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DIMENSION OF SPACES OF HARMONIC FUNCTIONS

A. A. Grigor'yan

Suppose M is a smooth connected non-compact Riemannian manifold. Let B(M) be the space
of bounded harmonic functions on M and DB(M) the space of bounded harmonic functions whose
Dirichlet integral is finite. In this article we study dimension of spaces B(M) and DB(M).
Since constant functions belong to both of these spaces, they are at least one-dimensicnal.
If B(M) is one-dimensional then the two-sided Liouville theorem holds, i.e., every bounded
harmonic function on M is constant. If DB(M) is one-dimensional then the following so-
called D-Livuville theorem holds: every harmonic function on M with a finite Dirichlet
integral is constant [1]. If these Liouville theorems are not satisfied it is then natural
to ask the question about dimension of spaces B(M) and DB(M).

Dimension of the space B(M) has been studied in numerous articles for various classes
of manifolds. For example, Anderson [2] and Sullivan [3] proved that if M is a Cartan—
Hadamard manifold then dimB(M) = =. On the other hand, if M is a complete manifold with
non-negative Ricci curvature outside a compact set then dimB(M) < = (see [4, 5]). A some-
what more general situation is discussed in [6].

In contrast to the mentioned articles (and many others), we do not restrict the mani-
fold M a priori in any way. We define massive and D-massive subsets of M and prove that
B(M) (respectively, dimDB(M)) is equal to the maximal number of pairwise non-intersecting
massive (respectively, D-massive) subsets of M.

To effectively use the stated theorem we need criteria of massivity and D-massivity
of sets. We proved in [1] a criterion of D-massivity in terms of capacity (there we also
proved a particular case of our main theorem, namely we cited conditions for which dimB =
1, dimDB = 1). In particular, it implies that the dimension of the space DB(M) is an in-
variant under quasi-isometric mappings.

At present there is no effective criterion of massivity.

We notg that Lyons [7]) recently proved that dimB(M) is not in general an invariant
under quasi-isometries.

We noWstate the exact formulations. A harmonic function on M is called a smooth solu-
tion of an equation Au = 0, where 4 is the Laplace oeprator associated with the Riemannian
metric on the manifold M. If manifold M has a boundary then in the definition of a harmonic
function we also require that Neuman's condition is satisfied on the boundary 3aM, i.e.,
3u/3w|zy = 0, where v is the normal to 3M.
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A continuous function u defined on some open set f © M is called subharmonic (super-
harmonic) if, for every domain G €0 and a harmonic function, v & C (8), u[gg = v|3g implies

u s v in G (respectively, u 2 v).

Definition. An open proper subset € M is called massive if there is a subharmonic
function u € C () such that u|gg =0, 0 s us 1, uE0. Such function u is called an inner
potential of the set 2. If the inner potential u € W, joc' (@) and

D(u)= Sﬂ|7u|3<'x.

then Q@ is called D-massive.

Clearly, by applying the principle of maximum for subharmonic functions, we see that
a massive set is not precompact.

We will need the following useful property of massive sets.
LEMMA 1. Suppose Q, < Q, are open proper subsets of M. Then
a) if 9, is massive (D-massive) then 1, is also massive (respectively, D-massive);

b) if 0, is massive (D-massive) and Q,\Q, compact then @, is also massive (respective-
ly, D-massive).

Proof. First of all, we note that if u is inner potential of an open set Q then by
extending u outside Q with zero we obtain a subharmonic function on the entire manifold
M, which will also be called inner potential of Q and also denoted by u.

a) If u is an inner potential then u is also an inner potential of Q,.

b) Suppose u is an inner potential of Q, such that supu = 1. The strict maximum prin-
ciple then implies that

m= supfu<i.
B.\nju

Then a function (u — m)4 is an inner potential of Q,. Clearly, if D(u) < =, then D ((u -
m}+) < =,

We now prove our main result.

THEOREM. Let m 2 2 be a natural number. The following statements are equivalent:

1) dimB(M) 2 m (dimDB(M) 2 m);

2) there exist m pairwise non-intersection massive (respectively, D-massive) subsets
of M.

COROLLARY 1. A manifold M satisfies the two-sided Liouville theorem (respectively,
the D-Liouville theorem) if and only if every two massive (respectively, D-massive) subsets
have a non-empty intersection.

This assertion is obtained from theorem 1 by letting m = 2. We proved it using a dif-
ferent method in [1].

COROLLARY 2. If manifolds M, and M, are such that if the exteriors of some compactums
K, in M, and K, in M, are isometric then dimDB(M;) = dimDB(M,), dimB(M,;) = dimB(M,).

Indeed, if d;=dimB(M,) 2 m, then there exist m non-intersection massive sets Q,,
+evy O in M;. Then Lemma 1 implies that sets 92;\K,; are also massive. Their isometric
images in M,\K, are massive and do not intersect, so therefore d,=dimB(M,) 2 m. Since
this applies for all m, we have d, 2 d,. We similarly prove the inequality the other way,
obtaining d, = d,. We similarly prove that dimDB(M,) = dimDB(M,).

COROLLARY 3. The dimension of the space DB(M) does not change under quasi-isometric
mappings of the manifold M.

Indeed, as shown in [1], the notion of b-massivity is an invariant under quasi-isometric
mappings, which implies the above result.
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Proof of Theorem. 2) =* 1). Suppose Q,, ..., Oy are pairwise non-intersection _
subsets of M with inner potentials u,, u;, ..., Uy, respectively. We prove that dimB(M) 7
m, and if Q,, ..., Qp are D-massive, then dimDB(M) 2 m.

Let {Byx} be an exhaustion of the manifold M by precompact domains with smooth boundarj
(transversal to aM if the boundary is not empty). We solve the following boundary value prokd
lems in Bg:

. : " aulh "
A’ =0, o |ﬂ“x L gy f.r:" aMNB, = ;
(recall that uj = 0 outside ;). Since uj is subharmonic, we have vk(i) 2 uj in Bg. There-
fore, in 3By we have vi4, (1) 2 v (1) = u;, and the maximum principle implies that vy, (i) ;
vk(i) in Bg. Furthermore, uj < 1 implies vk(i) < 1. Therefore, a sequence of harmonic func-:
tions {vk(i)) (k =1, 2, ...) increases and is bounded. Consequently, a limit

1 bl ot

o) = lim of?,

AR L

exists and is a harmonic function in M. In addition, 1 2 v(i) uj 2 0. We can assume
that supu; = 1. Then we also have supv(i) = 1. we prove that harmonic functions v{(?),

v(z). s v(m) are linearly independent, in which case dimB(M) 2 m. To do this, we note
that 2; N Q5 = " (for i # j) implies that uj + uj s 1. Therefore, vk(i) + vk(j) < 1 and
v i 7 o,

(1)
We now use (1) and the fact that Supv(i) = | to prove that v(i) (i = W P <
linearly independent. Indeed, for every € > 0 we can find a point x; € M such that
vi(z) >1—e.
Inequality (1) then implies that v(Jj) (xj) < €. Since we also have v(i) (x3) 2 0, a matrix
e () 11t
for sufficiently small € is non-degenerate (since the numbers on ifg)d%agonal are close

to 1, and off-diagonal numbers are close to 0). Thus, functions v £ w1, 2, ess, @)
are linearly independent.

If Q; are D-massive then
(o ITuF< .

Dirichlet's principle implies that
§ ITRLS, 17w

Letting k - =, we obtain
Sul\':-{iiF;;SM |VuF = S“I|\'ui[=<cc.

i.e., v(1) € DB(M), dimDB(M) 2 m.

1) = 2). Suppose in M there are m linearly independent functions u; € B(M). We prove
that there are m pairwise non-intersection massive sets. Let M be the Cech compactifica-
tion of the manifold M, i.e., M is a compact topological space such that M is an open, every”
where dense subset of M and every continuous bounded function on M can be continucusly ex-
tended to M. Let u o= ﬁ\H, and extend functions uj to M by setting them equal to functions

f; on u. Then f,, f,, ..., f, are continuous, linearly independent functions on u. Indeed,
if k,f, + k,f, + ... + kpfp = 0 for some constants k,, k,, ..., kp, then a harmonic function
u = kyu, + k,u, + ... + kpuy is equal to zero on u. The maximum principle implies that u=0
on M. The linear independence of functions u,, u;, ..., u, implies that k;, =k, = ... =

kp =0, i.e., £f,, f;, ..., f, are linearly independent.
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F: R

We could have chosen the desired massive sets as {x: ujy(x) > supuy —€}-(i =1, 2,
.++» m), if for some € > 0 they were pairwise non-intersection (note that a non-empty set
{uj >@} is massive with an inner potential (uj — c)4). The latter is equivalent to a
condition that the set sof points in u at which fj(x) = supf;, are pairwise non-intersecting.
However, this is not always the case. We circumvent this difficulty by using the following
lemma.

LEMMA 2. Suppose u is a compact topological space, f,, f,, ..., fp are linearly inde-
: pendent continuous functions on u. Then there exist functions F,, F;, ..., Fp, which are
linear combinations of f,, f,, ..., f5, such that sets uj = {x € u: F;(x) = maxF;} are
pairwise nonintersecting.

The proof of Lemma 2 is given below, after the completion of the proof of Theorem.

Since functions F; are linear combinations of functions f,, f,, ..., fp, there exist
functions v,, ..., vy, which are linear combinations of u,, u,, ..., up such that vyl = #,.
Clearly, vi € B(M). _

If, in addition, we have D (uj) < =, then D (vj) < =, i.e., v; e DB(M).

Let Qi€ = {x € M: v4(x) > max Fj — €}. Clearly, for every e >0 the set Q;% is massive
(and if v4 « DB(M), then it is D-massive).

We prove that for sufficiently small £ >0 these sets are pairwise non-intersecting.
Assuming the opposite, we have 2;% 0 2;% 7 for some i # jand e = g (k =1, 2, ...),
where the sequence {egx} tends to zerc as k = =. -Lat Xg be a point in Digk n njzk. As
k = =, the sequence {xy} has a limit point x, € M. Clearly, v,.(x,) = max F, = sup t;, [ =

i, j. If x, € M then the strict maximum principle implies that v; = const, v; = const, which
in turn implies that Fj = const, F; = const, which contradicts the fact that iunction: Fj

and F; do not have common maximum points. If x, € u, then x;, is a common maximum point

of functions F; and Fj, which again contradicts their choice.

Thus, for some € > 0, sets 2;% (i = 1, 2, ..., m) are pairwise non-intersecting and
massive (D-massive), as required.

Proof of Lemma 2: Define a mapping I: y » R™ as follows:
I{z) = (fy (), fa (2} + o o0 fou (2))-

Since I is a continuous mapping, its image K = I(u) is compact in R™. We show that K is
not contained in any (m — 2)-dimensional plane in R™. If that is not the case then K and
the origin are contained in a hyperplane defined by

¢|X1+C‘X’+ .- s +a..x,.-0.

where X,, ..., Xy are moving coordinates in R™. In particular, for every x € u we have
af, (x) T afs () + ... + Gumfm (z) =0,

which contradicts the linear independence of functions f,, ..., f,.

A point z € K is called a support point if there exists a strictly supporting hyper-
Plane P containing the point z, i.e., a hyperplane such that K\{z} lies strictly to one
side of P. It is known that every compactum inR"™, is contained in a closed convex envelope
of its support points (see [8]). Therefore, K has at least m support points. Indeed, if
there are no more than m — | support points, then their closed convex envelope, along with
the compactum K, is contained in some (m — 2)-dimensional plane, which contradicts the above
results. Thus, there are m different support points in K, say z,, z,, ..., zp. Let P,,
Pis coey Pp be the corresponding strictly supporting hyperplanes. Suppose P; is defined
by an equation 4 (X) = cj, where [/(X) is a linear function in R™ and c; = const. The signs
of I and c; are chosen such that over K we have /(X) < cj. We assert that functions By »
li » I are the desired ones on u. Indeed, functions li are linear combinations of coordi-
nate functions X,, ..., Xy, so therefore F; are linear combinations of functions  CTRUIR B
fj on y. Furthermore, since z4 is a support point, it is the only maximum point of the func-

tion /i on K. The maximum points of F; on u are preimages I“*(z;), which clearly are pair-
¥ise non-intersection for i = 1, 2, ..., m. Q.E.D.
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Example. Suppose M is an unbounded closed region in R™ (n 2 3) with a smooth ‘boy
(regarded as a manifold with a boundary). Let

Fem{r=R:2,0.VZd+ ... + 51 <Hzd)

where the continuous function f on [0, +=) is such that
g” jlydrL <, >3

s dr
:\ Inil == x4 (1) R n=3

Suppose a set M\F has m connected components {,, ..., {y, each of which contains an
infinite cone.t Then every uniformly elliptic equation

B us 0 07i(as, (2) ujdz;) = 0 ' (2)

with smooth coefficients has at least m linearly independent bounded solutions in M which
have a finite Dirichlet integral and satisfy Neuman's condition on the conormal on 3M.

Indeed, sets Q;, ..., @y are D-massive in the manifold M with the Euclidean metric

of R" [1]. Let M* be a manifold equal to M as a set with a Riemannian metric such that
Eq. (2) is Laplace's equation. Since (2) is uniformly elliptic, manifolds M and M¥* are
quasi-isometric. Our theorem dictates that dimDB(M) 2 m, so therefore Corollary 3 implies
that dimDB(M*) 2 m, as desired.

In conclusion, we would like to thank E. M. Landis and N. S. Nadirashvili for their
useful discussion of problems addressed in this article.
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TWe mean a one-sided cone with a directing (n — l)-sphere.
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