞
0 (M), f ≥ 0 and f 6≡ 0. Both functions u and f will depend only on the

polar radius r so that (29) in the domain of the polar coordinates becomes

u′′ +
S ′

S
u′ = −f. (30)

Choose f (r) to be any non-negative non-zero function from C∞
0 (1, 2). Then (30) has

on (0,∞) a solution

u (R) =

∫ ∞

R

dr

S (r)

∫ r

0

S (t) f (t) dt. (31)

Indeed, since f is bounded, the condition (28) implies that u is finite. It is easy to see
that u satisfies the equation

(Su′)
′
= −Sf,
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which is equivalent to (30).
The function u (R) is clearly positive and monotone decreasing. It is constant on

the interval 0 < R < 1 because f (t) ≡ 0 for 0 < t < 1. Hence, u extends by continuity
to the origin and satisfies (29) on the whole manifold.

We are left to verify that u ∈ L1 (M). Since f (t) ≡ 0 for t > 2, we have for R > 2

u (R) = C

∫ ∞

R

dr

S (r)

where C =
∫ 2

0
S (t) f (t) dt. Therefore,

∫

{R>2}
udμ =

∫ ∞

2

u (R) S (R) dR

= C

∫ ∞

2

(∫ ∞

R

dr

S (r)

)

S (R) dR

= C

∫ ∞

2

(∫ r

2

S (R) dR

)
dr

S (r)

≤ C

∫ ∞

2

V (r)

S (r)
dr < ∞,

which gives u ∈ L1 (M).
For example, (28) is satisfied if, for large r,

V (r) = exp
(
r2+ε

)
,

where ε > 0, since in this case

S (r)

V (r)
= (log V (r))′ = (2 + ε) r1+ε.

Hence, a model manifold with such a volume function V (r) is stochastically incomplete,
and the Cauchy problem on this manifold has non-unique solution even in the class of
bounded functions.

In fact, the condition (28) is not only sufficient but also necessary for a model
manifold to be stochastically incomplete.

3 Takeda’s inequality and consequences

Recall the following theorem from lectures of 2017.

Theorem 7 (Davies-Gaffney inequality) Let S be a measurable subset of a manifold
M . Then, for any function f ∈ L2(S) and for all positive R, t,

∫

(SR)c
(Ptf)2 dμ ≤ ‖f‖2

2 exp

(

−
R2

2t

)

, (32)

where SR is the R-neighborhood of A.
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Similarly to Theorem 7, the next theorem provides a certain L2-estimate for a
solution to the heat equation. However, the setting and the estimate are essentially
different.

Theorem 8 Let B be a precompact open subset of a Riemannian manifold M and let
u (t, x) be a solution of the heat equation in (0, T ) × B such that

u (t, ∙)
L2

loc(B)
−→ 0 as t → 0. (33)

Then, for any open set A b B and any t ∈ (0, T ),
∫

A

u2 (t, ∙) dμ ≤ μ (B \ A) ‖u‖2
∞ max

(
R2

2t
,

2t

R2

)

exp

(

−
R2

2t
+ 1

)

, (34)

where R = d (A,Bc) (see Fig. 4).

Figure 4: The function u (t, x) in (0, T ) × B.

Remark. In fact, the following inequality is true:
∫

A

u (t, ∙) dμ ≤ 16μ (B) ‖u‖L∞

∫ ∞

R

1

(4πt)1/2
exp

(

−
r2

4t

)

dr. (35)

A version of this inequality for local regular Dirichlet forms was proved by Masayoshi
Takeda in 1989 using probabilistic methods. In the form (35) it was proved by Terry
Lyons in 1990. Estimating in a certain way the integral on the right hand side, one
obtains ∫

A

u (t, ∙) dμ ≤
16
√

π
μ (B) ‖u‖L∞

√
t

R
exp

(

−
R2

4t

)

.

The inequality (34) can be considered as an L2 version of Takeda’s inequality (35).

Remark. The hypotheses of Theorem 8 are in particular satisfied if u (t, ∙) = Ptf
where f is a non-negative function from L∞ (Bc). If in addition f ∈ L2 (Bc) then
Theorem 7 with S = Bc yields in this case the following estimate

∫

A

u2 (t, ∙) dμ ≤ ‖f‖2
2 exp

(

−
R2

2t

)

,

14



because A ⊂ (SR)c . The advantage of (34) is that it can be applied to functions like
f = 1Bc that are in L∞ but are not necessarily in L2.

Proof of Theorem 8. Without loss of generality, we can assume throughout
that |u| ≤ 1. Let ξ(s, x) be a continuous function on [0, T ] × B such that ξ (s, x)
is Lipschitz in x, continuously differentiable in s, and the following inequality holds
almost everywhere on [0, T ] × B:

∂sξ +
α

2
|∇ξ|2 ≤ 0, (36)

for some α > 1. We claim that the following inequality is true for any t ∈ (0, T ) and
any ϕ ∈ Lip0 (B):

∫

B

u (t, ∙)2 ϕ2eξ(t,∙) dμ ≤
2α

α − 1

∫ t

0

∫

B

|∇ϕ|2 eξ(s,∙)u2dμds. (37)

A similar inequality (18 was used in the proof of Theorem 1 in the case α = 2. Clearly,
it suffices to prove (37) for ϕ ∈ C∞

0 (B), which will be assumed in the sequel.
Multiplying the heat equation

∂su = Δu

by uϕ2eξ and integrating over [0, t] × B, we obtain

∫ t

0

∫

B

∂suuϕ2eξdμds =

∫ t

0

∫

B

(Δu) uϕ2eξdμds. (38)

On the left hand side we have
∫ t

0

∂suuϕ2eξds =
1

2

∫ t

0

∂s

(
u2
)
ϕ2eξds =

1

2

[
u2ϕ2eξ

]t
0
−

1

2

∫ t

0

∂sξ u2ϕ2eξds.

Integrating this identity over B, using (36), (38) and the initial condition (33), we
obtain
∫

B

u (t, ∙)2 ϕ2eξ(t,∙) dμ =

∫ t

0

∫

B

∂sξ u2ϕ2eξdμds + 2

∫ t

0

∫

B

∂suuϕ2eξdμds

≤ −
α

2

∫ t

0

∫

B

|∇ξ|2 u2ϕ2eξdμdt + 2

∫ t

0

∫

B

(Δu) uϕ2eξdμds.(39)

By the Green formula, we have

∫

B

(Δu) uϕ2eξdμ = −
∫

B

〈∇u,∇(uϕ2eξ)〉dμ.

By the product and chain rules, we obtain, for any ε ∈ (0, 1),

−〈∇u,∇(uϕ2eξ)〉 = − |∇u|2 ϕ2eξ − 〈∇u,∇ξ〉uϕ2eξ − 2〈∇u,∇ϕ〉uϕeξ

≤ − |∇u|2 ϕ2eξ − 〈∇u, u∇ξ〉ϕ2eξ +

(

ε |∇u|2 ϕ2 +
1

ε
|∇ϕ|2 u2

)

eξ

= −
[
(1 − ε) |∇u|2 + 〈∇u, u∇ξ〉

]
ϕ2eξ +

1

ε
|∇ϕ|2 u2eξ.
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Substituting into (39), we obtain

∫

B

u (t, ∙)2 ϕ2eξ(t,∙) dμ ≤ −
∫ t

0

∫

B

[α
2
|∇ξ|2 u2 + 2 (1 − ε) |∇u|2 + 2〈∇u, u∇ξ〉

]
ϕ2eξdμds

+
2

ε

∫ t

0

∫

B

|∇ϕ|2 u2eξdμds

Choose ε to satisfy

1 − ε =
1

α
.

Then the expression in the square brackets is a complete square:

α

2
|∇ξ|2 u2 + 2 (1 − ε) |∇u|2 + 2〈∇u, u∇ξ〉 =

α

2
|∇ξ|2 u2 +

2

α
|∇u|2 + 2〈∇u, u∇ξ〉

=

(√
α

2
u∇ξ +

√
2

α
∇u

)2

.

Since ε = 1 − 1
α

= α−1
α

, it follows that

∫

B

u (t, ∙)2 ϕ2eξ(t,∙) dμ ≤
2α

α − 1

∫ t

0

∫

B

|∇ϕ|2 u2eξdμds,

which proves (37).
Now let us specify the functions ϕ and ξ in (37). In all cases, we will have ϕ ≡ 1

on A, whence also |∇ϕ| = 0 on A, so that (37) implies

∫

A

u (t, ∙)2 eξ(t,∙)dμ ≤
2α

α − 1

∫

B\A
|∇ϕ|2

(∫ t

0

eξ(s,∙) ds

)

dμ. (40)

In order to prove (34) for R = d (A,Bc), it suffices to prove (34) for any R < d (A,Bc).
Fix R < d (A,Bc), t ∈ (0, T ), set

ρ (x) = d (x,A) ,

and consider the function
ϕ (x) = ψ (ρ (x))

where ψ (r) is a Lipschitz function on [0, +∞) such that

ψ (0) = 1 and ψ (r) = 0 if r ≥ R

(see Fig. 5).
This ensures that ϕ ∈ Lip0 (B) and ϕ ≡ 1 on A. We have

∇ϕ = ψ′ (ρ)∇ρ,

and since ‖∇ρ‖L∞ ≤ 1, it follows that

|∇ϕ (x)| ≤ |ψ′ (ρ (x))| for almost all x ∈ B \ A. (41)

To specify further ψ and ξ, consider two cases.
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Figure 5: Function ϕ (x)

Case 1. In the trivial case
R2

2t
≤ 1,

we set ξ ≡ 0 and

ψ (r) =
(R − r)+

R
.

By (41) we have |∇ϕ| ≤ 1
R
, and it follows from (40) that

∫

A

u2 (t, ∙) dμ ≤
2α

α − 1

t

R2
μ (B \ A) .

Letting α → ∞, we obtain

∫

A

u2 (t, ∙) dμ ≤
2t

R2
μ (B \ A) ≤

2t

R2
e−

R2

2t
+1μ (B \ A) . (42)

Case 2. In the main case
R2

2t
> 1,

we set
ξ (s, x) = −2aρ (x) − bs,

for some positive constants a and b. Clearly, ξ satisfies (36) provided

b = 2a2α.

Below we will specify α and a, while b will always be determined by this identity. Note
also that ∫ t

0

eξ(s,x) ds =
1 − e−bt

b
e−2aρ(x). (43)

Next, define ψ as follows:

ψ (r) =

(
eaR − ear

)
+

eaR − 1
.

Then we have
ψ′ (r) = −cear for r ∈ (0, R) ,
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where
c :=

a

eaR − 1
,

and it follows that
|∇ϕ (x)|2 ≤ c2e2aρ(x) (44)

for almost all x ∈ B \ A. Substituting (43) and (44) into (40) and observing that
ξ|A = −bt, we obtain

∫

A

u (t, ∙)2 dμ = ebt

∫

A

u (t, ∙)2 eξ(t,∙)dμ

≤
2α

α − 1
ebt

∫

B\A
|∇ϕ|2 dμ

∫ t

0

eξ(s,∙) ds

≤
2α

α − 1
ebtμ (B \ A) c2e2aρ(x) 1 − e−bt

b
e−2aρ(x)

=
2α

α − 1

ebt − 1

b

(
a

eaR − 1

)2

μ (B \ A)

=
2α

α − 1

e2a2αt − 1

2a2α

a2

(eaR − 1)2 μ (B \ A)

=
1

α − 1

e2a2αt − 1

(eaR − 1)2 μ (B \ A) .

Let us require further that
2a2αt = aR,

that is,

a =
R

2αt
,

where α > 1 is still to be specified. Then we have

aR =
R2

2αt

and, hence, ∫

A

u (t, ∙)2 dμ ≤
1

α − 1

1

e
R2

2αt − 1
μ (B \ A) .

Finally, we choose α by

α =
R2

2t
R2

2t
− 1

so that
R2

2αt
=

R2

2t
− 1 =: δ (45)

and

α − 1 =
1

δ
.

Hence, we obtain ∫

A

u (t, ∙)2 dμ ≤
δ

eδ − 1
μ (B \ A) . (46)
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Since eδ ≥ 1 + δ, we have

1 − e−δ ≥ 1 −
1

1 + δ
=

δ

1 + δ

whence

eδ − 1 ≥
δ

1 + δ
eδ

and
δ

eδ − 1
≤ (1 + δ) e−δ.

Substituting into (46) and using (45), we obtain

∫

A

u (t, ∙)2 dμ ≤
R2

2t
e−

R2

2t
+1μ (B \ A) . (47)

Combining (42) and (47), we obtain (34).

Remark. As one can see from the proof, the same estimate holds if u is a non-negative
subsolution of the heat equation in (0, T ) × B.

Corollary 9 Under the conditions of Theorem 8, the following inequalities are satis-
fied: ∫

A

u2 (t, ∙) dμ ≤ μ (B) ‖u‖2
L∞ max

(
R2

2t
, 1

)

exp

(

−
R2

2t
+ 1

)

(48)

and ∫

A

u (t, ∙) dμ ≤
√

μ (A) μ (B)‖u‖L∞ max

(
R
√

2t
, 1

)

exp

(

−
R2

4t
+

1

2

)

. (49)

Proof. If R2/2t ≥ 1 then (48) trivially follows from (34). If R2/2t ≤ 1 then

∫

A

u2 (t, ∙) dμ ≤ μ (A) ‖u‖2
L∞ ≤ μ (B) ‖u‖2

L∞ exp

(

−
R2

2t
+ 1

)

,

which again implies (48).
Inequality (49) follows from (48) and the Cauchy-Schwarz inequality.

Corollary 10 Let M be a geodesically complete manifold. Assume that there exists a
sequence {Rk} with Rk → ∞ such that, for some x ∈ M ,

V (x,Rk) ≤ exp
(
CR2

k

)
. (50)

Then M is stochastically complete.

Proof. One can show that (50) implies that

∫ ∞ rdr

log V (x, r)
= ∞

so that the stochastic completeness follows from Theorem 4. Let us give a different
proof based on (48). It is suffices to prove that any bounded solution u of the heat
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equation in (0, T ) × M with the zero initial condition must be identical zero. For any
k ∈ N, set Ak = B (x,Rk/2) and Bk = B (x,Rk). Then by (48) we have, for any t > 0
and large enough k,

∫

Ak

u2 (t, ∙) dμ ≤ ‖u‖2
L∞ V (x,Rk)

R2
k

8t
exp

(

−
R2

k

8t

)

≤ ‖u‖2
L∞ exp

(

CR2
k −

R2
k

16t

)

.

Choosing t < t0 := 1/ (16C), we obtain
∫

Ak

u2 (t, ∙) dμ ≤ C ′ exp
(
−cR2

k

)

with c = c (t) > 0, which implies as k → ∞ that u (t, ∙) ≡ 0, provided t < t0. By
iterating this argument, we obtain that u (t, ∙) ≡ 0 for all t < T .

Next we will obtain some pointwise estimates of the solution u (t, x) from the above
statements. For that we meed the following lemma.

Lemma 11 (Mean value inequality) Let B(x, r) be a precompact ball on M . Assume
that u(t, y) is a solution to the heat equation in the cylinder (0, r2)×B(x, r). Then, for
any 0 < t ≤ r2,

u2(t, x) ≤
λ (x, r)

tV
(
x,
√

t
)

t∫

0

∫

B(x,
√

t)

u2(s, y)dμ(x)ds, (51)

where the constant λ (x, r) depends only on the geometry inside the ball B (x, r).
The inequality (51) is also true if u (t, y) is a non-negative subsolution of the heat

equation.

This lemma is illustrated on Fig. 6.

Figure 6: Illustration to the mean value inequality

In fact, we will need Lemma 11 only for sufficiently small balls B (x, r). In this
case, we can work entirely in a chart and write the heat equation in the form

∂tu = Lu,

where L is a uniformly elliptic operator in the divergence form. For solutions of such
equations, the estimate (51) was proved by J.Moser in 1964. The coefficient λ (x, r)
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depends in this case on r, dim M and on the ellipticity constant of L. One can give
a more geometric proof of (51) that works for any precompact ball B (x, r). Then the
coefficient λ (x, r) depends on the constant in a certain Sobolev inequality inside the
ball B (x, r).

Under certain additional assumption about the manifold, the constants λ (x, r) may
be independent of x and r. For example, this is the case when M is a geodesically
complete manifold with non-negative Ricci curvature. In this case λ (x, r) can be
replaced by a constant.

Theorem 12 Let ball B (x,R) be precompact. Let u be a solution to the heat equation
in a cylinder (0,∞) × B(x,R) such that 0 ≤ u ≤ 1 and

u(t, ∙) → 0 as t → 0 in L2
loc (B (x,R)) .

Fix r ∈ (0, R). Then, for any t ≥ r2, we have

u(t, x) ≤

√

λ (x, r)
V (x,R)

V (x, r)
max(

R
√

t
, 1) exp

(

−
(R − r)2

4t

)

, (52)

and, for any t ≤ r2,

u (t, x) ≤

√

λ (x, r)
V (x,R)

V
(
x,
√

t
)

R
√

t
exp

(

−
(R − r)2

4t

)

, (53)

where λ (x, r) depends only on the geometry inside B (x, r).

Proof. Let t ≥ r2. By the mean value inequality of Lemma 11 in the cylinder
(t − r2, t) × B (x, r) , we have

u2(t, x) ≤
λ (x, r)

r2V (x, r)

t∫

t−r2

∫

B(x,r)

u2(s, y)dμ(y)ds. (54)

By Corollary 9 with A = B(x, r) and B = B (x,R), we obtain, for any s ∈ (0, t),

∫

B(x,r)

u2(s, y)dμ(y) ≤ V (x,R) max(
(R − r)2

2s
, 1) exp

(

−
(R − r)2

2s
+ 1

)

≤ V (x,R) max(
(R − r)2

2t
, 1) exp

(

−
(R − r)2

2t
+ 1

)

,

where we have used in the last line the fact that the function max (ξ, 1) exp (−ξ) is
monotone decreasing in ξ ∈ (0,∞). Substituting this inequality into (54) and renaming
eλ (x, r) into λ (x, r), we obtain (52).

Let t ≤ r2. By the mean value inequality of Lemma 11 in the cylinder (0, t) ×
B
(
x,
√

t
)
, we have

u2 (t, x) ≤
λ (x, r)

tV
(
x,
√

t
)

t∫

0

∫

B(x,
√

t)

u2 (s, y) dμ (y) ds. (55)

21



By Corollary 9 with A = B
(
x,
√

t
)

and B = B (x,R), we obtain, for any s ∈ (0, t),

∫

B(x,
√

t)
u2 (s, y) dμ (y) ≤ V (x,R) max(

(
R −

√
t
)2

2s
, 1) exp

(

−

(
R −

√
t
)2

2s
+ 1

)

≤ V (x,R) max(

(
R −

√
t
)2

2t
, 1) exp

(

−

(
R −

√
t
)2

2t
+ 1

)

.

Substituting this inequality into (55), we obtain

u2 (t, x) ≤
λ (x, r)

V
(
x,
√

t
)V (x,R) max(

R2

t
, 1) exp

(

−

(
R −

√
t
)2

2t
+ 1

)

.

Since R2/t ≥ 1 and R −
√

t ≥ R − r, we obtain (53).

Corollary 13 For any R > 0, we have
∫

B(x,R)c
pt (x, y) dμ (y) = o (t) as t → 0. (56)

Proof. It suffices to prove (56) for small enough R. In particular, we can assume
that B (x,R) is precompact. Consider the function

u = Pt1B(x,R)c =

∫

B(x,R)c
pt (∙, y) dμ (y) .

that solves the heat equation in (0,∞)×M and satisfies the initial condition u (t, ∙)
L2

→ 0
in B (x,R) as t → 0. By Theorem 12, we have, for a fixed 0 < r < R and for all t < r2

that

u (t, x) ≤

√

λ (x, r)
V (x,R)

V
(
x,
√

t
)

R
√

t
exp

(

−
(R − r)2

4t

)

.

Since V
(
x,
√

t
)
' tn/2 as t → 0 where n = dim M , it follows that

u (t, x) ≤
C (x, r, R)

tN
exp

(

−
(R − r)2

4t

)

,

where N = n/4 + 1/2. It follows that

u (t, x) = o (t) as t → 0,

which is equivalent to (56).

4 Brownian motion and escape rate

Using the heat kernel, one can construct on an arbitrary Riemannian manifold M a
stochastic process {Xt}t≥0 whose transition density is pt (x, y). The latter means that,
for any Borel set A ⊂ M and for all x ∈ M , t > 0,

Px (Xt ∈ A) =

∫

A

pt (x, y) dμ (y) .
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Moreover, the process {Xt} is Markov, that is, for any finite sequence {Ai}
k
i=1 of Borel

sets Ai ⊂ M and for any sequence 0 < t1 < ... < tk,

Px (Xt1 ∈ A1, ..., Xtk ∈ Ak) =

∫

Ak

...

∫

A2

∫

A1

pt1(x, x1)pt2−t1(x1, x2)...ptk−tk−1
(xk−1, xk)

×dμ(x1)dμ(x2)...dμ(xk). (57)

Let us discuss construction of such a process. Given a point x ∈ M , we need to
construct a probability space {Ωx,Px} and a family {Xt}t≥0 of random variables with
values in M such that their joint distributions are given by (57). Assume for simplic-
ity that M is stochastically complete. Kolmogorov’s extension theorem says that a
family of random variables with predefined joint distributions exists if and only if the
distributions satisfy the compatibility condition:

Px (Xt1 ∈ A1, ..., Xti ∈ M, ..., Xtk ∈ Atk) = Px(Xt1 ∈ A1, ...,
i

X, ..., Xtk ∈ Ak),

where in the right hand side the i-th condition is omitted. The validity of this condition
follows from the stochastic completeness and the semigroup identity of the heat kernel.
For example, in the case k = 2, we have

Px (Xt1 ∈ A1, Xt2 ∈ M) =

∫

M

∫

A1

pt1 (x, x1) pt2−t1 (x1, x2) dμ (x1) dμ (x2)

=

∫

A1

pt1 (x, x1)

(∫

M

pt2−t1 (x1, x2) dμ (x2)

)

dμ (x1)

=

∫

A1

pt1 (x, x1) dμ (x1) = Px (Xt1 ∈ A1)

and

Px (Xt1 ∈ M,Xt2 ∈ A2) =

∫

A2

∫

M

pt1 (x, x1) pt2−t1 (x1, x2) dμ (x1) dμ (x2)

=

∫

A2

pt2 (x, x2) dμ (x2) = Px (Xt2 ∈ A2) .

An important property of the process {Xt} is that it is a diffusion, that is, all the
paths Xt are continuous with probability 1. By a general theory of symmetric Markov
processes, the continuity of sample paths follows from the following property of the
transition probabilities: for any point x ∈ M and for any open set U containing x,

Px (Xt ∈ U c) = o (t) as t → 0. (58)

In term of the heat kernel, (58) amounts to the following: for any x ∈ M and any
r > 0, ∫

B(x,r)c
pt (x, y) dμ (y) = o (t) as t → 0, (59)
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which is indeed the case by Corollary 13.

Definition. The diffusion process {Xt} constructed as above is called Brownian mo-
tion on M .

In the case M = Rn, it coincides with the classical Brownian motion with the
transition density

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

It is easy to see that, for this function,
∫

(Br)c
pt (0, y) dy ≤ const exp

(

−
r2

5t

)

= o (t) as t → 0.

For comparison, let us consider the function

pt (x, y) =
Cnt

(
t2 + |x − y|2

)n+1
2

,

that is the heat kernel the operator (−Δ)1/2 in Rn, or, equivalently, the transition
density of a symmetric stable Levy process of index 1. For this heat kernel we have

∫

(Br)c
pt (0, y) dy '

t

r
as t → 0

so that (59) fails. Indeed, it is known that a symmetric stable Levy process of index
∈ (0, 2) is a jump process, and its trajectories are discontinuous.

Let us know discuss how fast Xt goes away from the origin as t → ∞. If Xt is
Brownian motion in Rn then it is known that E0Xt = 0 and

E0 |Xt|
2 =

∫

Rn

|x|2 pt (x, 0) dx = cnt.

Hence, |Xt| is on average of the order
√

t. A more precise law of iterated logarithm
says that

lim sup
t→∞

|Xt|√
4t log log t

= 1 P0-a.s. (60)

Fix ε > 0 and set
R (t) =

√
(4 + ε) t log log t.

Then it follows from (60) that

P0 (|Xt| < R (t) for all large enough t) = 1.

One says that this function R (t) is an upper rate function for Brownian motion in Rn.
Let us return to an arbitrary Riemannian manifold M .

Definition. A monotone increasing function R (t) on R+ is called an upper rate func-
tion for Brownian motion Xt on M started at z ∈ M if

Pz (d (Xt, z) < R (t) for all large enough t) = 1

(see Fig. 7).

The next theorem provides an upper rate function based on the volume growth.
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Figure 7: An upper radius function R (t): the process Xt stays in the ball B (x,R (t))
for all large enough t with Px-probability 1.

Theorem 14 Let M be a geodesically complete manifold. Assume that, for some point
z ∈ M and all large enough R,

V (z, R) ≤ CRN , (61)

where C,N > 0. Then the function R(t) =
√

ηt log t is an upper rate function for the
process Xt started at z, for any η > N.Consequently,

lim sup
t→∞

d (Xt, z)
√

Nt log t
≤ 1 Pz-a.s.

Proof. The hypothesis (61) implies by Theorem 4 that M is stochastically com-
plete. Assuming that the process Xt starts at z, let us set

M(t) := sup
0≤s≤t

d (z,Xs) .

Given an increasing function R (t), let us introduce a sequence {Ak}
∞
k=1 of events as

follows:
Ak := {M(t) ≥ R(t) for some t ∈ (tk, tk+1]} ,

where so far {tk} is any increasing sequence such that tk → +∞ as k → ∞ (see Fig.
8).

Clearly, the function R(t) is an upper rate function if the Pz-probability that only
finitely many of the events Ak occur is equal to 1. By the lemma of Borel–Cantelli,
the latter will follow from ∑

k

Pz (Ak) < ∞. (62)

Set
R (t) =

√
ηt log t, (63)

and
tk := qk, k = 1, 2, ...., (64)
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Figure 8: Event Ak

where q > 1 and η > 0 will be chosen later. We will show that, under the hypothesis
(61), the condition (62) can be satisfied for an appropriate choice of the parameters
η, q.

For any R > 0, define the following function for all t > 0 and x ∈ B (z, R):

ψR(t, x) := Px {Xs /∈ B (z, R) for some s ∈ [0, t]} .

It is possible to prove that the function ψR (t, x) solves the heat equation in R+ ×
B (z, R) and tends to 0 in B (z, R) as t → 0.

Figure 9: Event {Xs /∈ B (z, R) for some s ∈ (0, t]} determines the function ψR (t, x)

Since both M(t) and R(t) are increasing in t, we have:

Pz (Ak) ≤ Pz {M(tk+1) ≥ R(tk)} = ψRk
(z, tk+1), (65)

where
Rk := R(tk) =

√
ηtk log tk. (66)
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Let r be any fixed small positive number. Applying Theorem 12 for u = ψR, we obtain,
for all R > r and t ≥ r2,

ψR(t, z) ≤ C
√

V (z, R) max(
R
√

t
, 1) exp

(

−
(R − r)2

4t

)

, (67)

where C depends on z and r. Applying (67) with R = Rk+1, t = tk and using (65) and
(61), we obtain, for large k,

Pz (Ak) ≤ CR
N/2
k max(

Rk√
tk+1

, 1) exp

(

−
(Rk − r)2

4tk+1

)

. (68)

Assuming further that k is so large that

Rk − r ≥
Rk

q
,

we obtain

exp

(

−
(Rk − r)2

4tk+1

)

= exp

(

−
(Rk − r)2

4qtk

)

≤ exp

(

−
R2

k

4q3tk

)

.

By (66), we have
R2

k

tk+1

≤
R2

k

tk
= η log tk = ηk log q.

Substituting this into (68) and using (66), we obtain, for all large enough k,

Pz (Ak) ≤ C (tk log tk)
N/4

√
k exp

(

−
ηk log q

4q3

)

= CqkN/4kN/4+1/2q
− ηk

4q3 .

Clearly, if
η

4q3
>

N

4
,

then
∑

k P (Ak) is dominated by a convergent series
∑

k kN ′
q−εk and, hence, converges.

If η > N then there exists q > 1 such that this condition is satisfied. Hence, for such
η, the function (63) is an upper rate function.

There is an example showing that in the class of manifolds satisfying (61), the
upper rate function

√
ct log t is sharp (up to the value of c) and cannot be improved to√

ct log log t.
Let {Yn}

∞
n=1 be a sequence of independent random variables with mean zero and

variance 1. Set
Xn = Y1 + ... + Yn.

The strong law of large numbers says that

Xn

n

a.s.
→ 0 as n → ∞.

Hardy and Littlewood proved in 1914 a more precise statement:

|Xn| <
√

Cn log n for all large n a.s.
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In 1924 Khinchin obtained a final result in this direction:

lim sup
n→∞

|Xn|√
2n log log n

= 1 a.s.

Hence, our Theorem 14 is an analogue of the Hardy-Littlewood theorem for manifolds
with a polynomial volume growth.
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