Analysis of the heat equation on Riemannian manifolds

Alexander Grigor'yan
CUHK, February-March 2019

Contents

1 Introduction: Laplace-Beltrami operator and heat kernel 1
2 Faber-Krahn inequality 2
3 Mean-value inequality 5
4 On-diagonal upper bounds 13
5 A weighted L^{2} norm of the heat kernel 16
6 Gaussian upper estimates 20
7 Li-Yau upper bounds 21
8 On-diagonal lower estimates of the heat kernel 26
9 Upper Gaussian bounds via on-diagonal estimates 30

1 Introduction: Laplace-Beltrami operator and heat kernel

Let (M, g) be a connected Riemannian manifold. The Laplace-Beltrami operator Δ is given in the local coordinates by

$$
\Delta=\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{\operatorname{det} g} g^{i j} \frac{\partial}{\partial x^{j}}\right)
$$

where $n=\operatorname{dim} M, g=\left(g_{i j}\right)$ and $\left(g^{i j}\right)=g^{-1}$. This operator is symmetric with respect to the Riemannian measure

$$
d \mu=\sqrt{\operatorname{det} g} d x^{1} \ldots d x^{n}
$$

that is, for all $u, v \in C_{0}^{\infty}(M)$,

$$
\int_{M}(\Delta u) v d \mu=-\int_{M}\langle\nabla u, \nabla v\rangle d \mu=\int_{M} u \Delta v d \mu
$$

Furthermore, the operator Δ with the domain $C_{0}^{\infty}(M)$ is admits the Friedrichs extension to a self-adjoint operator in $L^{2}(M, \mu)$ that will also be denoted by Δ. This operator is non-positive definite since for all $u \in C_{0}^{\infty}$

$$
(\Delta u, u)_{L^{2}}=\int_{M}(\Delta u) u d \mu=-\int_{M}|\nabla u|^{2} d \mu \leq 0 .
$$

Hence, spec $\Delta \subset(-\infty, 0]$.
The heat semigroup of M is a family $\left\{P_{t}\right\}_{t \geq 0}$ of self-adjoint operators defined by

$$
P_{t}=\exp (t \Delta)
$$

using the functional calculus of self-adjoint operators. Since the function $\lambda \mapsto \exp (t \lambda)$ is bounded for $\lambda \in(-\infty, 0]$, that is, on the spectrum of Δ, it follows that P_{t} is a bounded self-adjoint operator in $L^{2}(M, \mu)$.

For any $f \in L^{2}(M, \mu)$, the function

$$
u(t, x)=P_{t} f(x)
$$

is a smooth function of $(t, x) \in \mathbb{R}_{+} \times M$, satisfies the heat equation $\frac{\partial u}{\partial t}=\Delta u$ and the initial condition

$$
u(t, \cdot) \xrightarrow{L^{2}} f \text { as } t \rightarrow 0+.
$$

The heat kernel $p_{t}(x, y)$ is a function of $t>0$ and $x, y \in M$ such that

$$
P_{t} f(x)=\int_{M} p_{t}(x, y) f(y) d \mu(y)
$$

for all $f \in L^{2}(M, \mu)$. It is known that $p_{t}(x, y)$ exists on any Riemannian manifold and is unique. Besides, the heat kernel satisfies the following properties.

- Smoothness: $p_{t}(x, y) \in C^{\infty}\left(\mathbb{R}_{+} \times M \times M\right)$
- Positivity: $p_{t}(x, y)>0$
- Symmetry: $p_{t}(x, y)=p_{t}(y, x)$;
- The semigroup identity:

$$
\begin{equation*}
p_{t+s}(x, y)=\int_{M} p_{t}(x, z) p_{s}(z, y) d \mu(z) \tag{1}
\end{equation*}
$$

- Submarkovian property:

$$
\int_{M} p_{t}(x, y) d \mu(y) \leq 1
$$

- For any $y \in M$, the function $u(t, x)=p_{t}(x, y)$ satisfies the heat equation and the initial condition

$$
u(t, x) \rightarrow \delta_{y}(x) \text { as } t \rightarrow 0+
$$

that is, $p_{t}(x, y)$ is a fundamental solution of the heat equation. Moreover, $p_{t}(x, y)$ is the smallest positive fundamental solution of the heat equation.

Recall that in \mathbb{R}^{n}, Δ is the classical Laplace operator $\Delta=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}$, and its heat kernel is given by the Gauss-Weierstrass formula

$$
p_{t}(x, y)=\frac{1}{(4 \pi t)^{n / 2}} \exp \left(-\frac{|x-y|^{2}}{4 t}\right)
$$

Explicit formulas for the heat kernel exist also in hyperbolic spaces \mathbb{H}^{n}. For example in \mathbb{H}^{3}

$$
\begin{equation*}
p_{t}(x, y)=\frac{1}{(4 \pi t)^{3 / 2}} \frac{r}{\sinh r} \exp \left(-\frac{r^{2}}{4 t}-t\right) \tag{2}
\end{equation*}
$$

where $r=d(x, y)$ is the geodesic distance between x, y. For arbitrary \mathbb{H}^{n} the formula looks complicated, but it implies the following estimate, for all $t>0$ and $x, y \in \mathbb{H}^{n}$:

$$
\begin{equation*}
p_{t}(x, y) \simeq \frac{(1+r+t)^{\frac{n-3}{2}}(1+r)}{t^{n / 2}} \exp \left(-\lambda t-\frac{r^{2}}{4 t}-\sqrt{\lambda} r\right) \tag{3}
\end{equation*}
$$

where $\lambda=\frac{(n-1)^{2}}{4}$ is the bottom of the spectrum of the Laplace operator on \mathbb{H}^{n}.

2 Faber-Krahn inequality

Any open set $\Omega \subset M$ can be regarded as a Riemannian manifold, too. Hence, the Laplace operator Δ initially defined on $C_{0}^{\infty}(\Omega)$ admits the Friedrichs extension to a self-adjoint operator in $L^{2}(\Omega, \mu)$ that will be denoted by Δ_{Ω} and that is non-positive definite. It is called the Dirichlet Laplacian in Ω. Set

$$
\lambda_{\min }(\Omega)=\inf \operatorname{spec}\left(-\Delta_{\Omega}\right)
$$

By the variational property we have

$$
\begin{aligned}
\lambda_{\min }(\Omega) & =\inf _{f \in \operatorname{dom}\left(\Delta_{\Omega}\right) \backslash\{0\}} \frac{\left(-\Delta_{\Omega} f, f\right)}{\|f\|_{L^{2}}^{2}} \\
& =\inf _{f \in C_{0}^{\infty}(\Omega) \backslash 0} \frac{\left(-\Delta_{\Omega} f, f\right)}{\|f\|_{L^{2}}^{2}} \\
& =\inf _{f \in C_{0}^{\infty}(\Omega) \backslash 0} \frac{\int_{\Omega}|\nabla f|^{2} d \mu}{\|f\|_{L^{2}}^{2}} \\
& =\inf _{f \in \operatorname{Lip}_{0}(\Omega) \backslash 0} \frac{\int_{\Omega}|\nabla f|^{2} d \mu}{\|f\|_{L^{2}}^{2}} .
\end{aligned}
$$

The quantity

$$
\frac{\int_{\Omega}|\nabla f|^{2} d \mu}{\|f\|_{L^{2}}^{2}}
$$

is called the Rayleigh quotient of f in Ω.
Definition. We say that Ω satisfies the Faber-Krahn inequality if, for any non-empty open set $U \Subset \Omega$ we have

$$
\begin{equation*}
\lambda_{\min }(U) \geq a \mu(U)^{-\beta} \tag{4}
\end{equation*}
$$

for some $a, \beta>0$.
The exponent β is usually equal to $2 / n$ where $n=\operatorname{dim} M$. The parameter a is called the Faber-Krahn constant of Ω. It depends on the intrinsic geometry of Ω.

Let $\Omega=\mathbb{R}^{n}$. By the Faber-Krahn theorem, for any precompact open domain $U \subset$ \mathbb{R}^{n}, we have

$$
\lambda_{\min }(U) \geq \lambda_{\min }\left(U^{*}\right)
$$

where U^{*} is a ball of the same volume as U. If the radius of U^{*} is r then

$$
\lambda_{\min }\left(U^{*}\right)=\frac{c_{n}}{r^{2}}
$$

with some positive constant c_{n}. Since

$$
\mu(U)=\mu\left(U^{*}\right)=b_{n} r^{n}
$$

it follows that

$$
\begin{equation*}
\lambda_{\min }(U) \geq a_{n} \mu(U)^{-2 / n} \tag{5}
\end{equation*}
$$

where $a_{n}>0$. Hence, \mathbb{R}^{n} satisfies the Faber-Krahn inequality (4) with $a=a_{n}$ and $\beta=2 / n$.

Using this fact, it is easy to prove, using the compactness argument that any relatively compact open set $\Omega \subset M$ on any Riemannian manifold M also satisfies the Faber-Krahn inequality (4) with some $a=a(\Omega)>0$ and $\beta=2 / n$, where $n=\operatorname{dim} M$.

It is possible to prove the following two facts.

1. If M is a Cartan-Hadamard manifold (that is, a simply connected manifold of non-positive sectional curvature) then M satisfies the Faber-Krahn inequality (4) with some $a>0$ and $\beta=2 / n$ (and, hence, any open domain $\Omega \subset M$ also satisfies the same inequality).
2. If M is complete manifold of non-negative Ricci curvature then any geodesic ball $B=B(x, R)$ in M satisfies the Faber-Krahn inequality (5) with the Faber-Krahn constant

$$
\begin{equation*}
a=a(B)=c \frac{\mu(B)^{2 / n}}{R^{2}} \tag{6}
\end{equation*}
$$

and $\beta=2 / n$ where $c=c(n)>0$.
In particular, if in addition

$$
\mu(B) \simeq R^{n}
$$

(as in \mathbb{R}^{n}) then it follows that $a(B)$ may be chosen to be independent of balls so that also the entire manifold M has also the same Faber-Krahn constant.

Another example. Let $M=K \times \mathbb{R}^{m}$ where K is a compact manifold of dimension $n-m$. Any ball $B=B(x, R)$ on this manifold has the Faber-Krahn constant (6). Since

$$
\mu(B) \simeq\left\{\begin{array}{l}
R^{n}, \quad R<1 \\
R^{m}, \quad R \geq 1
\end{array}\right.
$$

we obtain that

$$
a(B) \simeq \begin{cases}1, & R<1 \\ R^{2 m / n-2}, & R \geq 1\end{cases}
$$

Proposition 1 Suppose that for any domain $U \Subset \Omega$ with smooth boundary,

$$
\operatorname{area}(\partial U) \geq b \mu(U)^{\gamma}
$$

for some $b>0$ and $0<\gamma<1$. Then Ω satisfies the Faber-Krahn inequality (4) with $a=\frac{b^{2}}{4}$ and $\beta=2(1-\gamma)$.

In particular, if $\gamma=\frac{n-1}{n}$ as in \mathbb{R}^{n} then $\beta=2 / n$.
Proof. For any open domain $U \subset M$ define the Cheeger constant

$$
h(U)=\inf _{V \Subset U} \frac{\operatorname{area}(\partial V)}{\mu(V)}
$$

where V is any open set with smooth boundary. Since

$$
\operatorname{area}(\partial V) \geq b \mu(V)^{\gamma}
$$

and $\gamma \leq 1$ it follows that

$$
\frac{\operatorname{area}(\partial V)}{\mu(V)} \geq b \mu(V)^{\gamma-1} \geq b \mu(U)^{\gamma-1}
$$

It follows that

$$
h(U) \geq b \mu(U)^{\gamma-1}
$$

By the Cheeger inequality,

$$
\begin{aligned}
\lambda_{\min }(U) & \geq \frac{1}{4} h(U)^{2} \\
& \geq \frac{b^{2}}{4} \mu(U)^{-2(1-\gamma)}
\end{aligned}
$$

which was to be proved.

3 Mean-value inequality

Let I be an interval in \mathbb{R} and Ω be an open subset of $M /$ A C^{2} function $u(t, x)$ defined in $I \times \Omega$ is called a subsolution of the heat equation if

$$
\begin{equation*}
\partial_{t} u \leq \Delta u \quad \text { in } I \times \Omega . \tag{7}
\end{equation*}
$$

Theorem 2 (Mean value inequality) Let $B(x, R)$ be a relatively compact ball in M that satisfies the Faber-Krahn inequality (4). Let $u(t, y)$ be a non-negative subsolution of the heat equation in $(0, T] \times B(x, R)$ for some $T>0$. Then we have

$$
\begin{equation*}
u^{2}(T, x) \leq \frac{C a^{-1 / \beta}}{\min \left(T, R^{2}\right)^{1+1 / \beta}} \int_{0}^{T} \int_{B(x, R)} u^{2}(t, y) d \mu(y) d t \tag{8}
\end{equation*}
$$

where $C=C(\beta)$.

Illustration to mean-value inequality

In particular, if $\beta=2 / n$ then (8) becomes

$$
u^{2}(T, x) \leq \frac{C a^{-n / 2}}{\min \left(T, R^{2}\right)^{1+n / 2}} \int_{0}^{T} \int_{B(x, R)} u^{2}(t, y) d \mu(y) d t
$$

Define measure ν on $\mathbb{R} \times M$ by

$$
d \nu=d \mu d t
$$

and prove first two lemmas.
Lemma 3 Let Ω be an open subset of M and $T>0$. Let $\eta(t, x)$ be a Lipschitz function in the cylinder

$$
\mathcal{C}=[0, T] \times \Omega
$$

such that $\operatorname{supp} \eta \subset[0, T] \times K$ for some compact set $K \subset \Omega$. Let u be a subsolution to the heat equation in \mathcal{C} and set $v=(u-\theta)_{+}$with some real θ. Then the following inequality holds:

$$
\begin{equation*}
\frac{1}{2}\left[\int_{\Omega} v^{2} \eta^{2}(t, \cdot) d \mu\right]_{t=0}^{T}+\int_{\mathcal{C}}|\nabla(v \eta)|^{2} d \nu \leq \int_{\mathcal{C}} v^{2}\left(|\nabla \eta|^{2}+\eta \partial_{t} \eta\right) d \nu \tag{9}
\end{equation*}
$$

In particular, if $\eta(0, \cdot)=0$ then

$$
\begin{equation*}
\int_{\mathcal{C}}|\nabla(v \eta)|^{2} d \nu \leq \int_{\mathcal{C}} v^{2}\left(|\nabla \eta|^{2}+\eta \partial_{t} \eta\right) d \nu \tag{10}
\end{equation*}
$$

and, for any $t \in[0, T]$,

$$
\begin{equation*}
\int_{\Omega} v^{2} \eta^{2}(t, \cdot) d \mu \leq 2 \int_{\mathcal{C}} v^{2}\left(|\nabla \eta|^{2}+\eta \partial_{t} \eta\right) d \nu \tag{11}
\end{equation*}
$$

Proof. The estimate (10) is an obvious consequence of (9). The estimate (11) follows from (9) if one replaces T by t.

Let us prove (9). The function $v(t, \cdot)$ is locally Lipschitz. For the weak gradient of v we have

$$
\nabla v=1_{\{u>\theta\}} \nabla u=1_{\{v \neq 0\}} \nabla u
$$

which implies

$$
\begin{equation*}
\langle\nabla u, \nabla v\rangle=|\nabla v|^{2} \text { and } v \nabla u=v \nabla v \text {. } \tag{12}
\end{equation*}
$$

Since $\eta(t, \cdot) \in \operatorname{Lip}_{0}(\Omega)$, we have also $v \eta^{2} \in \operatorname{Lip}_{0}(\Omega)$ for any fixed time t and

$$
\nabla\left(v \eta^{2}\right)=v \nabla \eta^{2}+\eta^{2} \nabla v=2 v \eta \nabla \eta+\eta^{2} \nabla v
$$

whence

$$
\left\langle\nabla u, \nabla\left(v \eta^{2}\right)\right\rangle=2 v \eta\langle\nabla v, \nabla \eta\rangle+\eta^{2}|\nabla v|^{2} .
$$

Multiplying the inequality (7) by $v \eta^{2}$ and integrating over \mathcal{C}, we obtain

$$
\begin{aligned}
\int_{\mathcal{C}} \partial_{t} u v \eta^{2} d \nu & \leq \int_{0}^{T} \int_{\Omega}(\Delta u) v \eta^{2} d \mu d t \\
& =-\int_{0}^{T} \int_{\Omega}\left\langle\nabla u, \nabla\left(v \eta^{2}\right)\right\rangle d \mu d t \\
& =-\int_{\mathcal{C}}\left(2 v \eta\langle\nabla u, \nabla \eta\rangle+\eta^{2}\langle\nabla u, \nabla v\rangle\right) d \nu \\
& =-\int_{\mathcal{C}}\left(2 v \eta\langle\nabla v, \nabla \eta\rangle+\eta^{2}|\nabla v|^{2}\right) d \nu
\end{aligned}
$$

where we have used the Green formula and (12).
Since

$$
|\nabla(v \eta)|^{2}=(\eta \nabla v+v \nabla \eta)^{2}=\eta^{2}|\nabla v|^{2}+v^{2}|\nabla \eta|^{2}+2 v \eta\langle\nabla v, \nabla \eta\rangle
$$

we have

$$
2 v \eta\langle\nabla v, \nabla \eta\rangle+\eta^{2}|\nabla v|^{2}=|\nabla(v \eta)|^{2}-v^{2}|\nabla \eta|^{2},
$$

whence it follows that

$$
\begin{equation*}
\int_{\mathcal{C}} \partial_{t} u v \eta^{2} d \nu \leq-\int_{\mathcal{C}}|\nabla(v \eta)|^{2} d \nu+\int_{\mathcal{C}} v^{2}|\nabla \eta|^{2} d \nu \tag{13}
\end{equation*}
$$

For any fixed x, all functions u, v, η are Lipschitz in $t \in[0, T]$. Therefore, using the integration by parts formula for Lipschitz functions of t, we obtain, for any fixed $x \in \Omega$,

$$
\begin{aligned}
\int_{0}^{T} \partial_{t} u v \eta^{2} d t & =\frac{1}{2} \int_{0}^{T} \partial_{t}\left(v^{2}\right) \eta^{2} d t \\
& =\frac{1}{2}\left[v^{2} \eta^{2}\right]_{0}^{T}-\frac{1}{2} \int_{0}^{T} v^{2} \partial_{t}\left(\eta^{2}\right) d t=\frac{1}{2}\left[v^{2} \eta^{2}\right]_{0}^{T}-\int_{0}^{T} v^{2} \eta \partial_{t} \eta d t
\end{aligned}
$$

Integrating this identity over Ω, we obtain

$$
\int_{\mathcal{C}} \partial_{t} u v \eta^{2} d \nu=\frac{1}{2}\left[\int_{\Omega} v^{2} \eta^{2} d \mu\right]_{0}^{T}-\int_{\mathcal{C}} v^{2} \eta \partial_{t} \eta d \nu
$$

and combining with (13)

$$
\frac{1}{2}\left[\int_{\Omega} v^{2} \eta^{2} d \mu\right]_{0}^{T}-\int_{\mathcal{C}} v^{2} \eta \partial_{t} \eta d \nu \leq-\int_{\mathcal{C}}|\nabla(v \eta)|^{2} d \nu+\int_{\mathcal{C}} v^{2}|\nabla \eta|^{2} d \nu
$$

which is equivalent to (9).
Lemma 4 Let $B(x, R)$ be a relatively compact ball in M that satisfies the Faber-Krahn inequality (4). Let $u(t, y)$ be a subsolution of the heat equation in $\mathcal{C}=(0, T] \times B(x, R)$ for some $T>0$. Consider two smaller cylinders

$$
\mathcal{C}_{k}=\left[T_{k}, T\right] \times B\left(x, R_{k}\right), k=0,1,
$$

where $0<R_{1}<R_{0} \leq R$ and $0 \leq T_{0}<T_{1}<T$. Choose $\theta_{1}>\theta_{0}$ and set

$$
J_{k}=\int_{\mathcal{C}_{k}}\left(u-\theta_{k}\right)_{+}^{2} d \nu
$$

Then the following inequality holds

$$
\begin{equation*}
J_{1} \leq \frac{C J_{0}^{1+\beta}}{a \delta^{1+\beta}\left(\theta_{1}-\theta_{0}\right)^{2 \beta}} \tag{14}
\end{equation*}
$$

where $C=C(\beta)$ and $\delta=\min \left(T_{1}-T_{0},\left(R_{0}-R_{1}\right)^{2}\right)$.

Proof. Replacing function u by $u-\theta_{0}$ we can assume that $\theta_{0}=0$ and rename θ_{1} to θ so that $\theta>0$. Without loss of generality and to simplify notation we can assume that $T_{0}=0$. Set for any $\lambda \in[0,1]$

$$
R_{\lambda}=\lambda R_{1}+(1-\lambda) R_{0}
$$

Consider a function

$$
\eta(t, y)=\varphi(t) \psi(y)
$$

where

$$
\begin{equation*}
\varphi(t)=\frac{t}{T_{1}} \wedge 1 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(y)=\frac{\left(R_{1 / 3}-d(x, y)\right)_{+}}{R_{1 / 3}-R_{2 / 3}} \wedge 1 \tag{16}
\end{equation*}
$$

Function $\phi(t)$ given by (15)

Function ψ given by (16)

Obviously,

$$
\psi=1 \quad \text { on } B\left(x, R_{2 / 3}\right) \quad \text { and } \quad \operatorname{supp} \psi=\overline{B\left(x, R_{1 / 3}\right)} .
$$

Applying the estimate (11) of Lemma 3 in the cylinder $\mathcal{C}_{0}=[0, T] \times B\left(x, R_{0}\right)$ for function $v=u_{+}$with $t \in\left[T_{1}, T\right]$ and noticing that $\eta(t, y)=1$ for t in this range and $y \in B\left(x, R_{2 / 3}\right)$, we obtain

$$
\begin{equation*}
\int_{B\left(x, R_{2 / 3}\right)} u_{+}^{2}(t, \cdot) d \mu \leq \int_{B\left(x, R_{0}\right)} u_{+}^{2} \eta^{2}(t, \cdot) d \mu \leq 2 \int_{\mathcal{C}_{0}} u_{+}^{2}\left(|\nabla \eta|^{2}+\eta \partial_{t} \eta\right) d \nu \leq \frac{20}{\delta} J_{0} \tag{17}
\end{equation*}
$$

where we have also used that

$$
|\nabla \eta|^{2} \leq \frac{1}{\left(R_{1 / 3}-R_{2 / 3}\right)^{2}}=\frac{9}{\left(R_{0}-R_{1}\right)^{2}} \leq \frac{9}{\delta}
$$

and

$$
\eta \partial_{t} \eta \leq \frac{1}{T_{1}} \leq \frac{1}{\delta}
$$

For any $t \in\left[T_{1}, T\right]$, consider the set

$$
\begin{equation*}
U_{t}=\left\{y \in B\left(x, R_{2 / 3}\right): u(t, y)>\theta\right\} . \tag{18}
\end{equation*}
$$

It follows from (17) that

$$
\begin{equation*}
\mu\left(U_{t}\right) \leq \frac{1}{\theta^{2}} \int_{B\left(x, R_{2 / 3}\right)} u_{+}^{2}(t, \cdot) d \mu \leq \frac{20 J_{0}}{\theta^{2} \delta} . \tag{19}
\end{equation*}
$$

Set U_{t} defined by (18)

Consider now a different function ψ :

$$
\begin{equation*}
\psi(y)=\frac{\left(R_{2 / 3}-d(x, y)\right)_{+}}{R_{2 / 3}-R_{1}} \wedge 1 \tag{20}
\end{equation*}
$$

so that

$$
\psi=1 \quad \text { on } B\left(x, R_{1}\right) \quad \text { and } \quad \operatorname{supp} \psi=\overline{B\left(x, R_{2 / 3}\right)} .
$$

Function ψ given by (20)

Applying (10) for function $v=(u-\theta)_{+}$with $\eta(t, x)=\varphi(t) \psi(y)$ where φ is given by (15) and ψ is given by (20), we obtain

$$
\begin{equation*}
\int_{\mathcal{C}_{0}}|\nabla(v \eta)|^{2} d \nu \leq \int_{\mathcal{C}_{0}} v^{2}\left(|\nabla \eta|^{2}+\eta \partial_{t} \eta\right) d \nu \leq \frac{10}{\delta} \int_{\mathcal{C}_{0}} v^{2} d \nu \leq \frac{10}{\delta} J_{0} . \tag{21}
\end{equation*}
$$

Fix some $t \in\left[T_{1}, T\right]$. The function $(v \eta)(t, y)$ can take a non-zero value only if $y \in$ $B\left(x, R_{2 / 3}\right)$ and $u(t, y)>\theta$, that is, if $y \in U_{t}$. It follows that

$$
\begin{aligned}
\int_{B\left(x, R_{0}\right)}|\nabla(v \eta)|^{2}(t, \cdot) d \mu & \geq \int_{U_{t}}|\nabla(v \eta)|^{2}(t, \cdot) d \mu \\
& \geq \lambda_{\min }\left(U_{t}\right) \int_{U_{t}}(v \eta)^{2}(t, \cdot) d \mu \\
& \geq a \mu\left(U_{t}\right)^{-\beta} \int_{B\left(x, R_{0}\right)}(v \eta)^{2}(t, \cdot) d \mu \\
& \geq a\left(\frac{\theta^{2} \delta}{20}\right)^{\beta} J_{0}^{-\beta} \int_{B\left(x, R_{1}\right)} v^{2}(t, \cdot) d \mu
\end{aligned}
$$

where we have used the variational property of $\lambda_{\min }$, the Faber-Krahn inequality, the estimate (19), and that $\eta=1$ in $\left[T_{1}, T\right] \times B\left(x, R_{1}\right)$.

Integrating this inequality in t from T_{1} to T and using (21), we obtain

$$
\begin{aligned}
\frac{10}{\delta} J_{0} & \geq \int_{T_{1}}^{T} \int_{B\left(x, R_{0}\right)}|\nabla(v \eta)|^{2} d \nu \\
& \geq a\left(\frac{\theta^{2} \delta}{20}\right)^{\beta} J_{0}^{-\beta} \int_{T_{1}}^{T} \int_{B\left(x, R_{1}\right)} v^{2} d \mu d t \\
& =a\left(\frac{\theta^{2} \delta}{20}\right)^{\beta} J_{0}^{-\beta} J_{1}
\end{aligned}
$$

It follows that

$$
J_{1} \leq 10 \frac{20^{\beta}}{a \delta^{1+\beta} \theta^{2 \beta}} J_{0}^{1+\beta},
$$

which was to be proved.
Proof of Theorem 2. Consider a sequence of cylinders

$$
\mathcal{C}_{k}=\left[T_{k}, T\right] \times B\left(x, R_{k}\right),
$$

where $\left\{T_{k}\right\}_{k=0}^{\infty}$ is a strictly increasing sequence such that $T_{0}=0$ and $T_{k} \leq T / 2$ for all k, and $\left\{R_{k}\right\}_{k=0}^{\infty}$ is a strictly decreasing sequence such that $R_{0}=R$ and $R_{k} \geq R / 2$ for all k. Assume also that

$$
\begin{equation*}
\left(R_{k}-R_{k+1}\right)^{2}=T_{k+1}-T_{k}=: \delta_{k} . \tag{22}
\end{equation*}
$$

In particular, the sequence of cylinders $\left\{\mathcal{C}_{k}\right\}_{k=0}^{\infty}$ is nested, $\mathcal{C}_{0}=\mathcal{C}$ and all \mathcal{C}_{k} contain $[T / 2, T] \times B(x, R / 2)$ for all k. The values of R_{k} and T_{k} will be specified below.

Cylinders \mathcal{C}_{k}

Fix some $\theta>0$ and set

$$
\theta_{k}=\left(1-2^{-(k+1)}\right) \theta
$$

so that $\theta_{0}=\theta / 2$ and $\theta_{k} \nearrow \theta$ as $k \rightarrow \infty$. Set also

$$
J_{k}=\int_{\mathcal{C}_{k}}\left(u-\theta_{k}\right)^{2} d \nu
$$

Clearly, the sequence $\left\{J_{k}\right\}_{k=0}^{\infty}$ is decreasing. We will find θ such that $J_{k} \rightarrow 0$ as $k \rightarrow \infty$, which will implies that

$$
\int_{T / 2}^{T} \int_{B(x, R / 2)}(u-\theta)_{+}^{2} d \nu=0 .
$$

In particular, it follows that $u(T, x) \leq \theta$ and, hence, $u^{2}(T, x) \leq \theta^{2}$. With an appropriate choice of θ, this will lead us to (8).

Applying Lemma 4 for two consecutive cylinders $\mathcal{C}_{k} \supset \mathcal{C}_{k+1}$ and using that

$$
\theta_{k+1}-\theta_{k}=2^{-(k+2)} \theta,
$$

we obtain

$$
\begin{equation*}
J_{k+1} \leq \frac{C J_{k}^{1+\beta}}{a \delta_{k}^{1+\beta}\left(\theta_{k+1}-\theta_{k}\right)^{2 \beta}}=\frac{C^{\prime} 4^{k \beta} J_{k}^{1+\beta}}{a \delta_{k}^{1+\beta} \theta^{2 \beta}} \tag{23}
\end{equation*}
$$

where $C^{\prime}=16^{\beta} C$. Assume that δ_{k} is chosen so that for any k

$$
\begin{equation*}
\frac{C^{\prime} 4^{-k \beta} J_{0}^{\beta}}{a \delta_{k}^{1+\beta} \theta^{2 \beta}}=\frac{1}{16} . \tag{24}
\end{equation*}
$$

We claim that then

$$
\begin{equation*}
J_{k} \leq 16^{-k} J_{0} \tag{25}
\end{equation*}
$$

which in particular yields $J_{k} \rightarrow 0$. Indeed, for $k=0(25)$ is trivial. If (25) is true for some k then (23) and (24) imply

$$
J_{k+1} \leq \frac{C^{\prime} 4^{k \beta}\left(16^{-k} J_{0}\right)^{\beta}}{a \delta_{k}^{1+\beta} \theta^{2 \beta}} J_{k}=\frac{C^{\prime} 4^{-k \beta} J_{0}^{\beta}}{a \delta_{k}^{1+\beta} \theta^{2 \beta}} J_{k} \leq \frac{1}{16}\left(16^{-k} J_{0}\right)=16^{-(k+1)} J_{0}
$$

Resolving (24) with respect to δ_{k} we obtain

$$
\begin{equation*}
\delta_{k}=\left(\frac{16 C^{\prime} 4^{-k \beta} J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{1+\beta}}=C^{\prime \prime}\left(\frac{J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{1+\beta}} 4^{-\frac{k \beta}{1+\beta}} \tag{26}
\end{equation*}
$$

where $C^{\prime \prime}=\left(16 C^{\prime}\right)^{\frac{1}{1+\beta}}$. Note that any choice of δ_{k} determines uniquely the sequences $\left\{T_{k}\right\}$ and $\left\{R_{k}\right\}$, and these sequences should satisfy the requirements $T_{k} \leq T / 2$ and $R_{k} \geq R / 2$. Since by (22)

$$
T_{k}=\sum_{i=0}^{k-1} \delta_{i} \text { and } R_{k}=R-\sum_{i=0}^{k-1} \sqrt{\delta_{k}},
$$

the sequence $\left\{\delta_{k}\right\}$ must satisfy the inequalities

$$
\sum_{k=0}^{\infty} \delta_{k} \leq T / 2 \text { and } \sum_{k=0}^{\infty} \sqrt{\delta_{k}} \leq R / 2
$$

Substituting δ_{k} from (26) and observing that $\left\{\delta_{k}\right\}$ is a decreasing geometric sequence, we obtain that

$$
\sum_{k=0}^{\infty} \delta_{k}=\left(\frac{J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{1+\beta}} \sum_{k=0}^{\infty} 4^{-\frac{k \beta}{1+\beta}} \leq C^{\prime \prime \prime}\left(\frac{J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{1+\beta}}
$$

and

$$
\sum_{k=0}^{\infty} \sqrt{\delta_{k}} \leq C^{\prime \prime \prime}\left(\frac{J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{2(1+\beta)}}
$$

where $C^{\prime \prime \prime}$ depends on β. Hence, the following inequalities must be satisfied:

$$
\left(\frac{J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{1+\beta}} \leq c^{2} T \text { and }\left(\frac{J_{0}^{\beta}}{a \theta^{2 \beta}}\right)^{\frac{1}{2(1+\beta)}} \leq c R
$$

for some $c=c(\beta)>0$. There conditions can be satisfied by choosing θ as follows:

$$
\theta^{2} \geq \frac{a^{-1 / \beta} J_{0}}{\left(c^{2} T\right)^{1+1 / \beta}} \text { and } \theta^{2} \geq \frac{a^{-1 / \beta} J_{0}}{(c R)^{2+2 / \beta}} .
$$

Taking

$$
\theta^{2}=\frac{a^{-1 / \beta} J_{0}}{c^{2(1+1 / \beta)} \min \left(T, R^{2}\right)^{1+1 / \beta}},
$$

recalling that $u^{2}(T, x) \leq \theta^{2}$ and using that

$$
J_{0}=\int_{\mathcal{C}_{0}}(u-\theta)_{+}^{2} d \nu \leq \int_{\mathcal{C}} u_{+}^{2} d \nu
$$

we obtain

$$
u^{2}(x, T) \leq \frac{a^{-1 / \beta}}{c^{2(1+1 / \beta)} \min \left(T, R^{2}\right)^{1+1 / \beta}} \int_{\mathcal{C}} u_{+}^{2} d \nu
$$

whence (8) follows.

4 On-diagonal upper bounds

In what follows we frequently consider the Faber-Krahn inequality (4) with $\beta=$ $2 / n$ (where $n>0$ does not have to be the dimension of M). That is, we say that $\Omega \subset M$ satisfies the Faber-Krahn inequality with constant a if, for any $U \Subset \Omega$,

$$
\begin{equation*}
\lambda_{\min }(U) \geq a \mu(U)^{-2 / n} . \tag{27}
\end{equation*}
$$

Theorem 5 Let a precompact ball $B(x, r)$ satisfy the Faber-Krahn inequality (27) with constant a. Then, for all $t>0$,

$$
\begin{equation*}
p_{t}(x, x) \leq \frac{C a^{-n / 2}}{\min \left(t, r^{2}\right)^{n / 2}} . \tag{28}
\end{equation*}
$$

Proof. Since $p_{t}(x, x)$ is monotone decreasing in t, it suffices to prove (28) for $t \leq r^{2}$.

The function

$$
u(t, y)=p_{t}(x, y)
$$

is a positive solution of the heat equation. Applying Theorem 2 in the cylinder $(t / 2, t) \times$ $B(x, r)$, we obtain

$$
u^{2}(t, x) \leq \frac{C a^{-n / 2}}{t^{1+n / 2}} \int_{t / 2}^{t} \int_{B(x, r)} u^{2}(s, y) d \mu(y) d s
$$

Observe that

$$
\begin{aligned}
\int_{t / 2}^{t} \int_{B(x, r)} u^{2}(s, y) d \mu(y) d s & \leq \int_{t / 2}^{t} \int_{M} p_{s}^{2}(x, y) d \mu(y) d s \\
& =\int_{t / 2}^{t} p_{2 s}(x, x) d s \\
& \leq \frac{t}{2} p_{t}(x, x),
\end{aligned}
$$

where we have used the semigroup identity and the fact that $p_{s}(x, x)$ is monotone decreasing in s. It follows that

$$
p_{t}^{2}(x, x) \leq \frac{C a^{-n / 2} t}{t^{1+n / 2}} p_{t}(x, x)
$$

which implies (28).
Example. Let M have bounded geometry, that is, there exists $r>0$ such that all balls $B(x, r)$ of radii r are uniformly quasi-isometric to the Euclidean ball of the same radius. Then the Faber-Krahn inequality (27) holds in any ball $B(x, r)$ with the same constant $a>0$ that does not depend on x. Hence, (28) holds on such manifolds for all $x \in M$ and $t>0$.

Theorem 6 Let M be a geodesically complete manifold. The following conditions are equivalent:
(a) M satisfies the Faber-Krahn inequality (27) with some constant $a>0$.
(b) The heat kernel on M satisfies for all $x \in M$ and $t>0$ the inequality

$$
\begin{equation*}
p_{t}(x, x) \leq C t^{-n / 2} \tag{29}
\end{equation*}
$$

with some constant C.
Proof of Theorem $6(a) \Rightarrow(b)$. By Theorem 5, (28) holds for an arbitrary r. Choosing $r \geq \sqrt{t}$, we obtain (29) for all $x \in M$ and $t>0$.

For the proof of the opposite implication $(b) \Rightarrow(a)$ we need the following lemma.
Lemma 7 For any function $f \in C_{0}^{\infty}(M)$ such that $\|f\|_{2}=1$ and for any $t>0$, the following inequality holds

$$
\begin{equation*}
\exp \left(-t \int_{M}|\nabla f|^{2} d \mu\right) \leq\left\|P_{t} f\right\|_{2} \tag{30}
\end{equation*}
$$

Consequently, for any open set $U \subset M$ and for any $t>0$,

$$
\begin{equation*}
\lambda_{\min }(U) \geq \frac{1}{t} \log \frac{1}{\sup _{f \in \mathcal{T}(U)}\left\|P_{t} f\right\|_{2}} \tag{31}
\end{equation*}
$$

where

$$
\mathcal{T}(U)=\left\{f \in C_{0}^{\infty}(U):\|f\|_{2}=1\right\}
$$

Proof. Let $\left\{E_{\lambda}\right\}_{\lambda \in \mathbb{R}}$ be the spectral resolution of the operator $\mathcal{L}=-\Delta$ in $L^{2}(M, \mu)$. Then, for any continuous function φ on $[0, \infty)$, we have

$$
\varphi(\mathcal{L})=\int_{0}^{\infty} \varphi(\lambda) d E_{\lambda}
$$

and, for any $f \in L^{2}(M, \mu)$,

$$
\|\varphi(\mathcal{L}) f\|_{2}^{2}=\int_{0}^{\infty} \varphi^{2}(\lambda) d\left\|E_{\lambda} f\right\|^{2}
$$

where the function $\lambda \mapsto\left\|E_{\lambda} f\right\|^{2}$ is monotone increasing.
For $\varphi \equiv 1$ we have

$$
\|f\|_{2}^{2}=\int_{0}^{\infty} d\left\|E_{\lambda} f\right\|^{2}
$$

and for $\varphi(\lambda)=e^{-t \lambda}$ we have

$$
\begin{equation*}
\left\|P_{t} f\right\|_{2}^{2}=\|\exp (-t \mathcal{L}) f\|_{2}^{2}=\int_{0}^{\infty} \exp (-2 t \lambda) d\left\|E_{\lambda} f\right\|^{2} \tag{32}
\end{equation*}
$$

For $\varphi(\lambda)=\lambda^{1 / 2}$ and $f \in C_{0}^{\infty}(M)$ we have

$$
\begin{equation*}
\int_{M}|\nabla f|^{2} d \mu=-\int_{M}(\Delta f) f d \mu=(\mathcal{L} f, f)=\left\|\mathcal{L}^{1 / 2} f\right\|_{2}^{2}=\int_{0}^{\infty} \lambda d\left\|E_{\lambda} f\right\|^{2} \tag{33}
\end{equation*}
$$

If in addition $\|f\|_{2}=1$ then the measure $d\left\|E_{\lambda} f\right\|^{2}$ has the total mass 1 . Applying Jensen's inequality, we obtain

$$
\begin{aligned}
\left\|P_{t} f\right\|_{2}^{2} & =\int_{0}^{\infty} \exp (-2 t \lambda) d\left\|E_{\lambda} f\right\|^{2} \\
& \geq \exp \left(-\int_{0}^{\infty} 2 t \lambda d\left\|E_{\lambda} f\right\|^{2}\right) \\
& =\exp \left(-2 t \int_{M}|\nabla f|^{2} d \mu\right)
\end{aligned}
$$

which is equivalent to (30).
Clearly, (30) implies

$$
\begin{equation*}
\int_{M}|\nabla f|^{2} d \mu \geq \frac{1}{t} \log \frac{1}{\left\|P_{t} f\right\|_{2}} \tag{34}
\end{equation*}
$$

It follows from the variational property of $\lambda_{\min }(U)$ and (34) that

$$
\begin{aligned}
\lambda_{\min }(U) & =\inf _{f \in \mathcal{T}(U)} \int|\nabla f|^{2} d \mu \\
& \geq \inf _{f \in \mathcal{T}(U)} \frac{1}{t} \log \frac{1}{\left\|P_{t} f\right\|_{2}} \\
& =\frac{1}{t} \log \frac{1}{\sup _{f \in \mathcal{T}(U)}\left\|P_{t} f\right\|_{2}},
\end{aligned}
$$

which proves (31).
Proof of Theorem $6(b) \Rightarrow(a)$. We have, for any $f \in L^{2}(M, \mu)$,

$$
\begin{aligned}
\left|P_{t} f(x)\right| & =\left|\int_{M} p_{t}(x, y) f(y) d \mu(y)\right| \\
& \leq\left(\int_{M} p_{t}^{2}(x, y) d \mu(y)\right)^{1 / 2}\|f\|_{2} \\
& =p_{2 t}(x, x)^{1 / 2}\|f\|_{2}
\end{aligned}
$$

whence

$$
\left\|P_{t} f(x)\right\|_{\infty} \leq C t^{-n / 4}\|f\|_{2}
$$

It follows by the duality argument that for any $f \in L^{2} \cap L^{1}$,

$$
\begin{aligned}
\left\|P_{t} f\right\|_{2} & =\sup _{\|g\|_{2}=1}\left(P_{t} f, g\right)=\sup _{\|g\|_{2}=1}\left(f, P_{t} g\right) \\
& \leq \sup _{\|g\|_{2}=1}\|f\|_{1}\left\|P_{t} g\right\|_{\infty} \\
& \leq C t^{-n / 4}\|f\|_{1},
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left\|P_{t} f\right\|_{2} \leq C t^{-n / 4}\|f\|_{1} . \tag{35}
\end{equation*}
$$

Let U be a precompact open subset of M and let $f \in \mathcal{T}(U)$, that is, $f \in C_{0}^{\infty}(U)$ and $\|f\|_{2}=1$. By the Cauchy-Schwarz inequality inequality, we have

$$
\|f\|_{1} \leq \sqrt{\mu(U)}
$$

which together with (35) yields

$$
\left\|P_{t} f\right\|_{2} \leq C t^{-n / 4} \sqrt{\mu(U)}
$$

By (31) we obtain, any $t>0$,

$$
\begin{aligned}
\lambda_{\min }(U) & \geq \frac{1}{t} \log \frac{1}{\sup _{f \in \mathcal{T}(U)}\left\|P_{t} f\right\|_{2}} \\
& \geq \frac{1}{t} \log \frac{1}{C t^{-n / 4} \sqrt{\mu(U)}} .
\end{aligned}
$$

Choose t here from the condition

$$
C t^{-n / 4} \sqrt{\mu(U)}=\frac{1}{e}
$$

that is,

$$
t=(C e)^{4 / n} \mu(U)^{2 / n} .
$$

It follows that

$$
\lambda_{\min }(U) \geq \frac{1}{t}=a \mu(U)^{-2 / n}
$$

where $a=(C e)^{-4 / n}$, which finishes the proof.

5 A weighted L^{2} norm of the heat kernel

The semigroup identity yields that

$$
\int_{M} p_{t}(x, y)^{2} d \mu(y)=\int_{M} p_{t}(x, y) p_{t}(y, x) d \mu(y)=p_{2 t}(x, x)
$$

which in particular implies that the function $p_{t}(x, \cdot)$ belongs to $L^{2}(M, \mu)$. In fact, a more interesting fact is true.

For any $D>0$, consider the following weighted L^{2} norm of the heat kernel:

$$
\begin{equation*}
E_{D}(t, x)=\int_{M} p_{t}^{2}(x, y) \exp \left(\frac{d^{2}(x, y)}{D t}\right) d \mu(y) \tag{36}
\end{equation*}
$$

where $d(x, y)$ is the geodesic distance on M. We can consider also the case $D=\infty$ by setting $\frac{1}{D}=0$ so that

$$
E_{\infty}(t, x)=p_{2 t}(x, x) .
$$

Theorem 8 (a) If $D \geq 2$ then $E_{D}(t, x)$ is non-increasing in t.
(b) Let $B(x, r) \subset M$ be a relatively compact ball satisfying the Faber-Krahn inequality (27) with constant $a>0$. Then, for any $t>0$ and $D \in(2,+\infty]$,

$$
\begin{equation*}
E_{D}(t, x) \leq \frac{C a^{-n / 2}}{\min \left(t, r^{2}\right)^{n / 2}} \tag{37}
\end{equation*}
$$

where $C=C(n, D)$.
(c) If $D>2$ then $E_{D}(t, x)<\infty$.

Proof. (a) The following integrated maximum principle was proved in lectures in 2017: for any solution $u(t, y)$ of the heat equation on $I \times M$ (where I is a time interval) and for any locally Lipschitz function $\xi(t, y)$ in $I \times M$ satisfying

$$
\partial_{t} \xi+\frac{1}{2}|\nabla \xi|^{2} \leq 0
$$

the function

$$
\int_{M} u^{2}(t, y) e^{\xi(t, y)} d \mu(y)
$$

is non-increasing in $t \in I$. If $D \geq 2$ then the function

$$
\xi(t, y)=\frac{d^{2}(x, y)}{D t}
$$

satisfies the inequality

$$
\partial_{t} \xi+\frac{1}{2}|\nabla \xi|^{2} \leq \partial_{t} \xi+\frac{D}{4}|\nabla \xi|^{2} \leq 0,
$$

and the latter is the case because

$$
\xi_{t}=-\frac{d(x, y)^{2}}{D t^{2}}, \quad|\nabla \xi|^{2} \leq \frac{4 d(x, y)^{2}}{D^{2} t^{2}} .
$$

Hence, $E_{D}(t, x)$ is non-increasing in t.
$(b)+(c)$ Note that $E_{D}(t, x)$ may be equal to ∞. For example, $E_{2}(t, x)=\infty$ in \mathbb{R}^{n}. The finiteness of $E_{D}(t, x)$ for $D>2$ follows from the estimate (37) because for any $x \in M$ there is $r>0$ such that $B(x, r)$ is relatively compact, and in any relatively compact domain the Faber-Krahn inequality always holds with some positive constant a.

Hence, it remains to prove (37). Since $E_{D}(t, x)$ is non-increasing in t and the right hand side of (37) is constant for $t>r^{2}$, it suffices to prove (37) for $t \leq r^{2}$, which will be assumed in the sequel.

Fix a non-negative function $f \in L^{2}(M)$ and set $u=P_{t} f$. Applying the mean value inequality of Theorem 2, we obtain

$$
\begin{equation*}
u^{2}(t, x) \leq K \int_{0}^{t} \int_{B(x, r)} u^{2}(s, y) d \mu(y) d s \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{C a^{-n / 2}}{t^{1+n / 2}} \tag{39}
\end{equation*}
$$

Set

$$
\rho(y)=d(y, B(x, r))=(d(x, y)-r)_{+}
$$

and consider the function

$$
\xi(s, y)=-\frac{\rho^{2}(y)}{2(t-s)},
$$

defined for $0 \leq s<t$ and $y \in M$. Since $\xi(y, s) \equiv 0$ for $y \in B(x, r)$ and, hence,

$$
e^{\xi(y, s)}=1 \text { for } y \in B(x, r),
$$

we can rewrite (38) as follows:

$$
\begin{equation*}
u^{2}(t, x) \leq K \int_{0}^{t} \int_{M} u^{2}(y, s) e^{\xi(y, s)} d \mu(y) d s \tag{40}
\end{equation*}
$$

Since

$$
\partial_{t} \xi+\frac{1}{2}|\nabla \xi|^{2} \leq 0,
$$

by the integrated maximum principle, the function

$$
J(s):=\int_{M} u^{2}(s, y) e^{\xi(s, y)} d \mu(y)
$$

is non-increasing in $s \in[0, t)$. In particular, we have

$$
J(s) \leq J(0) \quad \text { for all } s \in[0, t)
$$

It follows from (40) that

$$
u^{2}(t, x) \leq K \int_{0}^{t} J(s) d s \leq K t J(0)
$$

Since

$$
J(0)=\int_{M} f^{2}(y) \exp \left(-\frac{\rho^{2}(y)}{2 t}\right) d \mu(y)
$$

we obtain

$$
\begin{equation*}
u^{2}(t, x) \leq K t \int_{M} f^{2}(y) \exp \left(-\frac{\rho^{2}(y)}{2 t}\right) d \mu(y) \tag{41}
\end{equation*}
$$

Now choose function f as follows

$$
f(y)=p_{t}(x, y) \exp \left(\frac{\rho^{2}(y)}{2 t}\right) \varphi(y),
$$

where φ is any function from $C_{0}^{\infty}(M)$ such that $0 \leq \varphi \leq 1$. Then we have

$$
u(t, x)=\int_{M} p_{t}(x, y) f(y) d \mu(y)=\int_{M} p_{t}^{2}(x, y) \exp \left(\frac{\rho^{2}(y)}{2 t}\right) \varphi(y) d \mu(y) .
$$

Applying (41) with this function f and using that $\varphi^{2} \leq \varphi$, we obtain

$$
\begin{aligned}
u^{2}(t, x) & \leq K t \int_{M} p_{t}^{2}(x, y) \exp \left(\frac{\rho^{2}(y)}{t}\right) \varphi^{2}(y) \exp \left(-\frac{\rho^{2}(y)}{2 t}\right) d \mu(y) \\
& \leq K t \int_{M} p_{t}^{2}(x, y) \exp \left(\frac{\rho^{2}(y)}{2 t}\right) \varphi(y) d \mu(y) \\
& =K t u(t, x)
\end{aligned}
$$

It follows that

$$
u(t, x) \leq K t
$$

that is,

$$
\int_{M} p_{t}^{2}(x, y) \exp \left(\frac{\rho^{2}(y)}{2 t}\right) \varphi(y) d \mu(y) \leq K t
$$

Since φ is arbitrary, we obtain that

$$
\begin{equation*}
\int_{M} p_{t}^{2}(x, y) \exp \left(\frac{\rho^{2}(y)}{2 t}\right) d \mu(y) \leq K t=C(a t)^{-n / 2} \tag{42}
\end{equation*}
$$

Using the elementary inequality ${ }^{1}$

$$
\begin{equation*}
\frac{a^{2}}{t}+\frac{b^{2}}{s} \geq \frac{(a+b)^{2}}{t+s} \tag{43}
\end{equation*}
$$

which is true for real a, b and positive t, s, we obtain, for any $D>2$,

$$
\frac{\rho^{2}(y)}{2 t}+\frac{r^{2}}{(D-2) t}=\frac{(\rho(y)+r)^{2}}{D t} \geq \frac{d^{2}(x, y)}{D t} .
$$

It follows that

$$
\begin{aligned}
E_{D}(t, x) & =\int_{M} p_{t}^{2}(x, y) \exp \left(\frac{d^{2}(x, y)}{D t}\right) d \mu(y) \\
& \leq \exp \left(\frac{r^{2}}{(D-2) t}\right) \int_{M} p_{t}^{2}(x, y) \exp \left(\frac{\rho^{2}(y)}{2 t}\right) d \mu(y)
\end{aligned}
$$

Note that we can always reduce r without changing the value of a. Since $r \geq \sqrt{t}$, we can set $r=\sqrt{t}$ and obtain

$$
E_{D}(t, x) \leq \exp \left(\frac{1}{D-2}\right) C(a t)^{-n / 2},
$$

which finishes the proof of (37).

[^0]
6 Gaussian upper estimates

Here we illustrate how one can obtain pointwise upper and lower bounds of the heat kernel by using the weighted norm $E_{D}(t, x)$.

Theorem 9 Let two balls $B(x, r)$ and $B(y, r)$ be precompact and satisfy the FaberKrahn inequality (27) with constants $a(x, r)$ and $a(y, r)$, respectively. Then, for all $t>0$ and $D>2$,

$$
\begin{equation*}
p_{t}(x, y) \leq \frac{C}{(a(x, r) a(y, r))^{n / 4} \min \left(t, r^{2}\right)^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right), \tag{44}
\end{equation*}
$$

where $C=C(n, D)$.
Proof. Let us prove that always

$$
\begin{equation*}
p_{2 t}(x, y) \leq \sqrt{E_{D}(t, x) E_{D}(t, y)} \exp \left(-\frac{d^{2}(x, y)}{4 D t}\right) \tag{45}
\end{equation*}
$$

Indeed, for any points $x, y, z \in M$, let us denote $\alpha=d(y, z), \beta=d(x, z)$ and $\gamma=d(x, y)$.

Distances α, β, γ

By the triangle inequality, we have

$$
\alpha^{2}+\beta^{2} \geq \frac{1}{2}(\alpha+\beta)^{2} \geq \frac{1}{2} \gamma^{2} .
$$

Applying the semigroup identity (1), we obtain

$$
\begin{aligned}
p_{2 t}(x, y) & =\int_{M} p_{t}(x, z) p_{t}(y, z) d \mu(z) \\
& \leq \int_{M} p_{t}(x, z) e^{\frac{\beta^{2}}{2 D t}} p_{t}(y, z) e^{\frac{\alpha^{2}}{2 D t}} e^{-\frac{\gamma^{2}}{4 D t}} d \mu(z) \\
& \leq\left(\int_{M} p_{t}^{2}(x, z) e^{\frac{\beta^{2}}{D t}} d \mu(z)\right)^{\frac{1}{2}}\left(\int_{M} p_{t}^{2}(y, z) e^{\frac{\alpha^{2}}{D t}} d \mu(z)\right)^{\frac{1}{2}} e^{-\frac{\gamma^{2}}{4 D t}} \\
& =\sqrt{E_{D}(t, x) E_{D}(t, y)} \exp \left(-\frac{d^{2}(x, y)}{4 D t}\right)
\end{aligned}
$$

which proves (45).
Combining (37) and (45), we obtain

$$
p_{2 t}(x, y) \leq C \frac{\left(a(x, r)^{-n / 2} a(y, r)^{-n / 2}\right)^{1 / 2}}{\min \left(t, r^{2}\right)^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{4 D t}\right)
$$

which is equivalent to (44).
Example. Let M have bounded geometry, that is, there exists $r>0$ such that all balls $B(x, r)$ of radii r are uniformly quasi-isometric to the Euclidean ball of the same radius. Then the Faber-Krahn inequality (27) holds in any ball $B(x, r)$ with the constant a that does not depend on x. Hence, we obtain from (44), for all $t>0$ and $x, y \in M$,

$$
p_{t}(x, y) \leq \frac{C}{\min \left(t, r^{2}\right)^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right)
$$

Corollary 10 Let M satisfy the Faber-Krahn inequality (27) with some constant $a>$ 0 . Then, for all $t>0$ and $x, y \in M$ and $D>2$,

$$
\begin{equation*}
p_{t}(x, y) \leq \frac{C}{t^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right) \tag{46}
\end{equation*}
$$

where $C=C(a, n, D)$.
Proof. Indeed, by hypothesis (44) holds for any $r>0$. Setting $r=\sqrt{t}$, we obtain (46).

For example, (46) holds on Cartan-Hadamard manifolds.
It follows from Theorem 6 and Corollary 10 that the Gaussian estimate (46) holds if and only if the on-diagonal upper bound

$$
p_{t}(x, y) \leq \frac{C}{t^{n / 2}}
$$

is satisfied.

$7 \quad$ Li-Yau upper bounds

Set

$$
V(x, r)=\mu(B(x, r)) .
$$

Definition. We say that M satisfies the volume doubling condition (or the measure μ is doubling) if, for all $x \in M$ and $r>0$,

$$
\begin{equation*}
V(x, 2 r) \leq C V(x, r) \tag{47}
\end{equation*}
$$

for some constant C.

Definition. We say that M satisfies the relative Faber-Krahn inequality (RFK) if any ball $B(x, r)$ on M satisfies the Faber-Krahn inequality (4) with some exponent $\beta>0$ and with the constant

$$
\begin{equation*}
a=a(x, r)=b \frac{V(x, r)^{\beta}}{r^{2}} \tag{48}
\end{equation*}
$$

where $b>0$; that is, for any $U \Subset B(x, r)$,

$$
\begin{equation*}
\lambda_{\min }(U) \geq \frac{b}{r^{2}}\left(\frac{V(x, r)}{\mu(U)}\right)^{\beta} \tag{49}
\end{equation*}
$$

It is known that the relative Faber-Krahn inequality holds on complete manifolds of non-negative Ricci curvature. It holds also on any manifold $M=K \times \mathbb{R}^{m}$ where K is a compact manifold.

Theorem 11 Let M be a complete, connected, non-compact manifold and fix $D>2$. Then the following conditions are equivalent:
(a) M admits the relative Faber-Krahn inequality (49).
(b) The measure μ is doubling and the heat kernel satisfies the upper bound

$$
\begin{equation*}
p_{t}(x, y) \leq \frac{C}{(V(x, \sqrt{t}) V(y, \sqrt{t}))^{1 / 2}} \exp \left(-\frac{d(x, y)^{2}}{2 D t}\right) \tag{50}
\end{equation*}
$$

for all for all $x, y \in M, t>0$, and for some positive constant C.
(c) The measure μ is doubling and the heat kernel satisfies the inequality

$$
\begin{equation*}
p_{t}(x, x) \leq \frac{C}{V(x, \sqrt{t})} \tag{51}
\end{equation*}
$$

for all for all $x \in M, t>0$, and for some constant C.

Remark. As we will see later, under any of the conditions $(a)-(c)$ of Theorem 11 we have also the matching lower bound

$$
p_{t}(x, x) \geq \frac{c}{V(x, \sqrt{t})},
$$

for all $x \in M, t>0$ and for some constant $c>0$.
We precede the proof by two lemmas.
Lemma 12 If a precompact ball $B(x, R)$ satisfies the Faber-Krahn inequality (4) with exponent β and constant a, then, for any $r<R$,

$$
\begin{equation*}
V(x, r) \geq c a^{1 / \beta} r^{2 / \beta} \tag{52}
\end{equation*}
$$

where $c=c(\beta)>0$.

Proof. Denote for simplicity $V(r)=V(x, r)$. Using the Lipschitz cutoff function φ of $B(x, r / 2)$ in $B(x, r)$ as a test function in the variational property of the first eigenvalue, we obtain

$$
\begin{aligned}
V(r / 2) & \leq \int_{B(x, r)} \varphi^{2} d \mu \leq \lambda_{\min }(B(x, r))^{-1} \int_{B(x, r)}|\nabla \varphi|^{2} d \mu \\
& \leq\left(a V(r)^{-\beta}\right)^{-1} \frac{4}{r^{2}} V(r) \\
& =\frac{4}{a r^{2}} V(r)^{1+\beta}
\end{aligned}
$$

whence

$$
V(r) \geq c\left(a r^{2} V(r / 2)\right)^{\theta}
$$

where $\theta=\frac{1}{\beta+1}$ and $c=c(\beta)>0$. Iterating this, we obtain

$$
\begin{aligned}
V(r) \geq & c a^{\theta} r^{2 \theta} V\left(\frac{r}{2}\right)^{\theta} \\
\geq & c^{1+\theta} a^{\theta+\theta^{2}} r^{2 \theta}\left(\frac{r}{2}\right)^{2 \theta^{2}} V\left(\frac{r}{4}\right)^{\theta^{2}} \\
\geq & c^{1+\theta+\theta^{2}} a^{\theta+\theta^{2}+\theta^{3}} r^{2 \theta}\left(\frac{r}{2}\right)^{2 \theta^{2}}\left(\frac{r}{4}\right)^{2 \theta^{3}} V\left(\frac{r}{8}\right)^{\theta^{3}} \\
& \ldots \\
\geq & c^{1+\theta+\theta^{2}+\ldots} a^{\theta\left(1+\theta+\theta^{2}+\ldots\right)} r^{2 \theta\left(1+\theta+\theta^{2}+\ldots\right)} 2^{-2 \theta^{2}\left(1+\theta+\theta^{2}+\ldots\right)} V\left(\frac{r}{2^{k}}\right)^{\theta^{k}}
\end{aligned}
$$

for any $k \in \mathbb{N}$. Observe that

$$
V\left(\frac{r}{2^{k}}\right) \sim c_{n}\left(\frac{r}{2^{k}}\right)^{n} \quad \text { as } k \rightarrow \infty
$$

and, hence, $V\left(\frac{r}{2^{k}}\right)^{\theta^{k}} \rightarrow 1$. Since

$$
\theta\left(1+\theta+\theta^{2}+\ldots\right)=\frac{\theta}{1-\theta}=\frac{1}{\beta}
$$

we obtain as $k \rightarrow \infty$

$$
V(r) \geq \text { const } a^{1 / \beta} r^{2 / \beta}
$$

which was to be proved.
Lemma 13 If M is connected, complete, non-compact and satisfies the doubling volume property then there are positive numbers ν, ν^{\prime}, c, C such that

$$
\begin{equation*}
c\left(\frac{R}{r}\right)^{\nu^{\prime}} \leq \frac{V(x, R)}{V(x, r)} \leq C\left(\frac{R}{r}\right)^{\nu} \tag{53}
\end{equation*}
$$

for all $x \in M$ and $0<r \leq R$. Besides, for all $x, y \in M$ and all $0<r \leq R$,

$$
\begin{equation*}
\frac{V(x, R)}{V(y, r)} \leq C\left(\frac{R+d(x, y)}{r}\right)^{\nu} \tag{54}
\end{equation*}
$$

Proof. If $2^{k} r \leq R<2^{k+1} r$ with a non-negative integer k then iterating the doubling property

$$
V(x, 2 r) \leq C V(x, r)
$$

we obtain

$$
V(x, R) \leq V\left(x, 2^{k+1} r\right) \leq C^{k+1} V(x, r) \leq C\left(\frac{R}{r}\right)^{\log _{2} C} V(x, r)
$$

so that the right inequality in (53) holds with $\nu=\log _{2} C$.
The left inequality in (53) is called the reverse volume doubling. To prove it, assume first $R=2 r$. The connectedness of M implies that there is a point $y \in M$ such that $d(x, y)=\frac{3}{2} r$. Then $B\left(y, \frac{1}{2} r\right) \leq B(x, 2 r) \backslash B(x, r)$, which implies

$$
V(x, 2 r) \geq V(x, r)+V\left(y, \frac{1}{2} r\right)
$$

By (47), we have

$$
\frac{V(x, r)}{V\left(y, \frac{1}{2} r\right)} \leq \frac{V(y, 4 r)}{V\left(y, \frac{1}{2} r\right)} \leq C^{3}
$$

whence

$$
V(x, 2 r) \geq\left(1+C^{-3}\right) V(x, r)
$$

Iterating this inequality, we obtain (53) with $\nu^{\prime}=\log _{2}\left(1+C^{-3}\right)$.
Finally, (54) follows from (53) as follows:

$$
\frac{V(x, R)}{V(y, r)} \leq \frac{V(y, R+d(x, y))}{V(y, r)} \leq C\left(\frac{R+d(x, y)}{r}\right)^{\nu}
$$

Proof of Theorem 11. $(a) \Longrightarrow(b)$ Choose n so that $\beta=2 / n$. By Theorem 9 we have, for all $x, y \in M$ and $r, t>0$,

$$
p_{t}(x, y) \leq \frac{C}{\left(a(x, r) a(y, r) \min \left(t, r^{2}\right) \min \left(t, r^{2}\right)\right)^{n / 4}} \exp \left(-\frac{\rho^{2}}{2 D t}\right)
$$

Choosing $r=\sqrt{t}$ and substituting a from (48) we obtain

$$
\begin{aligned}
p_{t}(x, y) & \leq \frac{C}{\left(V(x, \sqrt{t})^{2 / n} V(y, \sqrt{t}) t^{-2}\right)^{n / 4} t^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right) \\
& =\frac{C}{(V(x, \sqrt{t}) V(y, \sqrt{t}))^{1 / 2}} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right)
\end{aligned}
$$

that is (50).
It remains to prove that μ is doubling. Applying Lemma 12 with

$$
a=b \frac{V(x, R)^{\beta}}{R^{2}}
$$

we obtain

$$
\begin{equation*}
V(x, r) \geq c\left(\frac{r}{R}\right)^{2 / \beta} V(x, R), \tag{55}
\end{equation*}
$$

whence the doubling property follows.
$(b) \Longrightarrow(c)$ Trivial: just set $x=y$ in (50).
$(c) \Longrightarrow(a)$ Fix a ball $B(x, r)$ and consider an open set $U \subset B(x, r)$. We have, for all $y \in U$,

$$
p_{t}^{U}(y, y) \leq p_{t}(y, y) \leq \frac{C}{V(y, \sqrt{t})} .
$$

For any $y \in U$ and $t \leq r^{2}$, we have by the volume doubling

$$
\frac{V(x, r)}{V(y, \sqrt{t})} \leq \frac{V(y, 2 r)}{V(y, \sqrt{t})} \leq C\left(\frac{r}{\sqrt{t}}\right)^{\nu}
$$

so that, for $t \leq r^{2}$,

$$
p_{t}^{U}(y, y) \leq \frac{C}{V(x, r)}\left(\frac{r}{\sqrt{t}}\right)^{\nu}
$$

As in the proof of Theorem 6, it follows that, for all $f \in L^{2}(U)$,

$$
\left\|P_{t}^{U} f\right\|_{2}^{2} \leq \frac{C}{V(x, r)}\left(\frac{r}{\sqrt{t}}\right)^{\nu}\|f\|_{1}^{2}
$$

Let $f \in C_{0}^{\infty}(U)$ be a function such that $\|f\|_{2}=1$. Since by the Cauchy-Schwarz inequality

$$
\|f\|_{1}^{2} \leq \mu(U)
$$

we obtain by Lemma 7 that

$$
\begin{aligned}
\lambda_{\min }(U) & \geq \frac{1}{2 t} \log \frac{1}{\sup _{f \in \mathcal{T}(U)}\left\|P_{t}^{U} f\right\|_{2}^{2}} \\
& \geq \frac{1}{2 t} \log C^{-1} \frac{V(x, r)}{\mu(U)}\left(\frac{\sqrt{t}}{r}\right)^{\nu}
\end{aligned}
$$

Now choose t from the condition

$$
\begin{equation*}
C^{-1}\left(\frac{\sqrt{t}}{r}\right)^{\nu} \frac{V(x, r)}{\mu(U)}=e \tag{56}
\end{equation*}
$$

that is,

$$
t=\left(\frac{C e \mu(U)}{V(x, r)}\right)^{2 / \nu} r^{2}
$$

Since we need to have $t \leq r^{2}$, we have to assume for a while that

$$
\begin{equation*}
\mu(U) \leq(C e)^{-1} V(x, r) \tag{57}
\end{equation*}
$$

If so then we obtain from above that

$$
\begin{equation*}
\lambda_{\min }(U) \geq \frac{1}{2 t}=\frac{b}{r^{2}}\left(\frac{V(x, r)}{\mu(U)}\right)^{2 / \nu} \tag{58}
\end{equation*}
$$

where $b>0$ is a positive constant, which was to be proved.
We are left to extend (58) to any $U \Subset B(x, r)$ without the restriction (57). For that, we will use Lemma 13. Find $R>r$ so big that

$$
\frac{V(x, R)}{V(x, r)} \geq C e
$$

Due to (53), we can take R in the form $R=A r$, where A is a constant, depending on the other constants in question. Then $U \subset B(x, R)$ and

$$
\mu(U) \leq(C e)^{-1} V(x, R)
$$

which implies by the first part of the proof that

$$
\lambda_{1}(U) \geq \frac{b}{R^{2}}\left(\frac{V(x, R)}{\mu(U)}\right)^{2 / \nu} \geq \frac{b}{(A r)^{2}}\left(\frac{V(x, r)}{\mu(U)}\right)^{2 / \nu}
$$

which was to be proved.
Using (54), we obtain

$$
\frac{V(x, \sqrt{t})}{V(y, \sqrt{t})} \leq C\left(\frac{\sqrt{t}+d(x, y)}{\sqrt{t}}\right)^{\nu}=C\left(1+\frac{d(x, y)}{\sqrt{t}}\right)^{\nu}
$$

Replacing $V(y, \sqrt{t})$ in (50) according to this inequality, we obtain

$$
\begin{equation*}
p_{t}(x, y) \leq \frac{C}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{2 D^{\prime} t}\right) \tag{59}
\end{equation*}
$$

where $D^{\prime}>D$. Since $D>2$ was arbitrary, we see that $D^{\prime}>2$ is also arbitrary.
The estimate (59) for manifolds of non-negative Ricci curvature was proved by P.Li and S.-T. Yau in 1986. In fact, they also proved a matching lower bound in this case.

8 On-diagonal lower estimates of the heat kernel

Now let us discuss some on-diagonal lower bound of the heat kernel.
Theorem 14 Let M be a geodesically complete Riemannian manifold. Assume that, for some $x \in M$ and all $r \geq r_{0}$,

$$
\begin{equation*}
V(x, r) \leq C r^{\nu} \tag{60}
\end{equation*}
$$

where C, ν, r_{0} are positive constants. Then, for all $t \geq t_{0}$,

$$
\begin{equation*}
p_{t}(x, x) \geq \frac{1 / 4}{V(x, \sqrt{\eta t \log t})}, \tag{61}
\end{equation*}
$$

where $\eta=\eta\left(x, r_{0}, C, \nu\right)>0$ and $t_{0}=\max \left(r_{0}^{2}, 3\right)$.

Of course, (61) implies that, for large t,

$$
p_{t}(x, x) \geq c(t \log t)^{-\nu / 2} .
$$

There are examples to show that in general one cannot get rid of $\log t$ here.
Proof. For any $r>0$, we obtain by the semigroup identity and the Cauchy-Schwarz inequality

$$
\begin{align*}
p_{2 t}(x, x) & =\int_{M} p_{t}^{2}(x, \cdot) d \mu \geq \int_{B(x, r)} p_{t}^{2}(x, \cdot) d \mu \\
& \geq \frac{1}{V(x, r)}\left(\int_{B(x, r)} p_{t}(x, \cdot) d \mu\right)^{2} \tag{62}
\end{align*}
$$

By (60) the manifold M is stochastically complete, that is

$$
\int_{M} p_{t}(x, \cdot) d \mu=1
$$

Since $p_{t}(x, x) \geq p_{2 t}(x, x)$, it follows from (62) that

$$
\begin{equation*}
p_{t}(x, x) \geq \frac{1}{V(x, r)}\left(1-\int_{M \backslash B(x, r)} p_{t}(x, \cdot) d \mu\right)^{2} . \tag{63}
\end{equation*}
$$

Choose $r=r(t)$ so that

$$
\begin{equation*}
\int_{M \backslash B(x, r(t))} p_{t}(x, \cdot) d \mu \leq \frac{1}{2} . \tag{64}
\end{equation*}
$$

Then (63) yields

$$
p_{t}(x, x) \geq \frac{1 / 4}{V(x, r(t))} .
$$

Hence, we obtain (61) provided

$$
\begin{equation*}
r(t)=\sqrt{\eta t \log t} . \tag{65}
\end{equation*}
$$

It remains to prove the following: there exists a large enough η such that, for any $t \geq t_{0}$, the inequality (64) holds with the function $r(t)$ from (65).

Setting $\rho=d(x, \cdot)$ and fixing some $D>2$ (for example, $D=3$), we obtain by the Cauchy-Schwarz inequality

$$
\begin{align*}
\left(\int_{M \backslash B(x, r)} p_{t}(x, \cdot) d \mu\right)^{2} & \leq \int_{M} p_{t}^{2}(x, \cdot) \exp \left(\frac{\rho^{2}}{D t}\right) d \mu \int_{M \backslash B(x, r)} \exp \left(-\frac{\rho^{2}}{D t}\right) d \mu \\
& =E_{D}(t, x) \int_{M \backslash B(x, r)} \exp \left(-\frac{\rho^{2}}{D t}\right) d \mu \tag{66}
\end{align*}
$$

where $E_{D}(t, x)$ is defined by (36). By Theorem 8 , we have, for all $t \geq t_{0}$,

$$
\begin{equation*}
E_{D}(t, x) \leq E_{D}\left(t_{0}, x\right)<\infty . \tag{67}
\end{equation*}
$$

Since x is fixed, we can consider $E_{D}\left(t_{0}, x\right)$ as a constant.
Let us now estimate the integral in (66) assuming that

$$
\begin{equation*}
r=r(t) \geq r_{0} \tag{68}
\end{equation*}
$$

By splitting the complement of $B(x, r)$ into the union of the annuli

$$
B\left(x, 2^{k+1} r\right) \backslash B\left(x, 2^{k} r\right), \quad k=0,1,2, \ldots,
$$

and using the hypothesis (60), we obtain

$$
\begin{align*}
\int_{M \backslash B(x, r)} \exp \left(-\frac{\rho^{2}}{D t}\right) d \mu & \leq \sum_{k=0}^{\infty} \exp \left(-\frac{4^{k} r^{2}}{D t}\right) V\left(x, 2^{k+1} r\right) \tag{69}\\
& \leq C r^{\nu} \sum_{k=0}^{\infty} 2^{\nu(k+1)} \exp \left(-\frac{4^{k} r^{2}}{D t}\right) . \tag{70}
\end{align*}
$$

Assuming further that

$$
\begin{equation*}
\frac{r^{2}(t)}{D t} \geq 1 \tag{71}
\end{equation*}
$$

we see that the sum in (70) is majorized by a geometric series, whence

$$
\begin{equation*}
\int_{M \backslash B(x, r)} \exp \left(-\frac{\rho^{2}}{D t}\right) d \mu \leq C^{\prime} r^{\nu} \exp \left(-\frac{r^{2}}{D t}\right), \tag{72}
\end{equation*}
$$

where C^{\prime} depends on C and ν.
Both conditions (68) and (71) are satisfies for $r(t)=\sqrt{\eta t \log t}$, if

$$
t \geq t_{0}=\max \left(r_{0}^{2}, 3\right)
$$

and η is large enough, say $\eta>1$ and $\eta>D$. Substituting (65) into (72), we obtain

$$
\begin{align*}
\int_{M \backslash B(x, r)} \exp \left(-\frac{\rho^{2}}{D t}\right) d \mu & \leq C^{\prime}(\eta t \log t)^{\nu / 2} \exp \left(-\frac{\eta \log t}{D}\right) \\
& =C^{\prime} \eta^{\nu / 2}\left(\frac{\log t}{t^{2 n}-1}\right)^{\nu / 2} \tag{73}
\end{align*}
$$

Note that the function $\frac{\log t}{t}$ is decreasing for $t \geq e$. Hence, assuming further that $\eta \geq \nu D$ we obtain from (73) and (66) that, for $t \geq t_{0}$,

$$
\begin{equation*}
\left(\int_{M \backslash B(x, r)} p_{t}(x, \cdot) d \mu\right)^{2} \leq C^{\prime} \eta^{\nu / 2}\left(\frac{\log t_{0}}{t_{0}^{\frac{2 \eta}{\nu D}-1}}\right)^{\nu / 2} E_{D}\left(t_{0}, x\right) \tag{74}
\end{equation*}
$$

Finally, choosing η large enough, we can make the right hand side arbitrarily small, which finishes the proof of (64).

Theorem 15 Let M be a complete, connected, non-compact manifold that satisfies the relative Faber-Krahn inequality (49). Then, for all $t>0$ and $x \in M$,

$$
\begin{equation*}
p_{t}(x, x) \geq \frac{c}{V(x, \sqrt{t})} \tag{75}
\end{equation*}
$$

for some $c=c(b, \beta)$.
Proof. As it was proved in Theorem 11, the measure μ is doubling, which, in particular, implies that M is stochastically complete. Following the argument in the proof of Theorem 14, we need to find $r=r(t)$ so that

$$
\int_{M \backslash B(x, r)} p_{t}(x, \cdot) d \mu \leq \frac{1}{2},
$$

which implies

$$
\begin{equation*}
p_{t}(x, x) \geq \frac{1 / 4}{V(x, r(t))} . \tag{76}
\end{equation*}
$$

If in addition $r(t) \leq K \sqrt{t}$ for some constant K then (75) follows from (76) and the doubling property of μ.

Let us use the estimate (66) from the proof of Theorem 14, that is,

$$
\begin{equation*}
\left(\int_{M \backslash B(x, r)} p_{t}(x, \cdot) d \mu\right)^{2} \leq E_{D}(t, x) \int_{M \backslash B(x, r)} \exp \left(-\frac{d^{2}(x, \cdot)}{D t}\right) d \mu \tag{77}
\end{equation*}
$$

where $D>2$ (for example, set $D=3$). Next, instead of using the monotonicity of $E_{D}(t, x)$ as in the proof of Theorem 14, we apply Theorem 8 which yields, for all $x \in M$ and $t, R>0$, that

$$
E_{D}(t, x) \leq \frac{C a(x, R)^{-1 / \beta}}{\min \left(t, R^{2}\right)^{1 / \beta}}=\frac{C\left(b \frac{V(x, R)^{\beta}}{R^{2}}\right)^{-1 / \beta}}{\min \left(t, R^{2}\right)^{1 / \beta}}=\frac{C^{\prime}}{V(x, R) \min \left(t / R^{2}, 1\right)^{1 / \beta}}
$$

Choosing here $R=\sqrt{t}$, we obtain

$$
\begin{equation*}
E_{D}(t, x) \leq \frac{C}{V(x, \sqrt{t})} \tag{78}
\end{equation*}
$$

Applying the doubling property, we obtain

$$
\begin{align*}
\int_{M \backslash B(x, r)} \exp \left(-\frac{d^{2}(x, \cdot)}{D t}\right) d \mu & \leq \sum_{k=0}^{\infty} \exp \left(-\frac{4^{k} r^{2}}{D t}\right) V\left(x, 2^{k+1} r\right) \\
& \leq \sum_{k=0}^{\infty} C^{k+1} \exp \left(-\frac{4^{k} r^{2}}{D t}\right) V(x, r) \\
& \leq C^{\prime} V(x, r) \exp \left(-\frac{r^{2}}{D t}\right), \tag{79}
\end{align*}
$$

provided $r^{2} \geq D t$. It follows from (77), (78), ,(79) and (53) that

$$
\begin{aligned}
\left(\int_{M \backslash B(x, r)} p_{t}(x, \cdot) d \mu\right)^{2} & \leq C^{\prime \prime} \frac{V(x, r)}{V(x, \sqrt{t})} \exp \left(-\frac{r^{2}}{D t}\right) \\
& \leq C\left(\frac{r}{\sqrt{t}}\right)^{\nu} \exp \left(-\frac{r^{2}}{D t}\right)
\end{aligned}
$$

Obviously, the right hand side here can be made arbitrarily small by choosing $r=\sqrt{\eta t}$ with η large enough, which finishes the proof.

9 Upper Gaussian bounds via on-diagonal estimates

We say that a function $\gamma:(0,+\infty) \rightarrow(0,+\infty)$ is regular if it is monotone increasing and satisfies the doubling conditions: there is $A \geq 1$ such that for all $t>0$,

$$
\begin{equation*}
\gamma(2 t) \leq A \gamma(t) \tag{80}
\end{equation*}
$$

Theorem 16 Let M be a Riemannian manifold and $S \subset M$ be a a non-empty measurable subset of M. For any function $f \in L^{2}(M)$ and $t>0$ and $D>0$ set

$$
\begin{equation*}
E_{D}(t, f)=\int_{M}\left(P_{t} f\right)^{2} \exp \left(\frac{d^{2}(\cdot, S)}{D t}\right) d \mu \tag{81}
\end{equation*}
$$

Assume that, for some $f \in L^{2}(S)$ and for all $t>0$,

$$
\begin{equation*}
E_{\infty}(t, f)=\left\|P_{t} f\right\|_{2}^{2} \leq \frac{1}{\gamma(t)} \tag{82}
\end{equation*}
$$

where $\gamma(t)$ is a regular function on $(0,+\infty)$. Then, for all $D>2$ and $t>0$,

$$
\begin{equation*}
E_{D}(t, f) \leq \frac{6 A}{\gamma(c t)} \tag{83}
\end{equation*}
$$

where $c=c(D)>0$.
In the proof we use the Davies-Gaffney inequality in the following form: for any measurable set $A \subset M$, any function $h \in L^{2}(M)$ and for all positive ρ, τ,

$$
\begin{equation*}
\int_{A_{\rho}^{c}}\left(P_{\tau} h\right)^{2} d \mu \leq \int_{A^{c}} h^{2} d \mu+\exp \left(-\frac{\rho^{2}}{2 \tau}\right) \int_{A} h^{2} d \mu \tag{84}
\end{equation*}
$$

where S_{ρ} denotes the open ρ-neighborhood of S.
Proof. The proof will be split into four steps.
Step 1. Set for any $r, t>0$

$$
J_{r}(t):=\int_{S_{r}^{c}}\left(P_{t} f\right)^{2} d \mu
$$

Let $R>r>0$ and $T>t>0$. Applying (84) with $h=P_{t} f, A=S_{r}, \tau=T-t$ and $\rho=R-r$, we obtain

$$
\int_{S_{R}^{c}}\left(P_{T} f\right)^{2} d \mu \leq \int_{S_{r}^{c}}\left(P_{t} f\right)^{2} d \mu+\exp \left(-\frac{(R-r)^{2}}{2(T-t)}\right) \int_{S_{r}}\left(P_{t} f\right)^{2} d \mu .
$$

By (82), we have

$$
\int_{S_{r}}\left(P_{t} f\right)^{2} d \mu \leq \frac{1}{\gamma(t)},
$$

whence it follows that

$$
\begin{equation*}
J_{R}(T) \leq J_{r}(t)+\frac{1}{\gamma(t)} \exp \left(-\frac{(R-r)^{2}}{2(T-t)}\right) \tag{85}
\end{equation*}
$$

Step 2. Let us prove that

$$
\begin{equation*}
J_{r}(t) \leq \frac{3 A}{\gamma(t / 2)} \exp \left(-\varepsilon \frac{r^{2}}{t}\right) \tag{86}
\end{equation*}
$$

for some $\varepsilon>0$. Let $\left\{r_{k}\right\}_{k=0}^{\infty}$ and $\left\{t_{k}\right\}_{k=0}^{\infty}$ be two strictly decreasing sequences of positive reals such that

$$
r_{0}=r, \quad r_{k} \downarrow 0, \quad t_{0}=t, t_{k} \downarrow 0
$$

as $k \rightarrow \infty$. By (85), we have, for any $k \geq 1$,

$$
\begin{equation*}
J_{r_{k-1}}\left(t_{k-1}\right) \leq J_{r_{k}}\left(t_{k}\right)+\frac{1}{\gamma\left(t_{k}\right)} \exp \left(-\frac{\left(r_{k-1}-r_{k}\right)^{2}}{2\left(t_{k-1}-t_{k}\right)}\right) . \tag{87}
\end{equation*}
$$

When $k \rightarrow \infty$ we obtain

$$
\begin{equation*}
J_{r_{k}}\left(t_{k}\right)=\int_{S_{r_{k}}^{c}}\left(P_{t_{k}} f\right)^{2} d \mu \leq \int_{S^{c}}\left(P_{t_{k}} f\right)^{2} d \mu \rightarrow \int_{S^{c}} f^{2} d \mu=0 \tag{88}
\end{equation*}
$$

where we have used the fact that $P_{t} f \rightarrow f$ in $L^{2}(M)$ as $t \rightarrow 0+$ and the hypothesis that $f \equiv 0$ in S^{c}.

Adding up the inequalities (87) for all k from 1 to ∞ and using (88), we obtain

$$
\begin{equation*}
J_{r}(t) \leq \sum_{k=1}^{\infty} \frac{1}{\gamma\left(t_{k}\right)} \exp \left(-\frac{\left(r_{k-1}-r_{k}\right)^{2}}{2\left(t_{k-1}-t_{k}\right)}\right) . \tag{89}
\end{equation*}
$$

Let us specify the sequences $\left\{r_{k}\right\}$ and $\left\{t_{k}\right\}$ as follows:

$$
r_{k}=\frac{r}{k+1} \quad \text { and } \quad t_{k}=2^{-k} t
$$

For all $k \geq 1$ we have

$$
r_{k-1}-r_{k}=\frac{r}{k(k+1)} \quad \text { and } \quad t_{k-1}-t_{k}=2^{-k} t
$$

whence

$$
\frac{\left(r_{k-1}-r_{k}\right)^{2}}{2\left(t_{k-1}-t_{k}\right)}=\frac{2^{k}}{2 k^{2}(k+1)^{2}} \frac{r^{2}}{t} \geq \varepsilon(k+1) \frac{r^{2}}{t}
$$

where

$$
\begin{equation*}
\varepsilon=\inf _{k \geq 1} \frac{2^{k}}{2 k^{2}(k+1)^{3}}>0 \tag{90}
\end{equation*}
$$

By the condition (80) we have

$$
\frac{\gamma\left(t_{k-1}\right)}{\gamma\left(t_{k}\right)} \leq A
$$

which implies

$$
\frac{\gamma(t)}{\gamma\left(t_{k}\right)}=\frac{\gamma\left(t_{0}\right)}{\gamma\left(t_{1}\right)} \frac{\gamma\left(t_{1}\right)}{\gamma\left(t_{2}\right)} \ldots \frac{\gamma\left(t_{k-1}\right)}{\gamma\left(t_{k}\right)} \leq A^{k} .
$$

Substituting into (89), we obtain

$$
\begin{aligned}
J_{r}(t) & \leq \frac{1}{\gamma(t)} \sum_{k=1}^{\infty} A^{k} \exp \left(-\varepsilon(k+1) \frac{r^{2}}{t}\right) \\
& =\frac{\exp \left(-\varepsilon \frac{r^{2}}{t}\right)}{\gamma(t)} \sum_{k=1}^{\infty} \exp \left(k L-\varepsilon k \frac{r^{2}}{t}\right),
\end{aligned}
$$

where

$$
L:=\log A .
$$

Consider the following two cases:

1. If $\varepsilon \frac{r^{2}}{t}-L \geq 1$ then

$$
J_{r}(t) \leq \frac{\exp \left(-\varepsilon \frac{r^{2}}{t}\right)}{\gamma(t)} \sum_{k=1}^{\infty} \exp (-k) \leq \frac{2}{\gamma(t)} \exp \left(-\varepsilon \frac{r^{2}}{t}\right)
$$

2. If $\varepsilon \frac{r^{2}}{t}-L<1$ then we estimate $J_{r}(t)$ in a trivial way:

$$
J_{r}(t) \leq \int_{M}\left(P_{t} f\right)^{2} d \mu \leq \frac{1}{\gamma(t)}
$$

whence

$$
\begin{aligned}
J_{r}(t) & \leq \frac{1}{\gamma(t)} \exp \left(1+L-\varepsilon \frac{r^{2}}{t}\right)=\frac{e}{\gamma(t)} A \frac{\gamma\left(t_{0}\right)}{\gamma\left(t_{1}\right)} \exp \left(-\varepsilon \frac{r^{2}}{t}\right) \\
& \leq \frac{3 A}{\gamma(t / 2)} \exp \left(-\varepsilon \frac{r^{2}}{t}\right) .
\end{aligned}
$$

Hence, in the both cases we obtain (86).
Step 3. Let us prove the inequality

$$
\begin{equation*}
E_{D}(t, f) \leq \frac{6 A}{\gamma(t / 2)} \tag{91}
\end{equation*}
$$

under the additional restriction that

$$
\begin{equation*}
D \geq 5 \varepsilon^{-1} \tag{92}
\end{equation*}
$$

where ε was defined by (90) in the previous step.
Set $\rho(x)=d(x, S)$ and split the integral in the definition (81) of $E_{D}(t, f)$ into the series

$$
\begin{equation*}
E_{D}(t, f)=\left(\int_{\{\rho \leq r\}}+\sum_{k=1}^{\infty} \int_{\left\{2^{k-1} r<\rho \leq 2^{k} r\right\}}\right)\left(P_{t} f\right)^{2} \exp \left(\frac{\rho^{2}}{D t}\right) d \mu, \tag{93}
\end{equation*}
$$

where r is a positive number to be chosen below. The integral over the set $\{\rho \leq r\}$ is estimated using (82):

$$
\begin{align*}
\int_{\{\rho \leq r\}}\left(P_{t} f\right)^{2} \exp \left(\frac{\rho^{2}}{D t}\right) d \mu & \leq \exp \left(\frac{r^{2}}{D t}\right) \int_{M}\left(P_{t} f\right)^{2} d \mu \\
& \leq \frac{1}{\gamma(t)} \exp \left(\frac{r^{2}}{D t}\right) \tag{94}
\end{align*}
$$

The k-th term in the sum in (93) is estimated by (86) as follows

$$
\begin{align*}
& \int_{\left\{2^{k-1} r<\rho \leq 2^{k} r\right\}}\left(P_{t} f\right)^{2} \exp \left(\frac{\rho^{2}}{D t}\right) d \mu \\
\leq & \exp \left(\frac{4^{k} r^{2}}{D t}\right) \int_{S_{2^{c-1} r}^{c}}\left(P_{t} f\right)^{2} d \mu \\
= & \exp \left(\frac{4^{k} r^{2}}{D t}\right) J_{2^{k-1} r}(t) \\
\leq & \frac{3 A}{\gamma(t / 2)} \exp \left(\frac{4^{k} r^{2}}{D t}-\varepsilon \frac{4^{k-1} r^{2}}{t}\right) \\
\leq & \frac{3 A}{\gamma(t / 2)} \exp \left(-\frac{4^{k-1} r^{2}}{D t}\right) \tag{95}
\end{align*}
$$

where in the last line we have used (92).
Let us choose $r=\sqrt{D t}$. Then we obtain from (93), (94), and (95)

$$
E_{D}(t, f) \leq \frac{3}{\gamma(t)}+\sum_{k=1}^{\infty} \frac{3 A}{\gamma(t / 2)} \exp \left(-4^{k-1}\right) \leq \frac{3+3 A}{\gamma(t / 2)}
$$

whence (91) follows.
Step 4. We are left to prove (83) in the case

$$
\begin{equation*}
2<D<D_{0}:=5 \varepsilon^{-1} . \tag{96}
\end{equation*}
$$

By Theorem 8, we have for any $s>0$ and all $0<\tau<t$

$$
\begin{equation*}
\int_{M}\left(P_{t} f\right)^{2} \exp \left(\frac{\rho^{2}}{2(t+s)}\right) d \mu \leq \int_{M}\left(P_{\tau} f\right)^{2} \exp \left(\frac{\rho^{2}}{2(\tau+s)}\right) d \mu \tag{97}
\end{equation*}
$$

Given $t>0$ and D as in (96), let us choose the values of s and τ so that the left hand side of (96) be equal to $E_{D}(t, f)$ whereas the right hand side be equal to $E_{D_{0}}(\tau, f)$. In other words, s and τ must satisfy the simultaneous equations

$$
\left\{\begin{array}{l}
2(t+s)=D t \\
2(\tau+s)=D_{0} \tau
\end{array}\right.
$$

whence we obtain

$$
s=\frac{D-2}{2} t \quad \text { and } \quad \tau=\frac{D-2}{D_{0}-2} t<t .
$$

Hence, we can rewrite (97) in the form

$$
E_{D}(t, f) \leq E_{D_{0}}(\tau, f)
$$

By (91), we have

$$
E_{D_{0}}(\tau, f) \leq \frac{6 A}{\gamma\left(2^{-1} \tau\right)}
$$

whence we conclude

$$
E_{D}(t, f) \leq \frac{6 A}{\gamma\left(\frac{D-2}{D_{0}-2} 2^{-1} t\right)}
$$

thus finishing the proof of (83).
Theorem 17 If, for some $x \in M$ and all $t>0$,

$$
p_{t}(x, x) \leq \frac{1}{\gamma(t)}
$$

where γ is a regular function on $(0,+\infty)$ then, for all $D>2$ and $t>0$,

$$
\begin{equation*}
E_{D}(t, x) \leq \frac{6 A}{\gamma(c t)} \tag{98}
\end{equation*}
$$

where $c=c(D)>0$ and A is the constant from (80).
Proof. Let U be an open relatively compact neighborhood of the point x, and let φ be a cutoff function of $\{x\}$ in U. For any $s>0$ define the function φ_{s} on M by

$$
\varphi_{s}(z)=p_{s}(x, z) \varphi(z)
$$

Clearly, we have $\varphi_{s} \leq p_{s}(x, \cdot)$ whence

$$
P_{t} \varphi_{s} \leq P_{t} p_{s}(x, \cdot)=p_{t+s}(x, \cdot)
$$

and

$$
\left\|P_{t} \varphi_{s}\right\|_{2}^{2} \leq\left\|p_{t+s}(x, \cdot)\right\|_{2}^{2} \leq\left\|p_{t}(x, \cdot)\right\|_{2}^{2}=p_{2 t}(x, x) \leq \frac{1}{\gamma(2 t)}
$$

By Theorem 16, we conclude that, for any $D>2$,

$$
\begin{equation*}
\int_{M}\left(P_{t} \varphi_{s}\right)^{2} \exp \left(\frac{d^{2}(\cdot, U)}{D t}\right) d \mu \leq \frac{6 A}{\gamma(c t)} \tag{99}
\end{equation*}
$$

Fix $y \in M$ and observe that, by the definition of φ_{s},

$$
P_{t} \varphi_{s}(y)=\int_{M} p_{t}(y, z) p_{s}(x, z) \varphi(z) d \mu(z)=P_{s} \psi_{t}(x)
$$

where

$$
\psi_{t}(z):=p_{t}(y, z) \varphi(z)
$$

Since function $\psi_{t}(\cdot)$ is continuous and bounded, we conclude that

$$
P_{s} \psi_{t}(x) \rightarrow \psi_{t}(x) \text { as } s \rightarrow 0,
$$

that is,

$$
P_{t} \varphi_{s}(y) \rightarrow p_{t}(x, y) \quad \text { as } s \rightarrow 0
$$

Passing to the limit in (99) as $s \rightarrow 0$, we obtain by Fatou's lemma

$$
\int_{M} p_{t}^{2}(x, \cdot) \exp \left(\frac{d^{2}(\cdot, U)}{D t}\right) d \mu \leq \frac{6 A}{\gamma(c t)}
$$

Finally, shrinking U to the point x, we obtain (98).
Corollary 18 Let γ_{1} and γ_{2} be two regular functions on $(0,+\infty)$, and assume that, for two points $x, y \in M$ and all $t>0$

$$
p_{t}(x, x) \leq \frac{1}{\gamma_{1}(t)} \quad \text { and } \quad p_{t}(y, y) \leq \frac{1}{\gamma_{2}(t)}
$$

Then, for all $D>2$ and $t>0$,

$$
p_{t}(x, y) \leq \frac{6 A}{\sqrt{\gamma_{1}(c t) \gamma_{2}(c t)}} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right)
$$

where A is the constant from (80) and $c=c(D)>0$.
Proof. By Theorem 17, we obtain

$$
E_{D}(t, x) \leq \frac{6 A}{\gamma_{1}(c t)} \quad \text { and } \quad E_{D}(t, y) \leq \frac{6 A}{\gamma_{2}(c t)}
$$

Substituting these inequalities into the estimate (45), we finish the proof.
In particular, if

$$
p_{t}(x, x) \leq \frac{1}{\gamma(t)}
$$

for all $x \in M$ and $t>0$ then

$$
p_{t}(x, y) \leq \frac{C}{\gamma(c t)} \exp \left(-\frac{d^{2}(x, y)}{2 D t}\right)
$$

for all $x, y \in M$ and $t>0$. If the manifold M is complete and $\gamma(t)=c t^{n / 2}$ then this follows also from Theorem 6 and Corollary 10.

At the end, let us show how Theorem 17 allows to obtain a lower estimate of the heat kernel.

Theorem 19 Let M be a complete manifold. Assume that, for some point $x \in M$ and all $r>0$

$$
V(x, 2 r) \leq C V(x, r)
$$

and, for all $t>0$,

$$
\begin{equation*}
p_{t}(x, x) \leq \frac{C}{V(x, \sqrt{t})} \tag{100}
\end{equation*}
$$

Then, for all $t>0$,

$$
p_{t}(x, x) \geq \frac{c}{V(x, \sqrt{t})},
$$

where $c>0$ depends on C.
Proof. The proof goes in the same way as that of Theorem 15. In the proof of Theorem 15 we have used the relative Faber-Krahn inequality in order to obtain (78), that is,

$$
E_{D}(t, x) \leq \frac{C}{V(x, \sqrt{t})}
$$

However, in the present setting, this inequality follows directly from (100) by Theorem 17. The rest of the proof of Theorem 15 goes unchanged.

[^0]: ${ }^{1}$ The inequality (43) follows from

 $$
 \alpha X^{2}+(1-\alpha) Y^{2} \geq(\alpha X+(1-\alpha) Y)^{2}
 $$

 for $\alpha=\frac{t}{t+s}, X=\frac{a}{\alpha}$ and $Y=\frac{b}{1-\alpha}$.

