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Abstract In this paper, we develop a long exact sequence for the path homology of digraphs,
providing a useful tool for computing the path homology of digraphs. One application of this
result is the proof of a conjecture proposed by S. Chowdhury, which was initially observed through
extensive computational experiments. Another interesting application demonstrates that the path
homology of n-dimensional grid-like digraphs is concentrated in dimension ≤ n− 1.
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1 Introduction

The path homology theory of digraphs is based on a series of works by A. Grigor’yan, Y. Lin,
Y. Muranov, and S.-T. Yau, providing a topological perspective for studying digraph invariants
[4, 5, 7, 8, 9], which is referred to as GLMY theory. The path complex on a digraph is a key
concept in this theory, understood as the collection of all paths on a digraph. In particular, if any
sub sequence of a path on a digraph is also a path on the digraph, the path complex can reduce
to the abstract simplicial complex. Therefore, the path homology of digraphs can be seen as a
generalization of simplicial homology. The Mayer-Vietoris sequence for simplicial complexes plays
an important role in computing homology groups. In this work, we attempt to develop a long exact
sequence to assist in the computation of the path homology of digraphs.

The Mayer-Vietoris sequence for topological spaces asserts that for any covering {U1, U2} of a
topological space X, there is a long exact sequence:

· · · → Hn(U1 ∩ U2)→ Hn(U1)⊕Hn(U2)→ Hn(X)→ Hn−1(U1 ∩ U2)→ · · ·
· · · → H0(U1)⊕H0(U2)→ H0(X)→ 0.

However, establishing a Mayer-Vietoris sequence for the path homology of digraphs presents some
inherent challenges. Let G be a digraph, and let G1 and G2 be sub-digraphs of G such that
G = G1∪G2. Then the path complex P (G) of G often contains many more paths than the union of
†Corresponding author: grigor@math.uni-bielefeld.de
12020 Mathematics Subject Classification. Primary 55N35; Secondary 05C10, 05C20.
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the path complexes P (G1)∪P (G2). In fact, there are cases where the dimension of P (G), defined as
the length of the longest path, can exceed that of P (G1) ∪ P (G2). This discrepancy highlights the
difficulties associated with applying the Mayer-Vietoris sequence to the path homology of digraphs.

In this work, we develop a long exact sequence for the path homology of digraphs, as detailed
in Theorem 3.1. This sequence can aid in computing the path homology of digraphs. Specifically,
consider digraphs G1 and G2, and let G be a digraph containing G1 and G2 with parallel directed
edges from G1 to G2. Theorem 3.2 asserts that there is a short exact sequence of path homology
given by

0→ Hp(S)→ Hp(G1)⊕Hp(G2)→ Hp(G)→ 0

for any p ≥ 2. Here, S denotes the induced sub-digraph of G1 with vertex set consisting of the
source points of the parallel edges.

One application of our main theorems is the proof of a conjecture proposed by S. Chowdhury.
In [2], S. Chowdhury observed through extensive computations that the (finite) temporal digraph
representation of a directed cyclic network (DCN) has βp = 0 for p > 1. In mathematical terms,
this conjecture can be stated as follows:

Theorem 1.1. Let G be a finite simple digraph with a vertex set V ⊆ Z × Z. The edges of G are
defined as follows:

• Horizontal edges: For any two vertices (x, y) and (x′, y) in V with x < x′, if there is no vertex
(x′′, y) in V such that x < x′′ < x′, then there is an edge (x, y)→ (x′, y).

• Vertical edges: For any vertex (x, y) in V , there is at most one edge starting from (x, y) to
some vertex (x, y′) in V .

Then we have Hp(G) = 0 for p ≥ 2.

Another interesting application of our main results demonstrates that any finite sub-digraph
of an n-dimensional grid digraph has Betti numbers βp = 0 for all p ≥ n. For example, any finite
directed grid-like network has Betti numbers βp = 0 for p ≥ 2. See Figure 1, where we report
the Betti numbers associated with the path homology of all directed digraphs in the case of 224

possibilities. The statistical result shows that the Betti numbers in dimension 2 are zero for all
cases.

β0 β1 β2 Number (224)
1 0 0 64
1 1 0 1728
1 2 0 20736
1 3 0 145152
1 4 0 3919104
1 5 0 1959552
1 6 0 653184
1 7 0 5038848
1 8 0 3779136
1 9 0 1259712

Figure 1: The left is a grid-like digraph. The directed edges can be any vertical or horizontal arrows in different
directions. The right is the number of digraphs of different cases.
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In the next section, we provide a brief introduction to the path homology of digraphs. Section
3 presents the main results, and Section 4 contains the proofs of these key theorems.

2 Preliminaries

In this section, we will review some basic concepts and results related to GLMY theory that will
be addressed in this paper. For more details, please refer to [6, 10, 11]. To enhance the readability
of this paper, some foundational knowledge of homological algebra is assumed, as outlined in [12].
From now on, K is the ground field.

Path complex and path homology. Let V be a nonempty finite set. An elementary p-path
on V is a sequence i0i1 · · · ip for i0, i1, . . . , ip ∈ V , which is always denoted as ei0i1···ip . Let Λp(V ) be
the K-linear space generated by all the elementary p-paths on V . An element in Λp(V ) is a p-path.
Then we can obtain a chain complex Λ∗(V ) with the differential ∂ : Λ∗(V ) → Λ∗−1(V ) given by
∂ei0 = 0 for any i0 ∈ V and

∂ei0i1···ip =

p∑
t=0

(−1)tei0···ît···ip , p ≥ 1,

where ît means omission of the index it.
Let V be a nonempty finite set. A path complex over V is defined as a collection P of elementary

paths on V , satisfying the condition that if i0i1 · · · ip ∈ P , then i0i1 · · · ip−1 ∈ P and i1 · · · ip ∈ P
for any p ≥ 1. Paths in P are called allowed, while those not in P are called non-allowed.

Let P be a path complex on V . The path complex P can be regarded as a graded set {Pn}n≥0,
where Pn consists of elementary paths of length n in P . Let An(P ) be the K-linear space generated
by all the elementary paths in Pn. Then A∗(P ) = {An(P )}n≥0 is a graded linear space. Note that
An(P ) is a subspace of Λn(P ). Then the differential ∂ : Λ∗(V )→ Λ∗−1(V ) restricts to a linear map

∂ : A∗(P )→ Λ∗−1(V ).

It is worth noting that ∂A∗(P ) does not have to be a subspace of A∗−1(P ). A direct example is the
path complex P = {0, 1, 01, 12, 012} over V = {0, 1, 2}. The element ∂e012 = e01−e02+e12 /∈ A1(P )

since 02 is not an elementary path in P .
Let Ωn(P ) = {x ∈ An(P ) | ∂x ∈ An−1(P )}. An element in Ωn(P ) is called a ∂-invariant

n-path. By construction, we have
∂Ωn(P ) ⊆ Ωn−1(P ).

Then Ω∗(P ) is a chain complex with the differential ∂ : Ω∗(P )→ Ω∗−1(P ).
The path homology of P is defined by

Hn(P ) = Hn(Ω∗), n ≥ 0.

Path homology of digraphs. A directed graph (digraph) G is a pair (V,E), where V is a
nonempty finite set and E ⊆ V ⊗V . An element (v, w) ∈ E is called a directed edge, we also denote
v → w. If there is no edge (v, w) in E, we denote v 6→ w.

A digraph is called simply if there are no loops or multiple edges. Let G = (V,E) be a digraph.
A digraph G′ is the sub-digraph of G if its vertex set and edge set are subsets of those of G. A
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digraph G′ = (V ′, E′) is an induced sub-digraph of G if the edge set E′ is formed by all the edges in
G whose endpoints are in V ′.

For a finite digraph G = (V,E), the path complex P (G) associated with G is constructed as
follows: The elements in Pn are elementary paths of the form i0i1 · · · in such that i0, i1, . . . , in ∈ V
and (it−1, it) ∈ E for 1 ≤ t ≤ n. These paths are called allowed paths on the digraph G. The path
homology of digraph G is defined by

Hn(G) = Hn(P (G)), n ≥ 0.

The path homology of G offers a new perspective on the topology of digraphs. Furthermore, this
theory has already achieved significant success in practical applications [1, 3].

3 Main results

In this section, we present the main theorems. Our primary contribution is the formulation of
a long exact sequence for computing the path homology of digraphs, which resembles the Mayer-
Vietoris sequence for topological spaces. This result leads to some interesting findings when applied
to grid-like digraphs.

A digraph G has homology concentrated in dimension n if Hp(G) = 0 for any p ≥ n+ 1.

Theorem 3.1. Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint digraphs, and let G be the union
of G1 and G2 with a family E of disjoint directed edges in V1 × V2 or V2 × V1. Let S and S′ be the
induced sub-digraphs of G1, where the vertex set of S consists of the source vertices of E in V1, and
the vertex set of S′ consists of the target vertices of E in V1. Then, there is a long exact sequence
of homology groups

· · · → Hp(S)⊕Hp(S
′)→ Hp(G1)⊕Hp(G2)→ Hp(G)→ Hp−1(S)⊕Hp−1(S

′)→ · · ·
· · · → H2(G)→ H1(S)⊕H1(S

′).

Moreover, if any sub-digraph of G1 has homology concentrated in dimension ≤ m − 1 for some
positive integer m, then Hp(G) ∼= Hp(G2) for p ≥ m+ 1.

...

i1
i2
...

in

j1
j2
...

jn

G1 G2

Figure 2: Illustration of the digraphs in Theorem 3.1.

Theorem 3.2. Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint digraphs, and let G be the union of
G1 and G2 with a family E of disjoint directed edges in V1 × V2. Let S be the induced sub-digraph
of G1, where the vertex set of S consists of the source vertices of E in V1. Then, there is a short
exact sequence of homology groups

0→ Hp(S)→ Hp(G1)⊕Hp(G2)→ Hp(G)→ 0
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for any p ≥ 2.

An n-dimensional grid digraph G = (V,E) is a simple digraph where the vertex set is V = Zn.
The edge set consists of directed edges of the form

(x1, x2, . . . , xn)→ (x1, . . . , xk ± 1, . . . , xn)

for each (x1, x2, . . . , xn) ∈ Zn and k = 1, . . . , n. As a corollary of Theorem 3.1, we have the following
interesting result.

Theorem 3.3. Any finite sub-digraph of an n-dimensional grid digraph has Betti numbers βp = 0

for all p ≥ n.

Proof. We will prove the result by induction. The case for n = 1 is straightforward.
Assuming the theorem holds for n ≤ k, we now consider the case for n = k + 1. Let us denote

the digraph by G. The digraph G can be viewed as a collection of layered sub-digraphs, where the
vertex sets of these sub-digraphs lie in Rk. Adjacent layers of sub-digraphs are connected by parallel
directed edges.

...
...G1 G2 Gm· · ·

Figure 3: Illustration of the collection of layered sub-digraphs in Theorem 3.3.

Since the digraph G is finite, we can partition G into m layers, as shown in Figure 3. Consider
the first-layer digraphG1 and the digraphG′1 formed by all the remaining layers, which are connected
by parallel directed edges. By the induction hypothesis, any subgraph of the digraph G1 has
homology concentrated in dimension ≤ k − 1. Applying Theorem 3.1, we obtain the isomorphism

Hp(G) ∼= Hp(G
′
1), p ≥ k + 1.

Next, we partition the digraph G′1 into the digraph G2 and the digraph G′2 formed by the remaining
layers from the third layer. Reapplying Theorem 3.1, we obtain

Hp(G
′
1)
∼= Hp(G

′
2), p ≥ k + 1.

By repeating the above process, we ultimately obtain

Hp(G) ∼= Hp(Gm), p ≥ k + 1.

By the induction hypothesis, Hp(Gm) = 0 for p ≥ k. It follows that Hp(G) = 0 for p ≥ k + 1.
Finally, by mathematical induction, the theorem is proved.

Example 3.1. Let G = (Zn, S) be a Cayley digraph, where S = {e1, e2, . . . , en} is the standard
basis of Zn. Then any finite sub-digraph of G has Betti numbers βp = 0 for p ≥ n.
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For a directed n-cube, Theorem 3.3 demonstrates that its Betti numbers βp = 0 for p ≥ n. The
following theorem extends this result by showing that βn−1 = 0 as well.

Theorem 3.4. For n ≥ 3, any directed n-cube has Betti numbers βp = 0 for p ≥ n− 1. The same
is true for any sub-digraph of a directed n-cube.

Proof. Let Cn be a directed n-cube, which is formed by connecting two (n − 1)-cubes, Cn−11 and
Cn−12 , with 2n−1 disjoint directed edges. For the case when n = 3, see Figure 4.

C2
1 C2

2

Figure 4: A directed 3-cube. The directed 3-cube can be viewed as two directed 2-cubes connected by four parallel
directed edges.

When n = 3, by Theorem 3.1, we have

0→ H2(C
3)→ H1(S)⊕H1(S

′),

where S and S′ are sub-digraphs of C2
1 as defined in Theorem 3.1. Here, the term 0 on the far left

of the above short exact sequence arises because

H2(C
2
1 )⊕H2(C

2
2 ) = 0.

If H1(S)⊕H1(S
′) = 0, then we have H2(C

3) = 0. If H1(S)⊕H1(S
′) 6= 0, we assume H1(S) 6= 0. It

follows that S′ = ∅. Moreover, the directed edges connecting C2
1 and C2

2 in C2
1 ×C2

2 . This indicates
that these 4 directed edges are oriented in the same direction.

Now, we place the directed 3-cube as a standard cube in the three-dimensional coordinate
system. Suppose H2(C

3) 6= 0. Along the yOz plane, we can divide C3 into two connecting 2-cubes.
Since H2(C

3) 6= 0, the four directed edges parallel to the x-axis are oriented in the same direction.
Similarly, the four directed edges parallel to the y-axis in C3 are oriented in the same direction, and
the four directed edges parallel to the z-axis are also oriented in the same direction. This implies
that C3 = I3, where I is a directed interval path. Note that H2(I

3) = 0. Therefore, we always have
H2(C

3) = 0.
For any proper sub-digraph G of C3, we can divide G into two digraphs G1 and G2 connected

by parallel directed edges. By Theorem 3.1, we have

0→ H2(G)→ H1(S)⊕H1(S
′),

where S and S′ are sub-digraphs of G1 as defined in Theorem 3.1. Since at least one of G1 and G2

is not a 2-cube, S and S′ cannot be 2-cubes. This implies that H1(S)⊕H1(S
′) = 0. Thus, we have

H2(G) = 0. Hence, each sub-digraph of C3 has null homology in dimensions ≥ 2.
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For any 4-cube C4, one can regard it as two 3-cube C3
1 and C3

2 connected by parallel directed
edges. By Theorem 3.1, we have

0→ Hp(C
3
1 )⊕Hp(C

3
2 )→ Hp(C

4)→ 0

for p ≥ 3. It follows that Hp(C
4) ∼= Hp(C

3
1 )⊕Hp(C

3
2 ) = 0 for p ≥ 3. By induction, for any integer

n ≥ 3, we have Hp(C
n) = 0 for p ≥ n− 1. Similarly, by induction, any sub-digraph of Cn has null

homology in dimensions ≥ n− 1.

Example 3.2. Consider the directed 4-cube G = (V,E) with V = {1, 2, . . . , 16} and

E = {(1, 2), (2, 3), (3, 4), (4, 1), (5, 6), (6, 7), (7, 8), (8, 5),

(1, 5), (4, 8), (2, 6), (3, 7), (9, 10), (10, 11), (11, 12), (12, 9),

(13, 14), (14, 15), (15, 16), (16, 13), (9, 13), (12, 16), (10, 14), (11, 15),

(1, 9), (2, 10), (3, 11), (4, 12), (13, 5), (14, 6), (15, 7), (16, 8)}.

The Betti numbers of G are given by β0 = 1, β1 = 2, β2 = 1, and β3 = 0. This indicates that for
the case n = 4, Theorem 3.4 holds with p = 3 being the smallest integer such that βp = 0.

Lemma 3.5. Let G = (V,E) be a digraph. We denote dout(i) as the outdegree of vertex i, defined
by dout(i) = ]{j ∈ V | (i, j) ∈ E}. If dout(i) ≤ 1 for each i ∈ V , then Ωp(G) = 0 for p ≥ 2.

Proof. Suppose that x ∈ Ωp(G) is a nonzero path. Choose an elementary summand λei0i1···ip of x
for some λ ∈ K. Note that ei0i1···ip−2ip is an elementary summand of ∂ei0i1···ip . Since dout(ip−2) ≤ 1,
we have ip−2 6→ ip. It follows that ei0i1···ip−2ip is not allowed. To ensure that ∂x ∈ Ap−1(G), the
elementary summand ei0i1···ip−2ip of ∂ei0i1···ip must be annihilated by an elementary summand of
∂ei0i1···ip−2jip for some path ei0i1···ip−2jip . However, ei0i1···ip−2jip is not an allowed path on G since
dout(ip−2) ≤ 1. This leads to a contradiction. Thus, we have Ωp(G) = 0.

Proof of Theorem 1.1. Since the digraph is a finite, we can assume that it consists of a finite number
of layers along the x-axis. We will prove the result by induction. Let Gm denote the digraph with m
layers that satisfies the conditions of Theorem 1.1. Form = 1, by Lemma 3.5, we haveHp(S) = 0 for
p ≥ 2, where S is any sub-digraph of G1. Suppose the result holds for m = k−1, i.e., Hp(Gk−1) = 0

for any digraph Gk−1 and p ≥ 2.

...
...G1 · · ·

︸ ︷︷ ︸
Gk−1

Figure 5: Illustration of the digraph Gk with k layers in Theorem 1.1.

By Theorem 3.2, we have a short exact sequence

0→ Hp(S)→ Hp(G1)⊕Hp(Gk−1)→ Hp(Gk)→ 0
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for any p ≥ 2. Recall that Hp(S) = Hp(G1) = 0 for p ≥ 2. We have the isomorphism H2(Gk−1) ∼=
H2(Gk). By the induction hypothesis, we haveHp(Gk) = 0 for p ≥ 2. The desired result follows.

4 Proofs of the main theorems

The proof of Theorem 3.1. We will divide it into the following four parts.
Step (i). The construction ∆.
Let G0 be the digraph whose edge set is formed by the family E of disjoint directed edges,

and whose vertex set consists of the endpoints of E. For simplicity, we denote the condition that
the directed edges in G0 are disjoint by (]). Let G′1 = G1 ∪G0 and G′2 = G2 ∪G0. Then we have
G = G′1 ∪G′2 and G0 = G′1 ∩G′2. There is a natural inclusion of the chain complexes of ∂-invariant
paths:

θ : Ω∗(G
′
1) + Ω∗(G

′
2) ↪→ Ω∗(G). (1)

Let Γ∗ be the complement subspace of Ω∗(G
′
1)+Ω∗(G

′
2) in Ω∗(G). Note that each elements in Ω∗(G)

can be written as the sum of some elementary paths. Then, for any given x ∈ Γp, there exists an
elementary summand λei0i1···ip of x such that (it, it+1) ∈ V1×V2 or (it, it+1) ∈ V2×V1 some nonzero
λ ∈ K and 1 ≤ t ≤ p− 2. We can assume without loss of generality that (it, it+1) ∈ V1 × V2.

jt+1itit−1

it+1 it+2jt

G1. . .

. . .G2

Figure 6: The path ei0i1···ip and the paths that can annihilate ei0i1···it−1it+1···ip and ei0i1···itit+2···ip .

We write x = x1 + λei0i1···ip for some x1 ∈ Γ∗. By the condition (]), the elementary summand
ei0i1···it−1it+1···ip of ∂ei0i1···ip is not allowed on G. Since ∂x = ∂x1 + λ∂ei0i1···ip ∈ Ap−1(G) is allowed
on G, the term (−1)t+1λei0i1···it−1it+1···ip must be a summand of ∂x1. Note that ei0i1···it−1it+1···ip
can only be annihilated by a summand of ∂ei0i1···it−1jtit+1···ip for some jt. Therefore, x1 must
include the summand −λei0i1···it−1jtit+1···ip . Furthermore, the elementary path ei0i1···it−1jtit+1···ip
is allowed on G. If jt ∈ V1, then we would have (jt, it+1) ∈ V1 × V2 and (it, it+1) ∈ V1 × V2,
which contradicts the condition (]). Thus, jt must be in V2. If it−1 ∈ V2, then we would have
(it−1, it) ∈ V2×V1 and (it, it+1) ∈ V1×V2, which also contradicts the condition (]). Thus, it−1 must
be in V1. Consequently, (it−1, jt) ∈ V1 × V2. If t− 1 ≥ 1, a similar argument shows that there is a
summand λei0i1···it−2jt−1jtit+1···ip of x for some jt−1. Moreover, we have (it−2, ji−1) ∈ V1 × V2. By

induction, x must include the summand
t−1∑
s=0

(−1)s+tλei0i1···isjs+1···jtit+1···ip . Here, i0, i1, . . . , it ∈ V1
and j1, j2, . . . , jt ∈ V2, as described in Figures 6 and 7.
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jt+1itit−1

it+1 it+2 it+3

it−2

jtjt−1

jt+2
. . .

. . .. . .

. . .
i0

j1

jp−1

ip

G1

G2

Figure 7: Illustration of all paths in ∆ei0i1······ip .

Similarly, to ensure that the elementary summand (−1)t+1λei0i1···itit+2···ip in λ∂ei0i1···ip can be
annihilated, there must always be a summand −λei0i1···itjt+1it+2···ip in x1 for some jt+1. Moreover,
ei0i1···itjt+1it+2···ip is an elementary path on G. If jt+1 ∈ V2, we would have (it, it+1) ∈ V1 × V2
and (it, jt+1) ∈ V1 × V2, which contradicts the condition (]). Thus, jt+1 must be in V1. A
similar argument shows that it+2 must be in V2. By induction, x must include the summand
p−1∑
s=t+1

(−1)s+tλei0i1···itjt+1···jsis+1···ip , where it+1, . . . , ip ∈ V2 and jt+1, . . . , jp−1 ∈ V1.

For simplicity, we denote k0 = i0, k1 = i1, . . . , kt = it, kt+1 = jt+1, . . . , kp−1 = jp−1, and
l0 = j1, l1 = j2, . . . , lt−1 = jt, lt = it+1, . . . , lp−1 = ip. Note that ks ∈ V1 and ls ∈ V2 for

s = 0, 1, . . . , p − 1. Hence,
p−1∑
s=0

(−1)sek0k1···ksls···lp−1 is a summand of x up to a nonzero coefficient.

By condition (]), the construction of
p−1∑
s=0

(−1)sek0k1···ksls···lp−1 from an elementary path ei0i1···ip is

unique. For convenience, we denote ∆ei0i1···ip =
p−1∑
s=0

(−1)sek0k1···ksls···lp−1 . Moreover, we have

∆ek0k1···ksls···lp−1 = ∆ei0i1···ip , 0 ≤ 1 ≤ p− 1.

For the elementary path ei0i1······ip on G′1 or G′2, we set ∆ei0i1······ip = 0. Then the construction ∆

can extend to a linear map
∆ : Ω∗(G)→ A∗(G), x 7→ ∆x.

For any vertices k0, k1, . . . , kp−1 and l0, l1, · · · , lp−1, let us denote(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

=

p−1∑
s=0

(−1)sek0k1···ksls···lp−1 .

If all the elementary paths ek0k1···ksls···lp−1 , s = 0, 1, . . . , p− 1 are allowed on G, we have(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

= ∆ek0k1···ksls···lp−1 , 0 ≤ s ≤ p− 1.

Let ∆Λ∗(G) be the K-linear space generated by all elements of the form
(k0k1···kp−1

l0l1···lp−1

)
G
for any vertices

k0, k1, . . . , kp−1 and l0, l1, . . . , lp−1. Let Ω̃∗ = Ω∗(G) ∩ ∆Λ∗(G). In the next step, we will define a
chain complex structure on Ω̃∗. In Step (iii), we will prove that Ω̃∗ = Γ∗ as K-linear spaces.

Step (ii). The chain complex (Ω̃∗, ∂̃).
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We will construct a differential on (Ω̃∗, ∂̃). By definition, each element in Ω̃∗ is a linear combi-

nation of
(k0k1···kp−1

l0l1···lp−1

)
G

=
p−1∑
s=0

(−1)sek0k1···ksls···lp−1 . The differential on
(k0k1···kp−1

l0l1···lp−1

)
G
is defined by

∂̃

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

=

p−1∑
r=0

(−1)r+1

(
k0 · · · k̂r · · · kp−1
l0 · · · l̂r · · · lp−1

)
G

∈ ∆Λp−1(G), p ≥ 2

and ∂̃ek0l0 = 0 for the case p = 1.
Indeed, a straightforward calculation shows that

∂

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

=

p−1∑
s=0

s∑
r=0

(−1)s+re
k0k1···k̂r···ksls···lp−1

+

p−1∑
s=0

p∑
r=s+1

(−1)s+re
k0k1···ksls···l̂r−1···lp−1

=

p−1∑
r=0

p−1∑
s=r

(−1)s+re
k0k1···k̂r···ksls···lp−1

+

p∑
r=1

r−1∑
s=0

(−1)s+re
k0k1···ksls···l̂r−1···lp−1

=

p−1∑
r=0

p−1∑
s=r

(−1)s+re
k0k1···k̂r···ksls···lp−1

+

p−1∑
r=0

r∑
s=0

(−1)s+r+1e
k0k1···ksls···l̂r···lp−1

=

p−1∑
r=0

(−1)r+1

(
p−2∑
s=r

(−1)se
k0k1···k̂r···ks+1ls+1···lp−1

+
r−1∑
s=0

(−1)se
k0k1···ksls···l̂r···lp−1

)
+el0l1···lp−1 − ek0k1···kp−1

=

(
p−1∑
r=0

(−1)r+1

(
k0 · · · k̂r · · · kp−1
l0 · · · l̂r · · · lp−1

)
G

)
+ el0l1···lp−1 − ek0k1···kp−1

=∂̃

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

+ el0l1···lp−1 − ek0k1···kp−1 .

Here, î denotes omission the index i. From a further calculation, we can obtain

∂2
(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

= ∂̃2
(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

+ Φ,

where

Φ =

(
p−1∑
r=0

(−1)r+1(e
l0l1···l̂r···lp−1

− e
k0k1···k̂r···kp−1

)

)
+ ∂el0l1···lp−1 − ∂ek0k1···kp−1 = 0.

This shows that ∂̃2 = 0.
On the other hand, any element in Ω̃p can be written as x =

∑
γ
λγγ, where γ =

(k0k1···kp−1

l0l1···lp−1

)
G

for some allowed path ek0k1···ksls···lp−1 on G for s = 0, 1, . . . , p − 1. Since ∂x ∈ Ωp−1(G) and
el0l1···lp−1 , ek0k1···kp−1 ∈ Ωp−1(G), we have ∂̃x ∈ Ωp−1(G). It follows that ∂̃x ∈ Ωp−1(G)∩∆Λp−1(G) =

Ω̃p−1(G). Hence, ∂̃ is a differential on Ω̃∗(G).
Step (iii). Ω̃∗ = Γ∗.
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We define the K-linear map ϕ : Ω∗(G)→ Ω̃∗ on each elementary path as follows:

ϕ(ek0k1···ksls···lp−1) =
(−1)s

p
∆ek0k1···ksls···lp−1 .

We will show that ϕ : Ω∗(G)→ Ω̃∗ is well-defined. Recall that

Ω∗(G) = [Ω∗(G
′
1) + Ω∗(G

′
2)]⊕ Γ∗.

By construction, the map ϕ is zero on Ω∗(G
′
1) + Ω∗(G

′
2). For any summand ek0k1···ksls···lp−1 in some

element of Γp, it extends to a summand(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

=

p−1∑
s=0

(−1)sek0k1···ksls···lp−1 = ∆ek0k1···ksls···lp−1 ,

where ek0k1···ksls···lp−1 is an allowed path on G for any 0 ≤ s ≤ p− 1. Thus, we have

ϕ

((
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

)
=

p−1∑
s=0

(−1)sϕ
(
ek0k1···ksls···lp−1

)
=

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

.

Here, we use the fact that ∆ek0k1···ksls···lp−1 =
(k0k1···kp−1

l0l1···lp−1

)
G
for s = 0, 1, . . . , p− 1. Hence, ϕ = id on

Γ∗.
By definition, ϕ is a surjection. By a direct calculation, we have

∂̃ϕ

((
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

)
= ∂̃

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

=

p−1∑
r=0

(−1)r+1

(
k0 · · · k̂r · · · kp−1
l0 · · · l̂r · · · lp−1

)
G

.

On the other hand, we obtain

ϕ

(
∂

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

)
=

p−1∑
r=0

(−1)r+1

(
k0 · · · k̂r · · · kp−1
l0 · · · l̂r · · · lp−1

)
G

.

It follows that ϕ∂ = ∂̃ϕ on Γ∗. Since ϕ = 0 on Ω∗(G
′
1) + Ω∗(G

′
2), we have ϕ∂ = ∂̃ϕ on Ω̃∗. Thus,

ϕ is a morphism of chain complexes.
Recall the inclusion map θ : Ω∗(G

′
1) + Ω∗(G

′
2) ↪→ Ω∗(G) as defined in Eq. (1). It is evident

that ϕθ = 0. We will prove that kerϕ ⊆ imθ. The morphism ϕ can be expressed as

ϕ : [Ω∗(G
′
1) + Ω∗(G

′
2)]⊕ Γ∗ → Ω̃∗.

Suppose ϕ(x1 + x2) = 0 for x1 ∈ Ω∗(G
′
1) + Ω∗(G

′
2) and x2 ∈ Γ∗. We then have ϕ(x1) = 0 and

ϕ(x2) = x2. It follows that x2 = 0, which implies kerϕ = Ω∗(G
′
1) + Ω∗(G

′
2). Thus, we obtain a

short exact sequence of chain complexes:

0→ Ω∗(G
′
1) + Ω∗(G

′
2)

θ→ Ω∗(G)
ϕ→ Ω̃∗ → 0. (2)

Hence, Ω̃∗ = Γ∗ as K-linear spaces.
Step (iv). The main result.
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Let S = (VS , ES) be the induced sub-digraph of G1 with vertex set consisting of the source
vertices of directed edges in V1×V2. The edge set ES includes all directed edges between the vertices
in VS within G1. Similarly, let S′ = (VS′ , ES′) be the induced sub-digraph of G1 with vertex set
consisting of the target vertices of directed edges in V1 × V2.

If S ∩S′ 6= ∅, then there exists an i ∈ S ∩S′. By construction, there is an edge (i, j) in ES and
an edge (j, k) in ES′ . This contradicts the condition (]). Thus, we have

S ∩ S′ = ∅.

It follows that Ω∗(S ∪ S′) = Ω∗(S) ⊕ Ω∗(S
′). Let Ω∗(S)[1] be the chain complex with Ωp(S)[1] =

Ωp−1(S). Consider the K-linear map

φ : Ω̃∗ → Ω∗(S)[1]⊕ Ω∗(S
′)[1]

given by

φ

((
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

)
=

{
(−1)p−1ek0k1···kp−1 , if k0, k1, . . . , kp−1 ∈ V1 and l0, l1, . . . , lp−1 ∈ V2;
(−1)p−1el0l1···lp−1 , if k0, k1, . . . , kp−1 ∈ V2 and l0, l1, . . . , lp−1 ∈ V1.

For the case where k0, k1, . . . , kp−1 ∈ V1 and l0, l1, . . . , lp−1 ∈ V2, a straightforward calculation
yields:

φ

(
∂̃

(
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

)
= φ

(
p−1∑
r=0

(−1)r+1

(
k0 · · · k̂r · · · kp−1
l0 · · · l̂r · · · lp−1

)
G

)

=

p−1∑
r=0

(−1)r+p−1e
k0k1···k̂r···kp−1

= (−1)p−1∂ek0k1···kp−1

= ∂φ

((
k0k1 · · · kp−1
l0l1 · · · lp−1

)
G

)
.

For the case where k0, k1, . . . , kp−1 ∈ V2 and l0, l1, . . . , lp−1 ∈ V1, the calculation is similar. Thus,
φ is a morphism of chain complexes. It can be directly verified that φ is a bijection for p ≥ 1.
Consequently, we have

Hp(Ω̃∗) ∼= Hp−1(S)⊕Hp−1(S
′), p ≥ 2. (3)

Note that Ω∗(G
′
1) ∩ Ω∗(G

′
2) = Ω∗(G0). We have a short exact sequence

0→ Ω∗(G0)
ρ→ Ω∗(G

′
1)⊕ Ω∗(G

′
2)

π→ Ω∗(G
′
1) + Ω∗(G

′
2)→ 0

where ρ(σ) = (σ,−σ) and π(σ, τ) = σ+ τ . This short exact sequence induces a long exact sequence
of homology groups:

· · · → Hp(G0)
ρ∗→ Hp(G

′
1)⊕Hp(G

′
2)

π∗→ Hp(Ω∗(G
′
1) + Ω∗(G

′
2))→ Hp−1(G0)→ · · · .

Since Hp(G0) = 0 for p ≥ 1, we obtain

Hp(Ω∗(G
′
1) + Ω∗(G

′
2))
∼= Hp(G

′
1)⊕Hp(G

′
2), p ≥ 2. (4)

12



By the short exact sequence (2), we have a long exact sequence of homology groups:

· · · → Hp(Ω∗(G
′
1) + Ω∗(G

′
2))

θ∗→ Hp(G)
ϕ∗→ Hp(Ω̃∗)→ Hp−1(Ω∗(G

′
1) + Ω∗(G

′
2))→ · · · .

Combining with the isomorphisms (3) and (4), we obtain a long exact sequence of homology groups

· · · → Hp(S)⊕Hp(S
′)

δ→ Hp(G
′
1)⊕Hp(G

′
2)

θ
∗

→ Hp(G)
ϕ∗→ Hp−1(S)⊕Hp−1(S

′)
δ→ · · ·

· · · → H2(G)
ϕ∗→ H1(S)⊕H1(S

′)
δ→ H1(Ω∗(G

′
1) + Ω∗(G

′
2))

θ
∗

→ H1(G).

By [5, Theorem 5.1], we have the isomorphism

Hp(G
′
1)⊕Hp(G

′
2)
∼= Hp(G1)⊕Hp(G2).

This leads to the desired long exact sequence

· · · → Hp(S)⊕Hp(S
′)

δ→ Hp(G1)⊕Hp(G2)
θ
∗

→ Hp(G)
ϕ∗→ Hp−1(S)⊕Hp−1(S

′)
δ→ · · ·

· · · → H2(G)
ϕ∗→ H1(S)⊕H1(S

′)
δ→ H1(Ω∗(G

′
1) + Ω∗(G

′
2))

θ
∗

→ H1(G).

(5)

Now, we will describe the morphisms in the long exact sequence. For a directed edge (k, l) ∈
V1 × V2 or (l, k) ∈ V2 × V1, let Tk = l. For each elementary path ek0k1···kp with directed edges
(k0, l0), (k1, l1), . . . , (kp, lp) ∈ V1×V2 or (l0, k0), (l1, k1), . . . , (lp, kp) ∈ V2×V1, we define the K-linear
map T : Ω∗(S)→ Ω∗(G2) by Tek0k1···kp = el0l1···lp .

Consider the case where (k0, l0), (k1, l1), . . . , (kp, lp) ∈ V1×V2. The other case is similar. Given
a cycle

x =
∑

ek0k1···kp

λek0k1···kpek0k1···kp ∈ Ωp(S),

we have
φ−1(x) =

∑
ek0k1···kp

λek0k1···kp∆ek0k1···Tkp = ∆z,

where z =
∑

ek0k1···kp
λek0k1···kpek0k1···Tkp . Note that the preimage of ϕ at ∆z in Ω∗(G) is ∆z. The

map δ is defined by δ[x] = [∂∆z]. By definition, we have

∂∆z = ∂̃∆z + Tx− x ∈ Ω∗(G
′
1) + Ω∗(G

′
2),

and Tx− x ∈ Ω∗(G
′
1) + Ω∗(G

′
2). Thus, we obtain ∂̃∆z = 0 in Ω∗(G

′
1) + Ω∗(G

′
2). It follows that

δ[x] = [∂∆z] = [∂̃∆z + Tx− x] = [Tx− x].

Hence, δ is given by δ([x] + [x′]) = [Tx′ − x] + [Tx − x′] ∈ Hp(G
′
1 + G′2) for cycles x ∈ Ωp(S) and

x′ ∈ Ωp(S
′). Finally, θ∗([

∑
ek0k1···kp ]) = [∆

∑
ek0k1···kpTkp ] for

∑
ek0k1···kp ∈ S1 or

∑
ek0k1···kp ∈ S2,

and ϕ∗ = H(φ ◦ ϕ).
Moreover, if each sub-digraph of G1 has null homology for p ≥ k, we obtain a short exact

sequence
0→ Hp(G2)→ Hp(G)→ 0, p ≥ k + 1.

This completes the proof.
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The proof of Theorem 3.2. Applying to Eq. (5) in the proof of Theorem 3.1, we have a long exact
sequence

· · · → Hp(S)
δ→ Hp(G1)⊕Hp(G2)

θ
∗

→ Hp(G)
ϕ∗→ Hp−1(S)

δ→ · · ·

· · · → H2(G)
ϕ∗→ H1(S)

δ→ H1(Ω∗(G
′
1) + Ω∗(G

′
2))

θ
∗

→ H1(G).

We follow the notation from the proof of Theorem 3.1. For p ≥ 2, recall that the map δ : Hp(S)→
Hp(G1) ⊕ Hp(G2) is given by δ([x]) = [Tx] − [x]. Since x ∈ Ωp(G1) and Tx ∈ Ωp(G2), we have
that δ([x]) = 0 implies [x] = 0. Therefore, δ is injective. For the case when p = 1, the map
δ : H1(S)→ H1(Ω∗(G

′
1) + Ω∗(G

′
2)) is also injective by a similar verification. Thus, we have a short

exact sequence
0→ Hp(S)→ Hp(G1)⊕Hp(G2)→ Hp(G)→ 0

for any p ≥ 2.
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