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1 Path homology of digraphs

1.1 Paths in a finite set

Let V be a finite set. For any p ≥ 0, an elementary p-path is any sequence i0, ..., ip of
p + 1 vertices of V. Fix a field K and denote by Λp = Λp (V,K) the K-linear space that
consists of all formal K-linear combinations of elementary p-paths in V . Any element of
Λp is called a p-path.

An elementary p-path i0, ..., ip as an element of Λp will be denoted by ei0...ip . For example,
we have

Λ0 = 〈ei : i ∈ V 〉, Λ1 = 〈eij : i, j ∈ V 〉, Λ2 = 〈eijk : i, j, k ∈ V 〉

Any p-path u can be written in a form u =
∑

i0,i1,...,ip∈V ui0i1...ip ei0i1...ip , where ui0i1...ip ∈ K.

Definition. Define for any p ≥ 1 a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =

p∑

q=0

(−1)q ei0...îq ...ip
,

where ̂ means omission of the index. For p = 0 set ∂ei = 0.
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For example, ∂eij = ej − ei and ∂eijk = ejk − eik + eij .

Lemma 1.1 ∂2 = 0.

Proof. Indeed, for any p ≥ 2 we have

∂2ei0...ip =

p∑

q=0

(−1)q ∂ei0...îq ...ip
(1.1)

=

p∑

q=0

(−1)q

(
q−1∑

r=0

(−1)r ei0...îr...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip

)

=
∑

0≤r<q≤p

(−1)q+r ei0...îr ...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence
∂2ei0...ip = 0. This implies ∂2u = 0 for all u ∈ Λp.

Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ0
∂
← Λ1

∂
← . . .

∂
← Λp−1

∂
← Λp

∂
← . . .

9



Definition. An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all k = 0, ..., p−1,
and irregular otherwise.

Let Ip be the subspace of Λp spanned by irregular ei0...ip . We claim that ∂Ip ⊂ Ip−1.
Indeed, if ei0...ip is irregular then ik = ik+1 for some k. We have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+ (−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip (1.2)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (1.2) cancel out, whereas all other terms
are non-regular, whence ∂ei0...ip ∈ Ip−1.

Hence, ∂ is well-defined on the quotient spaces Rp := Λp/Ip, and we obtain the chain
complex R∗ (V ):

0 ← R0
∂
← R1

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . .

By setting all irregular p-paths to be equal to 0, we can identify Rp with the subspace of
Λp spanned by all regular paths. For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij

because eii = 0.
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1.2 Chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair G = (V,E) of a set V of vertices and a
set E ⊂ {V × V \ diag} of arrows (directed edges). If (i, j) ∈ E then we write i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path i0...ip on V is called
allowed if ik → ik+1 for any k = 0, ..., p − 1, and non-allowed otherwise.

Let Ap = Ap (G) be K-linear space spanned by allowed elementary p-paths:

Ap = 〈ei0...ip : i0...ip is allowed〉.

The elements of Ap are called allowed p-paths. Since any allowed path is regular, we have
Ap ⊂ Rp.

We would like to build a chain complex based on subspaces Ap of Rp. However, the spaces
Ap are in general not invariant for ∂. For example, in the digraph

a
• −→

b
• −→

c
•

we have eabc ∈ A2 but ∂eabc = ebc − eac + eab /∈ A1 because eac is not allowed.
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Consider the following subspace of Ap

Ωp ≡ Ωp (G) := {u ∈ Ap : ∂u ∈ Ap−1} .

We claim that ∂Ωp ⊂ Ωp−1. Indeed, u ∈ Ωp implies ∂u ∈ Ap−1 and ∂ (∂u) = 0 ∈ Ap−2,
whence ∂u ∈ Ωp−1.

Definition. The elements of Ωp are called ∂-invariant p-paths.

Hence, we obtain a chain complex Ω∗ = Ω∗ (G) :

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . .

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap.

Definition. Path homologies of G are defined as the homologies of the chain complex
Ω∗ (G):

Hp (G) = ker ∂|Ωp

/
Im ∂|Ωp+1 .

Betti numbers: βp (G) := dim Hp (G).

It is easy to show: β0 (G) = #of connected components of G.
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1.3 Examples of ∂-invariant paths

A triangle is a sequence of three vertices a, b, c
such that a→ b→ c, a→ c.
It determines 2-path eabc ∈ Ω2 because eabc ∈ A2

and ∂eabc = ebc − eac + eab ∈ A1.

A square is a sequence of four vertices a, b, b′, c
such that a→ b, b→ c, a→ b′, b′ → c.
It determines a 2-path u = eabc − eab′c ∈ Ω2 because u ∈ A2

and ∂u =
(
ebc − eac + eab

)
−
(
eb′c − eac + eab′

)

= eab + ebc − eab′ − eb′c ∈ A1

A p-simplex (or p-clique) is a sequence of p + 1 vertices,
say, 0, 1, ..., p, such that i→ j for all i < j. It determines
a p-path e01...p ∈ Ωp. Here is a 3-simplex:
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A 3-cube is a sequence of 8 vertices 0, 1, 2, 3, 4, 5, 6, 7,
connected by arrows as here.

A 3-cube determines a ∂-invariant 3-path
u = e0237 − e0137 + e0157 − e0457 + e0467 − e0267 ∈ Ω3

because u ∈ A3 and
∂u = (e013 − e023) + (e157 − e137) + (e237 − e267)
− (e046 − e026)− (e457 − e467)− (e015 − e045) ∈ A2

An exotic cube consists of 9 vertices connected by
arrows as here.

It determines a ∂-invariant 3-path

v = e0237 − e0137 + e0157 − e0457 + e0867 − e0267 ∈ Ω3

14



1.4 Examples of spaces Ωp and Hp

For a vector space A over K we write |A| = dimK A.

A triangle as a digraph:
Ω1 = 〈e01, e02, e12〉, Ω2 = 〈e012〉,
Ωp = {0} for p ≥ 3
ker ∂|Ω1 = 〈e01 − e02 + e12〉
but e01 − e02 + e12 = ∂e012

so that H1 = {0}.
Hp = {0} for p ≥ 2.

Hexagon with diagonals:
|Ω0| = 6, |Ω1| = 8
Ω2 is spanned by 2 squares:
Ω2 = 〈e013 − e023, e014 − e024〉,
Ωp = {0} for all p ≥ 3
H1 = 〈e13 − e53 + e54 − e14〉,
|H1| = 1, Hp = {0} for p ≥ 2.
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Octahedron: |Ω0| = 6, |Ω1| = 12
Space Ω2 is spanned by 8 triangles:
Ω2 = 〈e024, e034, e025, e035, e124, e134, e125, e135〉,
|Ω2| = 8, Ωp = {0} for all p ≥ 3
H2 = 〈e024 − e034 − e025 + e035 − e124 + e134 + e125 − e135〉
|H2| = 1, |Hp| = 0 for p = 1 and p ≥ 3

Octahedron with different orientation:
Ω2 = 〈e024, e025, e014, e015, e234, e235, e134, e135, e013 − e023〉
Ω3 = 〈e0234 − e0134, e0235 − e0135〉
|Ω2| = 9, |Ω3| = 2, Ωp = {0} for all p ≥ 4.
ker ∂|Ω2 = 〈u, v〉 where

u = e024 + e234 − e014 − e134 + (e013 − e023)
v = e025 + e235 − e015 − e135 + (e013 − e023)

but H2 = {0} because
u = ∂ (e0234 − e0134) and v = ∂ (e0235 − e0135)
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A 3-cube:

We have |Ω0| = 8, |Ω1| = 12.
Space Ω2 is spanned by 6 squares:

Ω2 = 〈e013 − e023, e015 − e045, e026 − e046,
e137 − e157, e237 − e267, e457 − e467〉

hence, |Ω2| = 6.

Space Ω3 is spanned by one 3-cube:

Ω3 = 〈e0237 − e0137 + e0157 − e0457 + e0467 − e0267〉

hence, |Ω3| = 1.

|Ωp| = 0 for all p ≥ 4 and |Hp| = 0 for all p ≥ 1.
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1.5 An example of computation of Ωp and Hp

Consider the following digraph with 4 vertices and 5 arrows (square with a diagonal):

Ω0 = A0 = 〈e0, e1, e2, e3〉, |Ω0| = 4,
Ω1 = A1 = 〈e01, e02, e13, e23, e30〉, |Ω1| = 5,
A2 = 〈e013, e023, e130, e230, e301, e302〉 |A2| = 6.

To find Ω2, let us first compute ∂|A2 modA1:

∂e013 = e13 − e03 + e01 = −e03 modA1

∂e023 = e23 − e03 + e02 = −e03 modA1

∂e130 = e30 − e10 + e13 = −e10 modA1

∂e230 = e30 − e20 + e23 = −e20 modA1

∂e301 = e01 − e31 + e30 = −e31 modA1

∂e302 = e02 − e32 + e30 = −e32 modA1

18



Hence,

matrix of ∂|A2 modA1 =











e013 e023 e130 e230 e301 e302

e03 −1 −1 0
e10 −1
e20 −1
e31 −1
e32 0 −1











:= D

Ω2 = ker ∂|A2 modA1 = nullspace D = 〈e013 − e023〉.

One can show that |Ωp| = 0 for all p ≥ 3 and, hence, |Hp| = 0 for all p ≥ 3.

Let us compute H1 and H2. We have for the basis in Ω1:

∂e01 = −e0 + e1

∂e02 = −e0 + e2

∂e13 = −e1 + e3

∂e23 = −e2 + e3

∂e30 = e0 − e3
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Hence,

matrix of ∂|Ω1 =









e01 e02 e13 e23 e30

e0 −1 −1 0 0 1
e1 1 0 −1 0 0
e2 0 1 0 −1 0
e3 0 0 1 1 −1









=: D

and
ker ∂|Ω1 = nullspace D = 〈e01 + e13 − e02 − e23, e01 + e13 + e30〉.

Similarly, for the basis in Ω2 we have

∂ (e013 − e023) = (e13 − e03 + e01)− (e23 − e03 + e02) = e01 + e13 − e02 − e23

whence
Im ∂|Ω2 = 〈e01 + e13 − e02 − e23〉 and ker ∂|Ω2 = {0} .

It follows that H2 = {0} and

H1 = ker ∂|Ω1/ Im ∂|Ω2 = 〈e01 + e13 + e30〉.

As we have seen, computation of the spaces Ωp (G) and Hp (G) amounts to computing
ranks and null-spaces of large matrices. We currently use for numerical computation of
Hp (G,F2) a C++ program written by Chao Chen in 2012.
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1.6 Structure of Ωp

As we know, Ω0 = 〈ei〉 consists of all vertices and Ω1 = {eij : i→ j} consists of all arrows.

Proposition 1.2 (a) The space Ω2 is spanned by all triangles eabc, squares eabc − eab′c

and double arrows eaba.

(b) |Ω2| = |A2| − s where s is the number of semi-arrows, that is, pairs of vertices (x, y)
such that x 6→ y but x→ z → y for some vertex z.

The triangles and double arrows are always linearly independent but the squares can be
dependent.

For example, on this digraph we have
three squares:
e013 − e023, e043 − e013, e023 − e043

but their sum is 0.

In this case |Ω2| = 2 (=|A2| − s = 3− 1)
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Let X,Y be two digraphs. A map f : X → Y is called a morphism of digraphs if for any
arrow a→ b in X we have either f (a)→ f (b) or f (a) = f (b) (that is, the image of an
arrow is either an arrow or a vertex). Define images of paths by

f
(
ei0...ip

)
= ef(i0)...f(ip)

so that the image of an allowed path is either allowed or zero (that is also allowed). It is
easy to see that f ◦ ∂ = ∂ ◦ f so that the morphism images of ∂-invariant paths are again
∂-invariant.

A triangle eabc and a double arrow eaba are morphism images of a square e013− e023 as on
these pictures:
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Hence, we can rephrase Proposition 1.2 as follows: Ω2 is spanned by squares and their
morphism images. Or: squares are basic shapes of Ω2.

Problem 1.3 Describe all basic shapes in Ω3 (as well as in Ωp for p > 3).

One basic shape is obvious: a 3-cube. For example, a 3-simplex is a morphism image of
a 3-cube.

Another morphism image
of a 3-cube is a prism:

However, an exotic cube (p. 14) is also a ∂-invariant 3-path, but it is not a morphism
image of a 3-cube.
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1.7 Dependence on the field K

The dimensions |Ω0| = |V | and |Ω1| = |E| do not depend on the choice of a field K. By
using a geometric characterization of Ω2 in Prop. 1.2, we see that |Ω2| is also independent
of K.

Conjecture 1.4 |Ωp| is independent of K for any p (a priori |Ωp| (G,Q) ≤ |Ωp| (G,Fq)).

Let us turn to |Hp| . It is easy to show that |H0| = c, where c is the number of connected
components of G and, hence, is independent of K.

Conjecture 1.5 |H1| is independent of K.

Approach to the proof: |H1| = |Ω1| − |∂Ω1| − |∂Ω2| . Since |Ω1| = |E|, |∂Ω1| = |V | − c, it
remains to verify that |∂Ω2| is independent of K.

Recall that for manifolds |Hp| may depend on K, for example,

|H2|
(
RP2,Q

)
= 0 < 1 = |H2|

(
RP2,F2

)
.
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Example. The following digraph G is a candidate for |H2| (G,Q) < |H2| (G,F2) .

For this digraph we have

|V | = 20, |E| = 69, dim Ω2 = 71

|H1| (G,F2) = |H1| (G,Q) = 2

and
|H2| (G,F2) = 5.

Conjecture 1.6 For this digraph |H2| (G,Q) = 4.

A motivation for this conjecture is as follows. One of five generators of H2 (G,F2) is

u = (e8 3 18 + e8 15 18) + e8 15 19 + e9 10 18 + e9 10 19 + e10 3 18

+ e14 8 3 + (e14 8 19 + e14 10 19) + e14 10 3 + e15 9 18 + e15 9 19
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By changing the signs of the terms appropriately, we obtain the following element of
H2 (G,Q):

ũ = (e8 3 18 − e8 15 18) + e8 15 19 − e9 10 18 + e9 10 19 − e10 3 18

− e14 8 3 + (e14 8 19 − e14 10 19) + e14 10 3 − e15 9 18 + e15 9 19.

The same method works for 4 out of 5 generators of H2 (G,F2) . The fifth generator is

e0 7 3 + e0 8 3 + e3 2 6 + e3 2 7 + e3 18 7 + e5 14 8 + e8 15 3 + e8 15 19 + (e9 0 7 + e9 18 7) + e14 2 7 + e14 7 3

+ e9 10 18 + (e9 0 5 + e9 11 5) + (e9 11 13 + e9 19 13) + e9 10 19 + e10 3 18 + e11 13 5 + (e13 2 6 + e13 5 6)

+ e0 5 8 + e14 10 3 + (e14 8 19 + e14 10 19) + (e15 3 6 + e15 5 6) + (e15 5 14 + e15 19 14) + (e19 13 2 + e19 14 2)

but for this generator changing of the signs does not work.

Conjecture 1.7 It is always possible to choose bases in Ωp (G,Q) and Hp (G,Q) so that
each element of the basis has the form

∑
ωi0...ipei0...ip with ωi0...ip ∈ {±1, 0} .

Conjecture 1.8 A basis in Ωp (G,F3) (resp. Hp (G,F3)) is also a basis in Ωp (G,Q)
(resp. Hp (G,Q)). In particular, the Betti numbers over F3 and Q are the same.
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2 Connection to simplexes

2.1 Path complex

The notion of path complex unifies digraphs and simplicial complexes.

Definition. A path complex on a finite set V is a collection P of elementary paths on V
such that if i0i1...ip−1ip ∈ P then also i1...ip and i0...ip−1 belong to P .

For example, each digraph G = (V,E) gives rise to a path complex P that consists of all
allowed elementary paths, that is, of the paths i0 → i1 → ...→ ip. In general, all paths in
a path complex P are also called allowed.

The above definitions of ∂-invariant paths, spaces Ωp and Hp go through without any
change to general path complexes in place of digraphs because they are based on the
notion of allowed paths only.

For comparison let us recall the definition of an abstract simplicial complex.

Definition. A simplicial complex with the set of vertices V is a collections S of subsets
of V such that if σ ∈ S then any subset of σ is also an element of S.
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Let us enumerate all elements of V so that any subset σ of V can be regarded as a path
i0...ip with i0 < i1 < .... < ip. The above definition means that if i0...ip ∈ S then also
any sub-path ik0 ...ikq with 0 ≤ k0 < k1 < ... < kq ≤ p belongs to S. Hence, a simplicial
complex S is a path complex, and the theory of path homologies applies for S.

In this case, Ap consists of linear combinations of all p-dimensional simplexes in S and
Ωp = Ap because ∂ei0...ip is always allowed if ei0...ip is allowed. Hence, the path homology
theory of a path complex S coincides with the simplicial homology theory of S.
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2.2 Hasse diagram

Let S be a simplicial complex with the vertex set V as above. Define the digraph GS (the
Hasse diagram of S) as follows: the vertex set of GS is S, and σ → τ for two simplices
σ, τ ∈ S if τ ⊂ σ and |τ | = |σ| − 1 (that is, τ is a face of σ of codim = 1).

If S is realized geometrically as a collection of simplexes in Rn then GS can be realized
with the set of vertices BS consisting of barycenters of the simplexes of S as on the picture.

Theorem 2.1 We have
Hsimpl

∗ (S) ' H∗ (GS) .
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2.3 Triangulation as a closed path

Given a closed oriented n-dimensional manifold M , let T be its triangulation, that is, a
partition into n-dimensional simplexes. Denote by V = {0, 1, ...} the set of all vertices of
the simplexes from T and by E – the set of all edges, so that (V,E) is a graph embedded
on M .

Let us introduce make each edge (i, j) ∈ E into an arrow i → j if i < j and into j → i

if i > j. Then each simplex from T becomes a digraph-simplex. Denote by
−→
T the set of

all digraph simplexes constructed in this way. That is, i0...in ∈
−→
T if i0...in is a monotone

increasing sequence that determines a simplex from T . Clearly, any such path i0...ip is
allowed.

For any simplex from T with the vertices i0...in define the quantity σi0...in to be equal to
1 if the orientation of the simplex i0...in matches the orientation of the manifold M , and
−1 otherwise. Then consider the following allowed n-path on the digraph G = (V,E):

σ =
∑

i0...in∈
−→
T

σi0...inei0...in . (2.1)

Lemma 2.2 The path σ is closed, that is, ∂σ = 0, which, in particular, implies that σ is
∂-invariant.
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Proof. Observe that ∂σ is the a linear combination with coefficients ±1 of the terms
ej0...jn−1 where the sequence j0, ..., jn−1 is monotone increasing and forms an (n− 1)-
dimensional face of one of the n-simplexes from T . In fact, every (n− 1)-face arises
from two n-simplexes, say

A = j0...jk−1ajk...jn−1

and
B = j0...jl−1bjl...jn−1

that is, two n-simplexes A,B have
a common (n− 1)-dimensional
face j0...jn−1.

We have
∂ej0...jk−1ajk...jn−1 = ... + (−1)k ej0...jk−1jk...jn−1 + ... .

Since interchanging the order of two neighboring vertices in an n-simplex changes its
orientation, we have

σj0...jk−1ajk...jn−1 = (−1)k σaj0...jk−1jk...jn−1 .
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Multiplying the above lines, we obtain

∂
(
σAeA

)
= ... + σaj0...jn−1ej0...jn−1 + ... ,

and in the same way
∂
(
σBeB

)
= ... + σbj0...jn−1ej0...jn−1 + ...

However, the vertices a and b are located on the opposite sides of the face j0...jn−1, which
implies that the simplexes aj0...jn−1 and bj0...jn−1 have the opposite orientations relative
to that of M . Hence,

σaj0...jn−1 + σbj0...jn−1 = 0,

which means that the term ej0...jn−1 cancels out in the sum ∂
(
σAeA + σBeB

)
and, hence,

in ∂σ. This proves that ∂σ = 0.

The closed paths σ defined by (2.1) is called a surface path on M .

There is a number of examples when a surface path σ happens to be exact, that is, σ = ∂v
for some (n + 1)-path v. In this case v is called a solid path on M because v represents
a “solid” shape whose boundary is given by a surface path. If σ is not exact then σ
determines a non-trivial homology class from Hn (G) and, hence, represents a “cavity” in
triangulation T .
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Example. M = S1.

A triangulation of S1 is a polygon,
and the corresponding digraph G is cyclic.
On each edge (i, j) of a polygon we choose
an arrow i→ j arbitrary (not necessarily if i < j).

We have
σ =

∑

i→j

σijeij

where σij = 1 if the arrow i→ j goes counterclockwise,
and σij = −1 otherwise.

On the digraph on the picture we have

σ = e01 − e21 + e23 + e34 − e54 + e50

Proposition 2.3 (a) If a polygon G is neither triangle nor square Ωp = {0} for p ≥ 2,
H1 = 〈σ〉 and Hp = {0} for all p ≥ 2.

(b) If G is either triangle or square then Ωp = {0} for p ≥ 3 and Hp = {0} for all p ≥ 1.
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Example. Let M = Sn and let triangulation of Sn be given by an (n + 1)-simplex.

Then G is a (n + 1)-simplex digraph.

On this picture n = 2,

σ = e123 − e023 + e013 − e012 = ∂e0123

so that e0123 is a solid path
representing a tetrahedron.

In general we also have

σ = ∂e0...n+1

so that e0...n+1 is a solid path representing
a (n + 1)-simplex.
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Example. M = S2, octahedron.

Here is a triangulation of S2 by an octahedron
with two ways of numbering.

Case A: H2 = {0}
σ = e024 − e025 − e014 + e015 − e234 + e235 + e134 − e135

= ∂ (e0134 − e0234 + e0135 − e0235)

Hence,
v = e0134 − e0234 + e0135 − e0235

is a solid path, and the octahedron represents
a solid shape.

Case B: H2 = 〈σ〉
σ = e024 − e034 − e025 +e035 − e124 + e134 + e125 − e135

and the octahedron represents a cavity.

A

B
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Example. M = S2, icosahedron.

Consider an icosahedron
as a triangulation of S2 (here i→ j if i < j).
We have |V | = 12, |E| = 30, H1 = {0} ,
and H2 = 〈σ〉 where

σ = −e0 1 9 + e0 1 2 − e1 2 11 + e0 2 6 + e0 5 9

−e0 5 6 + e5 6 10 − e1 3 9 + e1 3 11 − e2 6 7

+e6 7 10 − e2 7 11 − e3 4 9 + e3 4 8 − e4 8 10

+e3 8 11 − e4 5 9 + e4 5 10 + e7 8 10 − e7 8 11.

Hence, the icosahedron represents a cavity.

Conjecture 2.4 For icosahedron dim H2 (G) = 1 for any numbering of the vertices.

Conjecture 2.5 For a general triangulation of Sn, the homology group Hn (G) is either
trivial or is generated by σ. All other homology groups Hp (G) are trivial.
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2.4 Computational challenge

An interesting paper:
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They reconstruct a microcircuit from a rat brain as a graph (neurons and connections
between them). The size of the graph is |V | ∼ 31, 000 and |E| ∼ 8, 000, 000.

Then they detect cliques in this graph, form out of the cliques a simplicial complex, and
compute its Betti numbers over F2. They were able to compute Betti number β5 and to
show that β5 > 0.

Problem 2.6 Create computational tools capable of computing low dimensional Betti
numbers for path homologies of digraphs of similar size.

At present our program can compute β1 on a digraph with |V | ∼ 7000 and |E| ∼ 100, 000,
and β2 on a digraph with |V | ∼ 4000 and |E| ∼ 25000.
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3 Homological dimension

In this section K = F2. Define the homological dimension of a digraph G by

dimh G = sup {k : |Hk (G)| > 0} .

3.1 Some examples

Let G be a polygon (a cyclic digraph).
If G is neither triangle nor square
then |H1| = 1 and |Hp| = 0 for p ≥ 2
so that dimh G = 1.

If G is either triangle or square then
|Hp| = 0 for p ≥ 1 and, hence
dimh G = 0.
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Let G be the octahedron as here:
Then

|H2| = 1, |Hp| = 0 for p ≥ 3

so that dimh G = 2.

There are finite digraphs with

dimh G =∞

as the one on this picture:

This example was constructed by
Gabor Lippner and Paul Horn
in 2012.
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3.2 Random digraphs

We are interested in the homological dimension of a randomly generated digraph G. Fix a
finite set of vertices {1, ..., V } and two numbers p, q > 0 with p+ q ≤ 1. The set of arrows
in G is defined as follows: for any two vertices a < b, there is either an arrow a→ b with
probability p or an arrow b→ a with probability q, or no arrow with probability 1−p− q.
The so constructed probability measure on digraphs will be denoted by P = Pp,q,V .

Here is randomly generated digraph with
p = q = 0.37, V = 15 and E = 86.

For this digraph dimh G = 6.
βk (G) = {1, 0, 0, 0, 0, 0, 1}.

H6 (G) = 〈v〉 where v is a sum of 1560 terms:
v = e0 2 6 8 0 5 1 + e0 2 6 8 0 5 6 + e0 2 6 8 0 10 7 + e0 2 6 8 0 10 14

+e0 2 6 8 0 12 1 + e0 2 6 8 0 12 14 + e0 2 6 8 9 0 6 + e0 2 6 8 9 0 7

+e0 2 6 8 9 2 6 + e0 2 6 8 9 2 14 + e0 2 6 8 9 10 7 + e0 2 6 8 9 10 14

+e0 2 6 8 13 2 6 + e0 2 6 8 13 2 14 + e0 2 6 8 13 5 1 + e0 2 6 8 13 5 6

+...
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Set r = p + q. The number E of arrows is random, and it is easy to compute

E (E) =
r

2
V (V − 1) and Var (E) =

1

2
r (1− r) V (V − 1) . (3.1)

Define the degree of digraph as the average outcoming degree of the vertices:

D = deg G :=
E

V
.

For example, for the above digraph D = 86/15 ≈ 5.7.

For random digraphs it follows from (3.1) that

E (D) =
r

2
(V − 1) and Var (D) =

1

2
r (1− r)

V − 1

V
.

Moreover, applying the central limit theorem to the sum of indicators of arrows we obtain

Dnorm :=
D − r

2
(V − 1)

√
1
2
r (1− r) V −1

V

D
−→ Normal (0, 1) as V →∞.
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Proposition 3.1 If p + q > 0 then

lim
V →∞

Pp,q,V (G is connected) = 1

that is,
Pp,q,V (β0 (G) = 1)→ 1 as V →∞.
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3.3 Homological dimension and degree

It turns out that dimh G for random digraphs is closely related to the degree D = E/V .
In over 1000 of samples of randomly generated digraphs, we have observed the following
dichotomy: with high probability either dimh G = 0 or dimh G � D.
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Consider the random variables Q =
dim hG

D
and Q+ = (Q | Q > 0) . Everywhere assume

that p = q ∈ (0, 1/2) .

Conjecture 3.2 There exists positive limits

μ (p) = lim
V →∞

Ep,p,V (Q+) and τ 2 (p) = lim
V →∞

Varp,p,V (Q+) = lim
V →∞

Ep,p,V

(
Q2

+

)
− μ (p)2 .

Besides, we have μ (p) > 3τ (p) .

Here are empirical functions μ (p) and τ (p) computed using the averages of Q+ and Q2
+

among all available samples.
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Conjecture 3.3 We have Q+
D
→ 1

Z
Normal+ (μ, τ 2) as V → ∞, where μ = μ (p) and

τ = τ (p). That is, for any x ≥ 0,

lim
V →∞

Pp,p,V (Q+ ≤ x) =
1

Z

∫ x

0

1
√

2πτ
exp

(

−
(y − μ)2

2τ 2

)

dy,

where Z is a normalizing factor.

As one sees on this diagram, P (0.4 ≤ Q+ ≤ 1) ≈ 0.9 that is,

P ( 0.4D ≤ dim h (G) ≤ D | dim h (G) > 0) ≈ 0.9.
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3.4 Homologically trivial and spherical digraphs

Let call a digraph G homologically trivial if dimh G = 0, that is, βk (G) = 0 for all k ≥ 1.

Conjecture 3.4 The following limit exists and is positive:

T (p) = lim
V →∞

Pp,p,V (G is homologically trivial) .

Consequently,

dimh G

D
= Q

D
−→ T (p) δ0 +

1

Z (1− T (p))
Normal+

(
μ, τ 2

)
as V →∞.
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Let us call a digraph G homologically spherical of dimension n if β0 (G) = βn (G) = 1
and all other Betti numbers vanish. In this case dimh G = n. Any homologically trivial
digraph is also spherical of dimension 0.

Conjecture 3.5 The following limit exists and is positive:

S (p) = lim
V →∞

Pp,p,V (G is homologically spherical) .

Of course, S (p) ≥ T (p) .Here are empirical functions S (p) and T (p) computed as frac-
tions of all homologically spherical resp. trivial digraphs among all available samples.

We see that, for p ≈ 0.5, a random digraph is homologically spherical with probability
nearly 100%, and is homologically trivial with probability ≈ 90%.
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3.5 Computational limitations

For computation of homology groups and Betti numbers of digraphs we use the aforemen-
tioned program of Chao Chen. It computes successively Hk (G) and βk (G) for k = 1, 2, ...
until the memory of computer allows. Denote by Na the largest rank of actually com-
putable Betti number for a digraph G. For randomly generated digraphs with p = q we
have found the following empirical formula for Na:

Ne = a ln

(

1 +
b

V

)

/ ln D, (3.2)

where D = E/V and a, b are constants to be found experimentally depending on the
computer. For a 16GB i7 laptop we have a = 3 and b = 400. If D > 3 then usually
|Na −Ne| ≤ 1 (show computations).

Since

E ≤
1

2
V (V − 1) ,

it follows that D ≤ 1
2
(V − 1) and V > 2D. Therefore,

Ne ≤ a ln

(

1 +
b

2D

)

/ ln D.
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We expect that dimh < D with high probability. In order to verify this numerically, we
should be able to compute βk for all k ≤ D, and for that we need to have Ne ≥ D that is,

a ln

(

1 +
b

2D

)

/ ln D ≥ D. (3.3)

With these data, the condition (3.3) implies that D ≤ 6.

Here the graph of the function

a ln
(
1 + b

2D

)
/ ln D

is shown in blue and
the diagonal is shown in red:

Hence, if for a randomly generated digraph D > 6 then computation of dimh G becomes
unreliable.
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Here is a randomly generated digraph with

V = 30, E = 267, D = 8.9
p = q = 0.3

By (3.2) we have Ne = 4,
while Na = 3 and the actually computed
Betti numbers are 1, 0, 0, 0.

Since D = 8.9� Na, no reliable conclusion
about the value of dimh G can be made.

For such digraphs we need either to use a more powerful computer or to improve the
algorithm of the program.

Problem 3.6 Compute for this digraph βk for all k ≤ 9.
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4 Combinatorial curvature of digraphs

4.1 Motivation

Let Γ be a finite planar graph. There is the following old notion of a combinatorial
curvature Kx at any vertex x of Γ:

Kx = 1−
deg (x)

2
+
∑

f3x

1

deg (f)
, (4.1)

where the sum is taken over all faces f containing x and deg (f) denotes the number of
vertices of f . For example, if all faces are triangles then we obtain

Kx = 1−
deg (x)

2
+

degΔ (x)

3
, (4.2)

where degΔ (x) is the number of triangles having x as a vertex.

In general, denoting by E, V and F the number of vertices, edges and faces of Γ and
observing that

∑

x

deg (x) = 2E and
∑

x

∑

f3x

1

deg (f)
=
∑

f

∑

x∈f

1

deg (f)
= F,
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we obtain ∑

x

Kx = V − E + F = χ.

We try to realize this idea on digraph: to “distribute” the Euler characteristic over all
vertices and, hence, to obtain an analog of Gauss curvature that satisfies Gauss-Bonnet.

4.2 Curvature operator

Let G = (V,E) be a finite digraph and K = R. We would like to generalize (4.1) to
arbitrary digraphs, so that the faces in (4.1) should be replaced by the elements of a basis
in Ωp. However, the result should be independent of the choice of a basis.

Fix p ≥ 0. Any function f : V → R on the vertices induces an linear operator

Tf : Rp → Rp

by
Tfei0...ip = (f (i0) + ... + f (ip)) ei0...ip .

For example, for a constant function f = 1 on V , we have T1ei0...ip = (p + 1) ei0...ip and,
hence,

T1ω = (p + 1) ω for any ω ∈ Rp. (4.3)
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If f = 1x where x ∈ V , then

T1xei0...ip = mei0...ip , where m is the number of occurrences of x in i0, ..., ip. (4.4)

Fix in Rp an inner product (∙, ∙). For example, this can be a natural inner product when
all regular elementary paths ei0...ip form an orthonormal basis in Rp.

Let Πp : Rp → Ωp be the orthogonal
projection onto Ωp.

Considering Tf as an operator from Ωp to Rp,
we obtain the following operator in Ωp:

T ′
f := Πp ◦ Tf : Ωp → Ωp

Definition. Define the incidence of f and Ωp by

[f, Ωp] := trace T ′
f .
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Definition. For any ω =
∑

ωi0...ipei0...ip ∈ Ωp define the incidence of f and ω by

[f, ω] := (Tfω, ω)

Lemma 4.1 For any orthogonal basis {ωk} in Ωp we have

[f, Ωp] =
∑

k

[f, ωk]

‖ωk‖
2 . (4.5)

Proof. It suffices to prove (4.5) for orthonormal basis when ‖ωk‖ = 1 for all k. By the
definition of the trace

trace T ′
f =

∑

k

(
T ′

fωk, ωk

)
.

For any ω ∈ Ωp we have

(
T ′

fω, ω
)

= (ΠpTfω, ω) = (Tfω, Πpω) = (Tfω, ω) = [f, ω] ,

whence (4.5) follows.
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Definition. For any N ∈ N define the curvature operator K(N) : RV → R of order N by

K(N)f =
N∑

p=0

(−1)p

p + 1
[f, Ωp] .

If Ωp = {0} for all p > N , then write K
(N)
f = Kf .

For f = 1x where x ∈ V , we write

[x, Ωp] := [1x, Ωp] and [x, ω] := [1x, ω] ,

If {ωk} is an orthogonal basis of Ωp, then by (4.5)

[x, Ωp] =
∑

k

[x, ωk]

‖ωk‖
2 .

If the inner product is natural so that
{
ei0...ip

}
is orthonormal then by (4.4)

[
x, ei0...ip

]
= m, where m is the number of occurrences of x in i0, ..., ip .

For example,
[a, eabca] = 2, [b, eabca] = 1, [d, eabca] = 0.
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In this case, for ω =
∑

ωi0...ipei0...ip we have

[x, ω] =
∑

i0...ip∈V

(ωi0...ip)
2 [

x, ei0...ip

]
.

Definition. For any N ∈ N define the curvature of order N at a vertex x by

K
(N)
x := K(N)1x =

N∑

p=0

(−1)p

p+1
[x, Ωp] .

Proposition 4.2 (Gauss-Bonnet) For any choice of the inner product in Rp and for any
N we have

∑

x∈V

K(N)
x =: K

(N)
total = χ(N) :=

N∑

p=0

(−1)p dim Ωp.

Proof. Since
∑

x∈V 1x = 1, we obtain that

K
(N)
total =

∑

x∈V

K(N)
x =

∑

x∈V

K(N)1x = K(N)1 =
N∑

p=0

(−1)p [1, Ωp]

p + 1
.
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On the other hand, by (4.3)

[1, ω] = (T1ω, ω) = (p + 1) ‖ω‖2 .

If {ωk} is an orthogonal basis in Ωp then by (4.5)

[1, Ωp] =
∑

k

[1, ωk]

‖ωk‖
2 = (p + 1) dim Ωp,

which implies

K
(N)
total =

N∑

p=0

(−1)p dim Ωp = χ(N).

Remark. If Ωp = {0} for all p > N then

χ :=
N∑

p=0

(−1)p dim Ωp =
N∑

p=0

(−1)p dim Hp.

Remark. It can happen that Ωp 6= {0} for all p. One example is given on p.40. Here is
a much simpler example: G = {a� b} . For this digraph we have

Ω0 = 〈ea, eb〉, Ω1 = 〈eab, eba〉, Ω3 = 〈eaba, ebab〉, Ω4 = {eabab, ebaba} , etc,

58



so that |Ωp| = 2 for all p ≥ 0. Indeed, eaba ∈ A2 and

∂eaba = eba − eaa + eab = eba + eab ∈ A1

so that eaba ∈ Ω2. Similarly, eabab ∈ A3 and

∂eabab = ebab − eaab + eabb − eaba = ebab − eaba ∈ A2

so that eabab ∈ Ω3, etc.

Problem 4.3 How to decide whether the sequence {Ωp (G)} vanishes for all large p?

Alternatively, one can always truncate the chain complex to make it finite by setting by
definition ΩN+1 = {0} for some N :

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← ΩN−1

∂
← ΩN ← 0

and work with homology groups of this complex. This corresponds to the following
modification of the notion of allowed paths: all paths of length > N are declared non-
allowed.
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4.3 Examples of computation of curvature

Let us fix in Rp the natural inner product. Using the orthonormal basis {ei} in Ω0 we
obtain

[x, Ω0] =
∑

i

[x, ei] = 1

and, using the orthonormal basis {eij} with i→ j in Ω1, we obtain

[x, Ω1] =
∑

i→j

[x, eij ] = deg (x) .

Therefore,

K(1)
x = 1−

deg (x)

2

and, for any N ≥ 1,

K(N)
x = 1−

deg (x)

2
+

N∑

p=2

(−1)p

p + 1
[x, Ωp] . (4.6)

By Proposition 1.2, in the absence of double arrows the space Ω2 has always a basis of
triangles and squares (but this basis is not necessarily orthogonal).
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For a triangle eabc ∈ Ω2 we have

[x, eabc] =

{
1, x ∈ {a, b, c}
0, otherwise

and for a square eabc − eab′c ∈ Ω2

[x, eabc − eab′c] =






2, x ∈ {a, c}
1, x ∈ {b, b′}
0, otherwise

In particular, if G has no square then Ω2 has a basis {ωk} that consists of all triangles in
G. This basis is orthonormal and

[x, Ω2] =
∑

k

[x, ωk] = degΔ (x) := #triangles containing x.

It follows that

K(2)
x = 1−

deg (x)

2
+

degΔ (x)

3
,

which matches (4.2).

Example. Let G be a line digraph, for example, ∙ ∙ ∙ • → • ← • → • . . . . Then by (4.6)
Kx = 1

2
for the endpoints, and Kx = 0 for the interior points.
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Example. Let G be a cyclic digraph (polygon) different from triangle or square:

Then we have Ωp = {0} for p > 1.
Hence by (4.6), for any vertex x,

Kx = 1−
deg (x)

2
= 0.

and Ktotal = 0.
For comparison,

χ = |Ω0| − |Ω1| = 6− 6 = 0.

.

Example. Consider a dodecahedron (with any orientation of edges):

We have |Ω0| = 20, |Ω1| = 30, |Ω2| = 0,
and |H1| = 11, |Hp| = 0 for p > 1.
Then, for any vertex x,

Kx = 1−
deg (x)

2
= −

1

2
and Ktotal = −10.
For comparison,
χ = 1− 11 = 20− 30 = −10.
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Example. Let G be a triangle. We have Ω2 = 〈e012〉 and Ωp = {0} for p > 2.

Hence, for each vertex x,

Kx = 1−
deg (x)

2
+

degΔ (x)

3
=

1

3
.

and Ktotal = 1.
For comparison, χ = |Ω0| − |Ω1|+ |Ω2| = 3− 3 + 1 = 1.

Example. Let G be a square. Then Ω2 = 〈e013 − e023〉 and Ωp = {0} for p > 2.

Since ‖e013 − e023‖
2 = 2, we obtain

[0, Ω2] = 1
2
[0, e013 − e023] = 1, [3, Ω2] = 1

[1, Ω2] = 1
2
[1, e013 − e023] = 1

2
, [2, Ω2] = 1

2

It follows that

K3 = K0 = 1−
deg (0)

2
+

1

3
=

1

3
, K2 = K1 = 1−

deg (1)

2
+

1

6
=

1

6
, Ktotal = 1 = χ.
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Example. Let G be a 3-simplex

We have
Ω2 = 〈e012, e013, e023, e123〉

and
Ω3 = 〈e0123〉,

while Ωp = 0 for p > 3. It follows that, for any vertex x,

[x, Ω2] = degΔ (x) = 3 and [x, Ω3] = 1

whence

Kx = 1−
deg (x)

2
+

[x, Ω2]

3
−

[x, Ω3]

4
=

1

4
, Ktotal = 1 = χ.
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Example. Let G be an n-simplex, that is, a digraph with a set of vertices {0, 1, ..., n}
and edges i→ j whenever i < j. Then, for any p = 0, 1, ..., n

Ωp = Ap = 〈ei0...ip : i0 < i1 < ... < ip〉

so that dim Ωp =
(

n+1
p+1

)
. It follows that, for any vertex x,

[x, Ωp] = #
{
ei0...ip such that x ∈ {i0, ..., ip}

}
=
(

n
p

)
,

and

Kx =
n∑

p=0

(−1)p

(
n
p

)

p + 1
.

Change j = p + 1 gives

(n + 1) Kx =
n+1∑

j=1

(−1)j−1
(n + 1)

(
n

j−1

)

j
=

n+1∑

j=1

(−1)j−1 (n+1
j

)
= 1,

whence

Kx =
1

n + 1
and Ktotal = 1.

65



Example. Let G be a bipyramid:

We have |Ω0| = 5, |Ω1| = 9,

Ω2 = 〈e013, e123, e023, e014, e124, e024, e012〉

Ω3 = 〈e0123, e0124〉

and |Ωp| = 0 for p ≥ 4.

Hence,
χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 5− 9 + 7− 2 = 1.

Let us compute the curvature:

x [x, Ω2] [x, Ω3] 1− deg(x)
2

+ [x,Ω2]
3
− [x,Ω3]

4
= Kx

3, 4 3 1 1− 3
2

+ 3
3
− 1

4
= 1

4

0, 1, 2 5 2 1− 4
2

+ 5
3
− 2

4
= 1

6

Hence, Ktotal = 2
4

+ 3
6

= 1.
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Example. Let G be a 3-cube. We have

Ω2 = 〈e013 − e023, e015 − e045, e026 − e046,
e137 − e157, e237 − e267, e457 − e467〉

(note that this above basis in Ω2 is orthogonal)

Ω3 = 〈e0237 − e0137 + e0157 − e0457 + e0467 − e0267〉

χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 8− 12 + 6− 1 = 1

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2

+ [x,Ω2]
3
− [x,Ω3]

4
= Kx

0, 7 6
2

= 3 6
6

= 1 1− 3
2

+ 3
3
− 1

4
= 1

4

1, 2, 3, 4, 5, 6 4
2

= 2 2
6

= 1
3

1− 3
2

+ 2
3
− 1

12
= 1

12
= 1

12

Consequently, Ktotal = 2
4

+ 6
12

= 1 = χ.
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Example. Consider on octahedron:

We have

Ω2 = 〈e024, e034, e025, e035, e124, e134, e125, e135〉,

and Ωp = {0} for all p ≥ 3

For any vertex x we obtain

[x, Ω2] = degΔ (x) = 4

whence

Kx = 1−
deg (x)

2
+

degΔ (x)

3
= 1− 4

2
+ 4

3
= 1

3

In particular, Ktotal = 6
3

= 2 = χ.
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Example. Consider on octahedron with a different orientation:

We have the following orthogonal bases:

Ω2 = 〈e024, e025, e014, e015, e234, e235, e134, e135, e013 − e023〉

Ω3 = 〈e0234 − e0134, e0235 − e0135〉

χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 6− 12 + 9− 2 = 1

x [x,Ω2] [x,Ω3] 1− deg(x)
2

+ [x,Ω2]
3
− [x,Ω3]

4
= Kx

0 4 + 2
2

= 1 4
2

= 2 1− 4
2

+ 5
3
− 2

4
= 1

6

1 4 + 1
2

= 9
2

2
2

= 1 1− 4
2

+ 9/2
3
− 1

4
= 1

4

2 4 + 1
2

= 9
2

2
2

= 1 1− 4
2

+ 9/2
3
− 1

4
= 1

4

3 4 + 2
2

= 5 4
2

= 2 1− 4
2

+ 5
3
− 2

4
= 1

6

4 4 2
2

= 1 1− 4
2

+ 4
3
− 1

4
= 1

12

5 4 2
2

= 1 1− 4
2

+ 4
3
− 1

4
= 1

12

Ktotal = 2
6

+ 2
4

+ 2
12

= 1 = χ.
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Example. Here is yet another octahedron. We have to orthogonalize the bases:

Ω2 = 〈e014, e015, e024, e052, e134, e153, e234, e523,
e013 − e023, e013 − e053, e524 − e534〉

= 〈e014, e015, e024, e052, e134, e153, e234, e523,
e013 − e023, e013 + e023 − 2e053, e524 − e534〉

Ω3 = 〈e0153, e0523, e5234, e0134 − e0234, e0534 − e0134 − e0524〉
= 〈e0153, e0523, e5234, e0134 − e0234, e0134 + e0234 − 2e0534 + 2e0524〉

Ω4 = 〈e05234〉, Ωp = {0} for p ≥ 5.

χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3|+ |Ω4| = 6− 12 + 11− 5 + 1 = 1.

x [x,Ω2] [x,Ω3] [x,Ω4] 1− deg(x)
2

+ [x,Ω2]
3
− [x,Ω3]

4
+ [x,Ω4]

5
= Kx

0 4 + 2
2

+ 6
6

= 6 2 + 2
2

+ 10
10

= 4 1 1− 4
2

+ 6
3
− 4

4
+ 1

5
= 1

5

1 4 + 1
2

+ 1
6

= 14
3

1 + 1
2

+ 1
10

= 8
5

0 1− 4
2

+ 14/3
3
− 8/5

4
= 7

45

2 4 + 1
2

+ 1
6

+ 1
2

= 31
6

2 + 1
2

+ 5
10

= 3 1 1− 4
2

+ 31/6
3
− 3

4
+ 1

5
= 31

180

3 4 + 2
2

+ 6
6

+ 1
2

= 13
2

3 + 2
2

+ 6
10

= 23
5

1 1− 4
2

+ 13/2
3
− 23/5

4
+ 1

5
= 13

60
= 13

60

4 4 + 2
2

= 5 1 + 2
2

+ 10
10

= 3 1 1− 4
2

+ 5
3
− 3

4
+ 1

5
= 7

60

5 4 + 4
6

+ 2
2

= 17
3

3 + 8
10

= 19
5

1 1− 4
2

+ 17/3
3
− 19/5

4
+ 1

5
= 5

36

Ktotal = 1
5

+ 7
45

+ 31
180

+ 13
60

+ 7
60

+ 5
36

= 1 = χ
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Example. Consider the following spider-like digraph G:

The space Ω2 consists of squares eabic−eabjc and their linear combinations, while Ωp = {0}
for all p > 2. It is easy to see that

Ω2 = 〈eab0c − eabjc〉
m
j=1 (4.7)

so that |Ω2| = m and Ktotal = χ = |Ω0| − |Ω1|+ |Ω2| = (m + 3)− 2 (m + 1) + m = 1.

Orthogonalization of (4.7) gives the following orthogonal basis in Ω2:

ω1 = eab0c − eab1c

ω2 = eab0c + eab1c − 2eab2c

...
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ωi = eab0c + ... + eabi−1c − ieabic

...

ωm = eab0c + ... + eabm−1c −meabmc

We have [a, ωi] = [c, ωi] = ‖ωi‖
2 = i (i + 1) while

[bj, ωi] =






0, j > i
1, j < i
i2, j = i

which implies

Kc = Ka = 1−
deg (a)

2
+

1

3

m∑

i=1

[a, ωi]

‖ωi‖
2 = 1−

m + 1

2
+

m

3
=

5

6
−

m

6

and

Kbj
= 1−

deg (bj)

2
+

1

3

m∑

i=1

[bj, ωi]

i (i + 1)
=

1

3

j2

j (j + 1)
+

1

3

m∑

i=j+1

1

i (i + 1)
=

1

3

(

1−
1

m + 1

)

.
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Example. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges and 26 faces,
among them 8 triangular and 18 rectangular.

Let us make it into a digraph G by choosing
direction i→ j on an edge (i, j) if i < j.
Then each face becomes a triangle or square.

For this digraph |H2| = 1 and Hp = {0} for
p = 1 and p > 2.

Spaces Ωp with p ≥ 3 are trivial, while |Ω2| = 26.
Space Ω2 is generated by 8 triangles and 18 squares:

Ω2 = 〈e023, e178, e456, e9 10 11, e12 14 15, e13 19 20, e16 17 18, e21 22 23,

e018 − e038, e0 1 13 − e0 12 13, e0 2 14 − e0 12 14, e1 7 19 − e1 13 19, e236 − e246,

e2 4 16 − e2 14 16, e3 6 11 − e3 8 11, e4 5 17 − e4 16 17, e5 10 11 − e5 6 11, e5 10 22 − e5 17 22,

e7 8 11 − e7 9 11, e7 9 21 − e7 19 21, e9 10 22 − e9 21 22, e12 13 20 − e12 15 20,

e14 15 18 − e14 16 18, e15 18 23 − e15 20 23, e17 22 23 − e17 18 23, e19 20 23 − e19 21 23〉,
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while the generator of H2 is a signed sum of all these 2-paths.

This basis in Ω2 is orthogonal. Hence, we compute the curvature:

x= 0,11,23 1,3,4,6,8,9,12,13,15,16,18,20,21 2,5,7,14,17,19,22 10

[x,Ω2]= 1 + 6
2

= 4 1 + 4
2

= 3 1 + 5
2

= 7
2

1 + 3
2

= 5
2

1− deg(x)
2

+ [x,Ω2]
3

= 1− 4
2

+ 4
3

1− 4
2

+ 3
3

1− 4
2

+ 7/2
3

1− 4
2

+ 5/2
3

Kx = 1
3

= 0 = 1
6

= −1
6

It follows that
Ktotal = 3

3
+ 7

6
− 1

6
= 2.

For comparison

χ = |Ω0| − |Ω1|+ |Ω2| = 24− 48 + 26 = 2

= |H0| − |H1|+ |H2| .
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Example. Consider the following pyramid:

Let us make it into a digraph G by choosing
direction i→ j on an edge (i, j) if i < j.
We have |Ω0| = 8, |Ω1| = 18,

Ω2 = 〈e017, e027, e037, e047, e057, e067

e012, e023, e034, e045, e056, e127, e237, e347, e457, e567〉

Ω3 = 〈e0127, e0237, e0347, e0457, e0567〉

Ωp = {0} for p ≥ 4.

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2

+ [x,Ω2]
3
− [x,Ω3]

4
= Kx

0, 7 11 5 1− 7
2

+ 11
3
− 5

4
= − 1

12

1, 6 3 1 1− 3
2

+ 3
3
− 1

4
= 1

4

2, 3, 4, 5 5 2 1− 4
2

+ 5
3
− 2

4
= 1

6

It follows that Ktotal = − 2
12

+ 2
4

+ 4
6

= 1. For comparison χ = 8− 18 + 16− 5 = 1.
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Example. Let us compute the curvature of icosahedron (cf. p. 36).

Here we choose direction i→ j if i < j. We have

|H1| = 0, |H2| = 1, |Hp| = 0 for p > 2
|Ω0| = 12, |Ω1| = 30, |Ω2| = 25, |Ω3| = 6,
|Ω4| = 1 and Ωp = {0} for p ≥ 5.

Hence, χ = |H0| − |H1|+ |H2|
= |Ω0| − |Ω1|+ |Ω2| − |Ω3|+ |Ω4| = 2.

We have

Ω2 = 〈e0 1 9, e0 1 2, e1 2 11, e0 2 6, e0 5 9, e0 5 6, e5 6 10, e1 3 9, e1 3 11, e2 6 7,

e6 7 10, e2 7 11, e3 4 9, e3 4 8, e4 8 10, e3 8 11, e4 5 9, e4 5 10, e7 8 10, e7 8 11,

e0 1 11 − e0 2 11, e0 5 10 − e0 6 10, e2 6 10 − e2 7 10, e3 4 10 − e3 8 10, e0 2 7 − e0 6 7〉

Ω3 = 〈e0 1 2 11, e0 5 6 10, e3 4 8 10, e0 2 6 7, e2 6 7 10 , −e0 6 7 10 + e0 2 7 10 − e0 2 6 10 〉

Ω4 = 〈e0 2 6 7 10〉
a “snake like” path ei0...ip

with ik → ik+1 and ik → ik+2

is ∂-invariant
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Computation of the curvature:

x= 0 1 2 3, 11
[x,Ω2]= 6+4

2
= 8 5+ 1

2
=11

2
5+4

2
= 7 5+ 2

2
= 6

[x,Ω3]= 3+3
3
= 4 1 3+2

3
=11

3
1

[x,Ω4]= 1 0 1 0
∑4

p=0 (−1)p [x,Ωp]

p+1
1−5

2
+8

3
−4

4
+1

5
1−5

2
+11/2

3
−1

4
1−5

2
+7

3
−11/3

4
+1

5
1−5

2
+6

3
−1

4

Kx =11
30

= 1
12

= 7
60

=1
4

4, 5, 8 6 7 9 10
5+1

2
=11

2
5+3

2
=13

2
5+3

2
=13

2
5 5+ 6

2
= 8

1 3+2
3
=11

3
2+2

3
=8

3
0 3+ 3

3
= 4

0 1 1 0 1

1−5
2
+11/2

3
−1

4
1−5

2
+13/2

3
−11/3

4
+1

5
1−5

2
+13/2

3
−8/3

4
+1

5
1−5

2
+5

3
1−5

2
+8

3
−4

4
+1

5

= 1
12

= − 1
20

=1
5

=1
6

=11
30

Note that K6 = − 1
20

< 0.

The total curvature: Ktotal = 11
30
∙ 2 + 1

12
∙ 4 + 7

60
+ 1

4
∙ 2− 1

20
+ 1

5
+ 1

6
= 2.
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Example. Consider a randomly generated digraph:

We have V = 15, E = 39
|H1| = 2, |H2| = 1, Hp = {0} for p ≥ 3
|Ω2| = 28, |Ω3| = 4, Ωp = {0} for p ≥ 4.

Hence, χ = |H0| − |H1|+ |H2|
= |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 0

Ω2 = 〈 e13 2 14 − e13 12 14, e13 2 14 − e13 9 14, e0 2 14 − e0 9 14, e1 4 3 − e1 6 3,

e1 4 13 − e1 6 13, e5 0 6 − e5 1 6, e7 2 14 − e7 9 14, e9 1 4 − e9 12 4,

e10 1 4 − e10 12 4, e10 7 2 − e10 11 2, e10 11 3 − e10 14 3, e11 0 9 − e11 7 9 ,

e11 5 1 − e11 7 1, e12 4 3 − e12 14 3, e12 7 1 − e12 14 1, e7 9 1, e9 12 14, e9 14 1,

e10 7 1, e10 11 7, e10 12 7, e10 12 14, e10 14 1, e11 0 2, e11 3 5, e11 5 0, e11 7 2, e13 9 12〉

Ω3 = 〈e10 11 7 2 , e13 9 12 14 , e10 12 7 1 − e10 12 14 1, e11 0 2 14 − e11 0 9 14 + e11 7 9 14 − e11 7 2 14 〉

{Kx}
14
x=0 =

{
− 7

24
,− 1

12
,−23

72
,−1

6
, 1

6
, 1

6
,−1

3
, 1

6
, 0, 13

72
, 2

3
, 1

6
, 1

18
,−11

12
, 13

24

}
.
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4.4 Digraphs of constant curvature

Recall that a graph is called regular if deg (x) is constant. We say that a digraph G is
strongly regular if the function x 7→ [x, Ωp] is constant for any p (in particular, G is regular
because deg (x) = [x, Ω1] is constant). In this case the function x 7→ Kx is constant and
we set

K(G) := Kx =
χ (G)

|V |
.

For any digraph G and any m ∈ N
let us construct a new digraph by
adding to G m new vertices
{y1, ..., ym} and all arrows

x→ yi

for all x ∈ X.

This digraph is called m-suspension
of G and is denoted by susm G.
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Theorem 4.4 Let G be a strongly regular digraph, such that for some k,m ∈ N and any
p ≥ 0

dim Ωp(G) =

(
k

p + 1

)

mp+1. (binom(k,m))

Then susm G is strongly regular, and for all p ≥ 0

dim Ωp(susm G) =

(
k + 1

p + 1

)

mp+1. (binom(k + 1,m))

For the digraph G as in Theorem 4.4 we have

χ(G) =
∑

p≥0

(−1)p dim Ωp =
k−1∑

p=0

(−1)p

(
k

p + 1

)

mp+1 = −
k∑

j=1

(−1)j

(
k

j

)

mj = 1−(1−m)k .

It follows that

K(G) =
χ(G)

|V |
=

χ(G)

dim Ω0

=
1− (1−m)k

km
.

Of course, the same formula is true for K(susm G) with k replaced by k + 1:

K(susm G) =
1− (1−m)k+1

(k + 1) m
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Example. We have seen that a triangle (= 2-simplex) is strongly regular and

dim Ω0 = 3, dim Ω1 = 3, dim Ω2 = 1, dim Ωp = 0 for p ≥ 3

that is, the sequence {dim Ωp}p≥0 is the sequence
(

3
p+1

)
that satisfies (binom(3, 1)). The

1-suspension of an n-simplex is an (n + 1)-simplex. Hence, we obtain by induction that
the n-simplex is strongly regular and satisfies (binom(n + 1, 1)). In particular,

K (n-simplex) =
1

n + 1
.

For any m ∈ N denote by D(m) a digraph with m vertices and no arrows. Then

dim Ω0

(
D(m)

)
= m =

(
1

p + 1

)

mp+1 for p = 0

dim Ωp

(
D(m)

)
= 0 =

(
1

p + 1

)

mp+1 for p ≥ 1

so that (binom(1,m)) is satisfied. Clearly, D(m) is strongly regular.
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Define inductively a sequence of digraphs
{

D
(m)
k

}∞

k=1
by

D
(m)
1 = D(m),

D
(m)
k+1 = susm D

(m)
k

In fact, D
(m)
k is a digraph version of a complete

k-partite graph Km,m, ...,m
︸ ︷︷ ︸

k

D
(m)
4

By induction we obtain that D
(m)
k is strongly regular and satisfies (binom(k,m)).

Hence, D
(m)
k has a constant curvature

K(D
(m)
k ) =

1− (1−m)k

km
. (4.8)

One can show that the only non-trivial Betti number of D
(m)
k is

βk−1 = (m− 1)k .
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Example. For m = 1 we have by (4.8) K(D
(1)
k ) = 1

k
.

D
(1)
k is a (k − 1)-simplex:

Example. For m = 2 we have by (4.8)

K(D
(2)
k ) =

{
0, k even,
1
k
, k odd.

For example, D
(2)
2 is a 4-cycle:

It is an analogue of 1-sphere.
It has constant curvature 0.
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D
(2)
3 is the octahedron:

It is an analogue of 2-sphere.
It has constant curvature 1

3
.

D
(2)
4 is an analogue of 3-sphere.

It has constant curvature 0.

D
(2)
k+1 is a digraph analogue

of a k-sphere Sk because

D
(2)
k+1 is obtained from D

(2)
k

by 2-suspension.

Besides, the only non-trivial

Betti number of D
(2)
k+1 is βk = 1

like Betti numbers for Sk.
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Example. For m = 3 we have by (4.8)

K(D
(3)
k ) =

1− (−2)k

3k
=

1

3k

{
1− 2k, k even,
1 + 2k, k odd.

For example, D
(3)
2 is a directed version of K3,3 :

We have

K(D
(3)
2 ) = −

1

2
and

K(D
(3)
3 ) = 1.

D
(3)
2
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4.5 Some problems

Problem 4.5 Compare this notion of curvature with other definitions of curvature of
graphs.

Problem 4.6 Is it true that for icosahedron (see p. 76) |Ω2| = 25 for any numbering of
the vertices?

Problem 4.7 Devise an efficient algorithm/software for computation of the spaces Ωp

for arbitrary digraphs, possibly avoiding null-spaces of large matrices. Such algorithms
exist for Ω2 and Ω3.

Problem 4.8 Let a digraph G be determined by a triangulation of S2 (see Section 2.3).
Assume that deg (x) ≤ 4 for all x ∈ G. Is it true that Kx ≥ 0 for all x ∈ G?

For triangulations of S1 we have always Kx ≥ 0: these are triangles and squares with
Kx > 0 and other polygons with Kx ≡ 0.

For triangulations of S2 we have verified above that Kx ≥ 0 for simplex, bipyramid,
octahedron, but with specific orientations of edges (the question remains open when the
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numbering of vertices is arbitrary). All these digraphs have deg (x) ≤ 4. We have seen that
Kx < 0 can occur for icosahedron with deg (x) = 5 and for a pyramid with deg (x) = 7.

Problem 4.9 Denote D = maxx∈G deg (x) . Is it true that |Kx| ≤ CD for some constant

CD depending only on D? The same question about K
(2)
x and K

(3)
x .

Note that Kx can be arbitrarily large, for example, for a strongly regular digraph satisfying
(binom(k,m)), we have

Kx =
1− (1−m)k

km

while deg (x) = (k − 1) m.

Problem 4.10 What can be said about the curvature of random digraphs?

Problem 4.11 Let S be a simplicial complex and GS be its Hasse diagram (see Section
2.2). Is there any relation of Kx (GS) to properties of S? For example, we have

Ktotal (GS) = χ (GS) = χsimp (S) .

Can one give an explicit formula for computing Kσ (GS) for any simplex σ ∈ S?
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5 Homology and Cartesian product of digraphs

5.1 Cross product of paths

Given two finite sets X,Y , consider their product

Z = X × Y = {(a, b) : a ∈ X and b ∈ Y } .

Let z = z0z1...zr be a regular elementary r-path on Z, where zk = (ak, bk) with ak ∈ X
and bk ∈ Y . We say that z is stair-like if, for any k = 1, ..., r, either ak−1 = ak or
bk−1 = bk is satisfied. That is, any couple zk−1zk of consecutive vertices is either vertical
(when ak−1 = ak) or horizontal (when bk−1 = bk).

Given a stair-like path z on Z, define its projection
onto X as an elementary path x on X obtained from
z by removing Y -components in all the vertices of z
and then by collapsing in the resulting sequence any
subsequence of repeated vertices to one vertex.
In the same way define projection of z onto Y and
denote it by y.
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Projections x = x0...xp and y = y0...yq are regular elementary paths, and p + q = r.

Every vertex (xi, yj) of path z can be represented
as a point (i, j) of Z2 so that path z is represented
by a staircase S (z) in Z2 connecting points (0, 0)
and (p, q).

Define the elevation L (z) of z as the number of
cells in Z2

+ below the staircase S (z).

For given elementary regular paths x on X and y on Y , denote by Σx,y the set of all
stair-like paths z on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths ex and ey as a path ex × ey on Z as
follows:

ex × ey =
∑

z∈Σx,y

(−1)L(z) ez (5.1)

and it extend by linearity to all u ∈ Rp (X) and v ∈ Rq (Y ) so that u× v ∈ Rp+q (Z).

89



Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by
integers 1, 2, 3, etc so that the vertices on Z can be denoted as a1, b2 etc as the fields on
the chessboard. Then we have

ea × e12 = ea1 a2, eab × e1 = ea1 b1

eab × e12 = ea1 b1 b2 − ea1 a2 b2

eab × e123 = ea1 b1 b2 b3 − ea1 a2 b2 b3 + ea1 a2 a3 b3

eabc × e123 = ea1 b1 c1 c2 c3 − ea1 b1 b2 c2 c3 + ea1 b1 b2 b3 c3

+ea1 a2 b2 c2 c3 − ea1 a2 b2 b3 c3 + ea1 a2 a3 b3 c3

Lemma 5.1 If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = (∂u)× v + (−1)p u× (∂v) . (5.2)
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5.2 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given
two digraphs X and Y , define there Cartesian product as a digraph Z = X�Y as follows:

• the set of vertices of Z is X × Y , that is, the vertices of Z are the couples (a, b)
where a ∈ X and b ∈ Y ;

• the edges in Z are of two types: (a, b) → (a′, b) where a → a′ (a horizontal edge)
and (a, b)→ (a, b′) where b→ b′ (a vertical edge):

b′• . . .
(a,b′)
• →

(a′,b′)
• . . .

↑ ↑ ↑

b• . . .
(a,b)
• →

(a′,b)
• . . .

Y � X . . . •
a
→ •

a′
. . .

It follows that any allowed elementary path in Z is stair-like.
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Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.

It follows from definition (5.1) of the cross product that

u ∈ Ap (X) and v ∈ Aq (Y ) ⇒ u× v ∈ Ap+q (Z) . (5.3)

Furthermore, the following is true.

Lemma 5.2 If u ∈ Ωp (X) and v ∈ Ωq (Y ) then u× v ∈ Ωp+q (Z) .

Proof. u× v is allowed by (5.3). Since ∂u and ∂v are allowed, by (5.3) also ∂u× v and
u× ∂v are allowed. By (5.2), ∂ (u× v) is also allowed. Hence, u× v ∈ Ωp+q (Z) .

Theorem 5.3 Any ∂-invariant path w on Z = X�Y admits a representation in the form

w =
m∑

i=1

ui × vi

for some finite m, where ui and vi are ∂-invariant paths on X and Y , respectively.
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5.3 Künneth formula

Here is the main result of this chapter.

Theorem 5.4 Let X,Y be two finite digraphs. Then, for any r ≥ 0,

Ωr (X�Y ) ∼=
⊕

{p,q≥0:p+q=r}
Ωp (X)⊗ Ωq (Y ) , (5.4)

where the isomorphism is given by

u⊗ v 7→ u× v

for u ∈ Ωp (X) and v ∈ Ωq (Y ). Consequently, we have

Hr (X�Y ) ∼=
⊕

{p,q≥0:p+q=r}
Hp (X)⊗Hq (Y ) (5.5)

and
βr (X�Y ) =

∑

{p,q≥0:p+q=r}
βp (X) βq (Y ) .
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Example. Let X be an interval and Y be a square:

X = a• → •b and Y =
2• → •3
↑ ↑

0• → •1

Then Z = X�Y is a cube:

We have:

Ω1 (X) = 〈eab〉
Ωp (X) = 0 for p ≥ 2

Ω1 (Y ) = 〈e01, e13, e23, e02〉
Ω2 (Y ) = 〈e013 − e023〉
Ωq (Y ) = 0 for q ≥ 3. Z = X�Y

By (5.4) we obtain

Ω3 (Z) ∼= Ω1 (X)⊗ Ω2 (Y ) = 〈eab × (e013 − e023)〉.

Let us compute the cross-products:
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eab × e013 = ea0 b0 b1 b3 − ea0 a1 b1 b3 + ea0 a1 a3 b3

= e0457 − e0157 + e0137

and

eab × e023 = e0467 − e0267 + e0237

Hence, we obtain

Ω3 (Z) = 〈e0457 − e0157 + e0137 − e0467 + e0267 − e0237〉

that is the ∂-invariant 3-path associated with 3-cube.

Define n-cube as follows:
n- cube = I�I�...�I︸ ︷︷ ︸

n

,

where I = {• → •} . Similarly one shows that Ωn (n- cube) is spanned by a single n-path
that is an alternating sum of n! elementary n-paths connecting the vertices 0 and 2n− 1.
This corresponds to partitioning of a solid n-dim cube into n! simplexes.

By the Künneth formula, Hp (n-cube) = {0} for all p ≥ 1.
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5.4 An example: 2-torus

Example. Denote by T the following 3-cycle (=1-torus):

T = ↗

b
•↘

a• ← •c
= ↗

1
•↘

0• ← •2

Consider a 2-torus G = T�T shown here:

Let us compute Ωr (G) , Hr (G) , Kx (G) .

We know that

Ω0 (T ) = 〈e0, e1, e2〉, Ω1 (T ) = 〈e01, e12, e20〉, Ωp (T ) = {0} for p ≥ 2

By (5.4) we obtain Ωr = {0} for r ≥ 3 and

Ω2 (G) = Ω1 (T )⊗ Ω1 (T )

= 〈eab × e01, eab × e12, eab × e20, ebc × e01, ebc × e12, ebc × e20, eca × e01, eca × e12, eca × e20〉
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Using

eab × eij = eai bi bj − eai aj bj

we obtain that

Ω2 (G) = 〈ea0 b0 b1 − ea0 a1 b1, ea1 b1 b2 − ea1 a2 b2, ea2 b2 b0 − ea2 a0 b0,

eb0 c0 c1 − eb0 b1 c1, eb1 c1 c2 − eb1 b2 c2, eb2 c2 c0 − eb2 b0 c0,

ec0 a0 a1 − ec0 c1 a1, ec1 a1 a2 − ec1 c2 a2, ec2 a2 a0 − ec2 c0 a0〉

that is,

Ω2 (G) = 〈e034 − e014, e145 − e125, e253 − e203,

e367 − e347, e478 − e458, e586 − e536

e601 − e671, e712 − e782, e820 − e860〉.

We see that Ω2 (G) is generated by 9 squares.
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This can be visualized using
the following embedding of
G = T�T on a topological torus:

Using Ω2 (G), let us compute
the curvature Kx on G.
The above basis in Ω2 (G) is

orthogonal and ‖ω‖2 = 2
for any element ω of the basis.

Besides, for any vertex x, we have [x, ω] = 2 for two of ω, [x, ω] = 1 for two of ω, and
[x, ω] = 0 for the rest of ω. Hence,

[x, Ω2] =
∑

ω

[x, ω]

‖ω‖2
=

2 ∙ 2 + 2 ∙ 1
2

= 3

and

Kx = 1−
deg (x)

2
+

[x, Ω2]

3
= 1−

4

2
+

3

3
= 0.

Let us compute the homology groups of G. We know that

H0 (T ) = 〈e0〉, H1 (T ) = 〈e01 + e12 + e20〉, Hp (T ) = {0} for p ≥ 2.
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By (5.5) we have

H1 (G) = H0 (T )⊗H1 (T ) + H1 (T )⊗H0 (T ) = 〈v1, v2〉

where v1 = ea × (e01 + e12 + e20) = ea0 a1 + ea1 a2 + ea2 a0 = e01 + e12 + e20

v2 = (eab + ebc + eca)× e0 = ea0 b0 + eb0 c0 + ec0 a0 = e03 + e36 + e60.

Again by (5.5)
H2 (G) = H1 (T )⊗H1 (T ) = 〈u〉,

where u = (eab + ebc + eca)× (e01 + e12 + e20), and Hr (Z) = 0 for all r ≥ 2. Hence,

u = ea0 b0 b1 − ea0 a1 b1 + ea1 b1 b2 − ea1 a2 b2 + ea2 b2 b0 − ea2 a0 b0

+ eb0 c0 c1 − eb0 b1 c1 + eb1 c1 c2 − eb1 b2 c2 + eb2 c2 c0 − eb2 b0 c0

+ ec0 a0 a1 − ec0 c1 a1 + ec1 a1 a2 − ec1 c2 a2 + ec2 a2 a0 − ec2 c0 a0

that is u = (e034 − e014) + (e145 − e125) + (e253 − e203) + (e367 − e347) + (e478 − e458)

+ (e586 − e536) + (e601 − e671) + (e712 − e782) + (e820 − e860) .
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5.5 Cartesian product and curvature

Proposition 5.5 Let X be any digraph with a finite chain sequence {Ωp} and Y be a
cyclic digraph

Y = {0→ 1→ 2→ ...→ m→ 0}

with m ≥ 2. Then, with respect to the natural inner product,

Kz (X�Y ) = 0

for any z ∈ X�Y. In particular, K(T�n) = 0 where T is an 1-torus.

Consider an n-cube= I�n where I = {0→ 1} . Then any vertex x of the n-cube is repre-
sented by a binary sequence (x1, ..., xn). Set |x| = x1 + ... + xn.

Proposition 5.6 For any vertex x of the n-cube we have

Kx (n- cube) =
1

(n + 1)
(

n
|x|

) .

Problem 5.7 How to compute K (X�Y ) in general?
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5.6 Strong product

Define a strong product X�∠Y of digraphs as follows: the set of vertices of X�∠Y is X×Y ,
while the arrows are defined as follows: (a, b)→ (a′, b) where a→ a′ (a horizontal edge),
(a, b) → (a, b′) where b → b′ (a vertical edge), and (a, b) → (a′, b′) where a → a′ and
b→ b′ (a diagonal edge):

(a,b′)
• →

(a′,b′)
•

↑ ↗ ↑
(a,b)
• →

(a′,b)
•

Conjecture 5.8 The Künneth formula holds for the strong product:

Hr (X�∠Y ) ∼=
⊕

{p,q≥0:p+q=r}
(Hp (X)⊗Hq (Y )) ,

where the isomorphism is given by u⊗ v 7→ u× v.

It suffices to prove an analogue of the theorem of Eilenberg-Zilber: there are chain maps

F : Ω∗ (X�∠Y )→ Ω∗ (X)⊗ Ω∗ (Y )
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and
G : Ω∗ (X)⊗ Ω∗ (Y )→ Ω∗ (X�∠Y )

such that FG = id and GF is chain-homotopic to id.

In fact, one can define G by G (u⊗ v) = u×v, while the main difficulty is in construction
of F . In the setting of Theorem 5.4, one uses Theorem 5.3 to show that G is bijective so
that one can take F = G−1.
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6 Path cohomology

As before, V is a finite set and K is a field. Recall that Λp is a K-linear space spanned
by all elementary p-paths ei0...ip .

6.1 p-forms and exterior derivative

Definition. For any p ≥ 0 define a p-form on V as any linear functional ω : Λp → K .
The linear space of all p-forms is denoted by Λp. That is, Λp is the dual space of Λp.

If ω ∈ Λp and v ∈ Λp then write (ω, v) ≡ ω (v) . For any elementary p-path ei0...ip there is
a dual elementary p-form ei0...ip such that

(
ei0...ip , ej0...jp

)
= δ

i0...ip
j0...jp

.

Any p-form ω ∈ Λp can be represented as a linear combination of elementary p-forms

ω =
∑

i0,...,ip∈V

ωi0...ipe
i0...ip ,

where ωi0...ip =
(
ω, ei0...ip

)
∈ K.
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For any p-path
v =

∑

i0,...,ip∈V

vi0...ipei0...ip ∈ Λp,

we have then
(ω, v) =

∑

i0,...,ip∈V

ωi0...ipv
i0...ip .

Definition. For any p ≥ 1, define the exterior derivative d : Λp−1 → Λp by

(dω)i0...ip
=

p∑

q=0

(−1)q ωi0...îq ...ip
for any ω ∈ Λp−1. (6.1)

Recall for comparison that

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
. (6.2)

For example, for 0-form ω =
∑

ωie
i we have

(dω)ij = ωj − ωi,
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for a 1-form ω =
∑

ωije
ij we have

(dω)ijk = ωjk − ωik + ωij .

It follows from (6.1) that

dei0...ip =
∑

k∈V

p+1∑

q=0

(−1)q ei0...iq−1kiq ...ip . (6.3)

For example,

dei =
∑

k∈V

(
eki − eik

)
and deij =

∑

k∈V

(
ekij − eikj + eijk

)
.

Proposition 6.1 (Stokes’s theorem) Let p ≥ 1. For any p-path u and any (p− 1)-form
ω, the following identity holds

(dω, u) = (ω, ∂u) .

Hence, the operators d : Λp−1 → Λp and ∂ : Λp → Λp−1 are dual, and d2 = 0.

Proof. It suffices to prove this identity for u = ei0...ip . Using (6.1) and (6.2), we obtain

(dω, u) = (dω)i0...ip
=

p∑

q=0

(−1)q ωi0...îq ...ip
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and

(ω, ∂u) =

(

ω,
p∑

q=0

(−1)q ei0...îq ...ip

)

=
p∑

q=0

(−1)q ωi0...îq ...ip
,

whence the required identity follows.

Consider the following regular subspace of Λp:

Rp = 〈ei0...ip : i0...ip is regular〉.

Then the spaces Rp and Rp are dual with the same pairing (∙, ∙) .

Lemma 6.2 If ω ∈ Rp then dω ∈ Rp+1. Moreover, the operator d : Rp → Rp+1 and the
regular boundary operator ∂ : Rp+1 → Rp are dual.

Proof. It suffices to prove this for an elementary regular p-form ω = ei0...ip . By (6.3) we
have

dω = dei0...ip =
∑

k∈V

p+1∑

q=0

(−1)q ei0...iq−1kiq ...ip .

A (p + 1)-path ei0...iq−1kiq ...ip can be non-regular only if k = iq or k = iq−1. For example,
let k = iq. The above sum contains also the term (−1)q+1 ei0...iq−1iqk...ip that cancels out
with (−1)q ei0...iq−1kiq ...ip so that dω is a sum of regular terms.
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6.2 Example: Sperner’s lemma

Consider a triangle ABC on the plane R2 and its triangulation T . The set of vertices of T
is colored with three colors 1, 2, 3 in such a way that the following conditions are satisfied:

• the vertices A,B,C are colored with 1, 2, 3 respectively;

• each vertex on any edge of ABC is colored with one of the two colors of the endpoints
of the edge.

Sperner’s coloring
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A classical lemma of Sperner says the following: under the above hypotheses, there exists
in T a 3-color triangle, that is, a triangle, whose vertices are colored with the three
different colors. Moreover, the number of 3-color triangles is odd.

We give here a proof using Stokes’s formula of Proposition 6.1.

Step 1. Let us modify the triangulation T so that there are no vertices on the edges
AB,AC,BC except for A,B,C.

Indeed, if X is a vertex on AB then we move X
a bit inside the triangle ABC.

This gives rise to a new triangle that is formed
by X and its former neighbors, say Y and Z,
on the edge AB (while keeping all old triangles).

However, since all X,Y, Z are colored with two
colors, no 3-color triangle emerges after that move.

Repeating this procedure, we remove all the vertices
from the interior of edges of ABC.
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Step 2. We map the triangle ABC and the triangulation T onto the sphere S2 and add
to the set T the triangle ABC itself from the other side of the sphere.

Then we obtain a triangulation of S2; denote it again by T . Now we need to prove that
the number of 3-color triangles in T is even (because the newly added triangle ABC is
3-color). From now on we do not need any restriction on coloring of the vertices of T –
it can be arbitrary.
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Step 3. Let us regard T as a graph on S2 and construct a dual graph G.

Chose at each face (triangle) of T a point
and regard these points as the vertices of
the dual graph G.

The vertices in G are connected by
an edge if the corresponding triangles
in T have a common edge.

The graphs T (black) and G (grey)

Then the faces of G are in one-to-one correspondence to the vertices of T, and we color
each face of G in the same color as the corresponding vertex of T .

Hence, we obtain a planar graph G on S2 such that each vertex of G has degree 3 and
each face is colored with one of the colors 1, 2, 3. We need to prove that the number of
3-color vertices of G (that is, the vertices, whose adjacent faces have all three colors) is
even.
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Step 4. Let us make G into a digraph as follows. Choose the orientation of any edge ξ
of G according to the color of the faces from the both sides of ξ as follows:

If the colors are the same from the both sides then ξ becomes a double arrow�. Examples
of such orientations are shown here:
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Step 5. Consider an 1-path on the digraph G:

v =
∑

i→j

eij .

We have for any vertex a ∈ V of G

(∂v)a = (∂v, ea) =
∑

i→j

(∂eij , e
a) =

∑

i→j

(ej − ei, e
a) =

∑

i→a

1−
∑

a→j

1

= #{incoming arrows at a} −#{outcoming arrows at a}.

If a is 3-color, then either all three arrows at a are incoming or all are outcoming so that
(∂v)a = +3 or −3, respectively. If a is not 3-color then (∂v)a = 0.
Denoting by n1 the total number of 3-color vertices with all incoming arrows and by n2

the total number of 3-color vertices with outcoming arrows, we obtain that
∑

a∈V

(∂v)a = 3 (n1 − n2) .

On the other hand, we have by Proposition 6.1
∑

a∈V

(∂v)a = (∂v,
∑

a∈V

ea) = (∂v, 1) = (v, d1) = 0.

Hence, we conclude that n1 = n2. Consequently, the total number of 3-color vertices is
equal to 2n1, that is, even, which was to be proved. �

112



6.3 d-invariant forms

Let G = (V,E) be a digraph. For any p ≥ 0, consider the following subspaces of Rp:

Ap = 〈ei0...ip : i0...ip is allowed〉

N p = 〈ei0...ip : i0...ip is non-allowed but regular〉

so that
Rp = Ap ⊕N p. (6.4)

Set
Jp = N p + dN p−1 ⊂ Rp

(where N−1 = {0}) and

Ωp = Rp /Jp .

Definition. The elements of Ωp are called d-invariant p-forms.

For ϕ, ψ ∈ Rp we write ϕ ' ψ if ϕ = ψ mod Jp, that is, if ϕ and ψ represent the same
element of Ωp. In other words, the symbol ' means equality in Ωp.

Using (6.4) it is easy to see that

Ωp = Ap /(Jp ∩ Ap) ,
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that is, d-invariant p-forms are allowed p-forms considered mod Jp . Since all allowed ele-

mentary p-forms ei0...ip constitute a basis in Ap, choosing from the sequence {ei0...ip mod Jp}
a maximal linearly independent subsequence, we obtain a basis in Ωp. Note also that
J0 = {0} and J1 ∩ A1 = {0} so that Ω0 = A0 and Ω1 = A1.

Example. Let G be a square. We have e03 ∈ N 1 and

de03 =
∑

k

ek03 −
∑

k

e0k3 +
∑

k

e03k = −e013 − e023 + ϕ,

where ϕ ∈ N 2. It follows that

e013 + e023 = ϕ− de03 ∈ N 2 + dN 1 = J2.

Hence, e013 ' −e023 that is, e013 and −e023 represent the same element of Ω2.

Lemma 6.3 If ω ∈ Jp then dω ∈ Jp+1. Hence, d is well defined on spaces Ωp = Rp/Jp.

Proof. For ω ∈ Jp then ω = α + dβ where α ∈ N p and β ∈ N p−1. It follows that

dω = dα + d2β = dα ∈ dN p ⊂ Jp+1.
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Lemma 6.4 Let v ∈ Rp. Then v is an annihilator of Jp if and only of v ∈ Ωp, that is,

(ω, v) = 0 for all ω ∈ Jp ⇔ v ∈ Ωp

Hence, the pairing (ω, v) is well defined for all ω ∈ Ωp and v ∈ Ωp, and is non-degenerate.

Proof. Let ω = α + dβ where α ∈ N p and β ∈ N p−1. Then

(ω, v) = (α + dβ, v) = (α, v) + (β, ∂v) .

This sum vanishes for all α ∈ N p and β ∈ N p−1 if and only is (α, v) = 0 and (β, ∂v) = 0,
which is the case if and only if both v and ∂v are allowed, that is, v ∈ Ωp.

Consequently, the spaces Ωp and Ωp are dual, and the operators d on Ω∗ and ∂ on Ω∗ are
also dual. We obtain the duality of that cochain complex

0
d
→ Ω0 d

→ . . .
d
→ Ωn d

→ Ωn+1 d
→ . . . (6.5)

and the chain complex

0
∂
← Ω0

∂
← . . .

∂
← Ωn

∂
← Ωn+1

∂
← . . .

Every allowed p-form ω ∈ Ap determines a d-invariant p-form ω mod Jp. The following
lemma is useful for determination of the linear independence of a sequence of d-invariant
p-forms ωi mod Jp.
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Lemma 6.5 Let {vj}
n
j=1 be a basis in Ωp and {ωi}

m
i=1 be a sequence of allowed p-forms.

Then the rank of {ωi mod Jp}mi=1 in Ωp is equal to the rank of the m× n matrix (ωi, vj).

Particular cases: (i) an allowed p-form ω determines a non-zero element ω mod Jp of Ωp

if and only if one of the values (ω, vj) is non-zero;

(ii) if {ωi}
n
i=1 is a sequence of allowed p-forms (for example, of some allowed elementary

p-forms ei0...ip) then {ωi mod Jp}ni=1 is a basis of Ωp if and only if the n×n matrix (ωi, vj)
is non-singular.

Example. Let G be a square.

We know that Ω2 = 〈e013 − e023〉.

Since (e013, e013 − e023) = 1 6= 0,

we obtain by (ii) that Ω2 = 〈e013〉.

We have seen above that e013 ' −e023.

This follows also from (i) because (e013 + e023, e013 − e023) = 0 and, hence, e013 + e023 ' 0.

116



Example. Let G be the 3-cube. We know that

Ω2 = 〈e013 − e023, e046 − e026, e157 − e137,
e015 − e045, e237 − e267, e457 − e467〉

and

Ω3 = 〈e0237 − e0137 + e0157 − e0457 + e0467 − e0267〉

By Lemma 6.5, we obtain

Ω2 = 〈e013, e046, e157, e015, e237, e457〉

because the matrix (ωi, vj) is in this case id6 . Similarly we have

Ω3 = 〈e0237〉 = 〈e0137〉 = 〈e0157〉 =
〈
e0457

〉
=
〈
e0467

〉
=
〈
e0267

〉
.

Observe also, that
e0157 ' −e0137

because e0157 + e0137 annihilates Ω3:
(
e0157 + e0137, e0237 − e0137 + e0157 − e0457 + e0467 − e0267

)
= 0.
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6.4 Concatenation of forms

Definition. For p, q ≥ 0 and for any two forms ϕ ∈ Λp and ψ ∈ Λq, define their
concatenation ϕψ ∈ Λp+q by

(ϕψ)i0...ip+q
= ϕi0...ipψipip+1...ip+q

. (6.6)

For elementary forms ei0...ip and ej0...jq we have

ei0...ipej0...jq =

{
0, ip 6= j0,
ei0...ipj1...iq , ip = j0.

Clearly, concatenation is associative.

For example, e12e234 = e1234 and e12e345 = 0.

Example. For the 0-form
σ := 1 =

∑

i∈V

ei ∈ Λ0

and any other form ϕ ∈ Λp we have σϕ = ϕσ = ϕ because (ϕσ)i0...ip
= ϕi0...ipσip = ϕi0...ip .
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Lemma 6.6 For all p, q ≥ 0 and ϕ ∈ Λp, ψ ∈ Λq, we have

d (ϕψ) = (dϕ) ψ + (−1)p ϕdψ. (6.7)

Clearly, if ϕ ∈ Rp, ψ ∈ Rq then ϕψ ∈ Rp+q and if ϕ ∈ Ap, ψ ∈ Aq then ϕψ ∈ Ap+q.

Lemma 6.7 If ϕ ∈ Jp or ψ ∈ Jq then ϕψ ∈ Jp+q. Consequently, concatenation is well-
defined as an operation from Ωp × Ωq to Ωp+q..

Proof. If ϕ ∈ N p then clearly ϕψ ∈ N p+q. If ϕ ∈ Jp then ϕ = α + dβ where α ∈ N p and
β ∈ N p−1. We have

ϕψ = αψ + (dβ) ψ = αψ + d (βψ)− (−1)p−1 βdψ.

Since αψ, βψ and βdψ are non-allowed, ϕψ ∈ Jp+q. The case ψ ∈ J q is similar.

Elements in Ωp and Ωq have representatives ϕ ∈ Ap and ψ ∈ Aq. Then ϕψ ∈ Ap+q and if
ϕ′ ' ϕ and ψ′ ' ψ are other representatives of the same elements then

ϕ′ψ′ − ϕψ = (ϕ′ − ϕ) ψ′ + ϕ (ψ′ − ψ) ∈ Jp+q ,

whence ϕψ ' ϕ′ψ′.
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Example. Let G be the 3-cube. We have

de01 =
∑

k

(
ek01 − e0k1 + e01k

)
' e015 + e013

de13 =
∑

k

(
ek13 − e1k3 + e13k

)
' e013 + e137

It follows that

de013 = d
(
e01e13

)
=
(
de01

)
e13 − e01de13 '

(
e015 + e013

)
e13 − e01

(
e013 + e137

)
= −e0137.

Proposition 6.8 If dim Ωn ≤ 1 then Ωp = {0} for all p ≥ n + 1.

Proof. Assume first that dim Ωn = 0 so that ei0...in ' 0 for all allowed paths i0...in. For
any p > n we obtain for any allowed path i0...ip that ei0...ip = ei0...inein...ip ' 0 whence
Ωp = {0} .
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Assume now dim Ωn = 1. We have for any p > n and any allowed path i0...ip

ei0...ip = ei0...in
︸ ︷︷ ︸
n-form

ein...ip = ei0i1ei1...in+1

︸ ︷︷ ︸
n-form

ein+1...ip . (6.8)

If
ei0...in ' 0 or ei1...in+1 ' 0, (6.9)

then we obtain ei0...ip ' 0. If (6.9) fails then the both n-forms ei0...in and ei1...in+1 represent
non-zero elements of Ωn. Since dim Ωn = 1, there is c ∈ K,

ei1...in+1 ' cei0...in .

Substituting into (6.8), we obtain

ei0...ip ' cei0i1ei0...inein+1...ip .

Since the path i0...ip is allowed and, hence, regular, we have i0 6= i1. It follows that
ei0i1ei0...in = 0, whence ei0...ip ' 0, which finishes the proof.

Proposition 6.9 If G contains no double arrow and if dim Ωn ≤ 2 then Ωp = {0} for all
p ≥ n + 2.

Problem 6.10 Find practical criteria for Ωp = {0} for all large p.
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6.5 Cohomology classes

Define the cohomology groups of the chain complexes

0→ Ω0 d
→ . . .

d
→ Ωp−1 d

→ Ωp d
→ Ωp+1 d

→ . . .

by
Hp = ker d|Ωp/ Im d|Ωp−1 .

A p-form ϕ ∈ Ωp is called closed if dϕ = 0, and exact if ϕ = dψ for some ψ ∈ Ωp−1.

If ϕ, ψ are two closed p-forms then we write ϕ ∼ ψ if ϕ and ψ represent the same
cohomology class, that is, if ϕ− ψ is exact.

Lemma 6.11 The pairing (ϕ, v) with ϕ ∈ Hp and v ∈ Hp is well defined and is non-
degenerate. Hence, the spaces Hp and Hp are dual.

Proof. Indeed, if ϕ′ ∼ ϕ and v′ ∼ v then ϕ′ = ϕ + dψ and v′ = v + ∂u, and we obtain

(ϕ′, v′) = (ϕ, v) + (dψ, v) + (ϕ, ∂u) + (dψ, ∂u) .

Since (dψ, v) = (ψ, ∂v) = 0 and similarly all other terms vanish, we obtain (ϕ′, v′) =
(ϕ, v) .
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Lemma 6.12 If ϕ ∈ Ωp and ψ ∈ Ωq are closed forms then ϕψ is also closed. If in addition
one of the forms ϕ, ψ is exact then ϕψ is also exact. Consequently, concatenation is well
defined for ϕ ∈ Hp, ψ ∈ Hq and results in ϕψ ∈ Hp+q.

Proof. If ϕ and ψ are closed then

d (ϕψ) = (dϕ) ψ + (−1)p ϕdψ = 0

so that ϕψ is closed. If ϕ is exact, say ϕ = dα then

d (αψ) = (dα) ψ + (−1)p+1 αdψ = ϕψ

so that ϕψ is exact.

Example. Consider an 1-torus

T = ↗

1
•↘

0• ← •2

We have Ω0 = 〈e0, e1, e2〉 and Ω1 = 〈e01, e12, e20〉 while Ωp = {0} for p ≥ 2. Since

de0 =
∑

k

ek0 −
∑

k

e0k ' e20 − e01,
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de1 =
∑

k

ek1 −
∑

k

e1k ' e01 − e12,

de2 =
∑

k

ek2 −
∑

k

e2k ' e12 − e20,

we see that
ker d|Ω0 = 〈e0 + e1 + e2〉

and
Im d|Ω0 = 〈e20 − e01, e01 − e12〉. (6.10)

In particular,
H0 = ker d|Ω0 = 〈e0 + e1 + e2〉.

Since Ω2 = {0}, we have
ker d|Ω1 = Ω1 = 〈e01, e12, e20〉.

Note that e01 ∼ e20 ∼ e12 because their differences belong to Im d|Ω0 by (6.10). It follows
that

H1 = ker d|Ω1/ Im d|Ω0 = 〈e01〉.

Remark. For a connected digraph G we have always β0 = 1 and H0 = 〈e0〉. We claim that
in this case H0 = 〈σ〉, where σ = 1 =

∑
i e

i ∈ Ω0. Indeed, we have (dσ)ij = σj − σi = 0
and, hence, dσ = 0, while σ 6∼ 0 as (σ, e0) = 1.
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6.6 Star product and Künneth formula

Definition. Let X and Y be two digraphs. For a p-form ϕ on X and a q-form ψ on Y ,
define their star product ϕ ? ψ as a (p + q)-form on Z = X�Y as follows: for elementary
forms set

ei0...ip ? ej0...jq = e(i0j0)(i1j0)...(ipj0)(ipj1)...(ipjq)

where i ∈ X, j ∈ Y and (ij) is a vertex in X�Y , and then extend this operation using
bilinearity.

Clearly, if ϕ and ψ are allowed then ϕ ? ψ is also allowed.
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In the next statement we use pairing (ϕ, u) that so far was defined for ϕ ∈ Rp (G) and
u ∈ Rp (G) . Let us set (ϕ, u) = 0 if ϕ ∈ Rp (G) and u ∈ Rp′ (G) with p′ 6= p.

Lemma 6.13 For all ϕ ∈ Rp (X), ψ ∈ Rq (Y ) and u ∈ Rp′ (X), v ∈ Rq′ (Y ) we have

(ϕ ? ψ, u× v) = (ϕ, u) (ψ, v) . (6.11)

Lemma 6.14 If ϕ ' 0 or ψ ' 0 then ϕ ? ψ ' 0. Consequently, the operation ϕ ? ψ is
well defined for all ϕ ∈ Ωp (X), ψ ∈ Ωq (Y ), and ϕ ? ψ ∈ Ωp+q (Z) .

Proof. If ϕ ' 0 then ϕ = α + dβ for α, β ∈ N ∗ (X) . For all u ∈ Ω∗ (X) and v ∈ Ω∗ (Y )
we have

(α ? ψ, u× v) = (α, u) (ψ, v) = 0

because α ∈ N ∗ (X) and u ∈ A∗ (X) . Similarly,

(dβ ? ψ, u × v) = (dβ, u) (ψ, v) = (β, ∂u) (ψ, v) = 0

because β ∈ N ∗ (X) and ∂u ∈ A∗ (X) . Hence,

(ϕ ? ψ, u× v) = 0.

By Theorem 5.3, Ω∗ (Z) is spanned by the terms like u × v, which implies that ϕ ? ψ
annihilates Ω∗ (Z) and, hence, ϕ ? ψ ' 0.
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Lemma 6.15 For all ϕ ∈ Ωp (X), ψ ∈ Ωq (Y ) , we have

d (ϕ ? ψ) = dϕ ? ψ + (−1)p ϕ ? dψ. (6.12)

Proof. For arbitrary u ∈ Ωp′ (X) and v ∈ Ωq′ (Y ), we have by the duality of d and ∂ and
by the product rule for the cross product:

(d (ϕ ? ψ) , u× v) = (ϕ ? ψ, ∂ (u× v))

= (ϕ ? ψ, ∂u × v) +
(
ϕ ? ψ, (−1)p′ u× ∂v

)

= (ϕ, ∂u) (ψ, v) + (−1)p′ (ϕ, u) (ψ, ∂v)

= (dϕ, u) (ψ, v) + (−1)p (ϕ, u) (dψ, v)

= (dϕ ? ψ, u × v) + (−1)p (ϕ ? dψ, u × v)

= (dϕ ? ψ + (−1)p ϕ ? dψ, u × v) .

The proof is concluded by application of Theorem 5.3 as above.

It follows from (6.12) that ϕ ? ψ is well defined for cohomology classes ϕ ∈ Hp (X),
ψ ∈ Hq (Y ), and ϕ ? ψ ∈ Hp+q (Z) .

Note that for the forms ϕ and ψ from R∗ the product rule (6.12) is not true. In this case
the above proof fails at the last step because R∗ (Z) is not spanned by the terms u× v.
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Theorem 6.16 (Künneth formula for product in cohomology) Let Z = X�Y. We have,
for any r ≥ 0

Ωr (Z) ∼=
⊕

{p,q≥0:p+q=r}

(Ωp (X)⊗ Ωq (Y )) (6.13)

and
Hr (Z) ∼=

⊕

{p,q≥0:p+q=r}

(Hp (X)⊗Hq (Y )) (6.14)

where the isomorphism is given by the map ϕ⊗ ψ 7→ ϕ ? ψ.

Example. Consider the digraph G = T�T where T an 1-torus:

T = ↗

b
•↘

a• ← •c
= ↗

1
•↘

0• ← •2

Let us compute Ωp (G) and Hp (G) .

We know that

G =

Ω0 (T ) = 〈e0, e1, e2〉, Ω1 (T ) = 〈e01, e12, e20〉 and Ωp = {0} for p ≥ 2
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and
H0 (T ) = 〈e0 + e1 + e2〉, H1 (T ) = 〈e01〉.

By the Künneth formula of Theorem 6.16, we obtain

H1 (G) = H0 (T )⊗H1 (T ) + H1 (T )⊗H0 (T )

= 〈
(
ea + eb + ec

)
? e01, eab ?

(
e0 + e1 + e2

)
〉

= 〈ea0 a1 + eb0 b1 + ec0 c1, ea0 b0 + ea1 b1 + ea2 b2〉

= 〈e01 + e34 + e67, e03 + e14 + e25〉

and
H2 (G) = H1 (T )⊗H1 (T ) = 〈eab ? e01〉 = 〈ea0 b0 b1〉 = 〈e034〉

Similarly, we have

Ω2 (G) = Ω1 (T )⊗ Ω1 (T ) = 〈eab, ebc, eca〉 ⊗ 〈e01, e12, e20〉

that is

Ω2 (G) = 〈eab ? e01, eab ? e12, eab ? e20, ebc ? e01, ebc ? e12, ebc ? e20, eca ? e01, eca ? e12, eca ? e20〉.

Next we compute

eab ? e01 = ea0 b0 b1 = e034
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eab ? e12 = ea1 b1 b2 = e145

eab ? e20 = ea2 b2 b0 = e253

ebc ? e01 = eb0 c0 c1 = e367

ebc ? e12 = eb1 c1 c2 = e478

ebc ? e20 = eb2 c2 c0 = e586

eca ? e01 = ec0 a0 a1 = e601

eca ? e12 = ec1 a1 a2 = e712

eca ? e20 = ec2 a2 a0 = e820

⇒ Ω2 (G) = 〈e034, e145, e253, e367, e478, e586, e601, e712, e820〉

Recall for comparison that

Ω2 (G) = 〈e034 − e014, e145 − e125, e253 − e203, e367 − e347,
e478 − e458, e586 − e536, e601 − e671, e712 − e782, e820 − e860〉
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7 Intersection forms

7.1 Summary of d-invariant forms and cohomology

Let V be a finite set, K = R or Q. Space Λp of p-forms is generated by elementary p-forms
ei0...ip , where i0...ip is any sequence of p + 1 vertices. Any p-form ω ∈ Λp has a form

ω =
∑

i0,...,ip∈V

ωi0...ipe
i0...ip where ωi0...ip ∈ K.

The spaces Λp and Λp are dual with the pairing

(
ei0...ip , ej0...jp

)
= δ

i0...ip
j0...jp

.

The exterior derivative d : Λp−1 → Λp is defined by

(dω)i0...ip
=

p∑

q=0

(−1)q ωi0...îq ...ip
for any ω ∈ Λp−1.

Concatenation of p-forms and q-forms is defined by

ei0...ipej0...jq =

{
0, ip 6= j0,
ei0...ipj1...iq , ip = j0.
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The operator d satisfies the product rule with respect to concatenation:

d (ϕψ) = (dϕ) ψ + (−1)p ϕdψ.

Both d and concatenation are well defined on the spaces Rp of regular p-forms spanned
by elementary p-forms ei0...ip with regular paths i0...ip.

Given a digraph G = (V,E), consider the following subspaces of Rp:

Ap = 〈ei0...ip : i0...ip is allowed〉

N p = 〈ei0...ip : i0...ip is non-allowed but regular〉

so that Rp = Ap⊕N p. Set Jp = N p + dN p−1 and define the space of d-invariant p-forms:

Ωp = Rp /Jp = Ap /(Jp ∩ Ap)

so that any d-invariant p-form is an allowed p-form considered modulo Jp.

Both d and concatenation are well defined on spaces Ω∗. The cochain complex

0
d
→ Ω0 d

→ . . .
d
→ Ωn d

→ Ωn+1 d
→ . . . (7.1)

is dual to the chain complex

0
∂
← Ω0

∂
← . . .

∂
← Ωn

∂
← Ωn+1

∂
← . . .
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The cohomology groups
Hp = ker d|Ωp/ Im d|Ωp−1

and the homology groups Hp are dual. Concatenation is well defined on cohomology
classes: for ϕ ∈ Hp and ψ ∈ Hq we have ϕψ ∈ Hp+q.

7.2 Graded symmetry

Conjecture 7.1 The concatenation of cohomology classes is graded-symmetric: for all
ϕ ∈ Hp and ψ ∈ Hq

ϕψ = (−1)pq ψϕ. (7.2)

Note that concatenation is not graded-symmetric in Ω∗×Ω∗ → Ω∗. For example, if a→ b
then ea ∈ Ω0, eab ∈ Ω1 and

eaeab = eab and eabea = 0.

On the other hand, it is easy to verify (7.2) if p = 0. For example, if G is connected then
|H0| = 1 and, hence, ϕ = cσ where σ =

∑
i e

i, and (7.2) is trivially satisfied.
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Example. Let G = T�T where T = {0→ 1→ 2→ 0} is an 1-torus.

We have seen above that

H1 (G) = 〈ϕ1, ϕ2〉

where

ϕ1 = e01 + e34 + e67

ϕ2 = e03 + e14 + e25

Let us verify that the concatenation is graded symmetric in H1, that is,

ϕψ = −ψϕ for all ϕ, ψ ∈ H1.

We clearly have
ϕ1ϕ1 = ϕ2ϕ2 = 0
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while
ϕ1ϕ2 =

(
e01 + e34 + e67

) (
e03 + e14 + e25

)
= e014

and
ϕ2ϕ1 =

(
e03 + e14 + e25

) (
e01 + e34 + e67

)
= e034.

It remains to verify that
e034 ∼ −e014 . (7.3)

For that we use that
H2 (G) = 〈u〉,

where

u = (e034 − e014) + (e145 − e125) + (e253 − e203) + (e367 − e347) + (e478 − e458)

+ (e586 − e536) + (e601 − e671) + (e712 − e782) + (e820 − e860)

(see p. 99). Since (
e034, u

)
= 1 and

(
e014, u

)
= −1,

we see that (7.3) is satisfied.
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7.3 Intersection form and signature

Definition. We say that a homology class u ∈ Hr is proper if, for all ϕ ∈ Hp and
ψ ∈ Hq (G)

(ϕψ, u) = (−1)pq (ψϕ, u) . (7.4)

If Conjecture 7.1 is true then all homology classes are proper.

For any homology class u ∈ H2p consider the following bilinear form

Qu (ϕ, ψ) = (ϕψ, u) where ϕ, ψ ∈ Hp,

that is called the intersection form of u. If u is proper and if p is even then (7.4) implies
that Qu is a symmetric bilinear form in Hp. Hence, the notion of signature of Qu is
well-defined:

σ (Qu) = a− b,

where a and b are the numbers of positive resp. negative eigenvalues of Qu.

Definition. Let u ∈ Hr be proper. Define the signature σ (u) of u as follows:
- if r is divisible by 4 then set σ (u) = σ (Qu) ;
- if r is not divisible by 4 then set σ (u) = 0.
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Theorem 7.2 Assume that the homology classes u ∈ H∗ (X) and v ∈ H∗ (Y ) are proper.
Then u× v ∈ H∗ (X�Y ) is also proper and

σ(u× v) = σ(u)σ(v). (7.5)

Conjecture 7.3 There exists a digraph G and a proper homology class w ∈ H4 (G) such
that σ (w) 6= 0.

Note that such a path w cannot be constructed as a product w = u× v because u and v
must have orders < 4 whence σ (u) = σ (v) = 0, and by Theorem 7.2 also σ (w) = 0.

Here is an approach how one can try to construct w ∈ H4 with σ (w) 6= 0. It is known that
σ (CP 2) 6= 0 and the Betti numbers of CP2 are 1, 0, 1, 0, 1. We may try to find digraphs
with the same Betti numbers and compute σ (w) for a generator w ∈ H4. Let ϕ be a
generator of H2. Then the question amounts to verification of the fact that

Qw (ϕ, ϕ) = (ϕϕ,w) 6= 0.
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One of digraphs with Betti = 1, 0, 1, 0, 1
is shown here:

Another possibility is as follows. Let S be a simplicial complex that is a triangulation of
CP 2 with the same Betti numbers 1, 0, 1, 0, 1. Let GS be the Hasse diagram of S, that is,
the vertices of GS are all simplices of S, and for two simplices s, t ∈ S we have an arrow
s→ t in GS if and only if t is a face of s of the codimension 1.

By Theorem 2.1, we have
Hsimp

∗ (S) ' H∗ (GS) ,

Hence, the Betti numbers of GS are also 1, 0, 1, 0, 1.
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If Conjecture 7.3 is true then a question arises how to characterize homology classes u
with σ (u) 6= 0. For simplicity we denote by u also its representative path. Note that if
∂u = 0 on G then also ∂u = 0 on any larger digraph G′ ⊃ G. Hence, u determines a
homology class not only on G, but also on G′. However, it can happen that u 6= 0 in
H∗ (G) while u = 0 in H∗ (G′), that is, u is a boundary on G′.

Conjecture 7.4 Assume that u ∈ H∗ (G) is proper. Suppose that u is a boundary on a
certain larger digraph G′ ⊃ G. Then σ (u) = 0.

If Conjecture 7.3 is true then G′ cannot be arbitrary. Indeed, by adding all possible arrows
to G, we obtain a complete digraph G′ with H∗ (G′) = {0} so that all cycles in G′ are
boundaries. Hence, one must put certain restrictions on G′.

Note that in order to determine a symmetric bilinear form Qu up to isomorphism, it is not
enough to know just the signature σ (Qu): one needs also the rank of Qu (=the number
of non-zero eigenvalues) and/or the nullity of Qu (=the number of zero eigenvalues). If
u ∈ H2p then

rank (Qu) + nullity (Qu) = dim Hp = βp.

Problem 7.5 How to compute rank (Qu×v) and/or nullity (Qu×v)?
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7.4 An example of computation of intersection form

For any p-path u we write |u| = p, and for any p-form ϕ we write |ϕ| = p.

Lemma 7.6 Let X,Y be two digraphs and Z = X�Y . Let u ∈ R∗ (X), v ∈ R∗ (Y ) and
ϕ1, ϕ2 ∈ R

∗ (X), ψ1, ψ2 ∈ R
∗ (Y ). Then for pairing on Z we have

((ϕ1 ? ψ1) (ϕ2 ? ψ2) , u× v) = (−1)|ψ1||ϕ2| (ϕ1ϕ2, u) (ψ1ψ2, v) (7.6)

that is,
Qu×v (ϕ1 ? ψ1, ϕ2 ? ψ2) = (−1)|ψ1||ϕ2| Qu (ϕ1, ϕ2) Qv (ψ1, ψ2) .

If {ϕi} is a basis in H∗ (X) and
{
ψj

}
is a basis in H∗ (Y ) then

{
ϕi ? ψj

}
is a basis in

H∗ (Z) by the Künneth formula of Theorem 6.16. Hence, Lemma 7.6 allows to determine
Qu×v via Qu and Qv.
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Example. Consider the digraph G = T 4� where T = {0→ 1→ 2→ 0} is 1-torus.

Here is X = T 2� = T�T :

while G = X�X.

β (T ) = {1, 1}
β(X) = {1, 2, 1}
β (G) = {1, 4, 6, 4, 1}

X =

We compute Qw in H2 (G), where w is a generator of H4 (G) . By the Künneth formula
we have

H2 (G) = H2 (X)⊗H0 (X) + H1 (X)⊗H1 (X) + H0 (X)⊗H2 (X)

and
H4 (G) = H2 (X)⊗H2 (X) .

We have seen above that

H0 (X) = 〈ϕ0〉 where ϕ0 = e0 + ... + e8
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H1 (X) = 〈ϕ1, ϕ2〉 where ϕ1 = e01 + e34 + e67, ϕ2 = e03 + e14 + e25

H2 (X) = 〈ω〉 where ω = e034,

and H2 (X) = 〈u〉 where

u = (e034 − e014) + (e145 − e125) + (e253 − e203) + (e367 − e347) + (e478 − e458)

+ (e586 − e536) + (e601 − e671) + (e712 − e782) + (e820 − e860)

Hence,
H4 (G) = 〈w〉 where w = u× u

and
H2 (G) = 〈ϕ0 ? ω, ϕ1 ? ϕ1, ϕ1 ? ϕ2, ϕ2 ? ϕ1, ϕ2 ? ϕ2, ω ? ϕ0, 〉

Computation by means of (7.6) shows that the matrix Mw of Qw in this basis of H2 (G)
is antidiagonal:

Mw =











0 1
−1

1
1

−1
1 0











.
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This matrix has the eigenvalues 1 and −1, each with multiplicity 3. Hence,

σ (w) = 0, rank (w) = 6, nullity (w) = 0.

The signature can also be computed by Theorem 7.2: σ (w) = σ (u)2 = 0 because |u| = 2.

Let us show how to compute the entries of Mw. For example, the (3, 4)-entry is

Qw (ϕ1 ? ϕ2, ϕ2 ? ϕ1) = ((ϕ1 ? ϕ2) (ϕ2 ? ϕ1) , u× u)

= − (ϕ1ϕ2, u) (ϕ2ϕ1, u)

= −
(
e014, u

) (
e034, u

)
= − (−1) ∙ 1 = 1,

the (2, 5)-entry is

Qw (ϕ1 ? ϕ1, ϕ2 ? ϕ2) = ((ϕ1 ? ϕ1) (ϕ2 ? ϕ2) , u× u)

= − (ϕ1ϕ2, u) (ϕ1ϕ2, u)

= −
(
e014, u

) (
e014, u

)
= −1,

and the (1, 6)-entry is

Qu (ϕ0 ? ω, ω ? ϕ0) = ((ϕ0 ? ω) (ω ? ϕ0) , u× u)

= (ϕ0ω, u) (ωϕ0, u)

=
(
e034, u

) (
e034, u

)
= 1.
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8 Hodge Laplacian

Here K = R. Let us fix an arbitrary inner product 〈∙, ∙〉 in each of the spaces Rp so that
we have an inner product also in all Ωp. In all examples we use the natural inner product.

8.1 Definition and spectral properties of Δp

For the operator ∂ : Ωp → Ωp−1 consider the adjoint operator ∂∗ : Ωp−1 → Ωp so that

〈∂u, v〉 = 〈u, ∂∗v〉 for all u ∈ Ωp and v ∈ Ωp−1.

Definition. Define the Hodge-Laplace operator on paths Δp : Ωp → Ωp by

Δpu = ∂∗∂u + ∂∂∗u. (8.1)

Here we use the following operators ∂ and ∂∗: Ωp−1

∂

�
∂∗

Ωp and Ωp

∂∗

�
∂

Ωp+1.

Proposition 8.1 The operator Δp is self-adjoint and non-negative definite.
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Proof. We have for all u, v ∈ Ωp

〈Δpu, v〉 = 〈∂∗∂u + ∂∂∗u, v〉 = 〈∂u, ∂v〉+ 〈∂∗u, ∂∗v〉 = 〈u, Δpv〉

so that Δp is symmetric, and

〈Δpu, u〉 = ‖∂u‖2 + ‖∂∗u‖2 ≥ 0, (8.2)

so that Δp ≥ 0. Hence, the spectrum of Δp is real, non-negative and consists of a finite
sequence of eigenvalues.

Proposition 8.2 Denote D = maxi∈V deg (i) . If 〈∙, ∙〉 is natural then spec Δ0 ⊂ [0, 2D] .

Proof. By the variational principle, it suffices to prove that for all u ∈ Ω0

〈Δ0u, u〉

‖u‖2
≤ 2D.

Since ∂u = 0, we have by (8.2)

〈Δ0u, u〉 = ‖∂∗u‖2 .
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Since for any i→ j

〈∂∗u, eij〉 = 〈u, ∂eij〉 = 〈u, ej − ei〉 = uj − ui,

it follows that

‖∂∗u‖2 =
∑

i→j

(
uj − ui

)2
≤ 2

∑

i→j

(
uj
)2

+ 2
∑

i→j

(
ui
)2

= 2
∑

i

deg (i)
(
ui
)2
≤ 2D ‖u‖2 , (8.3)

whence the claim follows.

The bottom eigenvalue of Δ0 is always 0 because if all uk = 1 then by (8.3) ∂∗u = 0 and,
hence, Δ0u = ∂∂∗u = 0. If G = KD,D – a complete bipartite graph, then G is D-regular
and 2D is the top eigenvalue of Δ0.

For a general p, the multiplicity of 0 as an eigenvalue of Δp is equal to the Betti number
βp as we will see below.

Problem 8.3 Find a reasonable upper bounds for spec Δp. The question amounts to ob-
taining an upper bound for the Rayleigh quotient for non-zero u ∈ Ωp :

‖∂u‖2+‖∂∗u‖2

‖u‖2 ≤?

Problem 8.4 Find estimates of the eigenvalues of Δp in terms of geometric and combi-
natorial properties of G.

146



8.2 Matrix of Δp

Let {αi} be an orthonormal basis in Ωp, {βm} be an orthonormal basis in Ωp−1 and {γn}
be an orthonormal basis in Ωp+1 :

Ωp−1

∂

�
∂∗

Ωp

∂

�
∂∗

Ωp+1

{βm} {αi} {γn}

The operator ∂ : Ωp → Ωp−1 has in the bases {αi} and {βm} the matrix

B = (〈βm, ∂αi〉)m,i (8.4)

where m is the row index and i is the column index.

Similarly, the operator ∂∗ : Ωp → Ωp+1 has the matrix

C = (〈γn, ∂
∗αi〉)n,i = (〈∂γn, αi〉)n,i . (8.5)

Since Δp = ∂∗∂ + (∂∗)∗ ∂∗, we obtain the matrix of Δp in the basis {αi}:

matrix of Δp = BT B + CT C . (8.6)
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More explicitly, the (i, j)-entry of the matrix of Δp in the basis {αi} is given by

〈Δpαi, αj〉 =
∑

m

〈∂αi, βm〉 〈∂αj, βm〉+
∑

n

〈αi, ∂γn〉 〈αj, ∂γn〉 . (8.7)

Example. Recall that Ω−1 = {0}, Ω0 = {ei : i ∈ V } and Ω1 = 〈ekl : k → l〉 . Assuming
that 〈∙, ∙〉 is the natural inner product, we obtain by (8.7) that the matrix of Δ0 is

〈Δ0ei, ej〉 =
∑

k→l

〈ei, ∂ekl〉 〈ej, ∂ekl〉

=
∑

k→l

〈ei, el − ek〉 〈ej, el − ek〉

=
∑

k→l

(δil − δik) (δjl − δjk)

=
∑

k→i

δij +
∑

i→l

δij − 1{i→j} − 1{j→i}

= deg (i) δij − 1{i→j} − 1{j→i}.

If G has no double arrow then the matrix of Δ0 = diag (deg (i)) − 1{i∼j} where 1{i∼j} is
the adjacency matrix of G. Hence, Δ0 is the usual unnormalized Laplacian (=Kirchhoff
operator) on functions on G.

Consequently, trace Δ0 =
∑

i∈V deg (i) = 2E.
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8.3 Examples of computation of Δ1

Let us compute Δ1 for the natural inner product. We use the orthonormal bases {em} in
Ω0 and {eij : i→ j} in Ω1. Let {γn} be an orthonormal basis in Ω2.
The matrix of Δ1 has dimensions E × E and, by (8.7), its entries are

〈Δ1eij , ei′j′〉 =
∑

m

〈∂eij , em〉 〈∂ei′j′ , em〉+
∑

n

〈eij , ∂γn〉 〈ei′j′ , ∂γn〉 (8.8)

for all arrows i→ j and i′ → j ′. For the first sum in (8.8) we have
∑

m

〈∂eij , em〉 〈∂ei′j′ , em〉 =
∑

m

〈ej − ei, em〉 〈ej′ − ei′ , em〉 =
∑

m

(δjm − δim) (δj′m − δi′m)

= δjj′ − δij′ − δji′ + δii′ =: [ij, i′j ′] .

The values of [ij, i′j ′] are shown here:

Hence, in the case p = 1, we have

BT B = ([ij, i′j ′]) .

In particular, diagonal entries of BT B are 2.
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Example. Consider an 1-torus

T =

In this case Ω1 = 〈e01, e12, e20〉, Ω2 = {0} , |H1| = 1. Hence, we obtain

the matrix of Δ1 = BT B = ([ij, i′j ′])

=







e01 e12 e20

e01 [01, 01] [01, 12] [01, 20]
e12 [12, 01] [12, 12] [12, 20]
e20 [20, 01] [20, 12] [20, 20]







=




2 −1 −1
−1 2 −1
−1 −1 2





The eigenvalues of Δ1 are {0, 3, 3} .
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Example. Consider a dodecahedron (like on p.4.3):

We have V = 20, E = 30,

Ω2 = {0} and |H1| = 11.

In particular, CT C = 0.

The matrix of Δ1 = BT B is shown here:

The eigenvalues of Δ1 are:

011, 25, 34, 54,
(
3±
√

5
)
3
,

where the subscripts show multiplicity.
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For a general digraph G with Ω2 6= {0}, let us compute the entry 〈eij , ∂γn〉 of the matrix
C assuming that γn = γ is a triangle or square (note that although Ω2 has always a basis
of triangles and squares, the squares in this basis do not have to be orthogonal).
If γ = eabc is a triangle then we have

〈eij , ∂γ〉 = 〈eij , eab + ebc − eac〉 = [ij, γ] ,

where

[ij, γ] :=






1, if ij ∈ {ab, bc}
−1 if ij = ac
0, otherwise.

If γ =
eabc−eab′c√

2
is a (normalized) square then

〈eij , ∂γ〉 =
1
√

2
〈eij , eab + ebc − eab′ − eb′c〉 =

1
√

2
[ij, γ] ,

where

[ij, γ] =






1, if ij ∈ {ab , bc}
−1 if ij ∈ {ab′, b′c}
0, otherwise.
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Example. Let G be a triangle {0→ 1→ 2, 0→ 2} . Then Ω1 = 〈e01, e12, e02〉 and

BT B = ([ij, i′j ′]) =







e01 e12 e02

e01 [01, 01] [01, 12] [01, 20]
e12 [12, 01] [12, 12] [12, 20]
e02 [02, 01] [02, 12] [02, 02]





 =




2 −1 1
−1 2 1
1 1 2



 .

The basis {γn} of Ω2 consists of a single triangle γ = e012 so that

C =

(
e01 e12 e02

e012 [01, γ] [12, γ] [02, γ]

)

=
(
1 1 −1

)

CT C =




1 1 −1
1 1 −1
−1 −1 1





matrix of Δ1 =




2 −1 1
−1 2 1
1 1 2



+




1 1 −1
1 1 −1
−1 −1 1



 =




3 0 0
0 3 0
0 0 3



 .
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Example. Let G be a square {0→ 1→ 3, 0→ 2→ 3}. Then Ω1 = 〈e01, e02, e13, e23〉 and

BT B = ([ij, i′j ′]) =









e01 e02 e13 e23

e01 [01, 01] [01, 02] [01, 13] [01, 23]
e02 [02, 01] [02, 02] [02, 13] [02, 23]
e13 [12, 01] [13, 02] [13, 13] [13, 23]
e23 [23, 01] [23, 02] [23, 13] [23, 23]









=







2 1 −1 0
1 2 0 −1
−1 0 2 1
0 −1 1 2







The basis {γn} of Ω2 consists of a single square γ = 1√
2
(e013 − e023) so that

C =
1
√

2

(
e01 e02 e13 e23

γ [01, γ] [02, γ] [13, γ] [23, γ]

)

=
1
√

2

(
1 −1 1 −1

)

CT C =
1

2







1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1







matrix of Δ1= BT B + CT C =







5
2

1
2
−1

2
−1

2
1
2

5
2
−1

2
−1

2

−1
2
−1

2
5
2

1
2

−1
2
−1

2
1
2

5
2





 , the eigenvalues are {23, 4} .
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Example. Consider a following digraph:

Here |Ω1| = E = 6, |Ω2| = 2 and

Ω2 = 〈e014 − e024, e014 − e034〉

However, this basis is not orthogonal.

Orthogonalization gives an orthonormal
basis in Ω2:

γ1 = 1√
2
(e014 − e024) ,

γ2 = 1√
6
(e014 + e024 − 2e034) .

Since

∂γ1 = 1√
2
(e01 + e14 − e02 − e24) ,

∂γ2 = 1√
6
(e01 + e04 + e02 + e24 − 2e03 − 2e34) ,
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we compute the matrix C:

C = (〈eij , ∂γn〉) =




e01 e14 e02 e24 e03 e34

∂γ1
1√
2

1√
2
− 1√

2
− 1√

2
0 0

∂γ2
1√
6

1√
6

1√
6

1√
6
− 2√

6
− 2√

6





and

CT C =











2
3

2
3
−1

3
−1

3
−1

3
−1

3
2
3

2
3
−1

3
−1

3
−1

3
−1

3

−1
3
−1

3
2
3

2
3
−1

3
−1

3

−1
3
−1

3
2
3

2
3
−1

3
−1

3

−1
3
−1

3
−1

3
−1

3
2
3

2
3

−1
3
−1

3
−1

3
−1

3
2
3

2
3











We compute also B:

BT B = ([eij , ei′j′ ]) =











2 −1 1 0 1 0
−1 2 0 1 0 1
1 0 2 −1 1 0
0 1 −1 2 0 1
1 0 1 0 2 −1
0 1 0 1 −1 2










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whence

matrix of Δ1 = BT B + CT C =











8
3
−1

3
2
3
−1

3
2
3
−1

3

−1
3

8
3
−1

3
2
3
−1

3
2
3

2
3
−1

3
8
3
−1

3
2
3
−1

3

−1
3

2
3
−1

3
8
3
−1

3
2
3

2
3
−1

3
2
3
−1

3
8
3
−1

3

−1
3

2
3
−1

3
2
3
−1

3
8
3











.

The spectrum of Δ1 is {24, 3, 5} .

Example. Consider the following pyramid:

Here |Ω0| = 5, |Ω1| = 8, |Ω2| = 5,

and

Ω2 = 〈e014, e024, e134, e234, e013 − e023〉 .
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We have

BT B = ([ij, i′j ′]) =

















e01 e02 e13 e23 e04 e14 e24 e34

e01 2 1 −1 0 1 −1 0 0
e02 1 2 0 −1 1 0 −1 0
e13 −1 0 2 1 0 1 0 −1
e23 0 −1 1 2 0 0 1 −1
e04 1 1 0 0 2 1 1 1
e14 −1 0 1 0 1 2 1 1
e24 0 −1 0 1 1 1 2 1
e34 0 0 −1 −1 1 1 1 2

















C =











e01 e02 e13 e23 e04 e14 e24 e34

e014 1 0 0 0 −1 1 0 0
e024 0 1 0 0 −1 0 1 0
e134 0 0 1 0 0 −1 0 1
e234 0 0 0 1 0 0 −1 1

1√
2
(e013 − e023)

1√
2
− 1√

2
1√
2
− 1√

2
0 0 0 0










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CT C =















3
2
−1

2
1
2
−1

2
−1 1 0 0

−1
2

3
2
−1

2
1
2
−1 0 1 0

1
2
−1

2
3
2
−1

2
0 −1 0 1

−1
2

1
2
−1

2
3
2

0 0 −1 1
−1 −1 0 0 2 −1 −1 0
1 0 −1 0 −1 2 0 −1
0 1 0 −1 −1 0 2 −1
0 0 1 1 0 −1 −1 2















matrix of Δ1 = BT B + CT C =















7
2

1
2
−1

2
−1

2
0 0 0 0

1
2

7
2
−1

2
−1

2
0 0 0 0

−1
2
−1

2
7
2

1
2

0 0 0 0
−1

2
−1

2
1
2

7
2

0 0 0 0
0 0 0 0 4 0 0 1
0 0 0 0 0 4 1 0
0 0 0 0 0 1 4 0
0 0 0 0 1 0 0 4















The eigenvalues of Δ1 are {35, 53}.
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Example. Let G be an (n− 1)-simplex, that is, the vertices are {0, 1, ..., n − 1} and

i→ j ⇔ i < j.

Let us show that
A := matrix of Δ1 = diag (n) .

Let ij and i′j′ be two arrows. Then (ij, i′j′)-entry of A is

Aij,i′j′ =
(
BT B

)
ij,i′j′

+
(
CT C

)
ij,i′j′

= [ij, i′j ′] +
∑

n

[ij, γn] [i′j ′, γn] , (8.9)

where {γn} is an orthonormal basis of Ω2 that in this case consists of all triangles in G.

If ij = i′j ′ then [ij, i′j ′] = 2. Since the arrow ij belongs to (n− 2) triangles γn, we obtain

Aij,ij = 2 + (n− 2) = n

that is, all the diagonal entries of Δ1 are equal to n. It remains to show that if ij 6= i′j ′

then
Aij,i′j′ = 0. (8.10)

If ij and i′j′ have no common vertex then they cannot belong to the same triangle γn

and, hence, all the terms in (8.9) vanish.
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Let i = i′ while j 6= j ′:

↗

j
•

i
i′• → •

j′

Then [ij, i′j ′] = 1 while [ij, γn] [i′j ′, γn] does not vanish only of γn is the triangle formed
by i, j, j ′. In this case the arrows ij and i′j ′ have opposite orientations with respect to γn,
whence [ij, γn] [i′j ′, γn] = −1 and (8.10).

Let i = j ′ while j 6= i′ :

↗

j
•

i
j′• ← •

i′

Then [ij, i′j ′] = −1 while [ij, γn] [i′j ′, γn] does not vanish only if γn is the triangle i′ij, and
in this case the arrows ij and i′j ′ have the same orientation with respect to γn, whence
[ij, γn] [i′j ′, γn] = 1 and again (8.10).

The cases j = i′ and j = j ′ are similar.

Problem 8.5 Describe all digraphs where Δ1 has only one eigenvalue.

Problem 8.6 Devise a program for computing the matrix and spectrum of Δ1 for large
digraphs.
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8.4 Trace of Δ1

Recall that
trace Δ0 =

∑

i∈V

deg (i) = 2E.

There is a similar result for the trace of Δ1.

Theorem 8.7 Let T be the number of triangles in Ω2, S be the number of linearly inde-
pendent squares in Ω2, and D be the number of double arrows a� b. Then

trace Δ1 = 2E + 3T + 2S + 4D. (8.11)

By a square here we mean an allowed 2-path eabc − eab′c such that a 6= c and a 6→ c.

For example, for the pyramid on p.157 we have E = 8, T = 4, S = 1 and D = 0, whence

trace Δ1 = 2 ∙ 8 + 3 ∙ 4 + 2 ∙ 1 = 30,

which matches the sum of the eigenvalues as well as the sum of the diagonal values of the
matrix of Δ1 in this example.
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Proof. Let {γn} be an orthogonal basis in Ω2. Let us first prove that

trace Δ1 = 2E +
∑

n

‖∂γn‖
2

‖γn‖
2 . (8.12)

By (8.6), trace Δ1 = trace BT B + trace CT C. As we have seen above (see p.149), all the
diagonal entries of BT B are equal to 2 so that

trace BT B = 2E.

Let us compute trace CT C. Without loss of generality assume that the basis {γn} is
orthonormal basis. Let {αi} be the sequence of all arrows. Since {αi} is an orthonormal
basis in Ω1, we have by (8.5)

C = (〈∂γn, αi〉)n,i

and, hence, (
CT C

)
ij

=
∑

n

〈∂γn, αi〉 〈∂γn, αj〉 .

It follows that

trace CT C =
∑

i

∑

n

〈∂γn, αi〉
2 =

∑

n

∑

i

〈∂γn, αi〉
2 =

∑

n

‖∂γn‖
2 ,

whence (8.12) follows.
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As we know, Ω2 has a basis {γn} that consists of triangles, squares and double arrows.
The only non-orthogonal pairs in this basis can be pairs of squares containing the same
elementary 2-path, like eabc− eab′c and eabc− eab′′c. Assume first that the entire basis {γn}
is orthogonal.

A double arrow a � b gives two elements of the basis {γn}: eaba and ebab. If γn = eaba

then
‖γn‖

2 = 1, ∂γn = eba + eab, ‖∂γn‖
2 = 2

and
‖∂γn‖

2

‖γn‖
2 = 2.

The same is true for γn = ebab so that each double arrow contributes 4 to the sum

∑

n

‖∂γn‖
2

‖γn‖
2 . (8.13)

If γn is a triangle eabc then

‖γn‖
2 = 1, ∂γn = ebc − eac + eab, ‖∂γn‖

2 = 3,
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whence
‖∂γn‖

2

‖γn‖
2 = 3,

so that each triangle contributes 3 to the sum (8.13).

If γn is a square eabc − eab′c then

‖γn‖
2 = 2, ∂γn = eab + ebc − eab′ − eb′c, ‖∂γn‖

2 = 4,

so that
‖∂γn‖

2

‖γn‖
2 = 2,

so that each square contributes 2 to the sum (8.13). Hence, we obtain that the sum (8.13)
is equal to 3T + 2S + 4D, which proves (8.11) in this case.

In the general case, assume that there is an allowed 2-path eabc that forms m squares:

eabc − eab1c, eabc − eab2c, ..., eabc − eabmc .

They are linearly independent but not orthogonal. Orthogonalization gives a sequence

ω1 = eabc − eab1c
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ω2 = eabc + eab1c − 2eab2c

...

ωk = eabc + ... + eabk−1c − keabkc

...

ωm = eabc + ... + eabn−1c −meabmc.

(see Example on p.71). We have

∂ωk = (eab + ebc) + ... +
(
eabk−1

+ ebk−1c

)
− k (eabk

+ ebkc)

‖∂ωk‖
2 = 2k + 2k2, ‖ωk‖

2 = k + k2,

whence
‖∂ωk‖

2

‖ωk‖
2 = 2.

Hence, each ωk contributes 2 to the sum (8.13), which completes the proof.

Since the sum of all eigenvalues is trace Δ1 and the eigenvalue 0 has the multiplicity β1,
we obtain that the average value of positive eigenvalues is

λaverage =
trace Δ1

E − β1

.
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8.5 An estimate of λmax (Δ1)

Denote by λmax (A) the maximal eigenvalue of a symmetric operator A. Recall that, by
Proposition 8.2,

λmax (Δ0) ≤ 2 max
i

deg (i) .

For any arrow i → j in G denote by degΔ (ij) the number of triangles containing the
arrow i→ j, and by deg� (ij) the number of squares containing i→ j.

Theorem 8.8 Assume that there is an orthogonal basis {γn} in Ω2 that consists of tri-
angles and squares. Then

λmax (Δ1) ≤ 2 max
i

deg (i) + 3 max
i→j

degΔ (ij) + 2 max
i→j

deg� (ij) . (8.14)

Proof. Recall that

λmax (Δ1) = sup
u∈Ω1\{0}

(
‖∂u‖2

‖u‖2
+
‖∂∗u‖2

‖u‖2

)

.

Since the operators ∂ : Ω1 → Ω0 and ∂∗ : Ω0 → Ω1 are dual, the have the same norm.
The norm of the latter was estimated in the proof of Proposition 8.2 (cf. (8.3), whence
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we obtain the same estimate for the norm of the former, that is, for any non-zero u ∈ Ω1,

‖∂u‖2

‖u‖2
≤ 2 max

i∈V
deg (i) .

Let us prove that
‖∂∗u‖2

‖u‖2
≤ 3 max

i→j
degΔ (ij) + 2 max

i→j
deg� (ij) . (8.15)

Let u =
∑

i→j uijeij and, hence,

‖u‖2 =
∑

i→j

(
uij
)2

Using the basis {γn} in Ω2, we obtain

∂∗u =
∑

n

〈∂∗u, γn〉
2

‖γn‖
2 =

∑

n

〈u, ∂γn〉
2

‖γn‖
2 .

If γn is a triangle eabc then ‖γn‖ = 1,

〈u, ∂γn〉 = 〈u, eab − eac + eab〉 = uab − uac + uab,
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〈u, ∂γn〉
2 ≤ 3

(
(uab)2 + (uac)2 + (uab)2

)
.

Summing up over all triangles γn and using that any arrow i → j occurs in degΔ (ij)
triangles, we obtain

∑

n:γn is triangle

〈u, ∂γn〉
2

‖γn‖
2 ≤ 3

∑

i→j

(
uij
)2

degΔ (ij) ≤ 3 ‖u‖2 max
i→j

degΔ (ij) . (8.16)

Let now γn be a square eabc − eab′c (such that a 6→ c). Then ‖γn‖
2 = 2,

〈u, ∂γn〉 =
〈
u, eab + ebc − eab′ + eb/c

〉
= uab + ubc − uab′ − ub′c,

〈u, ∂γn〉
2 ≤ 4

(
(uab)2 + (ubc)2 + (uab′)2 + (ub′c)2

)
.

Summing up over all squares γn and using that any arrow i → j occurs in deg� (ij)
squares, we obtain

∑

n:γn is square

〈u, ∂γn〉
2

‖γn‖
2 ≤ 2

∑

i→j

(
uij
)2

deg� (ij) ≤ 2 ‖u‖2 max
i→j

deg� (ij) . (8.17)

Adding up (8.16) and (8.17), we obtain (8.15).

Problem 8.9 How sharp is the upper bound of λmax (Δ1) in (8.14)? Is it attained on
some digraphs? Extend (8.14) to the general case.
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8.6 Examples of computation of spec Δ1

Example. Consider a 3-cube:

Here V = 8, E = 12, |Ω2| = 6,
Hp = {0} for p ≥ 1.

Space Ω2 is generated by 6 squares.

Using S = 6, T = 0 we obtain

trace Δ1 = 2E + 2S = 2 ∙ 12 + 2 ∙ 6 = 36.

Since β1 = 0, we obtain

λaverage =
1

E − β1

trace Δ1 = 3.

In fact, the eigenvalues of Δ1 are

{26, 32, 43, 6} ,

where the subscript denotes the multiplicity.
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Example. Let G be the n-cube, that is, G = I�I�...�I︸ ︷︷ ︸
n times

where I = {0→ 1} .

Then
V = 2n, E = n2n−1, S = |Ω2| = 2n−3n (n− 1)

and T = 0. Hence,
trace Δ1 = 2E + 2S = 2n−2n (n + 3)

and

λaverage =
1

E − β1

trace Δ1 =
2n−2n (n + 3)

n2n−1
=

n + 3

2
.

For example, for a 4-cube we obtain trace Δ1 = 22 ∙ 4 ∙ 7 = 112. The full spectrum of Δ1

on a 4-cube is {210, 38, 49, 64, 8} .

For a 5-cube we obtain trace Δ1 = 23 ∙ 5 ∙ 8 = 320. The full spectrum of Δ1 on a 5-cube is
{215, 320, 425, 54, 610, 85, 10} .

Problem 8.10 Determine the full spectrum of Δ1 on the n-cube. In particular, prove
that λmax = 2n and λmin = 2n(n+1)

2

. It seems that spec Δ1 consists of all even integers from

2 to 2n and of all odd integers from 3 to n.
A difficulty is that the method of separation of variables does not work for Δ 1 on Cartesian
products.
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Example. Consider an octahedron:

We have V = 6, E = 12, |Ω2| = 8.

The space Ω2 is generated by 8 triangles:

Ω2 = 〈e024 , e025 , e034 , e035 , e124 , e125 , e134 , e135〉

Hence, T = 8, S = 0 and we obtain

trace Δ1 = 2E + 3T = 2 ∙ 12 + 3 ∙ 8 = 48.

Since β1 = 0, we obtain

λaverage =
1

E − β1

trace Δ1 =
48

12
= 4.

The eigenvalues of Δ1 are
{23, 46, 63} .
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Consider a family of digraphs: X0 = {0, 1} and

Xn+1 = sus2 Xn.

For example, X2 is the above octahedron and X1 is its middle section (a diamond). The
digraph Xn can be regarded as an analogue of n-sphere.

Proposition 8.11 We have for n ≥ 1

spec Δ1 (Xn) =
{

2 (n− 1)n(n+1)
2

, 2nn(n+1), 2 (n + 1)n(n+1)
2

}
. (8.18)

For example,
spec Δ1 (X1) = {0, 22, 4}

and
spec Δ1 (X2) = {23, 46, 63}

as we have seen above. For n = 3 we have

spec Δ1 (X3) = {46, 612, 86} .
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Example. Consider 2-torus G = T�T where T = {0→ 1→ 2→ 0}.

Here V = 9, E = 18, |Ω2| = 9, |H1| = 2.
Space Ω2 is generated by 9 squares, whence

trace Δ1 = 2 ∙ 18 + 2 ∙ 9 = 54.
In fact, the full spectrum of Δ1 on 2-torus is

{02, 1.54, 38, 64} .

For a 3-torus G = T�3 we have E = 81, S = |Ω2| = 81, |H1| = 3.
Hence, trace Δ1 = 2 ∙ 81 + 2 ∙ 81 = 324. The full spectrum of Δ1 on 3-torus is

{03, 1.512, 330, 4.516, 612, 98}.

For n-torus G = T�n we have E = n3n, S = |Ω2| =
n(n−1)

2
3n, |H1| = n, whence

trace Δ1 = 2E + 2S = n (n + 1) 3n and λaverage = (n + 1) 3n

3n−1
.

Problem 8.12 Compute the full spectrum of Δ1 for n-torus. In particular, prove that
λmax = (3n)2n . In fact, λmin = 0n which is a consequence of β1 = n.
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Example. Consider the icosahedron:

Here V = 12, E = 30, |Ω2| = 25

Space Ω2 is generated by 20 triangles
and 5 squares (see p.76).

Hence, T = 20, S = 5 and

trace Δ1 = 2 ∙ 30 + 3 ∙ 20 + 2 ∙ 5 = 130.

Since β1 = 0, we have
λaverage = 1

E−β1
trace Δ1 = 130

30
= 4.333...

In fact, λmin = 0.810... and λmax =
(
5 +
√

5
)
3
. Other multiple eigenvalues are 65 and

(
5−
√

5
)
3
. The full spectrum of Δ1 is shown here:
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For icosahedron
the matrix of Δ1 =

176



Example. Consider a rhombicuboctahedron (see also p.73):

Here V = 24, E = 48, |Ω2| = 26.

Space Ω2 is generated by 8 triangles and 18 squares
so that T = 8 and S = 18. Hence,

trace Δ1 = 2 ∙ 48 + 3 ∙ 8 + 2 ∙ 18 = 156.

Since β1 = 0 we have

λaverage = 1
E−β1

trace Δ1 = 156
48

= 3.25.

We have also λmax = 72 and λmin = 0.518... There are many multiple eigenvalues: 56, 44,
33, 23, 13 etc. The spectrum of Δ1 is here:
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For rhombicuboctahedron
the matrix of Δ1 =
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8.7 Harmonic paths

A path u ∈ Ωp is called harmonic if Δpu = 0.

Lemma 8.13 A path u ∈ Ωp is harmonic if and only if ∂u = 0 and ∂∗u = 0.

Proof. Indeed, If ∂u = 0 and ∂∗u = 0 then by (8.1) we have Δpu = 0. Conversely, if
Δpu = 0 then we obtain by (8.2) that

‖∂u‖2 + ‖∂∗u‖2 = 〈Δpu, u〉 = 0,

whence ‖∂u‖ = ‖∂∗u‖ = 0.

Denote by Hp the set of all harmonic paths in Ωp so that Hp is a subspace of Ωp.

Theorem 8.14 (Hodge decomposition) The space Ωp is an orthogonal sum:

Ωp = ∂Ωp+1

⊕
∂∗Ωp−1

⊕
Hp. (8.19)

Proof. If u ∈ ∂Ωp+1 and v ∈ ∂∗Ωp−1 then u = ∂u′ and v = ∂∗v′, and we have

〈u, v〉 = 〈∂u′, ∂∗v′〉 =
〈
∂2u′, v′

〉
= 0
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so that the subspaces ∂Ωp+1 and ∂∗Ωp−1 are orthogonal.

Denote by K the orthogonal complement of ∂Ωp+1

⊕
∂∗Ωp−1 in Ωp. Then we have

w ∈ K ⇔ 〈w, u〉 = 0 ∀u ∈ ∂Ωp+1 and 〈w, v〉 = 0 ∀v ∈ ∂∗Ωp−1

that is,

w ∈ K ⇔ 〈w, ∂u′〉 = 0 ∀u′ ∈ Ωp+1 and 〈w, ∂∗v′〉 = 0 ∀v′ ∈ Ωp−1

⇔ 〈∂∗w, u′〉 = 0 ∀u′ ∈ Ωp+1 and 〈∂w, v′〉 = 0 ∀v′ ∈ Ωp−1

⇔ ∂∗w = 0 and ∂w = 0

⇔ w ∈ Hp.

Hence, K = Hp which finishes the proof.
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Corollary 8.15 There is a natural linear isomorphism

Hp
∼= Hp. (8.20)

In particular, dimHp = βp, that is, the multiplicity of 0 as an eigenvalue of Δp is equal
to the Betti number βp.

Proof. Observe that Zp := ker ∂|Ωp is the orthogonal complement of ∂∗Ωp−1 in Ωp

because, for any u ∈ Ωp,

u ∈ Zp ⇔ ∂u = 0⇔ 〈∂u, v〉 = 0 ∀v ∈ Ωp−1 ⇔ 〈u, ∂∗v〉 = 0 ∀v ∈ Ωp−1 ⇔ u⊥∂∗Ωp−1.

Since by (8.19)
Ωp = ∂Ωp+1

⊕
Hp

⊕
∂∗Ωp−1

we obtain
Zp = (∂∗Ωp−1)

⊥ = ∂Ωp+1

⊕
Hp (8.21)

whence Hp
∼= Zp/∂Ωp+1 = Hp.

Remark. It follows from this argument that Hp is an orthogonal complement of Bp in
Zp and that any homology class ω ∈ Hp has a unique a harmonic representative u ∈ Hp.
In addition, u minimizes the norm ‖∙‖ among all representatives of ω.
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9 A fixed point theorem

9.1 Lefschetz number and a fixed point theorem

Everywhere here K = R (or Q). Let fn : Ωn → Ωn be a sequence of linear mappings that
commutes with ∂, that is,

∂ ◦ fn+1 = fn ◦ ∂ (9.1)

for any n ≥ 0. In other words, the following diagram is commutative:

∙ ∙ ∙ ←− Ωn−1
∂
←− Ωn

∂
←− Ωn+1 ∙ ∙ ∙ ←−

↓fn−1 ↓fn ↓fn+1

∙ ∙ ∙ ←− Ωn−1
∂
←− Ωn

∂
←− Ωn+1 ∙ ∙ ∙ ←−

(9.2)

Denote
Zn = ker ∂|Ωn , Bn = Im ∂|Ωn+1

so that
Hn = Zn/Bn.

It follows from (9.1) that fn acts in Zn, Bn and Hn.
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Definition. Denote shortly by f the sequence {fn} of the mappings as above. For any
non-negative integer N , define the Lefschetz number of f of order N by

L(N) (f) =
N∑

n=0

(−1)n trace fn|Ωn . (9.3)

For example, if each fn = id then L(N) (f) =
∑N

n=0 (−1)n dim Ωn = χ(N).

Lemma 9.1 The following identity holds:

L(N) (f) =
N∑

n=0

(−1)n trace fn|Hn + (−1)N trace fN |BN
. (9.4)

Proof. Using the following identity (that will be proved later on)

trace fn|Hn = trace fn|Ωn − trace fn−1|Bn−1 − trace fn|Bn (9.5)

we obtain
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N∑

n=0

(−1)n trace fn|Hn

=
N∑

n=0

(−1)n trace fn|Ωn −
N∑

n=1

(−1)n trace fn−1|Bn−1 −
N∑

n=0

(−1)n trace fn|Bn

=
N∑

n=0

(−1)n trace fn|Ωn +
N−1∑

k=0

(−1)k trace fk|Bk
−

N∑

n=0

(−1)n trace fn|Bn

=
N∑

n=0

(−1)n trace fn|Ωn − (−1)N trace fN |BN

= L(N) (f)− (−1)N trace fN |BN
,

whence (9.3) follows.

Let now f : G→ G be a digraph map, that is, i→ j ⇒ f (i)→ f (j) or f (i) = f (j) .

Extend f to a mapping Λn → Λn as follows: first set

f (ei0...in) = ef(i0)...f(in),

and then extend f by linearity to all of Λn. If ei0...in is non-regular then f (ei0...in) is also
non-regular. Hence, f maps the space Rn of regular paths into itself.
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Next, f maps the space An of allowed paths into itself: if ei0...in is allowed then ik → ik+1,
which implies that either f (ik)→ f (ik+1) for all k and, hence, f (ei0...in) is also allowed,
or f (ik) = f (ik+1) for some k so that f (ei0...in) is non-regular and, hence, f (ei0...in) = 0.

Clearly, f commutes with ∂, which implies that f maps also Ωn into itself. Hence, we
obtain the diagram (9.2) where all fn = f . In particular, L(N) (f) is defined.

Theorem 9.2 Let f : G→ G be a digraph map. If, for some N ≥ 0, we have L(N) (f) 6= 0
then f has a fixed point, that is, a vertex a of G such that f (a) = a.

Definition. Let a, b be two vertices of G. A p-path v =
∑

i0,...,ip∈V vi0...ipei0...ip is called

an (a, b)-cluster if, for any p-path i0...ip with vi0...ip 6= 0, we have i0 = a and ip = b.
A path v is called a cluster if it is a (a, b)-cluster for some a, b.

For example, eabc − eab′c is an (a, c)-cluster whereas eabc + eacb is not a cluster.

Lemma 9.3 In each Ωn there is an orthogonal basis (with respect to the natural inner
product) that consists of clusters.

Proof of Theorem 9.2. Assume that f has no fixed point. We will prove that

trace f |Ωn = 0 for any n ≥ 0, (9.6)
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which gives by (9.3) that L(N) (f) = 0 thus contradicting the hypothesis that L(N) (f) 6= 0.

By Lemma 9.3, there is an orthogonal basis u1, ..., um in Ωn, where all uk are clusters.
Denote by (cij) the matrix of operator f : Ωn → Ωn in this basis, that is,

f (uj) =
m∑

i=1

cijui, whence cij =
(f (uj) , ui)

‖ui‖
2 .

Consequently, we have

trace f |Ωn =
m∑

k=1

ckk =
m∑

k=1

(f (uk) , uk)

‖uk‖
2 .

It remains to show that f (uk)⊥uk, which will imply (9.6). Indeed, let uk be an (a, b)-
cluster, that is, uk is a linear combination of elementary n-paths of the form

eai1...in−1b, (9.7)

where a, b are fixed while i1, ..., in−1 are variable. Then f (uk) is a linear combination of
the n-paths

ef(a)f(j1)...f(jn−1)f(b), (9.8)

where j1, ..., jn−1 are variable. Since a 6= f (a), we see that the paths (9.7) and (9.8) are
orthogonal, which implies that f (uk) and uk are orthogonal, too, which was to be proved.
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9.2 A fixed point theorem in terms of homology

Definition. Define the path dimension of a digraph G by dimp G = sup {n : |Ωn| > 0} .

Assume that dimp G <∞. Then for any N > dimp G we have by (9.4)

L(N) (f) =
N∑

n=0

(−1)n trace f |Ωn =
N∑

n=0

(−1)n trace f |Hn . (9.9)

Recall the definition of the homological dimension: dimh G = sup {n : |Hn| > 0} .

Theorem 9.4 Let G be a connected digraph. Let dimp G < ∞ and dimh G = 0. Then
any digraph map f : G→ G has a fixed point.

Proof. The condition dimh G = 0 means that Hn = {0} for all n ≥ 1, and the con-
nectedness means that |H0| = 1. The space H0 is spanned by a single homology class
[ea] where a is one of the vertices. Then f (ea) = ef(a) ∼ ea so that f ([ea]) = [ea]. It
follows that trace f |H0 = 1 while trace f |Hn = 0 for all n ≥ 1. ...... By (9.9) we obtain
L(N) (f) = 1 6= 0, and by Theorem 9.2 we conclude that f has a fixed point.
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The condition that a mapping f : G→ G is a digraph map can be reformulated as follows.
Define a directed distance between vertices a, b of G by

−→
d (a, b) = inf{n : ∃ a path a→ i1 → ...→ in−1 → b

︸ ︷︷ ︸
n arrows

}.

Then f is a digraph map if and only if
−→
d (f(a), f(b)) ≤

−→
d (a, b) for all a, b ∈ V.

Let us relax this condition.

Problem 9.5 Devise a fixed point theorem for maps f : G→ G with
−→
d (f(a), f(b)) ≤ C

−→
d (a, b) for all a, b ∈ V,

where C > 1 is a constant.

Alternatively, one can strengthen conditions on f , assuming that f is a digraph isomor-
phism, which is equivalent to

−→
d (f(a), f(b)) =

−→
d (a, b) for all a, b ∈ V.

Problem 9.6 Devise a fixed point theorem for a digraph isomorphism f : G→ G.
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9.3 Examples

Example. Here are some examples of digraphs satisfying the hypotheses of Theorem 9.4.

triangle square pyramid octahedron based on square

3-simplex 3-cube broken cube prizm

In all these examples the vertices admit a monotone numbering: arrows go in direction
of increase of numbers. In this case all allowed paths have bounded length and, hence,
dimp G <∞.
The triviality of H∗ (that is, dimh G = 0) for each of these digraphs was mentioned in the
previous sections.
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Example. Consider a digraph G with 7 vertices and 16 arrows.

There are arbitrarily long allowed paths
because there are loops:

0→ 2→ 1→ 0 , 5→ 0→ 6→ 5 etc.

Nevertheless, dimp G < 6,

and all homology groups are trivial.

Hence, G satisfies the hypotheses of Theorem 9.4 and we conclude that any digraph map
f : G→ G has a fixed point.

Let us show why Ω6 = {0} , which will imply by Proposition 6.8 that Ωp = {0} ∀p ≥ 6.
For that we first obtain by computation

Ω3 = 〈e0243 , e2165 , e1504 〉 .
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Hence, out of all allowed elementary 3-forms ei0i1i2i3 , only the following are non-zero as
elements of Ω3:

e0243 , e2165 , e1504 (9.10)

(in fact, (9.10) is a basis in Ω3). It is easy to observe that for any pair of 3-forms ϕ, ψ
from (9.10) the concatenation ϕψ vanishes. It follows that

ϕψ ' 0 for all allowed elementary 3-forms ϕ, ψ, (9.11)

because if one of ϕ, ψ is not from the list (9.10), say, ϕ, then ϕ ' 0 whence ϕψ ' 0 by
Lemma 6.7.

Any allowed 6-form ei0...i6 is a concatenation of two allowed 3-forms

ei0...i6 = ei0i1i2i3ei3i4i5i6 ,

whence by (9.11) ei0...i6 ' 0 and, hence, Ω6 = {0} .

Example. Assume that G contains a double arrow {a� b}. Then dimp G = ∞ since
each Ωp contains p-paths eababab... and ebababa.... Define a map f : G → G by f(a) = b
and f(x) = a for x 6= a. Clearly, f is a digraph map without fixed points. Hence, the
hypotheses dimp G <∞ is essential for Theorem 9.4.
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Example. Here are some examples of digraphs that admit digraph maps f without fixed
points. All they have dimp G <∞ but dimh G > 0.

1-torus diamond octahedron based on diamond

|H1| = 1 |H1| = 1 |H2| = 1
f =rotation f =central symmetry f =central symmetry

2-torus:
|H1| = 2
|H2| = 1

f = rotation

−→
K 3,3:

|H1| = 2

f : 0 7→ 1 7→ 2 7→ 0,
3 7→ 4 7→ 5 7→ 3

Problem 9.7 Suppose that H1 (G) contains a non-trivial class e01 + e12 + e20 (like for
1-torus). Is it true that there exists a digraph map f : G→ G without a fixed point?
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Example. Consider the following digraph G with 7 vertices and 14 arrows:

The arrows on G are as follows:

i→ i + 1 and i→ i + 2

where addition is considered mod 7.

For this digraph |Ωp| = 14 for all p ≥ 1
so that dimp G =∞, while dimh G = 0.

The digraph G does not satisfy the hypotheses of Theorem 9.4. In fact, the digraph map
f (i) = i + 1 has no fixed point.

Let us explain why |Ωp| = 14. This digraph can also be shown as a periodic snake :

where the vertices with the same numbers are merged (like a Möbius band).
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Each elementary p-path
ei(i+1)(i+2)...(i+p) (9.12)

is snake-like and, hence, is ∂-invariant. Let us refer to any path (9.12) as a p-snake.
Hence, we obtain in Ωp already 7 linearly independent p-snakes. Another group of 7
linearly independent p-paths in Ωp is given by the boundaries of (p + 1)-snakes:

∂ei(i+1)(i+2)...(i+p)(i+p+1),

which makes dim Ωp = 14. Since ∂2 = 0, while the boundaries of p-snakes (9.12) are
linearly independent for p ≥ 2, we obtain that dim ker ∂|Ωp = 7. By the rank-nullity
theorem dim Im ∂|Ωp+1 = 14− 7 = 7, whence Hp = {0} for all p ≥ 2.

For the case p = 1 we have

H1 = 〈e01 + e12 + e23 + e34 + e45 + e56 + e60〉 .

It is curious that this digraph is strongly regular and its curvature is K
(N)
x = (−1)N .

Problem 9.8 Describe classes of strongly regular digraphs with dimp G = ∞ having a
non-trivial periodic sequence

{
K(N)

}∞
N=1

.
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Problem 9.9 Devise a fixed point theorem that would work with digraphs containing
double arrows. For that we need to impose additional restriction on f : G → G, for
example, let us assume that f is a digraph isomorphism, that is, i→ j ⇒ f (i)→ f (j) .

Problem 9.10 Assume that G is connected, dimh G = 0 and that G has no double
arrow. Prove or disprove the claim that any digraph map f : G → G has a fixed point.
Of course, the main interest here lies in the case when dimp G =∞.

Example. Here is a candidate for a positive example with dimp G =∞.

This is the above snake with
an additional vertex 7 such that
i→ 7 for all i ∈ {0, ..., 6} .

For this digraph we have

dimh G = 0 and dimp G =∞.

Problem: prove that any digraph map f : G→ G for this digraph has a fixed point.

195



Example. Here is a candidate for a counterexample.

For this digraph again

dimh G = 0 and dimp G =∞,

where the latter is the case because
G contains a periodic snake

e01234560123456...

Problem: construct for this digraph a digraph map f without fixed points (or prove a
fixed point theorem for this digraph). Simple rotations f (i) = i+a mod 8 are not digraph
maps here. For example, for f (i) = i + 4 the arrow 0→ 3 goes to 4 6→ 7, for f (i) = i + 5
the arrow 5→ 0 goes to 2 6→ 5.

Problem 9.11 Create efficient computations tools for computing the spaces Ωp or at least
for computing dim Ωp.

Problem 9.12 Devise convenient sufficient conditions for dimp G <∞.
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Example. For all 1 ≤ k ≤ n, the Johnson digraph
−→
J (n, k) is defined as follows. The

vertices of
−→
J (n, k) are all k-element subsets of Sn = {1, 2, ..., n}. To define the arrows, for

any subset a ⊂ Sn denote sum (a) =
∑

i∈a i. Then, for two k-element subsets a, b ⊂ Sn,

a→ b in
−→
J (n, k) ⇔ a ∩ b contains exactly k − 1 elements and sum (a) > sum (b) .

For example, here is
−→
J (4, 2):

The vertices of
−→
J (4, 2) are the pairs

43, 42, 41, 32, 31, 21,

and there are 12 arrows.
In fact, this is yet another octahedron.

Theorem 9.13 All digraphs
−→
J (n, k) are homologically trivial.

The length of allowed paths in
−→
J (n, k) is bounded because sum (a) decreases along arrows.

Hence, dimp
−→
J (n, k) < ∞. Consequently,

−→
J (n, k) satisfies the hypotheses of Theorem

9.4 and, hence, any digraph map f in
−→
J (n, k) has a fixed point.
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Example. Given n digraphs X1, ..., Xn, define their monotone linear join X1X2...Xn as
follows: take first a disjoint union

⊔n
i=1 Xi and then add arrows from any vertex x of Xi

to any vertex y of Xi+1.

Theorem 9.14 Assume that the following two conditions are satisfied:

(i) ∀i dimp Xi <∞

(ii) ∃i such that Xi is connected and dimh Xi = 0.

Then any digraph map f in X1...Xn has a fixed point.

The proof uses an analogue of Künneth formula for X = X1...Xn that insures that X is
homologically trivial (see Theorem 10.3 below). Then we can apply Theorem 9.4.
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9.4 A cluster basis in Ωp

We prove below Lemma 9.3. Recall that a p-path v =
∑

vi0...ipei0...ip is called an (a, b)-
cluster if, for any p-path i0...ip with vi0...ip 6= 0, we have i0 = a and ip = b. A p-path v is
called a cluster if it is a (a, b)-cluster for some a, b.

Lemma 9.15 Any ∂-invariant p-path is a sum of ∂-invariant clusters.

Proof. Let v ∈ Ωp. For any points a, b ∈ V , denote by va,b the sum of all terms vi0...ipei0...ip

with i0 = a and ip = b.

Then va,b is a cluster and v =
∑

a,b∈V va,b, that is,

v is a sum of clusters. Let us prove that each
non-zero cluster va,b is ∂-invariant.

Since v is allowed, also all non-zero terms vi0...ipei0...ip are allowed, whence va,b is also
allowed. Let us prove that ∂va.b is allowed, which will yield the ∂-invariance of va.b. The
path va,b is a linear combination of allowed paths of the form eai1...ip−1b. We have

∂eai1...ip−1b = ei1...ip−1b + (−1)p eai1...ip−1 +
∑p−1

k=1 (−1)k eai1..îk...ip−1b.
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The terms ei1...ip−1b and eai1...ip−1 are clearly allowed, while among the terms eai1..îk...ip−1b

there may be non-allowed. In the full expansion of

∂v =
∑

a,b∈V ∂va,b

all non-allowed terms must cancel out. Since all the terms eai1..îk...ip−1b form a (a, b)-cluster,
they cannot cancel with terms containing different values of a or b. Therefore, they have
to cancel already within ∂va,b, which implies that ∂va,b is allowed.

Proof of Lemma 9.3. Let us prove that Ωp has an orthogonal basis that consists of
clusters. Let C be the set of all ∂-invariant clusters in Ωp. By Lemma 9.15, Ωp is spanned
by C. Choosing in C a maximal linearly independent subset, we obtain a basis B in Ωp

that consists of clusters. Let us show how to make an orthogonal basis of clusters. Let
u, v be two elements from B, and

let u be a (a, b)-cluster and v be an (a′, b′)-cluster.
If (a, b) 6= (a′, b′) then we have clearly u⊥v.

If B has more than one (a, b)-cluster, then among all (a, b)-clusters in B, we run a Gram-
Schmidt orthogonalization process and obtain an orthogonal set of (a, b)-clusters in B.
Note that during this process all newly arising elements are again (a, b)-clusters. Doing
that for all pairs (a, b) , we obtain an orthogonal basis in Ωp that consists of clusters.
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9.5 Rank-nullity formulas for trace

The purpose of this section is to prove the identity (9.5) – see Lemma 9.18 below. Recall
that we have a commutative diagram

Ωn−1
∂
←− Ωn

∂
←− Ωn+1

↓fn−1 ↓fn ↓fn+1

Ωn−1
∂
←− Ωn

∂
←− Ωn+1

and Zn = ker ∂|Ωn , Bn = Im ∂|Ωn+1 , Hn = Zn/Bn.

Lemma 9.16 We have

trace fn|Hn = trace fn|Zn − trace fn|Bn . (9.13)

Proof. Let u1, ..., ul be a basis in Bn. Choose in Zn elements v1, ..., vk so that the sequence
u1, ..., ul, v1, ..., vk is a basis in Zn. Then

fn (ui) =
l∑

j=1

aijuj
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and

fn (vi) =
k∑

j=1

bijvj + terms with uj.

For the homology classes we have

fn ([vi]) =
k∑

j=1

bij [vj] .

It follows that

trace fn|Zn =
l∑

i=1

aii +
k∑

i=1

bii = trace fk|Bn + trace fn|Hn ,

which is equivalent to (9.13).

Lemma 9.17 We have the identity

trace fn|Zn + trace fn−1|Bn−1 = trace fn|Ωn
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For example, if fn and fn−1 are the identity operators then this becomes the rank-nullity
theorem for the operator ∂:

dim Zn + dim Bn−1 = dim Ωn. (9.14)

Proof. Let v1, ...vk be a basis in Zn and u′
1, ..., u

′
l be a basis in Bn−1. Choose any vector

ui ∈ ∂−1 (u′
i), that is, ∂ui = u′

i. Let us show that the sequence v1, ..., vk, u1, ..., ul is linearly
independent in Ωn.

Indeed, if there is a vanishing linear combination

l∑

i=1

αiui +
k∑

j=1

βjvj = 0,

203



then it follows that

0 = ∂

l∑

i=1

αiui + ∂

k∑

j=1

βjvj =
l∑

i=1

αiu
′
i + 0,

whence it follows that all αi = 0. Consequently,
∑k

j=1 βjvj = 0 and, hence, also all βj = 0.

Since by (9.14) k + l = dim Ωn, it follows that the sequence v1, ..., vk, u1, ..., ul is a basis
in Ωn.

Hence, for some coefficients aij and bij ,

fn (ui) =
l∑

j=1

aijuj + terms with vj (9.15)

and

fn (vi) =
k∑

j=1

bijvj.

The latter expansion contains no uj because fn (Zn) ⊂ Zn. Hence,

trace fn|Ωn =
l∑

i=1

aii +
k∑

i=1

bii.
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On the other hand, we have

trace fn|Zn =
k∑

i=1

bii.

It remains to prove that

trace fn−1|Bn−1 =

l∑

i=1

aii.

Since fn−1 maps Bn−1 into itself, there are coefficients a′
ij such that

fn−1 (u′
i) =

l∑

j=1

a′
iju

′
j. (9.16)

It follows from (9.15) that

∂fn (ui) =
l∑

j=1

aij∂uj + 0 =
l∑

j=1

aiju
′
j. (9.17)

On the other hand, using (9.1) and (9.16), we obtain that

∂fn (ui) = fn−1 (∂ui) = fn−1 (u′
i) =

l∑

j=1

a′
iju

′
j.
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Comparison with (9.17) shows that a′
ij = aij and, hence,

trace fn−1|Bn−1 =
l∑

i=1

a′
ii =

l∑

i=1

aii,

which finishes the proof.

Finally, we can prove (9.5).

Lemma 9.18 The following identity holds

trace fn|Hn = trace fn|Ωn − trace fn−1|Bn−1 − trace fn|Bn (9.18)

Proof. By Lemma 9.16 we have

trace fn|Hn = trace fn|Zn − trace fn|Bn ,

and by Lemma 9.17

trace fn|Zn = trace fn|Ωn − trace fn−1|Bn−1 ,

which yields (9.18).
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10 Reduced homology and join of digraphs

10.1 Augmented chain complex

In this section we use the augmented chain complex

K
∂
← Ω0

∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (10.1)

where the leftmost ∂ in (10.1) is define by

∂ei = e = the unity of K.

The homology groups of (10.1) are called the reduced homology groups of G and are

denoted by H̃p(G). We have

H̃p(G) = Hp(G) for p ≥ 1 and H̃0(G) = H0(G)/K.

Define the reduced Betti numbers: β̃p(G) = dim H̃p(G). We have

β̃p(G) = βp(G) for p ≥ 1 and β̃0(G) = β0(G)− 1.

For a disjoint union X t Y of two digraphs we have

β̃r (X t Y ) = β̃r (X) + β̃r (Y ) + 1{r=0}.
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10.2 A join of two digraphs

Given two digraphs X,Y , define their join X ∗ Y as follows: take first a disjoint union
X t Y and add arrows from any vertex of X to any vertex of Y .

For example,

{0, 1} ∗ {2, 3} =
3 ← 1
↑ ↓
0 → 2

and
3 ← 1
↑ ↓
0 → 2

∗ {4, 5} =

The join uv of p-path u on X and a q-path v on Y
is a (p + q + 1)-path on X ∗ Y that is defined as
follows: for elementary paths set

ei0...ipej0...jq = ei0...ipj0...jq

and then it extend by linearly to all paths.

208



If u and v are allowed on X resp. Y then uv is allowed on Z = X ∗ Y .

Lemma 10.1 The join of paths satisfies the product rule for all p, q ≥ −1:

∂ (uv) = (∂u) v + (−1)p+1 u∂v.

If u ∈ Ωp (X) and v ∈ Ωq (Y ) then ∂u and ∂v are allowed, which implies that ∂ (uv) is
also allowed, that is, uv ∈ Ωp+q+1 (Z) . The product rule implies also that the join uv is

well defined for homology classes u ∈ H̃p (X) and v ∈ H̃q (Y ) so that uv ∈ H̃p+q+1 (Z) .

Theorem 10.2 (Künneth formula) We have the following isomorphism: for any r ≥ −1,

Ωr (X ∗ Y ) ∼=
⊕

{p,q≥−1:p+q=r−1}
(Ωp (X)⊗ Ωq (Y )) (10.2)

that is given by the map u⊗ v 7→ uv with u ∈ Ωp (X) and v ∈ Ωq (Y ), and, for any r ≥ 0,

H̃r (X ∗ Y ) ∼=
⊕

{p,q≥0:p+q=r−1}
H̃p (X)⊗ H̃q (Y ) (10.3)

β̃r (X ∗ Y ) ∼=
∑

{p,q≥0:p+q=r−1}
β̃p (X) β̃q (Y ) . (10.4)
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The identity (10.2) means that any paths in Ωr (Z) can be obtained as linear combination
of joins uv where u ∈ Ωp (X) and v ∈ Ωq (Y ) with p + q + 1 = r, and (10.3) means the
same for homology classes.

Example. Let Y consist of a single vertex.

In this case the join X ∗ Y is called a cone over X.

Since all homology groups H̃∗ (Y ) are trivial, the cone X ∗Y is also homologically trivial.

For example, the following digraphs are cones and, hence, they are homologically trivial.
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Example. Let Y consist of m vertices without arrows.

Then X ∗ Y coincides with the m-suspension susm X.

Here is an example of sus3 X :

Since β̃0 (Y ) = m− 1 and β̃p (Y ) = 0 for p ≥ 1,
we obtain that

β̃r (susm X) = (m− 1) β̃r−1 (X) .

For example, on this picture X = sus2 {∙, ∙} ,

whence β̃1 (X) = 1 and β̃p (X) = 0 for p 6= 1.

For G = sus3 X: β̃2 (G) = 2 and β̃r (G) = 0 for r 6= 2.

The operation ∗ of digraphs is associative. For a sequence X1, ..., Xl of l digraphs we
obtain by induction from (10.2), (10.3) and (10.4) that

Ωr (X1 ∗X2 ∗ ... ∗Xl) ∼=
⊕

{pi≥−1: p1+p2+...+pl=r−l+1}
Ωp1 (X1)⊗ ...⊗ Ωpl

(Xl) (10.5)
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H̃r (X1 ∗X2 ∗ ... ∗Xl) ∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl

(Xl) (10.6)

β̃r (X1 ∗X2 ∗ ... ∗Xl) =
∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (10.7)

Example. Consider an octahedron Z = X1 ∗X2 ∗X3 where X1 = {0, 1} , X2 = {2, 3} ,
X3 = {4, 5} (see p. 208). Then

Ω2 (Z) =
⊕

{pi≥−1: p1+p2+p3=2−3+1}
Ωp1 (X1)⊗ Ωp2 (X2)⊗ Ωp3 (X3)

= Ω0 (X1)⊗ Ω0 (X2)⊗ Ω0 (X3)

= 〈e0, e1〉 ⊗ 〈e2, e3〉 ⊗ 〈e4, e5〉

= 〈e024, e025, e034, e035, e124, e125, e134, e135〉

and H2 (Z) = H̃2 (Z) =
⊕

{pi≥0: p1+p2+p3=2−3+1} H̃p1 (X1)⊗ H̃p2 (X2)⊗ H̃p3 (X3)

= H̃0 (X1)⊗ H̃0 (X2)⊗ H̃0 (X3)

= 〈e0 − e1〉 ⊗ 〈e2 − e3〉 ⊗ 〈e4 − e5〉

= 〈e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135〉.
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10.3 A generalized join of digraphs

Given a digraph G of l vertices {1, 2, ..., l} and a sequence X1, ..., Xl of l digraphs, define
their generalized join (X1...Xl)G = XG as follows: XG is obtained from the disjoint
union

⊔
i Xi of digraphs Xi by keeping all the arrows in each Xi and by adding arrows

x→ y whenever x ∈ Xi, y ∈ Xj and i→ j in G.

Digraph XG is also referred to as a G-join of X1, ..., Xl, and G is called the base of XG.
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The main problem to be discussed here is

how to compute the homology groups and Betti numbers of XG.

Denote by Kl a complete digraph with vertices {1, ..., l} and arrows

i→ j ⇔ i < j

that is, Kl is an (l − 1)-simplex. For example, K2 = {1→ 2} and K3 = {1→ 2→ 3, 1→ 3}
is a triangle.

The digraph XKl
is called a complete join of X1, ..., Xl. It is easy to see that

XKl
= X1 ∗X2 ∗ ... ∗Xl

It follows from (10.7) that, for any r ≥ 0,

β̃r (XKl
) =

∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (10.8)
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10.4 A monotone linear join

Denote by Il a monotone linear digraph with the vertices {1, ..., l} and arrows i→ i + 1:

Il = {1→ 2→ ...→ l}. (10.9)

If G = Il then we use the following simplified notation:

(X1X2...Xl)Il
= X1X2...Xl

and refer to this digraph as a monotone linear join of X1, ..., Xl.

Clearly, X1X2...Xn can be constructed as follows: take first a disjoint union
⊔l

i=1 Xi and
then add arrows from any vertex of Xi to any vertex of Xi+1 (see p. 213).

In the case l = 2 we obviously have X1X2 = X1 ∗ X2 but in general X1X2...Xl is a
subgraph of X1 ∗X2 ∗ ... ∗Xl. For example, we have

{0} {1, 2} {3} =
1 → 3
↑ ↑
0 → 2

while {0} ∗ {1, 2} ∗ {3} =
1 → 3
↑ ↗ ↑
0 → 2

(10.10)
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Theorem 10.3 We have

H̃r (X1X2...Xl) ∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl

(Xl) (10.11)

and
β̃r (X1X2...Xl) =

∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (10.12)

By (10.6) and (10.11), X1X2...Xl and X1 ∗X2 ∗ ... ∗Xl are homologically equivalent.

Example. Let the base G be a square:

We have G = {1} {2, 3} {4} which implies that
XG = X1 (X2 tX3) X4.

Hence, by Theorem 10.3,
G =

2 → 4
↑ ↑
1 → 3

β̃r (XG) =
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1) β̃p2
(X2 tX3) β̃p3

(X4)

=
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1)
(
β̃p2

(X2) + β̃p2
(X3) + 1{p2=0}

)
β̃p3

(X4)

= β̃r (X1X2X4) + β̃r (X1X3X4) + β̃r−1 (X1X4) . (10.13)
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For a general base G, if i1...ik is an arbitrary sequence of vertices in G then denote

Xi1...ik = Xi1Xi2 ...Xik .

Note that by (10.12)

β̃r (Xi1...ik) =
∑

p1+...+pk=r−(k−1)
p1,...,pk≥0

β̃p1
(Xi1) ...β̃pk

(Xik) ,

and we consider the numbers β̃r (Xi1...ik) as known.

Using this notation, we can rewrite (10.13) as follows: if G is a square then

β̃r (XG) = β̃r (X124) + β̃r (X134) + β̃r−1 (X14) .
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Example. Let G be an octahedron:

We have G = {1, 2} ∗ {3, 4} ∗ {5, 6} whence

XG = (X1 tX2) ∗ (X3 tX4) ∗ (X5 tX6)

By (10.8) we obtain

β̃r (XG) =
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1 tX2)β̃p2
(X3 tX4)β̃p3

(X5 tX6)

=
∑

{pi≥0: p1+p2+p3=r−2}
(β̃p1

(X1) + β̃p1
(X2) + 1{p1=0})(β̃p2

(X3) + β̃p2
(X4) + 1{p2=0})

× (β̃p3
(X5) t β̃p3

(X6) + 1{p3=0})

= β̃r(X135) + β̃r(X145) + β̃r(X235) + β̃r(X245) + β̃r(X136) + β̃r(X146) + β̃r(X236) + β̃r(X246)

+ β̃r−1(X13) + β̃r−1(X23) + β̃r−1(X14) + β̃r−1(X24) + β̃r−1(X15) + β̃r−1(X25)

+ β̃r−1(X35) + β̃r−1(X45) + β̃r−1(X16) + β̃r−1(X26) + β̃r−1(X36) + β̃r−1(X46)

+ β̃r−2(X1) + β̃r−2(X2) + β̃r−2(X3) + β̃r−2(X4) + β̃r−2(X5) + β̃r−2(X6) + 1{r=2}.
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10.5 An arbitrary linear join

Let now G be a linear digraph but not necessarily monotone. That is, the vertex set of G
is {1, ..., l} and, for any pair (i, i + 1) of consecutive numbers there is exactly one arrow:
either i→ i + 1 or i← i + 1.

Definition. We say that a vertex v of G is a turning point if v has either two incoming
arrows or two outcoming arrows. Denote by T the set of all turning points.

An allowed path in G is called maximal if it is not a proper subset (as a set of vertices)
of another allowed path. Denote by Amax the family of all maximal allowed paths in G.

Clearly, the end vertices of a maximal path are either turning points or the vertices 1 , l.
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Theorem 10.4 If G is an arbitrary linear digraph then

β̃r (XG) =
∑

u∈Amax

β̃r(Xu) +
∑

v∈T
β̃r−1 (Xv) .

In other words, β̃r (XG) is the sum of all β̃r of the linear joins of Xi along all maximal

allowed paths in G plus the sum of β̃r−1 of all Xv sitting at the turning points v.

Example. Consider the base

L = {1→ 2← 3← 4→ 5} .

Then T = {2, 4} ,while maximal paths of L are

Amax = {1→ 2, 4→ 3→ 2, 4→ 5} .

Hence, by Theorem 10.4,

β̃r (XG) = β̃r (X12) + β̃r (X432) + β̃r (X45) + β̃r−1 (X2) + β̃r−1 (X4) .
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Example. Consider the following base:

G =

2 5
↗ ↖ ↙ ↘

1 3 6
↘ ↙ ↖ ↗

4 7

It is easy to see that G itself is the following linear join:

G = ({1} {2, 4} {3} {5, 7} {6})L

where L = {α→ β ← γ ← δ → ε} . Here the turning points of L are T = {β, δ} , while
maximal paths of L are

Amax = {α→ β, δ → γ → β, δ → ε} .

For L-join we have as above

β̃r (YL) = β̃r (Yαβ) + β̃r (Yδγβ) + β̃r (Yδε) + β̃r−1 (Yβ) + β̃r−1 (Yδ) .

Setting Yα = X1, Yβ = X2 tX3, Yγ = X3, Yδ = X5 tX7 and Yε = X6 we obtain

β̃r (XG) = β̃r ((X1 (X2 tX3) X3 (X5 tX7) X6)L)
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= β̃r(X1(X2 tX4)) + β̃r((X5 tX7)X3(X2 tX4)) + β̃r((X5 tX7)X6)

+ β̃r−1(X2 tX4) + β̃r−1(X5 tX7)

= β̃r (X12) + β̃r (X14) + β̃r−1 (X1)

+ β̃r(X532) + β̃r(X534) + β̃r(X732) + β̃r(X734)

+ β̃r−1(X32) + β̃r−1(X34) + β̃r−1(X53) + β̃r−1(X73) + β̃r−2(X3)

+ β̃r (X56) + β̃r (X76) + β̃r−1 (X6)

+ β̃r−1 (X2) + β̃r−1 (X4) + 1{r=1} + β̃r−1 (X5) + β̃r−1 (X7) + 1{r=1}.

β̃r(XG) = β̃r(X534) + β̃r(X532) + β̃r(X734) + β̃r(X732)

+β̃r(X12) + β̃r(X14) + β̃r(X56) + β̃r(X76)

+β̃r−1(X73) + β̃r−1(X53) + β̃r−1(X32) + β̃r−1(X34)

+β̃r−1(X1) + β̃r−1(X2) + β̃r−1(X4) + β̃r−1(X5) + β̃r−1(X6) + β̃r−1(X7)

+β̃r−2(X3) + 2{r=1}.
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10.6 A cyclic join

A digraph G is called cyclic if it is connected and each vertex has the undirected degree
2. Let G be a cyclic digraph with the set of vertices V = {1, 2, ..., l}. We assume that the
vertices are ordered so that every vertex i ∈ V is connected by arrows to i− 1 and i + 1
(where l is identified with 0). In the same way as above we define the set Amax and T .

For example, consider the following hexagon:
Here T = {1, 4} and
Amax = {4→ 3→ 2→ 1, 4→ 5→ 6→ 1}

Theorem 10.5 Let G be a cyclic digraph that is neither triangle nor square nor double
arrow. Then

β̃r (XG) =
∑

u∈Amax

β̃r(Xu) +
∑

v∈T
β̃r−1 (Xv) + β̃r (G) . (10.14)

Note that in this case β̃r (G) = 1{r=1}. If G is a triangle or square or double arrow then
(10.14) is wrong, which is shown in Examples below.
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Example. If G is the above hexagon then we obtain

β̃r (XG) = β̃r (X4321) + β̃r (X4561) + β̃r−1 (X1) + β̃r−1 (X4) + 1{r=1}.

Example. Consider the following 4-cyclic base:

G =
2 → 3
↑ ↓
1 → 4

Since T = {1, 4} and Amax = {1→ 2→ 3→ 4, 1→ 4}, we obtain

β̃r(XG) = β̃r(X1234) + β̃r(X14) + β̃r−1 (X1) + β̃r−1 (X4) + 1{r=1}. (10.15)

Example. Consider the following 3-cyclic base: G = ↗

2
•↘

1• ← •3
.

Then Amax and T are empty, and we obtain β̃r (XG) = 1{r=1} = β̃r(G).
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Example. Consider the following tetrahedron as a base G:

We have G = C ∗ {4} where
C = {1→ 2→ 3→ 1}

It follows that
XG = XC ∗X4

and

β̃r (XG) =
∑

p+q=r−1

β̃p (XC) β̃q (X4) =
∑

p+q=r−1

1{p=1}β̃q (X4) = β̃r−2 (X4) .

Hence, β̃r (XG) = β̃r−2 (X4) .

Example. Let G be a triangle: G = ↗

2
•↘

1• → •3
. Then XG = X1 ∗X2 ∗X3 and we know

that
β̃r (XG) = β̃r (X123) .

However, the right hand side of (10.14) is in this case

β̃r (X123) + β̃r−1 (X1) + β̃r−1 (X3) 6= β̃r (XG) .
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Example. Let G be a square:

G =
2 → 4
↑ ↑
1 → 3

Then we that by (10.13)

β̃r (XG) = β̃r (X124) + β̃r (X134) + β̃r−1 (X14) ,

while the right hand side of (10.14) is in this case

β̃r (X124) + β̃r (X134) + β̃r−1 (X1) + β̃r−1 (X4) .

Example. Let G be a double arrow: G = {1� 2} . Then

XG = X1 ∗X2 ∗X1

whence β̃r (XG) = β̃r (X121) . However, in this case Amax and T are empty, so that the

right hand side of (10.14) is β̃r (G) = 0.
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Example. Let G be as here:

We have
G = {1, 2, 3, 4} {5, 6} {7→ 8→ 9→ 7}

so that
XG = (X1 tX2 tX3 tX4) (X5 tX6) X{7→8→9→7}

It follows that

β̃r (XG) =
∑

p+q+s=r−2

(
β̃p (X1) + β̃p (X2) + β̃p (X3) + β̃p (X4) + 3{p=0}

)

×
(
β̃q (X5) + β̃q (X6) + 1{q=0}

)
1{s=1}

which yields after computation

β̃r(XG) = β̃r−2(X15) + β̃r−2(X16) + β̃r−2(X25) + β̃r−2(X26)

+ β̃r−2(X35) + β̃r−2(X36) + β̃r−2(X45) + β̃r−2(X46)

+ β̃r−3(X1) + β̃r−3(X2) + β̃r−3(X3) + β̃r−3(X4) + 3β̃r−3(X5) + 3β̃r−3(X6) + 3{r=3}.
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10.7 Homology of a generalized join

Theorem 10.6 There exists a finite sequence of paths {uk} in G and a sequence {sk} of
non-negative integers such that, for any sequence {Xi} of digraphs and any r ≥ 0,

β̃r(XG) =
∑

k

β̃r−sk
(Xuk

) + β̃r (G) . (10.16)

Besides, the sequence {uk} contains all maximal allowed paths, and uk ∈ Amax ⇔ sk = 0.

Example. Let the base G be a cube.

Use description of paths uk from the proof of Theorem 10.6,
we obtain

β̃r(XG) = β̃r(X1248) + β̃r(X1268) + β̃r(X1348)

+β̃r(X1378) + β̃r(X1568) + β̃r(X1578)

+β̃r−1(X178) + β̃r−1(X168) + β̃r−1(X148)

+β̃r−1(X128) + β̃r−1(X138) + β̃r−1(X158)

+β̃r−2(X18)
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10.8 Mayer-Vietoris exact sequence

A digraph Y is called a subgraph of a digraph X if both sets of vertices and arrows of
Y are subsets of those sets of X. If Y1 and Y2 are two subsets of X then Y1 ∪ Y2 is their
union, that is, a subset of X whose sets of vertices and arrows are unions of those of Y1

and Y2. In the same way one defines the intersection Y1 ∩ Y2.

A subgraph Y of X is called induced if for any two vertices a, b of Y , if there is an arrow
a → b in X then there is also an arrow a → b in Y. Clearly, the intersection of induced
subgraphs is also an induce subgraph.

Assume that a digraph X can be represented as a union of two induced subgraphs Y1

and Y2, that is, X = Y1 ∪ Y2. In particular, every arrow of X lies in Y1 or Y2. Denote
Z = Y1 ∩ Y2.

Any p-path u ∈ Rp (X) has a form

u =
∑

i0...ip

ui0...ipei0...ip

with the coefficients ui0...ip ∈ K. We say that ei0...ip (or ui0...ipei0...ip) is an elementary term
of u if ui0...ip 6= 0.
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Theorem 10.7 (Mayer-Vietoris exact sequence) Assume that, for any p ≥ 2,

∀x ∈ Ωp (X) we have x = y1 + y2 for some y1 ∈ Ωp (Y1) and y2 ∈ Ωp (Y2) . (10.17)

Then we have a long exact sequence of homology groups:

∙ ∙ ∙ → H̃n(Z)→ H̃n(Y1)⊕ H̃n(Y2)→ H̃n(X)→ H̃n−1(Z)→ H̃n−1(Y1)⊕ H̃n−1(Y2)→ ∙ ∙ ∙ .

Corollary 10.8 Assume that the hypotheses of Theorem 10.7 are satisfied.

(a) If, for some n, H̃n(Z) = {0} and H̃n−1(Z) = 0, then

H̃n(X) ∼= H̃n(Y1)⊕ H̃n(Y2). (10.18)

(b) If, for some n, the homology groups H̃n(Y1), H̃n(Y2), H̃n−1(Y1), H̃n−1(Y2) are trivial
then

H̃n(X) ∼= H̃n−1(Z).

Example. Assume that Z consists of a single vertex a. Let us verify that the hypothesis
(10.17) is satisfied. For any x ∈ Ωp (X) with p ≥ 2, consider an elementary term cei0...ip
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of x and show that ei0...ip lies in Y1 or in Y2. Assume that this is not the case, that is, one
of the vertices i1, ..., ip−1 is a, say a = iq, while iq−1 and iq+1 belong to different Y1, Y2.

The path ∂ei0...ip contains the term
ei0...iq−1iq+1..ip

that is not allowed because iq−1 6→ iq+1.
This term must be cancelled in ∂x using
other elementary terms of x.
However if another elementary term ej0...jp

x contains ei0...iq−1iq+1...ip in its boundary,
then

i0...iq−1iq+1...ip = j0...jq−1jq+1...jp

which implies jq = a because this is the only choice of jq to make j0...jp allowed. Hence,
ei0...ip = ej0...jp and the above cancellation is not possible. Finally, denoting by yk (where
k = 1, 2) the sum of all elementary terms of x that are contained in Yk we obtain yk ∈
Ωp (Yk) and y = y1 + y2, which proves (10.17).

Since H̃∗ (Z) = {0}, Corollary 10.8(a) applies in this case and yields (10.18) for all n.
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Example. Let X = Y1 ∪ Y2 be an octahedron as here:

Ω2 (X) is spanned by 8 triangles:

e024, e034, e025, e035, e124, e134, e125, e135,

each of them lying in Y1 or Y2, while
Ωp = {0} for all p ≥ 3,

Hence, the hypothesis of Theorem 10.7
is satisfied.

All H̃∗ (Y1) and H̃∗ (Y2) are trivial,

the only nontrivial group H̃p (Z) is

H1 (Z) = {e02 − e12 + e13 − e03} .

By Corollary 10.8(b) we conclude that H2(X) ∼= H1(Z).

Indeed, we have seen above that H2 (X) is one-dimensional.
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Example. Consider the following digraph X = Y1 ∪ Y2:

Y1 contains the vertices {1, 2, 4, 6, 8, 9} ,

Y2 contains all the vertices except for 6,

Z contains the vertices {1, 2, 4, 8} .

All Y1, Y2, Z are homologically trivial
while dim H2 (X) = 1.

In fact, we have

H2 (X) = 〈e012 − (e014 − e034) + (e025 − e035)− ( e126 − e146)− (e259 − e269)

− (e348 − e378) + (e359 − e379)− (e469 − e489) + e789〉.

Therefore, (10.18) fails for n = 2. The hypothesis of Theorem 10.7 fails either: the square
x = e259 − e269 is ∂-invariant on X but it does not satisfy (10.17) because e269 is not
∂-invariant on Y1 and e259 is not ∂-invariant on Y2.
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11 Homotopy and related notions

11.1 Homotopy equivalent digraphs

For vertices a, b of a digraph, write a−→=b if either a → b or a = b. Let X and Y be two
digraphs.

Definition. A mapping f : X → Y called a digraph map (or morphism) if

a→ b on X ⇒ f (a) −→=f (b) on Y.

Any digraph map f : X → Y induces a linear map

f∗ : Ap(X)→ Ap(Y ), f∗
(
ei0...ip

)
= ef(i0)...f(ip).

It is easy to check that f∗∂ = ∂f∗, which implies that f∗ provides a morphism of chain
complexes f∗ : Ωp(X)→ Ωp(Y ) and, consequently, a homomorphism of homology groups
f∗ : Hp(X)→ Hp(Y ).

Definition. For any n ≥ 1 define a line digraph In as any digraph with n + 1 vertices
{0, 1, . . . , n} and such that, for any i = 0, ..., n− 1 holds either i→ (i + 1) or (i + 1)→ i,
and there is no other arrow.
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Definition. Let X,Y be two digraphs. Two digraph maps f, g : X → Y are called
homotopic if there exists a line digraph In and a digraph map Φ: X�In → Y such that

Φ|X×{0} = f and Φ|X×{n} = g.

In this case we write f ' g. The map Φ is called a homotopy between f and g.

Definition. Two digraphs X and Y are called homotopy equivalent if there exist digraph
maps

f : X → Y, g : Y → X (11.1)

such that
f ◦ g ' idY , g ◦ f ' idX . (11.2)

In this case we write X ' Y .

Theorem 11.1 (i) Let f, g : X → Y be two digraph maps. If f ' g then they induce the
identical maps of homology groups:

f∗ : Hp (X)→ Hp (Y ) and g∗ : Hp (X)→ Hp (Y ) .

(ii) If the digraphs X and Y are homotopy equivalent, then H∗ (X) ∼= H∗ (Y ).
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In particular, if a digraph X is contractible, that is, if X ' {∗}, then all the homology
groups of X are trivial except for H0.

We say that a digraph Y is a subgraph of X if the set of vertices of Y is a subset of that
of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y .

Definition. Let X be a digraph and Y be its subgraph. A retraction of X onto Y is a
digraph map r : X → Y such that r|Y = idY .

Theorem 11.2 Let r : X → Y be a retraction of a digraph X onto a subgraph Y . Assume
that

either x−→=r (x) for all x ∈ X or r (x) −→=x for all x ∈ X. (11.3)

Then X ' Y and, consequently, H∗ (X) ∼= H∗ (Y ).

A retraction that satisfies (11.3) is called a deformation retraction.

Example. Let us show that n-cube is contractible. Indeed, a natural projection of n-
cube onto (n− 1)-cube is a deformation retraction. Hence, by induction we obtain n-
cube ' {∗}.
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Example. Consider the digraph X as here.

Let Y be its subgraph with the vertex set {1, 3, 4}. Consider a retraction r : X → Y
given by r (0) = 1, r (2) = 3. It is easy to see that r is a deformation retraction, whence
X ' Y . Then we obtain

H1 (X) ∼= H1 (Y ) = 〈e13 + e34 + e41〉 ∼= K

and Hp (X) = {0} for p ≥ 2.
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Example. Consider the following two digraphs.

The digraph at the left panel is
contractible as there is a sequence
of two deformation retractions
reducing it to {∗}:

r1 (4) = r1 (5) = 3
r2 (1) = r2 (2) = 3

The digraph at the right panel differs
only by one arrow 3 → 1, but it is
not contractible because H2 6= {0}

In fact, for this digraph

H2 = 〈e124 + e234 + e314 − e125 − e235 − e315〉.
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11.2 C-homotopy of loops

For any digraph G and a vertex ∗ of G, denote by G∗ a based digraph.

Definition. A loop on G∗ is a digraph map ϕ : In → G such that ϕ (0) = ϕ (n) = ∗.

Here In is any line digraph with any n ≥ 0.

Definition. Consider in G∗ two loops ϕ : In → G and ψ : Im → G. An one-step direct
C-homotopy from ϕ to ψ is a digraph map h : In → Im such that

(a) h (0) = 0, h (n) = m and h (i) ≤ h (j) whenever i ≤ j;

(b) ϕ (i)−→=ψ (h (i)) for all i ∈ In.

If in (b) holds ϕ (i)←−=ψ (h (i)) for all i ∈ In then h is called an one-step inverse C-
homotopy.

We denote an one-step direct C-homotopy with ϕ
C
→ ψ and the one-step inverse C-

homotopy with ϕ
C
← ψ.
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Example. On the next diagram we have ϕ
C
→ ψ.

Condition (b) means that ϕ and ψ provide a digraph map from the digraph on the left
panel to G.

Definition. We call two loops ϕ, ψ C-homotopic and write ϕ
C
' ψ if there exists a finite

sequence {ϕk}
m
k=0 of loops in G∗ such that ϕ0 = ϕ, ϕm = ψ and, for any k = 0, ...,m− 1,

holds ϕk
C
→ ϕk+1 or ϕk

C
← ϕk+1.

Obviously, C-homotopy is an equivalence relation. A loop ϕ is called contractible if ϕ
C
' e

where e : I0 → G is a trivial loop.
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The following theorem gives an efficient way of verifying if two loops are C-homotopic.

Any loop ϕ : In → G defines a sequence θϕ = {ϕ (i)}ni=0 of vertices of G. We consider θϕ

as a word over the alphabet V .

Theorem 11.3 Two loops ϕ : In → G and ψ : Im → G are C-homotopic if and only if
θψ can be obtained from θϕ by a finite sequence of the following word transformations (or
inverses to them):

(i) ...abc... 7→ ...ac... where a, b, c is a triangle ↗

b
•↘

a• → •c
in G or any permutation of a

triangle.

(ii) ...abc... 7→ ...adc... where a, b, c, d is a square
d• → •c
↑ ↑

a• → •b
in G or any cyclic permu-

tation of a square or an inverse cyclic permutation of a square.

(iii) ...abcd... 7→ ...ad... where a, b, c, d is as in (ii).

(iv) ...aba...→ ...a... if a→ b or b→ a.

(v) ...aa... 7→ ...a...
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Examples

1. Consider a triangular loop
ϕ : (0→ 1→ 2← 3)→ G

It is contractible because

θϕ = abca
(i)
∼ aca

(iv)
∼ a.

2. Consider a square loop
ϕ : (0→ 1→ 2← 3← 4)→ G

It is contractible because

θϕ = abcda
(iii)
∼ ada

(iv)
∼ a.
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3. Consider the loops ϕ : I5 → G and ψ : I3 → G as on p.240. It is shown here how to
transform θϕ to θψ by means of Theorem 11.3: using successively transformations (i)−,
(i) , (ii) and (iii) .
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11.3 Fundamental group π1

The C-homotopy equivalence class of a loop ϕ : In → G will be denoted by [ϕ]. For any
two loops ϕ : In → G and ψ : Im → G define their concatenation ϕ ∨ ψ : In+m → G by

ϕ ∨ ψ(i) =

{
ϕ(i), 0 ≤ i ≤ n

ψ(i− n), n ≤ i ≤ n + m.

Then the product [ϕ] ∙ [ψ] := [ϕ ∨ ψ] of equivalence classes is then well-defined.

Theorem 11.4 (a) The set of all equivalence classes [ϕ] with the above product is a group
with the neutral element [e] . It is denoted by π1(G

∗).

(b) Any based digraph map f : X∗ → Y ∗ induces a group homomorphism

π1(f) : π1(X
∗)→ π1(Y

∗), (π1(f)) [φ] = [f ◦ φ].

(c) If f, g : X∗ → Y ∗ are two digraph maps then f ' g implies π1 (f) = π1 (g) .

(d) If X,Y are connected and X ' Y then π1 (X∗) ∼= π1 (Y ∗).
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Theorem 11.5 For any based connected digraph G∗ we have an isomorphism

π1(G
∗) /[π1(G

∗), π1(G
∗)] ∼= H1(G,Z),

where [π1(G
∗), π1(G

∗)] is a commutator subgroup.
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11.4 An application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the
classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle ABC on the plane R2 and its triangulation T . Assume that the set
of vertices of T is colored in three colors 1, 2, 3 so that:

• the vertex A in colored in 1, B – in 2, C – in 3;

• each vertex on the side AB is colored in 1 or 2, on the side AC – in 1 or 3, on the side
BC – in 2 or 3.

Lemma of Sperner.

Under the above hypotheses,
there exists in T a 3-color triangle,
that is, a triangle, whose vertices
are colored with three different colors.
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Let us first modify the triangulation T so that there are no vertices on the sides AB,AC,BC
except for A,B,C. If X ∈ AB then move X a bit inside of ABC. A new triangle XY Z
arises, where Y, Z are former neighbors of X on AB. However, since X,Y, Z are colored
in two colors, no 3-color triangle emerges after that move. By induction, we remove all
the vertices from all sides of ABC.

Consider the triangulation T as a graph and make it into a digraph G as follows. If a, b
are two vertices on T and a ∼ b then choose direction between a, b using the colors of a, b
and the following rule:

1→ 2, 2→ 3, 3→ 1
1� 1, 2� 2, 3� 3

Denote by S the following colored digraph ↗

1
•↘

3• ← •2
and define a mapping f : G → S

to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G.

Consider a 3-loop ϕ on G∗ (with ∗ = A) with the word

θϕ = ABCA.

For the loop f ◦ ϕ on S we have θf◦ϕ = 1231. This loop is not contractible because none
of the transformations of Theorem 11.3 can be applied to the word 1231. By Theorem
11.4(b), the loop ϕ is also not contractible and, hence, π1 (G∗) 6= {0} .
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Assume now that there is no 3-color triangle in T. Then each triangle from T looks in G
like

↗•↖
• � •

or ↙•↘
• � •

or ↗↗•↘↖

• � •
.

In particular, each of them contains a triangle in the sense of Theorem 11.3. Using the
partition of G into the triangles and transformations (ii) and (iv) of Theorem 11.3, we
contract any loop on G to the empty word, which contradicts to π1(G) 6= {0}.
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