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1 Introduction: Laplace-Beltrami operator and heat
kernel

Let (M, g) be a connected Riemannian manifold. The Laplace-Beltrami operator A is
given in the local coordinates by

1 <« 0 ;0
A= (\/det gg -
Vdet g zz Oz ( det g9 8x1> ’

J=1

where n = dim M, g = (g;;) and (¢”) = ¢g~'. This operator is symmetric with respect
to the Riemannian measure

du = +/det gdx'...dz",

that is, for all u,v € C§° (M),

/M(AU)Ud,U:—/M<Vu,Vv)d,u:/MuAvd,u

Furthermore, the operator A with the domain C§° (M) is admits the Friedrichs ex-
tension to a self-adjoint operator in L? (M, i) that will also be denoted by A. This
operator is non-positive definite since for all v € C§°

(Au,u);» :/ (Au)udu:—/ |Vl dp < 0.
M M

Hence, spec A C (—o0,0].
The heat semigroup of M is a family {Pt}tzo of self-adjoint operators defined by

P, = exp (tA)

using the functional calculus of self-adjoint operators. Since the function A — exp (t)\)
is bounded for A € (—o0,0], that is, on the spectrum of A, it follows that P, is a
bounded self-adjoint operator in L? (M, u).

For any f € L? (M, ), the function

u(t,z) = P f(z)
ou

is a smooth function of (¢,z) € Ry x M, satisfies the heat equation % = Au and the
initial condition ,
u(t,-) ofast—0+.

The heat kernel p; (x,y) is a function of ¢ > 0 and x,y € M such that

RS (z) = /M pr () £ () ds (4)

for all f € L* (M, ). It is known that p; (z,y) exists on any Riemannian manifold and
is unique. Besides, the heat kernel satisfies the following properties.

e Smoothness: p; (z,y) € C* (Ry x M x M)
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Positivity: p; (z,y) >0

Symmetry: p; (z,y) = p; (y, v);

The semigroup identity:

Prss (@,9) = /M pr (2,2) pe (2,9) dp (2) (1)

Submarkovian property:

e (z,y)du(y) < 1.

For any y € M, the function u (t,z) = p; (x,y) satisfies the heat equation and
the initial condition
u(t,z) = 6, (x) ast— 0+,

that is, p; (z,y) is a fundamental solution of the heat equation. Moreover, p; (x,y)
is the smallest positive fundamental solution of the heat equation.

Recall that in R”, A is the classical Laplace operator A = > 7, %, and its heat
k

kernel is given by the Gauss-Weierstrass formula

( ) 1 |I B y|2
s = ———= €X — .
pe(z,y (i) p m

Explicit formulas for the heat kernel exist also in hyperbolic spaces H". For example

in H? . )
r r
. A7t sin rex t

pe(z,y) (170)? sk P{—7 : (2)

where r = d (z,y) is the geodesic distance between x,y. For arbitrary H" the formula
looks complicated, but it implies the following estimate, for all £ > 0 and z,y € H™
n—3

pt(az,y):(1+r+iz/: (1+T)exp(—>\t—%—\/Xr), (3)

where A\ = % is the bottom of the spectrum of the Laplace operator on H".

2 Faber-Krahn inequality

Any open set {0 C M can be regarded as a Riemannian manifold, too. Hence, the
Laplace operator A initially defined on C§° (£2) admits the Friedrichs extension to a
self-adjoint operator in L? (€, 1) that will be denoted by Aq and that is non-positive
definite. It is called the Dirichlet Laplacian in ). Set

Amin (€2) = inf spec (—Agq) .



By the variational property we have

)\min (Q> = inf (_L{’f)
fe€dom(Aq)\{0} ||f||L2
) (-Aaf.f)
FeCse()\0 Hf”iZ
) Jo Vi
FECS(\O0 ||f||i2
Jo|VIT dp
fE€Lipg(2)\0 ”f”iQ .
The quantity 2
Jo VST du
1£1172

is called the Rayleigh quotient of f in (2.

Definition. We say that () satisfies the Faber-Krahn inequality if, for any non-empty
open set U € ) we have
Auin (U) = ap (U) (4)

for some a, 3 > 0.

The exponent [ is usually equal to 2/n where n = dim M. The parameter a is
called the Faber-Krahn constant of €. It depends on the intrinsic geometry of 2.
Let Q = R™. By the Faber-Krahn theorem, for any precompact open domain U C
R™ we have
)\min (U) 2 >\min (U*> )

where U* is a ball of the same volume as U. If the radius of U* is r then

)\min (U*) = c_n

r2

with some positive constant ¢,,. Since
pU) = p(U%) = bur",

it follows that
Amin (U) > apu (U) (5)

where a, > 0. Hence, R" satisfies the Faber-Krahn inequality (4) with a = a,, and
B =2/n.

Using this fact, it is easy to prove, using the compactness argument that any rel-
atively compact open set {2 C M on any Riemannian manifold M also satisfies the
Faber-Krahn inequality (4) with some a = a (2) > 0 and § = 2/n, where n = dim M.

It is possible to prove the following two facts.

1. If M is a Cartan-Hadamard manifold (that is, a simply connected manifold of
non-positive sectional curvature) then M satisfies the Faber-Krahn inequality (4)
with some @ > 0 and # = 2/n (and, hence, any open domain 2 C M also satisfies
the same inequality).



2. If M is complete manifold of non-negative Ricci curvature then any geodesic ball
B = B (z, R) in M satisfies the Faber-Krahn inequality (5) with the Faber-Krahn

constant 2/
a=a(B)= ekt A (gz (6)
and 3 = 2/n where ¢ = ¢ (n) > 0.
In particular, if in addition
p(B) ~ R"

(as in R™) then it follows that a (B) may be chosen to be independent of balls so that
also the entire manifold M has also the same Faber-Krahn constant.

Another example. Let M = K x R™ where K is a compact manifold of dimension
n —m. Any ball B = B(z,R) on this manifold has the Faber-Krahn constant (6).
Since

R" R<1
wimy={ o B,

we obtain that
1 R<1

G(B) = { RQm/n—Q’ R>1
Proposition 1 Suppose that for any domain U € ) with smooth boundary,
area (OU) > bu (U)”

for some b > 0 and 0 < v < 1. Then Q satisfies the Faber-Krahn inequality (4) with
a:% and f=2(1—7).

In particular, if v = "Tfl as in R” then = 2/n.
Proof. For any open domain U C M define the Cheeger constant

. . area(dV)
S T

where V' is any open set with smooth boundary. Since
area (OV) > bu (V)7
and v < lit follows that

area (OV)
p(V) — B
It follows that

By the Cheeger inequality,

1
Amin (U) > Zh(U)2
b 20

which was to be proved. m



3 Mean-value inequality

Let I be an interval in R and  be an open subset of M/ A C? function u (¢, x) defined
in I x € is called a subsolution of the heat equation if

Ou < Au in I x Q. (7)

Theorem 2 (Mean value inequality) Let B (z, R) be a relatively compact ball in M
that satisfies the Faber-Krahn inequality (4). Let u (t,y) be a non-negative subsolution
of the heat equation in (0,T] x B (z, R) for some T' > 0. Then we have

9 Ca_l//g
WA(T,) < el / / ) (8)

mln T

where C' = C().

= Au

[lustration to mean-value inequality

In particular, if § = 2/n then (8) becomes

2T, 2) < Ca™/? / / (t,y) du(y)dt,
u (T, x) <
min (7', R?) 14n/2 B(a:R ) duly

Define measure v on R x M by

dv = dudt

and prove first two lemmas.

Lemma 3 Let Q2 be an open subset of M andT > 0. Letn (t,x) be a Lipschitz function
in the cylinder
C=10,T] x

such that suppn C [0,T] x K for some compact set K C Q. Let u be a subsolution
to the heat equation in C and set v = (u — 0), with some real 0. Then the following
mequality holds:

%Uﬂv?n? (t,-)dufo+/c|wvn)|2du§ /cv2(|Vn|2+n8m) dv. )
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In particular, if n(0,-) =0 then

/C|V (m])|2d1/ < /CUQ (!V'r]|2 + n@t'r;) dv (10)

and, for any t € [0, T,
/122772 (t,)dp < 2/1)2 (IVn[* +ndm) dv. (11)
Q c

Proof. The estimate (10) is an obvious consequence of (9). The estimate (11)
follows from (9) if one replaces T by t.
Let us prove (9). The function v (¢, -) is locally Lipschitz. For the weak gradient of
v we have
Vv = 1{u>9}Vu = 1{1,750}Vu,

which implies
(Vu, Vo) = [Vo* and vVu = oVu. (12)

Since 7 (t, -) € Lip, (2), we have also vn? € Lip, (Q2) for any fixed time ¢ and
\Y (UT]Q) = oVn? +n*Vo = 2unVn + n* Vo,

whence

(Vu, V (vn?)) = 2un(Vv, V) + n° |Vol?.
Multiplying the inequality (7) by vn? and integrating over C, we obtain

T
/@uvnQdy < / /(Au)mfd,udt
c o Jao
T
= —/ /(Vu,V(wf)}dudt
o Jao

= —/C(Qvn(Vu, Vi) +n*(Vu, Vo)) dv

= —/ (QUT](VU, vn) +n? |Vv|2) dv,
c

where we have used the Green formula and (12).
Since

IV (on)? = (nVv +vVn)? = n? [Vo|? + 02 [Vn|? + 2up(Vv, Vi),

we have
2un(Vv, Vi) +0* [Vol? = |V (vn)|* — v* [Vn|?,

whence it follows that

/@uvnQdu < —/[V(vn)|2dy+/v2|V77|2dl/. (13)
c c c



For any fixed z, all functions w,v,n are Lipschitz in ¢ € [0,7]. Therefore, using the
integration by parts formula for Lipschitz functions of ¢, we obtain, for any fixed x € €,

T 1 T
/ Ouvn’dt = = / 0, (112) n>dt
0 2 Jo

Lirgogqr 1 T2 2 Lo o T2
= 5[1}77}0—5 v@t(n)dtzﬁ[z}n]o— v nomdt.
0 0

Integrating this identity over {2, we obtain
T

1
/8tuv772du =3 [/ 027)2d,u] — /v27]8m dv
Q 0 C

and combining with (13)

[ 2d,u} U *nom dv < —/|V(m))|2 du+/v2 V| dv,
0 c C

which is equivalent to (9).

Lemma 4 Let B (x, R) be a relatively compact ball in M that satisfies the Faber-Krahn
inequality (4). Let u (t,y) be a subsolution of the heat equation in C = (0,T] x B (z, R)
for some T > 0. Consider two smaller cylinders

Cr =Ty, T] x B(x,Ry), k=0,1,
where 0 < Ry < Ry < R and 0 <Ty < T, <T. Choose 01 > 0y and set

Je = / (u—6)" dv.
Ck

Then the following inequality holds

0J3+ﬁ
CL51+6 (491 — 90)267
where C'= C () and 6 = min (T1 —To, (Ro — R1)2) )

H
7

(14)

1 <

Ci Co C

Tl:

1>61
>0

Tu:

/ B(x,Ro)
Ob el I BGR) m———> |

B(x,R)

Cylinders C, Cy and C;



Proof. Replacing function u by u — 6y we can assume that 6y = 0 and rename 6,
to 6 so that 8 > 0. Without loss of generality and to simplify notation we can assume
that Ty = 0. Set for any A\ € [0, 1]

Ry = ARy + (1 = \) Ro.

Consider a function

where

and

o)

T T
Function ¢ (t) given by (15)

Function v given by (16)

Obviously,
Yv=1 on B (:E,Rg/g) and suppy =B (x, Rl/g).
Applying the estimate (11) of Lemma 3 in the cylinder Cy = [0,7] x B (x, Ry) for

function v = u, with ¢ € [T}, 7] and noticing that 7 (t,y) = 1 for ¢ in this range and
ye B (a:', Rg/g), we obtain

20
/ u’ (t, ) dp < / uin® (t,-)dp < 2/ W2 (|Vn)? +ndm) dv < == Jo,
)
B(,Ry3) B(z,Ro)

Co
(17)
where we have also used that
1 9 9
|V77|2 S 5 — ) S g
(Ri/3 — Ray3) (Ro — 1)
and ) )
nomn < — < <.
T T 0
For any t € [Ty, T}, consider the set
U; = {y €B (IE,Rg/g) cu(ty) > 0} ) (18)




It follows from (17) that

() < G /B(x Rgm)ui (t ) it < g (19)

B(X,Rl/g)

Set U, defined by (18)

Consider now a different function :

(Rg/g - d(l’,y))+
V)= A, (20)

so that
=1 on B(z,R;) and suppy =B (x,Rg/g).

Function v given by (20)



Applying (10) for function v = (u — 0)_ with  (¢,2) = ¢ (t) ¥ (y) where ¢ is given
by (15) and v is given by (20), we obtain

IV (vn)]? dv < / v? (|V77|2 + ndm) dv < — | v*dv < —JO (21)
Co Co Co

Fix some ¢t € [T1,T]. The function (vn)(¢,y) can take a non-zero value only if y €
B (m, Rg/g) and u (t,y) > 0, that is, if y € U;. It follows that

Uy

/( R)|V(U77)|2(t7')d,u > IV (vn)|? (¢, ) du
> A (U1) / (on)? (¢, ) du
ap (U)? on)? ,-)d
> au(Uy) /BM)w) (t,) dy

925)5
> al| — J_B/ v (t, ) dp
(20 ’ B(val) ( )

where we have used the variational property of Ay, the Faber-Krahn inequality, the
estimate (19), and that n = 1 in [T1,T] x B (x, Ry).
Integrating this inequality in ¢ from 73 to 7" and using (21), we obtain

10 T 2

—J = |V (vn)|” dv

5 T (z Ro

a (—) Jy / / vidudt
Ty (z,R1)

Vv

It follows that

which was to be proved. m
Proof of Theorem 2. Consider a sequence of cylinders

Ck = [Tk,T] X B(.Qf,Rk),

where {T}},-, is a strictly increasing sequence such that Ty = 0 and Tj, < T'/2 for all
k, and {Ry},-, is a strictly decreasing sequence such that Ry = R and Ry > R/2 for
all k. Assume also that

(Rk — Rk+1)2 == Tk+1 - Tk =. 5k (22)

In particular, the sequence of cylinders {Cy},-, is nested, C, = C and all C contain
[T/2,T] x B(x,R/2) for all k. The values of Ry and T} will be specified below.
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T
Crr1| Cx C
//—
[ —
72
11>0k+1
T
>0k
Tx
B(x,Ry)
A
M
0 a ‘ B(x,R/2)

- J
BQJQM)

B(x,R)

Cylinders Cj,

Fix some 6 > 0 and set
O, = (1—27"1)g

so that 0 = 6/2 and 0 /" 0 as k — oo. Set also

Je = / (u—6;)* dv.

Ck

Clearly, the sequence {Jy},, is decreasing. We will find 6 such that J; — 0 as k — oo,

which will implies that
T
/ / (u— Q)i dv = 0.
T/2 J B(x,R/2)

In particular, it follows that u (7, z) < 6 and, hence, v? (T,z) < 6*. With an appro-
priate choice of 6, this will lead us to (8).
Applying Lemma 4 for two consecutive cylinders Cy D Cr,1 and using that

Oi1 — O, = 27 F2g,
we obtain s I
CJ, C'4*P
Ji1 < 146 28 — 14828 ° (23)
where C" = 16°C'. Assume that §j, is chosen so that for any &
/4fkﬂ B 1
4 7 L (24)

a6,1,+ﬂ 64 16

11



We claim that then
Ji < 16751, (25)

which in particular yields J; — 0. Indeed, for £ = 0 (25) is trivial. If (25) is true for
some k then (23) and (24) imply

Ok (1670 0,)"  crake g

Jpy1 < k=
ad, % ad, g%

1
T < 3 (167Jp) = 16~ *FD 1,

Resolving (24) with respect to d; we obtain

14—kB 78 e g T+
5k:<1604 J0> :C,,<JO) s (26)

at*? abh*?

where C" = (16C" )ﬁ Note that any choice of ¢;, determines uniquely the sequences
{T:} and {Rx}, and these sequences should satisfy the requirements7), < T/2 and
Ry > R/2. Since by (22)

k—1 k-1
Tp=> 6 and Ry=R—> /b
i=0 i=0
the sequence {0} must satisfy the inequalities
k=0 k=0
Substituting 05 from (26) and observing that {d,} is a decreasing geometric sequence,

we obtain that
- J()ﬁ m - — kB " J(/)G m
>0k = (a@—w) D AT S0 =
k=0

k=0

and

- \/5_ < C/// ‘]Oﬁ ﬁ
Z b= ab*’

k=0
where C" depends on 3. Hence, the following inequalities must be satisfied:

1 1
Jég 1+8 Joﬂ 2(14+3)
<a92ﬂ> < AT and WV < cR,

for some ¢ = ¢ () > 0. There conditions can be satisfied by choosing 6 as follows:

a_l/ﬁ JO
- (CQT)1+1/5

a_l/BJO

and 6 >(C}%)—2+2/ﬁ

Taking
9 a” 1/8 JO

- 2(+1/8) min (T, Rg)1+1/ﬁ’

12



recalling that u? (T, z) < 6? and using that

Jo = / (u— 6’)%r dv < /uidl/,
Co C

a_l/ﬁ
u2 (I7T> S /uﬁ_dl/7
C

2(1+1/8) min (T, R2)1+1/ﬂ

we obtain

whence (8) follows. =

4 On-diagonal upper bounds

In what follows we frequently consider the Faber-Krahn inequality (4) with g =
2/n (where n > 0 does not have to be the dimension of M). That is, we say that
) C M satisfies the Faber-Krahn inequality with constant a if, for any U € (2,

Amin(U) = ap (U) 7" (27)

Theorem 5 Let a precompact ball B (x,r) satisfy the Faber-Krahn inequality (27) with
constant a. Then, for all t > 0,

Ca—n/Q

min (¢, r2)"*

pe(z,2) < (28)

Proof. Since p; (x,x) is monotone decreasing in ¢, it suffices to prove (28) for
t<r2
The function
u(t,y) = pe (,y)

is a positive solution of the heat equation. Applying Theorem 2 in the cylinder (¢/2,t) x

B (z,r), we obtain
Ca_”/2
(t x N t1+n/2 //2/ (z,7) S Y d,u( )d

t t
[ wewdtds < [ [ 2 dutds
t/2 J B(z,r) t/2JM

t
= /pgs(:c,:c)ds
t/2

t

< _
~ 2pt ('rax)a

Observe that

where we have used the semigroup identity and the fact that ps(x,x) is monotone
decreasing in s. It follows that

Ca"/?t
p; (z,7) < iz P (2, )

13



which implies (28). =

Example. Let M have bounded geometry, that is, there exists r > 0 such that all
balls B (x,r) of radii r are uniformly quasi-isometric to the Euclidean ball of the same
radius. Then the Faber-Krahn inequality (27) holds in any ball B (x,r) with the same
constant a > 0 that does not depend on x. Hence, (28) holds on such manifolds for all
x € M and t > 0.

Theorem 6 Let M be a geodesically complete manifold. The following conditions are
equivalent:

(a) M satisfies the Faber-Krahn inequality (27) with some constant a > 0.
(b) The heat kernel on M satisfies for all x € M and t > 0 the inequality
pi (z,2) < Ct™2 (29)
with some constant C'.

Proof of Theorem 6 (a) = (b). By Theorem 5, (28) holds for an arbitrary 7.
Choosing r > v/t, we obtain (29) for all z € M and ¢ > 0. m
For the proof of the opposite implication (b) = (a) we need the following lemma.

Lemma 7 For any function f € C§° (M) such that || f|l2 = 1 and for any t > 0, the
following inequality holds

exp (—t/ ]Vf]2 du) < [P fl2- (30)
M
Consequently, for any open set U C M and for any t > 0,
1 1
Amin (U) > =log ————, 31
()2 3 o8 R, oy
feTU)

where

T(U)={feCeU):lflly =1}

Proof. Let {E)}, g be the spectral resolution of the operator £ = —A in L* (M, p).
Then, for any continuous function ¢ on [0, 00), we have

(L) =/O o (\) dEj
and, for any f € L? (M, p),
lo (L) FI2 = / & (N B,

where the function A — || E, f]|? is monotone increasing.
For ¢ =1 we have

12 = / A B,

14



and for ¢ (\) = e~ we have
1P.f1I3 = llexp (—t£) fll; = / exp (—2tA) d|| Exf|[*. (32)
0
For ¢ (A) = A/? and f € O (M) we have

[wrtan=— [ @aprac=crn = et - | CMIESE (33)
M M 0

If in addition | f||, = 1 then the measure d||E)\f|* has the total mass 1. Applying
Jensen’s inequality, we obtain

IPSIE = / exp (—26A) dl| B f
0

> exp (—/ 2t>\d\|EAfH2>
0
e (—2t / |Vf|2du),
M

1
[ R g i

which is equivalent to (30).
Clearly, (30) implies

1
TR (34)

It follows from the variational property of Ay, (U) and (34) that

Amin (U) = inf /|Vf| du

feT(U

> inf
ser(o) ||Ptf||2
1 1

= 7 lOg )
t 7 supger) 1S,

which proves (31). =
Proof of Theorem 6 (b) = (a). We have, for any f € L* (M, u),

Pf(a)] = ]/ (e, 9) F(w)d(y)

< ([ #enam) e

= ot (2,2)"% | £l

whence

1P.f (@)l < O f -
It follows by the duality argument that for any f € L? N L!,

|Pfll, = sup (Pif,g9) = sup (f,Pyg)
lgll,=1 lgll,=1
< sup |[fll, 1Pl
lgll,=1
< Cct|fl

15



that is,
1P flly < CE 1. (35)

Let U be a precompact open subset of M and let f € 7 (U), that is, f € C§° (U) and
| fll, = 1. By the Cauchy-Schwarz inequality inequality, we have

£l < Vi),

which together with (35) yields
121l < CE/u (U).

By (31) we obtain, any ¢t > 0,

1 | 1

t 7 supserw) 1Sl
1

t

v

)\min (U)

1
log :
Ct=/4\/u(U)

Choose t here from the condition

Cm /(0 = %

that is,
t=(Ce)" (U

It follows that ]
Amin (U) 2 P (U)_Q/n ;

where a = (Ce)™", which finishes the proof. m

5 A weighted L? norm of the heat kernel

The semigroup identity yields that

/M pi (,y) du (y) = /M pu(,9) e (4,2) djt () = po (2, 7).,

which in particular implies that the function p; (z,-) belongs to L? (M, u). In fact, a
more interesting fact is true.
For any D > 0, consider the following weighted L? norm of the heat kernel:

Botta) = [ st en (S5 ) duw), (30

where d (z,y) is the geodesic distance on M. We can consider also the case D = oo by
setting % = 0 so that
Ey (t,z) = py (z,2) .

16



Theorem 8 (a) If D > 2 then Ep (t,x) is non-increasing in t.
(b) Let B (x,r) C M be a relatively compact ball satisfying the Faber-Krahn inequal-
ity (27) with constant a > 0. Then, for any t > 0 and D € (2,400,

Ca—n/2

Ep(t <
p(t7) < min(t, r2)"/2’

(37)
where C'= C(n, D).
(¢)If D > 2 then Ep (t,x) < 0.

Proof. (a) The following integrated maximum principle was proved in lectures in
2017: for any solution u (¢, y) of the heat equation on I x M (where I is a time interval)
and for any locally Lipschitz function £ (¢,y) in I x M satisfying

1
% + 5 Ve[ <0,

the function
/ u? (t,y) eV dp (y)
M

is non-increasing in t € I. If D > 2 then the function

d? (z,y)
Dt

§(ty) =

satisfies the inequality
1 D
O + 5 |VE[* < ag + — Ve[ <0,

and the latter is the case because

d(z,y)

4d (x,y)”
Dz '

D22

§=- Ve <
Hence, Ep(t, ) is non-increasing in t.

(b) + (¢) Note that Ep (t,x) may be equal to co. For example, Fs (¢, ) = 0o in R™.
The finiteness of Ep (t,z) for D > 2 follows from the estimate (37) because for any
x € M there is r > 0 such that B (z,7) is relatively compact, and in any relatively
compact domain the Faber-Krahn inequality always holds with some positive constant
a.

Hence, it remains to prove (37). Since Ep (¢, ) is non-increasing in ¢ and the right
hand side of (37) is constant for ¢ > r?, it suffices to prove (37) for ¢ < r?, which will
be assumed in the sequel.

Fix a non-negative function f € L?* (M) and set u = P,f. Applying the mean value
inequality of Theorem 2, we obtain

t

WAt x) < K / / @2 (5, ) du (y) ds, (38)

0 B(z,r)
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where
Ca—n/Q

= fin/2 (39)

Set
p(y) = d(y, B(x,r)) = (d(z,y) —r),
and consider the function ( )
P
defined for 0 < s <t and y € M. Since & (y,s) =0 for y € B (z,r) and, hence,
W) =1 fory e B (x,7),

we can rewrite (38) as follows:

u?(t,r) < K//u2 (y,5) €W dy (y) ds. (40)

Since

1
KE+ 3 Ve <o,

by the integrated maximum principle, the function

J(s) = /M @2 (3,) €00 dp ()

is non-increasing in s € [0,¢). In particular, we have
J(s) < J(0) forallsel0,t).

It follows from (40) that

2 (t,x) §K/tJ(s)ds§KtJ(O).

/f ( ziy))du(y),

Yo < Kt [ e (—'”—@)) du (). (1)

Since

we obtain

2t

Now choose function f as follows

F =nGeaes (T2 o),

where ¢ is any function from Cg° (M) such that 0 < ¢ < 1. Then we have

wtn) = [ w1 = [ e (M)wwdmw.

2t
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Applying (41) with this function f and using that ¢? < ¢, we obtain

u? (t,x) < Kt /Mpf (2, y) exp (M) ¥* (y) exp (_M) dyu (y)

t 2t
2 P2 (?J)
< Kt [ p;(v,y)exp 5 ¢ (y) du(y)
M
= Ktul(t,z).
It follows that
ult,z) < Kt,

that is,

2
/Mpt (z,y)exp < 5

Since ¢ is arbitrary, we obtain that

<
[\
—~
&
N———
AS)
S
U
=
S
N
&

[ e (ngy)) dp (y) < Kt = C (at) ™2, (12)

Using the elementary inequality?

@ 0 (a +b)°

t s t+s

) (43)
which is true for real a,b and positive t, s, we obtain, for any D > 2,

P (y) 2 (py)+r)? & (zy)
2t +(D—2)t_ Dt ="t

It follows that

Ep(t,x) = /Mp?(w,y)exp (Clz(TxLZy)) dyu (y)

< exp ((D%)t) /Mpf (x,y) exp <%) dy (y) -

Note that we can always reduce r without changing the value of a. Since r > V/t, we
can set r = v/t and obtain

Ep (t,z) < exp <ﬁ) C (at)™"?,

which finishes the proof of (37). =

!The inequality (43) follows from

aX?+(1-a)Y?> (aX+(1-a)Y)?

_ _t —a - b
fora—tJrS?X—aandY—ka.
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6 (saussian upper estimates

Here we illustrate how one can obtain pointwise upper and lower bounds of the heat
kernel by using the weighted norm Ep (¢, x) .

Theorem 9 Let two balls B (xz,7) and B (y,r) be precompact and satisfy the Faber-
Krahn inequality (27) with constants a(x,r) and a(y,r), respectively. Then, for all
t>0and D > 2,

pi(,y) < ¢ exp (—d2 (= y>> , (44)

(a(z,r)a(y,r))"* min(t,r2)n/>2 2Dt

where C'= C'(n, D).

Proof. Let us prove that always

pates) < VEsa Enttg)exp (-2 ). (49

Indeed, for any points z,y,z € M, let us denote a« = d(y,2), f = d(z,z) and
v =d(z,y).

Distances «, 3,7

By the triangle inequality, we have

1 1
o?+ 02> S (a+0) = 0"

Applying the semigroup identity (1), we obtain
paulz,y) = / pe(, 2)p(y, 2)dp(z)
M

2 o2 2
= / pelx, 2)e3pipy(y, 2)edoi e i dp(z)
M

< (/ p?(fC,Z)egidu(Z))é (/ pf(y»z)e%idu(z))%e‘zﬁ

= VEp(t,z)Ep(t,y) exp (-dQ(%y)) :

4Dt
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which proves (45).
Combining (37) and (45), we obtain

Dot (%y) S O

(a2 a )" o (20

min(¢, r2)"/2 4Dt

which is equivalent to (44). m

Example. Let M have bounded geometry, that is, there exists r > 0 such that all balls
B (z,r) of radii r are uniformly quasi-isometric to the Euclidean ball of the same radius.
Then the Faber-Krahn inequality (27) holds in any ball B (z,r) with the constant a
that does not depend on x. Hence, we obtain from (44), for all ¢ > 0 and x,y € M,

pe(@,y) < Lexp (—M) .

min(t, r2)"/2 2Dt

Corollary 10 Let M satisfy the Faber-Krahn inequality (27) with some constant a >
0. Then, for allt >0 and v,y € M and D > 2,

¢ @*(z,y)
pe(@,y) < T exp <— YT ) (46)

where C' = C (a,n, D).

Proof. Indeed, by hypothesis (44) holds for any r > 0. Setting r = v/£, we obtain
(46). =m

For example, (46) holds on Cartan-Hadamard manifolds.

It follows from Theorem 6 and Corollary 10 that the Gaussian estimate (46) holds
if and only if the on-diagonal upper bound

< C
Pt(fﬁyy)_m

is satisfied.

7 Li-Yau upper bounds

Set
Vi(z,r)=u(B(z,1)).

Definition. We say that M satisfies the volume doubling condition (or the measure
p is doubling) if, for all x € M and r > 0,

V(z,2r) < CV(x,r), (47)

for some constant C.
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Definition. We say that M satisfies the relative Faber-Krahn inequality (RFK) if any
ball B (z,r) on M satisfies the Faber-Krahn inequality (4) with some exponent 3 > 0
and with the constant

V (z,1)"
a=a(z,r)="0 = (48)
where b > 0; that is, for any U € B (x,r),
b (V (z,r) h
Amin (U) > — . 49
)25 < u(U) ) )

It is known that the relative Faber-Krahn inequality holds on complete manifolds
of non-negative Ricci curvature. It holds also on any manifold M = K x R™ where K
is a compact manifold.

Theorem 11 Let M be a complete, connected, non-compact manifold and fix D > 2.
Then the following conditions are equivalent:

(a) M admits the relative Faber-Krahn inequality (49).

(b) The measure u is doubling and the heat kernel satisfies the upper bound

x ¢ ex _d(m,y)z
pe ( ’y>§(v(x,\/%)v(y,\/£))”2 p( 5Dt ) (50)

for all for all x,y € M, t > 0, and for some positive constant C.

(¢) The measure u is doubling and the heat kernel satisfies the inequality

C

pi(z,2) < W, (51)

for all for all x € M, t > 0, and for some constant C'.

Remark. As we will see later, under any of the conditions (a)-(c¢) of Theorem 11 we
have also the matching lower bound

c

pe(z,2) > W7

for all z € M, t > 0 and for some constant ¢ > 0.

We precede the proof by two lemmas.

Lemma 12 If a precompact ball B (x, R) satisfies the Faber-Krahn inequality (4) with
exponent 3 and constant a, then, for any r < R,

V(z,r) > ca/Pr¥P, (52)

where ¢ = ¢ () > 0.
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Proof. Denote for simplicity V (r) = V (x,r). Using the Lipschitz cutoff function
¢ of B(xz,r/2) in B(z,r) as a test function in the variational property of the first
eigenvalue, we obtain

Vi) < / St < Auin (B (2,7)) ! / Vol du
B(z,r) B(z,r)
,1 4
—B
< (ave)?) SV
- VO

ar?
whence
Vi(r)>c (ar2V (7"/2))0,

where 0 = ﬁ and ¢ = ¢ () > 0. Iterating this, we obtain

V(r) > cadr?v (g)e

2 02
140, 046, 20 (f>29 v (f)
C a T B 1

2 93 93
140+6 ,0+6%+0% 20 <f>29 <z>2 V(f)
& a T 9 4 3

> Cl+0+92+”'a0(1+9+92+"'>7’20(1+6+92+"'>2_292<1+0+92+“')V (%)gk ,

Vv

v

for any k£ € N. Observe that
V(2—2> Ncn<%)n as k — oo
oF .
and, hence, V' (2%) — 1. Since

0
2 = —-—
0(1+6+6 +.._)_1_9

Y

|

we obtain as k — oo
V (r) > const a'/Pr?/P,

which was to be proved. m

Lemma 13 If M is connected, complete, non-compact and satisfies the doubling vol-
ume property then there are positive numbers v,v', ¢, C' such that

‘ (E) <ven=c(7) (53)

forallz € M and 0 <r < R. Besides, for all x,y € M and all 0 <r < R,

V (z,R) R+d(z,y)\"
Viyr) SO( . ) ' (54
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Proof. If 2¥r < R < 2!y with a non-negative integer k then iterating the
doubling property
Vi(x,2r) < CV (z,7),

we obtain

logy C'
VR SV @) et en e (T) T Vi,
T

so that the right inequality in (53) holds with v = log, C'.

The left inequality in (53) is called the reverse volume doubling. To prove it, assume
first R = 2r. The connectedness of M implies that there is a point y € M such that
d(z,y) = %r. Then B (y,3r) < B(x,2r) \ B (z,r), which implies

Vi(x,2r) >V (x,7r)+ V(y, %’I‘)

By (47), we have

<7
whence
V(z,2r)> (1+C )V (z,r).
Iterating this inequality, we obtain (53) with v/ = log, (1 + C73).
Finally, (54) follows from (53) as follows:

V(y,R+d(z,y)) R+d(x,y)\”
o =o)L

V(z,R)
V(y,r)

<

n
Proof of Theorem 11. (a) = (b) Choose n so that 8 = 2/n. By Theorem 9
we have, for all x,y € M and r,t > 0,

C 0>
t\ T, S 4 €x T ATy .
Pz y) (a (z,7)a(y,r) min(t, r2) min(¢, r2))"/ P ( 2Dt)

Choosing r = v/t and substituting a from (48) we obtain

) C A
A (V VD"V (g Vi) 12) " p( 2Dt )
B C o [ L@y
VvV (V) (%)

that is (50).
It remains to prove that u is doubling. Applying Lemma 12 with

V (z, R)’g

a=>o P
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we obtain
r

V(z,r)>c <}—z>w V (2, R), (55)

whence the doubling property follows.
(b) = (c) Trivial: just set =y in (50).
(¢) = (a) Fix a ball B (x,r) and consider an open set U C B (z,r). We have,

for all y € U,
C
Uy, y) < ) < —
P (y,y) <pe(y,y) < V (VD)
For any y € U and t < r2, we have by the volume doubling

V(z,r) V (y,2r) o v
T < v < ()

so that, for ¢t < r?,

i (y,y) < % (%)

As in the proof of Theorem 6, it follows that, for all f € L*(U),

2 C r \" . .
1A < s () 1

Let f € C§° (U) be a function such that ||f]s = 1. Since by the Cauchy-Schwarz
inequality

I < (),
we obtain by Lemma 7 that

1 1

21 08 U2
sup I[P fl5
feT(u)

/\min (U)

v

IV

Now choose ¢ from the condition

o (¥) S o

that is,

- (V)

Since we need to have ¢ < r2, we have to assume for a while that

p(U) < (Ce)™ V (z,r). (57)
If so then we obtain from above that
1 b (V(x,r)\?
Amin (U) > — = — ) 58
02 5=5(%07) (58)



where b > 0 is a positive constant, which was to be proved.
We are left to extend (58) to any U € B (x,r) without the restriction (57). For
that, we will use Lemma 13. Find R > r so big that

V (z,R)
>
Vi(z,r) — Ce,

Due to (53), we can take R in the form R = Ar, where A is a constant, depending on
the other constants in question. Then U C B (x, R) and

p(U) < (Ce)™ 'V (z,R),

which implies by the first part of the proof that

vz (Ui 2 G (R

which was to be proved. m
Using (54), we obtain

V (V) <C(\/¥+d(x,y))yzc<1+d(x,y))”_

V(yVt) ~ Vi Vit

Replacing V' (y, \/I_f) in (50) according to this inequality, we obtain

C d* (z,y)
pe(z,y) < WGXP <— 2Dt ) )

(59)

where D' > D. Since D > 2 was arbitrary, we see that D’ > 2 is also arbitrary.
The estimate (59) for manifolds of non-negative Ricci curvature was proved by P.Li
and S.-T. Yau in 1986. In fact, they also proved a matching lower bound in this case.

8 On-diagonal lower estimates of the heat kernel

Now let us discuss some on-diagonal lower bound of the heat kernel.

Theorem 14 Let M be a geodesically complete Riemannian manifold. Assume that,
for some x € M and all r > ry,

Viz,r) < Cr, (60)
where C v,y are positive constants. Then, for all t > ty,

( ) > 1/4
x’ x — )
be V(z,v/ntlogt)

where n = n (x,19,C,v) > 0 and ty = max(rg,3).

(61)
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Of course, (61) implies that, for large ¢,

pe(z,z) > c(tlogt) ™.

There are examples to show that in general one cannot get rid of log t here.
Proof. For any r» > 0, we obtain by the semigroup identity and the Cauchy-Schwarz
inequality

mmw::@mame/ p(a, )

B(z,r)

By (60) the manifold M is stochastically complete, that is

/Mpt(x, Ddp = 1.

Since p; (x,x) > poy (x,x), it follows from (62) that

ol ) > V(;T) (1_ /M - pt(gg,.)dﬂ)Q. (63)

Choose r = r(t) so that

1
/ pilx,)dp < 3 (64)
M\B(z,r(t))
Then (63) yields
1/4
>
PE) 2 T )
Hence, we obtain (61) provided
r(t) = \/ntlogt. (65)

It remains to prove the following: there exists a large enough 7 such that, for any
t > 1o, the inequality (64) holds with the function r (t) from (65).

Setting p = d(x,-) and fixing some D > 2 (for example, D = 3), we obtain by the
Cauchy-Schwarz inequality

2 g E
(i) < fiiteren (Z)an [ oo (=57)an
M\B(z,r) o

M\B(z,r)

~ Ep(t,a) / exp (-2—1) d, (66)

M\B(z,r)
where Ep(t,z) is defined by (36). By Theorem 8, we have, for all t > ¢,

Ep(t,z) < Ep(ty,z) < oc. (67)
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Since x is fixed, we can consider Ep(ty, ) as a constant.
Let us now estimate the integral in (66) assuming that

r=r(t) > ro.

By splitting the complement of B(x,r) into the union of the annuli

B(z,2"r)\ B(z,2r), k=0,1,2,...,

and using the hypothesis (60), we obtain

2
/ exp (—%) du

M\B(z,r)

Assuming further that

& 4k’1“2
OTV Z 2V(k+1) exp (—Tt) .

? (1)

Dt

k=0

> 1,

we see that the sum in (70) is majorized by a geometric series, whence

/ exp (ﬁ

M\B(z,r)

where C” depends on C and v.

2

Both conditions (68) and (71) are satisfies for r (t) = v/ntlogt, if

t >ty = max (7“3,3)

(68)

and 7 is large enough, say n > 1 and n > D. Substituting (65) into (72), we obtain

2
/ exp (—%) du

M\B(z,r)

<

logt
C’ (ntlogt)”* exp <_7] o8 )
D
o logt \*"?
C'n /2< 277_1) .
tuD

Note that the function k’tgt is decreasing for t > e.
n > vD we obtain from (73) and (66) that, for ¢ > t,

2
() e
M\B(z,r)

Finally, choosing n large enough, we can make the right hand side arbitrarily small,

which finishes the proof of (64). =
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2n _
vD
tO

(73)

Hence, assuming further that

v/2
1) ED(to,.fE).

(74)



Theorem 15 Let M be a complete, connected, non-compact manifold that satisfies the
relative Faber-Krahn inequality (49). Then, for allt >0 and x € M,

C

pe (2, ) > W (75)

for some ¢ =c (b, 3) .

Proof. As it was proved in Theorem 11, the measure p is doubling, which, in
particular, implies that M is stochastically complete. Following the argument in the
proof of Theorem 14, we need to find r = r () so that

1
[ ntmodesy,
M\B(z,r)

1/4
Via,r(t)
If in addition r (t) < K/t for some constant K then (75) follows from (76) and the

doubling property of pu.
Let us use the estimate (66) from the proof of Theorem 14, that is,

2 d2 (*%)
[ i) <Boe) [ ew(- ()
M\B(z,r) M\B(z,r) Dt

where D > 2 (for example, set D = 3). Next, instead of using the monotonicity of
Ep(t,z) as in the proof of Theorem 14, we apply Theorem 8 which yields, for all x € M
and t, R > 0, that

which implies

pi(z, ) > (76)

V(z,R)? ~1/8
Ca(x,R)* C (b7 '

Ep(t < = = )
p(h2) < min(t, R?)1/7 min(t, R?)'/5 V (z, R) min (t/R?, 1)1/6

Choosing here R = v/t, we obtain

C
Ep(t,z) < . 78
bl1.7) < (79
Applying the doubling property, we obtain
d*(z,-) - 42 kb1
/ exp (— Dt ) dp < gexp <_E> V(x, 25 r)
M\B(z,r) -
. k1 4Fr?

< ;C’ exp <_Tt) V (z,7)

< C'V(x,r)ex _r (79)
7 p Dt )
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provided r? > Dt. Tt follows from (77), (78), ,(79) and (53) that

</M\B<wm>pt($")du>2 B C”%exp <_17;_2t)

o) = (5)

Obviously, the right hand side here can be made arbitrarily small by choosing r = /nt
with 7 large enough, which finishes the proof. m

A\

IN

9 Upper Gaussian bounds via on-diagonal estimates

We say that a function v : (0, +00) — (0,+00) is regular if it is monotone increasing
and satisfies the doubling conditions: there is A > 1 such that for all ¢ > 0,

v(2t) < Ax(t). (80)

Theorem 16 Let M be a Riemannian manifold and S C M be a a non-empty mea-
surable subset of M. For any function f € L*(M) and t > 0 and D > 0 set

2(. S
Eott. ) = [ e (S5 ) du (s1)
Assume that, for some f € L*(S) and for all t > 0,
1
Ew (t,f) = Pfllz < ot (82)

where y(t) is a reqular function on (0,+00). Then, for all D > 2 and t > 0,

Ep(t. f) < % (83)

where ¢ = ¢ (D) > 0.

In the proof we use the Davies-Gaffney inequality in the following form: for any
measurable set A C M, any function h € L*(M) and for all positive p, T,

2
/ h*dy + exp (—p—)/h2d,u, (84)
A 21 ) Ja

where S, denotes the open p-neighborhood of S.
Proof. The proof will be split into four steps.
Step 1. Set for any r,t > 0

(Ph)? dpu < /

c c
P

5= [ (PP

c
T
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Let R>r>0and T >t > 0. Applying (84) with h = P,f, A=S,, 7 =T —t and
p = R —r, we obtain

/.

By (82), we have

(Prf)*dp < /S (Pf) dp+ exp (—%) /S (Pif)* dps.

c
R

1
Pof)?dp < ——,
[ morins
whence it follows that
1 (R — 7")2
Jr(T) < J.(t) + — . ——— 85
Step 2. Let us prove that

3A r?
J.(t) < exp (—5—) , 86
(t) ) ; (86)

for some € > 0. Let {r;},—, and {tx};-, be two strictly decreasing sequences of positive
reals such that
ro=r, 1510, to=t 1,10

as k — oo. By (85), we have, for any k > 1,

1 (kal—rk)Q
Jrk_l(tk:—l) S Jrk (tk) + "y(tk> exp <—m) . (87)
When £ — oo we obtain
Iy (b)) = P f)Ydu< | (P, f)du— 2dp =0, 88
()= [ i< [ Py [ fa (59)

c
Tk

where we have used the fact that P,f — f in L?(M) as t — 0+ and the hypothesis
that f =0 in S°.
Adding up the inequalities (87) for all £ from 1 to co and using (88), we obtain

> 1 (Tk,1 — Tk)2
Jo(t) < ; ) (——2< T m)) : (89)

Let us specify the sequences {7} and {t} as follows:

r
_ d t, =27
Tk k+1 an k
For all £ > 1 we have
T —-r - " and ¢ — 1, =27kt
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whence
2

(Tk—l — ’l“k)2 Qk 7"2 T
e —t) 2Rkt = SRS
where
. 2k
=gy 7

By the condition (80) we have

which implies

() (o) y(t)  y(te-1) k
A " ) ) =

Substituting into (89), we obtain

J(t) < . iA’“ exp (—e(kz + 1)%2>

V(t) =
exp —5ﬁ> o0 2
¢
= exp | kL — 5k:—> ,
V(t) ,; (
where
L:=logA

Consider the following two cases:

1. Ifs%—Lthhen

2. If 5% — L < 1 then we estimate J,(¢) in a trivial way:

Ji(t) < /M (Pf) dp < %

whence

2
Jr(t) < Lexp (1 +L— gr—) _ LAV(tO) ox

t

(@) .
= 7372) o (‘6%) |

Hence, in the both cases we obtain (86).

Step 3. Let us prove the inequality

y(t) ()

Bl 1) <5
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under the additional restriction that
D >5:, (92)

where ¢ was defined by (90) in the previous step.
Set p(z) = d(z,S) and split the integral in the definition (81) of Ep(t, f) into the

series
e’} 2
Ep(t, f) = P f)% ex (p—)d,
o(t.f) ( /{pg}+; /{})( e (L )au  (99)

where r is a positive number to be chosen below. The integral over the set {p < r} is
estimated using (82):

2 0 2 )
Jyoy B2 (7)< e (35) [

c en(2) o0

The k-th term in the sum in (93) is estimated by (86) as follows

2 P’
\/{2"1T<p§2kr} (Ptf) P (E) d/jj
kTZ 9
< exp (%t) /S (P.f)? dp

c
2k—1,

4k 2
= exp <7Tt> Jor—1,.(t)

< 3A 4ky2 Ak=1y2
— €X — &
= 5t/2) P\ Dt '

< %exp (_47) | (95)

where in the last line we have used (92).
Let us choose r = v/ Dt. Then we obtain from (93), (94), and (95)

3~ 34 3+34
ED(ta f) < —+ exXp _4]671 < )
S0 2w ) = )
whence (91) follows.
Step 4. We are left to prove (83) in the case
2 <D< Dy:=5"" (96)

By Theorem 8, we have for any s >0 and all 0 < 7 < ¢

i on (g ) s [ e (g e 00
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Given t > 0 and D as in (96), let us choose the values of s and 7 so that the left hand
side of (96) be equal to Ep(t, f) whereas the right hand side be equal to Ep,(7, f). In
other words, s and 7 must satisfy the simultaneous equations

2(t + s) = Dt,
2(1 +s) = Dy,
whence we obtain
P2 a2
§=— and T = Do 2 .
Hence, we can rewrite (97) in the form
ED(tu f) S EDO(T7f)'
By (91), we have
6A
E <
DO(T7 f) — 7(2_17_>7
whence we conclude
Ep(t, f) < —pom
p\LJ)S T P
1 5=5271)
thus finishing the proof of (83). =
Theorem 17 If, for some x € M and allt > 0,
(2.2) < —
bi\r,r) ~ —F=,
' 7(t)
where 7 is a reqular function on (0,+00) then, for all D > 2 and t > 0,
6A
ED t,ZL’ S s 98
(he) < s (98)

where ¢ = ¢(D) > 0 and A is the constant from (80).

Proof. Let U be an open relatively compact neighborhood of the point z, and let
¢ be a cutoff function of {z} in U. For any s > 0 define the function ¢, on M by

ps(2) = ps(x, 2)p (2) -
Clearly, we have ¢, < ps(z,-) whence

Ptg@s < Ptps (ZE, ) :pt-i-s('rv )

and )
1Piosll3 < pevs(, I3 < Nlpe(, )13 = paelar, @) < S
By Theorem 16, we conclude that, for any D > 2,
d>(- U)) 6A
Pip,)” ex (— dp < : 99
/M(tso) P{—p N (99)
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Fix y € M and observe that, by the definition of ¢,

Pug, (y) = /M Pr (4, 2) e (2, 2) 0 (2) da () = Py (x).

where
¢t(2) = pt(yv Z)SO <Z>

Since function ), (-) is continuous and bounded, we conclude that
Py (x) — ¢y (z) as s — 0,

that is,
‘Ptgps(y) - pt(xy y) as s — 0.

Passing to the limit in (99) as s — 0, we obtain by Fatou’s lemma

[ s e (dQ(l;tm) i< 0

Finally, shrinking U to the point x, we obtain (98). =

Corollary 18 Let v, and 7, be two regular functions on (0,+00), and assume that,
for two points x,y € M and allt >0

1
Y2(t) .

1
pe(r,2) < ) and  p(y,y) <

Y1 (t
Then, for all D > 2 andt > 0,

. 6A o _ d*(x,y)
N L) o )

where A is the constant from (80) and ¢ = ¢ (D) > 0.

Proof. By Theorem 17, we obtain

6A
71 (ct) Yaolct)

Substituting these inequalities into the estimate (45), we finish the proof. m
In particular, if

Ep(t,x) < and Ep(t,y) <

1
pe(x,2) < m

for all x € M and ¢t > 0 then

for all #,y € M and ¢ > 0. If the manifold M is complete and 7 (t) = ct™/? then this
follows also from Theorem 6 and Corollary 10.

At the end, let us show how Theorem 17 allows to obtain a lower estimate of the
heat kernel.
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Theorem 19 Let M be a complete manifold. Assume that, for some point x € M and
all »>0
V(z,2r) < CV(z,r),

and, for allt > 0,
(100)

Then, for allt > 0,

where ¢ > 0 depends on C.

Proof. The proof goes in the same way as that of Theorem 15. In the proof of
Theorem 15 we have used the relative Faber-Krahn inequality in order to obtain (78),
that is,

C
ED (t,l‘) S m

However, in the present setting, this inequality follows directly from (100) by Theorem
17. The rest of the proof of Theorem 15 goes unchanged. m
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