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On the dichotomy in the heat kernel two sided estimates

Alexander Grigor’yan and Takashi Kumagai

Abstract. We study the off-diagonal estimates for transition densities of dif-

fusions and jump processes in a setting when they depend essentially only on

the time and distance. We state and prove the dichotomy for the tail of the

transition density.

1. Preliminaries

Let (M,d) be a locally compact separable metric space and µ be a Radon
measure on M with full support.

Definition 1.1. A family {pt}t>0 of measurable functions pt(x, y) on M ×M
is called a heat kernel if the following conditions are satisfied, for µ-almost all
x, y ∈M and all s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.
(ii) The total mass inequality

(1.1)

∫

M

pt(x, y)dµ(y) ≤ 1.

(iii) Symmetry: pt(x, y) = pt(y, x).
(iv) Semigroup property:

(1.2) ps+t(x, y) =

∫

M

ps(x, z)pt(z, y)dµ(z).

(v) Approximation of identity: for any f ∈ L2 := L2 (M,µ),

(1.3)

∫

M

pt(x, y)f(y)dµ(y)
L2

−→ f(x) as t→ 0 + .

Any heat kernel gives rise to the heat semigroup {Pt}t>0 where Pt is the oper-
ator on functions defined by

(1.4) Ptu(x) =

∫

M

pt(x, y)u(y)dµ(y).
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The conditions (i) − (iii) of Definition 1.1 imply that Pt is a bounded self-adjoint
operator in L2 and, moreover, is a contraction (see, for example, [10, Page 28]).
The semigroup identity (1.2) implies that PtPs = Pt+s, that is, the family {Pt}t>0

is a semigroup. It follows from (1.3) that

s- lim
t→0

Pt = I,

where I is the identity operator in L2 and s-lim stands for strong limit. Hence,
{Pt}t>0 is a strongly continuous, self-adjoint, contraction semigroup in L2.

Given the semigroup {Pt}t>0, define the infinitesimal generator L of the semi-
group by

(1.5) Lf := lim
t→0

f − Ptf
t

,

where the limit is understood in the L2-norm. The domain dom(L) of the generator
L is the space of functions f ∈ L2 for which the limit in (1.5) exists. By the Hille–
Yosida theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive
definite operator, which immediately follows from the fact that the semigroup {Pt}
is self-adjoint and contractive. Moreover, we have

(1.6) Pt = exp (−tL) ,

where the right hand side is understood in the sense of spectral theory.
The notion of the heat kernel is closely linked to Markov processes. Let(

{Xt}t≥0 , {Px}x∈M

)
be a reversible Hunt process on M , and assume that it has

the transition density pt (x, y), that is, a function such that, for all x ∈ M , t > 0,
and all Borel sets A ⊂M ,

Px (Xt ∈ A) =

∫

M

pt (x, y) dµ (y) .

Then pt (x, y) is a heat kernel in the sense of Definition 1.1.
Given a heat kernel pt (x, y) on (M,d, µ), let us ask whether it satisfies a two-

sided estimate of the following type:

(1.7)
c1

tα/β
Φ

(

C1
d (x, y)

t1/β

)

≤ pt (x, y) ≤
C2

tα/β
Φ

(

c2
d (x, y)

t1/β

)

,

where α, β, c1, c2, C1, C2 are positive constants, Φ is a non-negative monotone de-
creasing function on [0,∞), and (1.7) is supposed to hold for all t > 0 and µ-almost
all x, y ∈ M . There are two important classes of heat kernels that actually satisfy
(1.7). The first class contains the heat kernels of diffusions on various fractals,
where the function Φ is of the form

(1.8) Φ(s) = exp(−s
β
β−1 ),

(see [1] and the references therein). The classical Gauss-Weierstrass heat kernel on
Rn, given by

pt (x, y) =
1

(4πt)
n/2

exp

(

−
|x− y|2

4t

)

,

is included in this class with α = n and β = 2. For this heat kernel, the generator
L coincides with the Friedrichs extension in L2 (Rn) of −∆, where ∆ is the classical
Laplace operator in Rn.
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The second class contains the heat kernels of stable-like processes, where the
function Φ is of the form

(1.9) Φ(s) = (1 + s)−(α+β),

(see [9] and the references therein). For example, for any β ∈ (0, 2), the heat kernel
of the β-stable processes in Rn is included in this class with α = n (recall that the

generator of the β-stable process is given by L = (−∆)
β/2

). In particular, the heat
kernel of the 1-stable process coincides with the Poisson kernel:

(1.10) pt(x, y) =
cn

tn

(

1 +
|x− y|2

t2

)−n+1
2

,

where cn = Γ
(
n+1

2

)
/π(n+1)/2, which clearly satisfies (1.7) with function (1.9).

If a heat kernel is stochastically complete and satisfies (1.7) with a function
Φ (s) that decays fast enough as s → ∞ then the parameters α and β in (1.7)
are the invariants of the metric measure space (M,d, µ) and do not depend on a
particular choice of the heat kernel (cf. [14, Corollary 4.7]). The nature of the
parameters α and β is of great interest. The parameter α turns out to be the
Hausdorff dimension of M . The parameter β is called the walk dimension of the
heat kernel pt. This terminology comes from the following observation: if the heat
kernel pt is the transition density of a Markov process Xt on M , then, under mild
assumptions about Φ, (1.7) implies that the average time t needed for the process
Xt to move away to a distance r from the origin is of the order rβ (see [1, Lemma
3.9]).

In this note we are concerned with the following question:

What functions Φ can actually occur in the estimate (1.7)?

Somewhat unexpectedly, it turns out that the functions (1.8) and (1.9) essen-
tially exhaust all possibilities. Indeed, our main result, Theorem 4.1, says that,
under mild additional assumptions, if a heat kernel pt satisfies (1.7) then Φ is
equivalent to one of the functions (1.8) or (1.9).

Our approach to the heat kernel estimates is purely analytic and does use the
associated Hunt process. For probabilistic approaches to the heat kernel estimates
for diffusions and jump processes see [1], [3], [4], [5], [6], [7], [8], [9], [12], [15],
[16], [17] and references therein.

2. The Dirichlet form associated with a heat kernel

Let (M,d, µ) be a metric measure space with a heat kernel {pt}t>0, and let
{Pt}t>0 be the heat semigroup defined by (1.4). For any t > 0, we define a quadratic

form Et on L2 by

(2.1) Et [u] :=

(
u− Ptu

t
, u

)

,

where (·, ·) is the inner product in L2. An easy computation shows that Et can be
equivalently defined by
(2.2)

Et [u] =
1

2t

∫

M

∫

M

|u(x)− u(y)|2 pt(x, y)dµ(y)dµ(x)+
1

t

∫

M

(1− Pt1(x))u2(x)dµ(x).
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In terms of the spectral resolution {Eλ} of the generator L, the form Et can be
expressed as follows

Et [u] =

∫ ∞

0

1− e−tλ

t
d‖Eλu‖

2
2,

which implies that Et [u] is decreasing in t (indeed, this is an elementary exercise

to show that the function t 7→ 1−e−tλ

t
is decreasing).

Let us define a quadratic form E by

(2.3) E [u] := lim
t→0+

Et [u] =

∫ ∞

0

λd‖Eλu‖
2
2

(where the limit may be +∞ since E [u] ≥ Et [u]) and its domain D (E) by

D(E) : = {u ∈ L2 : E [u] <∞}.

It is clear from (2.2) and (2.3) that Et and E are non-negative definite. It is easy to
see from (2.3) that D(E) = dom(L1/2). In particular, the domain D(E) is dense in
L2. Note that D (E) contains dom(L). Indeed, if u ∈ dom(L) then using (1.5) and
(2.1), we obtain

(2.4) E [u] = lim
t→0
Et [u] = (Lu, u) <∞.

The quadratic form E [u] extends to a bilinear form E (u, v) by the polarization
identity

E (u, v) =
1

4
(E [u+ v]− E [u− v]) .

It follows from (2.4) that E(u, v) = (Lu, v) for all u, v ∈ dom(L).
The space D (E) is naturally endowed with the inner product

(2.5) E1 (u, v) := (u, v) + E (u, v) .

It is possible to show that the form E is closed, that is, the space D(E) is Hilbert
with the E1 inner product.

It is easy to see from (1.4) and the definition of a heat kernel that the semigroup
{Pt} is Markovian, that is 0 ≤ u ≤ 1 implies 0 ≤ Ptu ≤ 1. This implies that the
form E satisfies the Markov property, that is u ∈ D (E) implies v := min(u+, 1) ∈
D (E) and E [v] ≤ E [u]. Hence, E is a Dirichlet form (cf. [10]).

We say that E is local if E(u, v) = 0 whenever u, v are functions from D (E)
such that the supports suppu and suppv are disjoint compact sets. The form E (or
the heat kernel pt) is called stochastically complete if Pt1 = 1 for all t > 0, that is,
the equality holds in (1.1).

The Dirichlet form E is said to be regular if there exists a subspace C ⊂ D(E)∩
C0(M) such that C is dense in D(E) with E1-norm and dense in C0(M) with uniform
norm. (Here C0(M) is the space of continuous compactly supported functions on
M .) When E is regular, there is a corresponding Markov process Xt which is,
furthermore, a Hunt process.

3. Two lemmas

Fix two positive parameters α and β and a monotone decreasing function Φ :
[0,+∞)→ [0,+∞) such that Φ (s) > 0 for some s > 0.
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Lemma 3.1. Assume that {pt} is a heat kernel on (M,d, µ) such that, for all
t > 0 and almost all x, y ∈M ,

(3.1) pt (x, y) ≤
C

tα/β
Φ

(
d (x, y)

t1/β

)

,

for some C > 0. Then either the associated Dirichlet form E is local or

(3.2) Φ (s) ≥
c

(1 + s)
α+β

for all s > 0 and some c > 0.

Proof. Let u, v ∈ L2 (M,µ) be two non-negative functions with compact
disjoint supports A = suppu and B = suppv, and set

(3.3) r = d (A,B) > 0

(see Fig. 1).

A Br

Figure 1. Functions u and v

Consider the bilinear form Et on L2 (M,µ), which is given by (2.1). Since
(u, v) = 0, we obtain

Et (u, v) =

(
u− Ptu

t
, v

)

= −
1

t
(Ptu, v) ,

that is,

(3.4) Et (u, v) = −
1

t

∫

A

∫

B

pt(x, y)u(x)v (y) dµ(y)dµ(x).

If x ∈ A and y ∈ B then d (x, y) ≥ r. Therefore, for almost all x ∈ A and y ∈ B,

pt (x, y) ≤
C

tα/β
Φ
( r

t1/β

)
,

which together with (3.4) implies

(3.5) |Et (u, v)| ≤
C

t1+α/β
Φ
( r

t1/β

)
‖u‖L1‖v‖L1

(note that ‖u‖L1 ≤ µ (A)
1/2 ‖u‖L2 < ∞ and the same holds for v). If (3.2) fails

then there exists a sequence {sk} → ∞ such that

sα+β
k Φ (sk)→ 0 as k →∞.

Define a sequence {tk} from the condition

sk =
r

t
1/β
k

.
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Then

sα+β
k Φ (sk) =

rα+β

t
1+α/β
k

Φ

(
r

t
1/β
k

)

→ 0 as k →∞,

and (3.5) implies that

(3.6) Etk (u, v)→ 0 as k →∞.

Therefore, if in addition u, v ∈ D(E) then, by (2.3) and (3.6),

E (u, v) = lim
k→∞

Etk (u, v) = 0,

whence the locality of E follows.

Lemma 3.2. Assume that {pt} is a heat kernel on (M,d, µ) such that, for all
t > 0 and almost all x, y ∈M ,

(3.7) pt (x, y) ≥
c

tα/β
Φ

(
d (x, y)

t1/β

)

,

for some c > 0. Then

(3.8) Φ (s) ≤
C

(1 + s)
α+β

for all s > 0 and some C > 0.

Proof. Let u be a non-constant function from L2 (M,µ). Choose a ball Q ⊂M
where u is non-constant and let a > b be two real values such that the sets

A = {x ∈ Q : u (x) ≥ a} and B = {x ∈ Q : u (x) ≤ b}

have positive measures (see Fig. 2).

{ }

{ }

Figure 2. Sets A and B

If the diameter of Q is D then, by (3.7), we have, for almost all x, y ∈ Q,

pt (x, y) ≥
c

tα/β
Φ

(
D

t1/β

)

,
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whence by (2.2)

E [u] ≥ Et [u] ≥
1

2t

∫

A

∫

B

(u(x)− u (y))
2
pt(x, y)dµ(y)dµ(x)

≥ (a− b)2
µ (A)µ (B)

c

2t1+α/β
Φ

(
D

t1/β

)

=
c′

t1+α/β
Φ

(
D

t1/β

)

,(3.9)

where c′ > 0. If (3.8) fails then there exists a sequence {sk} → ∞ such that

sα+β
k Φ (sk)→∞ as k →∞.

Define a sequence {tk} from the condition

sk =
D

t
1/β
k

.

Then

1

t
1+α/β
k

Φ

(
D

t
1/β
k

)

= D−(α+β)sα+β
k Φ (sk)→∞ as k →∞,

and (3.9) yields E (u, u) =∞.
Hence, we have arrived at the conclusion that the domain of the form E contains

only constants. Since D (E) is dense in L2 (M,µ), it follows that L2 (M,µ) consists
only of constants. Since µ is a Radon measure on M with full support, it follows
that M consists of a single point, say, M = {x}. Then (1.1) implies that, for all
t > 0,

pt (x, x) ≤
1

µ ({x})
,

while by (3.7) pt(x, x)→∞ as t→ 0. This contradiction finishes the proof.

Definition 3.3. We say that the metric space (M,d) satisfies the chain con-
dition if there exists a (large) constant C such that, for any two points x, y ∈ M
and for any positive integer n, there exists a sequence {xi}ni=0 of points in M such
that x0 = x, xn = y, and

d(xi, xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, · · · , n− 1.

In what follows, we write

h(s) ' f(s)

if there exist constants c1, c2 > 0 such that

c1f(s) ≤ h(s) ≤ c2f(s),

for the specified range of the argument s. Similarly, we write

h(s) � f(Cs)g(cs)

if there exist constants C1, c1, C2, c2 > 0 such that

f(C1s)g(c1s) ≤ h(s) ≤ f(C2s)g(c2s),

for the specified range of s.
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Corollary 3.4. Assume that the following estimate holds for all t > 0 and
almost all x, y ∈M :

(3.10) pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

.

Then either the Dirichlet form E is local or

(3.11) Φ (s) '
1

(1 + s)
α+β

.

Proof. Indeed, if E is non-local then, by Lemmas 3.1 and 3.2, the function Φ
must satisfy (3.2) and (3.8), whence (3.11) follows.

4. Main result

Now we can state and prove our main result.

Theorem 4.1. Assume that the metric space (M,d) satisfies the chain con-
dition and all metric balls are relatively compact1. Let pt (x, y) be a heat kernel
in a metric measure space (M,d, µ). Assume that the heat kernel is stochastically
complete, the associated Dirichlet form E is regular, and (3.10) holds with some
α, β > 0 and Φ. Then β ≤ α+ 1,

(4.1) µ (B (x, r)) ' rα,

and the following dichotomy holds:

• either the Dirichlet form E is local, β ≥ 2, and

Φ (s) � C exp
(
−cs

β
β−1

)
.

• or the Dirichlet form E is non-local and

Φ (s) ' (1 + s)
−(α+β)

.

The main new point of this theorem is the dichotomy of the function Φ. The
other claims such as the estimate (4.1) and the inequalities for α and β follow from
the results of [14] are included here for the sake of completeness of the statement.

Proof. By Lemma 3.2, we have the upper bound

(4.2) Φ (s) ≤
C

(1 + s)
α+β

,

which, in particular, implies

(4.3)

∫ ∞

0

sα−1Φ (s) ds <∞.

By [14, Theorem 3.2] (see also [11]), the estimate (3.10) with a function Φ satis-
fying (4.3) and the stochastic completeness of the heat kernel imply (4.1). By [14,
Theorem 4.8(ii)], (see also [11]), (3.10) with (4.3) and the chain condition imply
that β ≤ α+ 1. If the form E is non-local, then, by Corollary 3.4, Φ satisfies (3.11),
which finishes the proof in this case.

1Note that the relative compactness of balls does not follows from the fact that (M,d) is

locally compact; for example, take M = (0, 1).
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Assume now that the form E is local. As it follows from the proof of [14,
Theorem 3.2], (3.10) and (4.3) imply that, for any ε > 0 there is δ > 0 such that,
for all r > 0 and almost all x ∈M ,

(4.4)

∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε for all t ≤ δrβ .

Alternatively, one can easily obtain (4.4) directly from the upper bounds in (3.10)
and (4.1). Now we use a result of [13, Theorem 4.3], which on top of the locality
of the Dirichlet form and (4.4), requires the regularity of the Dirichlet form, the
stochastic completeness, and the relative compactness of the metric balls – all that
we have by hypotheses. By [13, Theorem 4.3], we obtain that, for all positive r, t, λ
and almost all x ∈M ,

(4.5)

∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(
λt− cλ1/βr

)
,

with some positive constants C, c.
If β < 1 then letting in (4.5) λ → ∞, we obtain that the right hand side in

(4.5) goes to 0. It follows that, for almost all x ∈M ,
∫

M\{x}
pt (x, y) dµ (y) = 0.

The stochastic completeness implies that, for some x ∈M , µ ({x}) > 0 and

pt (x, x)µ ({x}) = 1,

which however contradicts (3.10) (cf. the proof of Lemma 3.2). Hence, we conclude
that β ≥ 1.

Setting in (4.5)

λ =






(cr
2t

) β
β−1

, if β > 1,

t−1, if β = 1

we obtain that, for all positive r, t and almost all x ∈M ,

(4.6)

∫

B(x,r)c
pt (x, y) dµ (y) ≤





C exp

(

−c
(
rβ

t

) 1
β−1

)

, if β > 1

C exp
(
−c r

t

)
, if β = 1

(where the constants constants c, C may be different from those of (4.5)).
By (1.2), we have, for all t > 0, almost all x, y ∈M , and r := 1

2d (x, y),

pt (x, y) =

∫

M

p t
2

(x, z) p t
2

(z, y) dµ(z)

≤

(∫

B(x,r)c
+

∫

B(y,r)c

)

p t
2

(x, z) p t
2

(z, y) dµ(z)

≤ essupz∈Mp t2 (z, y)

∫

B(x,r)c
p t

2
(x, z) dµ(z)

+essupz∈Mp t2 (x, z)

∫

B(y,r)c
p t

2
(y, z) dµ(z).
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Since by (3.10) essuppt ≤ Ct−α/β , combining this with (4.6) we obtain, for almost
all x, y ∈M ,

(4.7) pt (x, y) ≤






C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

, if β > 1

C

tα
exp

(

−c
d (x, y)

t

)

, if β = 1

Now we use [14, Theorem 4.8(i)] that says the following: if the heat kernel satisfies
for all t > 0 and almost all x, y ∈M the estimates

(4.8)
1

tα/β
Φ1

(
d(x, y)

t1/β

)

≤ pt(x, y) ≤
1

tα/β
Φ2

(
d(x, y)

t1/β

)

,

where α, β are positive constants, and Φ1 and Φ2 are non-negative monotone de-
creasing functions on [0,+∞), such that Φ1 (1) > 0 and Φ2 (s) = o

(
s−N

)
as s→∞

for any N > 0, then β ≥ 2. Clearly, in our setting the lower bound in (4.8) follows
from (3.10) with Φ1 (s) = CΦ (cs) and for the upper bound we use the function

Φ2 (s) =

{
C exp

(
−cs

β
β−1

)
, if β > 1,

C exp (−cs) , if β = 1,

that comes from (4.7). Since Φ1 and Φ2 satisfy the cited above conditions, we
conclude that β ≥ 2.

On the other hand, when β ≥ 2 (in fact, β > 1 is enough), the standard chain
argument (see [14, Corollary 3.5]) shows that the lower bound in (3.10) implies the
lower bounds

(4.9) pt (x, y) ≥
C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

.

Combining (4.7) and (4.9) with (3.10), we obtain

Φ (s) � C exp
(
−cs

β
β−1

)
,

which finishes the proof.
If the heat kernel bounds (3.10) holds only for t ∈ (0, T ) for some T > 0

then the statement of Theorem 4.1 remains true with obvious modification of the
conclusions. On the contrary, we do not know if the localization is possible for
large t, that is, when (3.10) holds for all t > T . For example, this case occurs for
a continuous time simple random walk on Zd, which satisfies (3.10) with α = d,
β = 2, and

Φ(s) � C exp(−cs2) for t ≥ max (d(x, y), 1) ,

but (3.10) does not hold for t� 1.
In the setting of Theorem 4.1, the assumption of the locality of the form E

leads to the following relations between α and β:

(4.10) 2 ≤ β ≤ α+ 1.

These relations were proved in [14] assuming in addition to (3.10) that function
Φ (s) tends sufficiently fast to 0 as s→∞. Here we do not need the latter hypothesis
at expense of using the locality of E .
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By [2], any couple of α, β satisfying (4.10), can be realized for the heat kernel
estimates (3.10) with a local form. In the case of a non-local form, we have instead
the range

0 < β ≤ α+ 1.

Any couple in the range 0 < β < α + 1 can be realized for the estimate (3.10).
Indeed, if L is the generator of a diffusion with parameters α and β from the
range (4.10) then Lδ, δ ∈ (0, 1), generated a jump process with the walk dimension
β′ = δβ and the same α, so that β′ can take any value from (0, α+ 1). We do not
know whether β = α+ 1 can actually occur for non-local processes.
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Ecole d’été de Probabilités de Saint-Flour XXV - 1995”, Lecture Notes Math. 1690, Springer,

1998. 1-121.

[2] Barlow M.T., Which values of the volume growth and escape time exponent are possible
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