Path homologies of digraphs

Alexander Grigor'yan Nankai University and Bielefeld University

Yau's MSC, Tsinghua University, November 1, 2 and 8, 2017 Based on a joint work with Yong Lin, Y.Muranov and S.-T.Yau

1 Paths in a finite set

Let V be a finite set. For any $p \ge 0$, an *elementary* p-path is any sequence $i_0, ..., i_p$ of p+1 vertices of V that will be denoted by $i_0...i_p$ or by $e_{i_0...i_p}$. A p-path over a field K is any formal K-linear combinations of elementary p-paths, that is, any p-path has a form

$$u = \sum_{i_0, i_1, \dots, i_p \in V} u^{i_0 i_1 \dots i_p} e_{i_0 i_1 \dots i_p}, \text{ where } u^{i_0 i_1 \dots i_p} \in \mathbb{K}.$$

Denote by $\Lambda_p = \Lambda_p(V)$ the K-linear space of all *p*-paths. For example,

$$\Lambda_0 = \operatorname{span}\{e_i : i \in V\}$$

$$\Lambda_1 = \operatorname{span}\{e_{ij} : i, j \in V\}$$

$$\Lambda_2 = \operatorname{span}\{e_{ijk} : i, j, k \in V\}$$

Definition. Define for any $p \ge 1$ a linear boundary operator $\partial : \Lambda_p \to \Lambda_{p-1}$ by

$$\partial e_{i_0...i_p} = \sum_{q=0}^{p} (-1)^q e_{i_0...\hat{i_q}...i_p},$$

where $\widehat{}$ means omission of the index. For p = 0 set $\partial e_i = 0$.

For example,

$$\partial e_{ij} = e_j - e_i$$
 and $\partial e_{ijk} = e_{jk} - e_{ik} + e_{ij}$.

We claim that $\partial^2 = 0$. Indeed, for any $p \ge 2$ we have

$$\partial^{2} e_{i_{0}...i_{p}} = \sum_{q=0}^{p} (-1)^{q} \partial e_{i_{0}...\hat{i_{q}}...i_{p}}$$

$$= \sum_{q=0}^{p} (-1)^{q} \left(\sum_{r=0}^{q-1} (-1)^{r} e_{i_{0}...\hat{i_{r}}...\hat{i_{q}}...i_{p}} + \sum_{r=q+1}^{p} (-1)^{r-1} e_{i_{0}...\hat{i_{q}}...\hat{i_{r}}...i_{p}} \right)$$

$$= \sum_{0 \le r < q \le p} (-1)^{q+r} e_{i_{0}...\hat{i_{r}}...\hat{i_{q}}...i_{p}} - \sum_{0 \le q < r \le p} (-1)^{q+r} e_{i_{0}...\hat{i_{r}}...i_{p}}.$$

After switching q and r in the last sum we see that the two sums cancel out, whence $\partial^2 e_{i_0...i_p} = 0$. This implies $\partial^2 u = 0$ for all $u \in \Lambda_p$.

Hence, we obtain a chain complex $\Lambda_*(V)$:

$$0 \leftarrow \Lambda_0 \stackrel{\partial}{\leftarrow} \Lambda_1 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_p \stackrel{\partial}{\leftarrow} \dots$$

Definition. An elementary *p*-path $e_{i_0...i_p}$ is called *regular* if $i_k \neq i_{k+1}$ for all k = 0, ..., p-1, and irregular otherwise.

Let I_p be the subspace of Λ_p spanned by irregular $e_{i_0...i_p}$. We claim that $\partial I_p \subset I_{p-1}$. Indeed, if $e_{i_0...i_p}$ is irregular then $i_k = i_{k+1}$ for some k. We have

$$\partial e_{i_0...i_p} = e_{i_1...i_p} - e_{i_0i_2...i_p} + ... + (-1)^k e_{i_0...i_{k-1}i_{k+1}i_{k+2}...i_p} + (-1)^{k+1} e_{i_0...i_{k-1}i_ki_{k+2}...i_p} (1) + ... + (-1)^p e_{i_0...i_{p-1}}.$$

By $i_k = i_{k+1}$ the two terms in the middle line of (1) cancel out, whereas all other terms are non-regular, whence $\partial e_{i_0...i_p} \in I_{p-1}$.

Hence, ∂ is well-defined on the quotient spaces $\mathcal{R}_p := \Lambda_p / I_p$, and we obtain the chain complex $\mathcal{R}_*(V)$:

$$0 \leftarrow \mathcal{R}_0 \stackrel{\partial}{\leftarrow} \mathcal{R}_1 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_p \stackrel{\partial}{\leftarrow} \dots$$

By setting all irregular *p*-paths to be equal to 0, we can identify \mathcal{R}_p with the subspace of Λ_p spanned by all regular paths. For example, if $i \neq j$ then $e_{iji} \in \mathcal{R}_2$ and

$$\partial e_{iji} = e_{ji} - e_{ii} + e_{ij} = e_{ji} + e_{ij}$$

because $e_{ii} = 0$.

2 Paths in a digraph

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V of vertices and a set $E \subset \{V \times V \setminus \text{diag}\}$ of (directed) edges. If $(i, j) \in E$ then we write $i \to j$.

Definition. Let G = (V, E) be a digraph. An elementary *p*-path $i_0...i_p$ on *V* is called allowed if $i_k \rightarrow i_{k+1}$ for any k = 0, ..., p - 1, and non-allowed otherwise.

Let $\mathcal{A}_{p} = \mathcal{A}_{p}(G)$ be K-linear space spanned by allowed elementary *p*-paths:

$$\mathcal{A}_p = \operatorname{span} \left\{ e_{i_0 \dots i_p} : i_0 \dots i_p \text{ is allowed} \right\}.$$

The elements of \mathcal{A}_p are called *allowed* p-paths. Since any allowed path is regular, we have $\mathcal{A}_p \subset \mathcal{R}_p$.

We would like to build a chain complex based on subspaces \mathcal{A}_p of \mathcal{R}_p . However, the spaces \mathcal{A}_p are in general *not* invariant for ∂ . For example, in the digraph

we have $e_{abc} \in \mathcal{A}_2$ but $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \notin \mathcal{A}_1$ because e_{ac} is not allowed.

Consider the following subspace of \mathcal{A}_p

$$\Omega_p \equiv \Omega_p(G) := \left\{ u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1} \right\}.$$

We claim that $\partial \Omega_p \subset \Omega_{p-1}$. Indeed, $u \in \Omega_p$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial (\partial u) = 0 \in \mathcal{A}_{p-2}$, whence $\partial u \in \Omega_{p-1}$.

Definition. The elements of Ω_p are called ∂ -invariant p-paths or currents.

Hence, we obtain a chain complex $\Omega_* = \Omega_*(G)$:

$$0 \leftarrow \Omega_0 \stackrel{\partial}{\leftarrow} \Omega_1 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_p \stackrel{\partial}{\leftarrow} \dots$$

By construction we have $\Omega_0 = \mathcal{A}_0$ and $\Omega_1 = \mathcal{A}_1$, while in general $\Omega_p \subset \mathcal{A}_p$.

Definition. Path homologies of G are defined as the homologies of the chain complex $\Omega_*(G)$:

$$H_p(G,\mathbb{K}) = H_p(G) := H_p(\Omega_*(G)) = \ker \partial|_{\Omega_p} / \operatorname{Im} \partial|_{\Omega_{p+1}}.$$

Betti numbers: $\beta_{p}(G) := \dim H_{p}(G)$. The Euler characteristic:

$$\chi(G) = \sum_{p=0}^{\infty} (-1)^p \beta_p(G) = \sum_{p=0}^{\infty} (-1)^p \dim \Omega_p(G).$$

3 Examples of ∂ -invariant paths

An 1-path e_{ab} is ∂ -invariant if and only if it is allowed, that is, $a \to b$.

A triangle is a sequence of three vertices a, b, csuch that $a \to b \to c, a \to c$ A triangle determines a 2-path $e_{abc} \in \Omega_2$ because $e_{abc} \in \mathcal{A}_2$ and $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \in \mathcal{A}_1$.

A snake of length $p \ge 2$ is a sequence of p+1 vertices, say 0, 1, ..., p, such that $i \rightarrow i+1$ for all i = 0, ..., p-1 and $i \rightarrow i+2$ for all i = 0, ..., p-2.

Then a *p*-path $u = e_{01\dots p}$ is ∂ -invariant, because $u \in \mathcal{A}_p$ and

$$\partial u = \sum_{q=0}^{p} (-1)^{q} e_{0\dots(q-1)\widehat{q}(q+1)\dots p} \in \mathcal{A}_{p-1}, \text{ since } q-1 \to q+1.$$

A *p*-simplex is a sequence of p + 1 vertices, say, 0, 1, ..., p such that $i \to j$ for all i < j. Equivalently, a *p*-simplex is a directed *clique*. A *p*-simplex contains a snake so that the *p*-path $e_{01...p}$ is ∂ -invariant. Since

$$\partial e_{012...p} = e_{12...p} - e_{02...p} + \dots + (-1)^p e_{01...(p-1)},$$

the boundary of p-simplex is an alternating sum of (p-1)-simplexes.

- An 1-simplex is any arrow $a \to b$.
- A 2-simplex is a triangle as above.
- A 3-simplex is shown here:

A square is a sequence of four vertices a, b, b', csuch that $a \to b, b \to c, a \to b', b' \to c$. A square determines a 2-path $u := e_{abc} - e_{ab'c} \in \Omega_2$ because $u \in \mathcal{A}_2$ and $\partial u = (e_{bc} - \underline{e_{ac}} + e_{ab}) - (e_{b'c} - \underline{e_{ac}} + e_{ab'})$ $= e_{ab} + e_{bc} - e_{ab'} - e_{b'c} \in \mathcal{A}_1$

A 3-*cube* is a sequence of 8 vertices, say, 0, 1, 2, 3, 4, 5, 6, 7, connected by arrows as here.

A 3-cube determines a ∂ -invariant 3-path

$$u = e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{0467} - e_{0267}$$

Indeed, $u \in \mathcal{A}_3$ and

$$\partial u = (e_{013} - e_{023}) + (e_{157} - e_{137}) + (e_{237} - e_{267}) - (e_{046} - e_{026}) - (e_{457} - e_{467}) - (e_{015} - e_{045}) \in \mathcal{A}_2.$$

An *exotic cube* is this subgraph containing 9 vertices and 15 edges. It is obtained from 3-cube by "splitting" the vertex 4 into 4, 4' and adding the edges $4 \rightarrow 7, 4' \rightarrow 7$.

The exotic cube determines the following ∂ -invariant 3-path:

$$u = e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{04'67} - e_{0267}.$$

Indeed, we have $u \in \mathcal{A}_3$ and

$$\begin{aligned} \partial u &= e_{237} - \underline{e_{037}} + \underline{e_{027}} - e_{023} \\ &- e_{137} + \underline{e_{037}} - \underline{e_{017}} + e_{013} \\ &+ e_{157} - \underline{e_{057}} + \underline{e_{017}} - e_{015} \\ &- e_{457} + \underline{e_{057}} - e_{047} + e_{045} \\ &+ e_{4'67} - \underline{e_{067}} + e_{04'7} - e_{04'6} \\ &- e_{267} + e_{067} - e_{027} + e_{026} \in \mathcal{A}_2. \end{aligned}$$

4 Examples of digraphs and spaces Ω_p

Consider the following digraph with 6 vertices and 8 edges:

 $\Omega_0 = \mathcal{A}_0 = \text{span} \{ e_0, e_1, e_2, e_3, e_4, e_5 \},$ $\Omega_1 = \mathcal{A}_1 = \text{span} \{ e_{01}, e_{02}, e_{13}, e_{14}, e_{23}, e_{24}, e_{53}, e_{54} \}$ $\text{Hence, } \dim \Omega_0 = 6 \text{ and } \dim \Omega_1 = 8$

 $\mathcal{A}_2 = \operatorname{span} \{ e_{013}, e_{014}, e_{023}, e_{024} \}, \quad \dim \mathcal{A}_2 = 4$ However, none of these 2-paths is ∂ -invariant.

 Ω_2 is spanned by two squares: $\Omega_2 = \text{span} \{ e_{013} - e_{023}, e_{014} - e_{024} \}, \dim \Omega_2 = 2.$

There are no allowed *p*-paths for any $p \ge 3$. Hence, $\Omega_p = \mathcal{A}_p = \{0\}$ for all $p \ge 3$.

One computes dim $H_0 = \dim H_1 = 1$ and dim $H_p = 0$ for $p \ge 2$. In fact, $H_0 = \text{span} \{e_0\}, H_1 = \text{span} \{e_{13} - e_{53} + e_{54} - e_{14}\}.$

The Euler characteristic: $\chi = \dim \Omega_0 - \dim \Omega_1 + \dim \Omega_2 = 6 - 8 + 2 = 0.$

Consider the following octahedral digraph with 6 vertices and 12 edges:

 $\begin{aligned} \Omega_0 &= \mathcal{A}_0 = \operatorname{span} \left\{ e_0, e_1, e_2, e_3, e_4, e_5 \right\}. \\ \Omega_1 &= \mathcal{A}_1 = \operatorname{span} \{ e_{01}, e_{02}, e_{04}, e_{05}, e_{13}, e_{14}, e_{15}, e_{23}, e_{24}, e_{34}, e_{52}, e_{53} \}. \\ \text{Hence, } \dim \Omega_0 &= 6, \dim \Omega_1 = 12. \\ \mathcal{A}_2 &= \operatorname{span} \left\{ e_{013}, e_{014}, e_{015}, e_{023}, e_{024}, e_{052}, e_{053}, e_{134}, e_{152}, e_{153}, e_{234}, e_{523}, e_{524}, e_{534} \right\}. \end{aligned}$

Space Ω_2 is spanned by 8 triangles: $e_{014}, e_{015}, e_{024}, e_{052}, e_{134}, e_{153}, e_{234}, e_{523}$ and 3 squares: $e_{013} - e_{023}, e_{013} - e_{053}, e_{524} - e_{534}.$

Hence, $\dim \Omega_2 = 8 + 3 = 11$.

Space Ω_3 is spanned by five ∂ -invariant 3-paths: $e_{0153}, e_{0523}, e_{5234}, e_{0134} - e_{0234}, e_{0534} - e_{0134} - e_{0524}.$ Hence, dim $\Omega_3 = 5.$

 $\Omega_4 = \operatorname{span} \{ e_{05234} \}$. Hence, dim $\Omega_4 = 1$.

There is only 1 allowed 5-path e_{015234} but it is not ∂ -invariant. Hence, $\Omega_p = \{0\} \forall p \geq 5$.

The Euler characteristic is

$$\chi = \dim \Omega_0 - \dim \Omega_1 + \dim \Omega_2 - \dim \Omega_3 + \dim \Omega_4 = 6 - 12 + 11 - 5 + 1 = 1.$$

One can show that dim $H_0 = 1$ and dim $H_p = 0$ for all $p \ge 1$, which confirms $\chi = 1$. Here is a verification of the ∂ -invariance of five 3-paths and the 4-path:

$$\begin{array}{rcl} \partial e_{0153} &=& e_{153} - e_{053} + e_{013} - e_{015} \in \mathcal{A}_2 \\ \partial e_{0523} &=& e_{523} - e_{023} + e_{053} - e_{052} \in \mathcal{A}_2 \\ \partial e_{5234} &=& e_{234} - e_{534} + e_{524} - e_{523} \in \mathcal{A}_2 \\ \partial \left(e_{0134} - e_{0234} \right) &=& e_{134} - \underline{e_{034}} + e_{014} - e_{013} \\ && -e_{234} + \underline{e_{034}} - e_{024} + e_{023} \\ &=& e_{134} + e_{014} - e_{013} - e_{234} - e_{024} + e_{023} \in \mathcal{A}_2 \\ \partial \left(e_{0534} - e_{0134} - e_{0524} \right) &=& e_{534} - \underline{e_{054}} - e_{053} \\ && -e_{134} + \underline{e_{034}} - e_{014} + e_{013} \\ && -e_{524} + e_{024} - \underline{e_{054}} + e_{052} \\ &=& e_{534} - e_{053} - e_{134} - e_{014} + e_{013} - e_{524} + e_{024} + e_{052} \in \mathcal{A}_2 \\ \partial e_{05234} &=& e_{5234} - e_{0234} + e_{0534} - e_{0524} + e_{0523} \in \mathcal{A}_3 \end{array}$$

5 Cross product of paths

Given two finite sets X, Y, consider their product

$$Z = X \times Y = \{(a, b) : a \in X \text{ and } b \in Y\}.$$

Let $z = z_0 z_1 \dots z_r$ be a regular elementary *r*-path on *Z*, where $z_k = (a_k, b_k)$ with $a_k \in X$ and $b_k \in Y$. We say that *z* is *stair-like* if, for any $k = 1, \dots, r$, either $a_{k-1} = a_k$ or $b_{k-1} = b_k$ is satisfied. That is, any couple $z_{k-1}z_k$ of consecutive vertices is either vertical (when $a_{k-1} = a_k$) or horizontal (when $b_{k-1} = b_k$).

Given a stair-like path z on Z, define its projection onto X as an elementary path x on X obtained from z by removing Y-components in all the vertices of zand then by collapsing in the resulting sequence any subsequence of repeated vertices to one vertex. In the same way define projection of z onto Y and denote it by y.

Projections $x = x_0...x_p$ and $y = y_0...y_q$ are regular elementary paths, and p + q = r.

Every vertex (x_i, y_j) of path z can be represented as a point (i, j) of \mathbb{Z}^2 so that path z is represented by a *staircase* S(z) in \mathbb{Z}^2 connecting points (0, 0)and (p, q).

Define the *elevation* L(z) of z as the number of cells in \mathbb{Z}^2_+ below the staircase S(z).

For given elementary regular paths x on X and y on Y, denote by $\Sigma_{x,y}$ the set of all stair-like paths z on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths e_x and e_y as a path $e_x \times e_y$ on Z as follows:

$$e_x \times e_y = \sum_{z \in \Sigma_{x,y}} \left(-1\right)^{L(z)} e_z.$$

$$\tag{2}$$

Then extend the cross product by linearity to all paths $u \in \mathcal{R}_p(X)$ and $v \in \mathcal{R}_q(Y)$ so that $u \times v \in \mathcal{R}_{p+q}(Z)$.

Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by integers 1, 2, 3, etc so that the vertices on Z can be denoted as a1, b2 etc as the fields on the chessboard. Then we have

$$e_a \times e_{12} = e_{a1a2}, \quad e_{ab} \times e_1 = e_{a1b1}$$

 $e_{ab} \times e_{12} = e_{a1b1b2} - e_{a1a2b2}$

 $e_{ab} \times e_{123} = e_{a1b1b2b3} - e_{a1a2b2b3} + e_{a1a2a3b3}$

 $e_{abc} \times e_{123} = e_{a1b1c1c2c3} - e_{a1b1b2c2c3} + e_{a1b1b2b3c3} + e_{a1a2b2c2c3} - e_{a1a2b2b3c3} + e_{a1a2a3b3c3}$

Proposition 1 If $u \in \mathcal{R}_p(X)$ and $v \in \mathcal{R}_q(Y)$ where $p, q \ge 0$, then

$$\partial (u \times v) = (\partial u) \times v + (-1)^p u \times (\partial v).$$

6 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given two digraphs X and Y, define there Cartesian product as a digraph $Z = X \Box Y$ as follows:

- the set of vertices of Z is $X \times Y$, that is, the vertices of Z are the couples (a, b) where $a \in X$ and $b \in Y$;
- the edges in Z are of two types: $(a, b) \to (a', b)$ where $a \to a'$ (a horizontal edge) and $(a, b) \to (a, b')$ where $b \to b'$ (a vertical edge):

It follows that any allowed elementary path in Z is stair-like.

Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and its projections onto X and Y are allowed.

It follows from definition (2) of the cross product that

$$u \in \mathcal{A}_p(X) \text{ and } v \in \mathcal{A}_q(Y) \Rightarrow u \times v \in \mathcal{A}_{p+q}(Z).$$
 (3)

Furthermore, the following is true.

Proposition 2 If $u \in \Omega_p(X)$ and $v \in \Omega_q(Y)$ then $u \times v \in \Omega_{p+q}(Z)$.

Proof. $u \times v$ is allowed by (3). Since ∂u and ∂v are allowed, by (3) also $\partial u \times v$ and $u \times \partial v$ are allowed. By the product rule, $\partial (u \times v)$ is also allowed. Hence, $u \times v \in \Omega_{p+q}(Z)$.

Theorem 3 (Main Theorem) Then any ∂ -invariant path w on $Z = X \Box Y$ admits a representation in the form

$$w = \sum_{i=1}^{k} u_i \times v_i$$

for some finite k, where u_i and v_i are ∂ -invariant paths on X and Y, respectively.

Theorem 4 (Künneth formula) Let X, Y be two finite digraphs and $Z = X \Box Y$. Then we have the following isomorphism of the chain complexes:

$$\Omega_*(Z) \cong \Omega_*(X) \otimes \Omega_*(Y).$$
(4)

It is given by the map $u \otimes v \mapsto u \times v$ with $u \in \Omega_*(X)$ and $v \in \Omega_*(Y)$.

A more detailed version of (4) is the following: for any $r \ge 0$,

$$\Omega_r(Z) \cong \bigoplus_{\{p,q \ge 0: p+q=r\}} \left(\Omega_p(X) \otimes \Omega_q(Y)\right).$$
(5)

By an abstract theorem of Künneth, we obtain from (4)

$$H_*(Z) \cong H_*(X) \otimes H_*(Y),$$

that is, for any $r \ge 0$,

$$H_r(Z) \cong \bigoplus_{\{p,q \ge 0: p+q=r\}} \left(H_p(X) \otimes H_q(Y) \right).$$
(6)

Consequently, $\beta_r(Z) = \sum_{\{p,q \ge 0: p+q=r\}} \beta_p(X) \beta_q(Y)$.

Example. Consider the digraph $Z = X \Box Y$ where X is an interval and Y is a square:

$$X = {}^{a} \bullet \longrightarrow \bullet^{b} \text{ and } Y = \begin{array}{c} 2^{\bullet} \longrightarrow \bullet_{3} \\ \uparrow & \uparrow \\ 0^{\bullet} \longrightarrow \bullet_{1} \end{array}$$

Z has 8 vertices (i, j) where i = a, b, j = 0, 1, 2, 3. Let us enumerate them: $(a, i) \equiv i$ and $(b, i) \equiv i + 4$.

We see that Z is a 3-cube:

We have:

$$\Omega_1(X) = \operatorname{span} \{e_{ab}\}, \quad \Omega_p(X) = 0 \text{ for } p \ge 2, \\ \Omega_1(Y) = \operatorname{span} \{e_{01}, e_{13}, e_{23}, e_{02}\}, \quad \Omega_2(Y) = \operatorname{span} \{e_{013} - e_{023}\}, \quad \Omega_q(Y) = 0 \text{ for } q \ge 3.$$

By (5) we obtain

$$\Omega_3(Z) \cong \Omega_1(X) \otimes \Omega_2(Y) = \operatorname{span} \left\{ e_{ab} \times e_{013} - e_{ab} \times e_{023} \right\}.$$

Hence, we obtain

$$\Omega_3(Z) = \operatorname{span} \left\{ e_{0457} - e_{0157} + e_{0137} - e_{0467} + e_{0267} - e_{0237} \right\}$$

that is the ∂ -invariant 3-path associated with 3-cube.

Define *n*-cube as follows:

$$n$$
-cube = $\underbrace{I \Box I \Box \dots \Box I}_{n}$,

where $I = {}^{a} \bullet \longrightarrow \bullet^{b}$. Similarly one shows that Ω_{n} (*n*-cube) is spanned by a single *n*-path that is an alternating sum of *n*! elementary *n*-paths connecting the vertices 0 and $2^{n} - 1$. This corresponds to partitioning of a solid *n*-dim cube into *n*! simplexes.

Example. Consider the digraph $Z = X \Box Y$ where

One can show that

 $H_{1}(X) = \operatorname{span} \{e_{ab} + e_{bc} + e_{ca}\}, \qquad H_{p}(X) = 0 \text{ for } p \geq 2$ $H_{1}(Y) = \operatorname{span} \{-e_{10} + e_{02} + e_{23} - e_{13}\}, \quad H_{q}(Y) = 0 \text{ for all } q \geq 2$ By (6) we obtain $H_{1}(Z) = H_{0}(X) \otimes H_{1}(Y) + H_{1}(X) \otimes H_{0}(Y) \cong \mathbb{K}^{2},$ $H_{2}(Z) \cong H_{1}(X) \otimes H_{1}(Y) = \operatorname{span} \{(e_{ab} + e_{bc} + e_{ca}) \times (-e_{10} + e_{02} + e_{23} - e_{13})\} \cong \mathbb{K},$ and $H_{r}(Z) = 0$ for all $r \geq 2.$

7 Homotopy of digraphs

For vertices a, b of a digraph, write $a \stackrel{\longrightarrow}{=} b$ if either $a \rightarrow b$ or a = b. Let X and Y be two digraphs.

Definition. A mapping $f: X \to Y$ called a digraph map (or morphism) if

 $a \to b \text{ on } X \implies f(a) \cong f(b) \text{ on } Y.$

Any digraph map $f: X \to Y$ induces a linear map

$$f_*: \mathcal{A}_p(X) \to \mathcal{A}_p(Y), \quad f_*(e_{i_0\dots i_p}) = e_{f(i_0)\dots f(i_p)}.$$

It is easy to check that $f_*\partial = \partial f_*$, which implies that f_* provides a morphism of chain complexes $f_* : \Omega_p(X) \to \Omega_p(Y)$ and, consequently, a homomorphism of homology groups $f_* : H_p(X) \to H_p(Y)$.

Definition. For any $n \ge 1$ define a *line digraph* I_n as any digraph with n + 1 vertices $\{0, 1, \ldots, n\}$ and such that, for any $i = 0, \ldots, n - 1$ holds either $i \to (i + 1)$ or $(i + 1) \to i$, and there is no other arrow.

Definition. Let X, Y be two digraphs. Two digraph maps $f, g: X \to Y$ are called *homotopic* if there exists a line digraph I_n and a digraph map $\Phi: X \Box I_n \to Y$ such that

$$\Phi|_{X \times \{0\}} = f \text{ and } \Phi|_{X \times \{n\}} = g.$$

In this case we write $f \simeq g$. The map Φ is called a *homotopy* between f and g.

Definition. Two digraphs X and Y are called *homotopy equivalent* if there exist digraph maps

$$f: X \to Y, \quad g: Y \to X$$
 (7)

such that

$$f \circ g \simeq \mathrm{id}_Y, \qquad g \circ f \simeq \mathrm{id}_X.$$
 (8)

In this case we write $X \simeq Y$.

Theorem 5 (i) Let $f, g: X \to Y$ be two digraph maps. If $f \simeq g$ then they induce the identical maps of homology groups:

$$f_*: H_p(X) \to H_p(Y) \quad and \quad g_*: H_p(X) \to H_p(Y).$$

(ii) If the digraphs X and Y are homotopy equivalent, then $H_*(X) \cong H_*(Y)$.

In particular, if a digraph X is contractible, that is, if $X \simeq \{*\}$, then all the homology groups of X are trivial except for H_0 .

We say that a digraph Y is a *subgraph* of X if the set of vertices of Y is a subset of that of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y.

Definition. Let X be a digraph and Y be its subgraph. A *retraction* of X onto Y is a digraph map $r: X \to Y$ such that $r|_Y = id_Y$.

Theorem 6 Let $r: X \to Y$ be a retraction of a digraph X onto a subgraph Y. Assume that

either
$$x \stackrel{\cong}{=} r(x)$$
 for all $x \in X$ or $r(x) \stackrel{\cong}{=} x$ for all $x \in X$. (9)

Then $X \simeq Y$ and, consequently, $H_*(X) \cong H_*(Y)$.

A retraction that satisfies (9) is called a *deformation retraction*.

Example. Let us show that *n*-cube is contractible. Indeed, a natural projection of *n*-cube onto (n-1)-cube is a deformation retraction. Hence, by induction we obtain *n*-cube $\simeq \{*\}$.

Example. Consider the digraph X as here.

Let Y be its subgraph with the vertex set $\{1, 3, 4\}$. Consider a retraction $r : X \to Y$ given by r(0) = 1, r(2) = 3. It is easy to see that r is a deformation retraction, whence $X \simeq Y$. Then we obtain

$$H_1(X) \cong H_1(Y) = \text{span} \{ e_{13} + e_{34} + e_{41} \} \cong \mathbb{K}$$

and $H_p(X) = \{0\}$ for $p \ge 2$.

8 Summary

Fix a finite set V and a field K. For any $p \ge 0$, set $\mathcal{R}_p = \operatorname{span}_{\mathbb{K}} \{ e_{i_0 \dots i_p} : i_0 \dots i_p \text{ is regular} \}$, where "regular" means that $i_k \ne i_{k+1}$ for all k. There is a boundary operator $\partial : \mathcal{R}_p \rightarrow \mathcal{R}_{p-1}$ such that $\partial^2 = 0$.

Let G = (V, E) be a digraph. Set $\mathcal{A}_p = \operatorname{span}_{\mathbb{K}} \{ e_{i_0 \dots i_n} : i_0 \dots i_p \text{ is allowed} \} \subset \mathcal{R}_p$, where "allowed" means that $i_k \to i_{k+1}$ for all k.

Spaces of ∂ -invariant paths: $\Omega_p = \{ u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1} \}.$

Chain complex $\Omega_*(G)$: $0 \leftarrow \Omega_0 \stackrel{\partial}{\leftarrow} \Omega_1 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_p \stackrel{\partial}{\leftarrow} \dots$ Path homology: $H_n(G) = \ker \partial|_{\Omega_n} / \operatorname{Im} \partial|_{\Omega_{n+1}}$.

Theorem 4 $\Omega_*(X \Box Y) \cong \Omega_*(X) \otimes \Omega_*(Y)$ and $H_*(X \Box Y) \cong H_*(X) \otimes H_*(Y)$

A mapping $f: X \to Y$ is called a digraph map if $a \to b$ in X implies $f(a) \cong f(b)$ in Y. We have also defined *homotopy equivalence* $X \simeq Y$ of two digraphs.

Theorem 5 If $X \simeq Y$ then $H_*(X) \cong H_*(Y)$.

Theorem 6 If Y is a subgraph of X then $X \simeq Y$ provided there exists a deformation retraction $r: X \to Y$, that is:

(i)
$$r|_{Y} = \text{id};$$

(ii) r is a digraph map;
(iii) either $x \stackrel{\cong}{=} r(x)$ for all $x \in X$ or $r(x) \stackrel{\cong}{=} x$ for all $x \in X$.

For example, consider digraphs: The left hand side digraph is contractible as there is a sequence of two deformation retractions reducing it to $\{*\}$: $r_1(4) = r_1(5) = 3$ $r_2(1) = r_2(2) = 3$

The right hand side digraph differs only by one arrow $3 \rightarrow 1$, but it is not contractible because $H_2 \neq \{0\}$

$$H_2 = \operatorname{span} \left\{ e_{124} + e_{234} + e_{314} - e_{125} - e_{235} - e_{315} \right\}$$

9 Undirected graphs

If G = (V, E) is an undirected graph then it can be turned into a digraph by allowing both arrows $x \to y$ and $y \to x$ whenever $x \sim y$. All the above results can be reformulated for undirected graphs in an obvious way.

Example. Fix integers $1 \le k \le n$ and a set S of n elements. The Johnson graph J(n, k) is the graph whose vertices are k-subsets of S, and the edges are defined as follows: two k-subsets are connected by an edge if their intersection contains k - 1 elements of S.

Let us describe J(4, 2). Taking $S = \{1, 2, 3, 4\}$, we see that the vertices of J(4, 2) are the pairs 43, 42, 41, 32, 31, 31. The graph J(4, 2) has twelve edges:

Johnson graph

Johnson graphs are a special class of undirected graphs defined from systems of sets. The vertices of the Johnson graph J(n, k) are the *k*-element subsets of an *n*-element set; two vertices are adjacent when the intersection of the two vertices (subsets) contains (k - 1)-elements.^[1] Both Johnson graphs and the closely related Johnson scheme are named after Selmer M. Johnson.

Special cases

Proposition 7 For all $n > k \ge 1$ we have $J(n,k) \simeq J(n-1,k)$.

Consequently, $J(n,k) \simeq J(n-1,k) \simeq ... \simeq J(k,k) = \{*\}$, and all the homology groups of J(n,k) are trivial.

For the proof, assume that J(n,k) is constructed over the set $S = \{1, ..., n-1, n\}$, so that graph J(n-1,k) is a subgraph of J(n,k). Then there exists a deformation retraction $r: J(n,k) \to J(n-1,k)$. Here is a deformation retraction $r: J(4,2) \to J(3,2)$:

In general, we construct r as follows. Any vertex a of J(n, k) is represented by a monotone decreasing sequence $a = a_1 a_2 \dots a_k$ of integers from $\{1, \dots, n\}$: $n \ge a_1 > a_2 > \dots > a_k \ge 1$. Define $r(a) = a' = a'_1 \dots a'_k$ where

$$a'_{1} = \min(a_{1}, n-1), \quad a'_{2} = \min(a_{2}, n-2), \dots a'_{k} = \min(a_{k}, n-k).$$

Then $n-1 \ge a'_1 > a'_2 > ... > a'_k \ge 1$, so that a' is a vertex of J(n-1,k). We claim that $r: J(n,k) \to J(n-1,k)$ is a deformation retraction.

(i) If $a \in J(n-1,k)$ then r(a) = a because $a_1 \leq n-1, a_2 \leq n-2, ..., a_k \leq n-k$, which implies $a'_i = a_i$.

(*ii*) If $a \sim b$ in J(n, k) then $r(a) \sim r(b)$ or r(a) = r(b) because sequences $a_1...a_k$ and $b_1...b_k$ have k - 1 common elements, whence it follows that a' and b' have at least k - 1 common elements.

(*iii*) If $a \in J(n,k) \setminus J(n-1,k)$ then $r(a) \sim a$. In this case $a_1 = n$. Assume $a_2 \leq n-2$. Then $a_3 \leq n-3, \dots, a_k \leq n-k$, which implies

$$a'_1 = n - 1, \ a'_2 = a_2, ..., \ a'_k = a_k$$

that is, $r(a) = (n-1)a_2...a_k$ and $r(a) \sim a$. The case $a_2 = n-1$ is a bit more involved.

10 *C*-homotopy of loops

For any digraph G and a vertex * of G, denote by G^* a based digraph.

Definition. A *loop* on G^* is a digraph map $\varphi : I_n \to G$ such that $\varphi(0) = \varphi(n) = *$. Here I_n is any line digraph with any $n \ge 0$.

Definition. Consider in G^* two loops $\varphi \colon I_n \to G$ and $\psi \colon I_m \to G$. An one-step direct *C*-homotopy from φ to ψ is a digraph map $h \colon I_n \to I_m$ such that

(a)
$$h(0) = 0$$
, $h(n) = m$ and $h(i) \le h(j)$ whenever $i \le j$;

(b) $\varphi(i) \stackrel{\longrightarrow}{=} \psi(h(i))$ for all $i \in I_n$.

If in (b) holds $\varphi(i) \cong \psi(h(i))$ for all $i \in I_n$ then h is called an one-step *inverse* C-homotopy.

We denote an one-step direct C-homotopy with $\varphi \xrightarrow{C} \psi$ and the one-step inverse C-homotopy with $\varphi \xleftarrow{C} \psi$.

Example. On the next diagram we have $\varphi \xrightarrow{C} \psi$.

Condition (b) means that φ and ψ provide a digraph map from the digraph on the left panel to G.

Definition. We call two loops φ, ψ *C-homotopic* and write $\varphi \stackrel{C}{\simeq} \psi$ if there exists a finite sequence $\{\varphi_k\}_{k=0}^m$ of loops in G^* such that $\varphi_0 = \varphi, \varphi_m = \psi$ and, for any k = 0, ..., m - 1, holds $\varphi_k \stackrel{C}{\to} \varphi_{k+1}$ or $\varphi_k \stackrel{C}{\leftarrow} \varphi_{k+1}$.

Obviously, C-homotopy is an equivalence relation. A loop φ is called contractible if $\varphi \stackrel{C}{\simeq} e$ where $e: I_0 \to G$ is a trivial loop.

The following theorem gives an efficient way of verifying if two loops are C-homotopic.

Any loop $\varphi: I_n \to G$ defines a sequence $\theta_{\varphi} = \{\varphi(i)\}_{i=0}^n$ of vertices of G. We consider θ_{φ} as a word over the alphabet V.

Theorem 8 Two loops $\varphi : I_n \to G$ and $\psi : I_m \to G$ are C-homotopic if and only if θ_{ψ} can be obtained from θ_{φ} by a finite sequence of the following word transformations (or inverses to them):

(i) ...abc... \mapsto ...ac... where a, b, c is a triangle $a \stackrel{b}{\longrightarrow} \bullet^{c}$ in G or any permutation of a triangle.

(ii) ...abc...
$$\mapsto$$
 ...adc... where a, b, c, d is a square $\uparrow \qquad \uparrow \qquad \uparrow \qquad in G$ or any cyclic permutation of a square or an inverse cyclic permutation of a square.
(iii) ...abcd... \mapsto ...ad... where a, b, c, d is as in (ii).
(iv) ...aba... \Rightarrow ...a... if $a \rightarrow b$ or $b \rightarrow a$.
(v) ...aa... \mapsto ...a...

Examples

1. Consider a triangular loop $\varphi: (0 \to 1 \to 2 \leftarrow 3) \to G$

It is contractible because

 $\theta_{\varphi} = abca \stackrel{(i)}{\sim} aca \stackrel{(iv)}{\sim} a.$

2. Consider a square loop $\varphi: (0 \to 1 \to 2 \leftarrow 3 \leftarrow 4) \to G$

It is contractible because

$$\theta_{\varphi} = abcda \stackrel{(iii)}{\sim} ada \stackrel{(iv)}{\sim} a.$$

3. Consider the loops $\varphi : I_5 \to G$ and $\psi : I_3 \to G$ as on p.33. It is shown here how to transform θ_{φ} to θ_{ψ} by means of Theorem 8: using successively transformations $(i)^-$, (i), (ii) and (iii).

11 Fundamental group

The C-homotopy equivalence class of a loop $\varphi : I_n \to G$ will be denoted by $[\varphi]$. For any two loops $\varphi : I_n \to G$ and $\psi : I_m \to G$ define their concatenation $\varphi \lor \psi : I_{n+m} \to G$ by

$$\varphi \lor \psi(i) = \begin{cases} \varphi(i), & 0 \le i \le n \\ \psi(i-n), & n \le i \le n+m. \end{cases}$$

Then the product $[\varphi] \cdot [\psi] := [\varphi \lor \psi]$ of equivalence classes is then well-defined.

Theorem 9 (a) The set of all equivalence classes $[\varphi]$ with the above product is a group with the neutral element [e]. It is denoted by $\pi_1(G^*)$.

(b) Any based digraph map $f: X^* \to Y^*$ induces a group homomorphism

$$\pi_1(f): \pi_1(X^*) \to \pi_1(Y^*), \quad (\pi_1(f))[\phi] = [f \circ \phi].$$

(c) If $f, g: X^* \to Y^*$ are two digraph maps then $f \simeq g$ implies $\pi_1(f) = \pi_1(g)$. (d) If X, Y are connected and $X \simeq Y$ then $\pi_1(X^*) \cong \pi_1(Y^*)$. **Theorem 10** For any based connected digraph G^* we have an isomorphism

 $\pi_1(G^*) / [\pi_1(G^*), \pi_1(G^*)] \cong H_1(G, \mathbb{Z}),$

where $[\pi_1(G^*), \pi_1(G^*)]$ is a commutator subgroup.

12 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle ABC on the plane \mathbb{R}^2 and its triangulation T. Assume that the set of vertices of T is colored in three colors 1, 2, 3 so that:

• the vertex A in colored in 1, B - in 2, C - in 3;

• each vertex on the side AB is colored in 1 or 2, on the side AC – in 1 or 3, on the side BC – in 2 or 3.

Lemma of Sperner. Under the above conditions, there exists in T a 3-color triangle, that is, a triangle, whose vertices are colored with three different colors.

Let us first modify the triangulation T so that there are no vertices on the sides AB, AC, BC except for A, B, C. If $X \in AB$ then move X a bit inside of ABC. A new triangle XYZ arises, where Y, Z are former neighbors of X on AB. However, since X, Y, Z are colored in two colors, no 3-color triangle emerges after that move. By induction, we remove all the vertices from all sides of ABC.

Consider the triangulation T as a graph and make it into a digraph G as follows. If a, b are two vertices on T and $a \sim b$ then choose direction between a, b using the colors of a, b and the following rule:

 $\begin{array}{ll} 1 \rightarrow 2, & 2 \rightarrow 3, \ 3 \rightarrow 1 \\ 1 \leftrightarrows 1, & 2 \leftrightarrows 2, \ 3 \leftrightarrows 3 \end{array}$

Denote by S the following colored digraph $3 \stackrel{\bullet}{\longrightarrow} 2^{\bullet}$ and define a mapping $f: G \to S$ to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G. Consider a 3-loop φ on G^* (with * = A) with the word

 $\theta_{\varphi} = ABCA.$

For the loop $f \circ \varphi$ on S we have $\theta_{f \circ \varphi} = 1231$. This loop is not contractible because none of the transformations of Theorem 8 can be applied to the word 1231. By Theorem 9(b), the loop φ is also not contractible and, hence, $\pi_1(G^*) \neq \{0\}$.

Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G like

In particular, each of them contains a triangle in the sense of Theorem 8. Using the partition of G into the triangles and transformations (*ii*) and (*iv*) of Theorem 8, we contract any loop on G to the empty word, which contradicts to $\pi_1(G) \neq \{0\}$.

