Path homologies of digraphs

Alexander Grigor'yan
Nankai University and Bielefeld University

Yau's MSC, Tsinghua University, November 1, 2 and 8, 2017
Based on a joint work with Yong Lin, Y.Muranov and S.-T.Yau

1 Paths in a finite set

Let V be a finite set. For any $p \geq 0$, an elementary p-path is any sequence i_{0}, \ldots, i_{p} of $p+1$ vertices of V that will be denoted by $i_{0} \ldots i_{p}$ or by $e_{i_{0} \ldots i_{p}}$. A p-path over a field \mathbb{K} is any formal \mathbb{K}-linear combinations of elementary p-paths, that is, any p-path has a form

$$
u=\sum_{i_{0}, i_{1}, \ldots, i_{p} \in V} u^{i_{0} i_{1} \ldots i_{p}} e_{i_{0} i_{1} \ldots i_{p}}, \quad \text { where } u^{i_{0} i_{1} \ldots i_{p}} \in \mathbb{K} .
$$

Denote by $\Lambda_{p}=\Lambda_{p}(V)$ the \mathbb{K}-linear space of all p-paths. For example,

$$
\begin{aligned}
& \Lambda_{0}=\operatorname{span}\left\{e_{i}: i \in V\right\} \\
& \Lambda_{1}=\operatorname{span}\left\{e_{i j}: i, j \in V\right\} \\
& \Lambda_{2}=\operatorname{span}\left\{e_{i j k}: i, j, k \in V\right\}
\end{aligned}
$$

Definition. Define for any $p \geq 1$ a linear boundary operator $\partial: \Lambda_{p} \rightarrow \Lambda_{p-1}$ by

$$
\partial e_{i_{0} \ldots i_{p}}=\sum_{q=0}^{p}(-1)^{q} e_{i_{0} \ldots \hat{i_{q} \ldots i_{p}}},
$$

where ${ }^{\wedge}$ means omission of the index. For $p=0$ set $\partial e_{i}=0$.

For example,

$$
\partial e_{i j}=e_{j}-e_{i} \quad \text { and } \quad \partial e_{i j k}=e_{j k}-e_{i k}+e_{i j}
$$

We claim that $\partial^{2}=0$. Indeed, for any $p \geq 2$ we have

$$
\begin{aligned}
\partial^{2} e_{i_{0} \ldots i_{p}} & =\sum_{q=0}^{p}(-1)^{q} \partial e_{i_{0} \ldots \hat{i_{q}} \ldots i_{p}} \\
& =\sum_{q=0}^{p}(-1)^{q}\left(\sum_{r=0}^{q-1}(-1)^{r} e_{i_{0} \ldots \hat{r_{r}} \ldots \hat{i}_{q} \ldots i_{p}}+\sum_{r=q+1}^{p}(-1)^{r-1} e_{i_{0} \ldots \hat{\hat{q}_{q} \ldots} \hat{i}_{r} \ldots i_{p}}\right) \\
& =\sum_{0 \leq r<q \leq p}(-1)^{q+r} e_{i_{0} \ldots \hat{i_{r}} \ldots \hat{i}_{q} \ldots i_{p}}-\sum_{0 \leq q<r \leq p}(-1)^{q+r} e_{i_{0} \ldots \hat{q_{q} \ldots \hat{i_{r}} \ldots i_{p}}} .
\end{aligned}
$$

After switching q and r in the last sum we see that the two sums cancel out, whence $\partial^{2} e_{i_{0} \ldots i_{p}}=0$. This implies $\partial^{2} u=0$ for all $u \in \Lambda_{p}$.
Hence, we obtain a chain complex $\Lambda_{*}(V)$:

$$
0 \leftarrow \Lambda_{0} \stackrel{\partial}{\leftarrow} \Lambda_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

Definition. An elementary p-path $e_{i_{0} \ldots i_{p}}$ is called regular if $i_{k} \neq i_{k+1}$ for all $k=0, \ldots, p-1$, and irregular otherwise.
Let I_{p} be the subspace of Λ_{p} spanned by irregular $e_{i_{0} \ldots i_{p}}$. We claim that $\partial I_{p} \subset I_{p-1}$. Indeed, if $e_{i_{0} \ldots i_{p}}$ is irregular then $i_{k}=i_{k+1}$ for some k. We have

$$
\begin{align*}
\partial e_{i_{0} \ldots i_{p}}= & e_{i_{1} \ldots i_{p}}-e_{i_{0} i_{2} \ldots i_{p}}+\ldots \\
& +(-1)^{k} e_{i_{0} \ldots i_{k-1} i_{k+1} i_{k+2} \ldots i_{p}}+(-1)^{k+1} e_{i_{0} \ldots i_{k-1} i_{k} i_{k+2} \ldots i_{p}} \tag{1}\\
& +\ldots+(-1)^{p} e_{i_{0} \ldots i_{p-1}} .
\end{align*}
$$

By $i_{k}=i_{k+1}$ the two terms in the middle line of (1) cancel out, whereas all other terms are non-regular, whence $\partial e_{i_{0} \ldots i_{p}} \in I_{p-1}$.
Hence, ∂ is well-defined on the quotient spaces $\mathcal{R}_{p}:=\Lambda_{p} / I_{p}$, and we obtain the chain complex $\mathcal{R}_{*}(V)$:

$$
0 \leftarrow \mathcal{R}_{0} \stackrel{\partial}{\leftarrow} \mathcal{R}_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

By setting all irregular p-paths to be equal to 0 , we can identify \mathcal{R}_{p} with the subspace of Λ_{p} spanned by all regular paths. For example, if $i \neq j$ then $e_{i j i} \in \mathcal{R}_{2}$ and

$$
\partial e_{i j i}=e_{j i}-e_{i i}+e_{i j}=e_{j i}+e_{i j}
$$

because $e_{i i}=0$.

2 Paths in a digraph

Definition. A digraph (directed graph) is a pair $G=(V, E)$ of a set V of vertices and a set $E \subset\{V \times V \backslash \operatorname{diag}\}$ of (directed) edges. If $(i, j) \in E$ then we write $i \rightarrow j$.

Definition. Let $G=(V, E)$ be a digraph. An elementary p-path $i_{0} \ldots i_{p}$ on V is called allowed if $i_{k} \rightarrow i_{k+1}$ for any $k=0, \ldots, p-1$, and non-allowed otherwise.

Let $\mathcal{A}_{p}=\mathcal{A}_{p}(G)$ be \mathbb{K}-linear space spanned by allowed elementary p-paths:

$$
\mathcal{A}_{p}=\operatorname{span}\left\{e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p} \text { is allowed }\right\} .
$$

The elements of \mathcal{A}_{p} are called allowed p-paths. Since any allowed path is regular, we have $\mathcal{A}_{p} \subset \mathcal{R}_{p}$.

We would like to build a chain complex based on subspaces \mathcal{A}_{p} of \mathcal{R}_{p}. However, the spaces \mathcal{A}_{p} are in general not invariant for ∂. For example, in the digraph

we have $e_{a b c} \in \mathcal{A}_{2}$ but $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \notin \mathcal{A}_{1}$ because $e_{a c}$ is not allowed.

Consider the following subspace of \mathcal{A}_{p}

$$
\Omega_{p} \equiv \Omega_{p}(G):=\left\{u \in \mathcal{A}_{p}: \partial u \in \mathcal{A}_{p-1}\right\} .
$$

We claim that $\partial \Omega_{p} \subset \Omega_{p-1}$. Indeed, $u \in \Omega_{p}$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial(\partial u)=0 \in \mathcal{A}_{p-2}$, whence $\partial u \in \Omega_{p-1}$.

Definition. The elements of Ω_{p} are called ∂-invariant p-paths or currents.
Hence, we obtain a chain complex $\Omega_{*}=\Omega_{*}(G)$:

$$
0 \leftarrow \Omega_{0} \stackrel{\partial}{\leftarrow} \Omega_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \ldots \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots
$$

By construction we have $\Omega_{0}=\mathcal{A}_{0}$ and $\Omega_{1}=\mathcal{A}_{1}$, while in general $\Omega_{p} \subset \mathcal{A}_{p}$.
Definition. Path homologies of G are defined as the homologies of the chain complex $\Omega_{*}(G)$:

$$
H_{p}(G, \mathbb{K})=H_{p}(G):=H_{p}\left(\Omega_{*}(G)\right)=\left.\operatorname{ker} \partial\right|_{\Omega_{p}} /\left.\operatorname{Im} \partial\right|_{\Omega_{p+1}}
$$

Betti numbers: $\beta_{p}(G):=\operatorname{dim} H_{p}(G)$. The Euler characteristic:

$$
\chi(G)=\sum_{p=0}^{\infty}(-1)^{p} \beta_{p}(G)=\sum_{p=0}^{\infty}(-1)^{p} \operatorname{dim} \Omega_{p}(G)
$$

3 Examples of ∂-invariant paths

An 1-path $e_{a b}$ is ∂-invariant if and only if it is allowed, that is, $a \rightarrow b$.
A triangle is a sequence of three vertices a, b, c such that $a \rightarrow b \rightarrow c, a \rightarrow c$
A triangle determines a 2-path $e_{a b c} \in \Omega_{2}$ because $e_{a b c} \in \mathcal{A}_{2}$ and $\partial e_{a b c}=e_{b c}-e_{a c}+e_{a b} \in \mathcal{A}_{1}$.

A snake of length $p \geq 2$ is a sequence of $p+1$ vertices, say $0,1, \ldots, p$, such that
$i \rightarrow i+1$ for all $i=0, \ldots, p-1$ and
$i \rightarrow i+2$ for all $i=0, \ldots, p-2$.

Then a p-path $u=e_{01 \ldots p}$ is ∂-invariant, because $u \in \mathcal{A}_{p}$ and

$$
\partial u=\sum_{q=0}^{p}(-1)^{q} e_{0 \ldots(q-1) \widehat{q}(q+1) \ldots p} \in \mathcal{A}_{p-1}, \quad \text { since } q-1 \rightarrow q+1
$$

A p-simplex is a sequence of $p+1$ vertices, say, $0,1, \ldots, p$ such that $i \rightarrow j$ for all $i<j$. Equivalently, a p-simplex is a directed clique. A p-simplex contains a snake so that the p-path $e_{01 \ldots p}$ is ∂-invariant. Since

$$
\partial e_{012 \ldots p}=e_{12 \ldots p}-e_{02 \ldots p}+\ldots+(-1)^{p} e_{01 \ldots(p-1)},
$$

the boundary of p-simplex is an alternating sum of $(p-1)$-simplexes.
An 1 -simplex is any arrow $a \rightarrow b$.
A 2-simplex is a triangle as above.
A 3-simplex is shown here:

A square is a sequence of four vertices a, b, b^{\prime}, c such that $a \rightarrow b, b \rightarrow c, a \rightarrow b^{\prime}, b^{\prime} \rightarrow c$.
A square determines a 2-path $u:=e_{a b c}-e_{a b^{\prime} c} \in \Omega_{2}$ because $u \in \mathcal{A}_{2}$ and

$$
\begin{aligned}
\partial u & =\left(e_{b c}-\underline{e_{a c}}+e_{a b}\right)-\left(e_{b^{\prime} c}-\underline{e_{a c}}+e_{a b^{\prime}}\right) \\
& =e_{a b}+e_{b c}-e_{a b^{\prime}}-e_{b^{\prime} c} \in \mathcal{A}_{1}
\end{aligned}
$$

A 3 -cube is a sequence of 8 vertices, say, $0,1,2,3,4,5,6,7$, connected by arrows as here.

A 3 -cube determines a ∂-invariant 3 -path

$$
u=e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{0467}-e_{0267}
$$

Indeed, $u \in \mathcal{A}_{3}$ and

$$
\begin{aligned}
\partial u= & \left(e_{013}-e_{023}\right)+\left(e_{157}-e_{137}\right)+\left(e_{237}-e_{267}\right) \\
& -\left(e_{046}-e_{026}\right)-\left(e_{457}-e_{467}\right)-\left(e_{015}-e_{045}\right) \in \mathcal{A}_{2} .
\end{aligned}
$$

An exotic cube is this subgraph containing 9 vertices and 15 edges. It is obtained from 3 -cube by "splitting" the vertex 4 into $4,4^{\prime}$ and adding the edges $4 \rightarrow 7,4^{\prime} \rightarrow 7$.

The exotic cube determines the following ∂-invariant 3-path:

$$
u=e_{0237}-e_{0137}+e_{0157}-e_{0457}+e_{04^{\prime} 67}-e_{0267}
$$

Indeed, we have $u \in \mathcal{A}_{3}$ and

$$
\begin{aligned}
\partial u= & e_{237}-\underline{e_{037}}+\underline{e_{027}}-e_{023} \\
& -e_{137}+\underline{e_{037}}-\underline{e_{017}}+e_{013} \\
& +e_{157}-\underline{e_{057}}+\underline{e_{017}}-e_{015} \\
& -e_{457}+\underline{e_{057}}-\overline{e_{047}}+e_{045} \\
& +e_{4^{\prime} 67}-\underline{e_{067}}+e_{04^{\prime} 7}-e_{04^{\prime} 6} \\
& -e_{267}+\underline{e_{067}}-\underline{e_{027}}+e_{026} \in \mathcal{A}_{2} .
\end{aligned}
$$

4 Examples of digraphs and spaces Ω_{p}

Consider the following digraph with 6 vertices and 8 edges:
$\Omega_{0}=\mathcal{A}_{0}=\operatorname{span}\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$,
$\Omega_{1}=\mathcal{A}_{1}=\operatorname{span}\left\{e_{01}, e_{02}, e_{13}, e_{14}, e_{23}, e_{24}, e_{53}, e_{54}\right\}$
Hence, $\operatorname{dim} \Omega_{0}=6$ and $\operatorname{dim} \Omega_{1}=8$
$\mathcal{A}_{2}=\operatorname{span}\left\{e_{013}, e_{014}, e_{023}, e_{024}\right\}, \quad \operatorname{dim} \mathcal{A}_{2}=4$ However, none of these 2-paths is ∂-invariant.
Ω_{2} is spanned by two squares:
$\Omega_{2}=\operatorname{span}\left\{e_{013}-e_{023}, e_{014}-e_{024}\right\}, \operatorname{dim} \Omega_{2}=2$.
There are no allowed p-paths for any $p \geq 3$.
 Hence, $\Omega_{p}=\mathcal{A}_{p}=\{0\}$ for all $p \geq 3$.

One computes $\operatorname{dim} H_{0}=\operatorname{dim} H_{1}=1$ and $\operatorname{dim} H_{p}=0$ for $p \geq 2$.
In fact, $H_{0}=\operatorname{span}\left\{e_{0}\right\}, H_{1}=\operatorname{span}\left\{e_{13}-e_{53}+e_{54}-e_{14}\right\}$.
The Euler characteristic: $\chi=\operatorname{dim} \Omega_{0}-\operatorname{dim} \Omega_{1}+\operatorname{dim} \Omega_{2}=6-8+2=0$.

Consider the following octahedral digraph with 6 vertices and 12 edges:
$\Omega_{0}=\mathcal{A}_{0}=\operatorname{span}\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$.
$\Omega_{1}=\mathcal{A}_{1}=\operatorname{span}\left\{e_{01}, e_{02}, e_{04}, e_{05}, e_{13}, e_{14}, e_{15}, e_{23}, e_{24}, e_{34}, e_{52}, e_{53}\right\}$.
Hence, $\operatorname{dim} \Omega_{0}=6, \operatorname{dim} \Omega_{1}=12$.
$\mathcal{A}_{2}=\operatorname{span}\left\{e_{013}, e_{014}, e_{015}, e_{023}, e_{024}, e_{052}, e_{053}, e_{134}, e_{152}, e_{153}, e_{234}, e_{523}, e_{524}, e_{534}\right\}$.

Space Ω_{2} is spanned by 8 triangles:
$e_{014}, e_{015}, e_{024}, e_{052}, e_{134}, e_{153}, e_{234}, e_{523}$
and 3 squares:
$e_{013}-e_{023}, \quad e_{013}-e_{053}, \quad e_{524}-e_{534}$.
Hence, $\operatorname{dim} \Omega_{2}=8+3=11$.

Space Ω_{3} is spanned by five ∂-invariant 3-paths:
$e_{0153}, \quad e_{0523}, \quad e_{5234}, \quad e_{0134}-e_{0234}, \quad e_{0534}-e_{0134}-e_{0524}$.
Hence, $\operatorname{dim} \Omega_{3}=5$.
$\Omega_{4}=\operatorname{span}\left\{e_{05234}\right\}$. Hence, $\operatorname{dim} \Omega_{4}=1$.

There is only 1 allowed 5-path e_{015234} but it is not ∂-invariant. Hence, $\Omega_{p}=\{0\} \forall p \geq 5$.

The Euler characteristic is

$$
\chi=\operatorname{dim} \Omega_{0}-\operatorname{dim} \Omega_{1}+\operatorname{dim} \Omega_{2}-\operatorname{dim} \Omega_{3}+\operatorname{dim} \Omega_{4}=6-12+11-5+1=1
$$

One can show that $\operatorname{dim} H_{0}=1$ and $\operatorname{dim} H_{p}=0$ for all $p \geq 1$, which confirms $\chi=1$.
Here is a verification of the ∂-invariance of five 3-paths and the 4-path:

$$
\begin{aligned}
\partial e_{0153}= & e_{153}-e_{053}+e_{013}-e_{015} \in \mathcal{A}_{2} \\
\partial e_{0523}= & e_{523}-e_{023}+e_{053}-e_{052} \in \mathcal{A}_{2} \\
\partial e_{5234}= & e_{234}-e_{534}+e_{524}-e_{523} \in \mathcal{A}_{2} \\
\partial\left(e_{0134}-e_{0234}\right)= & e_{134}-\underline{e_{034}}+e_{014}-e_{013} \\
& -e_{234}+\underline{e_{034}}-e_{024}+e_{023} \\
= & e_{134}+e_{014}-e_{013}-e_{234}-e_{024}+e_{023} \in \mathcal{A}_{2} \\
\partial\left(e_{0534}-e_{0134}-e_{0524}\right)= & e_{534}-\underline{e_{034}}+\underline{e_{054}}-e_{053} \\
& -e_{134}+\underline{e_{034}}-e_{014}+e_{013} \\
& -e_{524}+e_{024}-\underline{e_{054}}+e_{052} \\
= & e_{534}-e_{053}-e_{134}-e_{014}+e_{013}-e_{524}+e_{024}+e_{052} \in \mathcal{A}_{2} \\
\partial e_{05234}= & e_{5234}-e_{0234}+e_{0534}-e_{0524}+e_{0523} \in \mathcal{A}_{3}
\end{aligned}
$$

5 Cross product of paths

Given two finite sets X, Y, consider their product

$$
Z=X \times Y=\{(a, b): a \in X \text { and } b \in Y\}
$$

Let $z=z_{0} z_{1} \ldots z_{r}$ be a regular elementary r-path on Z, where $z_{k}=\left(a_{k}, b_{k}\right)$ with $a_{k} \in X$ and $b_{k} \in Y$. We say that z is stair-like if, for any $k=1, \ldots, r$, either $a_{k-1}=a_{k}$ or $b_{k-1}=b_{k}$ is satisfied. That is, any couple $z_{k-1} z_{k}$ of consecutive vertices is either vertical (when $a_{k-1}=a_{k}$) or horizontal (when $b_{k-1}=b_{k}$).

Given a stair-like path z on Z, define its projection onto X as an elementary path x on X obtained from z by removing Y-components in all the vertices of z and then by collapsing in the resulting sequence any subsequence of repeated vertices to one vertex.
In the same way define projection of z onto Y and denote it by y.
Projections $x=x_{0} \ldots x_{p}$ and $y=y_{0} \ldots y_{q}$ are regular elementary paths, and $p+q=r$.

Every vertex $\left(x_{i}, y_{j}\right)$ of path z can be represented as a point (i, j) of \mathbb{Z}^{2} so that path z is represented by a staircase $S(z)$ in \mathbb{Z}^{2} connecting points $(0,0)$ and (p, q).

Define the elevation $L(z)$ of z as the number of cells in \mathbb{Z}_{+}^{2} below the staircase $S(z)$.

For given elementary regular paths x on X and y on Y, denote by $\Sigma_{x, y}$ the set of all stair-like paths z on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths e_{x} and e_{y} as a path $e_{x} \times e_{y}$ on Z as follows:

$$
\begin{equation*}
e_{x} \times e_{y}=\sum_{z \in \Sigma_{x, y}}(-1)^{L(z)} e_{z} . \tag{2}
\end{equation*}
$$

Then extend the cross product by linearity to all paths $u \in \mathcal{R}_{p}(X)$ and $v \in \mathcal{R}_{q}(Y)$ so that $u \times v \in \mathcal{R}_{p+q}(Z)$.

Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by integers $1,2,3$, etc so that the vertices on Z can be denoted as $a 1, b 2$ etc as the fields on the chessboard. Then we have
$e_{a} \times e_{12}=e_{a 1 a 2}, \quad e_{a b} \times e_{1}=e_{a 1 b 1}$
$e_{a b} \times e_{12}=e_{a 1 b 1 b 2}-e_{a 1 a 2 b 2}$
$e_{a b} \times e_{123}=e_{a 1 b 1 b 2 b 3}-e_{a 1 a 2 b 2 b 3}+e_{a 1 a 2 a 3 b 3}$
$e_{a b c} \times e_{123}=e_{a 1 b 1 c 1 c 2 c 3}-e_{a 1 b 1 b 2 c 2 c 3}+e_{a 1 b 1 b 2 b 3 c 3}$
$+e_{a 1 a 2 b 2 c 2 c 3}-e_{a 1 a 2 b 2 b 3 c 3}+e_{a 1 a 2 a 3 b 3 c 3}$

Proposition 1 If $u \in \mathcal{R}_{p}(X)$ and $v \in \mathcal{R}_{q}(Y)$ where $p, q \geq 0$, then

$$
\partial(u \times v)=(\partial u) \times v+(-1)^{p} u \times(\partial v) .
$$

6 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given two digraphs X and Y, define there Cartesian product as a digraph $Z=X \square Y$ as follows:

- the set of vertices of Z is $X \times Y$, that is, the vertices of Z are the couples (a, b) where $a \in X$ and $b \in Y$;
- the edges in Z are of two types: $(a, b) \rightarrow\left(a^{\prime}, b\right)$ where $a \rightarrow a^{\prime}$ (a horizontal edge) and $(a, b) \rightarrow\left(a, b^{\prime}\right)$ where $b \rightarrow b^{\prime}$ (a vertical edge):

It follows that any allowed elementary path in Z is stair-like.

Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and its projections onto X and Y are allowed.
It follows from definition (2) of the cross product that

$$
\begin{equation*}
u \in \mathcal{A}_{p}(X) \text { and } v \in \mathcal{A}_{q}(Y) \Rightarrow u \times v \in \mathcal{A}_{p+q}(Z) \tag{3}
\end{equation*}
$$

Furthermore, the following is true.

Proposition 2 If $u \in \Omega_{p}(X)$ and $v \in \Omega_{q}(Y)$ then $u \times v \in \Omega_{p+q}(Z)$.

Proof. $u \times v$ is allowed by (3). Since ∂u and ∂v are allowed, by (3) also $\partial u \times v$ and $u \times \partial v$ are allowed. By the product rule, $\partial(u \times v)$ is also allowed. Hence, $u \times v \in \Omega_{p+q}(Z)$.

Theorem 3 (Main Theorem) Then any ∂-invariant path w on $Z=X \square Y$ admits a representation in the form

$$
w=\sum_{i=1}^{k} u_{i} \times v_{i}
$$

for some finite k, where u_{i} and v_{i} are ∂-invariant paths on X and Y, respectively.

Theorem 4 (Künneth formula) Let X, Y be two finite digraphs and $Z=X \square Y$. Then we have the following isomorphism of the chain complexes:

$$
\begin{equation*}
\Omega_{*}(Z) \cong \Omega_{*}(X) \otimes \Omega_{*}(Y) \tag{4}
\end{equation*}
$$

It is given by the map $u \otimes v \mapsto u \times v$ with $u \in \Omega_{*}(X)$ and $v \in \Omega_{*}(Y)$.

A more detailed version of (4) is the following: for any $r \geq 0$,

$$
\begin{equation*}
\Omega_{r}(Z) \cong \bigoplus_{\{p, q \geq 0: p+q=r\}}\left(\Omega_{p}(X) \otimes \Omega_{q}(Y)\right) \tag{5}
\end{equation*}
$$

By an abstract theorem of Künneth, we obtain from (4)

$$
H_{*}(Z) \cong H_{*}(X) \otimes H_{*}(Y)
$$

that is, for any $r \geq 0$,

$$
\begin{equation*}
H_{r}(Z) \cong \bigoplus_{\{p, q \geq 0: p+q=r\}}\left(H_{p}(X) \otimes H_{q}(Y)\right) . \tag{6}
\end{equation*}
$$

Consequently, $\beta_{r}(Z)=\sum_{\{p, q \geq 0: p+q=r\}} \beta_{p}(X) \beta_{q}(Y)$.

Example. Consider the digraph $Z=X \square Y$ where X is an interval and Y is a square:

$$
X={ }^{a} \bullet \longrightarrow \bullet^{b} \text { and } Y=\begin{array}{|c}
{ }^{\bullet} \bullet \\
\uparrow \\
{ }_{0} \bullet \\
\longrightarrow
\end{array} \stackrel{\bullet}{\bullet}_{1} \bullet_{1}
$$

Z has 8 vertices (i, j) where $i=a, b$, $j=0,1,2,3$. Let us enumerate them: $(a, i) \equiv i$ and $(b, i) \equiv i+4$.

We see that Z is a 3 -cube:

We have:

$$
\begin{aligned}
& \Omega_{1}(X)=\operatorname{span}\left\{e_{a b}\right\}, \quad \Omega_{p}(X)=0 \text { for } p \geq 2 \\
& \Omega_{1}(Y)=\operatorname{span}\left\{e_{01}, e_{13}, e_{23}, e_{02}\right\}, \Omega_{2}(Y)=\operatorname{span}\left\{e_{013}-e_{023}\right\}, \quad \Omega_{q}(Y)=0 \text { for } q \geq 3 .
\end{aligned}
$$

By (5) we obtain

$$
\Omega_{3}(Z) \cong \Omega_{1}(X) \otimes \Omega_{2}(Y)=\operatorname{span}\left\{e_{a b} \times e_{013}-e_{a b} \times e_{023}\right\}
$$

$e_{a b} \times e_{013}=e_{a 0 b 0 b 1 b 3}-e_{a 0 a 1 b 1 b 3}+e_{a 0 a 1 a 3 b 3}$

$$
=e_{0457}-e_{0157}+e_{0137}
$$

and
$e_{a b} \times e_{023}=e_{0467}-e_{0267}+e_{0237}$

Hence, we obtain

$$
\Omega_{3}(Z)=\operatorname{span}\left\{e_{0457}-e_{0157}+e_{0137}-e_{0467}+e_{0267}-e_{0237}\right\}
$$

that is the ∂-invariant 3 -path associated with 3 -cube.

Define n-cube as follows:

$$
n \text { - cube }=\underbrace{I \square I \square \ldots}_{n},
$$

where $I={ }^{a} \bullet \longrightarrow \bullet^{b}$. Similarly one shows that $\Omega_{n}(n$ - cube $)$ is spanned by a single n-path that is an alternating sum of n ! elementary n-paths connecting the vertices 0 and $2^{n}-1$. This corresponds to partitioning of a solid n-dim cube into n ! simplexes.

Example. Consider the digraph $Z=X \square Y$ where

One can show that

$$
\begin{array}{rlrl}
H_{1}(X) & =\operatorname{span}\left\{e_{a b}+e_{b c}+e_{c a}\right\}, & & H_{p}(X)=0 \text { for } p \geq 2 \\
H_{1}(Y) & =\operatorname{span}\left\{-e_{10}+e_{02}+e_{23}-e_{13}\right\}, & H_{q}(Y)=0 \text { for all } q \geq 2
\end{array}
$$

By (6) we obtain $H_{1}(Z)=H_{0}(X) \otimes H_{1}(Y)+H_{1}(X) \otimes H_{0}(Y) \cong \mathbb{K}^{2}$,

$$
H_{2}(Z) \cong H_{1}(X) \otimes H_{1}(Y)=\operatorname{span}\left\{\left(e_{a b}+e_{b c}+e_{c a}\right) \times\left(-e_{10}+e_{02}+e_{23}-e_{13}\right)\right\} \cong \mathbb{K}
$$

and $H_{r}(Z)=0$ for all $r \geq 2$.

7 Homotopy of digraphs

For vertices a, b of a digraph, write $a \equiv b$ if either $a \rightarrow b$ or $a=b$. Let X and Y be two digraphs.

Definition. A mapping $f: X \rightarrow Y$ called a digraph map (or morphism) if

$$
a \rightarrow b \text { on } X \quad \Rightarrow \quad f(a) \equiv f(b) \text { on } Y .
$$

Any digraph map $f: X \rightarrow Y$ induces a linear map

$$
f_{*}: \mathcal{A}_{p}(X) \rightarrow \mathcal{A}_{p}(Y), \quad f_{*}\left(e_{i_{0} \ldots i_{p}}\right)=e_{f\left(i_{0}\right) \ldots f\left(i_{p}\right)} .
$$

It is easy to check that $f_{*} \partial=\partial f_{*}$, which implies that f_{*} provides a morphism of chain complexes $f_{*}: \Omega_{p}(X) \rightarrow \Omega_{p}(Y)$ and, consequently, a homomorphism of homology groups $f_{*}: H_{p}(X) \rightarrow H_{p}(Y)$.

Definition. For any $n \geq 1$ define a line digraph I_{n} as any digraph with $n+1$ vertices $\{0,1, \ldots, n\}$ and such that, for any $i=0, \ldots, n-1$ holds either $i \rightarrow(i+1)$ or $(i+1) \rightarrow i$, and there is no other arrow.

Definition. Let X, Y be two digraphs. Two digraph maps $f, g: X \rightarrow Y$ are called homotopic if there exists a line digraph I_{n} and a digraph map $\Phi: X \square I_{n} \rightarrow Y$ such that

$$
\left.\Phi\right|_{X \times\{0\}}=f \quad \text { and }\left.\Phi\right|_{X \times\{n\}}=g
$$

In this case we write $f \simeq g$. The map Φ is called a homotopy between f and g.
Definition. Two digraphs X and Y are called homotopy equivalent if there exist digraph maps

$$
\begin{equation*}
f: X \rightarrow Y, \quad g: Y \rightarrow X \tag{7}
\end{equation*}
$$

such that

$$
\begin{equation*}
f \circ g \simeq \operatorname{id}_{Y}, \quad g \circ f \simeq \operatorname{id}_{X} \tag{8}
\end{equation*}
$$

In this case we write $X \simeq Y$.

Theorem 5 (i) Let $f, g: X \rightarrow Y$ be two digraph maps. If $f \simeq g$ then they induce the identical maps of homology groups:

$$
f_{*}: H_{p}(X) \rightarrow H_{p}(Y) \quad \text { and } \quad g_{*}: H_{p}(X) \rightarrow H_{p}(Y) .
$$

(ii) If the digraphs X and Y are homotopy equivalent, then $H_{*}(X) \cong H_{*}(Y)$.

In particular, if a digraph X is contractible, that is, if $X \simeq\{*\}$, then all the homology groups of X are trivial except for H_{0}.

We say that a digraph Y is a subgraph of X if the set of vertices of Y is a subset of that of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y.

Definition. Let X be a digraph and Y be its subgraph. A retraction of X onto Y is a digraph map $r: X \rightarrow Y$ such that $\left.r\right|_{Y}=\operatorname{id}_{Y}$.

Theorem 6 Let $r: X \rightarrow Y$ be a retraction of a digraph X onto a subgraph Y. Assume that

$$
\begin{equation*}
\text { either } x \equiv r(x) \quad \text { for all } x \in X \quad \text { or } \quad r(x) \equiv x \quad \text { for all } x \in X \tag{9}
\end{equation*}
$$

Then $X \simeq Y$ and, consequently, $H_{*}(X) \cong H_{*}(Y)$.

A retraction that satisfies (9) is called a deformation retraction.
Example. Let us show that n-cube is contractible. Indeed, a natural projection of n cube onto $(n-1)$-cube is a deformation retraction. Hence, by induction we obtain n cube $\simeq\{*\}$.

Example. Consider the digraph X as here.

Let Y be its subgraph with the vertex set $\{1,3,4\}$. Consider a retraction $r: X \rightarrow Y$ given by $r(0)=1, r(2)=3$. It is easy to see that r is a deformation retraction, whence $X \simeq Y$. Then we obtain

$$
H_{1}(X) \cong H_{1}(Y)=\operatorname{span}\left\{e_{13}+e_{34}+e_{41}\right\} \cong \mathbb{K}
$$

and $H_{p}(X)=\{0\}$ for $p \geq 2$.

8 Summary

Fix a finite set V and a field \mathbb{K}. For any $p \geq 0$, set $\mathcal{R}_{p}=\operatorname{span}_{\mathbb{K}}\left\{e_{i_{0} \ldots i_{p}}: i_{0} \ldots i_{p}\right.$ is regular $\}$, where "regular" means that $i_{k} \neq i_{k+1}$ for all k. There is a boundary operator $\partial: \mathcal{R}_{p} \rightarrow$ \mathcal{R}_{p-1} such that $\partial^{2}=0$.

Let $G=(V, E)$ be a digraph. Set $\mathcal{A}_{p}=\operatorname{span}_{\mathbb{K}}\left\{e_{i_{0} \ldots i_{n}}: i_{0} \ldots i_{p}\right.$ is allowed $\} \subset \mathcal{R}_{p}$, where "allowed" means that $i_{k} \rightarrow i_{k+1}$ for all k.

Spaces of ∂-invariant paths: $\Omega_{p}=\left\{u \in \mathcal{A}_{p}: \partial u \in \mathcal{A}_{p-1}\right\}$.
Chain complex $\Omega_{*}(G): 0 \leftarrow \Omega_{0} \stackrel{\partial}{\leftarrow} \Omega_{1} \stackrel{\partial}{\leftarrow} \ldots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_{p} \stackrel{\partial}{\leftarrow} \ldots$.
Path homology: $H_{p}(G)=\left.\operatorname{ker} \partial\right|_{\Omega_{p}} /\left.\operatorname{Im} \partial\right|_{\Omega_{p+1}}$.
Theorem $4 \quad \Omega_{*}(X \square Y) \cong \Omega_{*}(X) \otimes \Omega_{*}(Y)$ and $H_{*}(X \square Y) \cong H_{*}(X) \otimes H_{*}(Y)$
A mapping $f: X \rightarrow Y$ is called a digraph map if $a \rightarrow b$ in X implies $f(a) \equiv f(b)$ in Y.
We have also defined homotopy equivalence $X \simeq Y$ of two digraphs.
Theorem 5 If $X \simeq Y$ then $H_{*}(X) \cong H_{*}(Y)$.

Theorem 6 If Y is a subgraph of X then $X \simeq Y$ provided there exists a deformation retraction $r: X \rightarrow Y$, that is:
(i) $\left.r\right|_{Y}=$ id;
(ii) r is a digraph map;
(iii) either $x \rightleftarrows r(x)$ for all $x \in X$ or $r(x) \rightrightarrows x$ for all $x \in X$.

For example, consider digraphs:
The left hand side digraph is contractible as there is a sequence of two deformation retractions reducing it to $\{*\}$:
$r_{1}(4)=r_{1}(5)=3$
$r_{2}(1)=r_{2}(2)=3$
The right hand side digraph differs only by one arrow $3 \rightarrow 1$, but it is not contractible because $H_{2} \neq\{0\}$

$$
H_{2}=\operatorname{span}\left\{e_{124}+e_{234}+e_{314}-e_{125}-e_{235}-e_{315}\right\}
$$

9 Undirected graphs

If $G=(V, E)$ is an undirected graph then it can be turned into a digraph by allowing both arrows $x \rightarrow y$ and $y \rightarrow x$ whenever $x \sim y$. All the above results can be reformulated for undirected graphs in an obvious way.

Example. Fix integers $1 \leq k \leq n$ and a set S of n elements. The Johnson graph $J(n, k)$ is the graph whose vertices are k-subsets of S, and the edges are defined as follows: two k-subsets are connected by an edge if their intersection contains $k-1$ elements of S.

Let us describe $J(4,2)$. Taking $S=\{1,2,3,4\}$, we see that the vertices of $J(4,2)$ are the pairs $43,42,41,32,31,31$. The graph $J(4,2)$ has twelve edges:

Johnson graph

Johnson graphs are a special class of undirected graphs defined from systems of sets. The vertices of the Johnson graph $J(n, k)$ are the k-element subsets of an n-element set; two vertices are adjacent when the intersection of the two vertices (subsets) contains ($k-1$)-elements. ${ }^{[1]}$ Both Johnson graphs and the closely related Johnson scheme are named after Selmer M. Johnson.

Contents

- 1 Special cases
- 2 Graph-theoretic properties
- 3 Automorphism group
- 4 Intersection array
- 5 Eigenvalues and Eigenvectors
- 6 Relation to Johnson scheme
- 7 Open Problems
- 8 References
- 9 External links

Special cases

Proposition 7 For all $n>k \geq 1$ we have $J(n, k) \simeq J(n-1, k)$.

Consequently, $J(n, k) \simeq J(n-1, k) \simeq \ldots \simeq J(k, k)=\{*\}$, and all the homology groups of $J(n, k)$ are trivial.

For the proof, assume that $J(n, k)$ is constructed over the set $S=\{1, \ldots, n-1, n\}$, so that graph $J(n-1, k)$ is a subgraph of $J(n, k)$. Then there exists a deformation retraction $r: J(n, k) \rightarrow J(n-1, k)$. Here is a deformation retraction $r: J(4,2) \rightarrow J(3,2)$:

In general, we construct r as follows. Any vertex a of $J(n, k)$ is represented by a monotone decreasing sequence $a=a_{1} a_{2} \ldots a_{k}$ of integers from $\{1, \ldots, n\}: n \geq a_{1}>a_{2}>\ldots>a_{k} \geq 1$. Define $r(a)=a^{\prime}=a_{1}^{\prime} \ldots a_{k}^{\prime}$ where

$$
a_{1}^{\prime}=\min \left(a_{1}, n-1\right), \quad a_{2}^{\prime}=\min \left(a_{2}, n-2\right), \ldots \quad a_{k}^{\prime}=\min \left(a_{k}, n-k\right) .
$$

Then $n-1 \geq a_{1}^{\prime}>a_{2}^{\prime}>\ldots>a_{k}^{\prime} \geq 1$, so that a^{\prime} is a vertex of $J(n-1, k)$. We claim that $r: J(n, k) \rightarrow J(n-1, k)$ is a deformation retraction.
(i) If $a \in J(n-1, k)$ then $r(a)=a$ because $a_{1} \leq n-1, a_{2} \leq n-2, \ldots, a_{k} \leq n-k$, which implies $a_{i}^{\prime}=a_{i}$.
(ii) If $a \sim b$ in $J(n, k)$ then $r(a) \sim r(b)$ or $r(a)=r(b)$ because sequences $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$ have $k-1$ common elements, whence it follows that a^{\prime} and b^{\prime} have at least $k-1$ common elements.
(iii) If $a \in J(n, k) \backslash J(n-1, k)$ then $r(a) \sim a$. In this case $a_{1}=n$. Assume $a_{2} \leq n-2$. Then $a_{3} \leq n-3, \ldots, a_{k} \leq n-k$, which implies

$$
a_{1}^{\prime}=n-1, a_{2}^{\prime}=a_{2}, \ldots, a_{k}^{\prime}=a_{k}
$$

that is, $r(a)=(n-1) a_{2} \ldots a_{k}$ and $r(a) \sim a$. The case $a_{2}=n-1$ is a bit more involved.

$10 C$-homotopy of loops

For any digraph G and a vertex $*$ of G, denote by G^{*} a based digraph.
Definition. A loop on G^{*} is a digraph map $\varphi: I_{n} \rightarrow G$ such that $\varphi(0)=\varphi(n)=*$.
Here I_{n} is any line digraph with any $n \geq 0$.
Definition. Consider in G^{*} two loops $\varphi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$. An one-step direct C-homotopy from φ to ψ is a digraph map $h: I_{n} \rightarrow I_{m}$ such that
(a) $h(0)=0, \quad h(n)=m$ and $h(i) \leq h(j)$ whenever $i \leq j$;
(b) $\varphi(i) \equiv \psi(h(i))$ for all $i \in I_{n}$.

If in (b) holds $\varphi(i) \leftrightarrows \psi(h(i))$ for all $i \in I_{n}$ then h is called an one-step inverse C homotopy.
We denote an one-step direct C-homotopy with $\varphi \xrightarrow{C} \psi$ and the one-step inverse C homotopy with $\varphi \stackrel{C}{\leftarrow} \psi$.

Example. On the next diagram we have $\varphi \xrightarrow{C} \psi$.

Condition (b) means that φ and ψ provide a digraph map from the digraph on the left panel to G.

Definition. We call two loops φ, ψ-homotopic and write $\varphi \stackrel{C}{\simeq} \psi$ if there exists a finite sequence $\left\{\varphi_{k}\right\}_{k=0}^{m}$ of loops in G^{*} such that $\varphi_{0}=\varphi, \varphi_{m}=\psi$ and, for any $k=0, \ldots, m-1$, holds $\varphi_{k} \stackrel{C}{\rightarrow} \varphi_{k+1}$ or $\varphi_{k} \stackrel{C}{\leftarrow} \varphi_{k+1}$.

Obviously, C-homotopy is an equivalence relation. A loop φ is called contractible if $\varphi \stackrel{C}{\simeq} e$ where $e: I_{0} \rightarrow G$ is a trivial loop.

The following theorem gives an efficient way of verifying if two loops are C-homotopic. Any loop $\varphi: I_{n} \rightarrow G$ defines a sequence $\theta_{\varphi}=\{\varphi(i)\}_{i=0}^{n}$ of vertices of G. We consider θ_{φ} as a word over the alphabet V.

Theorem 8 Two loops $\varphi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$ are C-homotopic if and only if θ_{ψ} can be obtained from θ_{φ} by a finite sequence of the following word transformations (or inverses to them):
(i) ...abc... \mapsto..ac... where a, b, c is a triangle $\underset{a}{\rightarrow} \bullet^{c}$ in G or any permutation of a triangle.
(ii) ...abc... \mapsto..adc... where a, b, c, d is a square $\uparrow{ }^{\wedge}{ }^{c}$ in G or any cyclic permutation of a square or an inverse cyclic permutation of a square.
(iii) ...abcd... $\mapsto \ldots a d \ldots$ where a, b, c, d is as in (ii).
(iv) ...aba... \rightarrow...a.. if $a \rightarrow b$ or $b \rightarrow a$.
(v) ...aa... $\mapsto \ldots a \ldots$

Examples

1. Consider a triangular loop $\varphi:(0 \rightarrow 1 \rightarrow 2 \leftarrow 3) \rightarrow G$

It is contractible because
$\theta_{\varphi}=a b c a \stackrel{(i)}{\sim} a c a \stackrel{(i v)}{\sim} a$.
2. Consider a square loop $\varphi:(0 \rightarrow 1 \rightarrow 2 \leftarrow 3 \leftarrow 4) \rightarrow G$

It is contractible because
$\theta_{\varphi}=a b c d a \stackrel{(i i i)}{\sim} a d a \stackrel{(i v)}{\sim} a$.

G
3. Consider the loops $\varphi: I_{5} \rightarrow G$ and $\psi: I_{3} \rightarrow G$ as on p.33. It is shown here how to transform θ_{φ} to θ_{ψ} by means of Theorem 8: using successively transformations $(i)^{-}$, (i), (ii) and (iii).

11 Fundamental group

The C-homotopy equivalence class of a loop $\varphi: I_{n} \rightarrow G$ will be denoted by $[\varphi]$. For any two loops $\varphi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$ define their concatenation $\varphi \vee \psi: I_{n+m} \rightarrow G$ by

$$
\varphi \vee \psi(i)= \begin{cases}\varphi(i), & 0 \leq i \leq n \\ \psi(i-n), & n \leq i \leq n+m\end{cases}
$$

Then the product $[\varphi] \cdot[\psi]:=[\varphi \vee \psi]$ of equivalence classes is then well-defined.

Theorem 9 (a) The set of all equivalence classes $[\varphi]$ with the above product is a group with the neutral element $[e]$. It is denoted by $\pi_{1}\left(G^{*}\right)$.
(b) Any based digraph map $f: X^{*} \rightarrow Y^{*}$ induces a group homomorphism

$$
\pi_{1}(f): \pi_{1}\left(X^{*}\right) \rightarrow \pi_{1}\left(Y^{*}\right), \quad\left(\pi_{1}(f)\right)[\phi]=[f \circ \phi] .
$$

(c) If $f, g: X^{*} \rightarrow Y^{*}$ are two digraph maps then $f \simeq g$ implies $\pi_{1}(f)=\pi_{1}(g)$.
(d) If X, Y are connected and $X \simeq Y$ then $\pi_{1}\left(X^{*}\right) \cong \pi_{1}\left(Y^{*}\right)$.

Theorem 10 For any based connected digraph G^{*} we have an isomorphism

$$
\pi_{1}\left(G^{*}\right) /\left[\pi_{1}\left(G^{*}\right), \pi_{1}\left(G^{*}\right)\right] \cong H_{1}(G, \mathbb{Z}),
$$

where $\left[\pi_{1}\left(G^{*}\right), \pi_{1}\left(G^{*}\right)\right]$ is a commutator subgroup.

12 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle $A B C$ on the plane \mathbb{R}^{2} and its triangulation T. Assume that the set of vertices of T is colored in three colors $1,2,3$ so that:

- the vertex A in colored in $1, B$ - in $2, C$ - in 3 ;
- each vertex on the side $A B$ is colored in 1 or 2 , on the side $A C$ - in 1 or 3 , on the side $B C$ - in 2 or 3 .

Lemma of Sperner. Under the above conditions, there exists in T a 3-color triangle, that is, a triangle, whose vertices are colored with three different colors.

Let us first modify the triangulation T so that there are no vertices on the sides $A B, A C, B C$ except for A, B, C. If $X \in A B$ then move X a bit inside of $A B C$. A new triangle $X Y Z$ arises, where Y, Z are former neighbors of X on $A B$. However, since X, Y, Z are colored in two colors, no 3 -color triangle emerges after that move. By induction, we remove all the vertices from all sides of $A B C$.

Consider the triangulation T as a graph and make it into a digraph G as follows. If a, b are two vertices on T and $a \sim b$ then choose direction between a, b using the colors of a, b and the following rule:

$$
\begin{array}{ll}
1 \rightarrow 2, & 2 \rightarrow 3, \\
1 \leftrightarrows 1 \rightarrow 1 \\
1 \leftrightarrows 1, & 2 \leftrightarrows 2, \\
\leftrightarrows & 3
\end{array}
$$

Denote by S the following colored digraph to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G.

Consider a 3-loop φ on G^{*} (with $*=A$) with the word

$$
\theta_{\varphi}=A B C A
$$

For the loop $f \circ \varphi$ on S we have $\theta_{f \circ \varphi}=1231$. This loop is not contractible because none of the transformations of Theorem 8 can be applied to the word 1231. By Theorem $9(b)$, the loop φ is also not contractible and, hence, $\pi_{1}\left(G^{*}\right) \neq\{0\}$.

Assume now that there is no 3 -color triangle in T. Then each triangle from T looks in G like

In particular, each of them contains a triangle in the sense of Theorem 8. Using the partition of G into the triangles and transformations (ii) and (iv) of Theorem 8, we contract any loop on G to the empty word, which contradicts to $\pi_{1}(G) \neq\{0\}$.

