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ABSTRACT. A criterion for the validity of the D-Liouville theorem is proved. In §1
it is shown that the question of L°°- and D-Liouville theorems reduces to the study
of the so-called massive sets (in other words, the level sets of harmonic functions in
the classes L°° and L°° Π D). In §2 some properties of capacity are presented. In §3
the criterion of D-massiveness is formulated—the central result of this article—and
examples are presented. In §4 a criterion for the D-Liouville theorem is formulated,
and corollaries are derived. In §§5-9 the main theorems are proved.
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Introduction

The classical theorem of Liouville states that any bounded harmonic function on R n

is constant. It is easy to verify that the following assertions are also true:

1) If the harmonic function u on R™ has finite Dirichlet integral then u = const.

2) If u € LP(R") is a harmonic function, 1 < ρ < oo, then « Ξ Ο .

The list of theorems of this kind can be extended; they are known in the literature
under the general category of Liouville-type theorems.

After Moser's paper [1], which in particular proved Liouville's theorem for entire
solutions of the uniformly elliptic equation

it became possible to study the solutions of the Laplace-Beltrami equation^) on arbitrary
Riemannian manifolds. The main efforts here are directed towards finding under what
geometric conditions one or another Liouville theorem is true.

Let Μ be a smooth Riemannian manifold with boundary dM (possibly empty). The
function u G C°°(M) is called harmonic if it satisfies the Laplace-Beltrami equation

Δω = 0 (2)
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(see the definition of the operator Δ in [2]) and the boundary condition

du/dv = 0, (3)

where ν is the normal to the boundary dM.(2)
If A is some class of functions on M, then by the A-Liouville theorem we mean the

assertion that any harmonic function in the class A is equal to a constant. The monograph
[5] is devoted to the classification of Liouville theorems. In this article we shall primarily
take up the £)-Liouville theorem, where D is the class of functions on Μ with finite
Dirichlet integral.

It is well known [3] that, for 1 < ρ < οο, the Lp-Liouville theorem is satisfied on any
complete manifold. For the P-, L1-, L°°-, and D-theorems this is not so (P is the class
of positive functions). Existing counterexamples [6] suggest that at least the P-, L°°-,
and £>-Liouville theorems fail in the presence of "narrow" places on the manifold. On
the other hand, the known sufficient conditions for these theorems to hold (see [4] and
[7]—[11]) in some sense or other exclude "narrow" places.

Up to now, for none of the Liouville theorems indicated above was there known a
necessary and sufficient condition ensuring its satisfaction. In this article, a criterion
for the D-Liouville theorem is proved, which confirms that the sole obstruction for this
theorem to be true is the presence of a "narrow" place on the manifold.

By a theorem of Ahlfors (see [5]), if there exists a nontrivial harmonic function with
finite Dirichlet integral, then there exists a like function which is bounded as well. There-
fore, throughout the following, we shall consider only bounded harmonic functions.

The main theorem is formulated in §4. Let us present two corollaries.
1. If the Riemannian manifolds Mj and Mi are quasi-isometric and the Z>-Liouville

theorem holds on M\, then it also holds on M2 •
It would be interesting to find out whether the analogous assertion is true for other

Liouville theorems.
2. Let Μ be a complete, η-dimensional, spherically symmetric manifold. Then for

η > 4 the £>-Liouville theorem holds on M.
For η = 2 this is not so, and for η = 3 it is not known (for more details see §4).
A few words on the structure of this article. In §1 we prove that the question of L°°-

and D-Liouville theorems reduces to the study of the so-called massive sets (in other
words, the level sets of harmonic functions in the classes L°° and L°° C\D). In §2 some
properties of capacity are given. In §3 the criterion of D-massiveness is formulated—the
central result of this article—and examples are given. In §4 the criterion for the D-
Liouville theorem is formulated and corollaries are derived. In §§5-9 the main theorems
are proved.

The numbering of the theorems, lemmas, etc. is sequential through the whole article,
while the formulas have their own numbering in each section.

A variant of Green's formula is proved in the Appendix.
Notation and terminology. Μ is a smooth, connected, noncompact Riemannian mani-

fold; dM is the boundary of Μ; η — dim Μ; V and Δ are the gradient and the Laplacian
on M; d/dv is the derivative in the direction of v\ dV is the volume element of M; dS is
the (n — l)-volume element on (n— l)-submanifolds on M; D(u, Ω) = /Ω |Vu|2 dV; D(u) =
D(u, Ω), where Ω is the domain of u; u | A is the restriction of the function u to Α ΓΊ Ω,
where Ω is the domain of u; a smooth hypersurface is a C°°-submanifold of codimen-
sion 1 transversal to the boundary of the manifold; Ω has smooth boundary <=> dQ is

(2)Condition (3) does not restrict generality, although the first impression may be to the contrary. If
we wish to consider solutions of (2) without a boundary condition, then the boundary can be excluded
from the manifold.
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a smooth hypersurface; and {Bk} is an exhaustion of M, i.e. a sequence of precompact
open subsets Bk such that Bk C B/t+i, Ui° &k — M, and dBk are smooth.

§1. Massive sets

DEFINITION 1. Let Ω C Μ be an open subset with smooth boundary. The set Ω is
called massive if there exists a function u € (?°°(Ω\(5Ω Π dM)) such that

0 < u < 1 in Ω, (1)

Au = 0, (2)

u | an = 0, (3)

du/du\aM=Q. (4)

If in this case D(u) < oo, then Ω is called D-massive.
Obviously, a massive set is noncompact. The significance of the concept of massiveness

for our purposes is shown by the following proposition.

PROPOSITION 1. A nontrivial bounded harmonic function (resp., wth finite Dirichlet
integral) exists on the manifold Μ if and only if there exists a smooth hypersurface Γ
dividing Μ into two massive (resp., D-massive) subsets.

The hypersurface Γ is the "narrow" place discussed in the Introduction.
Note that massiveness is an intrinsic property of the set Ω. Massiveness can also be

interpreted thus: the massive sets are the sets in which there is no Phragmen-Lindelof
type theorem, i.e. a positive harmonic function with zero Dirichlet boundary condition
need not go to infinity.

PROOF OF PROPOSITION 1. If there exists a nontrivial bounded harmonic function
u on M, then as Γ one can take the level set {u = a}, where a € (inf u,supu) is a regular
value of u (i.e. a common regular value of the functions u \ ̂  and u \ QM)· Clearly, the

sets {it > a} and {u < a} are massive, and D-massive if D(u) < oo.
Now let the smooth hypersurface Γ divide Μ into two massive subsets Ω and Μ\Ω.

We construct on Μ a bounded harmonic function which is not equal to a constant.
First we construct an increasing sequence {Ω™}, m = 1,2,..., of open sets with smooth
boundaries, such that Ω™ D Ω and U °̂ Ω,γι = Μ. Let us show that all the Clm are
massive. Let u be a function on Ω satisfying (l)-(4). We construct a function um in Ω™
satisfying the analogous conditions. Let {Bk} be an exhaustion of the manifold Μ (see
the notation list), where dBk is transversal to dQm for all k and m. We solve in Qm(~\Bk
the following boundary value problem for the unknown function Vk (see Figure 1):

Avk = 0, vk\ anm = 0 , Vk\ dBk\n = 0, vk\ as*nn = u, dvk/dv | dM = 0.

FIGURE l
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It follows from the maximum principle that 0 < Vk < 1 in Qm Π Bk, and Vk > u
in Ω Π Bk- From these inequalities and the maximum principle again, it follows that
Vk+i > Vk in the common domain of definition. We thus have a bounded increasing
sequence of harmonic functions {vk}- It has a limit as k —+ oo, which we denote um,
satisfying conditions (l)-(4) in Um.

Now let m —» oo. We redenote the function Vk by ν km and observe that, by the
maximum principle, we have fjt(m+i) > Vkm in Um Π Bk- As fc —> oo we obtain um+i >
um > u. Therefore, there exists a bounded harmonic function «οο = liuim^ao um defined
on Μ, where in Ω we have Uoo > u.

Let us prove that ιΐχ, is not equal to a constant. Indeed, we use u^ > u and the
massiveness of the set Μ\Ω, which so far has not been applied. Let υ be a function
on Μ\Ω satisfying conditions (1), (2), and (4), and, in place of (3), satisfying υ | r = 1
(i.e. we subtract from 1 a function satisfying (l)-(4)). Moreover, it can be assumed that
inf ν = 0. From the maximum principle it follows that in Bk Π (Ωηι\Ω) we have υ > Vkm-
Therefore, on passing to the limit as k —* σο and m —> oo, we get υ > ω^ in Μ\Ω. But
it is easy to see that a constant cannot simultaneously satisfy the conditions u^ > u and
"oo < v. Therefore, u^ is the desired nontrivial bounded harmonic function on M.

It remains to prove that if Ω and Μ\Ω are D-massive, then -D(uoo) < oo. It suffices
for us that the set Ω be D-massive, i.e. D(u) < oo. Indeed, from the definition of the
functions Vk and from Green's formula(3) it follows that

D{vk) = f \Vvk\
2dV = [

f OVk f UVk
= I Vk d o = / u

JdBknn &v JdBknn &v

f
d(nmnBk)

dS.

From Vk > u and Vk | as t nn = u it follows that dvk/du < du/du on dBk Π Ω, where ν
is the outward normal to dBk- Thus,

ρ C\ ρ

D(vk) < / u^dS = / \Vu\2dV < D(u).
JdBknn °v JBknn

Therefore, passing to the limit as k —* oo and m —* oo, we obtain D{um) < D(u) and
D(uoo) < D(u) < oo. Proposition 1 is completely proved.

Observe that we have actually proved the following property of massive sets: if Ω
and Ω' are subsets of Μ with smooth boundaries and Ω C Ω', then the massiveness (D-
massiveness) of Ω implies the massiveness (D-massiveness) of Ω'. We present another
useful property: if Ω' C Ω and Ω\Ω' is compact, then the massiveness (Z?-massiveness)
of Ω implies the massiveness (D-massiveness) of Ω'. We omit the proof, since we shall
not be needing this property. From it and from Proposition 1 the following result can
also be derived (first proved by N. S. Nadirashvili by a different method). Let the
manifolds M\ and M2 be such that, if a compact subset is removed from each of them,
the the remaining parts M[ and M'2 are isometric. If the Z,°°-Liouville theorem (or the
Z?-Liouville theorem) is satisfied on Mi, then it is also satisfied on M2.

§2. Capacity and type

DEFINITION 2. A capacitor on the manifold Μ is any triple of sets {F\,F2',£l), where
F\ and Fi are closed and Ω is open. The capacity of the capacitor (Fi,F2',0) is the
number

cap(Fi,F2;n) = inf f \V<p\2dV,
f Jn

(3)See §5 and the Appendix.
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where the infimum is taken over all admissible functions φ, i.e. locally Lipschitz functions
on Ω such that <p\ FX — 1 a n d ΨI Fi — 0·

Note that a value of oo is allowed for capacity.
Let us present some well-known properties of capacity.
1.

cap(f\, F 2; Ω) = cap(F2, F i ; Ω) = c a p ^ , 5F2; Ω)

= csp{dF1,dFr,n\(F1UFi)).

2. If Ω C Ω', then

Indeed, if φ is admissible for ( F i , F 2 ^ ' ) and φ "almost" realizes the capacity, then

i , F 2 ; n ' ) = f \V<p\2dV - ε > [ \V<p\2dV-e
Jn> Jn

since φ \ ^ is admissible for (ί\, F 2; Ω). It remains to let ε —> 0.
3. If Fi CF{, then

cap(Fi,Fa;n) < cap(Fi,F 2 ^).

Indeed, broadening F\ restricts the class of admissible functions, and thereby raises
the inf in the definition of capacity.

4. Let Ω be a precompact set, and let F\ and F2 be the closures of open sets, where
the boundaries 9Ω, dFi, and dF 2 are smooth and pairwise transversal. Let Fi r\F? = 0 .
Let u be a solution in Ωο = Ω\^ι U F2) of the following boundary value problem:

Au = 0, u\dFi=l, u IaF2 = 0, du/dv = 0 .

anudM

Then

cap{Fi,F2;n)= f \Vu\2dV = [ _ ^dS, (1)
Jn0 JdF^no ϋ ν

where ν is the normal to dF\ which is outward with respect to Ωο·
By smoothness of the boundary and the compactness of Ω, the classical solution of the

above-indicated boundary value problem exists and is unique. The function u is called
the capacity potential of the capacitor (Fi, F 2; Ω). The proof of (1) is standard and will
be omitted (see, for example, [15]).

With the help of capacity, the notion of type of an open set (parabolic or hyperbolic)
is defined. Let Ω be an open subset of Μ with smooth boundary, and let F be a compact
set lying in Ω. Let {Sfc} be an exhaustion of M. We define

cap(F,oo;n)= lim cap(F,n\S fc; Ω).

From property 3 of capacity it follows that the sequence of capacities is monotonically
decreasing, so that the limit exists. Hence the limit does not depend on the choice of
exhaustion sequence {Β^}- Finally, by the compactness of F and Bk, the successive
capacities are finite, so that cap(F, οο;Ω) < oo.

DEFINITION 3. We say that Ω has parabolic type if, for any compact set F c Ω,
cap(F, oo; Ω) = 0. Otherwise, Ω has hyperbolic type.

REMARK. This terminology is analogous to that used in the theory of Riemann
surfaces. As we know, a simply connected noncompact Riemann surface is conformally
equivalent to the plane or the disk. In the first case we say it has parabolic type, and in
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the second, hyperbolic. It is easy to prove that the capacity of any compact set in the
plane is zero, but not for one in the disk, so that the definition of type in the theory of
Riemann surfaces is compatible with Definition 3. The problem of determining the type
of a set reduces to obtaining estimates of its capacity. Some of these estimates, as well
as sufficient conditions for parabolic or hyperbolic type are given in [12]. In particular,
the cone(4) in Rn, η > 3, has hyperbolic type.

We shall need the following properties of sets of hyperbolic type.
1. If Ω and Ω' are open sets with smooth boundaries, Ω C Ω', and Ω is of hyperbolic

type, then Ω' is also of hyperbolic type.
The proof follows from properties 2 and 3 of capacity.
2. If Ω has hyperbolic type and the compact set F c Ω has nonempty interior, then

cap(.F, oo; Ω) > 0.
PROOF. Let G be a nonempty open set with smooth boundary lying in F Π Ω. It

suffices to prove that cap(G, oo; Ω) > 0. By the hyperbolicity of Ω there exists in Ω a
compact set of positive capacity. We extend it to a precompact open set G' D G. It can
be assumed that the boundary dG' is smooth and transversal to dΩ. Let Uk and u'k be the
capacity potentials for the capacitors (dG, dBk; Bk\G) and (dG', dBk; Bk\G'). From the
maximum principle it follows that the sequences {uk} and {u'k} increase monotonically,
and therefore have limits u and u', where Uk < u'k and u < u'. Observe that

f du f dv! . /
/ -z—dS = cap(G, oo; Ω), / ——dS = cap(G , oo; Ω).

JdG °v JdG' °v

Indeed, by properties of capacity,

αχρ(Ό~,Ώ~\Β^Ω) = cap(dG,dBk;Bk\G) = f ^dS > f ^dS.
JdG VV k-*°° JdG °V

Passage to the limit is possible thanks to a Schauder estimate of the solution up to the
boundary see ([17], Appendix IV, §5). The second relation is proved the same way. Since
cap(G , oo; Ω) > 0, it follows that u' φ const and u' < 1 outside G . From u < u' it
follows that u φ const, and by the lemma on the normal derivative

-z^dS > 0, cap(G, oo; Ω) > 0.
dG °v

§3. A criterion for D-massiveness

THEOREM 1. Let Ω C Μ be an open set with smooth boundary. Then Ω is D-massive
if and only if Ω contains a subset Ωι of hyperbolic type whose closure Ωι is noncompact,
lies in Ω, and satisfies €&ρ^Ω^Ωι;Ω\Ωι) < oo.

This theorem will be proved in §§5-8. Right now, let us present some examples of
£>-massive sets.

EXAMPLE 1. Let Ω C R" be the exterior of the domain of revolution

F={x€Rn\xn>0, r </(!„)}, (1)

where r = \Jx\ + · · · + £^_i, and / : [0, +oo) —• [0, +oo) is monotonically decreasing for
xn > 1 (the differential properties of / are such that ΘΩ is a smooth hypersurface in
R").

(4)Smoothed at the vertex.
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Then Ω is D-massive if and only if

/

oo

f{x)n~3dx < oo, η > 3; (2)

^m^· "=3-(5) (3)

PROOF. Let (2) or (3) be satisfied. The D-massiveness of Ω will follow from

= cap(F,Ui;Rn) < oo, (4)

where Ωι is the exterior of a sufficiently large cone containing F.(6) For the proof of (4)
we use the semiadditivity of capacity:

oo

cap(F,Ωχ^") < Y^ capCFmiHiiR"),
m=0

where

FTO = { z e R n | 2 m <xn < 2 m + 1 , r < /(2m)}, m > 1, F0 = Fn{xn<2}.

Further,

cap(Fm,Ui;R") < cap(F m ,dG m ;G m ),

where Gm is a 2m~1 -neighborhood of Fm.
If at is the (n — l)-measure of the set of points in R n whose distance from Fm is t,

then by a capacity estimate of [12] we have

ca F < ( Γ" -Υ'

Clearly, at < const(i + / (2 m ) ) "- 2 2 m (m > 1), so that

/ ( 2 m ) " - 3 2 m , η > 3,
cap(Fm, dGm; Gm) < const{ 2m _

rr, Tl — Ο.

By (2) or (3), we get £)J° cap(Fm, dGm; Gm) < oo, whence follows (4).
Now let integral (2) diverge, and let Ωι be an arbitrary subset of Ω of hyperbolic type,

Ωι noncompact. We prove that cap(<W,cKi 1^^ 1) = oo.
Let Sr be the sphere in R" of radius r with center at the point O, Ar = Sr\Q,

Br = ST Π Ωι, ar = measn-x^l,., br = measn_iB r, and 1 r = measn_i5 r. From the
definition of capacity it follows that

_ Γ°°
ΟΕΡ(0Ω;#ΩΙ;Ω\ΩΙ) > / cap{Ar,Br;Sr)dr. (5)

From a capacity estimate of [12] it follows that

a i°r-br d \~l

My) > < 6 )

(5) In R 2 there are no massive subsets, due to the parabolic type of R 2 .
(6) Ωι has hyperbolic type, since it contains a cone.
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where g(v) is the isoperimetric function on Sr, i.e. g(v) — const · i / " " 2 )^"- 1 ) for υ < στ

and g(v) = g(2ar - v) for ν > στ. Evaluating the integral (6) and substituting into (5),
we obtain

c a p t f a c H ^ n t o ) > const Γ _ ( n _ m * (n_mn_iy (7)
J1 Qr ~j- Or

Note that the divergence of (2) implies

Γ°° dr

J (lr
OO. (8)

0 0 dr
— < 00.

Since Ωχ has hyperbolic type, it follows that (see [12])

dr

br

By Lemma 1, which we shall prove in the next section, it follows from (8), (9), and the
boundedness of ar that the integral (7) diverges. By Theorem 1, Ω is £>-massive.

The case η = 3 is treated analogously.
EXAMPLE 2. We construct in R", η > 3, a subset Ω diffeomorphic to half-space, in

which there exists a nontrivial bounded harmonic function with finite Dirichlet integral.
Let the function / satisfy (2) or (3), let F be the set (1), and let Γ = dFn {xi - 0}.

Let the region Ω be such that ΘΩ contains Γ, and the sets Ω+ = Ω Π {χι > 0} and
Ω_ = Ω Π {χχ < 0} contain the cones K+ and /f_ respectively (see Figure 2). Then Ω
is the desired region.

FIGURE 2

Indeed, by Proposition 1, it suffices to prove that Ω+ and Ω_ are £>-massive. By
Theorem 1 this will follow from cap(F Π {x\ = 0},Λ"+;Ω+) < oo and the analogous
inequality for AT_ and Ω_.

By the properties of capacity in §2, we have

( =0},K+;Q+) < cap{F,K+;Rn) < ca.p(F,Q1;R
n) < oo,

where Ωι is the exterior of a cone containing F but not containing K+ or /f_ (see
Example 1).

EXAMPLE 3. In the Lobachevsky plane, any angle(7) is a D-massive set.

(7) Smoothed at the vertex.
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Note, first, that an angle has hyperbolic type. This follows, for example, from the
isoperimetric inequality [13] and the hyperbolicity condition [12]. Consider the two angles
Ω and Ωχ {Ωι C Ω) in the Lobachevsky plane, whose sides meet at the point O. Let
these angles have a common symmetry axis, and let the angular measure of Ω be greater
than the angular measure of Ωχ. We prove that the D-massiveness condition is satisfied:

Let (r, Θ) be polar coordinates with pole at O. For suitable c\ and c<i the function
φ{τ,θ) — ο\θ + C2 is admissible (more precisely, φ is defined thus for r > TQ > 0, and is
extended in an admissible fashion to r < TQ). It suffices to prove that fr>r \V0\2dV <
oo. In polar coordinates, the metric of the Lobachevsky plane has the form ds2 =
dr2 + f(r)2d92. From this it follows that, first, the length of the circle of radius r is
ar = 2ir/(r), and second, |V0| = l // ( r ) . Therefore,

< 00,/ \V9\2dV = Γ ( f f{r)-2ds] dr = 4ιτ2 Γ —

Jr>r0 Jro \JSr ) Jr0 °~r

since στ grows exponentially.

§4. Criterion for the D-Liouville theorem
THEOREM 2. The D-Liouville theorem holds on the manifold Μ if and only if, for

any two open sets Ωι and Ω2 of hyperbolic type having noncompact closures Ωι and Ω2,

!2;Λί) = οο.

The proof, which relies on Theorem 1, is given in §9. Here we consider some corollaries.

COROLLARY 1. // the manifolds Mi and M2 are quasi-isometric and the D-Liouville
theorem holds on Mi, then the D-Liouville theorem holds on M2 also.

Indeed, quasi-isometry means that, under an identification of Μχ and M 2 by means
of a diffeomorphism, the first quadratic forms on Mi and M2 are finitely proportional.
Therefore, the capacities are finitely proportional, whence follows the desired result.

COROLLARY 2. Let Μ be a complete manifold, and let ρ G C°°(M) be a Lipschitz
exhaustion function (i.e. |Vp| < const and all the level sets {p < t} are compact). On the
hypersurface St = {p = t} for almost allt, (8) let the isoperimetric inequality measn_2T >
f(v) be satisfied, where Γ is any smooth (n — 2)-dimensional surface dividing St into two
sets having (n — 1)-dimensional volume at least v, and f is a positive monotonically
increasing function on (0, +00).

a)//
dvΓ

then the D-Liouville theorem, holds on Μ.
b) Let the integral (1) diverge. Put Ι(σ) = f° (dv/f(v)2) (where ε > 0 is fixed) and

2at = m e a s n _ 1 S ' t . //
dt . ,

= 00, (2)+ 2ε)

then the D-Liouville theorem holds on Μ.

PROOF. We shall need the following fact.

(8)By Sard's theorem, for almost all t, St is a smooth hypersurface.
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LEMMA I . Let a and β be measurable functions on [to, +00), α(ί) > a0 > 0, and
α + β > 0 (to and «o are constants). Let a: R —> [0, +00] be a continuous, monotonically
increasing function, where φ(α0) > 0. Finally, let

d f°°

^ y = oo, J <p(0(t))dt

f°°
J a(t)

oo.
J a(t) J

Then
dt

7-r = OO.

P R O O F . Put

E+ = {t > h | a(t) > /?(*)}, £ - = {<> h | a(t) < /?(*)},

where ii is sufficiently large. Then

f f f dt
oo > / φ(β(τ))άί > I <p(ot(t))dt > <p(oto)o(Q I —j-r-

JE- JE- JE- a{t)
Therefore,

f dt _ f dt _

whence follows the desired result.
Let us return to the proof of Corollary 2. Let Ωι and Ω2 be subsets of Μ of hyperbolic

type with Ωχ and Ω2 noncompact and Ωχ Π Ω2 = 0 . We prove that, under condition (1)
or (2), cap(ni,f2 2 ;M) = 00.

Denote

At = Ωι Π St, Bt = Ω2 Π St, at = measn_i;4.£, bt = :

Then

_ _ f°°
ο&ρ(Ωι,Ώ2',Μ) > I c&p(At,Bt;St)dt.

J-00
If G is an open subset of St with smooth boundary Γ, and meaSn-iG = v, then, by

the condition of Corollary 2, measn_2r > ft(v), where

f(2at -υ), ν> σχ.

By an estimate of capacity [12] we have

cap(At,Bt;St) > I / ft{v)~2dv I

V ' /
> , + Λ, J /(^ 1

~ 2/(σ4) - /(at) - I(bt) •

It remains to prove that

dt
f°

J
21{at) - I{at) - I{bt) ~ °°- ( 3 j

In this case we shall use (1) or (2), as well as the following consequence of the fact that
Ω Ϊ and Ω2 are hyperbolic (see [12]):

f°° dt f°° dt
/ — < oo, / — < oo.

J at J bt



LIOUVILLE THEOREMS FOR HARMONIC FUNCTIONS 495

a) Let (1) be satisfied. Put h{a) = f™{dv/f(v)2). Then in place of (3) it suffices to
prove that

" " d tΓ
or, more crudely,

dt
= oo.f + h(at) + h(bt)

Using Lemma 1 for a{t) = 1, /3(t) = h{at), and <ρ{β) = 1/1^1{β), we get

Γ
Applying Lemma 1 again for α(ί) = 1 + h{at) and β(ί) = h(bt), we obtain the desired
result.

b) Let (2) be satisfied. Clearly, in place of (3) it suffices to prove that
r 0 ° d tΓ 2/(σ, + 2ε) - I(at) - I(bt)

and this is obtained by the same twofold application of Lemma 1 as in a).

COROLLARY 3. Let Μ be a complete, spherically symmetric manifold, i.e. on Μ
there acts a group of isometries S0(n) having fixed point Ο G M. Let ar be the (n — 1)-
dimensional volume of the geodesic sphere of radius r with center at O. Then, under any
of conditions a), b), or c) the D-Liouville theorem holds on the manifold Μ, where

a) n > 4;
b)

η — 3,

η = 2, J ^ - = o o . (5)

PROOF. Clearly, the geodesic sphere on Μ is isometric to a sphere in R", so that the
isoperimetric inequality with function f(v) = const • ^"-^A"- 1 ) is satisfied on it. For
η > 4 we have f°°(dv/f(v)2) < oo, and the D-Liouville theorem holds by assertion a) of
Corollary 2. For η = 3, in the notation of Corollary 2, we have Ι (σ) = const ·1η(σ/ε), and
for ε = 1 condition (2) turns into (4). The case η = 2 can be analyzed analogously but,
in fact, condition (5) without spherical symmetry, and for any n, already implies that
Μ has parabolic type (see [12]). Also, for η = 2 condition (5) is necessary for Corollary
3 to hold, which was actually proved by us in Example 3 of §3. How essential (4) is for
η = 3 remains unknown.

From assertions a) and b) of Corollary 3, it follows that the D-Liouville theorem is
satisfied in Lobachevsky spaces of dimension η > 3. For η = 2 this is not the case, as
follows from Example 3 and Proposition 1.

It follows from Corollaries 2 and 3, as well, that the D-Liouville theorem holds on
any one-sided surface of revolution in Euclidean space and on any one-sided domain of
revolution (like manifolds with boundary), independently of dimension.

§5. Proof of Theorem 1. Necessity

Here we shall prove that if Ω is D-massive then Ω contains a subset Ωι of hyperbolic
type whose closure Ωι is noncompact and such that cap(dfi, 5Ωχ;Ω\Ωι) < oo. The
D-massiveness of Ω entails the existence of a harmonic function on Ω with properties
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(1)-(4) of §1. Let ε > 0 be a regular value of the function u such that the set {u > ε} is

nonempty. Put Ωι = {χ 6 Ω | u(x) > ε}. Then Ωι has smooth boundary, the closure Ωι

is noncompact, and 0Ερ(5Ωι,ί)Ω;Ω\Ωι) < oo since the admissible function u/ e ln\n

has finite Dirichlet integral. It remains to prove that Ωι has hyperbolic type.

We redenote u — ε by w, and then the function u satisfies conditions (l)-(4) of §1 in

Ωχ. We use the following variant of Green's formula.

PROPOSITION 2. Let Ν be a smooth manifold with boundary having parabolic type.
Let u 6 C°°(N) and sup^ |u| < oo. Then Green's formula

[ AudV= [ ^
JN JdN dv

holds, where both integrals are improper (the values ±oo are allowed).

The proof is in the Appendix.

Returning to the proof of Theorem 1, assume that Ωα has parabolic type. Then
the manifold Ν = Ωχ\(<9Ωι Π dM) with boundary also has parabolic type. Applying
Proposition 2 to the function u2, we get

\Vu\2dV= [ updS = 0,
N JdN ou

whence u = 0, which contradicts the definition of the function u.

Note that we have actually proved that any massive set has hyperbolic type.

A few words concerning Green's formula. We shall often apply it, and it has already
been used once in the following situation. Let G be an open precompact set in Μ whose
boundary consists of several smooth hypersurfaces which intersect transversally. Let the
following boundary value problem be solved in G: Au = 0 in G, and on dG sufficiently
smooth Dirichlet or Neumann data is given. We shall write

/ \Vu\2dV = f u^dS. (2)
JG JdG UV

Meanwhile, to apply the usual Green's formula we need u S C1(G), but we cannot
guarantee this, due to breaks in the boundary. The validity of (1) and (2) follows from
Proposition 2. Indeed, let Ν be the manifold with boundary which is obtained if the
singularities in the boundary dG are removed from G. Then Ν has parabolic type,
which follows from the fact that the measure of an ε-neighborhood of the singularities of
dG is Ο(ε2), and from the parabolicity condition [12]. Since the function u is bounded
and infinitely smooth up to dG, excluding the breaks in the boundary, then, applying
Proposition 2 to the functions u and it2 on the manifold N, we obtain (1) and (2). The
existence of the integrals in (1) and (2) in each concrete case is easy to check.

§6. Idea behind the sufficiency proof

In the set Ω from the condition of Theorem 1, let there exist a subset Ωι of hyperbolic
type, where Ωχ is noncompact and cap(dQ, 9Ωι;Ω\Ωι) < oo. We wish to prove that Ω
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is D-massive, i.e. in Ω there exists a function w € C°°(Q\(dQ Π dM)) such that

0 < w < 1 in Ω, (1)

Aw = 0, (2)

w | an = 1, (3)

dw/dv | 3M = 0, (4)

D(w) < oo. (5)

Note that in place of the condition u | an = 0 from §1, we have written w | an = 1> i-e.
we have passed from the function it to the function w = 1 — u.

The function w will be constructed by passages to the limit. First, we construct
the capacity potential u for the capacitor (<9Ω, <9Ωι;Ω\Ωχ) as the limit of the capacity
potentials vk for the compact capacitors (dQ,dQi\Gk), where Gk = (Ω\Ωι) Π Bk, and
{Bk} is an exhaustion of Μ such that dBk is transversal to dQ and ΘΏχ. For the
potentials v^ we have (see §2)

D{vk)=ca,p{dQ,dQ1;Gk). (6)

By the properties of capacity we have

< capid^dn^nXTii). (7)

The sequence of harmonic functions {v^} is bounded; hence it has a limit function
which is harmonic in Ω\Ωι and satisfies the boundary conditions u \ an = 1, « | an! = 0,
and du/dv | ajvi = 0. Moreover, from (6) and (7) it follows that

Since the function u is admissible for the capacitor (dQ, dQi; Ω\Ωι), the reverse inequal-
ity also holds, so that

9

After this, we take instead of Ωχ the smaller set Ω2, and construct the capacity
potential u^ for the capacitor (θΩ,<9Ω2;Ω\Ω2), and so forth. It is easy to see that we
can construct an increasing sequence ui = u,u2,U3,... of harmonic functions, where
um I an = 1, um I anm = 0, and dum/di/1 a M = 0, and D{um) = cap(9fi, 3Ωm; Ω\Ω,η).
This sequence has a limit, which we denote by w. Clearly, properties (2)-(5) are satisfied.
It is only unclear why w φ 1. It can be proved that if flm+i differs from Qm by a compact
set, then the hyperbolicity of Ωχ guarantees

lim D{um) = lim c a p ^ , < W m ^ \ n m ) > 0. (8)

But it still does not follow that D(w) > 0, since D(w) need not equal the limit of (8). To
prove w φ 1 we shall use the flows $avi{dw/dv)dS and Jdn(dum/du)dS, where ν is the
outward normal to dQ. Since um+i > um and u m + i = um = 1 on 9Ω, it follows that
dum+i/dv < dum/dv, so that on 9Ω we have the monotonically decreasing sequence of
functions {dum/dv}, converging to dw/dv. Below we shall prove that fdQ(dui/dv)dS <
oo, so that by Lebesgue's theorem

-r— dS = lim
an dv m-*oc

If we knew that the flow JgQ(dum/dv)dS were equal to the corresponding Dirichlot
integral D{um), then it would follow from (8) that Jdn(dw/dv)dS > 0, and so w φ const.

(9) This does not exclude the case of a nonunique capacity potential u.



498 Α. Α. GRIGOR'YAN

U-f

FIGURE 3

But the whole difficulty is that we are considering noncompact capacitors for which the
flow is not necessarily equal to the capacity (in contrast to the compact case considered
in §2), and may be less. In Figure 3 the gradient curves and level curves for such a
capacity potential are shown.

Fortunately, it turns out that a diminished flow in comparison with the Dirichlet
integral is a fortuitous circumstance related to an unpropitious arrangement of the hy-
persurface dfl. It turns out that the flow of the vector field Vu across almost all level
sets {u = t) nevertheless equals the capacity. Therefore, instead of ΘΩ, we can take one
of these level sets.

§7. The capacity potential of a noncompact capacitor

LEMMA 2. Let u be the capacity potential for the capacitor (ΘΩ,ΘΩι;Ω\Ωι) con-
structed in the previous section. Let Tt = {x \ u(x) = t}, where 0 < t < 1. Then for
almost all t

7r« dv

where the normal ν is in the direction of increasing u.

PROOF. Denote pt{u) — $,u_tJdu/du)dS. By a well-known formula of Federer [14]

we have

D(u)= f _ \Vu\2dV= ί (f \Vu\ds)dt= f pt{u)dt. (1)
./Ω\Ωι Λ> \JTt / ./θ

If we show that Pt(u) < D{u) for almost all t, then this, together with (1), will give the
desired result. To prove that pt(u) < D(u), recall that the function u is a limit point
of the sequence {t>k} of §6. It can be assumed that Vk —* u as k —* oo. For each of the
functions vk we have, by property 4 of capacity in §2 and Green's formula, D(vk) = Pt{vk)
for almost all t.

Let F be an arbitrary compact set with smooth boundary on the submanifold Ft,
where ί is a regular value of the functions u and Vk- We prove that

-^dS < D{u).

For that, let us see how the hypersurface Γ^ = {vk = t} is arranged. Through each point
of F, draw the gradient curve of the function u (note that du/dv \ r , = | Vu| | r, > 0) of
length 2e, with length ε on each side of the point. Since Vk —> u together with all the
derivatives uniformly on each compact set, then for sufficiently large A;, on each gradient
curve constructed above, there will be exactly one point at which Vk = t. We denote that
part of Γ£ which intersects the gradient curves by Fk (see Figure 4). Taking a sufficiently
small e (and large k), we obtain

pS-f p
°V JFk °u

(2)
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FIGURE 4

where 8 > 0 is a number given in advance. Indeed, the above-indicated difference does
not exceed the integral of \Vu\ over the lateral surface of the figure Φ swept out by the
gradient lines of length 2ε constructed above, which is clearly equal to Ο{ε). Further,
for sufficiently large k the derivatives of the functions u and Vk are uniformly close on Φ,
so that

—dS- f —
/ Fk dv JFk dv

Therefore, from (2) and (3) it follows that

dS (3)

lF dv JFk dv

But, as was shown in §6, D(vk) < D(u), so that

du
—dS < D(u) + 26.
dv

Letting δ -+ 0 and F —> Tt, we obtain, finally, pt(u) < D{u).

§8. Conclusion of the proof of Theorem 1

So, in §6 we have constructed the capacity potential u for the capacitor

and in §7 we proved that there exists a smooth level hypersurface Tt = {u = t} for which
jTt{du/dv)dS = D(u).

Fix t > 0, and put Ωο = Ω\{ω > ί} and u\ = u/t \ πο· We shall prove that Ωο is D-
massive; then from the results of §1 it will follow that Ω is also £>-massive. The desired
function w satisfying conditions (l)-(5) of §6 in Ωο will be the limit of the sequence
{um}, which we now construct.

Let {Bk}, as usual, be an exhaustion sequence, where the dBk are transversal to dd0

and dQi. Denote Gi = Ω0\Ωι, Gm = Ω0\(Ω1\β ί η), m > 2, and G^-GmHBk, where
k > m. In the region G^, m > 2, we solve the following boundary value problem:

Avk

m = 0, I dBk =
vm\dn1\Bm = 0 ,

= 0 , dvk

mjdv = 0
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FIGURE 5

(see Figure 5). From the maximum principle it follows that

vk

m+1>vk

m>Ul. (1)

The sequence v^ is bounded, and therefore, as k —• oo, it has the limit function um > m.
Using the diagonal process, choose a subsequence of k which serves for all m. Then, by
(1), um+\ > um > «i. Put w = limm^oo um. This will be the desired function if we
prove that D(w) < oo,w φ 1.

To prove D(w) < oo it suffices to prove that -D(v£j ^ ^(ui)> a n ^ t n e r e s t follows by
passing to the limit. By Green's formula we have

D{vk

m) = [ \Vvk

m\2dV = f _
dv

•dS- ί
JdBknGk

n

•dS

•dS,
1 dv

where ν is the outward normal to dG1^. Further, we use that v^ > ui, and on dQ0 and
dBk we have v^ = u\. Consequently, on 5Ωχ and dBk the inequality dv^/dv < dui/dv
is satisfied. Therefore,

[ k
k

dBknak

\VUl\
2dS <

We now prove that JdQ (dw/dv)dS > 0, from which it follows that w ?£ 1 (here ν is the
outward normal to <3Ω0). From the fact that u m +i > um and um \ an0 — «m+i Ι ΘΩ0 = 1;

it follows that 0 < dum+i/dv < dum/dv. Since

[
dQo

{dUl/dv)dS = {du/dv)dS < oo,

by Lebesgue's Theorem we may assert that

f d^dS= lim f
Jdn0

 d v m-°°ya

Next, we shall prove the following two facts.
1. fdQ (dum/du)dS > D{um) > ca.p(dQo,dQm;Gm), where m > 1 and Qm —

no\Gm.
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2. cap(<9n0, dQm; Gm) > const > 0, where const is independent of m.
Proof of 1. The second inequality follows from the definition of capacity. To prove the

first, we use the fact that for m — 1

f ^Lds = D(Ul). (2)

Indeed, by the choice of 5Ωο, for almost all τ G [0,1] we have pT(ui) = prt(w) = Pt(u) =
Pi(ui) and ρτ(«ι) = fan {du\/dv)dS, so that (2) follows from Federer's formula (see

§7)-
Now let m > 2. Analogously to the way in which we proved the inequality Z?(i> Ĵ <

D(ui), we have

ί ,
m dBknGk

But

f
JdBknG

whence

/ _ -^-dS - D{v^) > / _ ~dS - D{m). (3)
JdnonGk

m 01/ JanonGk dv

As fc —+ 00 the right-hand side of (3) vanishes, by (2). Further, by a well-known property
of the Lebesgue integral,

lim D(vk

m) > D(um). (4)
k—> 0 0

Finally, we prove that

/* riii* C rill
l~dS. (5)f

Jd
f ψ [
dQ0nGk

m du fc-oo JdQo

Indeed, let us extend the function dv^/dv by zero outside Gm to the whole boundary
dQ0. Then

0 < dvk

m/du dQa <

and since / a f 2 {dui/dv)dS < oo we can apply Lebesgue's theorem and, from the point-
wise convergence dv^/du —• dum/dy as k —> c», obtain the convergence of the integrals.
Thus, as k —• oo, from (3)-(5), we obtain the desired inequality.

Proof of 2. Here we use, for the first time, the hyperbolic type of Ωι. By the con-
nectedness of the manifold M, the set Ωι can be extended to an open set ΩΊ with
smooth boundary such that Ω^Ωχ is compact and ΩΊ\Ω0 is nonempty. Then Ω[ also
has hyperbolic type. Let F = Ω^Ωο- Since the compact set F has nonempty interior,
cap(F, οο;ΩΊ) > 0 (see §2). But, by properties of capacity,

cap(dno,dnm;Gm) =

> cap(F, Ωί \Bm; ΩΊ) > cap(F, oo; ΩΊ),

so that c&p(F, oo; ΩΊ) is the desired positive constant independent of m.
Thus, in accordance with facts 1 and 2, we can state that

/ -τ^-dS > cap(F, oo; ΩΊ) > 0,
Jdn0 dv

so that w φ. 1. Theorem 1 is proved.
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§9. Proof of Theorem 2

If the D-Liouville theorem does not hold on the manifold M, then there exists a
nontrivial, bounded, harmonic function u with D(u) < oo (see the Introduction). Let a
and b be two regular values of u such that a < b and the sets {u < a} and {u > b} are
nonempty. Then we put Ωι = {u < a} and Ω2 = {it > b}. By the maximum principle,
Ωχ and Ω2 are noncompact. Each of these sets is massive; therefore, by §5, they both
have hyperbolic type. Finally,

, Ω2; Μ) = c a p ( ^ i , <9Ω2; Μ\(Ω : U Ω2)) < oo,

since the function (b — u)/{b — a) is admissible and has finite Dirichlet integral.
Now let Ωι and Ω2 be open sets satisfying the condition of Theorem 2. Construct the

capacity potential u for the capacitor

(see §6), and let a € (0,1) be a regular value of it. Then each of the sets Ω2 U {u < a}
and Ωι U {u > a} is D-massive, by Theorem 1. Consequently, by Proposition 1, the
D-Liouville theorem holds.

Appendix. On Green's formula

Here, we shall prove Proposition 2 from §5. In the proof the following variant of the
mean value theorem [16] will be used.

PROPOSITION 3. Let B\ and B2 be precompact open sets with smooth boundaries
in the Riemannian manifold (with boundary) N. Let B\ C B2, U 6 C°°(B2\Bi), and
oscU < K. Then there exists a smooth hypersurface Γ separating dB\ and dB2 such
that

[ ^
/Γ U U

(the normal u is directed towards dB2).

PROOF OF PROPOSITION 2. We find an exhaustion of TV by open precompact sets
Gfc with smooth boundaries, such that

lim / AudV = lim / -^-dS, (1)
^ ^ J Gr jt " dNf*\G/ς

whence follows the desired result. First, let us take any exhaustion {Bk} having the
properties indicated above, except (1). We apply Proposition 3 to the function u in
Bm\Bk, m > k, and find a smooth hypersurface Γ separating dBk and dBm such that

du —
—dS < Kc&p(dBk,dBm;Bm\Bk),
ov

where Κ > osc u. For sufficiently large m, the capacity on the right-hand side tends to
zero, since Ν is of parabolic type. For each k, fix m sufficiently large, and choose as Gk
an open set containing Bk and having boundary Γ. Applying the usual Green's formula
in Gk, we have

JdNnGk vis
AudV

>Gk JdNnGk

 o v JdGk

Passing to the limit as A; —> oo, and taking into account that

Πτη" [ ~dS<0,
k—
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we get

ί AudV < ( ^dS.
JN JdN d»

Applying this inequality to the function -u, we obtain the desired result.
Let us now prove Proposition 3. Put G = Β2\Βχ. It can be assumed that info U = 0,

so that supg U = OSCQU < K. Let ν be the solution in G of the boundary value
problem Av = 0, ν | QBX = 0, υ \ ae2 = 1> dv/dv \dN = 0. P u t w = υ — K~1U. Then

w I dB2 > 0 a^d it; | as, < 0. Therefore, for some regular value ε > 0 of the function w,
the hypersurface Γ = {w = ε} separates dB\ and dBy, where

We prove that

f ^dS = cap{dBi,dB^G).

This, of course, follows from Green's formula of Proposition 2, but in proving the latter
we used Proposition 3. An alternative approach is as follows. For each regular value t of
v, put

Pt = f \Vv\dS = f ~dS.
J{v=t) J{v=t} d u

By Federer's formula [14] we have

dB2;G)= f \Vv\2dV = f ptdt.
JG JO

On the other hand, for 0 < t < 1 the function pt is certainly independent of t, since for
t2 >h

f dJLdS-[ %LdS=
J{v=t2) OV J{v=tx} <JV

Therefore, pt = cap(dBi, dB2;G). Finally, if t is a regular value of ν such that 0 < t <
infp v, then once again by the usual Green's formula

i{v=t} υι/

REMARK. If / is the distance between dBi and dB2, then the following capacity
estimate is obvious:

cap(<9Bi, dB2; G) < meas G//2

(it is obtained by taking the distance to dB2 with factor l~x as the admissible function
in the definition of capacity). Therefore, under the conditions of Proposition 3,

dU ,„ ^ Κ meas G

In [16] an analogous estimate is proved for / r \dU/dv\dS. Its proof is much more com-
plicated than the proof of Proposition 3. In the majority of applications, the theorem of
[16] is used in the form (2).

Volgograd State University Received 5/DEC/85
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