Lectures on path homology theory of digraphs

Alexander Grigor’yan
Contents

Preface vii

Chapter 1. Spaces of ∂-invariant paths 1
 1.1. Paths and the boundary operator 1
 1.2. Chain complex Ω_* and path homology 2
 1.3. Digraph morphisms 4
 1.4. Examples of ∂-invariant paths 5
 1.5. Examples of spaces Ω_p and H_p 8
 1.6. An example of computation of Ω_p and H_p 10
 1.7. Path complex 11
 1.8. Hasse diagram 12
 1.9. Triangulation as a closed path 12

Chapter 2. The spaces Ω_2 and Ω_3 17
 2.1. Structure of Ω_2 17
 2.2. Spaces Ω_p and H_p for trapezohedron 20
 2.3. A cluster basis in Ω_p 22
 2.4. Structure of Ω_3 24
 2.5. Dependence on the field \mathbb{K} 33

Chapter 3. Homological dimension 35
 3.1. Some examples 35
 3.2. Digraphs with infinite homological dimension 35
 3.3. Random digraphs 37
 3.4. Homological dimension and degree 42
 3.5. Homologically spherical digraphs 43
 3.6. Computational issues 44

Chapter 4. Cartesian product and K"unneth formula 47
 4.1. Cross product of regular paths 47
 4.2. Cartesian product of digraphs 53
 4.3. ∂-invariant paths on products 54
 4.4. K"unneth formula for product 62
 4.5. Examples of Cartesian products 63
 4.6. Spaces Ω_p on n-cube 65
 4.7. Strong product 68
Chapter 5. Reduced homology and the join of digraphs 69
 5.1. Augmented chain complex 69
 5.2. The join of two digraphs 70
 5.3. Künneth formula for the join 71
 5.4. Subgraphs and Mayer-Vietoris exact sequence 73

Chapter 6. Generalized join of digraphs 83
 6.1. A generalized join of digraphs 83
 6.2. A monotone linear join 84
 6.3. An arbitrary linear join 86
 6.4. A cyclic join 88
 6.5. Homology of a generalized join 90

Chapter 7. Homotopy and related notions 93
 7.1. The notion of homotopy 93
 7.2. An example: Johnson digraphs 96
 7.3. C-homotopy of loops 102
 7.4. Fundamental group \(\pi_1 \) 104
 7.5. An application to graph coloring 105

Chapter 8. Path cohomology 107
 8.1. Exterior derivative and \(-\)-forms 107
 8.2. Example: Sperner’s lemma 109
 8.3. \(-\)-invariant forms 111
 8.4. Concatenation of forms 114
 8.5. Cohomology classes 117
 8.6. Start product and Künneth formula in cohomology 119
 8.7. Künneth formula for the join in cohomology 122
 8.8. Hochschild cohomology 126

Chapter 9. Combinatorial curvature of digraphs 129
 9.1. Motivation 129
 9.2. Curvature operator 129
 9.3. The Gauss-Bonnet formula 131
 9.4. Examples of computation of curvature 133
 9.5. Computation of \([x, \Lambda_2]\) and further examples 144

Chapter 10. Curvature of some classes of digraphs 153
 10.1. * Curvature of \(n\)-cube 153
 10.2. Curvature of the join 158
 10.3. Strongly regular digraphs 160
 10.4. Digraphs of constant curvature 162
 10.5. Cartesian product and curvature 165
 10.6. Some problems 167

Chapter 11. Fixed point theorems 169
 11.1. Lefschetz number and a fixed point theorem 169
CONTENTS

11.2. Rank-nullity formulas for trace 171
11.3. A fixed point theorem in terms of homology 174
11.4. Examples 175

Chapter 12. Intersection forms 181
12.1. Signature of bilinear forms 181
12.2. Intersection form and graded symmetry 182
12.3. Intersection form on products 184
12.4. Proper homology classes on products 186
12.5. Product formula for signature 187
12.6. Example: an intersection form on a 4-torus 191
12.7. Intersection form on the join 192
12.8. Some problems 192

Chapter 13. Hodge Laplacian 195
13.1. Definition and spectral properties of Δ_p 195
13.2. Harmonic paths 196
13.3. Lowering index 198
13.4. Matrix of Δ_p 201
13.5. Examples of computation of the matrix of Δ_1 204

Chapter 14. Spectrum of the Hodge Laplacian 213
14.1. Trace of Δ_1 213
14.2. An upper bound of $\lambda_{\text{max}}(\Delta_1)$ 216
14.3. Examples of computations of trace Δ_1 and spec Δ_1 217
14.4. Eigenvalues of Δ_1 on trapezohedron 224
14.5. Spectrum of Δ_p on the join 226
14.6. Spectrum of Δ_p on digraphs $D^*_{m,n}$ 228
14.7. Weighted Hodge Laplacian 232

Bibliography 235
Preface

This text is based on a series of lectures that I delivered at an online joint seminar of Tsinghua University and Bielefeld University in Spring 2022. The purpose of those lectures was to introduce to young researchers a new emerging area of research – the theory of path homology on digraphs and related topics.

There exists a number of ways to define the notion of homology for graphs and digraphs, for example, clique homology ([12], [44]) or singular homology ([5], [44], [49]). However, the path homology has certain advantages as it enjoys adequate functorial properties with respect to graph-theoretical operations, such as morphisms of digraphs, Cartesian products, joins, homotopy etc. The notion of path homology has a rich mathematical content, and I hope that it will become a useful tool in various areas of pure and applied mathematics.

I have tried to keep here the presentation style of the online seminar, which, in particular, featured a wealth of examples and open problems. I give here an overview of the already published results in this field, state and prove some new results, as well as pose some open questions and conjectures.

The material on the following topics is new:
- random digraphs;
- star product and Künneth formula in cohomology;
- intersection form and signature;
while the rest of the material is based on [24], [26], [27], [28], [32], [34], [35], [36], [37], [38].

A complete list of the topics covered is shown in the table of contents.

For further reading I recommend [1], [3], [4], [6], [8], [9], [10], [11], [13], [14], [15], [16], [19], [22], [23], [25], [29], [30], [31], [33], [39], [41], [42], [43], [48], [50].

Acknowledgements. The author is grateful to Chao Chen for his C++ program for computation of path homology groups that was extensively used in this research. Scientific Workplace© of MacKichan Software and Microsoft Excel© were used for other computational purposes.

The author is indebted to S.-T. Yau for initiating and leading the research on this subject as well as for his constant support and encouragement.
The author acknowledges a continued financial support of Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 317210226 - SFB 1283, as well as the hospitality and support of Tsinghua University (Beijing) and Chinese University of Hong Kong during multiple visits there.

Alexander Grigor’yan
Bielefeld, December 2022