
Path homologies of digraphs

Alexander Grigor’yan
Nankai University and Bielefeld University

Yau’s MSC, Tsinghua University, November 1, 2 and 8, 2017
Based on a joint work with Yong Lin, Y.Muranov and S.-T.Yau



1 Paths in a finite set

Let V be a finite set. For any p ≥ 0, an elementary p-path is any sequence i0, ..., ip of
p + 1 vertices of V that will be denoted by i0...ip or by ei0...ip . A p-path over a field K is
any formal K-linear combinations of elementary p-paths, that is, any p-path has a form

u =
∑

i0,i1,...,ip∈V

ui0i1...ip ei0i1...ip , where ui0i1...ip ∈ K.

Denote by Λp = Λp (V ) the K-linear space of all p-paths. For example,

Λ0 = span{ei : i ∈ V }

Λ1 = span{eij : i, j ∈ V }

Λ2 = span {eijk : i, j, k ∈ V }

Definition. Define for any p ≥ 1 a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =

p∑

q=0

(−1)q ei0...îq ...ip
,

where ̂ means omission of the index. For p = 0 set ∂ei = 0.
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For example,
∂eij = ej − ei and ∂eijk = ejk − eik + eij .

We claim that ∂2 = 0. Indeed, for any p ≥ 2 we have

∂2ei0...ip =

p∑

q=0

(−1)q ∂ei0...îq ...ip

=

p∑

q=0

(−1)q

(
q−1∑

r=0

(−1)r ei0...îr ...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip

)

=
∑

0≤r<q≤p

(−1)q+r ei0...îr ...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr ...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence
∂2ei0...ip = 0. This implies ∂2u = 0 for all u ∈ Λp.

Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ0
∂
← Λ1

∂
← . . .

∂
← Λp−1

∂
← Λp

∂
← . . .
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Definition. An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all k = 0, ..., p−1,
and irregular otherwise.

Let Ip be the subspace of Λp spanned by irregular ei0...ip . We claim that ∂Ip ⊂ Ip−1.
Indeed, if ei0...ip is irregular then ik = ik+1 for some k. We have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+ (−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip (1)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (1) cancel out, whereas all other terms
are non-regular, whence ∂ei0...ip ∈ Ip−1.

Hence, ∂ is well-defined on the quotient spaces Rp := Λp/Ip, and we obtain the chain
complex R∗ (V ):

0 ← R0
∂
← R1

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . .

By setting all irregular p-paths to be equal to 0, we can identify Rp with the subspace of
Λp spanned by all regular paths. For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij

because eii = 0.
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2 Paths in a digraph

Definition. A digraph (directed graph) is a pair G = (V,E) of a set V of vertices and a
set E ⊂ {V × V \ diag} of (directed) edges. If (i, j) ∈ E then we write i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path i0...ip on V is called
allowed if ik → ik+1 for any k = 0, ..., p − 1, and non-allowed otherwise.

Let Ap = Ap (G) be K-linear space spanned by allowed elementary p-paths:

Ap = span
{
ei0...ip : i0...ip is allowed

}
.

The elements of Ap are called allowed p-paths. Since any allowed path is regular, we have
Ap ⊂ Rp.

We would like to build a chain complex based on subspaces Ap of Rp. However, the spaces
Ap are in general not invariant for ∂. For example, in the digraph

a
• −→

b
• −→

c
•

we have eabc ∈ A2 but ∂eabc = ebc − eac + eab /∈ A1 because eac is not allowed.
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Consider the following subspace of Ap

Ωp ≡ Ωp (G) := {u ∈ Ap : ∂u ∈ Ap−1} .

We claim that ∂Ωp ⊂ Ωp−1. Indeed, u ∈ Ωp implies ∂u ∈ Ap−1 and ∂ (∂u) = 0 ∈ Ap−2,
whence ∂u ∈ Ωp−1.

Definition. The elements of Ωp are called ∂-invariant p-paths or currents.

Hence, we obtain a chain complex Ω∗ = Ω∗ (G) :

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . .

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap.

Definition. Path homologies of G are defined as the homologies of the chain complex
Ω∗ (G):

Hp(G,K) = Hp (G) := Hp (Ω∗ (G)) = ker ∂|Ωp

/
Im ∂|Ωp+1 .

Betti numbers: βp (G) := dim Hp (G). The Euler characteristic:

χ (G) =
∞∑

p=0

(−1)p βp (G) =
∞∑

p=0

(−1)p dim Ωp (G) .
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3 Examples of ∂-invariant paths

An 1-path eab is ∂-invariant if and only if it is allowed, that is, a→ b.

A triangle is a sequence of three vertices a, b, c
such that a→ b→ c, a→ c
A triangle determines a 2-path eabc ∈ Ω2 because
eabc ∈ A2 and ∂eabc = ebc − eac + eab ∈ A1.

A snake of length p ≥ 2 is a sequence of
p + 1 vertices, say 0, 1, ..., p, such that
i→ i + 1 for all i = 0, ..., p − 1 and
i→ i + 2 for all i = 0, ..., p − 2.

Then a p-path u = e01...p is ∂-invariant, because u ∈ Ap and

∂u =

p∑

q=0

(−1)q e0...(q−1)q̂(q+1)...p ∈ Ap−1, since q − 1→ q + 1.
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A p-simplex is a sequence of p + 1 vertices, say, 0, 1, ..., p such that i → j for all i < j.
Equivalently, a p-simplex is a directed clique. A p-simplex contains a snake so that the
p-path e01...p is ∂-invariant. Since

∂e012...p = e12...p − e02...p + ... + (−1)p e01...(p−1),

the boundary of p-simplex is an alternating sum of (p− 1)-simplexes.

An 1-simplex is any arrow a→ b.

A 2-simplex is a triangle as above.

A 3-simplex is shown here:

7



A square is a sequence of four vertices a, b, b′, c
such that a→ b, b→ c, a→ b′, b′ → c.
A square determines a 2-path u := eabc − eab′c ∈ Ω2

because u ∈ A2 and
∂u =

(
ebc − eac + eab

)
−
(
eb′c − eac + eab′

)

= eab + ebc − eab′ − eb′c ∈ A1

A 3-cube is a sequence of 8 vertices, say,
0, 1, 2, 3, 4, 5, 6, 7, connected by arrows as here.

A 3-cube determines a ∂-invariant 3-path

u = e0237 − e0137 + e0157 − e0457 + e0467 − e0267

Indeed, u ∈ A3 and

∂u = (e013 − e023) + (e157 − e137) + (e237 − e267)

− (e046 − e026)− (e457 − e467)− (e015 − e045) ∈ A2.
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An exotic cube is this subgraph containing
9 vertices and 15 edges. It is obtained from
3-cube by “splitting” the vertex 4 into 4, 4 ′

and adding the edges 4 → 7, 4′ → 7.

The exotic cube determines the following
∂-invariant 3-path:

u = e0237 − e0137 + e0157 − e0457 + e04′67 − e0267.

Indeed, we have u ∈ A3 and

∂u = e237 − e037 + e027 − e023

−e137 + e037 − e017 + e013

+e157 − e057 + e017 − e015

−e457 + e057 − e047 + e045

+e4′67 − e067 + e04′7 − e04′6

−e267 + e067 − e027 + e026 ∈ A2.
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4 Examples of digraphs and spaces Ωp

Consider the following digraph with 6 vertices and 8 edges:

Ω0 = A0 = span {e0, e1, e2, e3, e4, e5} ,
Ω1 = A1 = span {e01, e02, e13, e14, e23, e24, e53, e54}
Hence, dim Ω0 = 6 and dim Ω1 = 8

A2 = span {e013, e014, e023, e024} , dimA2 = 4
However, none of these 2-paths is ∂-invariant.

Ω2 is spanned by two squares:
Ω2 = span {e013 − e023, e014 − e024} , dim Ω2 = 2.

There are no allowed p-paths for any p ≥ 3.
Hence, Ωp = Ap = {0} for all p ≥ 3.

One computes dim H0 = dim H1 = 1 and dim Hp = 0 for p ≥ 2.

In fact, H0 = span {e0}, H1 = span {e13 − e53 + e54 − e14} .

The Euler characteristic: χ = dim Ω0 − dim Ω1 + dim Ω2 = 6− 8 + 2 = 0.
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Consider the following octahedral digraph with 6 vertices and 12 edges:

Ω0 = A0 = span {e0, e1, e2, e3, e4, e5} .
Ω1 = A1 = span{e01, e02, e04, e05, e13, e14, e15, e23, e24, e34, e52, e53}.
Hence, dim Ω0 = 6, dim Ω1 = 12.
A2 = span {e013,e014, e015, e023, e024, e052, e053, e134, e152, e153, e234, e523, e524, e534} .

Space Ω2 is spanned by 8 triangles:
e014, e015, e024, e052, e134, e153, e234, e523

and 3 squares:
e013 − e023, e013 − e053, e524 − e534.
Hence, dim Ω2 = 8 + 3 = 11.

Space Ω3 is spanned by five ∂-invariant 3-paths:
e0153, e0523, e5234, e0134 − e0234, e0534 − e0134 − e0524.
Hence, dim Ω3 = 5.

Ω4 = span {e05234}. Hence, dim Ω4 = 1.

There is only 1 allowed 5-path e015234 but it is not ∂-invariant. Hence, Ωp = {0} ∀p ≥ 5.
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The Euler characteristic is

χ = dim Ω0 − dim Ω1 + dim Ω2 − dim Ω3 + dim Ω4 = 6− 12 + 11− 5 + 1 = 1.

One can show that dim H0 = 1 and dim Hp = 0 for all p ≥ 1, which confirms χ = 1.

Here is a verification of the ∂-invariance of five 3-paths and the 4-path:

∂e0153 = e153 − e053 + e013 − e015 ∈ A2

∂e0523 = e523 − e023 + e053 − e052 ∈ A2

∂e5234 = e234 − e534 + e524 − e523 ∈ A2

∂ (e0134 − e0234) = e134 − e034 + e014 − e013

−e234 + e034 − e024 + e023

= e134 + e014 − e013 − e234 − e024 + e023 ∈ A2

∂ (e0534 − e0134 − e0524) = e534 − e034 + e054 − e053

−e134 + e034 − e014 + e013

−e524 + e024 − e054 + e052

= e534 − e053 − e134 − e014 + e013 − e524 + e024 + e052 ∈ A2

∂e05234 = e5234 − e0234 + e0534 − e0524 + e0523 ∈ A3
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5 Cross product of paths

Given two finite sets X,Y , consider their product

Z = X × Y = {(a, b) : a ∈ X and b ∈ Y } .

Let z = z0z1...zr be a regular elementary r-path on Z, where zk = (ak, bk) with ak ∈ X
and bk ∈ Y . We say that z is stair-like if, for any k = 1, ..., r, either ak−1 = ak or
bk−1 = bk is satisfied. That is, any couple zk−1zk of consecutive vertices is either vertical
(when ak−1 = ak) or horizontal (when bk−1 = bk).

Given a stair-like path z on Z, define its projection
onto X as an elementary path x on X obtained from
z by removing Y -components in all the vertices of z
and then by collapsing in the resulting sequence any
subsequence of repeated vertices to one vertex.
In the same way define projection of z onto Y and
denote it by y.
Projections x = x0...xp and y = y0...yq are regular
elementary paths, and p + q = r.
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Every vertex (xi, yj) of path z can be represented
as a point (i, j) of Z2 so that path z is represented
by a staircase S (z) in Z2 connecting points (0, 0)
and (p, q).

Define the elevation L (z) of z as the number of
cells in Z2

+ below the staircase S (z).

For given elementary regular paths x on X and y on Y , denote by Σx,y the set of all
stair-like paths z on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths ex and ey as a path ex × ey on Z as
follows:

ex × ey =
∑

z∈Σx,y

(−1)L(z) ez. (2)

Then extend the cross product by linearity to all paths u ∈ Rp (X) and v ∈ Rq (Y ) so
that u× v ∈ Rp+q (Z).
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Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by
integers 1, 2, 3, etc so that the vertices on Z can be denoted as a1, b2 etc as the fields on
the chessboard. Then we have

ea × e12 = ea1a2, eab × e1 = ea1b1

eab × e12 = ea1b1b2 − ea1a2b2

eab × e123 = ea1b1b2b3 − ea1a2b2b3 + ea1a2a3b3

eabc × e123 = ea1b1c1c2c3 − ea1b1b2c2c3 + ea1b1b2b3c3

+ea1a2b2c2c3 − ea1a2b2b3c3 + ea1a2a3b3c3

Proposition 1 If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = (∂u)× v + (−1)p u× (∂v) .
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6 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given
two digraphs X and Y , define there Cartesian product as a digraph Z = X�Y as follows:

• the set of vertices of Z is X × Y , that is, the vertices of Z are the couples (a, b)
where a ∈ X and b ∈ Y ;

• the edges in Z are of two types: (a, b) → (a′, b) where a → a′ (a horizontal edge)
and (a, b)→ (a, b′) where b→ b′ (a vertical edge):

b′• . . .
(a,b′)
• −→

(a′,b′)
• . . .

↑ ↑ ↑

b• . . .
(a,b)
• −→

(a′,b)
• . . .

Y � X . . . •
a
−→ •

a′
. . .

It follows that any allowed elementary path in Z is stair-like.
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Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.

It follows from definition (2) of the cross product that

u ∈ Ap (X) and v ∈ Aq (Y ) ⇒ u× v ∈ Ap+q (Z) . (3)

Furthermore, the following is true.

Proposition 2 If u ∈ Ωp (X) and v ∈ Ωq (Y ) then u× v ∈ Ωp+q (Z) .

Proof. u×v is allowed by (3). Since ∂u and ∂v are allowed, by (3) also ∂u×v and u×∂v
are allowed. By the product rule, ∂ (u× v) is also allowed. Hence, u× v ∈ Ωp+q (Z) .

Theorem 3 (Main Theorem) Then any ∂-invariant path w on Z = X�Y admits a
representation in the form

w =
k∑

i=1

ui × vi

for some finite k, where ui and vi are ∂-invariant paths on X and Y , respectively.
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Theorem 4 (Künneth formula) Let X,Y be two finite digraphs and Z = X�Y. Then
we have the following isomorphism of the chain complexes:

Ω∗ (Z) ∼= Ω∗ (X)⊗ Ω∗ (Y ) . (4)

It is given by the map u⊗ v 7→ u× v with u ∈ Ω∗ (X) and v ∈ Ω∗ (Y ).

A more detailed version of (4) is the following: for any r ≥ 0,

Ωr (Z) ∼=
⊕

{p,q≥0:p+q=r}

(Ωp (X)⊗ Ωq (Y )) . (5)

By an abstract theorem of Künneth, we obtain from (4)

H∗ (Z) ∼= H∗ (X)⊗H∗ (Y ) ,

that is, for any r ≥ 0,

Hr (Z) ∼=
⊕

{p,q≥0:p+q=r}

(Hp (X)⊗Hq (Y )) . (6)

Consequently, βr (Z) =
∑

{p,q≥0:p+q=r} βp (X) βq (Y ) .

18



Example. Consider the digraph Z = X�Y where X is an interval and Y is a square:

X = a• −→ •b and Y =
2• −→ •3
↑ ↑

0• −→ •1

Z has 8 vertices (i, j) where i = a, b,
j = 0, 1, 2, 3. Let us enumerate them:
(a, i) ≡ i and (b, i) ≡ i + 4.

We see that Z is a 3-cube:

We have:

=

Ω1 (X) = span {eab} , Ωp (X) = 0 for p ≥ 2,
Ω1 (Y ) = span {e01, e13, e23, e02} , Ω2 (Y ) = span {e013 − e023} , Ωq (Y ) = 0 for q ≥ 3.

By (5) we obtain

Ω3 (Z) ∼= Ω1 (X)⊗ Ω2 (Y ) = span {eab × e013 − eab × e023} .
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eab × e013 = ea0b0b1b3 − ea0a1b1b3 + ea0a1a3b3

= e0457 − e0157 + e0137

and

eab × e023 = e0467 − e0267 + e0237

Hence, we obtain

Ω3 (Z) = span {e0457 − e0157 + e0137 − e0467 + e0267 − e0237}

that is the ∂-invariant 3-path associated with 3-cube.

Define n-cube as follows:
n- cube = I�I�...�I︸ ︷︷ ︸

n

,

where I = a• −→ •b . Similarly one shows that Ωn (n- cube) is spanned by a single n-path
that is an alternating sum of n! elementary n-paths connecting the vertices 0 and 2n− 1.
This corresponds to partitioning of a solid n-dim cube into n! simplexes.
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Example. Consider the digraph Z = X�Y where

X = ↗

b
•↘

a• ← •c

Y =
2• −→ •3
↑ ↑

0• ←− •1

Z =

One can show that

H1 (X) = span {eab + ebc + eca} , Hp (X) = 0 for p ≥ 2

H1 (Y ) = span {−e10 + e02 + e23 − e13} , Hq (Y ) = 0 for all q ≥ 2

By (6) we obtain H1 (Z) = H0 (X)⊗H1 (Y ) + H1 (X)⊗H0 (Y ) ∼= K2,

H2 (Z) ∼= H1 (X)⊗H1 (Y ) = span {(eab + ebc + eca)× (−e10 + e02 + e23 − e13)} ∼= K,

and Hr (Z) = 0 for all r ≥ 2.
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7 Homotopy of digraphs

For vertices a, b of a digraph, write a−→=b if either a → b or a = b. Let X and Y be two
digraphs.

Definition. A mapping f : X → Y called a digraph map (or morphism) if

a→ b on X ⇒ f (a) −→=f (b) on Y.

Any digraph map f : X → Y induces a linear map

f∗ : Ap(X)→ Ap(Y ), f∗
(
ei0...ip

)
= ef(i0)...f(ip).

It is easy to check that f∗∂ = ∂f∗, which implies that f∗ provides a morphism of chain
complexes f∗ : Ωp(X)→ Ωp(Y ) and, consequently, a homomorphism of homology groups
f∗ : Hp(X)→ Hp(Y ).

Definition. For any n ≥ 1 define a line digraph In as any digraph with n + 1 vertices
{0, 1, . . . , n} and such that, for any i = 0, ..., n− 1 holds either i→ (i + 1) or (i + 1)→ i,
and there is no other arrow.
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Definition. Let X,Y be two digraphs. Two digraph maps f, g : X → Y are called
homotopic if there exists a line digraph In and a digraph map Φ: X�In → Y such that

Φ|X×{0} = f and Φ|X×{n} = g.

In this case we write f ' g. The map Φ is called a homotopy between f and g.

Definition. Two digraphs X and Y are called homotopy equivalent if there exist digraph
maps

f : X → Y, g : Y → X (7)

such that
f ◦ g ' idY , g ◦ f ' idX . (8)

In this case we write X ' Y .

Theorem 5 (i) Let f, g : X → Y be two digraph maps. If f ' g then they induce the
identical maps of homology groups:

f∗ : Hp (X)→ Hp (Y ) and g∗ : Hp (X)→ Hp (Y ) .

(ii) If the digraphs X and Y are homotopy equivalent, then H∗ (X) ∼= H∗ (Y ).
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In particular, if a digraph X is contractible, that is, if X ' {∗}, then all the homology
groups of X are trivial except for H0.

We say that a digraph Y is a subgraph of X if the set of vertices of Y is a subset of that
of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y .

Definition. Let X be a digraph and Y be its subgraph. A retraction of X onto Y is a
digraph map r : X → Y such that r|Y = idY .

Theorem 6 Let r : X → Y be a retraction of a digraph X onto a subgraph Y . Assume
that

either x−→=r (x) for all x ∈ X or r (x) −→=x for all x ∈ X. (9)

Then X ' Y and, consequently, H∗ (X) ∼= H∗ (Y ).

A retraction that satisfies (9) is called a deformation retraction.

Example. Let us show that n-cube is contractible. Indeed, a natural projection of n-
cube onto (n− 1)-cube is a deformation retraction. Hence, by induction we obtain n-
cube ' {∗}.
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Example. Consider the digraph X as here.

Let Y be its subgraph with the vertex set {1, 3, 4}. Consider a retraction r : X → Y
given by r (0) = 1, r (2) = 3. It is easy to see that r is a deformation retraction, whence
X ' Y . Then we obtain

H1 (X) ∼= H1 (Y ) = span {e13 + e34 + e41} ∼= K

and Hp (X) = {0} for p ≥ 2.
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8 Summary

Fix a finite set V and a field K. For any p ≥ 0, set Rp = spanK
{
ei0...ip : i0...ip is regular

}
,

where “regular” means that ik 6= ik+1 for all k. There is a boundary operator ∂ : Rp →
Rp−1 such that ∂2 = 0.

Let G = (V,E) be a digraph. Set Ap = spanK {ei0...in : i0...ip is allowed} ⊂ Rp, where
“allowed” means that ik → ik+1 for all k.

Spaces of ∂-invariant paths: Ωp = {u ∈ Ap : ∂u ∈ Ap−1} .

Chain complex Ω∗ (G): 0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . .

Path homology: Hp (G) = ker ∂|Ωp

/
Im ∂|Ωp+1 .

Theorem 4 Ω∗ (X�Y ) ∼= Ω∗ (X)⊗ Ω∗ (Y ) and H∗ (X�Y ) ∼= H∗ (X)⊗H∗ (Y )

A mapping f : X → Y is called a digraph map if a→ b in X implies f (a)−→=f (b) in Y .

We have also defined homotopy equivalence X ' Y of two digraphs.

Theorem 5 If X ' Y then H∗ (X) ∼= H∗ (Y ) .
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Theorem 6 If Y is a subgraph of X then X ' Y provided there exists a deformation
retraction r : X → Y , that is:

(i) r|Y = id ;
(ii) r is a digraph map;
(iii) either x−→=r (x) for all x ∈ X or r (x)−→=x for all x ∈ X.

For example, consider digraphs:
The left hand side digraph is
contractible as there is a sequence
of two deformation retractions
reducing it to {∗}:
r1 (4) = r1 (5) = 3
r2 (1) = r2 (2) = 3

The right hand side digraph differs
only by one arrow 3 → 1, but it is
not contractible because H2 6= {0}

H2 = span {e124 + e234 + e314 − e125 − e235 − e315}
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9 Undirected graphs

If G = (V,E) is an undirected graph then it can be turned into a digraph by allowing
both arrows x→ y and y → x whenever x ∼ y. All the above results can be reformulated
for undirected graphs in an obvious way.

Example. Fix integers 1 ≤ k ≤ n and a set S of n elements. The Johnson graph J (n, k)
is the graph whose vertices are k-subsets of S, and the edges are defined as follows: two
k-subsets are connected by an edge if their intersection contains k − 1 elements of S.

Let us describe J (4, 2). Taking S = {1, 2, 3, 4}, we see that the vertices of J (4, 2) are the
pairs 43, 42, 41, 32, 31, 31. The graph J (4, 2) has twelve edges:
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Proposition 7 For all n > k ≥ 1 we have J (n, k) ' J (n− 1, k).

Consequently, J (n, k) ' J (n− 1, k) ' ... ' J (k, k) = {∗}, and all the homology groups
of J (n, k) are trivial.

For the proof, assume that J (n, k) is constructed over the set S = {1, ..., n − 1, n}, so that
graph J (n− 1, k) is a subgraph of J (n, k). Then there exists a deformation retraction
r : J (n, k)→ J (n− 1, k). Here is a deformation retraction r : J (4, 2)→ J (3, 2):
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In general, we construct r as follows. Any vertex a of J (n, k) is represented by a monotone
decreasing sequence a = a1a2...ak of integers from {1, ..., n}: n ≥ a1 > a2 > ... > ak ≥ 1.
Define r (a) = a′ = a′

1...a
′
k where

a′
1 = min (a1, n− 1) , a′

2 = min (a2, n− 2) , ... a′
k = min (ak, n− k) .

Then n− 1 ≥ a′
1 > a′

2 > ... > a′
k ≥ 1, so that a′ is a vertex of J (n− 1, k). We claim that

r : J (n, k)→ J (n− 1, k) is a deformation retraction.

(i) If a ∈ J (n− 1, k) then r (a) = a because a1 ≤ n− 1, a2 ≤ n− 2,..., ak ≤ n− k, which
implies a′

i = ai.

(ii) If a ∼ b in J (n, k) then r (a) ∼ r (b) or r (a) = r (b) because sequences a1...ak and
b1...bk have k − 1 common elements, whence it follows that a′ and b′ have at least k − 1
common elements.

(iii) If a ∈ J (n, k) \ J (n− 1, k) then r (a) ∼ a. In this case a1 = n. Assume a2 ≤ n− 2.
Then a3 ≤ n− 3, ...., ak ≤ n− k, which implies

a′
1 = n− 1, a′

2 = a2, ..., a′
k = ak

that is, r (a) = (n− 1) a2...ak and r (a) ∼ a. The case a2 = n− 1 is a bit more involved.
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10 C-homotopy of loops

For any digraph G and a vertex ∗ of G, denote by G∗ a based digraph.

Definition. A loop on G∗ is a digraph map ϕ : In → G such that ϕ (0) = ϕ (n) = ∗.

Here In is any line digraph with any n ≥ 0.

Definition. Consider in G∗ two loops ϕ : In → G and ψ : Im → G. An one-step direct
C-homotopy from ϕ to ψ is a digraph map h : In → Im such that

(a) h (0) = 0, h (n) = m and h (i) ≤ h (j) whenever i ≤ j;

(b) ϕ (i)−→=ψ (h (i)) for all i ∈ In.

If in (b) holds ϕ (i)←−=ψ (h (i)) for all i ∈ In then h is called an one-step inverse C-
homotopy.

We denote an one-step direct C-homotopy with ϕ
C
→ ψ and the one-step inverse C-

homotopy with ϕ
C
← ψ.
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Example. On the next diagram we have ϕ
C
→ ψ.

Condition (b) means that ϕ and ψ provide a digraph map from the digraph on the left
panel to G.

Definition. We call two loops ϕ, ψ C-homotopic and write ϕ
C
' ψ if there exists a finite

sequence {ϕk}
m
k=0 of loops in G∗ such that ϕ0 = ϕ, ϕm = ψ and, for any k = 0, ...,m− 1,

holds ϕk
C
→ ϕk+1 or ϕk

C
← ϕk+1.

Obviously, C-homotopy is an equivalence relation. A loop ϕ is called contractible if ϕ
C
' e

where e : I0 → G is a trivial loop.
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The following theorem gives an efficient way of verifying if two loops are C-homotopic.

Any loop ϕ : In → G defines a sequence θϕ = {ϕ (i)}ni=0 of vertices of G. We consider θϕ

as a word over the alphabet V .

Theorem 8 Two loops ϕ : In → G and ψ : Im → G are C-homotopic if and only if θψ

can be obtained from θϕ by a finite sequence of the following word transformations (or
inverses to them):

(i) ...abc... 7→ ...ac... where a, b, c is a triangle ↗

b
•↘

a• → •c
in G or any permutation of a

triangle.

(ii) ...abc... 7→ ...adc... where a, b, c, d is a square
d• → •c
↑ ↑

a• → •b
in G or any cyclic permu-

tation of a square or an inverse cyclic permutation of a square.

(iii) ...abcd... 7→ ...ad... where a, b, c, d is as in (ii).

(iv) ...aba...→ ...a... if a→ b or b→ a.

(v) ...aa... 7→ ...a...
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Examples

1. Consider a triangular loop
ϕ : (0→ 1→ 2← 3)→ G

It is contractible because

θϕ = abca
(i)
∼ aca

(iv)
∼ a.

2. Consider a square loop
ϕ : (0→ 1→ 2← 3← 4)→ G

It is contractible because

θϕ = abcda
(iii)
∼ ada

(iv)
∼ a.
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3. Consider the loops ϕ : I5 → G and ψ : I3 → G as on p.33. It is shown here how
to transform θϕ to θψ by means of Theorem 8: using successively transformations (i)−,
(i) , (ii) and (iii) .

36



11 Fundamental group

The C-homotopy equivalence class of a loop ϕ : In → G will be denoted by [ϕ]. For any
two loops ϕ : In → G and ψ : Im → G define their concatenation ϕ ∨ ψ : In+m → G by

ϕ ∨ ψ(i) =

{
ϕ(i), 0 ≤ i ≤ n

ψ(i− n), n ≤ i ≤ n + m.

Then the product [ϕ] ∙ [ψ] := [ϕ ∨ ψ] of equivalence classes is then well-defined.

Theorem 9 (a) The set of all equivalence classes [ϕ] with the above product is a group
with the neutral element [e] . It is denoted by π1(G

∗).

(b) Any based digraph map f : X∗ → Y ∗ induces a group homomorphism

π1(f) : π1(X
∗)→ π1(Y

∗), (π1(f)) [φ] = [f ◦ φ].

(c) If f, g : X∗ → Y ∗ are two digraph maps then f ' g implies π1 (f) = π1 (g) .

(d) If X,Y are connected and X ' Y then π1 (X∗) ∼= π1 (Y ∗).
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Theorem 10 For any based connected digraph G∗ we have an isomorphism

π1(G
∗) /[π1(G

∗), π1(G
∗)] ∼= H1(G,Z),

where [π1(G
∗), π1(G

∗)] is a commutator subgroup.
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12 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the
classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle ABC on the plane R2 and its triangulation T . Assume that the set
of vertices of T is colored in three colors 1, 2, 3 so that:

• the vertex A in colored in 1, B – in 2, C – in 3;

• each vertex on the side AB is colored in 1 or 2, on the side AC – in 1 or 3, on the side
BC – in 2 or 3.

Lemma of Sperner. Under the above conditions,
there exists in T a 3-color triangle, that is, a triangle,
whose vertices are colored with three different colors.
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Let us first modify the triangulation T so that there are no vertices on the sides AB,AC,BC
except for A,B,C. If X ∈ AB then move X a bit inside of ABC. A new triangle XY Z
arises, where Y, Z are former neighbors of X on AB. However, since X,Y, Z are colored
in two colors, no 3-color triangle emerges after that move. By induction, we remove all
the vertices from all sides of ABC.

Consider the triangulation T as a graph and make it into a digraph G as follows. If a, b
are two vertices on T and a ∼ b then choose direction between a, b using the colors of a, b
and the following rule:

1→ 2, 2→ 3, 3→ 1
1� 1, 2� 2, 3� 3

Denote by S the following colored digraph ↗

1
•↘

3• ← •2
and define a mapping f : G → S

to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G.

Consider a 3-loop ϕ on G∗ (with ∗ = A) with the word

θϕ = ABCA.

For the loop f ◦ ϕ on S we have θf◦ϕ = 1231. This loop is not contractible because none
of the transformations of Theorem 8 can be applied to the word 1231. By Theorem 9(b),
the loop ϕ is also not contractible and, hence, π1 (G∗) 6= {0} .
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Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G
like

↗•↖
• � •

or ↙•↘
• � •

or ↗↗•↘↖

• � •
.

In particular, each of them contains a triangle in the sense of Theorem 8. Using the
partition of G into the triangles and transformations (ii) and (iv) of Theorem 8, we
contract any loop on G to the empty word, which contradicts to π1 (G) 6= {0}.
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