Path homologies of digraphs

Alexander Grigor’yan
Nankai University and Bielefeld University

Yau’s MSC, Tsinghua University, November 1, 2 and 8, 2017
Based on a joint work with Yong Lin, Y.Muranov and S.-T.Yau
1 Paths in a finite set

Let V be a finite set. For any $p \geq 0$, an elementary p-path is any sequence $i_0, ..., i_p$ of $p + 1$ vertices of V that will be denoted by $i_0...i_p$ or by $e_{i_0...i_p}$. A p-path over a field \mathbb{K} is any formal \mathbb{K}-linear combinations of elementary p-paths, that is, any p-path has a form

$$u = \sum_{i_0, i_1, ..., i_p \in V} u^{i_0i_1...i_p} e_{i_0i_1...i_p},$$

where $u^{i_0i_1...i_p} \in \mathbb{K}$.

Denote by $\Lambda_p = \Lambda_p(V)$ the \mathbb{K}-linear space of all p-paths. For example,

$$\Lambda_0 = \text{span}\{e_i : i \in V\}$$
$$\Lambda_1 = \text{span}\{e_{ij} : i, j \in V\}$$
$$\Lambda_2 = \text{span}\{e_{ijk} : i, j, k \in V\}$$

Definition. Define for any $p \geq 1$ a linear boundary operator $\partial : \Lambda_p \to \Lambda_{p-1}$ by

$$\partial e_{i_0...i_p} = \sum_{q=0}^{p} (-1)^q e_{i_0...\hat{i}_q...i_p},$$

where $\hat{\cdot}$ means omission of the index. For $p = 0$ set $\partial e_i = 0$.
For example,
\[\partial e_{ij} = e_j - e_i \quad \text{and} \quad \partial e_{ijk} = e_{jk} - e_{ik} + e_{ij}. \]

We claim that \(\partial^2 = 0 \). Indeed, for any \(p \geq 2 \) we have

\[
\partial^2 e_{i_0 \ldots i_p} = \sum_{q=0}^{p} (-1)^q \partial e_{i_0 \ldots \hat{i}_q \ldots i_p} = \\
= \sum_{q=0}^{p} (-1)^q \left(\sum_{r=0}^{q-1} (-1)^r e_{i_0 \ldots \hat{i}_r \ldots \hat{i}_q \ldots i_p} + \sum_{r=q+1}^{p} (-1)^{r-1} e_{i_0 \ldots \hat{i}_q \ldots \hat{i}_r \ldots i_p} \right) = \\
= \sum_{0 \leq r < q \leq p} (-1)^{q+r} e_{i_0 \ldots \hat{i}_r \ldots \hat{i}_q \ldots i_p} - \sum_{0 \leq q < r \leq p} (-1)^{q+r} e_{i_0 \ldots \hat{i}_q \ldots \hat{i}_r \ldots i_p}.
\]

After switching \(q \) and \(r \) in the last sum we see that the two sums cancel out, whence \(\partial^2 e_{i_0 \ldots i_p} = 0 \). This implies \(\partial^2 u = 0 \) for all \(u \in \Lambda_p \).

Hence, we obtain a chain complex \(\Lambda_\ast(V) \):

\[
0 \leftarrow \Lambda_0 \xleftarrow{\partial} \Lambda_1 \xleftarrow{\partial} \ldots \xleftarrow{\partial} \Lambda_{p-1} \xleftarrow{\partial} \Lambda_p \xleftarrow{\partial} \ldots
\]
Definition. An elementary \(p \)-path \(e_{i_0...i_p} \) is called regular if \(i_k \neq i_{k+1} \) for all \(k = 0, ..., p-1 \), and irregular otherwise.

Let \(I_p \) be the subspace of \(\Lambda_p \) spanned by irregular \(e_{i_0...i_p} \). We claim that \(\partial I_p \subset I_{p-1} \). Indeed, if \(e_{i_0...i_p} \) is irregular then \(i_k = i_{k+1} \) for some \(k \). We have

\[
\partial e_{i_0...i_p} = e_{i_1...i_p} - e_{i_0i_2...i_p} + ... \\
+ (-1)^k e_{i_0...i_{k-1}i_{k+1}i_{k+2}...i_p} + (-1)^{k+1} e_{i_0...i_{k-1}i_ki_{k+2}...i_p} \\
+ ... + (-1)^p e_{i_0...i_{p-1}}.
\]

By \(i_k = i_{k+1} \) the two terms in the middle line of (1) cancel out, whereas all other terms are non-regular, whence \(\partial e_{i_0...i_p} \in I_{p-1} \).

Hence, \(\partial \) is well-defined on the quotient spaces \(\mathcal{R}_p := \Lambda_p/I_p \), and we obtain the chain complex \(\mathcal{R}_* (V) : \)

\[
0 \leftarrow \mathcal{R}_0 \leftarrow \mathcal{R}_1 \leftarrow \mathcal{R}_{p-1} \leftarrow \mathcal{R}_p \leftarrow ...
\]

By setting all irregular \(p \)-paths to be equal to 0, we can identify \(\mathcal{R}_p \) with the subspace of \(\Lambda_p \) spanned by all regular paths. For example, if \(i \neq j \) then \(e_{iji} \in \mathcal{R}_2 \) and

\[
\partial e_{iji} = e_{ji} - e_{ii} + e_{ij} = e_{ji} + e_{ij}
\]

because \(e_{ii} = 0 \).
2 Paths in a digraph

Definition. A digraph (directed graph) is a pair $G = (V, E)$ of a set V of vertices and a set $E \subset \{V \times V \setminus \text{diag}\}$ of (directed) edges. If $(i, j) \in E$ then we write $i \rightarrow j$.

Definition. Let $G = (V, E)$ be a digraph. An elementary p-path $i_0...i_p$ on V is called allowed if $i_k \rightarrow i_{k+1}$ for any $k = 0, ..., p - 1$, and non-allowed otherwise.

Let $A_p = A_p(G)$ be \mathbb{K}-linear space spanned by allowed elementary p-paths:

$$A_p = \text{span} \left\{ e_{i_0...i_p} : i_0...i_p \text{ is allowed} \right\}.$$

The elements of A_p are called allowed p-paths. Since any allowed path is regular, we have $A_p \subset R_p$.

We would like to build a chain complex based on subspaces A_p of R_p. However, the spaces A_p are in general not invariant for ∂. For example, in the digraph

$$\bullet \rightarrow \bullet \rightarrow \bullet$$

we have $e_{abc} \in A_2$ but $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \notin A_1$ because e_{ac} is not allowed.
Consider the following subspace of \mathcal{A}_p

$$\Omega_p \equiv \Omega_p (G) := \{ u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1} \}.$$

We claim that $\partial \Omega_p \subset \Omega_{p-1}$. Indeed, $u \in \Omega_p$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial (\partial u) = 0 \in \mathcal{A}_{p-2}$, whence $\partial u \in \Omega_{p-1}$.

Definition. The elements of Ω_p are called ∂-invariant p-paths or currents.

Hence, we obtain a chain complex $\Omega_* = \Omega_* (G)$:

$$0 \leftarrow \Omega_0 \overset{\partial}{\leftarrow} \Omega_1 \overset{\partial}{\leftarrow} \ldots \overset{\partial}{\leftarrow} \Omega_{p-1} \overset{\partial}{\leftarrow} \Omega_p \overset{\partial}{\leftarrow} \ldots$$

By construction we have $\Omega_0 = \mathcal{A}_0$ and $\Omega_1 = \mathcal{A}_1$, while in general $\Omega_p \subset \mathcal{A}_p$.

Definition. Path homologies of G are defined as the homologies of the chain complex $\Omega_* (G)$:

$$H_p (G, \mathbb{K}) = H_p (G) := H_p (\Omega_* (G)) = \ker \partial|_{\Omega_p} / \operatorname{Im} \partial|_{\Omega_{p+1}}.$$

Betti numbers: $\beta_p (G) := \dim H_p (G)$. The Euler characteristic:

$$\chi (G) = \sum_{p=0}^{\infty} (-1)^p \beta_p (G) = \sum_{p=0}^{\infty} (-1)^p \dim \Omega_p (G).$$
3 Examples of ∂-invariant paths

An 1-path e_{ab} is ∂-invariant if and only if it is allowed, that is, $a \rightarrow b$.

A triangle is a sequence of three vertices a, b, c such that $a \rightarrow b \rightarrow c, a \rightarrow c$.
A triangle determines a 2-path $e_{abc} \in \Omega_2$ because $e_{abc} \in A_2$ and $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \in A_1$.

A snake of length $p \geq 2$ is a sequence of $p + 1$ vertices, say $0, 1, \ldots, p$, such that $i \rightarrow i + 1$ for all $i = 0, \ldots, p - 1$ and $i \rightarrow i + 2$ for all $i = 0, \ldots, p - 2$.

Then a p-path $u = e_{01 \ldots p}$ is ∂-invariant, because $u \in A_p$ and

$$\partial u = \sum_{q=0}^{p} (-1)^q e_{0\ldots (q-1)\bar{q}(q+1)\ldots p} \in A_{p-1}, \text{ since } q - 1 \rightarrow q + 1.$$
A \textit{p-simplex} is a sequence of \(p + 1 \) vertices, say, 0, 1, ..., \(p \) such that \(i \to j \) for all \(i < j \). Equivalently, a \(p \)-simplex is a directed \textit{clique}. A \(p \)-simplex contains a snake so that the \(p \)-path \(e_{01...p} \) is \(\partial \)-invariant. Since

\[
\partial e_{012...p} = e_{12...p} - e_{02...p} + ... + (-1)^p e_{01...(p-1)},
\]

the boundary of \(p \)-simplex is an alternating sum of \((p-1)\)-simplexes.

An 1-simplex is any arrow \(a \to b \).

A 2-simplex is a triangle as above.

A 3-simplex is shown here:
A square is a sequence of four vertices a, b, b', c such that $a \to b$, $b \to c$, $a \to b'$, $b' \to c$. A square determines a 2-path $u := e_{abc} - e_{ab'}c \in \Omega_2$ because $u \in A_2$ and
\[
\partial u = (e_{bc} - \overline{e_{ac}} + e_{ab}) - (e_{b'c} - \overline{e_{ac}} + e_{ab'}) \\
= e_{ab} + e_{bc} - e_{ab'} - e_{b'c} \in A_1
\]

A 3-cube is a sequence of 8 vertices, say, 0, 1, 2, 3, 4, 5, 6, 7, connected by arrows as here. A 3-cube determines a ∂-invariant 3-path
\[
u = e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{0467} - e_{0267}
\]
Indeed, $\nu \in A_3$ and
\[
\partial u = (e_{013} - e_{023}) + (e_{157} - e_{137}) + (e_{237} - e_{267}) \\
- (e_{046} - e_{026}) - (e_{457} - e_{467}) - (e_{015} - e_{045}) \in A_2.
\]
An exotic cube is this subgraph containing 9 vertices and 15 edges. It is obtained from 3-cube by “splitting” the vertex 4 into 4, 4′ and adding the edges $4 \to 7$, $4′ \to 7$.

The exotic cube determines the following ∂-invariant 3-path:

$$u = e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{04′67} - e_{0267}.$$

Indeed, we have $u \in \mathcal{A}_3$ and

$$\partial u = e_{237} - e_{037} + e_{027} - e_{023}$$
$$-e_{137} + e_{037} - e_{017} + e_{013}$$
$$+ e_{157} - e_{057} + e_{017} - e_{015}$$
$$- e_{457} + e_{057} - e_{047} + e_{045}$$
$$+ e_{4′67} - e_{067} + e_{04′7} - e_{04′6}$$
$$- e_{267} + e_{067} - e_{027} + e_{026} \in \mathcal{A}_2.$$
4 Examples of digraphs and spaces Ω_p

Consider the following digraph with 6 vertices and 8 edges:

$\Omega_0 = A_0 = \text{span} \{e_0, e_1, e_2, e_3, e_4, e_5\}$,
$\Omega_1 = A_1 = \text{span} \{e_{01}, e_{02}, e_{13}, e_{23}, e_{24}, e_{53}, e_{54}\}$

Hence, $\dim \Omega_0 = 6$ and $\dim \Omega_1 = 8$

$A_2 = \text{span} \{e_{013}, e_{014}, e_{023}, e_{024}\}$, $\dim A_2 = 4$

However, none of these 2-paths is ∂-invariant.

Ω_2 is spanned by two squares:
$\Omega_2 = \text{span} \{e_{013} - e_{023}, e_{014} - e_{024}\}$, $\dim \Omega_2 = 2$.

There are no allowed p-paths for any $p \geq 3$.

Hence, $\Omega_p = A_p = \{0\}$ for all $p \geq 3$.

One computes $\dim H_0 = \dim H_1 = 1$ and $\dim H_p = 0$ for $p \geq 2$.

In fact, $H_0 = \text{span} \{e_0\}$, $H_1 = \text{span} \{e_{13} - e_{53} + e_{54} - e_{14}\}$.

The Euler characteristic: $\chi = \dim \Omega_0 - \dim \Omega_1 + \dim \Omega_2 = 6 - 8 + 2 = 0$.
Consider the following octahedral digraph with 6 vertices and 12 edges:

\[\Omega_0 = A_0 = \text{span}\ \{e_0, e_1, e_2, e_3, e_4, e_5\}. \]
\[\Omega_1 = A_1 = \text{span}\{e_{01}, e_{02}, e_{04}, e_{05}, e_{13}, e_{14}, e_{15}, e_{23}, e_{24}, e_{34}, e_{52}, e_{53}\}. \]
Hence, \(\dim \Omega_0 = 6, \ \dim \Omega_1 = 12. \)
\[A_2 = \text{span}\ \{e_{013}, e_{014}, e_{015}, e_{023}, e_{024}, e_{052}, e_{053}, e_{134}, e_{152}, e_{153}, e_{234}, e_{523}, e_{524}, e_{534}\}. \]

Space \(\Omega_2 \) is spanned by 8 triangles:
\(e_{014}, e_{015}, e_{024}, e_{052}, e_{134}, e_{153}, e_{234}, e_{523} \)
and 3 squares:
\(e_{013} - e_{023}, \ e_{013} - e_{053}, \ e_{524} - e_{534}. \)
Hence, \(\dim \Omega_2 = 8 + 3 = 11. \)

Space \(\Omega_3 \) is spanned by five \(\partial \)-invariant 3-paths:
\(e_{0153}, \ e_{0523}, \ e_{5234}, \ e_{0134} - e_{0234}, \ e_{0534} - e_{0134} - e_{0524}. \)
Hence, \(\dim \Omega_3 = 5. \)

\[\Omega_4 = \text{span}\ \{e_{05234}\}. \] Hence, \(\dim \Omega_4 = 1. \)

There is only 1 allowed 5-path \(e_{015234} \) but it is not \(\partial \)-invariant. Hence, \(\Omega_p = \{0\} \ \forall p \geq 5. \)
The Euler characteristic is
\[\chi = \dim \Omega_0 - \dim \Omega_1 + \dim \Omega_2 - \dim \Omega_3 + \dim \Omega_4 = 6 - 12 + 11 - 5 + 1 = 1. \]

One can show that \(\dim H_0 = 1 \) and \(\dim H_p = 0 \) for all \(p \geq 1 \), which confirms \(\chi = 1 \).

Here is a verification of the \(\partial \)-invariance of five 3-paths and the 4-path:

\[\partial e_{0153} = e_{153} - e_{053} + e_{013} - e_{015} \in A_2 \]
\[\partial e_{0523} = e_{523} - e_{023} + e_{053} - e_{052} \in A_2 \]
\[\partial e_{5234} = e_{234} - e_{534} + e_{524} - e_{523} \in A_2 \]
\[\partial (e_{0134} - e_{0234}) = e_{134} - e_{034} + e_{014} - e_{013} - e_{234} + e_{034} - e_{024} + e_{023} = e_{134} + e_{014} - e_{013} - e_{234} - e_{024} + e_{023} \in A_2 \]
\[\partial (e_{0534} - e_{0134} - e_{0524}) = e_{534} - e_{034} + e_{054} - e_{053} - e_{134} + e_{034} - e_{014} + e_{013} - e_{524} + e_{024} - e_{054} + e_{052} = e_{534} - e_{053} - e_{134} - e_{014} + e_{013} - e_{524} + e_{024} + e_{052} \in A_2 \]
\[\partial e_{05234} = e_{5234} - e_{0234} + e_{0534} - e_{0524} + e_{0523} \in A_3 \]
5 Cross product of paths

Given two finite sets X, Y, consider their product

$$Z = X \times Y = \{(a, b) : a \in X \text{ and } b \in Y\}.$$

Let $z = z_0z_1...z_r$ be a regular elementary r-path on Z, where $z_k = (a_k, b_k)$ with $a_k \in X$ and $b_k \in Y$. We say that z is stair-like if, for any $k = 1, ..., r$, either $a_{k-1} = a_k$ or $b_{k-1} = b_k$ is satisfied. That is, any couple $z_{k-1}z_k$ of consecutive vertices is either vertical (when $a_{k-1} = a_k$) or horizontal (when $b_{k-1} = b_k$).

Given a stair-like path z on Z, define its projection onto X as an elementary path x on X obtained from z by removing Y-components in all the vertices of z and then by collapsing in the resulting sequence any subsequence of repeated vertices to one vertex. In the same way define projection of z onto Y and denote it by y.

Projections $x = x_0...x_p$ and $y = y_0...y_q$ are regular elementary paths, and $p + q = r$.

![Diagram](image.png)
Every vertex \((x_i, y_j)\) of path \(z\) can be represented as a point \((i, j)\) of \(\mathbb{Z}^2\) so that path \(z\) is represented by a staircase \(S(z)\) in \(\mathbb{Z}^2\) connecting points \((0, 0)\) and \((p, q)\).

Define the \textit{elevation} \(L(z)\) of \(z\) as the number of cells in \(\mathbb{Z}_+^2\) below the staircase \(S(z)\).

For given elementary regular paths \(x\) on \(X\) and \(y\) on \(Y\), denote by \(\Sigma_{x,y}\) the set of all stair-like paths \(z\) on \(Z\) whose projections on \(X\) and \(Y\) are respectively \(x\) and \(y\).

\textbf{Definition.} Define the \textit{cross product} of the paths \(e_x\) and \(e_y\) as a path \(e_x \times e_y\) on \(Z\) as follows:

\[
e_x \times e_y = \sum_{z \in \Sigma_{x,y}} (-1)^{L(z)} e_z. \tag{2}
\]

Then extend the cross product by linearity to all paths \(u \in \mathcal{R}_p(X)\) and \(v \in \mathcal{R}_q(Y)\) so that \(u \times v \in \mathcal{R}_{p+q}(Z)\).
Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by integers $1, 2, 3$, etc so that the vertices on Z can be denoted as $a1, b2$ etc as the fields on the chessboard. Then we have

$$e_a \times e_{12} = e_{a1a2}, \quad e_{ab} \times e_1 = e_{a1b1}$$

$$e_{ab} \times e_{12} = e_{a1b1b2} - e_{a1a2b2}$$

$$e_{ab} \times e_{123} = e_{a1b1b2b3} - e_{a1a2b2b3} + e_{a1a2a3b3}$$

$$e_{abc} \times e_{123} = e_{a1b1c1c2c3} - e_{a1b1b2c2c3} + e_{a1b1b2b3c3} + e_{a1a2b2c2c3} - e_{a1a2b2b3c3} + e_{a1a2a3b3c3}$$

Proposition 1 If $u \in \mathcal{R}_p(X)$ and $v \in \mathcal{R}_q(Y)$ where $p,q \geq 0$, then

$$\partial (u \times v) = (\partial u) \times v + (-1)^p u \times (\partial v).$$
Denote a digraph and its set of vertices by the same letters to simplify notation. Given two digraphs X and Y, define their Cartesian product as a digraph $Z = X \Box Y$ as follows:

- the set of vertices of Z is $X \times Y$, that is, the vertices of Z are the couples (a, b) where $a \in X$ and $b \in Y$;

- the edges in Z are of two types: $(a, b) \to (a', b)$ where $a \to a'$ (a horizontal edge) and $(a, b) \to (a, b')$ where $b \to b'$ (a vertical edge):

$$
\begin{align*}
&b' \bullet \quad \ldots \quad (a, b') \quad \longrightarrow \quad (a', b') \quad \ldots \\
&\uparrow \quad \quad \quad \uparrow \quad \quad \quad \uparrow \\
&b \bullet \quad \ldots \quad (a, b) \quad \longrightarrow \quad (a', b) \quad \ldots \\
\end{align*}
$$

$$
\begin{align*}
&Y \quad \frac{\ldots}{\ldots} \quad \bullet \quad \longrightarrow \quad \bullet \quad \ldots \\
&x \quad \text{a} \quad \longrightarrow \quad \text{a'} \quad \ldots
\end{align*}
$$

It follows that any allowed elementary path in Z is stair-like.
Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and its projections onto X and Y are allowed.

It follows from definition (2) of the cross product that

$$u \in \mathcal{A}_p(X) \text{ and } v \in \mathcal{A}_q(Y) \Rightarrow u \times v \in \mathcal{A}_{p+q}(Z).$$

(3)

Furthermore, the following is true.

Proposition 2 If $u \in \Omega_p(X)$ and $v \in \Omega_q(Y)$ then $u \times v \in \Omega_{p+q}(Z)$.

Proof. $u \times v$ is allowed by (3). Since ∂u and ∂v are allowed, by (3) also $\partial u \times v$ and $u \times \partial v$ are allowed. By the product rule, $\partial (u \times v)$ is also allowed. Hence, $u \times v \in \Omega_{p+q}(Z)$.

Theorem 3 (Main Theorem) Then any ∂-invariant path w on $Z = X \square Y$ admits a representation in the form

$$w = \sum_{i=1}^{k} u_i \times v_i$$

for some finite k, where u_i and v_i are ∂-invariant paths on X and Y, respectively.
Theorem 4 (Küneth formula) Let X, Y be two finite digraphs and $Z = X \Box Y$. Then we have the following isomorphism of the chain complexes:

\[
\Omega_* (Z) \cong \Omega_* (X) \otimes \Omega_* (Y).
\]

(4)

It is given by the map $u \otimes v \mapsto u \times v$ with $u \in \Omega_* (X)$ and $v \in \Omega_* (Y)$.

A more detailed version of (4) is the following: for any $r \geq 0$,

\[
\Omega_r (Z) \cong \bigoplus_{\{p,q \geq 0: p+q=r\}} \left(\Omega_p (X) \otimes \Omega_q (Y) \right).
\]

(5)

By an abstract theorem of Küneth, we obtain from (4)

\[
H_* (Z) \cong H_* (X) \otimes H_* (Y),
\]

that is, for any $r \geq 0$,

\[
H_r (Z) \cong \bigoplus_{\{p,q \geq 0: p+q=r\}} \left(H_p (X) \otimes H_q (Y) \right).
\]

(6)

Consequently,

\[
\beta_r (Z) = \sum_{\{p,q \geq 0: p+q=r\}} \beta_p (X) \beta_q (Y).
\]
Example. Consider the digraph $Z = X \square Y$ where X is an interval and Y is a square:

\[
X = a \cdot \rightarrow b \quad \text{and} \quad Y = \begin{array}{c}\uparrow \\
0 \rightarrow 1\end{array}
\]

Z has 8 vertices (i, j) where $i = a, b$, $j = 0, 1, 2, 3$. Let us enumerate them: $(a, i) \equiv i$ and $(b, i) \equiv i + 4$.

We see that Z is a 3-cube:

We have:

\[
\begin{aligned}
\Omega_1 (X) &= \text{span} \{e_{ab}\}, \quad \Omega_p (X) = 0 \text{ for } p \geq 2, \\
\Omega_1 (Y) &= \text{span} \{e_{01}, e_{13}, e_{23}, e_{02}\}, \quad \Omega_2 (Y) = \text{span} \{e_{013} - e_{023}\}, \\
\Omega_q (Y) &= 0 \text{ for } q \geq 3.
\end{aligned}
\]

By (5) we obtain

\[
\Omega_3 (Z) \cong \Omega_1 (X) \otimes \Omega_2 (Y) = \text{span} \{e_{ab} \times e_{013} - e_{ab} \times e_{023}\}.
\]
\[e_{ab} \times e_{013} = e_{a0b0b1b3} - e_{a0a1b1b3} + e_{a0a1a3b3} = e_{0457} - e_{0157} + e_{0137} \]

and

\[e_{ab} \times e_{023} = e_{0467} - e_{0267} + e_{0237} \]

Hence, we obtain

\[\Omega_3 (Z) = \text{span} \{ e_{0457} - e_{0157} + e_{0137} - e_{0467} + e_{0267} - e_{0237} \} \]

that is the \(\partial \)-invariant 3-path associated with 3-cube.

Define \(n \)-cube as follows:

\[n \text{-cube} = I \square I \square \ldots \square I, \]

where \(I = ^a \bullet \longrightarrow ^b \). Similarly one shows that \(\Omega_n (n \text{-cube}) \) is spanned by a single \(n \)-path that is an alternating sum of \(n! \) elementary \(n \)-paths connecting the vertices \(0 \) and \(2^n - 1 \). This corresponds to partitioning of a solid \(n \)-dim cube into \(n! \) simplexxes.
Example. Consider the digraph $Z = X □ Y$ where

$$X = \begin{array}{c}
\bullet \quad \bullet \\
\downarrow & \downarrow \\
\quad & \quad \\
\uparrow & \uparrow \\
0 & 2 \\
\bullet & \bullet \\
\end{array}$$

and $Y = \begin{array}{c}
\bullet \\
\uparrow \\
\bullet \\
0 \\
\quad \\
\end{array}$

One can show that

$$H_1(X) = \text{span}\{e_{ab} + e_{bc} + e_{ca}\}, \quad H_p(X) = 0 \text{ for } p \geq 2$$

$$H_1(Y) = \text{span}\{-e_{10} + e_{02} + e_{23} - e_{13}\}, \quad H_q(Y) = 0 \text{ for all } q \geq 2$$

By (6) we obtain

$$H_1(Z) = H_0(X) \otimes H_1(Y) + H_1(X) \otimes H_0(Y) \cong \mathbb{K}^2,$$

$$H_2(Z) \cong H_1(X) \otimes H_1(Y) = \text{span}\{(e_{ab} + e_{bc} + e_{ca}) \times (-e_{10} + e_{02} + e_{23} - e_{13})\} \cong \mathbb{K},$$

and $H_r(Z) = 0$ for all $r \geq 2$.

21
7 Homotopy of digraphs

For vertices a, b of a digraph, write $a \equiv b$ if either $a \to b$ or $a = b$. Let X and Y be two digraphs.

Definition. A mapping $f : X \to Y$ called a digraph map (or morphism) if

$$a \to b \text{ on } X \implies f(a) \equiv f(b) \text{ on } Y.$$

Any digraph map $f : X \to Y$ induces a linear map

$$f_* : A_p(X) \to A_p(Y), \quad f_* (e_{i_0 \ldots i_p}) = e_{f(i_0) \ldots f(i_p)}.$$

It is easy to check that $f_* \partial = \partial f_*$, which implies that f_* provides a morphism of chain complexes $f_* : \Omega_p(X) \to \Omega_p(Y)$ and, consequently, a homomorphism of homology groups $f_* : H_p(X) \to H_p(Y)$.

Definition. For any $n \geq 1$ define a line digraph I_n as any digraph with $n + 1$ vertices \{0, 1, \ldots, n\} and such that, for any $i = 0, \ldots, n - 1$ holds either $i \to (i + 1)$ or $(i + 1) \to i$, and there is no other arrow.
Definition. Let X, Y be two digraphs. Two digraph maps $f, g: X \to Y$ are called \textit{homotopic} if there exists a line digraph I_n and a digraph map $\Phi: X \square I_n \to Y$ such that

$$\Phi|_{X \times \{0\}} = f \quad \text{and} \quad \Phi|_{X \times \{n\}} = g.$$

In this case we write $f \simeq g$. The map Φ is called a \textit{homotopy} between f and g.

Definition. Two digraphs X and Y are called \textit{homotopy equivalent} if there exist digraph maps

$$f: X \to Y, \quad g: Y \to X$$

such that

$$f \circ g \simeq \text{id}_Y, \quad g \circ f \simeq \text{id}_X.$$

In this case we write $X \simeq Y$.

Theorem 5 \textit{(i)} Let $f, g: X \to Y$ be two digraph maps. If $f \simeq g$ then they induce the identical maps of homology groups:

$$f_*: H_p(X) \to H_p(Y) \quad \text{and} \quad g_*: H_p(X) \to H_p(Y).$$

\textit{(ii)} If the digraphs X and Y are homotopy equivalent, then $H_*(X) \cong H_*(Y)$.
In particular, if a digraph X is contractible, that is, if $X \simeq \{\ast\}$, then all the homology groups of X are trivial except for H_0.

We say that a digraph Y is a subgraph of X if the set of vertices of Y is a subset of that of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y.

Definition. Let X be a digraph and Y be its subgraph. A retraction of X onto Y is a digraph map $r : X \to Y$ such that $r|_Y = \text{id}_Y$.

Theorem 6 Let $r : X \to Y$ be a retraction of a digraph X onto a subgraph Y. Assume that

\[
either x \equiv r(x) \text{ for all } x \in X \text{ or } r(x) \equiv x \text{ for all } x \in X. \tag{9}\]

Then $X \simeq Y$ and, consequently, $H_\ast(X) \simeq H_\ast(Y)$.

A retraction that satisfies (9) is called a deformation retraction.

Example. Let us show that n-cube is contractible. Indeed, a natural projection of n-cube onto $(n - 1)$-cube is a deformation retraction. Hence, by induction we obtain n-cube $\simeq \{\ast\}$.
Example. Consider the digraph X as here.

Let Y be its subgraph with the vertex set $\{1, 3, 4\}$. Consider a retraction $r : X \to Y$ given by $r(0) = 1$, $r(2) = 3$. It is easy to see that r is a deformation retraction, whence $X \simeq Y$. Then we obtain

$$H_1(X) \cong H_1(Y) = \text{span} \{e_{13} + e_{34} + e_{41}\} \cong \mathbb{K}$$

and $H_p(X) = \{0\}$ for $p \geq 2$.
8 Summary

Fix a finite set V and a field \mathbb{K}. For any $p \geq 0$, set $\mathcal{R}_p = \text{span}_\mathbb{K}\{e_{i_0...i_p} : i_0...i_p \text{ is regular}\}$, where “regular” means that $i_k \neq i_{k+1}$ for all k. There is a boundary operator $\partial : \mathcal{R}_p \to \mathcal{R}_{p-1}$ such that $\partial^2 = 0$.

Let $G = (V, E)$ be a digraph. Set $\mathcal{A}_p = \text{span}_\mathbb{K}\{e_{i_0...i_n} : i_0...i_p \text{ is allowed}\} \subset \mathcal{R}_p$, where “allowed” means that $i_k \to i_{k+1}$ for all k.

Spaces of ∂-invariant paths: $\Omega_p = \{u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1}\}$.

Chain complex $\Omega_\ast (G)$: $0 \leftarrow \Omega_0 \xleftarrow{\partial} \Omega_1 \xleftarrow{\partial} \ldots \xleftarrow{\partial} \Omega_{p-1} \xleftarrow{\partial} \Omega_p \xleftarrow{\partial} \ldots$.

Path homology: $H_p (G) = \ker \partial|_{\Omega_p} / \text{Im} \partial|_{\Omega_{p+1}}$.

Theorem 4 $\Omega_\ast (X \Box Y) \cong \Omega_\ast (X) \otimes \Omega_\ast (Y)$ and $H_\ast (X \Box Y) \cong H_\ast (X) \otimes H_\ast (Y)$

A mapping $f : X \to Y$ is called a digraph map if $a \to b$ in X implies $f (a) \equiv f (b)$ in Y.

We have also defined *homotopy equivalence* $X \simeq Y$ of two digraphs.

Theorem 5 If $X \simeq Y$ then $H_\ast (X) \cong H_\ast (Y)$.
Theorem 6 If Y is a subgraph of X then $X \simeq Y$ provided there exists a deformation retraction $r: X \to Y$, that is:

(i) $r|_Y = \text{id}$;
(ii) r is a digraph map;
(iii) either $x \equiv r(x)$ for all $x \in X$ or $r(x) \equiv x$ for all $x \in X$.

For example, consider digraphs:
The left hand side digraph is contractible as there is a sequence of two deformation retractions reducing it to $\{\ast\}$:
$r_1(4) = r_1(5) = 3$
$r_2(1) = r_2(2) = 3$

The right hand side digraph differs only by one arrow $3 \to 1$, but it is not contractible because $H_2 \neq \{0\}$

$H_2 = \text{span} \{e_{124} + e_{234} + e_{314} - e_{125} - e_{235} - e_{315}\}$
9 Undirected graphs

If $G = (V, E)$ is an undirected graph then it can be turned into a digraph by allowing both arrows $x \rightarrow y$ and $y \rightarrow x$ whenever $x \sim y$. All the above results can be reformulated for undirected graphs in an obvious way.

Example. Fix integers $1 \leq k \leq n$ and a set S of n elements. The *Johnson graph* $J(n, k)$ is the graph whose vertices are k-subsets of S, and the edges are defined as follows: two k-subsets are connected by an edge if their intersection contains $k - 1$ elements of S.

Let us describe $J(4, 2)$. Taking $S = \{1, 2, 3, 4\}$, we see that the vertices of $J(4, 2)$ are the pairs $43, 42, 41, 32, 31, 31$. The graph $J(4, 2)$ has twelve edges:
Johnson graphs are a special class of undirected graphs defined from systems of sets. The vertices of the Johnson graph $J(n, k)$ are the k-element subsets of an n-element set; two vertices are adjacent when the intersection of the two vertices (subsets) contains $(k - 1)$-elements.¹ Both Johnson graphs and the closely related Johnson scheme are named after Selmer M. Johnson.

Contents

1. Special cases
2. Graph-theoretic properties
3. Automorphism group
4. Intersection array
5. Eigenvalues and Eigenvectors
6. Relation to Johnson scheme
7. Open Problems
8. References
9. External links

Special cases

The Johnson graph $J(5, 2)$

<table>
<thead>
<tr>
<th>Named after</th>
<th>Selmer M. Johnson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>$\binom{n}{k}$</td>
</tr>
<tr>
<td>Edges</td>
<td>$\frac{k(n - k)}{2} \binom{n}{k}$</td>
</tr>
</tbody>
</table>
Proposition 7 For all \(n > k \geq 1 \) we have \(J(n, k) \simeq J(n - 1, k) \).

Consequently, \(J(n, k) \simeq J(n - 1, k) \simeq \ldots \simeq J(k, k) = \{\ast\} \), and all the homology groups of \(J(n, k) \) are trivial.

For the proof, assume that \(J(n, k) \) is constructed over the set \(S = \{1, \ldots, n - 1, n\} \), so that graph \(J(n - 1, k) \) is a subgraph of \(J(n, k) \). Then there exists a deformation retraction \(r : J(n, k) \to J(n - 1, k) \). Here is a deformation retraction \(r : J(4, 2) \to J(3, 2) \):
In general, we construct r as follows. Any vertex a of $J(n,k)$ is represented by a monotone decreasing sequence $a = a_1 a_2 ... a_k$ of integers from \{1, ..., n\}: $n \geq a_1 > a_2 > ... > a_k \geq 1$. Define $r(a) = a' = a_1' a_2' ... a_k'$ where

$$a_1' = \min (a_1, n - 1), \quad a_2' = \min (a_2, n - 2), \quad ... \quad a_k' = \min (a_k, n - k).$$

Then $n - 1 \geq a_1' > a_2' > ... > a_k' \geq 1$, so that a' is a vertex of $J(n - 1, k)$. We claim that $r : J(n,k) \to J(n-1,k)$ is a deformation retraction.

(i) If $a \in J(n-1,k)$ then $r(a) = a$ because $a_1 \leq n - 1, a_2 \leq n - 2, ..., a_k \leq n - k$, which implies $a_i' = a_i$.

(ii) If $a \sim b$ in $J(n,k)$ then $r(a) \sim r(b)$ or $r(a) = r(b)$ because sequences $a_1 ... a_k$ and $b_1 ... b_k$ have $k - 1$ common elements, whence it follows that a' and b' have at least $k - 1$ common elements.

(iii) If $a \in J(n,k) \setminus J(n-1,k)$ then $r(a) \sim a$. In this case $a_1 = n$. Assume $a_2 \leq n - 2$. Then $a_3 \leq n - 3, ..., a_k \leq n - k$, which implies

$$a_1' = n - 1, \quad a_2' = a_2, ..., \quad a_k' = a_k$$

that is, $r(a) = (n - 1) a_2 ... a_k$ and $r(a) \sim a$. The case $a_2 = n - 1$ is a bit more involved.
10 C-homotopy of loops

For any digraph G and a vertex \ast of G, denote by G^{\ast} a based digraph.

Definition. A loop on G^{\ast} is a digraph map $\varphi: I_n \to G$ such that $\varphi(0) = \varphi(n) = \ast$.

Here I_n is any line digraph with any $n \geq 0$.

Definition. Consider in G^{\ast} two loops $\varphi: I_n \to G$ and $\psi: I_m \to G$. An one-step direct C-homotopy from φ to ψ is a digraph map $h: I_n \to I_m$ such that

(a) $h(0) = 0$, $h(n) = m$ and $h(i) \leq h(j)$ whenever $i \leq j$;

(b) $\varphi(i) \overset{C}{\equiv} \psi(h(i))$ for all $i \in I_n$.

If in (b) holds $\varphi(i) \overset{C}{\equiv} \psi(h(i))$ for all $i \in I_n$ then h is called an one-step inverse C-homotopy.

We denote an one-step direct C-homotopy with $\varphi \overset{C}{\to} \psi$ and the one-step inverse C-homotopy with $\varphi \overset{C}{\leftarrow} \psi$.
Example. On the next diagram we have $\varphi \xrightarrow{C} \psi$.

Condition (b) means that φ and ψ provide a digraph map from the digraph on the left panel to G.

Definition. We call two loops φ, ψ C-homotopic and write $\varphi \simeq_{C} \psi$ if there exists a finite sequence $\{\varphi_k\}_{k=0}^{m}$ of loops in G^* such that $\varphi_0 = \varphi$, $\varphi_m = \psi$ and, for any $k = 0, ..., m - 1$, holds $\varphi_k \xrightarrow{C} \varphi_{k+1}$ or $\varphi_k \xleftarrow{C} \varphi_{k+1}$.

Obviously, C-homotopy is an equivalence relation. A loop φ is called contractible if $\varphi \simeq e$ where $e : I_0 \to G$ is a trivial loop.
The following theorem gives an efficient way of verifying if two loops are C-homotopic.

Any loop $\varphi: I_n \to G$ defines a sequence $\theta_{\varphi} = \{\varphi(i)\}_{i=0}^n$ of vertices of G. We consider θ_{φ} as a word over the alphabet V.

Theorem 8 Two loops $\varphi: I_n \to G$ and $\psi: I_m \to G$ are C-homotopic if and only if θ_{ψ} can be obtained from θ_{φ} by a finite sequence of the following word transformations (or inverses to them):

(i) ...abc... \mapsto ...ac... where a, b, c is a triangle in G or any permutation of a triangle.

(ii) ...abc... \mapsto ...adc... where a, b, c, d is a square in G or any cyclic permutation of a square or an inverse cyclic permutation of a square.

(iii) ...$abcd$... \mapsto ...ad... where a, b, c, d is as in (ii).

(iv) ...aba... \mapsto ...a... if $a \to b$ or $b \to a$.

(v) ...aa... \mapsto ...a...
Examples

1. Consider a triangular loop
 \(\varphi : (0 \to 1 \to 2 \leftarrow 3) \to G \)

 It is contractible because

 \[\theta_\varphi = abca \quad \text{\((i) \)} \quad \sim \quad aca \quad \text{\((iv) \)} \quad \sim \quad a. \]

2. Consider a square loop
 \(\varphi : (0 \to 1 \to 2 \leftarrow 3 \leftarrow 4) \to G \)

 It is contractible because

 \[\theta_\varphi = abcd\quad \text{\((iii) \)} \quad \sim \quad ada \quad \text{\((iv) \)} \quad \sim \quad a. \]
3. Consider the loops $\varphi : I_5 \rightarrow G$ and $\psi : I_3 \rightarrow G$ as on p. 33. It is shown here how to transform θ_φ to θ_ψ by means of Theorem 8: using successively transformations $(i)^-$, $(i), (ii)$ and (iii).
11 Fundamental group

The C-homotopy equivalence class of a loop $\varphi : I_n \to G$ will be denoted by $[\varphi]$. For any two loops $\varphi : I_n \to G$ and $\psi : I_m \to G$ define their concatenation $\varphi \vee \psi : I_{n+m} \to G$ by

$$\varphi \vee \psi(i) = \begin{cases}
\varphi(i), & 0 \leq i \leq n \\
\psi(i - n), & n \leq i \leq n + m.
\end{cases}$$

Then the product $[\varphi] \cdot [\psi] := [\varphi \vee \psi]$ of equivalence classes is then well-defined.

Theorem 9 (a) The set of all equivalence classes $[\varphi]$ with the above product is a group with the neutral element $[e]$. It is denoted by $\pi_1(G^*)$.

(b) Any based digraph map $f : X^* \to Y^*$ induces a group homomorphism

$$\pi_1(f) : \pi_1(X^*) \to \pi_1(Y^*), \quad (\pi_1(f))[\varphi] = [f \circ \varphi].$$

(c) If $f, g : X^* \to Y^*$ are two digraph maps then $f \simeq g$ implies $\pi_1(f) = \pi_1(g)$.

(d) If X, Y are connected and $X \simeq Y$ then $\pi_1(X^*) \cong \pi_1(Y^*)$.
Theorem 10 For any based connected digraph G^* we have an isomorphism

$$\pi_1(G^*) / [\pi_1(G^*), \pi_1(G^*)] \cong H_1(G, \mathbb{Z}),$$

where $[\pi_1(G^*), \pi_1(G^*)]$ is a commutator subgroup.
12 Application to graph coloring

An illustration of the theory of digraph homotopy, we give here a new proof of the classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle ABC on the plane \mathbb{R}^2 and its triangulation T. Assume that the set of vertices of T is colored in three colors 1, 2, 3 so that:

- the vertex A is colored in 1, B in 2, C in 3;
- each vertex on the side AB is colored in 1 or 2, on the side AC in 1 or 3, on the side BC in 2 or 3.

Lemma of Sperner. Under the above conditions, there exists in T a 3-color triangle, that is, a triangle, whose vertices are colored with three different colors.
Let us first modify the triangulation T so that there are no vertices on the sides AB, AC, BC except for A, B, C. If $X \in AB$ then move X a bit inside of ABC. A new triangle XYZ arises, where Y, Z are former neighbors of X on AB. However, since X, Y, Z are colored in two colors, no 3-color triangle emerges after that move. By induction, we remove all the vertices from all sides of ABC.

Consider the triangulation T as a graph and make it into a digraph G as follows. If a, b are two vertices on T and $a \sim b$ then choose direction between a, b using the colors of a, b and the following rule:

$$1 \rightarrow 2, \ 2 \rightarrow 3, \ 3 \rightarrow 1$$

$$1 \leftrightarrow 1, \ 2 \leftrightarrow 2, \ 3 \leftrightarrow 3$$

Denote by S the following colored digraph and define a mapping $f : G \rightarrow S$ to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G.

Consider a 3-loop φ on G^* (with $* = A$) with the word

$$\theta_\varphi = ABCA.$$

For the loop $f \circ \varphi$ on S we have $\theta_{f \circ \varphi} = 1231$. This loop is not contractible because none of the transformations of Theorem 8 can be applied to the word 1231. By Theorem 9(b), the loop φ is also not contractible and, hence, $\pi_1(G^*) \neq \{0\}$.
Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G like

\[
\begin{array}{c}
\bullet \leftrightarrow \bullet \\
\downarrow \\
\bullet \leftrightarrow \bullet \\
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\bullet \leftrightarrow \bullet \\
\downarrow \\
\bullet \leftrightarrow \bullet \\
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\bullet \leftrightarrow \bullet \\
\downarrow \\
\bullet \leftrightarrow \bullet \\
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\bullet \leftrightarrow \bullet \\
\downarrow \\
\bullet \leftrightarrow \bullet \\
\end{array}
\]

In particular, each of them contains a triangle in the sense of Theorem 8. Using the partition of G into the triangles and transformations (ii) and (iv) of Theorem 8, we contract any loop on G to the empty word, which contradicts to $\pi_1(G') \neq \{0\}$.