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1 Paths in a finite set

Let V' be a finite set. For any p > 0, an elementary p-path is any sequence iy, ..., %, of
p + 1 vertices of V' that will be denoted by ig...7, or by e;,.;,. A p-path over a field K is
any formal K-linear combinations of elementary p-paths, that is, any p-path has a form

u = Z uioil"'ipeioil...ip7 Where 01 ip c K
10,01,..,5pEV
Denote by A, = A, (V) the K-linear space of all p-paths. For example,
Ao = span{e;: i€V}
Ar = spanfe;; :i,j €V}
Ay = span{e : 4,5,k € V}

Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_; by

p
361‘0...11, = Z (_l)q Cio..ig..ip’

q=0

where ~ means omission of the index. For p = 0 set de; = 0.



For example,
361-]- = €j — €; and 8eijk = ij — €k -+ eij-

We claim that 0% = 0. Indeed, for any p > 2 we have

2
d€i.i, = Z(_l)qaeio...fq...ip
q=0
P q—1 P
~1
= ) (1) (Z(—l)reio...a...g...¢p+ > (=1 €0AA>
q=0 r=0 r=q+1
+ +
= D, EWTe e e = D T 2 oe
0<r<q<p 0<q<r<p

After switching ¢ and r in the last sum we see that the two sums cancel out, whence
8262»0_,_% — 0. This implies 9?u = 0 for all u € A,.

Hence, we obtain a chain complex A, (V):

OHA0£A1<—... — A1 &= A, — o



Definition. An elementary p-path e;,.;, is called reqular if iy # x4y forallk =0,...,p—1,
and irregular otherwise.

Let I, be the subspace of A, spanned by irregular e;, ;. We claim that 0I, C I,_;.
Indeed, if e;,. ;, is irregular then iy = i;4; for some k. We have

0€i.ip = €ir.ip — Cigig.ip T -

k k+1
=1 gt s iy 1= 1) " €ig...i%_11kik42- ip (1)

=000 i (_1)p eiOn-?:p—l 3

By iy = iry1 the two terms in the middle line of (1) cancel out, whereas all other terms
are non-regular, whence 0de;,. ;, € I,_1.

Hence, 0 is well-defined on the quotient spaces R, := A,/I,, and we obtain the chain
complex R, (V):

) ) ] ) )
0 « Rop « Ri « ... <« Rp.1 <« R, «—...

By setting all irregular p-paths to be equal to 0, we can identify R, with the subspace of
A, spanned by all regular paths. For example, if ¢ # j then e;;; € Ro and

662’]’71 = eji — € + 67;3‘ = eji + eij

because e; = 0.



2 Paths in a digraph

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V of vertices and a
set £ C {V x V \ diag} of (directed) edges. If (i,j) € E then we write i — j.

Definition. Let G = (V, E) be a digraph. An elementary p-path iy...i, on V is called
allowed if iy, — 1341 for any k =0, ...,p — 1, and non-allowed otherwise.

Let A, = A, (G) be K-linear space spanned by allowed elementary p-paths:
A, = span {67:0...z'p D ig...0p 18 allowed} .

The elements of A, are called allowed p-paths. Since any allowed path is regular, we have
A, CR,.

We would like to build a chain complex based on subspaces A, of R,. However, the spaces
A, are in general not invariant for J. For example, in the digraph

a b c
o — 0 — 0

we have ey € As but Oegpe = €pe — € + €ap & A1 because e, is not allowed.



Consider the following subspace of A,
Q,=0,(G) ={ueA,:0uec A, 1}|

We claim that 0§, C Q,_1. Indeed, v € Q, implies Ju € A,_; and 0(0u) =0 € A,_o,
whence Ju € Q,_;.

Definition. The elements of €1, are called J-invariant p-paths or currents.

Hence, we obtain a chain complex €2, = €, (G) :

0 0

0 — 0 £ 0 & ... & @ 9 0

p—1 P

By construction we have 2y = Ay and )y = A;, while in general 2, C A,.

Definition. Path homologies of G are defined as the homologies of the chain complex
Q. (G):
H,(G,K) = H, (G) := H, (2, (G)) = ker 8|Qp/1m8|g

Betti numbers: 8, (G) := dim H), (G). The Euler characteristic:

p+1°

= (-1)"8,(G) =) (1)’ dimQ, (G).



3 Examples of 0-invariant paths

An 1-path e, is O-invariant if and only if it is allowed, that is, a — b.

A triangle is a sequence of three vertices a, b, c <
such that a - b — ¢, a — ¢

A triangle determines a 2-path eq,. € {29 because

Cabe € Ao and 0Oegp. = €pe — €qe + €ap € A;.

A snake of length p > 2 is a sequence of : i+2
p + 1 vertices, say 0,1, ..., p, such that
t—i+1foralle=0,...,p—1and
t—1+2foralli=0,...,p—2.

i-1 i+1 i+3

Then a p-path u = e, is O-invariant, because v € A,, and

p
Ou = (1) eo.(e-1)atg+1)..p € Ap1, since g—1—g+1.
q=0



A p-simplex is a sequence of p + 1 vertices, say, 0,1, ...,p such that i — j for all 7 < j.
Equivalently, a p-simplex is a directed clique. A p-simplex contains a snake so that the
p-path eg;., is O-invariant. Since

0ep12..p = €12..p — €02..p + .- + (—1)? €01...(p—1)
the boundary of p-simplex is an alternating sum of (p — 1)-simplexes.
An 1-simplex is any arrow a — b.
A 2-simplex is a triangle as above.

A 3-simplex is shown here:




A square is a sequence of four vertices a,b,b’, ¢
such that a = b, b — ¢, a — bV, bV — c.
A square determines a 2-path u := egpe — €qpe € (29
because u € As and
Ou = (€se — €ac + €ab) — (Ere — Cae + €apr)

= €ab + € — €aty — €yc € A1

A 3-cube is a sequence of 8 vertices, say,
0,1,2,3,4,5,6,7, connected by arrows as here.

A 3-cube determines a O-invariant 3-path

U = €237 — €0137 + €0157 — €0457 + €0467 — €0267

Indeed, u € A3 and

Ou = (ep13 — eo2s) + (e157 — e1s37) + (€237 — ea67)

A

b’l
a
6
7
A
4

Y

|

v

- (6046 - 6026) - (6457 - 6467) - (6015 - 6045) € As.
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An exotic cube is this subgraph containing
9 vertices and 15 edges. It is obtained from
3-cube by “splitting” the vertex 4 into 4, 4’
and adding the edges 4 — 7, 4 — 7.

The exotic cube determines the following
O-invariant 3-path:

U = €p237 — €0137 T €0157 — €0457 T €04/67 — €0267-
Indeed, we have u € A3z and

Ou = ea37 — €3y + €oar — €023
—e137 + €37 — €o17 T €013
+€157 — €057 + €017 — €015
—€457 + €057 — €047 T €045
+eye7 — €os7 T €oa7 — €06

—eg67 + €7 — €027 + €026 € As.



4 Examples of digraphs and spaces (},

Consider the following digraph with 6 vertices and 8 edges:

QO — -’40 = Span {607 €1, €2, €3, €4, 65} )

5

0 = Ay = span {eg1, €o2, €13, €14, €23, €24, €53, €54}
Hence, dim €2y = 6 and dim 2, = 8§

3 4
Ay = span {eg13, €014, €023, €024} , dim Ay =4
However, none of these 2-paths is d-invariant. A ?
()5 is spanned by two squares:
0y = span {eg13 — €023, €o14 — €24}, dim €y = 2. 1 2
There are no allowed p-paths for any p > 3. 0

Hence, 2, = A, = {0} for all p > 3.

One computes dim Hy = dim H; =1 and dim H, =0 for p > 2.
In fact, Hy = span {eg}, H; = span {e13 — e53 + €54 — €14} .

The Euler characteristic: y = dim Qg — dim 2; +dim Qs =6 — 8 + 2 = 0.
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Consider the following octahedral digraph with 6 vertices and 12 edges:

Qg = Ag = span {eg, €1, €2, €3, €4, €5} .

0 =A = span{em, €02, €04, €05, €13, €14, €15, €23, €24, €34, €52, e53}-

Hence, dim )y =6, dim Q; = 12.

Ay = span {6013,60147 €015, €023, €024, €052, €053 €134, €152, €153, €234, €523, €524, €534 ) -

4

Space (25 is spanned by 8 triangles:

€014, €015, €024, €052, €134, €153, €234, €523
and 3 squares:

€013 — €023, €013 — €053, €524 — €534.
Hence, dim €2y =8 + 3 = 11.

Space (13 is spanned by five O-invariant 3-paths:
€0153, €0523;, €5234, €0134 — €0234, €0534 — €0134 — €0524-

Hence, dim €23 = 5.

24 = span {egps234}. Hence, dim Qy = 1.
There is only 1 allowed 5-path egis234 but it is not O-invariant. Hence, §2, = {0} Vp > 5.

11



The Euler characteristic is
x =dimQy —dim 2y + dim 2y —dim Q3 +dimQy =6 —-12+11 -5+ 1= 1.

One can show that dim Hy = 1 and dim A, = 0 for all p > 1, which confirms y = 1.

Here is a verification of the 0-invariance of five 3-paths and the 4-path:

Oepiss = €153 — €053 1 €013 — €015 € Ao
860523 = €523 — €023 + €053 — €p52 € -’42
865234 = €934 — €534 T €524 — €523 € -/42

0 (60134 - 60234) = €134 — €034 T €014 — €013
—€234 1+ €034 — €024 1+ €023
= €134 + €014 — €013 — €234 — €024 T+ €23 € Ap
0 (o534 — €0134 — €0524) = €534 — €034 T+ €054 — €053
—€134 1 €034 — €014 1+ €013
—e€524 + €024 — €054 T €052
= €534 — €053 — €134 — €014 + €013 — €524 + €024 + €052 € Ao

Oepsa3a = €5234 — €0234 + €0534 — €0524 + €0523 € A3

12



5 Cross product of paths

Given two finite sets X, Y, consider their product
Z=XxY={(a,b):ae XandbeY}.

Let z = 2921...2, be a regular elementary r-path on Z, where z = (ax, bx) with ax € X
and b, € Y. We say that z is stair-like if, for any k£ = 1,...,r, either a1 = ay or
br_1 = by is satisfied. That is, any couple z,_1z. of consecutive vertices is either vertical
(when ay_; = ay) or horizontal (when by_1 = by).

Given a stair-like path z on Z, define its projection Y
onto X as an elementary path x on X obtained from

z by removing Y-components in all the vertices of z o
and then by collapsing in the resulting sequence any Y
subsequence of repeated vertices to one vertex. -
In the same way define projection of z onto Y and
denote it by y.

Projections x = zy...z, and y = yp...y, are regular (o) ¥ %
elementary paths, and p+q = .

pathz

13



Every vertex (z;,y;) of path z can be represented
as a point (4, j) of Z? so that path z is represented
by a staircase S (z) in Z? connecting points (0, 0)
and (p, q).

Define the elevation L (z) of z as the number of
cells in Z2 below the staircase S (z).

(0.9)

P9

S(z)

(i

(0,0

P.0)

For given elementary regular paths z on X and y on Y, denote by X, the set of all
stair-like paths z on Z whose projections on X and Y are respectively z and y.

Definition. Define the cross product of the paths e, and e, as a path e, X e, on Z as

follows:

ey X €y = Z (—1)

ZE€EXg y

L@ e

z

(2)

Then extend the cross product by linearity to all paths u € R, (X) and v € R, (Y) so

that u x v € R, (Z).

14



Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by
integers 1,2, 3, etc so that the vertices on Z can be denoted as al, b2 etc as the fields on
the chessboard. Then we have

a3 b3
® c3
€q X €12 = €41a2, €ab X €1 = €41b1
€ab X €12 = €41b162 — €ala2b2
b2

a? c2
€ab X €123 = €41b152b3 — €al1a2b2b3 T €ala2a3b3
€abe X €123 = €qlblclc2e3 — €alblb2c2¢3 T €alb162b3¢3
+€41a2b2¢2¢3 — €a1a262b3c3 T €ala2a3b3c3

al bl cl

Proposition 1 Ifu e R, (X) and v € R, (Y) where p,q > 0, then

J(uxv)=(0u) x v+ (—1)Pux (dv).

15



6 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given
two digraphs X and Y, define there Cartesian product as a digraph Z = XY as follows:

e the set of vertices of Z is X x Y, that is, the vertices of Z are the couples (a,b)
where a € X and b € Y;

e the edges in Z are of two types: (a,b) — (a’,b) where a — d’ (a horizontal edge)
and (a,b) — (a,b’) where b — V' (a vertical edge):

(a,b’) (a’,b")
[ — [ J

be .
7 7 7
(a,b) (a’,b)
be o — °
Y /x5 ... e — e

It follows that any allowed elementary path in 7 is stair-like.

16



Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.

It follows from definition (2) of the cross product that
ueA,(X)andve A, (Y) = uxveA,,(Z2). (3)

Furthermore, the following is true.
Proposition 2 Ifu e Q,(X) andv € Q,(Y) then u x v € Q,4,(Z).

Proof. u x v is allowed by (3). Since du and dv are allowed, by (3) also du x v and u X Qv
are allowed. By the product rule, 0 (u x v) is also allowed. Hence, u x v € ,,,(Z). =

Theorem 3 (Main Theorem) Then any O-invariant path w on Z = XOY admits a
representation in the form
k
w = Z U; X U;
i=1

for some finite k, where u; and v; are 0-invariant paths on X and Y, respectively.

17



Theorem 4 (Kiinneth formula) Let X,Y be two finite digraphs and Z = XOY. Then
we have the following isomorphism of the chain complexes:

0, (2) =2 Q. (X) @ Q. (Y). (4)

It is given by the map u @ v — u X v with u € Q, (X) and v € Q, (V).

A more detailed version of (4) is the following: for any r > 0,

L2 P ( BEX)eY)). (5)

{p,q>0:p+q=r}

By an abstract theorem of Kiinneth, we obtain from (4)
H,(Z) = H,(X) ® H, (Y),

that is, for any r > 0,

H.(2)2 @ (HX)oH/{Y). (6)

{p,q>0:p+q=r}

Consequently, 3, (Z) = Z{p,q20!p+q:7“} B, (X)B,(Y).

18



Example. Consider the digraph Z = XY where X is an interval and Y is a square:

2@ — .3

X="—e andY = 1 T

0. — o

b2 >—n b3 6 >—e’

Z has 8 vertices (7, j) where i = a, b,
7 =20,1,2,3. Let us enumerate them: » —s , —
(a,i) =7 and (b,7) =i + 4. A ‘ ‘

We see that Z is a 3-cube: ) —p 51 4 —s

a0 o al 0 |

We have:

 (X) =span{ewn}, Q,(X)=0forp>2,
01 (Y) = span {eg1, €13, €23, €02} , a2 (Y) = span{epis — ego3}, Q(Y) =0 for ¢ > 3.

By (5) we obtain

Qg (Z) = Ql (X) 029 QQ (Y) = Span {eab X €013 — €ab X 6023} .

19



. a3 b3 3 7
€ab X €013 = €q0b0b1b3 — €a0alblb3 T €alala3b3

= €0457 — €0157 T €0137

and al bl 1 5

€ab X €023 = €0467 — €0267 T+ €0237
a b0 0

Hence, we obtain

Q3 (Z) = span {eoas7 — €o157 + €0137 — €oa67 + €0267 — €0237}

that is the O-invariant 3-path associated with 3-cube.

Define n-cube as follows:
n-cube = II0]...001,
————

n

where [ = “e — o% . Similarly one shows that ,, (n- cube) is spanned by a single n-path
that is an alternating sum of n! elementary n-paths connecting the vertices 0 and 2™ — 1.
This corresponds to partitioning of a solid n-dim cube into n! simplexes.

20



Example. Consider the digraph Z = XUY where

3 b > 73
X = -0\ ! 2 ~1 s
‘g «+— @F
A A
a2 > a3
A A
Z — 20) < Bl
2@ — .3
Y . T T 0 - cl
0. «— .1 <
a0 h al

One can show that

Hy (X) = span{eq + €p + €}, H,(X)=0forp>2
H,(Y) = span{—ejo+ep2+ea3s—es}, H,(Y)=0forall ¢ >2

By (6) we obtain Hy (Z) = Hy (X)® H; (Y)+ H, (X) ® Hy (V) 2 K2,
Hy (Z) = H, (X)® Hy (Y) = span {(ea + e + €ca) X (—e10 + €02 + €23 — €13) } = K,

and H, (Z) =0 for all r > 2.
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7 Homotopy of digraphs

For vertices a,b of a digraph, write a=b if either a — b or a = b. Let X and Y be two
digraphs.

Definition. A mapping f: X — Y called a digraph map (or morphism) if
a—bonX = f(a) =f(b)onY.
Any digraph map f : X — Y induces a linear map

for Ap(X) — A(Y), f. (eio...i,,) = €f(ip)...f (ip)"

It is easy to check that f.0 = 0f., which implies that f, provides a morphism of chain
complexes f, : 2,(X) — Q,(Y) and, consequently, a homomorphism of homology groups
fot Hy(X) — Hy(Y).

Definition. For any n > 1 define a line digraph I, as any digraph with n 4+ 1 vertices

{0,1,...,n} and such that, for any ¢ = 0, ...,n — 1 holds either i — (i4+1) or (i +1) — ¢,
and there is no other arrow.

D



Definition. Let X,Y be two digraphs. Two digraph maps f,g: X — Y are called
homotopic if there exists a line digraph I,, and a digraph map ®: X[/, — Y such that

(I)|X><{o} = f and (I)|X><{n} = 4.

In this case we write f ~ ¢g. The map P is called a homotopy between f and g.

Definition. Two digraphs X and Y are called homotopy equivalent if there exist digraph
maps
f:X=Y g¢g:Y—-X (7)

such that
Jog~idy, gof~idx. (8)

In this case we write X ~ Y.

Theorem 5 (i) Let f,g: X — Y be two digraph maps. If f ~ g then they induce the
wdentical maps of homology groups:

fo it Hy(X)—H,(Y) and ¢.:H,(X)— H,(Y).
(12) If the digraphs X and Y are homotopy equivalent, then H, (X) = H, (Y).
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In particular, if a digraph X is contractible, that is, if X ~ {x}, then all the homology
groups of X are trivial except for Hy.

We say that a digraph Y is a subgraph of X if the set of vertices of Y is a subset of that

of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y.

Definition. Let X be a digraph and Y be its subgraph. A retraction of X onto Y is a
digraph map r : X — Y such that r|y = idy.

Theorem 6 Let r: X — Y be a retraction of a digraph X onto a subgraph Y. Assume
that
either x =r (z) for allz € X or r(z) =z forallx € X. (9)

Then X ~Y and, consequently, H, (X) = H, (Y).
A retraction that satisfies (9) is called a deformation retraction.

Example. Let us show that n-cube is contractible. Indeed, a natural projection of n-
cube onto (n — 1)-cube is a deformation retraction. Hence, by induction we obtain n-
cube >~ {x}.

24



Example. Consider the digraph X as here.

4

Let Y be its subgraph with the vertex set {1,3,4}. Consider a retraction r : X — Y
given by r (0) = 1, r(2) = 3. It is easy to see that r is a deformation retraction, whence
X ~ Y. Then we obtain

Hy (X)= H(Y)=span{ejs+ e +en} =K

and H, (X) = {0} for p > 2.
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8 Summary

Fix a finite set V' and a field K. For any p > 0, set R, = spang {Gz’o...ip L 10...0p 1S regular} :
where “regular” means that i, # i1, for all k. There is a boundary operator 0 : R, —
R,—1 such that 9 = 0.

Let G = (V, E) be a digraph. Set A, = spang {e;,.i, : ..., is allowed} C R,, where
“allowed” means that i, — 15, for all £.

Spaces of O-invariant paths: Q, ={u e A, : du e A, 1}.

Chain complex Q. (G): 0 «— Qq 2o &£ .. L o, L &,

Path homology: H, (G) = kerd|q,/Imdlq,,,.
Theorem 4 Q. (XOY)=ZQ, (X))@ A% (Y) and H,(XOY) = H,(X)® H, (Y)
V=S

A mapping f: X — Y is called a digraph map if a« — b in X implies f (a) =f (b) in Y.

We have also defined homotopy equivalence X ~ Y of two digraphs.
Theorem 5 [f X ~Y then H,(X)= H,.(Y).
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Theorem 6 IfY is a subgraph of X then X ~Y provided there exists a deformation
retraction v : X — Y, that is:

(1) rly =id;
(ii) 7 is a digraph map;
(ii1) either x=r (x) for allz € X or r(z)=x for allx € X.
4 4

For example, consider digraphs:
The left hand side digraph is
contractible as there is a sequence
of two deformation retractions

3 3
reducing it to {x}:
7’1(4):7"1(5):3 1 1
7"2(1) :7“2(2) =3
’ 2 ' 2

The right hand side digraph differs
only by one arrow 3 — 1, but it is 5 5
not contractible because Hy # {0}

Hy = span {e104 + €234 + €314 — €125 — €235 — €315}
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9 Undirected graphs

If G = (V, F) is an undirected graph then it can be turned into a digraph by allowing
both arrows x — y and y — x whenever x ~ y. All the above results can be reformulated
for undirected graphs in an obvious way.

Example. Fix integers 1 < k < n and a set S of n elements. The Johnson graph J (n, k)
is the graph whose vertices are k-subsets of S, and the edges are defined as follows: two
k-subsets are connected by an edge if their intersection contains k£ — 1 elements of S.

Let us describe J (4, 2). Taking S = {1, 2, 3,4}, we see that the vertices of J (4, 2) are the
pairs 43, 42, 41, 32, 31, 31. The graph J (4, 2) has twelve edges:

43

42 32

41 31

21
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Johnson graph

Johnson graphs are a special class of undirected graphs
defined from systems of sets. The vertices of the Johnson graph
J(n, k) are the k-element subsets of an n-element set; two
vertices are adjacent when the intersection of the two vertices
(subsets) contains (k — 1)-elements.["! Both Johnson graphs
and the closely related Johnson scheme are named after Selmer
M. Johnson.

Johnson graph

Contents
= 1 Special cases
= 2 Graph-theoretic properties
= 3 Automorphism group
= 4 Intersection array
= 5 Eigenvalues and Eigenvectors
» 6 Relation to Johnson scheme The Johnson graph J(5,2)
= 7 Open Problems Named after Selmer M. Johnson
= 8 References .
» 9 External links Vertices (Z)
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Proposition 7 For alln > k > 1 we have J (n, k) ~ J(n — 1,k).
Consequently, J (n, k) ~ J(n—1,k) ~ ... =~ J (k, k) = {*}, and all the homology groups
of J (n, k) are trivial.

For the proof, assume that J (n, k) is constructed over the set S = {1,...,n — 1,n}, so that
graph J (n — 1,k) is a subgraph of J(n,k). Then there exists a deformation retraction
r:J(n,k)— J(n—1,k). Here is a deformation retraction r : J (4,2) — J (3, 2):

42 > 32

41 — 31

21
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In general, we construct r as follows. Any vertex a of J (n, k) is represented by a monotone
decreasing sequence a = ajas...ay of integers from {1,...n}: n>a; > ay > ... > ap > 1.
Define r (a) = a’ = a...a}, where

a; =min (ay,n — 1), ay=min(ag,n —2), ... a, = min (ag,n — k).
Then n —1>a} > a), > ... >a), > 1, so that a’ is a vertex of J (n — 1, k). We claim that
r:J(n,k)— J(n—1k)is a deformation retraction.

(i) If a € J(n—1,k) then r (a) = a because a1 <n—1, as <n—2,.., ar < n—k, which
implies a; = a;.

(i7) If @ ~ b in J (n, k) then r(a) ~ r(b) or r (a) = r (b) because sequences a;...a; and
by...b;, have k — 1 common elements, whence it follows that a’ and & have at least k — 1
common elements.

(¢ii) If a € J (n, k) \ J (n—1,k) then r (a) ~ a. In this case a; = n. Assume as < n — 2.
Then a3 < n —3,....,ar < n — k, which implies

/ / /
a; =n—1, ay = aq, ..., a; = ag

that is, 7 (a) = (n — 1) as...ax and r (a) ~ a. The case a3 = n — 1 is a bit more involved.
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10 (C-homotopy of loops

For any digraph G and a vertex * of G, denote by G* a based digraph.

Definition. A loop on G* is a digraph map ¢ : I, — G such that ¢ (0) = ¢ (n) = *.
Here [,, is any line digraph with any n > 0.

Definition. Consider in G* two loops ¢: I,, — G and : I, — G. An one-step direct
C-homotopy from ¢ to v is a digraph map h : I, — I, such that

(@) h(0)=0, h(n)=mand h(i) <h(j) whenever i < j;

(b) ¢ (i) = (h(i)) for all i € I,,.

If in (b) holds ¢ (i) = (h (i) for all ¢ € I, then h is called an one-step inverse C-
homotopy.

We denote an one-step direct C-homotopy with ¢ S Y and the one-step inverse C-

homotopy with ¢ £ Y.
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Example. On the next diagram we have ¢ A Y.

*=() 1 2 3

L, ——a—>e i

1, ® >@< d) >
*=() 1 2 3 4 5

Condition (b) means that ¢ and 1 provide a digraph map from the digraph on the left
panel to G.

Definition. We call two loops ¢, C-homotopic and write ¢ ~ 1) if there exists a finite
sequence {p},—, of loops in G* such that ¢, = ¢, ¢,, =¥ and, for any k =0,...,m — 1,

C C
holds ¢}, — @11 O VY, < V-

C
Obviously, C-homotopy is an equivalence relation. A loop ¢ is called contractible if ¢ ~ e
where e : [y — G is a trivial loop.
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The following theorem gives an efficient way of verifying if two loops are C-homotopic.

Any loop ¢: I,, — G defines a sequence 0, = {¢ (i) };_, of vertices of G. We consider 6,
as a word over the alphabet V.

Theorem 8 Two loops ¢ : I,, — G and ¥ : I, — G are C-homotopic if and only if 0,
can be obtained from 0, by a finite sequence of the following word transformations (or
inverses to them):

b

() ...abc... — ..ac... where a,b,c is a triangle " 20N . in G or any permutation of a
e — O
triangle.

4@ — @,

(%) ...abc... — ..adc... where a,b,c,d is a square | T wn G or any cyclic permu-
a® — @

tation of a square or an inverse cyclic permutation of a square.

(i4i) ...abcd... — ...ad... where a,b,c,d is as in (ii).
(iv) ...aba... — ...a... if a — b or b — a.

(v) ...aa... — ...a...
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Examples

1. Consider a triangular loop
p:(0->1—-52«3)—>G

It is contractible because

0, = abca @ aca (;@ a.

2. Consider a square loop
p:0—-1-2-—3+—4) -G

It is contractible because

0, = abcda (i) ada () a.
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3. Consider the loops ¢ : Is — G and ¢ : I3 — G as on p.33. It is shown here how
to transform 6, to 6, by means of Theorem 8: using successively transformations (7),
(), (27) and (d77) .
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11 Fundamental group

The C-homotopy equivalence class of a loop ¢ : I,, — G will be denoted by [¢]. For any
two loops ¢ : I, — G and v : I,, — G define their concatenation ¢ V¥ : I,,1,, — G by

(1), 0<i<n
Y(i—n), n<i<n+m.

o V(i) = {
Then the product [¢] - [¢)] := [¢ V ¥] of equivalence classes is then well-defined.

Theorem 9 (a) The set of all equivalence classes [p] with the above product is a group
with the neutral element [e] . It is denoted by m (G*).

(b) Any based digraph map f: X* — Y™ induces a group homomorphism
T (f) s T (X)) = m(Y7),  (m(f)) @] = [f o 4.
(c) If f,g: X* — Y™ are two digraph maps then f ~ g implies 71 (f) = 71 (g) .

(d) If X,Y are connected and X ~Y then m (X*) = m (V™).
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Theorem 10 For any based connected digraph G* we have an isomorphism
m(G*) /[m(G7), m(G")] = Hi(G, Z),

where [m1(G*), 71(G*)] is a commutator subgroup.
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12 Application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the
classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle ABC on the plane R? and its triangulation 7. Assume that the set
of vertices of T' is colored in three colors 1, 2,3 so that:

e the vertex A in colored in 1, B —in 2, C' — in 3;

e cach vertex on the side AB is colored in 1 or 2, on the side AC —in 1 or 3, on the side
BC —in 2 or 3.

Lemma of Sperner. Under the above conditions,
there exists in T" a 3-color triangle, that is, a triangle,
whose vertices are colored with three different colors.
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Let us first modify the triangulation 7" so that there are no vertices on the sides AB, AC, BC
except for A, B,C. If X € AB then move X a bit inside of ABC. A new triangle XY Z
arises, where Y, Z are former neighbors of X on AB. However, since X,Y, Z are colored

in two colors, no 3-color triangle emerges after that move. By induction, we remove all
the vertices from all sides of ABC.

Consider the triangulation 7" as a graph and make it into a digraph G as follows. If a,b
are two vertices on 7" and a ~ b then choose direction between a, b using the colors of a, b
and the following rule:
1—2, 2—-3, 3—1
151, 252,353
1

Denote by S the following colored digraph N and define a mapping f : G — S

3.<—.2

to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G.
Consider a 3-loop ¢ on G* (with * = A) with the word
0, = ABCA.

For the loop f oy on S we have 0., = 1231. This loop is not contractible because none
of the transformations of Theorem 8 can be applied to the word 1231. By Theorem 9(b),
the loop ¢ is also not contractible and, hence, m (G*) # {0} .
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Assume now that there is no 3-color triangle in 7". Then each triangle from 7" looks in G
like

AN or -0 or PN
o S o e S o o S o

In particular, each of them contains a triangle in the sense of Theorem 8. Using the
partition of G into the triangles and transformations (i) and (iv) of Theorem 8, we
contract any loop on G to the empty word, which contradicts to m; (G) # {0}.
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