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1 Introduction: Laplace-Beltrami operator and heat

kernel

Let (M, g) be a connected Riemannian manifold. The Laplace-Beltrami operator Δ is
given in the local coordinates by

Δ =
1

√
det g

n∑

i,j=1

∂

∂xi

(√
det ggij ∂

∂xj

)

,

where n = dim M , g = (gij) and (gij) = g−1. This operator is symmetric with respect
to the Riemannian measure

dμ =
√

det gdx1...dxn,

that is, for all u, v ∈ C∞
0 (M),

∫

M

(Δu) v dμ = −
∫

M

〈∇u,∇v〉 dμ =

∫

M

uΔv dμ

Furthermore, the operator Δ with the domain C∞
0 (M) is admits the Friedrichs ex-

tension to a self-adjoint operator in L2 (M,μ) that will also be denoted by Δ. This
operator is non-positive definite since for all u ∈ C∞

0

(Δu, u)L2 =

∫

M

(Δu) u dμ = −
∫

M

|∇u|2 dμ ≤ 0.

Hence, spec Δ ⊂ (−∞, 0].
The heat semigroup of M is a family {Pt}t≥0 of self-adjoint operators defined by

Pt = exp (tΔ)

using the functional calculus of self-adjoint operators. Since the function λ 7→ exp (tλ)
is bounded for λ ∈ (−∞, 0], that is, on the spectrum of Δ, it follows that Pt is a
bounded self-adjoint operator in L2 (M,μ).

For any f ∈ L2 (M,μ), the function

u (t, x) = Ptf (x)

is a smooth function of (t, x) ∈ R+ × M , satisfies the heat equation ∂u
∂t

= Δu and the
initial condition

u (t, ∙)
L2

→ f as t → 0 + .

The heat kernel pt (x, y) is a function of t > 0 and x, y ∈ M such that

Ptf (x) =

∫

M

pt (x, y) f (y) dμ (y) ,

for all f ∈ L2 (M,μ) . It is known that pt (x, y) exists on any Riemannian manifold and
is unique. Besides, the heat kernel satisfies the following properties.

• Smoothness: pt (x, y) ∈ C∞ (R+ × M × M)
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• Positivity: pt (x, y) > 0

• Symmetry: pt (x, y) = pt (y, x);

• The semigroup identity:

pt+s (x, y) =

∫

M

pt (x, z) ps (z, y) dμ (z) . (1)

• Submarkovian property: ∫

M

pt (x, y) dμ (y) ≤ 1.

• For any y ∈ M , the function u (t, x) = pt (x, y) satisfies the heat equation and
the initial condition

u (t, x) → δy (x) as t → 0+,

that is, pt (x, y) is a fundamental solution of the heat equation. Moreover, pt (x, y)
is the smallest positive fundamental solution of the heat equation.

Recall that in Rn, Δ is the classical Laplace operator Δ =
∑n

k=1
∂2

∂x2
k
, and its heat

kernel is given by the Gauss-Weierstrass formula

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

.

Explicit formulas for the heat kernel exist also in hyperbolic spaces Hn. For example
in H3

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

, (2)

where r = d (x, y) is the geodesic distance between x, y. For arbitrary Hn the formula
looks complicated, but it implies the following estimate, for all t > 0 and x, y ∈ Hn:

pt (x, y) '
(1 + r + t)

n−3
2 (1 + r)

tn/2
exp

(

−λt −
r2

4t
−
√

λr

)

, (3)

where λ = (n−1)2

4
is the bottom of the spectrum of the Laplace operator on Hn.

2 Faber-Krahn inequality

Any open set Ω ⊂ M can be regarded as a Riemannian manifold, too. Hence, the
Laplace operator Δ initially defined on C∞

0 (Ω) admits the Friedrichs extension to a
self-adjoint operator in L2 (Ω, μ) that will be denoted by ΔΩ and that is non-positive
definite. It is called the Dirichlet Laplacian in Ω. Set

λmin (Ω) = inf spec (−ΔΩ) .
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By the variational property we have

λmin (Ω) = inf
f∈dom(ΔΩ)\{0}

(−ΔΩf, f)

‖f‖2
L2

= inf
f∈C∞

0 (Ω)\0

(−ΔΩf, f)

‖f‖2
L2

= inf
f∈C∞

0 (Ω)\0

∫
Ω
|∇f |2 dμ

‖f‖2
L2

= inf
f∈Lip0(Ω)\0

∫
Ω
|∇f |2 dμ

‖f‖2
L2

.

The quantity ∫
Ω
|∇f |2 dμ

‖f‖2
L2

is called the Rayleigh quotient of f in Ω.

Definition. We say that Ω satisfies the Faber-Krahn inequality if, for any non-empty
open set U b Ω we have

λmin (U) ≥ aμ (U)−β , (4)

for some a, β > 0.

The exponent β is usually equal to 2/n where n = dim M . The parameter a is
called the Faber-Krahn constant of Ω. It depends on the intrinsic geometry of Ω .

Let Ω = Rn. By the Faber-Krahn theorem, for any precompact open domain U ⊂
Rn, we have

λmin (U) ≥ λmin (U∗) ,

where U∗ is a ball of the same volume as U . If the radius of U∗ is r then

λmin (U∗) =
cn

r2

with some positive constant cn. Since

μ (U) = μ (U∗) = bnrn,

it follows that
λmin (U) ≥ anμ (U)−2/n , (5)

where an > 0. Hence, Rn satisfies the Faber-Krahn inequality (4) with a = an and
β = 2/n.

Using this fact, it is easy to prove, using the compactness argument that any rel-
atively compact open set Ω ⊂ M on any Riemannian manifold M also satisfies the
Faber-Krahn inequality (4) with some a = a (Ω) > 0 and β = 2/n, where n = dim M.

It is possible to prove the following two facts.

1. If M is a Cartan-Hadamard manifold (that is, a simply connected manifold of
non-positive sectional curvature) then M satisfies the Faber-Krahn inequality (4)
with some a > 0 and β = 2/n (and, hence, any open domain Ω ⊂ M also satisfies
the same inequality).
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2. If M is complete manifold of non-negative Ricci curvature then any geodesic ball
B = B (x,R) in M satisfies the Faber-Krahn inequality (5) with the Faber-Krahn
constant

a = a (B) = c
μ (B)2/n

R2
(6)

and β = 2/n where c = c (n) > 0.

In particular, if in addition
μ (B) ' Rn

(as in Rn) then it follows that a (B) may be chosen to be independent of balls so that
also the entire manifold M has also the same Faber-Krahn constant.

Another example. Let M = K × Rm where K is a compact manifold of dimension
n − m. Any ball B = B (x,R) on this manifold has the Faber-Krahn constant (6).
Since

μ (B) '

{
Rn, R < 1
Rm, R ≥ 1,

we obtain that

a (B) '

{
1, R < 1
R2m/n−2, R ≥ 1

Proposition 1 Suppose that for any domain U b Ω with smooth boundary,

area (∂U) ≥ bμ (U)γ

for some b > 0 and 0 < γ < 1. Then Ω satisfies the Faber-Krahn inequality (4) with
a = b2

4
and β = 2 (1 − γ) .

In particular, if γ = n−1
n

as in Rn then β = 2/n.
Proof. For any open domain U ⊂ M define the Cheeger constant

h (U) = inf
VbU

area (∂V )

μ (V )
,

where V is any open set with smooth boundary. Since

area (∂V ) ≥ bμ (V )γ ,

and γ ≤ 1it follows that

area (∂V )

μ (V )
≥ bμ (V )γ−1 ≥ bμ (U)γ−1 .

It follows that
h (U) ≥ bμ (U)γ−1 .

By the Cheeger inequality,

λmin (U) ≥
1

4
h (U)2

≥
b2

4
μ (U)−2(1−γ) ,

which was to be proved.
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3 Mean-value inequality

Let I be an interval in R and Ω be an open subset of M/ A C2 function u (t, x) defined
in I × Ω is called a subsolution of the heat equation if

∂tu ≤ Δu in I × Ω. (7)

Theorem 2 (Mean value inequality) Let B (x,R) be a relatively compact ball in M
that satisfies the Faber-Krahn inequality (4). Let u (t, y) be a non-negative subsolution
of the heat equation in (0, T ] × B (x,R) for some T > 0. Then we have

u2(T, x) ≤
Ca−1/β

min (T,R2)1+1/β

∫ T

0

∫

B(x,R)

u2 (t, y) dμ(y)dt, (8)

where C = C(β).

Illustration to mean-value inequality

In particular, if β = 2/n then (8) becomes

u2(T, x) ≤
Ca−n/2

min (T,R2)1+n/2

∫ T

0

∫

B(x,R)

u2 (t, y) dμ(y)dt,

Define measure ν on R× M by
dν = dμdt

and prove first two lemmas.

Lemma 3 Let Ω be an open subset of M and T > 0. Let η (t, x) be a Lipschitz function
in the cylinder

C = [0, T ] × Ω

such that supp η ⊂ [0, T ] × K for some compact set K ⊂ Ω. Let u be a subsolution
to the heat equation in C and set v = (u − θ)+ with some real θ. Then the following
inequality holds:

1

2

[∫

Ω

v2η2 (t, ∙) dμ

]T

t=0

+

∫

C
|∇ (vη)|2 dν ≤

∫

C
v2
(
|∇η|2 + η∂tη

)
dν. (9)
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In particular, if η (0, ∙) = 0 then

∫

C
|∇ (vη)|2 dν ≤

∫

C
v2
(
|∇η|2 + η∂tη

)
dν (10)

and, for any t ∈ [0, T ],

∫

Ω

v2η2 (t, ∙) dμ ≤ 2

∫

C
v2
(
|∇η|2 + η∂tη

)
dν. (11)

Proof. The estimate (10) is an obvious consequence of (9). The estimate (11)
follows from (9) if one replaces T by t.

Let us prove (9). The function v (t, ∙) is locally Lipschitz. For the weak gradient of
v we have

∇v = 1{u>θ}∇u = 1{v 6=0}∇u,

which implies
〈∇u,∇v〉 = |∇v|2 and v∇u = v∇v. (12)

Since η (t, ∙) ∈ Lip0 (Ω), we have also vη2 ∈ Lip0 (Ω) for any fixed time t and

∇
(
vη2
)

= v∇η2 + η2∇v = 2vη∇η + η2∇v,

whence
〈∇u,∇

(
vη2
)
〉 = 2vη〈∇v,∇η〉 + η2 |∇v|2 .

Multiplying the inequality (7) by vη2 and integrating over C, we obtain

∫

C
∂tu vη2dν ≤

∫ T

0

∫

Ω

(Δu) vη2dμdt

= −
∫ T

0

∫

Ω

〈∇u,∇
(
vη2
)
〉dμdt

= −
∫

C

(
2vη〈∇u,∇η〉 + η2〈∇u,∇v〉

)
dν

= −
∫

C

(
2vη〈∇v,∇η〉 + η2 |∇v|2

)
dν,

where we have used the Green formula and (12).
Since

|∇ (vη)|2 = (η∇v + v∇η)2 = η2 |∇v|2 + v2 |∇η|2 + 2vη〈∇v,∇η〉,

we have
2vη〈∇v,∇η〉 + η2 |∇v|2 = |∇ (vη)|2 − v2 |∇η|2 ,

whence it follows that
∫

C
∂tu vη2dν ≤ −

∫

C
|∇ (vη)|2 dν +

∫

C
v2 |∇η|2 dν. (13)
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For any fixed x, all functions u, v, η are Lipschitz in t ∈ [0, T ]. Therefore, using the
integration by parts formula for Lipschitz functions of t, we obtain, for any fixed x ∈ Ω,

∫ T

0

∂tu vη2dt =
1

2

∫ T

0

∂t

(
v2
)
η2dt

=
1

2

[
v2η2

]T
0
−

1

2

∫ T

0

v2∂t

(
η2
)
dt =

1

2

[
v2η2

]T
0
−
∫ T

0

v2η∂tηdt.

Integrating this identity over Ω, we obtain
∫

C
∂tu vη2dν =

1

2

[∫

Ω

v2η2dμ

]T

0

−
∫

C
v2η∂tη dν

and combining with (13)

1

2

[∫

Ω

v2η2dμ

]T

0

−
∫

C
v2η∂tη dν ≤ −

∫

C
|∇ (vη)|2 dν +

∫

C
v2 |∇η|2 dν,

which is equivalent to (9).

Lemma 4 Let B (x,R) be a relatively compact ball in M that satisfies the Faber-Krahn
inequality (4). Let u (t, y) be a subsolution of the heat equation in C = (0, T ]×B (x,R)
for some T > 0. Consider two smaller cylinders

Ck = [Tk, T ] × B(x,Rk), k = 0, 1,

where 0 < R1 < R0 ≤ R and 0 ≤ T0 < T1 < T . Choose θ1 > θ0 and set

Jk =

∫

Ck

(u − θk)
2
+ dν.

Then the following inequality holds

J1 ≤
CJ1+β

0

aδ1+β (θ1 − θ0)
2β

, (14)

where C = C (β) and δ = min
(
T1 − T0, (R0 − R1)

2) .

Cylinders C, C0 and C1
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Proof. Replacing function u by u − θ0 we can assume that θ0 = 0 and rename θ1

to θ so that θ > 0. Without loss of generality and to simplify notation we can assume
that T0 = 0. Set for any λ ∈ [0, 1]

Rλ = λR1 + (1 − λ) R0.

Consider a function
η (t, y) = ϕ (t) ψ (y) ,

where

ϕ (t) =
t

T1

∧ 1 (15)

and

ψ (y) =

(
R1/3 − d (x, y)

)
+

R1/3 − R2/3

∧ 1. (16)

Function φ (t) given by (15)

Function ψ given by (16)

Obviously,

ψ = 1 on B
(
x,R2/3

)
and supp ψ = B

(
x,R1/3

)
.

Applying the estimate (11) of Lemma 3 in the cylinder C0 = [0, T ] × B (x,R0) for
function v = u+ with t ∈ [T1, T ] and noticing that η (t, y) = 1 for t in this range and
y ∈ B

(
x,R2/3

)
, we obtain

∫

B(x,R2/3)
u2

+ (t, ∙) dμ ≤
∫

B(x,R0)

u2
+η2 (t, ∙) dμ ≤ 2

∫

C0

u2
+

(
|∇η|2 + η∂tη

)
dν ≤

20

δ
J0,

(17)
where we have also used that

|∇η|2 ≤
1

(
R1/3 − R2/3

)2 =
9

(R0 − R1)
2 ≤

9

δ

and

η∂tη ≤
1

T1

≤
1

δ
.

For any t ∈ [T1, T ], consider the set

Ut =
{
y ∈ B

(
x,R2/3

)
: u (t, y) > θ

}
. (18)
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It follows from (17) that

μ (Ut) ≤
1

θ2

∫

B(x,R2/3)
u2

+ (t, ∙) dμ ≤
20J0

θ2δ
. (19)

Set Ut defined by (18)

Consider now a different function ψ:

ψ (y) =

(
R2/3 − d (x, y)

)
+

R2/3 − R1

∧ 1, (20)

so that
ψ = 1 on B (x,R1) and supp ψ = B

(
x,R2/3

)
.

Function ψ given by (20)

9



Applying (10) for function v = (u − θ)+ with η (t, x) = ϕ (t) ψ (y) where ϕ is given
by (15) and ψ is given by (20), we obtain

∫

C0

|∇ (vη)|2 dν ≤
∫

C0

v2
(
|∇η|2 + η∂tη

)
dν ≤

10

δ

∫

C0

v2dν ≤
10

δ
J0. (21)

Fix some t ∈ [T1, T ]. The function (vη) (t, y) can take a non-zero value only if y ∈
B
(
x,R2/3

)
and u (t, y) > θ, that is, if y ∈ Ut. It follows that

∫

B(x,R0)

|∇ (vη)|2 (t, ∙) dμ ≥
∫

Ut

|∇ (vη)|2 (t, ∙) dμ

≥ λmin (Ut)

∫

Ut

(vη)2 (t, ∙) dμ

≥ aμ (Ut)
−β

∫

B(x,R0)

(vη)2 (t, ∙) dμ

≥ a

(
θ2δ

20

)β

J−β
0

∫

B(x,R1)

v2 (t, ∙) dμ

where we have used the variational property of λmin, the Faber-Krahn inequality, the
estimate (19), and that η = 1 in [T1, T ] × B (x,R1).

Integrating this inequality in t from T1 to T and using (21), we obtain

10

δ
J0 ≥

∫ T

T1

∫

B(x,R0)

|∇ (vη)|2 dν

≥ a

(
θ2δ

20

)β

J−β
0

∫ T

T1

∫

B(x,R1)

v2dμdt

= a

(
θ2δ

20

)β

J−β
0 J1.

It follows that

J1 ≤ 10
20β

aδ1+βθ2β
J1+β

0 ,

which was to be proved.
Proof of Theorem 2. Consider a sequence of cylinders

Ck = [Tk, T ] × B (x,Rk) ,

where {Tk}
∞
k=0 is a strictly increasing sequence such that T0 = 0 and Tk ≤ T/2 for all

k, and {Rk}
∞
k=0 is a strictly decreasing sequence such that R0 = R and Rk ≥ R/2 for

all k. Assume also that

(Rk − Rk+1)
2 = Tk+1 − Tk =: δk. (22)

In particular, the sequence of cylinders {Ck}
∞
k=0 is nested, C0 = C and all Ck contain

[T/2, T ] × B (x,R/2) for all k. The values of Rk and Tk will be specified below.
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Cylinders Ck

Fix some θ > 0 and set
θk =

(
1 − 2−(k+1)

)
θ

so that θ0 = θ/2 and θk ↗ θ as k → ∞. Set also

Jk =

∫

Ck

(u − θk)
2 dν.

Clearly, the sequence {Jk}
∞
k=0 is decreasing. We will find θ such that Jk → 0 as k → ∞,

which will implies that ∫ T

T/2

∫

B(x,R/2)

(u − θ)2
+ dν = 0.

In particular, it follows that u (T, x) ≤ θ and, hence, u2 (T, x) ≤ θ2. With an appro-
priate choice of θ, this will lead us to (8).

Applying Lemma 4 for two consecutive cylinders Ck ⊃ Ck+1 and using that

θk+1 − θk = 2−(k+2)θ,

we obtain

Jk+1 ≤
CJ1+β

k

aδ1+β
k (θk+1 − θk)

2β
=

C ′4kβJ1+β
k

aδ1+β
k θ2β

, (23)

where C ′ = 16βC. Assume that δk is chosen so that for any k

C ′4−kβJβ
0

aδ1+β
k θ2β

=
1

16
. (24)
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We claim that then
Jk ≤ 16−kJ0, (25)

which in particular yields Jk → 0. Indeed, for k = 0 (25) is trivial. If (25) is true for
some k then (23) and (24) imply

Jk+1 ≤
C ′4kβ

(
16−kJ0

)β

aδ1+β
k θ2β

Jk =
C ′4−kβJβ

0

aδ1+β
k θ2β

Jk ≤
1

16

(
16−kJ0

)
= 16−(k+1)J0.

Resolving (24) with respect to δk we obtain

δk =

(
16C ′4−kβJβ

0

aθ2β

) 1
1+β

= C ′′

(
Jβ

0

aθ2β

) 1
1+β

4−
kβ

1+β , (26)

where C ′′ = (16C ′)
1

1+β . Note that any choice of δk determines uniquely the sequences
{Tk} and {Rk}, and these sequences should satisfy the requirementsTk ≤ T/2 and
Rk ≥ R/2. Since by (22)

Tk =
k−1∑

i=0

δi and Rk = R −
k−1∑

i=0

√
δk,

the sequence {δk} must satisfy the inequalities

∞∑

k=0

δk ≤ T/2 and
∞∑

k=0

√
δk ≤ R/2.

Substituting δk from (26) and observing that {δk} is a decreasing geometric sequence,
we obtain that

∞∑

k=0

δk =

(
Jβ

0

aθ2β

) 1
1+β ∞∑

k=0

4−
kβ

1+β ≤ C ′′′

(
Jβ

0

aθ2β

) 1
1+β

and
∞∑

k=0

√
δk ≤ C ′′′

(
Jβ

0

aθ2β

) 1
2(1+β)

where C ′′′ depends on β. Hence, the following inequalities must be satisfied:

(
Jβ

0

aθ2β

) 1
1+β

≤ c2T and

(
Jβ

0

aθ2β

) 1
2(1+β)

≤ cR,

for some c = c (β) > 0. There conditions can be satisfied by choosing θ as follows:

θ2 ≥
a−1/βJ0

(c2T )1+1/β
and θ2 ≥

a−1/βJ0

(cR)2+2/β
.

Taking

θ2 =
a−1/βJ0

c2(1+1/β) min (T,R2)1+1/β
,
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recalling that u2 (T, x) ≤ θ2 and using that

J0 =

∫

C0

(u − θ)2
+ dν ≤

∫

C
u2

+dν,

we obtain

u2 (x, T ) ≤
a−1/β

c2(1+1/β) min (T,R2)1+1/β

∫

C
u2

+dν,

whence (8) follows.

4 On-diagonal upper bounds

In what follows we frequently consider the Faber-Krahn inequality (4) with β =
2/n (where n > 0 does not have to be the dimension of M). That is, we say that
Ω ⊂ M satisfies the Faber-Krahn inequality with constant a if, for any U b Ω,

λmin(U) ≥ aμ (U)−2/n . (27)

Theorem 5 Let a precompact ball B (x, r) satisfy the Faber-Krahn inequality (27) with
constant a. Then, for all t > 0,

pt (x, x) ≤
Ca−n/2

min (t, r2)n/2
. (28)

Proof. Since pt (x, x) is monotone decreasing in t, it suffices to prove (28) for
t ≤ r2.

The function
u (t, y) = pt (x, y)

is a positive solution of the heat equation. Applying Theorem 2 in the cylinder (t/2, t)×
B (x, r), we obtain

u2(t, x) ≤
Ca−n/2

t1+n/2

∫ t

t/2

∫

B(x,r)

u2 (s, y) dμ(y)ds.

Observe that
∫ t

t/2

∫

B(x,r)

u2 (s, y) dμ(y)ds ≤
∫ t

t/2

∫

M

p2
s (x, y) dμ(y)ds

=

∫ t

t/2

p2s (x, x) ds

≤
t

2
pt (x, x) ,

where we have used the semigroup identity and the fact that ps (x, x) is monotone
decreasing in s. It follows that

p2
t (x, x) ≤

Ca−n/2t

t1+n/2
pt (x, x)

13



which implies (28).

Example. Let M have bounded geometry, that is, there exists r > 0 such that all
balls B (x, r) of radii r are uniformly quasi-isometric to the Euclidean ball of the same
radius. Then the Faber-Krahn inequality (27) holds in any ball B (x, r) with the same
constant a > 0 that does not depend on x. Hence, (28) holds on such manifolds for all
x ∈ M and t > 0.

Theorem 6 Let M be a geodesically complete manifold. The following conditions are
equivalent:

(a) M satisfies the Faber-Krahn inequality (27) with some constant a > 0.

(b) The heat kernel on M satisfies for all x ∈ M and t > 0 the inequality

pt (x, x) ≤ Ct−n/2 (29)

with some constant C.

Proof of Theorem 6 (a) ⇒ (b). By Theorem 5, (28) holds for an arbitrary r.
Choosing r ≥

√
t, we obtain (29) for all x ∈ M and t > 0.

For the proof of the opposite implication (b) ⇒ (a) we need the following lemma.

Lemma 7 For any function f ∈ C∞
0 (M) such that ‖f‖2 = 1 and for any t > 0, the

following inequality holds

exp

(

−t

∫

M

|∇f |2 dμ

)

≤ ‖Ptf‖2. (30)

Consequently, for any open set U ⊂ M and for any t > 0,

λmin (U) ≥
1

t
log

1

sup
f∈T (U)

‖Ptf‖2

, (31)

where
T (U) = {f ∈ C∞

0 (U) : ‖f‖2 = 1} .

Proof. Let {Eλ}λ∈R be the spectral resolution of the operator L = −Δ in L2 (M,μ).
Then, for any continuous function ϕ on [0,∞), we have

ϕ (L) =

∫ ∞

0

ϕ (λ) dEλ

and, for any f ∈ L2 (M,μ),

‖ϕ (L) f‖2
2 =

∫ ∞

0

ϕ2 (λ) d‖Eλf‖
2,

where the function λ 7→ ‖Eλf‖2 is monotone increasing.
For ϕ ≡ 1 we have

‖f‖2
2 =

∫ ∞

0

d‖Eλf‖
2,
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and for ϕ (λ) = e−tλ we have

‖Ptf‖
2
2 = ‖exp (−tL) f‖2

2 =

∫ ∞

0

exp (−2tλ) d‖Eλf‖
2. (32)

For ϕ (λ) = λ1/2 and f ∈ C∞
0 (M) we have

∫

M

|∇f |2 dμ = −
∫

M

(Δf) f dμ = (Lf, f) =
∥
∥L1/2f

∥
∥2

2
=

∫ ∞

0

λd‖Eλf‖
2. (33)

If in addition ‖f‖2 = 1 then the measure d‖Eλf‖2 has the total mass 1. Applying
Jensen’s inequality, we obtain

‖Ptf‖
2
2 =

∫ ∞

0

exp (−2tλ) d‖Eλf‖
2

≥ exp

(

−
∫ ∞

0

2tλ d‖Eλf‖
2

)

= exp

(

−2t

∫

M

|∇f |2 dμ

)

,

which is equivalent to (30).
Clearly, (30) implies ∫

M

|∇f |2 dμ ≥
1

t
log

1

‖Ptf‖2

. (34)

It follows from the variational property of λmin (U) and (34) that

λmin (U) = inf
f∈T (U)

∫
|∇f |2 dμ

≥ inf
f∈T (U)

1

t
log

1

‖Ptf‖2

=
1

t
log

1

supf∈T (U) ‖Ptf‖2

,

which proves (31).
Proof of Theorem 6 (b) ⇒ (a). We have, for any f ∈ L2 (M,μ),

|Ptf(x)| =

∣
∣
∣
∣

∫

M

pt(x, y)f(y)dμ(y)

∣
∣
∣
∣

≤

(∫

M

p2
t (x, y) dμ (y)

)1/2

‖f‖2

= p2t (x, x)1/2 ‖f‖2

whence
‖Ptf(x)‖∞ ≤ Ct−n/4‖f‖2.

It follows by the duality argument that for any f ∈ L2 ∩ L1,

‖Ptf‖2 = sup
‖g‖2=1

(Ptf, g) = sup
‖g‖2=1

(f, Ptg)

≤ sup
‖g‖2=1

‖f‖1 ‖Ptg‖∞

≤ Ct−n/4 ‖f‖1 ,
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that is,
‖Ptf‖2 ≤ Ct−n/4‖f‖1. (35)

Let U be a precompact open subset of M and let f ∈ T (U), that is, f ∈ C∞
0 (U) and

‖f‖2 = 1. By the Cauchy-Schwarz inequality inequality, we have

‖f‖1 ≤
√

μ (U),

which together with (35) yields

‖Ptf‖2 ≤ Ct−n/4
√

μ (U).

By (31) we obtain, any t > 0,

λmin (U) ≥
1

t
log

1

supf∈T (U) ‖Ptf‖2

≥
1

t
log

1

Ct−n/4
√

μ (U)
.

Choose t here from the condition

Ct−n/4
√

μ (U) =
1

e
,

that is,
t = (Ce)4/n μ (U)2/n .

It follows that

λmin (U) ≥
1

t
= aμ (U)−2/n ,

where a = (Ce)−4/n, which finishes the proof.

5 A weighted L2 norm of the heat kernel

The semigroup identity yields that

∫

M

pt (x, y)2 dμ (y) =

∫

M

pt (x, y) pt (y, x) dμ (y) = p2t (x, x) ,

which in particular implies that the function pt (x, ∙) belongs to L2 (M,μ). In fact, a
more interesting fact is true.

For any D > 0, consider the following weighted L2 norm of the heat kernel:

ED(t, x) =

∫

M

p2
t (x, y) exp

(
d2 (x, y)

Dt

)

dμ (y) , (36)

where d (x, y) is the geodesic distance on M . We can consider also the case D = ∞ by
setting 1

D
= 0 so that

E∞ (t, x) = p2t (x, x) .
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Theorem 8 (a) If D ≥ 2 then ED (t, x) is non-increasing in t.
(b) Let B (x, r) ⊂ M be a relatively compact ball satisfying the Faber-Krahn inequal-

ity (27) with constant a > 0. Then, for any t > 0 and D ∈ (2, +∞],

ED (t, x) ≤
Ca−n/2

min(t, r2)n/2
, (37)

where C = C(n,D).
(c)If D > 2 then ED (t, x) < ∞.

Proof. (a) The following integrated maximum principle was proved in lectures in
2017: for any solution u (t, y) of the heat equation on I×M (where I is a time interval)
and for any locally Lipschitz function ξ (t, y) in I × M satisfying

∂tξ +
1

2
|∇ξ|2 ≤ 0,

the function ∫

M

u2 (t, y) eξ(t,y)dμ (y)

is non-increasing in t ∈ I. If D ≥ 2 then the function

ξ (t, y) =
d2 (x, y)

Dt

satisfies the inequality

∂tξ +
1

2
|∇ξ|2 ≤ ∂tξ +

D

4
|∇ξ|2 ≤ 0,

and the latter is the case because

ξt = −
d (x, y)2

Dt2
, |∇ξ|2 ≤

4d (x, y)2

D2t2
.

Hence, ED(t, x) is non-increasing in t.
(b)+ (c) Note that ED (t, x) may be equal to ∞. For example, E2 (t, x) = ∞ in Rn.

The finiteness of ED (t, x) for D > 2 follows from the estimate (37) because for any
x ∈ M there is r > 0 such that B (x, r) is relatively compact, and in any relatively
compact domain the Faber-Krahn inequality always holds with some positive constant
a.

Hence, it remains to prove (37). Since ED (t, x) is non-increasing in t and the right
hand side of (37) is constant for t > r2, it suffices to prove (37) for t ≤ r2, which will
be assumed in the sequel.

Fix a non-negative function f ∈ L2 (M) and set u = Ptf . Applying the mean value
inequality of Theorem 2, we obtain

u2(t, x) ≤ K

t∫

0

∫

B(x,r)

u2 (s, y) dμ (y) ds, (38)
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where

K =
Ca−n/2

t1+n/2
. (39)

Set
ρ (y) = d (y,B (x, r)) = (d (x, y) − r)+

and consider the function

ξ (s, y) = −
ρ2 (y)

2 (t − s)
,

defined for 0 ≤ s < t and y ∈ M . Since ξ (y, s) ≡ 0 for y ∈ B (x, r) and, hence,

eξ(y,s) = 1 for y ∈ B (x, r) ,

we can rewrite (38) as follows:

u2(t, x) ≤ K

t∫

0

∫

M

u2 (y, s) eξ(y,s)dμ (y) ds. (40)

Since

∂tξ +
1

2
|∇ξ|2 ≤ 0,

by the integrated maximum principle, the function

J (s) :=

∫

M

u2 (s, y) eξ(s,y)dμ (y)

is non-increasing in s ∈ [0, t). In particular, we have

J (s) ≤ J (0) for all s ∈ [0, t).

It follows from (40) that

u2 (t, x) ≤ K

∫ t

0

J (s) ds ≤ KtJ (0) .

Since

J (0) =

∫

M

f 2 (y) exp

(

−
ρ2 (y)

2t

)

dμ (y) ,

we obtain

u2 (t, x) ≤ Kt

∫

M

f 2 (y) exp

(

−
ρ2 (y)

2t

)

dμ (y) . (41)

Now choose function f as follows

f (y) = pt (x, y) exp

(
ρ2 (y)

2t

)

ϕ (y) ,

where ϕ is any function from C∞
0 (M) such that 0 ≤ ϕ ≤ 1. Then we have

u (t, x) =

∫

M

pt (x, y) f (y) dμ (y) =

∫

M

p2
t (x, y) exp

(
ρ2 (y)

2t

)

ϕ (y) dμ (y) .
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Applying (41) with this function f and using that ϕ2 ≤ ϕ, we obtain

u2 (t, x) ≤ Kt

∫

M

p2
t (x, y) exp

(
ρ2 (y)

t

)

ϕ2 (y) exp

(

−
ρ2 (y)

2t

)

dμ (y)

≤ Kt

∫

M

p2
t (x, y) exp

(
ρ2 (y)

2t

)

ϕ (y) dμ (y)

= Ktu (t, x) .

It follows that
u (t, x) ≤ Kt,

that is, ∫

M

p2
t (x, y) exp

(
ρ2 (y)

2t

)

ϕ (y) dμ (y) ≤ Kt.

Since ϕ is arbitrary, we obtain that

∫

M

p2
t (x, y) exp

(
ρ2 (y)

2t

)

dμ (y) ≤ Kt = C (at)−n/2 . (42)

Using the elementary inequality1

a2

t
+

b2

s
≥

(a + b)2

t + s
, (43)

which is true for real a, b and positive t, s, we obtain, for any D > 2,

ρ2 (y)

2t
+

r2

(D − 2) t
=

(ρ (y) + r)2

Dt
≥

d2 (x, y)

Dt
.

It follows that

ED (t, x) =

∫

M

p2
t (x, y) exp

(
d2 (x, y)

Dt

)

dμ (y)

≤ exp

(
r2

(D − 2) t

)∫

M

p2
t (x, y) exp

(
ρ2 (y)

2t

)

dμ (y) .

Note that we can always reduce r without changing the value of a. Since r ≥
√

t, we
can set r =

√
t and obtain

ED (t, x) ≤ exp

(
1

D − 2

)

C (at)−n/2 ,

which finishes the proof of (37).

1The inequality (43) follows from

αX2 + (1 − α) Y 2 ≥ (αX + (1 − α) Y )2

for α = t
t+s , X = a

α and Y = b
1−α .
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6 Gaussian upper estimates

Here we illustrate how one can obtain pointwise upper and lower bounds of the heat
kernel by using the weighted norm ED (t, x) .

Theorem 9 Let two balls B (x, r) and B (y, r) be precompact and satisfy the Faber-
Krahn inequality (27) with constants a (x, r) and a (y, r), respectively. Then, for all
t > 0 and D > 2,

pt(x, y) ≤
C

(a (x, r) a (y, r))n/4 min(t, r2)n/2
exp

(

−
d2 (x, y)

2Dt

)

, (44)

where C = C (n,D) .

Proof. Let us prove that always

p2t(x, y) ≤
√

ED(t, x)ED(t, y) exp

(

−
d2(x, y)

4Dt

)

. (45)

Indeed, for any points x, y, z ∈ M, let us denote α = d(y, z), β = d(x, z) and
γ = d(x, y).

Distances α, β, γ

By the triangle inequality, we have

α2 + β2 ≥
1

2
(α + β)2 ≥

1

2
γ2.

Applying the semigroup identity (1), we obtain

p2t(x, y) =

∫

M

pt(x, z)pt(y, z)dμ(z)

≤
∫

M

pt(x, z)e
β2

2Dt pt(y, z)e
α2

2Dt e−
γ2

4Dt dμ(z)

≤

(∫

M

p2
t (x, z)e

β2

Dt dμ(z)

) 1
2
(∫

M

p2
t (y, z)e

α2

Dt dμ(z)

) 1
2

e−
γ2

4Dt

=
√

ED(t, x)ED(t, y) exp

(

−
d2(x, y)

4Dt

)

,
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which proves (45).
Combining (37) and (45), we obtain

p2t (x, y) ≤ C

(
a (x, r)−n/2 a (y, r)−n/2

)1/2

min(t, r2)n/2
exp

(

−
d2(x, y)

4Dt

)

which is equivalent to (44).

Example. Let M have bounded geometry, that is, there exists r > 0 such that all balls
B (x, r) of radii r are uniformly quasi-isometric to the Euclidean ball of the same radius.
Then the Faber-Krahn inequality (27) holds in any ball B (x, r) with the constant a
that does not depend on x. Hence, we obtain from (44), for all t > 0 and x, y ∈ M ,

pt (x, y) ≤
C

min(t, r2)n/2
exp

(

−
d2(x, y)

2Dt

)

.

Corollary 10 Let M satisfy the Faber-Krahn inequality (27) with some constant a >
0. Then, for all t > 0 and x, y ∈ M and D > 2,

pt (x, y) ≤
C

tn/2
exp

(

−
d2(x, y)

2Dt

)

, (46)

where C = C (a, n,D) .

Proof. Indeed, by hypothesis (44) holds for any r > 0. Setting r =
√

t, we obtain
(46).

For example, (46) holds on Cartan-Hadamard manifolds.
It follows from Theorem 6 and Corollary 10 that the Gaussian estimate (46) holds

if and only if the on-diagonal upper bound

pt (x, y) ≤
C

tn/2

is satisfied.

7 Li-Yau upper bounds

Set
V (x, r) = μ (B (x, r)) .

Definition. We say that M satisfies the volume doubling condition (or the measure
μ is doubling) if, for all x ∈ M and r > 0,

V (x, 2r) ≤ CV (x, r) , (47)

for some constant C.
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Definition. We say that M satisfies the relative Faber-Krahn inequality (RFK) if any
ball B (x, r) on M satisfies the Faber-Krahn inequality (4) with some exponent β > 0
and with the constant

a = a (x, r) = b
V (x, r)β

r2
(48)

where b > 0; that is, for any U b B (x, r),

λmin (U) ≥
b

r2

(
V (x, r)

μ (U)

)β

. (49)

It is known that the relative Faber-Krahn inequality holds on complete manifolds
of non-negative Ricci curvature. It holds also on any manifold M = K ×Rm where K
is a compact manifold.

Theorem 11 Let M be a complete, connected, non-compact manifold and fix D > 2.
Then the following conditions are equivalent:

(a) M admits the relative Faber-Krahn inequality (49).

(b) The measure μ is doubling and the heat kernel satisfies the upper bound

pt (x, y) ≤
C

(
V
(
x,
√

t
)
V
(
y,
√

t
))1/2

exp

(

−
d (x, y)2

2Dt

)

, (50)

for all for all x, y ∈ M , t > 0, and for some positive constant C.

(c) The measure μ is doubling and the heat kernel satisfies the inequality

pt (x, x) ≤
C

V
(
x,
√

t
) , (51)

for all for all x ∈ M , t > 0, and for some constant C.

Remark. As we will see later, under any of the conditions (a)-(c) of Theorem 11 we
have also the matching lower bound

pt (x, x) ≥
c

V
(
x,
√

t
) ,

for all x ∈ M , t > 0 and for some constant c > 0.

We precede the proof by two lemmas.

Lemma 12 If a precompact ball B (x,R) satisfies the Faber-Krahn inequality (4) with
exponent β and constant a, then, for any r < R,

V (x, r) ≥ ca1/βr2/β, (52)

where c = c (β) > 0.
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Proof. Denote for simplicity V (r) = V (x, r). Using the Lipschitz cutoff function
ϕ of B (x, r/2) in B (x, r) as a test function in the variational property of the first
eigenvalue, we obtain

V (r/2) ≤
∫

B(x,r)

ϕ2dμ ≤ λmin (B (x, r))−1

∫

B(x,r)

|∇ϕ|2 dμ

≤
(
aV (r)−β

)−1 4

r2
V (r)

=
4

ar2
V (r)1+β ,

whence
V (r) ≥ c

(
ar2V (r/2)

)θ
,

where θ = 1
β+1

and c = c (β) > 0. Iterating this, we obtain

V (r) ≥ caθr2θV
(r

2

)θ

≥ c1+θaθ+θ2

r2θ
(r

2

)2θ2

V
(r

4

)θ2

≥ c1+θ+θ2

aθ+θ2+θ3

r2θ
(r

2

)2θ2 (r

4

)2θ3

V
(r

8

)θ3

...

≥ c1+θ+θ2+...aθ(1+θ+θ2+...)r2θ(1+θ+θ2+...)2−2θ2(1+θ+θ2+...)V
( r

2k

)θk

,

for any k ∈ N. Observe that

V
( r

2k

)
∼ cn

( r

2k

)n

as k → ∞

and, hence, V
(

r
2k

)θk

→ 1. Since

θ
(
1 + θ + θ2 + ...

)
=

θ

1 − θ
=

1

β
,

we obtain as k → ∞
V (r) ≥ const a1/βr2/β,

which was to be proved.

Lemma 13 If M is connected, complete, non-compact and satisfies the doubling vol-
ume property then there are positive numbers ν, ν ′, c, C such that

c

(
R

r

)ν′

≤
V (x,R)

V (x, r)
≤ C

(
R

r

)ν

(53)

for all x ∈ M and 0 < r ≤ R. Besides, for all x, y ∈ M and all 0 < r ≤ R,

V (x,R)

V (y, r)
≤ C

(
R + d (x, y)

r

)ν

. (54)
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Proof. If 2kr ≤ R < 2k+1r with a non-negative integer k then iterating the
doubling property

V (x, 2r) ≤ CV (x, r) ,

we obtain

V (x,R) ≤ V
(
x, 2k+1r

)
≤ Ck+1V (x, r) ≤ C

(
R

r

)log2 C

V (x, r) ,

so that the right inequality in (53) holds with ν = log2 C.
The left inequality in (53) is called the reverse volume doubling. To prove it, assume

first R = 2r. The connectedness of M implies that there is a point y ∈ M such that
d (x, y) = 3

2
r. Then B

(
y, 1

2
r
)
≤ B (x, 2r) \ B (x, r), which implies

V (x, 2r) ≥ V (x, r) + V (y,
1

2
r).

By (47), we have
V (x, r)

V (y, 1
2
r)

≤
V (y, 4r)

V
(
y, 1

2
r
) ≤ C3,

whence
V (x, 2r) ≥

(
1 + C−3

)
V (x, r) .

Iterating this inequality, we obtain (53) with ν ′ = log2 (1 + C−3).
Finally, (54) follows from (53) as follows:

V (x,R)

V (y, r)
≤

V (y,R + d (x, y))

V (y, r)
≤ C

(
R + d (x, y)

r

)ν

.

Proof of Theorem 11. (a) =⇒ (b) Choose n so that β = 2/n. By Theorem 9
we have, for all x, y ∈ M and r, t > 0,

pt(x, y) ≤
C

(a (x, r) a (y, r) min(t, r2) min(t, r2))n/4
exp

(

−
ρ2

2Dt

)

.

Choosing r =
√

t and substituting a from (48) we obtain

pt(x, y) ≤
C

(
V
(
x,
√

t
)2/n

V
(
y,
√

t
)
t−2
)n/4

tn/2

exp

(

−
d2 (x, y)

2Dt

)

=
C

(
V
(
x,
√

t
)
V
(
y,
√

t
))1/2

exp

(

−
d2 (x, y)

2Dt

)

.

that is (50).
It remains to prove that μ is doubling. Applying Lemma 12 with

a = b
V (x,R)β

R2
,
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we obtain

V (x, r) ≥ c
( r

R

)2/β

V (x,R) , (55)

whence the doubling property follows.
(b) =⇒ (c) Trivial: just set x = y in (50).
(c) =⇒ (a) Fix a ball B (x, r) and consider an open set U ⊂ B (x, r). We have,

for all y ∈ U ,

pU
t (y, y) ≤ pt (y, y) ≤

C

V
(
y,
√

t
) .

For any y ∈ U and t ≤ r2, we have by the volume doubling

V (x, r)

V
(
y,
√

t
) ≤

V (y, 2r)

V
(
y,
√

t
) ≤ C

(
r
√

t

)ν

,

so that, for t ≤ r2,

pU
t (y, y) ≤

C

V (x, r)

(
r
√

t

)ν

.

As in the proof of Theorem 6, it follows that, for all f ∈ L2 (U),

∥
∥PU

t f
∥
∥2

2
≤

C

V (x, r)

(
r
√

t

)ν

‖f‖2
1 .

Let f ∈ C∞
0 (U) be a function such that ‖f‖2 = 1. Since by the Cauchy-Schwarz

inequality
‖f‖2

1 ≤ μ(U),

we obtain by Lemma 7 that

λmin (U) ≥
1

2t
log

1

sup
f∈T (U)

‖PU
t f‖2

2

≥
1

2t
log C−1 V (x, r)

μ (U)

(√
t

r

)ν

.

Now choose t from the condition

C−1

(√
t

r

)ν
V (x, r)

μ (U)
= e, (56)

that is,

t =

(
Ceμ (U)

V (x, r)

)2/ν

r2.

Since we need to have t ≤ r2, we have to assume for a while that

μ (U) ≤ (Ce)−1 V (x, r) . (57)

If so then we obtain from above that

λmin (U) ≥
1

2t
=

b

r2

(
V (x, r)

μ (U)

)2/ν

. (58)
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where b > 0 is a positive constant, which was to be proved.
We are left to extend (58) to any U b B (x, r) without the restriction (57). For

that, we will use Lemma 13. Find R > r so big that

V (x,R)

V (x, r)
≥ Ce,

Due to (53), we can take R in the form R = Ar, where A is a constant, depending on
the other constants in question. Then U ⊂ B (x,R) and

μ (U) ≤ (Ce)−1 V (x,R) ,

which implies by the first part of the proof that

λ1 (U) ≥
b

R2

(
V (x,R)

μ (U)

)2/ν

≥
b

(Ar)2

(
V (x, r)

μ (U)

)2/ν

,

which was to be proved.
Using (54), we obtain

V
(
x,
√

t
)

V
(
y,
√

t
) ≤ C

(√
t + d (x, y)

√
t

)ν

= C

(

1 +
d (x, y)
√

t

)ν

.

Replacing V
(
y,
√

t
)

in (50) according to this inequality, we obtain

pt (x, y) ≤
C

V
(
x,
√

t
) exp

(

−
d2 (x, y)

2D′t

)

, (59)

where D′ > D. Since D > 2 was arbitrary, we see that D′ > 2 is also arbitrary.
The estimate (59) for manifolds of non-negative Ricci curvature was proved by P.Li

and S.-T. Yau in 1986. In fact, they also proved a matching lower bound in this case.

8 On-diagonal lower estimates of the heat kernel

Now let us discuss some on-diagonal lower bound of the heat kernel.

Theorem 14 Let M be a geodesically complete Riemannian manifold. Assume that,
for some x ∈ M and all r ≥ r0,

V (x, r) ≤ Crν , (60)

where C, ν, r0 are positive constants. Then, for all t ≥ t0,

pt(x, x) ≥
1/4

V (x,
√

ηt log t)
, (61)

where η = η (x, r0, C, ν) > 0 and t0 = max(r2
0, 3).
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Of course, (61) implies that, for large t,

pt (x, x) ≥ c (t log t)−ν/2 .

There are examples to show that in general one cannot get rid of log t here.
Proof. For any r > 0, we obtain by the semigroup identity and the Cauchy-Schwarz

inequality

p2t(x, x) =

∫

M

p2
t (x, ∙)dμ ≥

∫

B(x,r)

p2
t (x, ∙)dμ

≥
1

V (x, r)

(∫

B(x,r)

pt(x, ∙)dμ

)2

. (62)

By (60) the manifold M is stochastically complete, that is

∫

M

pt(x, ∙)dμ = 1.

Since pt (x, x) ≥ p2t (x, x), it follows from (62) that

pt(x, x) ≥
1

V (x, r)

(

1 −
∫

M\B(x,r)

pt(x, ∙)dμ

)2

. (63)

Choose r = r(t) so that ∫

M\B(x,r(t))

pt(x, ∙)dμ ≤
1

2
. (64)

Then (63) yields

pt(x, x) ≥
1/4

V (x, r(t))
.

Hence, we obtain (61) provided

r(t) =
√

ηt log t. (65)

It remains to prove the following: there exists a large enough η such that, for any
t ≥ t0, the inequality (64) holds with the function r (t) from (65).

Setting ρ = d(x, ∙) and fixing some D > 2 (for example, D = 3), we obtain by the
Cauchy-Schwarz inequality

(∫

M\B(x,r)

pt(x, ∙)dμ

)2

≤
∫

M

p2
t (x, ∙) exp

(
ρ2

Dt

)

dμ

∫

M\B(x,r)

exp

(

−
ρ2

Dt

)

dμ

= ED(t, x)

∫

M\B(x,r)

exp

(

−
ρ2

Dt

)

dμ, (66)

where ED(t, x) is defined by (36). By Theorem 8, we have, for all t ≥ t0,

ED(t, x) ≤ ED(t0, x) < ∞. (67)
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Since x is fixed, we can consider ED(t0, x) as a constant.
Let us now estimate the integral in (66) assuming that

r = r(t) ≥ r0. (68)

By splitting the complement of B(x, r) into the union of the annuli

B(x, 2k+1r) \ B(x, 2kr), k = 0, 1, 2, ...,

and using the hypothesis (60), we obtain

∫

M\B(x,r)

exp

(

−
ρ2

Dt

)

dμ ≤
∞∑

k=0

exp

(

−
4kr2

Dt

)

V (x, 2k+1r) (69)

≤ Crν

∞∑

k=0

2ν(k+1) exp

(

−
4kr2

Dt

)

. (70)

Assuming further that
r2 (t)

Dt
≥ 1, (71)

we see that the sum in (70) is majorized by a geometric series, whence

∫

M\B(x,r)

exp

(

−
ρ2

Dt

)

dμ ≤ C ′rν exp

(

−
r2

Dt

)

, (72)

where C ′ depends on C and ν.
Both conditions (68) and (71) are satisfies for r (t) =

√
ηt log t, if

t ≥ t0 = max
(
r2
0, 3
)

and η is large enough, say η > 1 and η > D. Substituting (65) into (72), we obtain

∫

M\B(x,r)

exp

(

−
ρ2

Dt

)

dμ ≤ C ′ (ηt log t)ν/2 exp

(

−
η log t

D

)

= C ′ην/2

(
log t

t
2η
νD

−1

)ν/2

. (73)

Note that the function log t
t

is decreasing for t ≥ e. Hence, assuming further that
η ≥ νD we obtain from (73) and (66) that, for t ≥ t0,

(∫

M\B(x,r)

pt(x, ∙)dμ

)2

≤ C ′ην/2

(
log t0

t
2η
νD

−1

0

)ν/2

ED(t0, x). (74)

Finally, choosing η large enough, we can make the right hand side arbitrarily small,
which finishes the proof of (64).
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Theorem 15 Let M be a complete, connected, non-compact manifold that satisfies the
relative Faber-Krahn inequality (49). Then, for all t > 0 and x ∈ M ,

pt (x, x) ≥
c

V
(
x,
√

t
) (75)

for some c = c (b, β) .

Proof. As it was proved in Theorem 11, the measure μ is doubling, which, in
particular, implies that M is stochastically complete. Following the argument in the
proof of Theorem 14, we need to find r = r (t) so that

∫

M\B(x,r)

pt(x, ∙)dμ ≤
1

2
,

which implies

pt(x, x) ≥
1/4

V (x, r(t))
. (76)

If in addition r (t) ≤ K
√

t for some constant K then (75) follows from (76) and the
doubling property of μ.

Let us use the estimate (66) from the proof of Theorem 14, that is,

(∫

M\B(x,r)

pt(x, ∙)dμ

)2

≤ ED(t, x)

∫

M\B(x,r)

exp

(

−
d2 (x, ∙)

Dt

)

dμ (77)

where D > 2 (for example, set D = 3). Next, instead of using the monotonicity of
ED(t, x) as in the proof of Theorem 14, we apply Theorem 8 which yields, for all x ∈ M
and t, R > 0, that

ED (t, x) ≤
Ca (x,R)−1/β

min(t, R2)1/β
=

C
(
bV (x,R)β

R2

)−1/β

min(t, R2)1/β
=

C ′

V (x,R) min (t/R2, 1)1/β
.

Choosing here R =
√

t, we obtain

ED(t, x) ≤
C

V (x,
√

t)
. (78)

Applying the doubling property, we obtain

∫

M\B(x,r)

exp

(

−
d2 (x, ∙)

Dt

)

dμ ≤
∞∑

k=0

exp

(

−
4kr2

Dt

)

V (x, 2k+1r)

≤
∞∑

k=0

Ck+1 exp

(

−
4kr2

Dt

)

V (x, r)

≤ C ′V (x, r) exp

(

−
r2

Dt

)

, (79)
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provided r2 ≥ Dt. It follows from (77), (78), ,(79) and (53) that

(∫

M\B(x,r)

pt(x, ∙)dμ

)2

≤ C ′′ V (x, r)

V
(
x,
√

t
) exp

(

−
r2

Dt

)

≤ C

(
r
√

t

)ν

exp

(

−
r2

Dt

)

.

Obviously, the right hand side here can be made arbitrarily small by choosing r =
√

ηt
with η large enough, which finishes the proof.

9 Upper Gaussian bounds via on-diagonal estimates

We say that a function γ : (0, +∞) → (0, +∞) is regular if it is monotone increasing
and satisfies the doubling conditions: there is A ≥ 1 such that for all t > 0,

γ(2t) ≤ Aγ(t). (80)

Theorem 16 Let M be a Riemannian manifold and S ⊂ M be a a non-empty mea-
surable subset of M . For any function f ∈ L2(M) and t > 0 and D > 0 set

ED(t, f) =

∫

M

(Ptf)2 exp

(
d2(∙, S)

Dt

)

dμ. (81)

Assume that, for some f ∈ L2 (S) and for all t > 0,

E∞ (t, f) = ‖Ptf‖
2
2 ≤

1

γ(t)
, (82)

where γ(t) is a regular function on (0, +∞). Then, for all D > 2 and t > 0,

ED(t, f) ≤
6A

γ(ct)
, (83)

where c = c (D) > 0.

In the proof we use the Davies-Gaffney inequality in the following form: for any
measurable set A ⊂ M , any function h ∈ L2(M) and for all positive ρ, τ ,

∫

Ac
ρ

(Pτh)2 dμ ≤
∫

Ac

h2dμ + exp

(

−
ρ2

2τ

)∫

A

h2dμ, (84)

where Sρ denotes the open ρ-neighborhood of S.
Proof. The proof will be split into four steps.
Step 1. Set for any r, t > 0

Jr(t) :=

∫

Sc
r

(Ptf)2 dμ.
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Let R > r > 0 and T > t > 0. Applying (84) with h = Ptf , A = Sr, τ = T − t and
ρ = R − r, we obtain

∫

Sc
R

(PT f)2 dμ ≤
∫

Sc
r

(Ptf)2 dμ + exp

(

−
(R − r)2

2 (T − t)

)∫

Sr

(Ptf)2 dμ.

By (82), we have ∫

Sr

(Ptf)2 dμ ≤
1

γ (t)
,

whence it follows that

JR(T ) ≤ Jr(t) +
1

γ(t)
exp

(

−
(R − r)2

2 (T − t)

)

. (85)

Step 2. Let us prove that

Jr(t) ≤
3A

γ(t/2)
exp

(

−ε
r2

t

)

, (86)

for some ε > 0. Let {rk}
∞
k=0 and {tk}

∞
k=0 be two strictly decreasing sequences of positive

reals such that
r0 = r, rk ↓ 0, t0 = t, tk ↓ 0

as k → ∞. By (85), we have, for any k ≥ 1,

Jrk−1
(tk−1) ≤ Jrk

(tk) +
1

γ(tk)
exp

(

−
(rk−1 − rk)

2

2(tk−1 − tk)

)

. (87)

When k → ∞ we obtain

Jrk
(tk) =

∫

Sc
rk

(Ptkf)2 dμ ≤
∫

Sc

(Ptkf)2 dμ →
∫

Sc

f 2dμ = 0, (88)

where we have used the fact that Ptf → f in L2(M) as t → 0+ and the hypothesis
that f ≡ 0 in Sc.

Adding up the inequalities (87) for all k from 1 to ∞ and using (88), we obtain

Jr(t) ≤
∞∑

k=1

1

γ(tk)
exp

(

−
(rk−1 − rk)

2

2(tk−1 − tk)

)

. (89)

Let us specify the sequences {rk} and {tk} as follows:

rk =
r

k + 1
and tk = 2−kt.

For all k ≥ 1 we have

rk−1 − rk =
r

k (k + 1)
and tk−1 − tk = 2−kt,
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whence
(rk−1 − rk)

2

2(tk−1 − tk)
=

2k

2k2(k + 1)2

r2

t
≥ ε(k + 1)

r2

t

where

ε = inf
k≥1

2k

2k2(k + 1)3
> 0. (90)

By the condition (80) we have
γ(tk−1)

γ(tk)
≤ A,

which implies
γ(t)

γ(tk)
=

γ(t0)

γ(t1)

γ(t1)

γ(t2)
. . .

γ(tk−1)

γ(tk)
≤ Ak.

Substituting into (89), we obtain

Jr(t) ≤
1

γ(t)

∞∑

k=1

Ak exp

(

−ε(k + 1)
r2

t

)

=
exp

(
−ε r2

t

)

γ(t)

∞∑

k=1

exp

(

kL − εk
r2

t

)

,

where
L := log A.

Consider the following two cases:

1. If ε r2

t
− L ≥ 1 then

Jr(t) ≤
exp

(
−ε r2

t

)

γ(t)

∞∑

k=1

exp (−k) ≤
2

γ(t)
exp

(

−ε
r2

t

)

.

2. If ε r2

t
− L < 1 then we estimate Jr(t) in a trivial way:

Jr(t) ≤
∫

M

(Ptf)2 dμ ≤
1

γ(t)
,

whence

Jr(t) ≤
1

γ(t)
exp

(

1 + L − ε
r2

t

)

=
e

γ(t)
A

γ(t0)

γ(t1)
exp

(

−ε
r2

t

)

≤
3A

γ(t/2)
exp

(

−ε
r2

t

)

.

Hence, in the both cases we obtain (86).

Step 3. Let us prove the inequality

ED(t, f) ≤
6A

γ(t/2)
(91)
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under the additional restriction that

D ≥ 5ε−1, (92)

where ε was defined by (90) in the previous step.
Set ρ(x) = d(x, S) and split the integral in the definition (81) of ED(t, f) into the

series

ED(t, f) =

(∫

{ρ≤r}
+

∞∑

k=1

∫

{2k−1r<ρ≤2kr}

)

(Ptf)2 exp

(
ρ2

Dt

)

dμ, (93)

where r is a positive number to be chosen below. The integral over the set {ρ ≤ r} is
estimated using (82):

∫

{ρ≤r}
(Ptf)2 exp

(
ρ2

Dt

)

dμ ≤ exp

(
r2

Dt

)∫

M

(Ptf)2 dμ

≤
1

γ(t)
exp

(
r2

Dt

)

. (94)

The k-th term in the sum in (93) is estimated by (86) as follows

∫

{2k−1r<ρ≤2kr}
(Ptf)2 exp

(
ρ2

Dt

)

dμ

≤ exp

(
4kr2

Dt

)∫

Sc
2k−1r

(Ptf)2 dμ

= exp

(
4kr2

Dt

)

J2k−1r(t)

≤
3A

γ(t/2)
exp

(
4kr2

Dt
− ε

4k−1r2

t

)

≤
3A

γ(t/2)
exp

(

−
4k−1r2

Dt

)

, (95)

where in the last line we have used (92).
Let us choose r =

√
Dt. Then we obtain from (93), (94), and (95)

ED(t, f) ≤
3

γ(t)
+

∞∑

k=1

3A

γ(t/2)
exp

(
−4k−1

)
≤

3 + 3A

γ(t/2)
,

whence (91) follows.

Step 4. We are left to prove (83) in the case

2 < D < D0 := 5ε−1. (96)

By Theorem 8, we have for any s > 0 and all 0 < τ < t

∫

M

(Ptf)2 exp

(
ρ2

2(t + s)

)

dμ ≤
∫

M

(Pτf)2 exp

(
ρ2

2(τ + s)

)

dμ. (97)
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Given t > 0 and D as in (96), let us choose the values of s and τ so that the left hand
side of (96) be equal to ED(t, f) whereas the right hand side be equal to ED0(τ , f). In
other words, s and τ must satisfy the simultaneous equations

{
2(t + s) = Dt,
2(τ + s) = D0τ ,

whence we obtain

s =
D − 2

2
t and τ =

D − 2

D0 − 2
t < t.

Hence, we can rewrite (97) in the form

ED(t, f) ≤ ED0(τ , f).

By (91), we have

ED0(τ , f) ≤
6A

γ(2−1τ)
,

whence we conclude

ED(t, f) ≤
6A

γ( D−2
D0−2

2−1t)
,

thus finishing the proof of (83).

Theorem 17 If, for some x ∈ M and all t > 0,

pt(x, x) ≤
1

γ(t)
,

where γ is a regular function on (0, +∞) then, for all D > 2 and t > 0,

ED(t, x) ≤
6A

γ(ct)
, (98)

where c = c(D) > 0 and A is the constant from (80).

Proof. Let U be an open relatively compact neighborhood of the point x, and let
ϕ be a cutoff function of {x} in U . For any s > 0 define the function ϕs on M by

ϕs(z) = ps(x, z)ϕ (z) .

Clearly, we have ϕs ≤ ps(x, ∙) whence

Ptϕs ≤ Ptps (x, ∙) = pt+s(x, ∙)

and

‖Ptϕs‖
2
2 ≤ ‖pt+s(x, ∙)‖2

2 ≤ ‖pt(x, ∙)‖2
2 = p2t(x, x) ≤

1

γ (2t)
.

By Theorem 16, we conclude that, for any D > 2,

∫

M

(Ptϕs)
2 exp

(
d2(∙, U)

Dt

)

dμ ≤
6A

γ(ct)
. (99)
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Fix y ∈ M and observe that, by the definition of ϕs,

Ptϕs (y) =

∫

M

pt (y, z) ps (x, z) ϕ (z) dμ (z) = Psψt (x) ,

where
ψt(z) := pt(y, z)ϕ (z)

Since function ψt (∙) is continuous and bounded, we conclude that

Psψt (x) → ψt (x) as s → 0,

that is,
Ptϕs(y) → pt(x, y) as s → 0.

Passing to the limit in (99) as s → 0, we obtain by Fatou’s lemma

∫

M

p2
t (x, ∙) exp

(
d2(∙, U)

Dt

)

dμ ≤
6A

γ(ct)
.

Finally, shrinking U to the point x, we obtain (98).

Corollary 18 Let γ1 and γ2 be two regular functions on (0, +∞), and assume that,
for two points x, y ∈ M and all t > 0

pt(x, x) ≤
1

γ1(t)
and pt(y, y) ≤

1

γ2(t)
.

Then, for all D > 2 and t > 0,

pt(x, y) ≤
6A

√
γ1(ct)γ2(ct)

exp

(

−
d2(x, y)

2Dt

)

,

where A is the constant from (80) and c = c (D) > 0.

Proof. By Theorem 17, we obtain

ED(t, x) ≤
6A

γ1(ct)
and ED(t, y) ≤

6A

γ2(ct)
.

Substituting these inequalities into the estimate (45), we finish the proof.
In particular, if

pt (x, x) ≤
1

γ (t)

for all x ∈ M and t > 0 then

pt(x, y) ≤
C

γ(ct)
exp

(

−
d2(x, y)

2Dt

)

,

for all x, y ∈ M and t > 0. If the manifold M is complete and γ (t) = ctn/2 then this
follows also from Theorem 6 and Corollary 10.

At the end, let us show how Theorem 17 allows to obtain a lower estimate of the
heat kernel.
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Theorem 19 Let M be a complete manifold. Assume that, for some point x ∈ M and
all r > 0

V (x, 2r) ≤ CV (x, r),

and, for all t > 0,

pt(x, x) ≤
C

V (x,
√

t)
. (100)

Then, for all t > 0,

pt(x, x) ≥
c

V (x,
√

t)
,

where c > 0 depends on C.

Proof. The proof goes in the same way as that of Theorem 15. In the proof of
Theorem 15 we have used the relative Faber-Krahn inequality in order to obtain (78),
that is,

ED (t, x) ≤
C

V
(
x,
√

t
) .

However, in the present setting, this inequality follows directly from (100) by Theorem
17. The rest of the proof of Theorem 15 goes unchanged.
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