
Path complexes and their homologies

Alexander Grigor’yan∗ Yong Lin† Yuri Muranov‡ Shing-Tung Yau§

September 2016

Abstract

We introduce the notions of a path complex and its homologies. Particular cases of path
homologies are simplicial homologies and digraph homologies. We state and prove some
properties of path homologies, in particular, the Künneth formulas for Cartesian product
and join that happen to be true at the level of chain complexes.
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1 Introduction

The subject of this paper is the notion of a path complex that unifies and generalizes the
notions of a simplicial complex and a digraph (=directed graph). In short, a path complex
P on a finite set V is a collection of paths (=sequences of points) on V such that if a path v
belongs to P then a truncated path, that is obtained from v by removing either the first or
the last point, is also in P . Given a path complex P , all the paths in P are called allowed.

Any simplicial complex S determines naturally a path complex by associating with any
simplex from S the sequence of its vertices (see Section 3 for details).

However, the main motivation for considering path complexes comes from digraphs. A
digraph G is a pair (V,E) where V is any set and E is a binary relation on V , that is, E is a
subset of V × V . If (a, b) ∈ E then the pair (a, b) is called a directed edge or arrow; this fact
is also denoted by a→ b. Any digraph naturally gives rise to a path complex where allowed
paths are those that go along arrows of the digraph.

One of our key observations is that any path complex P allows to define a chain complex
with an appropriate boundary operator that leads to the notion of homology groups of P .
We refer to this notion as a path homology.

In the case when P arises from a simplicial complex S, the path homology of P coincides
with the simplicial homology of S. If P arises from a digraph G then we obtain a new notion:
the path homology of a digraph. Although most of the results are presented in this paper for
arbitrary path complexes, we always have in mind applications for digraphs. On the other
hand, the notion of a path complex provides an alternative viewpoint for the classical results
about simplicial complexes.

There has been a number of attempts to define the notion of (co)homology for graphs.
At a trivial level, any graph can be regarded as an one-dimensional simplicial complex, so
that its simplicial homologies are defined. However, all homology groups in dimension 2 and
higher are trivial, which makes this approach uninteresting.

Another way to make a graph into a simplicial complex is to consider all its cliques
(=complete subgraphs) as simplexes of the corresponding dimensions (cf. [4], [15]). Then
higher dimensional homologies may be non-trivial, but in this approach the notion of graph
loses its identity and becomes a particular case of the notion of a simplicial complex. Besides,
some desirable functorial properties of such homologies fail, for example, the Künneth formula
is not true for Cartesian product of graphs (for example, the Cartesian product of two 4-cycles
has trivial H2 whereas H1 of 4-cycle is non-trivial).

Yet another approach to homologies of digraphs can be realized via Hochschild homology.
Indeed, allowed paths on a digraph have a natural operation of product, which allows to define
the notion of a path algebra of a digraph. The Hochschild homology of the path algebra is
a natural object to consider. However, it was shown in [14] that Hochschild homologies of
order ≥ 2 are trivial, which makes this approach not so attractive.
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In singular homology theories of graphs one uses predefined “small” graphs as basic cells
and defines singular chains as formal sums of the maps of the basic cell into the graph (see,
for example, [15], [18]). However, simple examples show that the homology groups obtained
in this way, depend essentially on the choice of the basic cells. Besides, such homologies are
extremely difficult to compute, even for small graphs, and the functorial properties are not
known at all.

The path homologies of digraphs that we present in this paper have the following advan-
tages in comparison with the previously studied notions of graph homologies.

1. The path homologies of all dimensions can be non-trivial; even for planar graphs the
path homologies can be non-trivial in dimension 2. Also, the chain complex associated
with a path complex has a richer structure than simplicial chain complexes. It contains
not only cliques but also binary hypercubes and other interesting subgraphs some of
them are reminiscent of polyhedra.

2. The path homologies are easy to compute. For small digraphs their path homologies
can be computed by hands, either by definition or by using simple properties. For
larger digraphs it can be done using any software package containing operations with
matrices, in particular, computation of the rank of a matrix.

3. The path homology theory is compatible with the homotopy theory of digraphs. The
latter was introduced by the authors in [9] (a homotopy theory for undirected graphs was
developed earlier in [1], [2]), where they proved that the path homologies of digraphs
are invariant with respect to homotopy and that the abelization of the fundamental
group is isomorphic to the one-dimensional homology group.

4. Path homologies have good functorial properties with respect to graph-theoretical oper-
ations, for example, morphisms of digraphs induce homomorphisms of path homologies.
Also, the homologies of the Cartesian product of digraphs (as well as of the join) satisfy
the Künneth formula (Theorems 5.5 and 6.6 of the present paper).

5. The path homology theory is dual to the cohomology theory of digraphs that was
introduced by Dimakis and Müller-Hoissen [5], [6] and was further developed in [12].
The latter theory is based on a classification of [3] of exterior derivations on algebras,
and the coboundary operator arises naturally as an exterior derivative on the algebra
of functions on the vertex set of the digraph. However, in the present paper we do not
discuss cohomologies.

We feel that the notion of path homologies (and the dual notion of cohomologies) has
a rich mathematical content and hope that it will become a useful tool in various areas of
pure and applied mathematics. For example, this notion was employed in [11] to give a new
elementary proof of a theorem of Gerstenhaber and Schack [7] that gives a representation of
simplicial homology as a Hochschild homology. A link between path homologies of digraphs
and cubical homologies was revealed in [10]. Homology and homotopy of digraphs may
become use in some graph coloring problems – a simple example of this type has appeared in
[9]. On the other hand, it is conceivable that the notion of path homologies of digraphs can
be used in practical applications such as coverage verification in sensor networks (cf. [17]),
and many others.

Let us briefly describe the structure of the paper and the main results. In Section 2 we
introduce the notion of a boundary operator on paths on a finite set V . In Section 3 we define
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the notions of a path complex, a ∂-invariant path (an element of a chain complex), and the
path homologies.

In Section 4 we give some examples of digraphs and ∂-invariant paths there. We state
some basic results about path homologies of digraphs, which allow to compute homology
groups of simple digraphs (the proofs can be found in [8]).

In Section 5 we introduce the operation join of two path complexes and prove the Künneth
formula for it (Theorem 5.5). Particular cases of join are operation of taking a cone and
suspension of a digraph that behave homologically in the same way as those in the classical
algebraic topology.

In Section 6 we introduce the notions of cross product of paths and Cartesian product
of path complexes. The latter matches the notion of the Cartesian product of digraphs. We
state and prove the Künneth formula for Cartesian product (Theorem 6.6) and give some
examples.

Most difficult and interesting results of this paper are Theorems 5.5 and 6.6. In the setting
digraphs these theorem were proved in [13], while in the present paper we prove them in a
more general setting of path complexes.

2 Paths on a finite set

Let V be an arbitrary non-empty finite set whose elements will be called vertices. For any
non-negative integer p, an elementary p-path on a set V is any sequence {ik}

p
k=0 of p + 1

vertices of V (a priori the vertices in the path do not have to be distinct). For p = −1, an
elementary p-path is an empty set ∅. The p-path {ik}

p
k=0 will also be denoted simply by

i0...ip, without delimiters between the vertices.

2.1 Boundary operator

Fix a field K and consider a K-linear space Λp = Λp (V ) that consists of all formal linear
combinations of all elementary p-paths with the coefficients from K. The elements of Λp are
called p-paths on V . An elementary p-path i0...ip as an element of Λp will be denoted by
ei0...ip . The empty set as an element of Λ−1 will be denoted by e.

By definition, the family
{
ei0...ip : i0, ..., ip ∈ V

}
is a basis in Λp, and any p-path v ∈ Λp

has a unique representation in the form

v =
∑

i0,...,ip∈V

vi0...ip ei0...ip , (2.1)

where vi0...ip ∈ K. For example, Λ0 consists of all linear combinations of ei where i ∈ V , Λ1

consists of all linear combinations of eij where i, j ∈ V , etc. Note that, Λ−1 consists of all
multiples of e so that Λ−1

∼= K.
For any p ≥ 0, define the boundary operator ∂ : Λp → Λp−1 as a linear operator that acts

on elementary paths by

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
, (2.2)

where the hat îq means omission of the index iq. For example, we have

∂ei = e, ∂eij = ej − ei, ∂eijk = ejk − eik + eij . (2.3)
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It follows that, for any v ∈ Λp,

(∂v)j0...jp−1 =
∑

k∈V

p∑

q=0

(−1)q vj0...jq−1k jq ...jp−1 . (2.4)

For example, for any u ∈ Λ0 and v ∈ Λ1 we have

∂u =
∑

k∈V

uk and (∂v)i =
∑

k∈V

(
vki − vik

)
.

Set also Λ−2 = {0} and define ∂ : Λ−1 → Λ−2 to be zero.

Lemma 2.1 We have ∂2 = 0. Hence, Λ∗ = {Λp} is a chain complex.

Proof. The operator ∂2 acts from Λp to Λp−2, so that the identity ∂2 = 0 makes sense
for all p ≥ 0. In the case p = 0 the identity ∂2 = 0 is trivial. For p ≥ 1, we have by (2.2)

∂2ei0...ip =
p∑

q=0

(−1)q ∂ei0...îq ...ip

=
p∑

q=0

(−1)q




q−1∑

r=0

(−1)r ei0...îr...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip





=
∑

0≤r<q≤p

(−1)q+r ei0...îr...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence ∂2ei0...ip =
0. This implies ∂2v = 0 for all v ∈ Λp.

2.2 Join of paths

For all p, q ≥ −1 and for any two paths u ∈ Λp and v ∈ Λq define their join uv ∈ Λp+q+1 as
follows:

(uv)i0...ipj0...jq = ui0...ipvj0...jq . (2.5)

Clearly, join of paths is a bilinear operation that satisfies the associative law (but is not
commutative). It follows from (2.5) that

ei0...ipej0...jq = ei0...ipj0...jq . (2.6)

If p = −2 and q ≥ −1 then set uv = 0 ∈ Λq−1. A similar rule applies if q = −2 and p ≥ −1.

Lemma 2.2 (Product rule) For all p, q ≥ −1 and u ∈ Λp, v ∈ Λq we have

∂ (uv) = (∂u)v + (−1)p+1 u∂v. (2.7)

Proof. It suffices to prove (2.7) for u = ei0...ip and v = ej0...jq . We have

∂ (uv) = ∂ei0...ipj0...jq = ei1...ipj0...jq − ei0i2...ipj0...jq + ...

+(−1)p+1 (ei0...ipj1...jq − ei0...ipj0j2...jq + ...
)

=
(
∂ei0...ip

)
ej0...jq + (−1)p+1 ei0...ip∂ej0...jq ,

whence (2.7) follows.
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2.3 Regular paths

We say that an elementary path i0...ip is regular if ik−1 6= ik for all k = 1, ..., p, and non-
regular otherwise. For example, a 2-path iij is non-regular, while a 2-path iji is regular
provided i 6= j.

For any p ≥ −1, consider the following subspace of Λp spanned by the regular elementary
paths:

Rp = Rp (V ) := span
{
ei0...ip : i0...ip is regular

}
.

The elements of Rp are called regular p-paths.
We would like to consider the operator ∂ on the spaces Rp. However, ∂ is not invariant

on the family {Rp}. For example, eiji ∈ R2 for i 6= j while

∂eiji = eji − eii + eij /∈ R1

as it has a non-regular term eii. The same applies to the notion of join of paths: the join of
two regular paths does not have to be regular, for example, eiei = eii.

However, it is easy to show that ∂ is invariant on the complementary spaces Np spanned
by non-regular p-paths, which allows us to extend ∂ to the quotient spaces Λp/Np. Then
we pull this ∂ back to Rp using Rp

∼= Λp/Np. The operator ∂ : Rp → Rp−1 defined in this
way is called the regular boundary operator. The formula (2.2) remains true for the regular
∂ except that in this case all non-regular terms on the right hand side should be treated as
zero. For example, we have for the regular operator ∂

∂eiji = eji − eii + eij = eji + eij ∈ R1

provided i 6= j.
Similarly one defines the regular join, using the fact that the join of an element of Np

with any element of Λq is in Np+q+1 (see [8] for details). This allows us to define join on the
quotients Λp/Np and then pull back to Rp. The formula (2.6) remains true for regular join
provided we treat a non-regular path in the right hand side as zero. For example, for the
regular join we have eijeji = eijji = 0.

It follows from the above constructions that the regular versions of ∂ and join also satisfy
∂2 = 0 and the product rule (2.7), for all u ∈ Rp and v ∈ Rq. In particular, R∗ = {Rp} is a
chain complex.

Let V, V ′ be two finite set. Any map f : V → V ′ induces the map

f∗ : Λp(V )→ Λp(V
′)

by the rule
f∗
(
ei0...ip

)
= ef(i0)...f(ip).

The map f∗ evidently commutes with ∂ and, hence, is a morphism Λ∗(V ) → Λ∗(V ′) of
chain complexes. Since f∗ maps non-regular paths to non-regular, it induces a morphism
R∗(V )→ R∗(V ′) of chain complexes.

3 Path complexes

3.1 The notion of path complex

Definition 3.1 A path complex over a set V is a non-empty collection P of elementary paths
on V with the following property:

if i0...in ∈ P then i0...in−1 ∈ P and i1...in ∈ P. (3.1)
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Figure 1: A simplicial complex (left) and a digraph (right)

When a path complex P is fixed, all the paths from P are called allowed, whereas the
elementary paths that are not in P are called non-allowed. Condition (3.1) means that if we
remove the first or the last element of an allowed n-path then the resulting (n− 1)-path is
also allowed.

The set of all n-paths from P is denoted by Pn. The set P−1 consists of a single empty
path e. The elements of P0 (that is, allowed 0-paths) are called the vertices of P . Clearly,
P0 is a subset of V . By the property (3.1), if i0...in ∈ P then all ik are vertices of P . Hence,
we can (and will) remove from the set V all non-vertices so that V = P0.

Example 3.2 By definition, an abstract finite simplicial complex S is a collection of subsets
of a finite vertex set V that satisfies the following property:

if σ ∈ S then any subset of σ is also in S.

Let us enumerate the elements of V by distinct reals and identify any subset s of V with
the elementary path that consists of the elements of s put in the (strictly) increasing order.
Denote by P (S) this collections of elementary paths on V that uniquely determines S. The
defining property of a simplex can be restated the following:

if v ∈ P (S) then any subsequence of v is also in P (S) . (3.2)

Consequently, the family P (S) satisfies the property (3.1) so that P (S) is a path complex.
The allowed n-paths in P (S) are exactly the n-simplexes.

For example, the simplicial complex on Fig. 1(left) has the following path complex:
P0 = {0, 1, ..., 8},
P1 = {01, 02, 03, 04, 05, 06, 07, 08, 12, 34, 35, 45, 67, 68, 78},
P2 = {012, 034, 035, 045, 345, 678},
P3 = {0345}.

Example 3.3 Let G = (V,E) be a finite digraph, where V is a finite set of vertices and E
is the set of directed edges, that is, E ⊂ V × V . The fact that (i, j) ∈ E will also be denoted
by i→ j.

An elementary n-path i0...in on V is called allowed if ik−1 → ik for any k = 1, ..., n.
Denote by Pn = Pn (G) the set of all allowed n-paths. In particular, we have P0 = V and
P1 = E. Clearly, the collection P =

⋃
n Pn of all allowed paths satisfies the condition (3.1)
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so that P is a path complex. This path complex is naturally associated with the digraph G
and will be denoted by P (G).

For example, a digraph on Fig. 1(right) has the following path complex:
P0 = {0, 1, ..., 8},
P1 = {01, 02, 03, 04, 05, 06, 07, 08, 12, 34, 35, 45, 67, 68, 78},
P2 = {012, 034, 035, 045, 067, 068, 678},
P3 = {0345, 0678}.

It is easy to see that a path complex arises from a digraph if and only if it satisfies the
following additional condition: if in a path i0...in all pairs ik−1ik are allowed then the whole
path i0...in is allowed.

It is easy to show that a path complex P arises from a simplicial complex if and only if
it satisfies the following two properties.

1. Any subsequence of any path from P is also in P (we say in this case that the path
complex P is perfect).

2. There is an injective real-valued function on the vertex set of P that is strictly monotone
increasing along any path from P .

3.2 Homologies of path complex

Given an arbitrary path complex P = {Pn}
∞
n=0 over a finite set V , consider for any integer

n ≥ −1 the K-linear space An that is spanned by all the elementary n-paths from P , that is

An = An (P ) = span {ei0...in : i0...in ∈ Pn} .

The elements of An are called allowed n-paths. By construction, An is a subspace of Λn. For
example, Ap = Λp for p ≤ 0, while A1 is spanned by all edges of P and can be smaller than
Λ1.

We would like to restrict the operator ∂ defined on spaces Λn to the subspaces An. For
some path complexes it can happen that ∂An ⊂ An−1, so that the restriction is straight-
forward. If it is not the case then an additional construction is needed as will be explained
below. The inclusion ∂An ⊂ An−1 takes place, for example, for perfect path complexes. In
this case we obtain a chain complex

0← K← A0 ← ...← An−1 ← An ← ... (3.3)

whose homology groups are denoted by H̃n (P ) , n ≥ −1, and are referred to as the reduced
path homologies of P . Consider also the truncated complex

0← A0 ← ...← An−1 ← An ← ... (3.4)

whose homology groups are denoted by Hn (P ) , n ≥ 0, and are referred to as the path
homologies of P . For example, this construction works if the path complex P arises from a
simplicial complex S. Then the path homology groups of P coincide with the corresponding
simplicial homology groups of S.

Now consider the general case when ∂An does not have to be a subspace of An−1. For
example, this is the case for a digraph

↗

1
•↘

0 • •2
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where the 2-path e012 is allowed, while ∂e012 = e12 − e02 + e01 is non-allowed because e02 is
non-allowed.

For a general path complex P and for any n ≥ −1, define the following subspace of An:

Ωn = Ωn (P ) = {v ∈ An : ∂v ∈ An−1} . (3.5)

Note that Ωn = An for n ≤ 1 while for n ≥ 2 the space Ωn can be actually smaller that An.
We claim that always ∂Ωn ⊂ Ωn−1. Indeed, if v ∈ Ωn then ∂v ∈ An−1 and ∂ (∂v) = 0 ∈ An−2

whence it follows that ∂v ∈ Ωn−1, which was to be proved.
The elements of Ωn are called ∂-invariant n-paths. Thus, we obtain the augmented chain

complex of ∂-invariant paths:

0← K← Ω0 ← ...← Ωn−1 ← Ωn ← Ωn+1 ← ... (3.6)

where all mappings are given by ∂. Consider also its standard (non-augmented) version

0← Ω0 ← ...← Ωn−1 ← Ωn ← Ωn+1 ← ... (3.7)

The homology groups of (3.7) are referred to as the path homology groups of the path complex
P and are denoted by Hn (P ) , n ≥ 0. The homology groups of (3.6) are called the reduced
path homology groups of P and are denoted by H̃n (P ) , n ≥ −1.

Definition 3.4 A path complex P is called regular if it contains no 1-path of the form ii.
Equivalently, P is regular if all the paths i0...in ∈ P are regular.

For example, the path complex of a simplicial complex is always regular. The path
complex of a digraph is regular if and only if the digraph is loopless, that is, if the 1-paths ii
are not edges.

For a regular path complex the above construction of the spaces Ωn allows the following
variation. As the space An of allowed n-path is in this case a subspace of the space Rn

of regular n-paths, we can replace in (3.5) the non-regular boundary operator ∂ on Λn by
the regular boundary operator on Rn as described in Section 2.3. The resulting space Ωn is
referred to as a regular space of ∂-invariant paths. Hence, if the path complex P is regular
then we can consider also regular versions of the chain complexes (3.6) and (3.7) and the
regular versions of homology groups.

If the path complex P is perfect then we obtain Ωn (P ) = An (P ) for all n (in this case
there is no difference between regular and non-regular versions). Hence, in this case the chain
complex (3.6) is identical to (3.3), and (3.7) is identical to (3.4).

If P (G) is the path complex of a digraph G then we use the notation Ωn (G) := Ωn (P (G)).
The corresponding homology groups are denoted by Hn (G), respectivelyH̃n (G), and are
referred to as the path homologies of the digraph G.

The Euler characteristic of the path complex is defined by

χ (P ) =
n∑

p=0

(−1)p dim Hp (P ) (3.8)

provided there exists n that dim Hp (P ) = 0 for all p > n. For a regular path complex P there
is a regular and non-regular versions of χ (P ) that do not have to match.
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3.3 Some properties of path homologies

Let us state some simple properties of the space Ωn (P ) and Hn (P ).

Proposition 3.5 ([8]) (a) If dimΩn = 0 then dimΩp = 0 for all p > n.
(b) For a regular chain complex {Ω∗}, the condition dimΩn ≤ 1 for some n implies that

dimΩp = 0 for all p > n.

Proposition 3.6 ([8]) For any path complex P we have dim H0 (P ) = k, where k is the
number of connected components1 of P . Moreover, H0 (P ) is generated by any set {ei1 , ..., eik}
of k vertices belonging to different connected components.

In particular, if P is connected then dim H0 (P ) = 1 and, hence, dim H̃0 (P ) = 0.

Let P be a regular path complex over a set V and P ′ be a regular path complex over a
set V ′.

Definition 3.7 We say, that a map f : V → V ′ is a morphism of path complexes from P to
P ′ if, for any path v ∈ P , the path f∗ (v) either lies in P ′ or is non-regular.

Proposition 3.8 Any morphism f : V → V ′ of path complexes P and P ′ induces a morphism
of regular chain complexes

f∗ : Ω∗(P )→ Ω∗(P
′)

and, consequently, a homomorphism of regular homology groups

f∗ : H∗(P )→ H∗(P
′).

Proof. Any allowed path v ∈ An (P ) is a linear combination of paths ei0...in ∈ P and,
hence, f∗ (v) is a linear combination of paths f∗ (ei0...in) that are either in P ′ or non-regular.
Since non-regular paths are treated as zero, we obtain that f∗ (v) ∈ An (P ′). If v ∈ Ωn (P )
then ∂v ∈ An−1 (P ) and, hence,

∂ (f∗ (v)) = f∗ (∂v) ∈ An−1

(
P ′) ,

which implies f∗ (v) ∈ Ωn (P ′). Hence, f∗ is a morphism of regular chain complexes. The
second claim is standard.

4 Digraphs

4.1 Path homologies on digraphs

In this section we give some examples of ∂-invariant paths on digraphs without loops, that
is, edges of the form a→ a. If G = (V,E) is a digraph without loops then its path complex
P (G) is regular. We deal here with the regular spaces Ωn (G) = Ωn (P (G)) and regular
homology groups Hn (G) = Hn (P (G)) and H̃n (G) = H̃n (P (G)) .

1A connected component of P is any minimal subset U of V that if i ∈ U then U contains any vertex j ∈ V
such that ij or ji is an allowed 1-path.
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Triangles and squares. Let us call by a triangle a sequence of three distinct vertices
a, b, c ∈ V such that there are arrows a→ b, b→ c, a→ c:

b
•

a•
↗
→

↘
•c

Note that a triangle determines a 2-path eabc ∈ Ω2 as eabc ∈ A2 and ∂eabc = ebc − eac + eab ∈
A1. The 2-path eabc will also be referred to as a triangle.

Let us call by a square a sequence of four distinct vertices a, b, b′, c ∈ V such that there
are arrows a→ b, b→ c, a→ b′, b′ → c:

b• −→ •c
↑ ↑

a• −→ •b′

Note that a square determines a 2-path v := eabc − eab′c ∈ Ω2 as v ∈ A2 and

∂v = (ebc − eac + eab)− (eb′c − eac + eab′) = eab + ebc − eab′ − eb′c ∈ A1.

The 2-path v will also be referred to as a square.
A double edge is a pair of distinct vertices a, b ∈ V such that there are arrows a→ b and

b→ a. It determines a 2-path eaba ∈ Ω2 because eaba ∈ A2 and

∂eaba = eba − eaa + eab = eba + eab ∈ A2

(since the chain complex {Ω∗} is regular, we have eaa = 0). The 2-path eaba will also be
referred to as a double edge.

Proposition 4.1 ([9, Prop. 2.9], [8])
(a) Any element of Ω2 (G) is a linear combination of double edges, triangles, and squares.
(b) Assume that a digraph G = (V,E) contains neither double edges nor squares. Then

dimΩ2 (G) is equal to the number of distinct triangles in G, and dimΩp (G) = 0 for all p > 2.

Consequently, if G contains neither double edges nor triangles nor squares then dimΩp (G) =
dim Hp (G) = 0 for all p ≥ 2.

In part (a) one cannot relate directly dimΩ2 to the number of squares and triangles since
there may be a linear dependence between. Indeed, consider the following digraph:

1
•

0
↗
• →
↘

2
•

↘
→ •
↗

4

•
3

It contains three squares 0124, 0134, and 0234 which determine three ∂-invariant paths

e014 − e024, e024 − e034, e034 − e014.

These paths are linearly dependent as their sum is equal to 0. It is easy to see that dimΩ2 = 2.
For this digraph all reduced homologies are trivial.

In the presence of squares one may have non-trivial Ωp for arbitrary p as one can see from
numerous examples in the next sections.

11



Figure 2: A snake

Snake. A snake of length p is a digraph with p + 1 vertices, say 0, 1, ..., p, and with the
arrows i→ (i + 1) and i→ (i + 2) (see Fig. 2). In particular, any triple i (i + 1) (i + 2) is a
triangle.

A snake of length p contains a ∂-invariant p-path v = e01...p. Indeed, this path is obviously
allowed, its boundary

∂v =
p∑

k=0

(−1)k e
0...k̂...p

is also allowed (because (k − 1) (k + 1) is an arrow), whence v ∈ Ωp.

Simplex-digraph. Let us define for any n ≥ 0 a simplex-digraph Smn as follows: its set of
vertices is {0, 1, ..., n} and the arrows are i→ j for all i < j. For example, we have

Sm1 = 0• → •1, Sm2 = ↗

2
•↖

0• → •1
,

and Sm3 is shown on Fig. 3.

Figure 3: A 3-simplex digraph Sm3

Since a simplex contains a snake as a subgraph, the n-path v = e01...n is ∂-invariant on
Smn .

Star-shaped digraphs. We say that a digraph G is star-shaped if there is a vertex a (called
a star center) such that there is an arrow a→ b for all b 6= a. Similarly, a digraph G is called
inverse star-shaped if if there is a vertex a (called a star center) such that there is an arrow
b→ a for all b 6= a

For example, any simplex-digraph is star-shaped and inverse star-shaped.

Proposition 4.2 (A Poincaré lemma) If G is a (inverse) star-shaped digraph, then all re-
duced homologies H̃n (G) are trivial.

12



The proof can be found in [8]. Alternatively, Proposition 4.2 is an easy consequence of
Theorem 5.5, as will be explained below in Section 5.2.

It follows from Proposition 4.2 that all reduced homologies of Smn are trivial.

Cycles. We say that a digraph G = (V,E) is a cycle-graph if it is connected (as an undi-
rected graph) and every vertex has the degree 2. For a cycle-graph we have dim H0 (G) = 1
and dimΩ0 (G) = |V | = |E| = dimΩ1 (G) .

Proposition 4.3 ([8], [9, Ex. 2.8]) Let G be a cycle-graph. Then

dimΩp (G) = 0 ∀p ≥ 3 and dim Hp (G) = 0 ∀p ≥ 2.

If G is a triangle or a square then

dimΩ2 (G) = 1, dim H1 (G) = 0, χ (G) = 1

whereas otherwise
dimΩ2 (G) = 0, dim H1 (G) = 1, χ (G) = 0.

In the latter case, the spanning element of H1 (G) is the 1-path σ such that

σi(i+1) =

{
1, if i (i + 1) is an edge
−1, if (i + 1) i is an edge,

(4.1)

and all other components of σ vanish.

Möbius band. Consider a (undirected) graph G on Fig. 4 with 6 vertices and 12 edges.

Figure 4: Graph G in two representations: embedded on the Möbius band (left) and in R3

(right).

As an one-dimensional simplicial complex, G has simplicial homologies H∗ (C∗ (G)). On
the other hand, let us introduce arbitrarily a set D of directions on the edges of G, so that
(G,D) is a digraph and, hence, has the digraph homologies H∗ (G,D). Let us show that for,
any choice of D,

H1 (C∗ (G)) 6= H1 (G,D) . (4.2)

Let Ω∗ be the chain complex of the digraph (G,D) . In particular, dimΩ0 = 6 that is the
number of vertices, and dimΩ1 = 12 that is the number of edges. By homological algebra,
we have the following universal identity

dim H1 (Ω)− dim H0 (Ω) = dimΩ1 − dimΩ0 − dim ∂Ω2

13



and an analogous identity for the simplicial homologies. Since the graph G is connected, we
have dim H0 (Ω) = 1. It follows that

dim H1 (Ω) = 7− dim ∂Ω2.

A similar formula holds for the simplicial homologies:

dim H1 (C∗ (G)) = 7− dim ∂C2 (G) = 7,

since C2 (G) is trivial.
It remains to show that the space ∂Ω2 is non-trivial for any choice D of the edge directions,

which will yield
dim H1 (G,D) ≤ 6

and, hence, (4.2). For that it suffices to verify that there is at least one triangle abc in (G,D)
since then eabc ∈ Ω2 and ∂eabc 6= 0. Indeed, let us try to define directions D on the edges of
G so that (G,D) contains no triangles. Then any undirected triangle in G must become one
of the two cycles

• ←− •
↘
•
↗ or

• −→ •
↖
•
↙

Given a direction of the edge 03, this requirement determines uniquely the directions of all
other edges (cf. Fig. 5), up to the edge 23. However, with any direction on 23 the sequence
023 will become a triangle, which finishes the proof.

Figure 5: Any direction of the edge 23 will create a triangle

Connected sum. A digraph G = (V,E) is called the connected sum of digraphs G′ =
(V ′, E′) and G′′ = (V ′′, E′′) if V = V ′ ∪ V ′′, E = E′ ∪ E′′ and V ′ ∩ V ′′ consists of a single
vertex.

Proposition 4.4 ([12]) If G is a connected sum of G′ and G′′ then

H̃∗ (G) ∼= H̃∗
(
G′)⊕ H̃∗

(
G′′) .

For example, the digraph G on the right panel of Fig. 1 is a connected sum of a triangle
012 and two 3-simplexes 0678, 0345. Since all reduced homologies of simplexes are trivial,
we obtain that all the reduced homology groups of G are trivial.
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4.2 Homologies of subgraphs

Proposition 4.5 ([8], [9]) Suppose that a digraph G has a vertex a with n outcoming arrows
a → b0, a → b1, ..., a → bn−1 and no incoming arrows. Assume also that there are arrows
b0 → bi for all i ≥ 1:

a
↗
• →
↘

• b1
↑
•
↓

b0

• b2

∙ ∙ ∙ G′ G

Denote by G′ the digraph that is obtained from G by removing the vertex a with all adjacent
edges. Then H∗ (G) ∼= H∗ (G′).

The same is true if a vertex a has n incoming arrows b0 → a, b1 → a, ..., bn−1 → a and no
outcoming arrows, while there are arrows bi → b0 for all i ≥ 1.

Corollary 4.6 Let a digraph G be a tree (that is, the underlying undirected graph is a tree).
Then Hp (G) = 0 for all p ≥ 1.

Example 4.7 Consider a digraph G as shown in Fig. 6.

Figure 6: A digraph with many triangles and squares

Each of the vertices ak satisfies the hypotheses of Proposition 4.5 with n = 2 (either
with incoming or outcoming arrows). Removing successively the vertices ak, we see that all
the homologies of G are the same as those of the remaining digraph b• → •c. Since it is
a star-shaped digraph, we obtain dim H0 = 1 and dim Hp = 0 for all p ≥ 1. In particular,
χ = 1.

A pair cb of distinct vertices on a digraph is called a semi-edge if c 6→ b but there is a
vertex j such that c→ j and j → b as on the diagram:

•b
�
•c

↖
↗ • j

Proposition 4.8 ([8]) Let the field K has characteristic 0. Suppose that a digraph (V,E)
has a vertex a such that there is only one outcoming arrow a → b from a and only one
incoming arrow c → a, where b 6= c. Denote by G′ the digraph that is obtained from G by
removing the vertex a and the adjacent edges a→ b, c→ a:

a •↗↖

•b
...
•c

G′ G
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Then the following is true.

(a) For any p ≥ 2,
dim Hp (G) = dim Hp(G

′). (4.3)

(b) If cb is an edge or a semi-edge in G′ then (4.3) is satisfied also for p = 0, 1, that is, for
all p ≥ 0.

(c) If cb is neither edge nor semi-edge in G′, but b, c belong to the same connected component
of G′ then dim H1 (G) = dim H1 (G′) + 1 and dim H0 (G) = dim H0 (G′) .

(d) If b, c belong to different connected components of G′ then dim H1 (G) = dim H1(G′)
and dim H0 (G) = dim H0(G′)− 1.

Consequently, in the case (b) , χ (G) = χ (G′) , whereas in the cases (c) and (d) , χ (G) =
χ (G′)− 1.

Example 4.9 Consider the digraphs

G =

b
•

a•↗↖ ↓ ↖
↗•

d

•
c

and G′ =

b
•
↓ ↖

↗•
d

•
c

Since cb is semi-edge in G′ we have case (b) so that all homologies of G and G′ are the same.
Removing further vertex d we obtain a digraph b• → •c that will be denoted by G′′. It is a
star-shaped digraph with dim Hp (G′′) = 0 for p ≥ 1. Since cb is neither edge nor semi-edge
in G′′, but the digraph is connected, we conclude by case (c) that

Hp

(
G′) = Hp

(
G′′) for p ≥ 2,

and
dim H1

(
G′) = dim H1

(
G′′)+ 1 = 1.

It follows that dim Hp (G) = 0 for p ≥ 2 and dim H1 (G) = 1.

Example 4.10 Consider a digraph on Fig. 7 (an anti-snake).

Figure 7: An anti-snake

We start building this digraph with 1 → 2. Since 21 is neither edge nor semi-edge, adding
a path 2→ 3→ 1 increases dim H1 by 1 and preserves other homologies. Since 23 is an edge,
adding a path 2 → 4 → 3 preserves all homologies. Since 34 is neither edge nor semi-edge,
adding a path 3 → 5 → 4 increases dim H1 by 1 and preserves other homologies. Similarly,
adding a path 5→ 6→ 4 preserves all homologies.

One can repeat this pattern arbitrarily many times. By doing so we construct a digraph
with a prescribed positive integer value of dim H1 while keeping dim Hp = 0 for all p ≥ 2.
Consequently, the Euler characteristic χ can take arbitrary negative integer values.
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Example 4.11 Consider a digraph on Fig. 1(right). By Proposition 4.5, we can remove
the vertices 5 and 8 (and their adjacent edges) without change of homologies. Then by the
same proposition we can remove 4 and 7. By Proposition 4.8 we can remove the vertex 1.
The resulting digraph with the vertices 0, 2, 3, 6 is star-shaped, so that by Proposition 4.2 the
homology groups Hp are trivial for all p ≥ 1, while dim H0 = 1.

5 Join of path complexes

In this and next sections we use slightly different way of denoting the path spaces associated
with a given path complex as we will have to consider path complexes on more than one
set. Given a finite set V , denote by P (V ) a path complex on V . The space An (P (V )) of
all allowed n-paths will be denoted shortly by An (V ). Similarly, the space Ωn (P (V )) of
all ∂-invariant n-paths will be denoted by Ωn (V ). Similar notation will apply to all other
relevant notions including path homologies Hn (V ), etc.

In this section the range of n is n ≥ −1 so that we use the augmented chain complexes
(3.6).

5.1 Definition and examples of join

Definition 5.1 Given two disjoint finite sets X,Y and their path complexes P (X) , P (Y ),
set Z = X t Y and define a path complex P (Z) as follows: P (Z) consists of all paths of
the form uv where u ∈ P (X) and v ∈ P (Y ). The path complex P (Z) is called a join of
P (X) , P (Y ) and is denoted by P (Z) = P (X) ∗ P (Z) .

The operation ∗ on the path complexes is obviously non-commutative but associative.
An example of the path uv ∈ P (Z) is shown on Fig. 8(left). Note that each of u, v can be
empty so that all allowed paths on X and Y will also be allowed on Z.

Figure 8: Join of two paths (left) and join of two digraphs (right)

Example 5.2 Let X,Y be two digraphs with disjoint sets of vertices. Consider the digraph
Z whose the set of vertices is X t Y , while the set of edges of Z consists of all the edges of
X and Y , as well as of all the edges x→ y for all x ∈ X and y ∈ Y . The digraph Z is called
a join of X and Y and is denoted by X ∗ Y. An example of a join of two digraphs is shown
on Fig. 8(right).
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Let P (Z) be the path complex arising from the digraph structure of Z. Then it is
obvious from the definition that P (Z) is the join of P (X) and P (Y ) so that P (X ∗ Y ) =
P (X) ∗ P (Y ). Hence, the operation of joining of digraphs is compatible with the operation
of joining path complexes.

Example 5.3 Let X and Y be the vertex sets of finite simplicial complexes S (X) and
S (Y ) . Let us construct a simplicial complex S (Z) with the vertex set Z = X tY as follows.
Assuming that |X| = n and |Y | = m, embed the set X (together with all simplexes from
S (X)) into a hyperplane hn−1 ⊂ Rn+m−1 and Y — into a hyperplane hm−1 ⊂ Rn+m−1,
where the hyperplanes hn−1, hm−1 are orthogonal and non-intersecting. For any two simplexes
σ1 ∈ S (X) and σ2 ∈ S (Y ), define their join σ1 ∗σ2 as the convex hull of σ1 and σ2 embedded
in Rn+m−1 as above (see Fig. 9).

Figure 9: A join σ1 ∗ σ2 of two one-dimensional simplexes σ1, σ2 (case n = m = 2)

Due to a general position of σ1 and σ2, the join σ1 ∗ σ2 is also a simplex. Then S (Z) is
a collection of all simplexes σ1 ∗ σ2 with σ1 ∈ S (X) and σ2 ∈ S (Y ). We refer to S (Z) as a
join of simplicial complexes S (X) , S (Y ) and denote it by S (X) ∗ S (Y ).

Equivalently, one can define S (Z) in an abstract way without embedding into a Euclidean
space. Indeed, considering simplexes as sequences of vertices, we can say that S (Z) consists of
all simplexes of the form [x0, ..., xp, y0, ..., yq] where [x0, ..., xp] ∈ S (X) and [y0, ..., yq] ∈ S (Y ).
It is clear that S (Z) is a simplicial complex as it satisfies the defining property (3.2). It
is also obvious that the path complexes P (X) , P (Y ) , P (Z) of the simplicial complexes
S (X) , S (Y ) , S (Z), respectively, satisfy P (Z) = P (X) ∗ P (Y ) . Hence, the operation of
joining of simplicial complexes is compatible with the operation of joining path complexes.

Proposition 5.4 Let P (X) and P (Y ) be two path complexes and let P (Z) = P (X)∗P (Y ).
If u ∈ Ωp (X) and v ∈ Ωq (Y ) then uv ∈ Ωp+q+1 (Z) . Moreover, the operation u, v 7→ uv of
join extends to that for the homology classes u ∈ H̃p (X) and v ∈ H̃q (Y ) so that uv ∈
H̃p+q+1 (Z) .

Proof. If u and v are allowed then uv is allowed on Z by definition. In particular, if
u ∈ Ωp (X) and v ∈ Ωq (Y ) then uv ∈ Ap+q+1 (Z) . Let us show that ∂ (uv) ∈ Ap+q (Z),
which would imply uv ∈ Ωp+q+1 (Z). Indeed, we have by (2.7)

∂ (uv) = (∂u) v + (−1)p+1 u (∂v) . (5.1)
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Since ∂u and ∂v are also allowed, we obtain that the right hand side here is allowed, whence
the claim follows.

If u, v are cyles, then by (5.1) the join uv is a cycle for Z. We are left to verify that the
homology class of uv depends only on the homology classes of u and v. For that it suffices
to prove that if either u or v is a boundary then so is uv. Indeed, if u = dw then

∂ (wv) = (∂w) v + (−1)p w (∂v) = uv

so that uv is a boundary.

5.2 Path homologies of join

Before we state the main theorem, let us recall some notations from homological algebra. Let
{Ap}p≥p0

be a sequence of finite dimensional linear spaces over K enumerated by an integer
parameter p. Denote by A• the direct sum of all Ap, that is

A• =
⊕

p≥p0

Ap

so that A• is a graded linear space. If {Ap} is a chain complex with the boundary operator
∂A then ∂A extends linearly to an operator in A• that respects a graded structure. It will be
convenient identify A• with the chain complex A∗ = {Ap} as A• contains the same information
as A∗. The sequence of homologies {Hp (A•)} of the chain complex A• gives rise to a graded
linear space H• (A•) .

Given two graded linear spaces A• and B• as above, define their tensor product by

A• ⊗B• =
⊕

p,q
(Ap ⊗Bq) ,

where Ap ⊗Bq is the tensor product over K of the linear spaces Ap and Bq. In other words,
A• ⊗B• = C• where

Cr =
⊕

{p,q:p+q=r}
(Ap ⊗Bq) .

If A• and B• are chain complexes with the boundary operators ∂A and ∂B , respectively,
then define the boundary operator ∂C in C• by

∂C (u⊗ v) = (∂Au)⊗ v + (−1)p u⊗ (∂Bv) (5.2)

for all u ∈ Ap and v ∈ Bq. It is well-known that ∂2
C = 0 so that C• with ∂C is a chain complex.

Furthermore, by a theorem of Künneth, we have the following identity for homologies:

H• (C•) ∼= H• (A•)⊗H• (B•) (5.3)

that is,
Hr (C•) ∼=

⊕

{p,q:p+q=r}
Hp (A•)⊗Hq (B•)

(see [16]). Given a graded linear space A•, define a graded space A′
• by

A′
n := An−1.

If A• is a chain complex then also A′
• is a chain complex with the same boundary operator.

Given a regular path complex P (V ) on a finite set V , we consider as before the spaces
Rn (V ) ,An (V ) and Ωn (V ), where n ≥ −1. Then we have the chain complexes R• (V ),
R′

• (V ), Ω• (V ), Ω′
• (V ) with the regular boundary operator ∂ and a graded space A• (V ).
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Theorem 5.5 Let X,Y be two finite non-empty sets and P (X) and P (Y ) be regular path
complexes on X and Y , respectively. Set Z = X t Y and consider the join path complex
P (Z) = P (X) ∗ P (Y ). Then we have the following isomorphism of the chain complexes:

Ω• (Z) ∼= Ω′
• (X)⊗ Ω• (Y ) , (5.4)

where the mapping Ω′
• (X)⊗ Ω• (Y )→ Ω• (Z) is given by u⊗ v 7→ uv.

It follows from (5.4) that, for any r ≥ −1,

Ωr (Z) ∼=
⊕

{p,q≥−1:p+q=r−1}

(Ωp (X)⊗ Ωq (Y )) (5.5)

and, for any r ≥ 0,

H̃r (Z) ∼=
⊕

{p,q≥0:p+q=r−1}

(
H̃p (X)⊗ H̃q (Y )

)
(5.6)

(a Künneth formula for join).
The identity (5.6) gives easily the proof of Proposition 4.2. Indeed, let G be a star-shaped

digraph with a star center a. Denote by G′ the digraph that is obtained from G by removing
the vertex a and all adjacent edges. Then G = {a}∗G′, and by (5.6) we obtain H̃r (G) ∼= {0}
for all r ≥ 0 because H̃p ({a}) ∼= {0} for all p ≥ 0. If G is an inverse star-shaped digraph
then G = G′ ∗ {a} and again H̃r (G) ∼= {0}.

Example 5.6 Consider the digraph Z = X ∗ Y as on Fig. 8(right). In this case we have by
Proposition 4.3 that all homologies H̃p (X) and H̃q (Y ) are trivial except for

H1 (X) = span {e01 + e12 + e20} ,

H1 (Y ) = span {e35 − e65 + e64 − e34} .

Therefore, all H̃r (Z) are trivial except for H3 (Z) that is generated by a single element

e0135 − e0165 + e0164 − e0134 + e1235 − e1265 + e1264 − e1234 + e2035 − e2065 + e2064 − e2034.

5.3 Cone and suspension

A cone over a digraph X is a digraph Cone X that is obtained from X by adding one more
vertex a and all the edges of the form b → a for all b ∈ X. The vertex a is called the cone
vertex. Clearly, we have Cone X = X ∗ Y where Y consists of a single vertex a.

Proposition 5.7 For any digraph X, we have for any r ≥ 0

Ωr (Cone X) ∼= Ωr (X)⊕ Ωr−1 (X) , (5.7)

where the isomorphism is given by the map u, v 7→ u + vea, where u ∈ Ωr (X), v ∈ Ωr−1 (X)
and a is the cone vertex. Furthermore, all the reduced homologies of Cone X are trivial.

Proof. Since Cone X = X ∗ Y with Y = {a}, the isomorphism (5.7) follows from
(5.5), Ω−1 (Y ) = span {1K}, Ω0 (Y ) = span {ea} and Ωq (Y ) = {0} for q ≥ 1. Since all the
homologies H̃q (Y ) are trivial, it follows from (5.6) that all homologies H̃r (Z) are also trivial.
The latter follows also from Proposition 4.2 since Cone X is inverse star-shaped.
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Example 5.8 Clearly, a simplex-digraph Smn can be regarded as a cone over Smn−1 (cf.
Section 4.1). Since Ω0 (Sm0) is spanned by a 0-path e0, we obtain by induction from (5.7)
that Ωn (Smn) is spanned by a path e01...n.

Definition 5.9 A suspension over a digraph X is a digraph Sus X that is obtained from X
by adding two vertices a, b and all the edges c→ a and c→ b for all c ∈ X. The vertices a, b
are called the suspension vertices.

Clearly, we have Sus X = X ∗Y where Y = {a, b} is a digraph that consists of two vertices
a, b and no edges.

Proposition 5.10 For any digraph X we have, for any r ≥ 0,

Ωr (Sus X) ∼= Ωr (X)⊕ Ωr−1 (X)⊕ Ωr−1 (X) , (5.8)

where the isomorphism is given by the map u, v, w 7→ u + vea + web, where u ∈ Ωr (X),
v, w ∈ Ωr−1 (X) and a, b are the suspension vertices. Furthermore, we have

H̃r (Sus X) ∼= H̃r−1 (X) , (5.9)

where the isomorphism is given by the map u 7→ u (ea − eb), u ∈ H̃r−1 (X) . Consequently, we
have

χ (Sus X) = 2− χ (X) . (5.10)

Proof. Let Y as above. The isomorphism (5.8) follows from (5.5) because Ω−1 (Y ) =
span {1K}, Ω0 (Y ) = span {ea, eb} and Ωq (Y ) = {0} for q ≥ 1. Since H̃q (Y ) = {0} for all
q 6= 0 and H̃0 (Y ) = span {ea − eb}, (5.9) follows from (5.6). Finally, setting Z = Sus X and
using (5.9), we obtain

χ (Z) = 1 +
∑

r≥1

(−1)r dim Hr (Z) = 1 +
∑

r≥1

(−1)r dim H̃r−1 (X)

= 1−
∑

s≥0

(−1)s dim H̃s (X) = 2−
∑

s≥0

(−1)s dim Hs (X) = 2− χ (X) ,

which proves (5.10).
In particular, having examples of digraphs X with arbitrary negative integer values of

χ (cf. Example 4.10), we obtain examples of digraphs Sus X with arbitrary positive integer
values of χ.

Example 5.11 Let S be any cycle-graph that is neither triangle nor square; it will be con-
sidered as an analog of a circle. Define Sn inductively by S1 = S and Sn+1 = Sus Sn. Then
Sn can be regarded as n-dimensional sphere-graph. Since χ (S) = 0 by Proposition 4.3, it
follows that χ (Sn) = 0 if n is odd and χ (Sn) = 2 if n is even. Proposition 5.10 implies that
dim Hn (Sn) = dim H1 (S) = 1, which gives an example of a non-trivial Hn for an arbitrary
n.

For example, the octahedron digraph Oct on Fig 10 is S2 based on the cycle S with
the vertices 0, 1, 2, 3. It follows that Oct has non-trivial H2 (Oct) despite the fact that this
digraph is obviously planar.

Let v be an 1-path on S that spans H1 (S) (see Section 4.1). If Sn+1 is a suspension of
Sn on the vertices an, bn then we obtain by induction that the spanning element of Hn (Sn)
is

u = v (ea1 − eb1) (ea2 − eb2) ...
(
ean−1 − ebn−1

)
.
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Figure 10: The octahedron digraph Oct

For the cycle S on Fig. 10 we have by Proposition 4.3 v = e12− e02 + e03− e13, which implies
that the spanning element of H2 (Oct) is

u = v (e4 − e5) = e124 − e024 + e034 − e134 − e125 + e025 − e035 + e135.

Obviously, each term in this sum corresponds to one of the eight faces of the octahedron, and
the sum u represents in some sense the surface of the octahedron.

Applying Proposition 4.3 to compute the homology groups of S and then Proposition
5.10, we obtain

dim H0 (Oct) = 1, dim H1 (Oct) = 0, dim H2 (Oct) = 1, dim Hp (Oct) = 0 for p ≥ 3.
(5.11)

Example 5.12 Consider a digraph G on Fig. 11(left).

Figure 11: A digraph G with 12 vertices and 32 edges (left) and its reduction to the digraph
G′ (right)

Removing successively the vertices A,B, 8, 9, 6, 7 by Proposition 4.5, we obtain a digraph
G′ as on Fig. 11(right) with the vertex set {0, 1, 2, 3, 4, 5} that has the same homologies as
G. The digraph G′ is clearly the same as Oct on Fig. 10. Hence, we obtain by (5.11) that
dim H2 (G) = 1 while Hp (G) = {0} for p = 1 and p > 2. The spanning element of H2 (G) is
hence

u = e124 − e024 + e034 − e134 − e125 + e025 − e035 + e135.
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In other words, this 2-path u determines a 2-dimensional “hole” in G given by the octahedron.
Note that on Fig. 11 this octahedron is hardy visible, but it can be determined purely
algebraically using the above tools.

5.4 Some properties of ∂-invariant paths on joins

We prove here some auxiliary results needed for the proof of Theorem 5.5. For a finite set
V , denote by R (V ) the path complex on V consisting of all regular elementary paths on V .
Then, for any n ≥ −1, Rn (V ) denotes the set of all regular elementary n-paths on V , As
before, Rn (V ) is the space of all finite K-linear combinations of the paths from Rn (V ).

Let X,Y be two finite non-empty sets and P (X) and P (Y ) be regular path complexes
on X and Y , respectively. Set Z = X t Y and consider the join of path complexes P (Z) =
P (X) ∗ P (Y ).

Lemma 5.13 Any w ∈ Ω• (Z) admits a representation

w =
∑

x∈P (X)

exax =
∑

y∈P (Y )

byey, (5.12)

where ax ∈ Ω• (Y ) and by ∈ Ω• (X) are uniquely determined.

Proof. Since any allowed elementary path on X is a join of elementary paths on X and
Y , we see that any w ∈ A• (Z) admits a representation

w =
∑

x∈P (X), y∈P (Y )

cxyexey, (5.13)

where the coefficients cxy ∈ K are uniquely determined. It follows from (5.13) that

w =
∑

x∈P (X)

exax, (5.14)

where
ax =

∑

y∈P (Y )

cxyey ∈ A• (Y ) .

Clearly, ax are uniquely determined.
Assume now that w ∈ Ω• (Z) and show that ax ∈ Ω• (Y ) . Let us define the coefficients

δx
x′ ∈ {0, 1,−1} by

∂ex =
∑

x′∈R(X)

δx′

x ex′ . (5.15)

Also, if x ∈ Pp (X) then set εx = (−1)p+1. Using (5.14) and the product rule (2.7) we obtain

∂w =
∑

x∈P (X)

(∂ex) ax + εxex (∂ax) =
∑

x∈P (X)

∑

x′∈R(X)

δx′

x ex′ax +
∑

x∈P (X)

εxex∂ax.

Switching in the double sum the notations x and x′ and interchanging the summation signs,
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we obtain

∂w =
∑

x∈R(X)

∑

x′∈P (X)

δx
x′exax′

+
∑

x∈P (X)

εxex∂ax

=
∑

x∈P (X)

ex




∑

x′∈P (X)

δx
x′ax′

+ εx∂ax



 (5.16)

+
∑

x∈R(X)\P (X)

ex




∑

x′∈P (X)

δx
x′ax′



 . (5.17)

Note that any elementary path of the full expansion of the sum (5.17) has a non-allowed
X-part, while that of (5.16) has the allowed X-part. Therefore, there is no cross cancellation
between the elementary paths of (5.16) and (5.17). Since their sum ∂w is allowed, it follows
that the sum (5.17) consisting only of non-allowed paths, must vanish.

On the other hand, since ∂w ∈ Ω∗ (Z), we have analogously to (5.14) a representation

∂w =
∑

x∈P (X)

exãx ,

where ãx ∈ A∗ (Y ). Comparison with (5.16) yields

ãx =
∑

x′∈P (X)

δx
x′ax′

+ εx∂ax.

Since ax′
∈ A∗ (Y ), it follows that ∂ax ∈ A∗ (Y ), which proves that ax ∈ Ω∗ (Y ).

The second identity in (5.12) is proved similarly.
Let V be a finite set. If u ∈ Rn (V ) and x ∈ Rm (V ) then we denote by ux ∈ K the

coefficient of x -component of u if n = m and set ux = 0 ∈ K if n 6= m. Let us introduce in
Ap (V ) the K-scalar product as follows: for all u, v ∈ Ap (V ) we put

[u, v] :=
∑

x∈P (V )

uxvx, (5.18)

where as before ux and vx are the coefficients of the components of u and v, respectively. If
K = R then [∙, ∙] is a proper scalar product, but for a general field K there is no positivity
property (in fact, it can happen that [u, u] = 0). Set also

Ω⊥
p (V ) = {u ∈ Ap (V ) : [u, v] = 0 for all v ∈ Ωp (V )} . (5.19)

If K = R then Ω⊥
p is an orthogonal complement of Ωp in Ap and Ap = Ωp ⊕ Ω⊥

p .

For a general K, this is not true, as Ωp and Ω⊥
p may have a non-trivial intersection.

However, for any field K, it is still true that

dimΩp + dimΩ⊥
p = dimAp

(see [13, Lemma 6.1]).

Lemma 5.14 If u ∈ Ω⊥
p (X) and v ∈ Aq (Y ) then uv ∈ Ω⊥

r (Z) where r = p+q+1. Similarly,
if u ∈ Ap (X) and v ∈ Ω⊥

q (Y ) then uv ∈ Ω⊥
r (Z) .
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Proof. To prove the first claim, we need to show that [uv,w] = 0 for any w ∈ Ωr (Z).
By Lemma 5.13, w is a sum of the joins ϕψ where ϕ ∈ Ω• (X) and ψ ∈ A• (Y ). Hence, it
suffices to prove that

[uv, ϕψ] = 0, (5.20)

assuming that ϕ ∈ Ωp′ (X) and ψ ∈ Aq′ (Y ) . If p′ + q′ + 1 6= r then uv and ϕψ do not have
common elementary paths in their expansions, and (5.20) is trivially satisfied. Assuming
p′ + q′ + 1 = r, we obtain

[uv, ϕψ] =
∑

z∈Pr(Z)

(uv)z (ϕψ)z =
∑

x∈Pp(X),y∈Pq(Y )

uxvyϕxψy.

If p′ 6= p then ϕx = 0 and again (5.20) holds trivially. Finally, if p′ = p and, hence, q′ = q,
then we obtain

[uv, ϕψ] =
∑

x∈Pp(X)

uxϕx
∑

y∈Pq(Y )

vyψy = [u, ϕ] [v, ψ] = 0,

because [u, ϕ] = 0 by assumption u ∈ Ω⊥
p (X). The second claim is proved similarly.

5.5 Proof of the Künneth formula for join

The main technical part of the proof of Theorem 5.5 is contained in the following theorem.

Theorem 5.15 Let P (X) and P (Y ) be two regular path complexes and let P (Z) = P (X)∗
P (Y ) be their join. Then any ∂-invariant path w on Z admits a representation in the form

w =
k∑

i=1

uivi (5.21)

for some finite k, where ui and vi are ∂-invariant paths on X and Y , respectively.

The proof of Theorem 5.15 will be given at the end of Section 6.5 because it is similar to
the proof of an analogous property for Cartesian products of path complexes (Theorem 6.12
below).

Proof of Theorem 5.5. Let us first show how (5.5) and (5.6) follow from (5.4). By
definition (5.4) means that

Ωr (Z) ∼=
⊕

{p≥0,q≥−1:p+q=r}

(
Ω′

p (X)⊗ Ωq (Y )
)
,

whence (5.5) follows by changing p − 1 to p. The isomorphism (5.4) of the chain complexes
Ω• (Z) and Ω′

• (X)⊗Ω• (Y ) implies that their homologies are also isomorphic. On the other
hand, by the Künneth theorem (5.3), we obtain

H•
(
Ω′
• (X)⊗ Ω• (Y )

) ∼= H•
(
Ω′
• (X)

)
⊗H• (Ω• (Y )) ,

whence
H• (Ω• (Z)) ∼= H•

(
Ω′
• (X)

)
⊗H• (Ω• (Y )) .

More explicitly this means that, for any r ≥ −1,

Hr (Ω• (Z)) ∼=
⊕

{p′≥0,q≥−1:p′+q=r}

(
Hp′

(
Ω′
• (X)

)
⊗Hq (Ω• (Y ))

)

=
⊕

{p,q≥−1:p+q=r−1}
(Hp (Ω• (X))⊗Hq (Ω• (Y ))) .
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Since the homology group H−1 (Ω•) is always trivial, the condition p, q ≥ −1 can be replaced
here by p, q ≥ 0. Finally, using that Hp (Ω• (X)) = H̃p (X) and Hq (Ω• (Y )) = H̃q (Y ) are
the reduced homologies, we obtain (5.6).

Now we concentrate on the proof of (5.4). We use the graded spaces {R•}, {A•}, {Ω•}
associated with the path complexes P (X) , P (Y ) and P (Z). If {W•} is one of these spaces
then set

W• (X,Y ) = W ′
• (X)⊗W• (Y ) .

Then (5.4) can be restated as follows:

Ω• (Z) ∼= Ω• (X,Y ) .

To prove this, we will construct explicitly a mapping

Φ : Ωr (X,Y )→ Ωr (Z)

that will be isomorphism of linear spaces and will commute with the boundary operator ∂.
Consider first a larger the chain complex

R• (X,Y ) = R′
• (X)⊗R• (Y )

and define for any r ≥ −1 the linear mapping

Φ : Rr (X,Y )→ Rr (Z)

as follows: for all u ∈ R′
p (X) and v ∈ Rq (Y ) with p + q = r, set

Φ (u⊗ v) = uv,

where uv is the join of u and v on Z (note that X and Y are subsets of Z).
It follows from Lemma 2.2 that, for u, v as above,

∂ (uv) = (∂u) v + (−1)p u∂v. (5.22)

Here the operator ∂ is the boundary operator on R• (Z), but in the expressions ∂u and ∂v
it coincides with the boundary operators on R• (X) and R• (Y ), respectively. By (5.2) we
have for the operator ∂ on R• (X,Y )

∂ (u⊗ v) = (∂u)⊗ v + (−1)p u⊗ ∂v.

The comparison with (5.22) shows that the following diagram is commutative:

Rr−1 (X,Y )
∂
← Rr (X,Y )

↓Φ ↓Φ

Rr−1 (Z)
∂
← Rr (Z)

Hence, the mapping Φ is a homomorphism of chain complexes R• (X,Y ) and R• (Z).
Let us verify that Φ is in fact a monomorphism. Indeed, the basis in Rr (X,Y ) consists

of all elements of the form ex ⊗ ey where x ∈ Rp (X) , y ∈ Rq (Y ) with p + q = r. Since
Φ (ex ⊗ ey) = exy and all such paths exy are linearly independent in Rr (Z), we see that Φ is
injective.

Next, observe that
Φ (Ar (X,Y )) = Ar (Z) .
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Indeed, the basis in Ar (X,Y ) consists of all elements of the form ex⊗ey where x ∈ Rp (X) , y ∈
Rq (Y ) with p + q = r, while the basis in Ar (Z) consists of the paths exy with the same set
of x, y, whence the claim follows. In particular, the linear spaces Ar (X,Y ) and Ar (Z) are
isomorphic.

Finally, let us prove that, for all r ≥ −1,

Φ (Ωr (X,Y )) = Ωr (Z) ,

which will finish the proof of (5.4). The inclusion

Φ (Ωr (X,Y )) ⊂ Ωr (Z)

is trivial because by Proposition 5.4 u ∈ Ω′
p (X) and v ∈ Ωq (Y ) with p + q = r imply

uv ∈ Ωr (Z) . The opposite inclusion

Φ (Ωr (X,Y )) ⊃ Ωr (Z)

follows from Theorem 5.15. Indeed, any w ∈ Ωr (Z) admits a representation in the form

w =
∑

i

uivi

where ui and vi are ∂-invariant paths on X and Y , respectively. It follows that

Φ

(
∑

i

ui ⊗ vi

)

=
∑

i

uivi = w

and, hence, w ∈ Φ(Ωr (X,Y )) .

6 Cartesian product of path complexes

In this section we slightly redefine the sequence {Rn (V )} of spaces of regular paths on a finite
set V . Namely, instead of the previous convention R−1 = span {e}, we set now R−1 = {0} .
In other words, the index n has now the range n ≥ 0 instead of n ≥ −1 in Section 5.

All path complexes in this section are regular, and we always use a regular standard chain
complex {Ωn}n≥0 given in (3.7) and the associated homology groups {Hn}n≥0.

6.1 Cross product of paths

Given two finite sets X,Y , consider their Cartesian product Z = X × Y. Let z = z0z1...zr be
a regular elementary r-path on Z, where zk = (xk, yk) with xk ∈ X and yk ∈ Y . We say that
the path z is step-like if, for any k = 1, ..., r, either xk−1 = xk or yk−1 = yk. In fact, exactly
one of these conditions holds as z is regular.

Any step-like path z on Z determines by projection regular elementary paths x on X and
y on Y . More precisely, x is obtained from z by taking the sequence of all X-components
of the vertices of z and then by collapsing in it any subsequence of repeated vertices to one
vertex. The same rule applies to y. By construction, the projections x and y are regular
elementary paths on X and Y , respectively. If the projections of z = z0...zr are x = x0...xp

and y = y0...yq then p + q = r (cf. Fig. 12(left)).
Every vertex zk = (xi, yj) of a step-like path z can be represented as a point (i, j) of Z2

so that the whole path z is represented by a staircase S (z) in Z2 connecting the points (0, 0)
and (p, q). Define the elevation L (z) of the path z as the number of cells in Z2

+ below the
staircase S (z) (the shaded area on Fig. 12(right)).
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Figure 12: Left: a step-like path z and its projections x and y. Right: a staircase S (z) and
its elevation L (z) (here L (z) = 30).

Definition 6.1 Given paths u ∈ Rp (X) and v ∈ Rq (Y ) with some p, q ≥ 0, define a path
u × v on Z by the following rule: for any step-like elementary (p + q)-path z on Z, the
component (u× v)z is defined by

(u× v)z = (−1)L(z) uxvy, (6.1)

where x and y are the projections of z onto X and Y , respectively, and ux and vy are the
corresponding components of u and v. For non-step-like paths z set (u× v)z = 0.

The path u× v is called the cross product of u and v. It follows that u× v ∈ Rp+q (Z) .

For given elementary regular p-path x on X and q-path y on Y , denote by Πx,y the set of
all step-like paths z on Z whose projections on X and Y are x and y, respectively. It follows
from (6.1) that

ex × ey =
∑

z∈Πx,y

(−1)L(z) ez. (6.2)

It is not difficult to see that the cross product is associative.

Example 6.2 Let us denote the vertices of X by the letters a, b, c, . . . and the vertices of Y
by the integers 0, 1, 2, . . . so that the vertices of Z can be denoted as chessboard fields, for
example, a0, b1 etc. Then we have

eabc × e012 = ea0b0c0c1c2 − ea0b0b1c1c2 + ea0b0b1b2c2

+ea0a1b1c1c2 − ea0a1b1b2c2 + ea0a1a2b2c2

as one can see on Fig. 13.

From now on and throughout this section we use the regular boundary operator ∂ acting
on the chain complex {Rn}n≥0 (note the difference with Section 5 where we used {Rn}n≥−1).

It turns out that the boundary operator ∂ satisfies the product rule with respect to the
cross product.

Proposition 6.3 (Product rule) If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = (∂u)× v + (−1)p u× (∂v) . (6.3)

The proof of this statement is rather involved and can be found in [13, Prop. 4.4].
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Figure 13: The staircase a0b0b1c1c2 has elevation 1. Hence, ea0b0b1c1c2 enters the product
eabc × e012 with the negative sign.

6.2 Path homologies of Cartesian product

Definition 6.4 Given two finite sets X and Y with path complexes P (X) and P (Y ), re-
spectively, define on the set Z = X × Y a path complex P (Z) as follows: the elements of
P (Z) are step-like paths on Z whose projections on X and Y belong to P (X) and P (Y ),
respectively. The path complex P (Z) is called the Cartesian product of the path complexes
P (X) and P (Y ) and is denoted by P (X)�P (Y ) .

In short: a step-like path z on Z is allowed if and only if its projections on X and Y are
allowed. In particular, if x and y are elementary allowed paths on X and Y , respectively,
then all the paths z ∈ Πx,y are allowed on Z. It clearly follows from (6.2) that

u ∈ Ap (X) and v ∈ Aq (Y ) ⇒ u× v ∈ Ap+q (Z) .

Furthermore, the following is true.

Proposition 6.5 If u ∈ Ωp (X) and v ∈ Ωq (Y ) then u× v ∈ Ωp+q (Z) .

Proof. Indeed, ∂u and ∂v are allowed, whence also ∂u×v and u×∂v are allowed, whence
∂ (u× v) is allowed by the product rule (6.3). It follows that u× v ∈ Ωp+q (Z) .

The next theorem is one of the main results of this paper. It gives a complete description
of ∂-invariant paths on Z.

Theorem 6.6 Let P (X) and P (Y ) be two regular path complexes. Then for their Cartesian
product P (Z) = P (X)�P (Y ) the following isomorphism of chain complexes holds:

Ω• (Z) ∼= Ω• (X)⊗ Ω• (Y ) (6.4)

where the mapping Ω• (X)⊗ Ω• (Y )→ Ω• (Z) is given by u⊗ v 7→ u× v.

A more detailed version of (6.4) is the following: for any r ≥ 0,

Ωr (Z) ∼=
⊕

{p,q≥0:p+q=r}

(Ωp (X)⊗ Ωq (Y )) . (6.5)

Consequently, we obtain the Künneth formula

H• (Z) ∼= H• (X)⊗H• (Y ) , (6.6)
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that is, for any r ≥ 0,

Hr (Z) ∼=
⊕

{p,q≥0:p+q=r}

(Hp (X)⊗Hq (Y )) . (6.7)

The proof of Theorem 6.6 will be given in Section 6.5 after a necessary preparation in Section
6.4. Before that we consider some examples of Cartesian products.

Let X be a digraph. For simplicity of notation, we denote the set of vertices of X by
the same letter X, and the set of edges denote by EX . Given two digraphs X and Y , their
Cartesian product is the digraph Z = X�Y where the set of vertices of Z is the Cartesian
product of the sets of vertices of X and Y , while the set EZ of edges is defined as follows:
(x, y)→ (x′, y′) if and only if either x→ x′ and y = y′, or y → y′ and x = x′:

y′• . . .
(x,y′)
• −→

(x′,y′)
• . . .

↑ ↑ ↑

y• . . .
(x,y)
• −→

(x′,y)
• . . .

Y � X . . . •
x

−→ •
x′

. . .

Clearly, any allowed path on Z is step-like, and its projections onto X and Y are also allowed.
Hence, the path complex of the digraph Z is the Cartesian product of the path complexes of
the digraphs X and Y .

Example 6.7 Let Z = X�Y where X is a 3-cycle and Y is a square, that is,

X = ↗

b
•↘

a• ← •c
and Y =

2• −→ •3
↑ ↑

0• −→ •1
.

We have

Ω0 (X) = span {ea, eb, ec} , Ω1 (X) = span {eab, ebc, eca} , Ωp (X) = {0} for p ≥ 2

and

Ω0 (Y ) = span {e0, e1, e2, e3} , Ω1 (Y ) = span {e01, e13, e23, e02} ,

Ω2 (Y ) = span {e013 − e023} , Ωq (Y ) = {0} for q ≥ 3.

Hence, we obtain by (6.5)
Ω3 (Z) ∼= Ω1 (X)⊗ Ω2 (Y )

and
Ω3 (Z) = span {eab × (e013 − e023) , ebc × (e013 − e023) , eca × (e013 − e023)} .

Similarly one computes Ωr (Z) for other values of r.
By Proposition 4.3, we have

H1 (X) = span {eab + ebc + eca} , Hp (X) = {0} for p ≥ 2

and
H0 (Y ) = span {e0} , Hq (Y ) = {0} for all q ≥ 1.

By (6.7) we obtain
H1 (Z) ∼= H1 (X)⊗H0 (Y )

and
H1 (Z) = span {(eab + ebc + eca)× e0} .

It follows also from (6.7) that Hr (Z) = {0} for all r ≥ 2.
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6.3 Cylinders and cubes

For any digraph X, the cylinder over X is the digraph

Cyl X := X� {0• → •1}.

Assuming that the vertices of X are enumerated by 0, 1, ..., n − 1, we can enumerate the
vertices of Cyl X by 0, 1, ..., 2n− 1 using the following rule: (x, 0) is assigned the number x,
while (x, 1) is assigned x + n.

Every regular p-path v on X has two copies on Cyl X: v(0) = v × e0 and v(1) = v × e1.
Moreover, v gives rise to the following (p + 1)-path on Cyl X: v(01) = v × e01, that is called
lifting of v. For example, if v = ei0...ip then

v(01) = ei0...ip × e01 =
p∑

k=0

(−1)p−k ei0...ik(ik+n)...(ip+n). (6.8)

By Proposition 6.5, if v is ∂-invariant, then v(0), v(1), v(01) are also ∂-invariant.

Proposition 6.8 For any digraph X and for any r ≥ 0, we have

Ωr (Cyl X) ∼= Ωr (X)⊕ Ωr (X)⊕ Ωr−1 (X) ,

where the isomorphism is given by the map u, v, w 7→ u(0) + v(1) + w(01), for u, v ∈ Ωr (X)
and w ∈ Ωr−1 (X). Furthermore, we have

Hr (Cyl X) ∼= Hr (X) ,

where the isomorphism is given by the map u 7→ u(0) for u ∈ Hr (X).

Proof. All claims follow directly from Theorem 6.6 and the knowledge of Ω∗ and H∗ of
the digraph Y = {0• → •1}.

Define for any non-negative integer n the n-cube digraph by

Cuben = CylCuben−1, Cube0 = {0} .

For example, Cube1 = {0• → •1}, Cube2 is a square:

2• −→ •3

↑ ↑
0• −→ •1

and Cube3 is shown in Fig. 14.
Lifting a ∂-invariant 1-path v1 = e01 on 1-cube, we obtain the following ∂-invariant 2-path

on 2-cube: v2 = e013 − e023. Lifting further v2, we obtain the following ∂-invariant 3-path on
the 3-cube:

v3 = e0457 − e0157 + e0137 − e0467 + e0267 − e0237.

We obtain by induction a ∂-invariant n-path vn on Cuben that is a lifting of a ∂-invariant
(n− 1)-path vn−1 on Cuben−1. It is easy to see that vn is an alternating sum of n! elementary
terms, corresponding to partitioning of a geometric n-cube into n! simplexes. It follows from
Proposition 6.8 that Ωn (Cuben) = span (vn) so that the path vn represents the n-cube.
Proposition 6.8 also implies that homology groups of Cuben are trivial except for H0.
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Figure 14: A 3-cube

6.4 Some properties of ∂-invariant paths on products

Here we prove some lemma needed for the proof of Theorem 6.6. Given a regular path
complex P (V ) on a finite set V , we consider the spaces Rn (V ) ,An (V ) and Ωn (V ) with
n ≥ 0, as well as their direct sums R• (V ), A• (V ), Ω• (V ).

In all statements we consider two regular paths complexes P (X), P (Y ) and their Carte-
sian product P (Z) = P (X)�P (Y ) where Z = X × Y .

Lemma 6.9 Any path w ∈ Ω• (Z) admits a representation

w =
∑

x∈P (X), y∈P (Y )

cxy (ex × ey) (6.9)

with some coefficients cxy ∈ K (only finitely many coefficients are non-vanishing). Further-
more, the coefficients cxy are uniquely determined by w.

Proof. Let us first show the uniqueness of cxy, which is equivalent to the linear indepen-
dence of the family {ex × ey} across all x ∈ P (X) and y ∈ P (Y ). Indeed, assume that, for
some scalars cxy, ∑

x∈P (X),y∈P (Y )

cxyex × ey = 0,

and prove that cxy = 0 for any couple x, y as in the summation. Fix such a couple x, y and
choose one z ∈ Πx,y. Then by (6.1)

(
ex′ × ey′

)z =

{
(−1)L(z) , x′ = x and y′ = y,
0, otherwise,

which implies that



∑

x′∈P (X),y′∈P (Y )

cx′y′
ex′ × ey′





z

= (−1)L(z) cxy

and, hence, cxy = 0.
Let us show existence of the representation (6.9) for any w ∈ Ωr (Z) and any r ≥ 0.

As before, for any elementary r-path z on Z, wz denotes the ez-coordinate of w. If z is an
elementary r′-path with r′ 6= r then set wz = 0. For any x ∈ P (X) and y ∈ P (Y ) choose
some z ∈ Πx,y and set

cxy = (−1)L(z) wz. (6.10)
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Let us first show that the value of cxy in (6.10) is independent of the choice of z ∈ Πx,y. Set
z = i0...ir. Let k be an index such that one of the couples ik−1ik, ikik+1 is vertical and the
other is horizontal. If ik−1 = (a, b) and ik+1 = (a′, b′) where a, a′ ∈ X and b, b′ ∈ Y , then ik
is either (a′, b) or (a, b′). Denote the other of these two vertices by i′k, as, for example, on the
diagram:

...
...

b′•
i′k• −→

ik+1
• . . .

↑ ↑ ↑
b• . . .

ik−1
• −→

ik•
...

...
||
y

x= . . . •
a
−→ •

a′
. . .

Replacing in the path z = i0...ir the vertex ik by i′k, we obtain the path z′ = i0...ik−1i
′
kik+1...ir

that clearly belongs to Πx,y and, hence, is allowed. Since the (r − 1)-path i0...ik−1ik+1...ir is
regular but non-allowed (as it is not step-like), while ∂w is allowed, we have

(∂w)i0...ik−1ik+1...ir = 0. (6.11)

On the other hand, we have by (2.4)

(∂w)i0...ik−1ik+1...ir =
∑

j∈Z

(
k−1∑

m=0

(−1)m wi0...im−1jim...ik−1ik+1...ir (6.12)

+ (−1)k wi0...ik−1jik+1...ir (6.13)

+
r+1∑

m=k+2

(−1)m−1 wi0...ik−1ik+1...im−1jim...ir

)

. (6.14)

All the components of w in the sums (6.12) and (6.14) vanish since they correspond to
non-allowed paths, while w is allowed. The path i0...ik−1jik+1...ir in the term (6.13) is also
non-allowed unless j = ik or j = i′k (note that ik and i′k are uniquely determined by ik−1

and ik+1). Hence, the only non-zero terms in (6.12)-(6.14) are wi0...ik−1ikik+1...ir = wz and
wi0...ik−1i′kik+1...ir = wz′ . Combining (6.11) and (6.12)-(6.14), we obtain

0 = wz + wz′ .

Since L (z′) = L (z)± 1, it follows that

(−1)L(z′) wz′ = (−1)L(z) wz. (6.15)

The transformation z 7→ z′ described above, allows us to obtain from a given z ∈ Πx,y

in a finite number of steps any other path in Πx,y. Since the quantity (−1)L(z) wz does not
change under this transformation, it follows that it does not depend on a particular choice
of z ∈ Πx,y, which was claimed. Hence, the coefficients cxy are well-defined by (6.10).

Finally, let us show that the equality (6.9) holds with the coefficients cxy from (6.10). By
(6.2) we have

ex × ey =
∑

z∈Πx,y

(−1)L(z) ez.
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Using (6.10) we obtain

∑

x∈P (X), y∈P (Y )

cxy (ex × ey) =
∑

x∈P (X), y∈P (Y )

cxy
∑

z∈Πx,y

(−1)L(z) ez

=
∑

x∈P (X), y∈P (Y )

∑

z∈Πx,y

wzez

=
∑

z∈P (Z)

wzez = w,

which finishes the proof.

Corollary 6.10 Any path w ∈ Ω• (Z) admits representations

w =
∑

x∈P (X)

ex × ax =
∑

y∈P (Y )

by × ey (6.16)

where ax ∈ Ω• (Y ) and by ∈ Ω• (X) are uniquely determined.

Proof. It follows from (6.9) that

w =
∑

x∈P (X)

ex × ax

where
ax =

∑

y∈P (Y )

cxyey ∈ A• (Y ) .

It is obvious that ax are uniquely determined as so are the coefficients cxy. Let us show that,
in fact, ax ∈ Ω• (Y ) . Let us define the coefficients δx

x′ ∈ {0, 1,−1} by

∂ex =
∑

x′∈R(X)

δx′

x ex′ . (6.17)

Also, if x ∈ Pp (X) then set εx = (−1)p. We have by the product rule (6.3) and by (6.17)

∂w =
∑

x∈P (X)

∂ex × ax + εxex × ∂ax

=
∑

x∈P (X)

∑

x′∈R(X)

δx′

x ex′ × ax +
∑

x∈P (X)

εxex × ∂ax

=
∑

x∈R(X)

∑

x′∈P (X)

δx
x′ex × ax′

+
∑

x∈P (X)

εxex × ∂ax

=
∑

x∈P (X)

ex ×




∑

x′∈P (X)

δx
x′ax′

+ εx∂ax



 (6.18)

+
∑

x∈R(X)\P (X)

ex ×




∑

x′∈P (X)

δx
x′ax′



 . (6.19)

Every elementary path on Z that is present in the full expansion of the sums (6.18) and (6.19)
has the X-projection equal to x. Since in (6.18) x is allowed, while in (6.19) – not, there is
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no cross cancellation of the elementary paths in (6.18) and (6.19). Since every elementary
path in (6.19) is non-allowed, while the sum ∂w of (6.18) and (6.19) is allowed, we see that
the sum in (6.19) vanishes.

On the other hand, since ∂w ∈ Ω• (Z), we have by Lemma 6.9 a representation

∂w =
∑

x∈P (X)

ex × ãx,

where ãx ∈ A• (Y ). Comparison with (6.18) shows that

ãx =
∑

x′∈P (X)

δx
x′ax′

+ εx∂ax.

Since ax′
∈ A• (Y ), it follows that ∂ax ∈ A• (Y ), which proves that ax ∈ Ω• (Y ). The second

identity in (6.16) is proved similarly.
In the next lemma we use the K-scalar product [∙, ∙] of paths that was introduced in

Section 5.5 (see (5.18) and (5.19)).

Lemma 6.11 If u ∈ Ω⊥
p (X) and v ∈ Aq (Y ) then u×v ∈ Ω⊥

r (Z) where r = p+ q. Similarly,
if u ∈ Ap (X) and v ∈ Ω⊥

q (Y ) then u× v ∈ Ω⊥
r (Z) .

Proof. We need to prove that, for any w ∈ Ωr (Z),

[u× v, w] = 0, (6.20)

assuming that u ∈ Ω⊥
p (X) (the second claim is proved similarly). We have:

[u× v, w] =
∑

z∈Pr(Z)

(u× v)z wz

=
∑

z∈Pr(Z)

(−1)L(z) uxvywz (x, y are projections of z)

=
∑

x∈Pp(X)

∑

u∈Pq(Y )

∑

z∈Πx,y

(−1)L(z) uxvywz.

By Corollary 6.10, the path w is a sum of the terms ϕ×ψ where ϕ ∈ Ω• (X) and ψ ∈ A• (Y ),
so that it suffices to prove (6.20) for w = ϕ × ψ. Let ϕ ∈ Ωp (X) and, hence, ψ ∈ Aq (Y ).
Then we have by (6.1)

wz = (−1)L(z) ϕxψy

and, hence,
[u× v, w] =

∑

x∈Pp(X)

∑

y∈Pq(Y )

∑

z∈Πx,y

uxϕxvyψy.

Since ∑

x∈Pp(X)

uxϕx = [u, ϕ] = 0,

we obtain (6.20). If ϕ ∈ Ωp′ with p′ 6= p, then wz = 0 for any z ∈ Πx,y with x ∈ Pp (X), and
(6.20) is trivially satisfied.
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6.5 Proof of the Künneth formula for product

Here we prove Theorem 6.6. The major part of the proof of Theorem 6.6 is contained in the
following theorem 6.12 that is similar to Theorem 5.15 for join. Since the proofs of Theorems
6.12 and 5.15 are practically identical, we have preferred to give a detailed proof of Theorem
6.12 for the product and sketch of the proof of Theorem 5.15 for join at the end of this section.

Theorem 6.12 Let P (X) and P (Y ) be two regular path complexes and let P (Z) = P (X)�P (Y )
be their Cartesian product. Then any ∂-invariant path w on Z admits a representation in
the form

w =
k∑

i=1

ui × vi (6.21)

for some finite k, where ui and vi are ∂-invariant paths on X and Y , respectively.

Proof. The representation (6.21) is simple in a special case when the path complexes
P (X) and P (Y ) are perfect, that is, when all allowed paths are ∂-invariant. Indeed, by
Lemma 6.9, any w ∈ Ωr (Z) admits a representation in the form (6.9), where ex and ey are
allowed paths on X and Y , respectively. By the assumption of the perfectness of P (X) and
P (Y ), the paths ex and ey are ∂-invariant, so that (6.9) implies (6.21).

For arbitrary path complexes P (X) and P (Y ), the previous argument does not work
since ex × ey does not have to be ∂-invariant. Hence, we need a more elaborate strategy.
Given two subspaces U ⊂ Ap (X) and V ⊂ Aq (Y ), denote by U × V the subspace of Ar (Z)
that is spanned by all products u× v with u ∈ U and v ∈ V . For any r ≥ 0 set

Ω̃r (Z) =
∑

p+q=r

Ωp (X)× Ωq (Y ) , (6.22)

that is, Ω̃r (Z) is the space of paths on Z that is spanned by all paths of the form u×v where
u ∈ Ωp (X) and v ∈ Ωq (Y ) with some p, q ≥ 0 such that p + q = r. By Proposition 6.5, we
have u× v ∈ Ωr (Z) whence it follows that

Ω̃r (Z) ⊂ Ωr (Z) .

The existence of the representation (6.21) is equivalent to the opposite inclusion, that is, to
the identity

Ω̃r (Z) = Ωr (Z) .

Clearly, it suffices to show that

dimΩr (Z) ≤ dim Ω̃r (Z) . (6.23)

Consider also the space
Ãr (Z) =

∑

p+q=r

Ap (X)×Aq (Y ) .

By definition of the cross product, all the paths in Ãr (Z) are allowed, that is,

Ãr (Z) ⊂ Ar (Z) .

By Lemma 6.9, any path from Ωr (Z) is a linear combination of paths ex × ey with allowed
x, y, which means that

Ωr (Z) ⊂ Ãr (Z) .

In particular, we have also
Ω̃r (Z) ⊂ Ãr (Z) .

Fix some triple p, q, r with p + q = r and consider the spaces (cf. (5.19)):
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• Ω⊥
p (X) — an orthogonal complement of Ωp (X) in Ap (X);

• Ω⊥
q (Y ) — an orthogonal complement of Ωq (Y ) in Aq (Y );

• Ω⊥
r (Z) — an orthogonal complement of Ωr (Z) in Ãr (Z) (warning: not in Ar (Z)!)

Consider first the case when the field K is R or Q. In this case, a linear space with a K-
scalar product is represented as a direct sum of a subspace with its orthogonal complement.
For each u ∈ Ap (X) consider a decomposition

u = uΩ + u⊥ (6.24)

where uΩ ∈ Ωp (X) and u⊥ ∈ Ω⊥
p (X), and a similar decomposition v = vΩ + v⊥ for v ∈

Aq (Y ) . Then we have

u× v = uΩ × vΩ + uΩ × v⊥ + uΩ × v⊥ + u⊥ × v⊥.

Here uΩ × vΩ ∈ Ω̃r (Z), while by Lemma 6.11 all other terms in the right hand side belong
to Ω⊥

r (Z), whence it follows that

u× v ∈ Ω̃r (Z) + Ω⊥
r (Z) .

Since Ãr (Z) is spanned by the products u× v where u, v are allowed, we obtain that

Ãr (Z) = Ω̃r (Z) + Ω⊥
r (Z) .

Comparing with the decomposition

Ãr (Z) = Ωr (Z)⊕ Ω⊥
r (Z) ,

we obtain (6.23).
Consider now the most general case of an arbitrary field K. Let us introduce the following

notation:

ap = dimAp (X) , aq = dimAq (Y ) , ar = dim Ãr (Z) ,

ωp = dimΩp (X) , ωq = dimΩq (Y ) , ωr = dimΩr (Z) ,

and observe that

dimΩ⊥
p (X) = ap − ωp, dimΩ⊥

q (Y ) = aq − ωq, dimΩ⊥
r (Z) = ar − ωr. (6.25)

Let us prove that
ar =

∑

p+q=r

apaq. (6.26)

Indeed, Ap (X) is spanned by all elementary paths ex with x ∈ Pp (X) and Aq (Y ) is spanned
by all elementary paths ey with y ∈ Pq (Y ). Therefore, Ãr (Z) is spanned by all products
ex × ey where x, y as above are considered for all possible p, q such that p + q = r. The
number of such products ex× ey is equal to the right hand side of (6.26), so that the identity
(6.26) follows from the linear independence of the family {ex × ey} (cf. Lemma 6.9).

It follows from the above argument that

dim (Ap (X)×Aq (Y )) = apaq (6.27)
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and that
Ãr (Z) =

⊕

p+q=r
(Ap (X)×Aq (Y )) . (6.28)

Before we can proceed further, let us prove two claims about properties of subspaces of
Ap (X) and Aq (Y ).

Claim 1. For any two subspaces U ⊂ Ap (X) and V ⊂ Aq (Y ), we have

dim (U × V ) = dim U dim V. (6.29)

Indeed, let u1, u2, ..uk be a basis in U and v1, ...vl be a basis in V . Then U ×V is spanned
by all products ui × vj , so that

dim (U × V ) ≤ kl. (6.30)

Let us complement the basis {ui} to a basis in Ap (X) by adding additional paths u′
1, ..., u

′
k′ ,

and, similarly, complement {vj} to a basis in Aq (Y ) by adding v′1, ..., v
′
l′ . Set U ′ = span {u′

i}

and V ′ = span
{

v′j

}
. Then

Ap (X)×Aq (Y ) =
(
U + U ′)×

(
V + V ′) = U × V + U × V ′ + U ′ × V + U ′ × V ′, (6.31)

whence by (6.27) and (6.30) we have

apaq ≤ dim (U × V ) + dim
(
U × V ′)+ dim

(
U ′ × V

)
+ dim

(
U ′ × V ′) (6.32)

≤ kl + kl′ + k′l + k′l′.

The right hand side here is equal to (k + k′) (l + l′) = apaq, which implies that we must have
the equality case in (6.32), in particular, dim (U × V ) = kl, which proves (6.29).

Claim 2. For any two subspaces U ⊂ Ap (X) and V ⊂ Aq (Y ), we have

(U ×Aq (Y )) ∩ (Ap (X)× V ) = U × V. (6.33)

Indeed, it follows from Claim 1, that the sum at the right hand side of (6.31) is direct
and, hence,

U ×Aq (Y ) = U ×
(
V ⊕ V ′) = (U × V )⊕

(
U × V ′)

and
Ap (X)× V =

(
U ⊕ U ′)× V = (U × V )⊕

(
U ′ × V

)
,

whence (6.33) follows.
By Lemma 6.11, we have

Ω⊥
p (X)×Aq (Y ) ⊂ Ω⊥

r (Z)

and
Ap (X)× Ω⊥

q (Y ) ⊂ Ω⊥
r (Z)

so that ∑

p+q=r

[
(Ω⊥

p (X)×Aq (Y )) + (Ap (X)× Ω⊥
q (Y ))

]
⊂ Ω⊥

r (Z) (6.34)

(see Fig. 15).
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Figure 15: Space Ãr (Z) and its subspaces Ω⊥
r (Z), Ap(X) × Aq(Y ) (two instances), and

Ω⊥
p (X)×Aq(Y ) +Ap(X)× Ω⊥

q (Y ).

Note that the space in the square brackets in (6.34) is a subspace of Ap (X)×Aq (Y ). It
follows from (6.28) that the sum

∑
in (6.34) is direct, which implies an inequality

∑

p+q=r

dim
[
(Ω⊥

p (X)×Aq (Y )) + (Ap (X)× Ω⊥
q (Y ))

]
≤ dimΩ⊥

r (Z) . (6.35)

By Claim 2, the subspaces Ω⊥
p (X)×Aq (Y ) and Ap (X)×Ω⊥

q (Y ) have intersection Ω⊥
p (X)×

Ω⊥
q (Y ), whence

dim
[
(Ω⊥

p (X)×Aq (Y )) + (Ap (X)× Ω⊥
q (Y ))

]

= dim(Ω⊥
p (X)×Aq (Y )) + dim(Ap (X)× Ω⊥

q (Y ))− dim(Ω⊥
p (X)× Ω⊥

q (Y )).(6.36)

Using (6.25), we obtain that the right hand side of (6.36) is equal to

(ap − ωp) aq + ap (aq − ωq)− (ap − ωp) (aq − ωq) = apaq − ωpωq.

Substituting this into (6.35) yields
∑

p+q=r

(apaq − ωpωq) ≤ ar − ωr,

which together with (6.26) implies that

ωr ≤
∑

p+q=r

ωpωq.

Finally, we are left to observe that, by (6.22),
∑

p+q=r

ωpωq = dim Ω̃r (Z) ,

which finishes the proof of inequality (6.23).
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Proof of Theorem 6.6. The isomorphism (6.6) follows from (6.4) and the abstract
Künneth theorem (5.3), so we only need to prove (6.4). Consider the tensor product of the
graded linear spaces

A• (X,Y ) := A• (X)⊗A• (Y )

and a linear mapping
Φ : Ar (X,Y )→ Ar (Z)

defined on the basis by
Φ (ex ⊗ ey) = ex × ey

for all x ∈ Pp (X) and y ∈ Pq (Y ) with p + q = r. In fact, we have

Φ (Ar (X,Y )) = Ãr (Z)

where Ãr (Z) is defined in (6.28). It follows from the argument in the proof of Theorem 6.12
that the mapping Φ is injective.

Consider now the tensor product of the chain complexes

Ω• (X,Y ) := Ω• (X)⊗ Ω• (Y ) ,

that is, set for any r ≥ 0

Ωr (X,Y ) =
⊕

{p,q≥0:p+q=r}
(Ωp (X)⊗ Ωq (Y ))

and define the boundary operator ∂ on Ωr (X,Y ) by (5.2). It follows from the definition of
Φ and Ω̃r (Z) that

Φ (Ωr (X,Y )) = Ω̃r (Z) .

Since by Theorem 6.12
Ω̃r (Z) = Ωr (Z) , (6.37)

we obtain that the mapping Φ provides a linear isomorphism of the spaces Ω• (X,Y ) and
Ω• (Z). Moreover, Φ commutes with ∂, which follows from (5.2) and the product rule of
Proposition 6.3. Hence, Φ is an isomorphism of the chain complexes Ω• (X,Y ) and Ω• (Z),
which finishes the proof.

Proof of Theorem 5.15. The proof of Theorem 5.15 is obtained from the proof of
Theorem 6.12 by “search and replace” operation. Indeed, we need only to make the following
changes in the proof of Theorem 6.12:

• Remove everywhere the sign × of cross product, so that the cross product u× v of two
paths u on X and v on Y will be replaced by their join uv. The same applies to the
cross product U × V of subspaces U ⊂ Ap (X) and V ⊂ Aq (Y ): it is replaced by the
join UV that is by the space spanned by all joins uv with u ∈ U and v ∈ V .

• Replace everywhere Ap (X) by A′
p (X) and Ωp (X) by Ω′

p (X).

• Replace the (implicitly used) range p ≥ 0, q ≥ 0 of the parameters p, q by p ≥ 0, q ≥ −1.

Let us verify that after these changes the proof remains valid. For that we only need to
trace the places where the properties of the cross product were used and replace them by the
corresponding properties (and references) of join. Here is the list of the properties of cross
product that were used in the proof of Theorem 6.12, and their replacements for join.
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1. If u ∈ Ap (X) and v ∈ Aq (Y ) then u × v ∈ Ap+q (Z), which follows immediately from
the definition of the cross product. The same property is true for join: if u ∈ A′

p (X)
and v ∈ Aq (Y ) then uv ∈ Ap+q (Z), which is also a trivial consequence of the definition.

2. Proposition 6.5: if u ∈ Ωp (X) and v ∈ Ωq (Y ) then u × v ∈ Ωp+q (Z). It should be
replaced by Proposition 5.4: if u ∈ Ω′

p (X) and v ∈ Ωq (Y ) then uv ∈ Ωp+q (Z).

3. Lemma 6.9: any path w ∈ Ωr (Z) is a unique linear combination of the products ex×ey,
where x is an allowed path on X and y — that on Y . It should be replaced by the
following property of join: any path w ∈ Ar (Z) is a unique linear combination of joins
exey with x and y as above, which is a trivial consequence of the definition of join of
path complexes.

4. Lemma 6.11: if u ∈ Ω⊥
p (X) and v ∈ Aq (Y ) then u × v ∈ Ω⊥

p+q (Z) . It should be
replaced by Lemma 5.14: if u ∈ Ω′⊥

p (X) and v ∈ Aq (Y ) then uv ∈ Ω⊥
p+q (Z) .

By these observations we finish the proof.
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