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1 Path homology of digraphs

1.1 Paths in a finite set

Let V' be a finite set. For any p > 0, an elementary p-path is any sequence iy, ..., %, of
p + 1 vertices of V. Fix a field K and denote by A, = A, (V,K) the K-linear space that
consists of all formal K-linear combinations of elementary p-paths in V. Any element of
A, is called a p-path.

An elementary p-path ig, ..., 7, as an element of A, will be denoted by ¢;,.;,. For example,
we have

A0:<6iii€‘/>, A1:<eij:i,j€V>, A2:<eijk:i,j,k€‘/>

Any p-path u can be written in a form u = Zio,il,...,z’pev woltre; o, where wio-ir € K.

Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_; by

P
v q = —1)¢ ~
Deig...ip = E :( 1) Cig.. ig...ip?
q=0
where ~ means omission of the index. For p = 0 set de; = 0.
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For example, de;; = e; —e; and Oe;jr, = e — e + €5
Lemma 1.1 0% =0.

Proof. Indeed, for any p > 2 we have

p
32€io...z‘p = Z (—1)* aeio...i;...ip (1.1)
q=0
D q—1 D
r r—1
_ 3y (z<—1> ottt 3 (1 )
q=0 r=0 r=q+1
_ q+r A . _1\atr L
= Z (=1) €. ig...ip Z (=1) Cig.. igerip.nip”
0<r<g<p 0<g<r<p

After switching ¢ and r in the last sum we see that the two sums cancel out, whence
8262-0“% = 0. This implies 9%u = 0 for all u € A, m

Hence, we obtain a chain complex A, (V):

O<—A0£A1<—... — ANy & A, &~



Definition. An elementary p-path e;,.;, is called reqular if iy # x4y forallk =0,...,p—1,
and irregular otherwise.

Let I, be the subspace of A, spanned by irregular e;, ;. We claim that 0I, C I,_;.
Indeed, if e;,. ;, is irregular then iy = i;4; for some k. We have

Oty = Gy = Cltin. b T 000

k k+1
+(-1) €i0...ik 114 10hg2.ip T (—1) * €ig...i%_11kik42- ip (1.2)

=000 i (_1)p eiOn-?:p—l 3

By i = ixs1 the two terms in the middle line of (1.2) cancel out, whereas all other terms
are non-regular, whence 9de;,. ;, € I,_1.

Hence, 0 is well-defined on the quotient spaces R, := A,/I,, and we obtain the chain
complex R, (V):

) ) ] ) )
0 « Rop « Ri « ... <« Rp.1 <« R, «—...

By setting all irregular p-paths to be equal to 0, we can identify R, with the subspace of
A, spanned by all regular paths. For example, if ¢ # j then e;;; € Ro and

662’]’71 = eji — € + 67;3‘ = eji + eij

because e; = 0.
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1.2 Chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V' of vertices and a
set £ C {V x V' \ diag} of arrows (directed edges). If (i,j) € E then we write i — j.

Definition. Let G = (V, E) be a digraph. An elementary p-path iy...i, on V is called
allowed if iy, — 1341 for any k =0, ...,p — 1, and non-allowed otherwise.

Let A, = A, (G) be K-linear space spanned by allowed elementary p-paths:
Ap = (€ig...i, © G0-..1p is allowed).

The elements of A, are called allowed p-paths. Since any allowed path is regular, we have
A, CR,.

We would like to build a chain complex based on subspaces A, of R,. However, the spaces
A, are in general not invariant for J. For example, in the digraph

a b c
e — 0 — O

we have eg e € Ag but degpe = €pe — €ae + €ap & A1 because e, is not allowed.

11



Consider the following subspace of A,

Q,(G)={ueA,:0uec A,1}|

2

We claim that 0€, C Q,_1. Indeed, v € Q, implies Ju € A,_; and 0(Ju) =0 € A,_»,
whence Ju € Q,_;.

Definition. The elements of €2, are called J-invariant p-paths.
Hence, we obtain a chain complex €2, = €, (G) :

B B ) 0 a
0 «— Qy « & <« ... & Q1 «— Q ...

By construction we have 2y = Ay and §2; = A;, while in general €2, C A,,.

Definition. Path homologies of G are defined as the homologies of the chain complex
O, (G):
H, (G) = ker dlq,/Imd|q

Betti numbers: 3, (G) := dim H), (G).

p+1°

It is easy to show: [, (G) = #of connected components of G.
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1.3 Examples of O-invariant paths

A triangle is a sequence of three vertices a, b, ¢
such that a — b — ¢, a — c.

It determines 2-path ey . € {22 because ey € As
and Oegpe = €pe — €ae + €ap € Aj.

A square is a sequence of four vertices a, b, b, ¢
such that a — b, b — ¢, a — bV, b — c.
It determines a 2-path u = egpe — €qpe € §22 because u € Ay
and Ou = (ebc — €ac + eab) — (ebfc — B eab/)
= €qb + €hc — Capy — €yc € Ai

A p-simplex (or p-clique) is a sequence of p + 1 vertices,
say, 0,1, ..., p, such that ¢ — j for all ¢ < j. It determines
a p-path e, € 2,. Here is a 3-simplex:
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A 3-cube is a sequence of 8 vertices 0,1, 2,3,4,5,6,7, 6
connected by arrows as here. /
2

A 3-cube determines a O-invariant 3-path 4 A

U = €ga37 — €137 + €0157 — €o457 + €o467 — €0267 € (13
because u € As and

4
Ou = (ep13 — €o23) + (€157 — €137) + (€237 — €267)
- (6046 - 6026) - (6457 - 6467) - (6015 - 6045) c A

(=)
Y
—

An exotic cube consists of 9 vertices connected by
arrows as here.

It determines a J-invariant 3-path

U = €237 — €0137 1 €0157 — o457 + €os67 — o267 € (23

14



1.4 Examples of spaces (), and H,

For a vector space A over K we write |A| = dimg A.

A triangle as a digraph:

0 = (601,6027612% Qy = (6012>,

Q, ={0} forp >3

ker O]q, = (eo1 — €02 + €12)

but eg — ep2 + €12 = degia

so that H; = {0}. 0
H, = {0} for p > 2.

Hexagon with diagonals:

‘QO| - 67 |Ql‘ =8 3
(2, is spanned by 2 squares:

Qy = <€013 — €023, €014 — 6024>7

Q, ={0} forall p >3

Hy = (e13 — €53 + €54 — €14), 1
|Hy| =1, H,={0} for p > 2.
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Octahedron: || =6, || =12

Space (), is spanned by 8 triangles:

Qy = <6024, €034, €025, €035, €124, €134, €125, 6135>;

2] =8, Q,={0} forallp>3

Hy = (€024 — €034 — €025 + €035 — €124 + €134 + €125 — €135)
|Hy| =1, |Hy|=0 forp=1andp>3

Octahedron with different orientation:

2y = <6024, €025, €014, €015, €234, €235, €134, €135, €013 — 6023>
Q3 = <€0234 — €0134, €0235 — 60135>
=9, Q] =2, Q,={0} forall p>4.
ker 0]q, = (u,v) where

U = €gaq + €234 — €014 — €134 + (€013 — €023)

v = eg25 + €235 — €015 — €135 + (€013 — €023)
but Hy = {0} because

u=20 (60234 - 60134) and v=20 (60235 - e0135)
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A 3-cube:

We have || =8, || = 12.
Space {25 is spanned by 6 squares:

6
Q A
9= <6013 — €023, €015 — €045, €026 — €046, )

€137 — €157, €237 — €267, €457 — €467>

hence, |23] = 6.

4
Space (13 is spanned by one 3-cube: /

Q3 = (ep237 — €o137 + €0157 — €oa57 + €o467 — €0267)

hence, |Q3] = 1.

€2,| =0 for all p > 4 and |H,| =0 for all p > 1.
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1.5 An example of computation of (2, and H,

Consider the following digraph with 4 vertices and 5 arrows (square with a diagonal):

QO:AOZ <607617627€3>7 |QO‘ :47
O =A = (6017602761376237630% !Qﬂ =9,
Ay = <€013, €023, €130, €230, €301, e302> \Az\ = 6.

To find Qs, let us first compute 9|4, mod A;:

degis = €13 — e€ps + eg1 = —eg3 mod A,y
Oegas = €23 — €p3 + €p2 = —eg3 mod A,
deizp = €3 —eip +e13 = —eyp mod A,
deazp = €30 — €90 + €23 = —eg9 mod A,
despr = e — €31 + ez = —ez; mod Ay
despe = e€p2 — €32 + €30 = —ezy mod A,y

18



Hence,

( €013 €023 €130 €230 €301 €302 \
€03 —1 —1 0
g €10 —1
matrix of 0|4, mod A; =
€920 —1
31 —1

\232 0 -1 )

)y = ker 0] 4, mod A; = nullspace D = (eg13 — €g23)-

One can show that |€2,| = 0 for all p > 3 and, hence, |H,| = 0 for all p > 3.

Let us compute H; and Hs. We have for the basis in €2;:

degt = —ep+ e
degy = —eg+ e
deiz = —ep+es
8623 = —egte3
desy = ey —e3
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Hence,
€o1 €02 €13 €23 €30
ep —1 —1 0 0 1
matrix of djg, = e2 1 0 -1 0 0 =D
es 0 1 0 -1 0
e3 0 0 1 1 -1

and
ker 0]q, = nullspace D = (eg1 + €13 — €92 — €23, €01 + €13 + €30)-

Similarly, for the basis in €25 we have
0 (€013 — €023) = (€13 — €p3 + €01) — (€23 — €03 + €02) = €1 + €13 — €g2 — €23

whence
Im (9\92 = <€01 + €13 — €pg2 — 623> and ker 8‘92 = {0} o

It follows that H, = {0} and
H, = ker 6191/1m8|92 = <€01 + e13 + 630>.

As we have seen, computation of the spaces €2, (G) and H, (G) amounts to computing
ranks and null-spaces of large matrices. We currently use for numerical computation of
H, (G,FFy) a C++ program written by Chao Chen in 2012.
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1.6 Structure of (),
As we know, 2y = (e;) consists of all vertices and 2y = {e;; : i — j} consists of all arrows.

Proposition 1.2 (a) The space Qo is spanned by all triangles eqpe, SQUATES €ape — Capre
and double arrows egp,.

(b) || = |A2| —s where s is the number of semi-arrows, that is, pairs of vertices (z,y)
such that x /4 y but x — z — y for some vertex z.

The triangles and double arrows are always linearly independent but the squares can be
dependent.

For example, on this digraph we have
three squares:

€013 — €023, €043 — €013, €023 — €043
but their sum is 0.

In this case || =2 (=|Ay] —s=3-1)
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Let X,Y be two digraphs. A map f: X — Y is called a morphism of digraphs if for any
arrow a — b in X we have either f (a) — f(b) or f (a) = f(b) (that is, the image of an
arrow is either an arrow or a vertex). Define images of paths by

£ (Cio..ip) = €f(io)...s(ip)

so that the image of an allowed path is either allowed or zero (that is also allowed). It is
easy to see that fod = 0o f so that the morphism images of d-invariant paths are again
O-invariant.

A triangle ey, and a double arrow e,;, are morphism images of a square eg;3 — €p23 as on
these pictures:

2[]3 Aﬂ | 2D3\ |
0 I L b 0% i .

D



Hence, we can rephrase Proposition 1.2 as follows: ()5 is spanned by squares and their
morphism images. Or: squares are basic shapes of ().

Problem 1.3 Describe all basic shapes in Qs (as well as in S, for p > 3).

One basic shape is obvious: a 3-cube. For example, a 3-simplex is a morphism image of
a 3-cube.

Another morphism image 3 >—95
of a 3-cube is a prism:

However, an exotic cube (p. 14) is also a O-invariant 3-path, but it is not a morphism
image of a 3-cube.
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1.7 Dependence on the field K
The dimensions || = |V/| and [2;| = |E| do not depend on the choice of a field K. By

using a geometric characterization of {25 in Prop. 1.2, we see that |€)s| is also independent
of K.

Conjecture 1.4 |Q,| is independent of K for any p (a priori || (G, Q) < |9Q,| (G, F,)).

Let us turn to |H,| . It is easy to show that |Hy| = ¢, where ¢ is the number of connected
components of G and, hence, is independent of K.

Conjecture 1.5 |H,| is independent of K.

Approach to the proof: |Hi| = Q| — |0Q1] — [0€s]. Since || = |E|, |021] = |V] — ¢, it
remains to verify that |0€)s| is independent of K.

Recall that for manifolds |H,| may depend on K, for example,

|H,| (RP?,Q) =0 < 1= |H,| (RP*, ;) .
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Example. The following digraph G is

For this digraph we have
V| =20, |F|=69, dimQ,=71
|Hi| (G, F2) = [Hi| (G, Q) = 2

and
|H>| (G, Fy) = 5.

Conjecture 1.6 For this digraph |Hs| (G, Q) = 4.

A motivation for this conjecture is as follows. One of five generators of Hs (G, Fs) is

u = (eg318 + €s1518) + €81519 + €91018 + €91019 + €103 18

+ e1483 + (14819 + €141019) + €14103 + €15918 + €15919
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By changing the signs of the terms appropriately, we obtain the following element of

H> (G,Q):

U= (68318 - 681518) + €e81519 — €91018 T €91019 — €103 18

— e1483 + (€14810 — €141019) + €14103 — €15918 + €15919-

The same method works for 4 out of 5 generators of Hy (G,Fy). The fifth generator is

€073 + €083 + €326 + €327 + €3187 + €5148 + €8153 + €81519 + (€907 + €9187) + €1427 + €1473
+ e91018 + (€905 + €9115) + (€91113 + €91913) + €91019 + €10318 + €11135 + (€1326 + €1356)

+ ep58 + €14103 + (€14819 + €141019) + (€1536 + €1556) + (€15514 + €151014) + (€19132 + €19142)

but for this generator changing of the signs does not work.

Conjecture 1.7 It is always possible to choose bases in Q, (G,Q) and H, (G, Q) so that
each element of the basis has the form Y w™-e; ; with w7 € {£1,0}.

Conjecture 1.8 A basis in Q, (G,Fs) (resp. H,(G,Fs3)) is also a basis in Q, (G, Q)
(resp. H, (G,Q)). In particular, the Betti numbers over Fs and Q are the same.

26



2 Connection to simplexes

2.1 Path complex

The notion of path compler unifies digraphs and simplicial complexes.
Definition. A path complex on a finite set V' is a collection P of elementary paths on V'
such that if 4¢%;...2,_1¢, € P then also 4;...7, and %...7,—1 belong to P.

For example, each digraph G = (V, E) gives rise to a path complex P that consists of all
allowed elementary paths, that is, of the paths i — 7; — ... — 7,,. In general, all paths in
a path complex P are also called allowed.

The above definitions of J-invariant paths, spaces €2, and H, go through without any
change to general path complexes in place of digraphs because they are based on the
notion of allowed paths only.

For comparison let us recall the definition of an abstract simplicial complex.

Definition. A simplicial complex with the set of vertices V is a collections S of subsets
of V' such that if ¢ € S then any subset of ¢ is also an element of S.

27



Let us enumerate all elements of V' so that any subset o of V' can be regarded as a path
i9...1p With 49 < 7; < .... < 7,. The above definition means that if ¢...i, € S then also
any sub-path iy,...ix, with 0 < kg < ky < ... < kg < p belongs to §. Hence, a simplicial
complex S is a path complex, and the theory of path homologies applies for S.

In this case, A, consists of linear combinations of all p-dimensional simplexes in S and
Q, = A, because 0Oe;,. ;, is always allowed if e;, _;, is allowed. Hence, the path homology
theory of a path complex S coincides with the simplicial homology theory of S.

Path complexes

Simplicif
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2.2 Hasse diagram

Let S be a simplicial complex with the vertex set V' as above. Define the digraph Gs (the
Hasse diagram of S) as follows: the vertex set of Gs is S, and ¢ — 7 for two simplices

o,7€Sif 7 Coand |r| =|o| — 1 (that is, 7 is a face of ¢ of codim = 1).

(a) simplicial complex S

It S is realized geometrically as a collection of simplexes in R™ then Gg can be realized
with the set of vertices Bs consisting of barycenters of the simplexes of § as on the picture.

Theorem 2.1 We have

(b) abstract digraph G

(c) digraph G based on By

H™L(S) ~ H, (Gs).
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2.3 'Triangulation as a closed path

Given a closed oriented n-dimensional manifold M, let T" be its triangulation, that is, a
partition into n-dimensional simplexes. Denote by V' = {0, 1, ...} the set of all vertices of
the simplexes from 7" and by E — the set of all edges, so that (V, E) is a graph embedded
on M.

Let us introduce make each edge (7,j) € E into an arrow ¢ — 7 if i < j and into j — i
_)
if 7 > 5. Then each simplex from 71" becomes a digraph—simplex._> Denote by T the set of

all digraph simplexes constructed in this way. That is, 7...i, € T if 4g...7,, is a monotone
increasing sequence that determines a simplex from 7. Clearly, any such path ig...7, is
allowed.

For any simplex from T with the vertices g...i,, define the quantity o to be equal to
1 if the orientation of the simplex %...7,, matches the orientation of the manifold M, and
—1 otherwise. Then consider the following allowed n-path on the digraph G = (V| E):

o = O'io"'inei 8o 2.1
Z 0..-ln ( )

. . —
20...in €T

Lemma 2.2 The path o is closed, that is, 0o = 0, which, in particular, tmplies that o is
O-invariant.
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Proof. Observe that do is the a linear combination with coefficients £1 of the terms
€jo..in_, Where the sequence jo,...,j,—1 is monotone increasing and forms an (n — 1)-
dimensional face of one of the n-simplexes from T. In fact, every (n — 1)-face arises
from two n-simplexes, say

A= jo. Jk—10Jk---Jn—1
and

B = jo..-Ji-1bji.-.jn—1

that is, two n-simplexes A, B have >

a common (n — 1)-dimensional =
face Jo...0n—1.

We have
k
O sttt = o0 O () B i 2 A 000 o

Since interchanging the order of two neighboring vertices in an n-simplex changes its
orientation, we have

0—]0---]k—1ajk--~3n—1 — (_1) O-aJO---Jk—ljk---]n—l.
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Multiplying the above lines, we obtain
o (O'AGA) — .+ Uajo...jn—1ej0mjn_1 R

and in the same way
B bj0-..jin—
0 (0' GB) =...+0 S0l lejo_._jn_l = 500

However, the vertices a and b are located on the opposite sides of the face jg...7,—1, which
implies that the simplexes ajg...7,—1 and bjy...J,,—1 have the opposite orientations relative

to that of M. Hence,
O_ajo...jn—l + O-bjO---jn—l = O’

which means that the term ej, ;. , cancels out in the sum 0 (aAeA + UBeB) and, hence,
in Oo. This proves that doc = 0. =

The closed paths o defined by (2.1) is called a surface path on M.

There is a number of examples when a surface path ¢ happens to be exact, that is, o = Jv
for some (n + 1)-path v. In this case v is called a solid path on M because v represents
a “solid” shape whose boundary is given by a surface path. If o is not exact then o
determines a non-trivial homology class from H, (G) and, hence, represents a “cavity” in
triangulation 7.
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Example. M = S!.

A triangulation of S! is a polygon,

and the corresponding digraph G is cyclic.

On each edge (i, 7) of a polygon we choose

an arrow i — j arbitrary (not necessarily if i < 7).

We have
g = Z O'ijeij
i—j
where 0 = 1 if the arrow ¢ — j goes counterclockwise,
and 0% = —1 otherwise.

On the digraph on the picture we have
0 = €01 — €21 T €23 + €34 — €54 T €50

Proposition 2.3 (a) If a polygon G is neither triangle nor square €, = {0} for p > 2,
H, = (o) and H, = {0} for allp > 2.

(b) If G is either triangle or square then Q, = {0} for p > 3 and H, = {0} for allp > 1.
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Example. Let M = S™ and let triangulation of S™ be given by an (n + 1)-simplex.
Then G is a (n + 1)-simplex digraph.

On this picture n = 2, 3
0 = €123 — €023 + €013 — €012 = O€p123

so that ega3 is a solid path
representing a tetrahedron.

In general we also have
o = deo..nt1

so that ey 1 is a solid path representing
a (n + 1)-simplex.
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Example. M = S?, octahedron.

Here is a triangulation of S? by an octahedron
with two ways of numbering.

Case A:  H, = {0}
0 = €024 — €025 — €014 T €015 — €234 + €235 + €134 — €135
= 0 (e0134 — €0234 + €0135 — €0235)

Hence,

U = €0134 — €0234 Tt €0135 — €0235
is a solid path, and the octahedron represents
a solid shape.

Case B:  Hy = (o)
0 = €024 — €034 — €025 T€035 — €124 + €134 + €125 — €135
and the octahedron represents a cavity.
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Example. M = S?, icosahedron.

Consider an icosahedron

as a triangulation of S* (here ¢ — j if i < j).
We have |V| =12, |E|=30, H;={0},
and Hs; = (o) where

0= —€y19 +€p12 —€1211 + €026 + €059
—€056 T €5610 — €139 1+ €1311 — €267
+€6710 — €2711 — €349 T €348 — €4810
+€3811 — €459 + €4510 + €7810 — €7811-

Hence, the icosahedron represents a cavity.

Conjecture 2.4 For icosahedron dim Hy (G) = 1 for any numbering of the vertices.

Conjecture 2.5 For a general triangulation of S™, the homology group H, (G) is either
trivial or is generated by o. All other homology groups H, (G) are trivial.
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2.4 Computational challenge

An interesting paper:

Prrontiers | onam. ez
in Computational Neuroscience doi: 10.3389/fncom.2017.00048

®

Check for
updates

Cligues of Neurons Bound into
Cavities Provide a Missing Link
between Structure and Function

Michael W. Reimann?, Max Nolte ', Martina Scolamiero?, Katharine Turner?,
Rodrigo Perin®, Giuseppe Chindemi', Pawet Diotko#, Ran Levi®, Kathryn Hess?* and
Henry Markram " 3**

" Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland, 2 Laboratory for Topology and
Neuroscience, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ° Laboratory of
Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, * DataShape,
INRIA Saclay, Palaiseau, France, ° Institute of Mathematics, University of Aberdeen, Aberdeen, United Kingdom
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They reconstruct a microcircuit from a rat brain as a graph (neurons and connections
between them). The size of the graph is |[V| ~ 31,000 and |E| ~ 8,000, 000.

Reconstructed Microcircuit

A

Then they detect cliques in this graph, form out of the cliques a simplicial complex, and
compute its Betti numbers over Fy. They were able to compute Betti number 35 and to
show that 35 > 0.

Problem 2.6 Create computational tools capable of computing low dimensional Betti
numbers for path homologies of digraphs of similar size.

At present our program can compute 3, on a digraph with |V| ~ 7000 and |E| ~ 100, 000,
and [, on a digraph with |[V| ~ 4000 and |E| ~ 25000.
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3 Homological dimension

In this section K = 5. Define the homological dimension of a digraph G by

dim, G =sup {k : |Hy (G)| > 0}|.

3.1 Some examples

Let G be a polygon (a cyclic digraph).
If GG is neither triangle nor square
then |H;|=1 and |H,|=0 forp>2
so that dim;, G = 1.

< b’ c
If GG is either triangle or square then
|H,| =0 for p > 1 and, hence
dim;, G = 0. da b b
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Let G be the octahedron as here:
Then

|Hy| =1, |Hy| =0 forp>3

so that dim, G = 2.

There are finite digraphs with

dimy, G = o0

as the one on this picture:

This example was constructed by
Gabor Lippner and Paul Horn
in 2012.
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3.2 Random digraphs

We are interested in the homological dimension of a randomly generated digraph G. Fix a
finite set of vertices {1, ..., V'} and two numbers p,q > 0 with p+ ¢ < 1. The set of arrows
in G is defined as follows: for any two vertices a < b, there is either an arrow a — b with
probability p or an arrow b — a with probability g, or no arrow with probability 1 —p —q.
The so constructed probability measure on digraphs will be denoted by P =P, , v .

. . . 4
Here is randomly generated digraph with 5 S~
T
p=qg=0.37V =15and E = 86. LSS 2
y <0 9’3\;‘5&\
o o o <7 Y TR
For this digraph dim;, G = 6. /g?‘}»"!"ﬁ*‘,&g%"!‘e%%? !
G) = 7 AN TN TRAIK
61@ ( ) - {17 0,0,0,0,0, 1} %i#ﬁ‘\‘%ﬁ‘?"qﬂVAY‘rft’&
VAN S @ e eeirs= 1
. WP Rt P XS
Hs (G) = (v) where v is a sum of 1560 terms: 8 is'."','i\{,ln‘g&'byﬂ%ﬁ%\
YLZPINAATK T SAEATHAEE
U = €0268051 T €0268056 T €02680107 T €026801014 \!’//}égﬁ::i‘()’:";{y-‘i/ 14
,z;g‘ N <‘£ DY v'«‘ )
T€02680121 T €026801214 T €0268906 T €0268907 9 \‘{::;ff,é‘%:,’::’fé’.is}
+€0268926 T €02689214 T €02689107 + €026891014 b 13
T€02681326 1T €026813214 T €02681351 T €02681356 11 12
+...

41



Set r = p + ¢. The number E of arrows is random, and it is easy to compute

]E(E):gV(V—l) and Var(E):%r(l—r)V(V—l).

Define the degree of digraph as the average outcoming degree of the vertices:

E
D =degG = —|.
eg v

For example, for the above digraph D = 86/15 ~ 5.7.
For random digraphs it follows from (3.1) that

E(D)=1£ (V- 1) md\mun:;u—mv;y

(3.1)

Moreover, applying the central limit theorem to the sum of indicators of arrows we obtain

D-z(V-1)

D 2
Dnorm 0=

1
Jir-n %t

Normal (0,1) as V — oc.
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0e samples= 1325, p=all, q=all, V=all

—e—cdf normal(0,1), MA error=0.00742

Emempirical cdf of normalized degree: Pemp(Duorm < X),
08

07

05

0.4

03

02

0.1

f
(
‘
N
888.9SSSRR?Sssssxsﬁ29883°$$9829§EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
S 3858855855888 R T888EER3R358883888c838:-8838838388833883388:8¢8¢8

0.0 -

Proposition 3.1 Ifp+q > 0 then

lim P,,v (G is connected) = 1

V—oo

that 1s,
Ppgv v(Be(G)=1)—1 as V — oo.
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3.3 Homological dimension and degree

[t turns out that dim, G for random digraphs is closely related to the degree D = E/V.
In over 1000 of samples of randomly generated digraphs, we have observed the following
dichotomy: |with high probability either dim;, G = 0 or dim;, G < D.

T
All 1343 (423 T), 786 S,
41 TU, 24 dimy<cD, 31 dim>D

——D=E/V
—040D

8 I i ——N actual
O dimp




D

Consider the random variables ) = and Q. = (Q | @ > 0). Everywhere assume

that p =¢q € (0,1/2).

Conjecture 3.2 There exists positive limits

% (p) = Vlgrgo IE:‘p,p,V (Q—i—) and 7—2 (p> — VIE%O varp,p,V (Q+) = Vlggo IE’p,p,V (Qi) — M (p)2 :

Besides, we have p (p) > 37 (p).

Here are empirical functions yu (p) and 7 (p) computed using the averages of @ and Q%
among all available samples.

10 ‘
09 ’\'\ / T~
~o—p(p) empirical  —+=1(p) empirical / \

08 S
== —o

o7 - N

°° /\/

05

T T T 2T 2 LT LT LT ELTELT LT ILTETETETELTLITETETEETECE
L 8 & 5 & 5 & L & &L 5 &8 5 %2 03 5 L L 35 L B R BB



Conjecture 3.3 We have Q. KA +Normal, (p, 7%) as V. — oo, where p = p(p) and
T =1 (p). That is, for any v > 0,

- (y — p)’°
Jm Py (Q+ < ) / Woras v dy,

where Z is a normalizing factor.

ETPemp(dimy/D = x | dimy = 0), samples= 1302, p=all. g=all, V=all

0.9 —e—cdf normal, mean=0.7, var=0.0263; MA error=0.00617 H'

0.8 !H
0.7 /{
0.6 )I
0.5 -
0.4
0.3
0.2

0.1

00 LesssesesrssseceaseRRIIINNIININILIAILEINATILAUI A UL VUL AUV LELE R LTI L1

SESESET - CLENILIITIBBIILINIBRISITCBRACILCRIITISRISSST SRS SIS CTLCR]IILRS
[ER=p=p=p=p= DD D= DEDE P PE DI P i I g P pi Pe e e e R R R g R R R PR R =i g g g g PR P P R P R R R N R

As one sees on this diagram, P (0.4 < @, < 1) ~ 0.9 that is,
P(0.4D < dimy (G) < D | dim, (G) > 0) =~ 0.9.
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3.4 Homologically trivial and spherical digraphs

Let call a digraph G homologically trivial if dim, G = 0, that is, 8, (G) =0 for all k£ > 1.

Conjecture 3.4 The following limit exists and is positive:
T (p) = Vlim P, v (G is homologically trivial) .
Consequently,
dimh G
D

1
Z(1-T(p))

= Q) P, T (p) oo + Normal (,u, 7’2) as 'V — oo.

16.0

14.0 EIpdf of dimy/D, samples= 1302, p=all, g=all, V=all

—e—normal, mean=0.7, sqrtvar=0.16; L'-norm of diff=0.744

12.0
10.0
8.0
6.0
4.0

20

0.0 [I[I[Iﬂ nll =

=== = e e B e R = r==a=h )




Let us call a digraph G homologically spherical of dimension n if 5, (G) = (6, (G) =1
and all other Betti numbers vanish. In this case dim, G = n. Any homologically trivial
digraph is also spherical of dimension 0.

Conjecture 3.5 The following limit exists and s positive:
S(p) = Vlim P, v (G is homologically spherical) .

Of course, S (p) > T (p) .Here are empirical functions S (p) and T (p) computed as frac-
tions of all homologically spherical resp. trivial digraphs among all available samples.

We see that, for p =~ 0.5, a random digraph is homologically spherical with probability
nearly 100%, and is homologically trivial with probability ~ 90%.
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3.5 Computational limitations

For computation of homology groups and Betti numbers of digraphs we use the aforemen-
tioned program of Chao Chen. It computes successively Hy, (G) and [, (G) for k = 1,2, ...
until the memory of computer allows. Denote by N, the largest rank of actually com-
putable Betti number for a digraph G. For randomly generated digraphs with p = ¢ we
have found the following empirical formula for N,:

N, =aln (1 + é) /In D, (3.2)

where D = FE/V and a,b are constants to be found experimentally depending on the
computer. For a 16GB 17 laptop we have a = 3 and b = 400. If D > 3 then usually
|IN, — N.| <1 (show computations).

Since

1
E§§V(V—1),

it follows that D < 5 (V' — 1) and V' > 2D. Therefore,

N[ =

b
N, <aln|1+ — In D.
e_an<-|—2D>/n
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We expect that dim, < D with high probability. In order to verify this numerically, we
should be able to compute 3, for all £ < D, and for that we need to have N, > D that is,

aln(1+2i)/1np>p (3.3)

With these data, the condition (3.3) implies that D < 6.

N 10T

Here the graph of the function
aln(1+55)/InD

is shown in blue and
the diagonal is shown in red:

Hence, if for a randomly generated digraph D > 6 then computation of dim; G becomes
unreliable.
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Here is a randomly generated digraph with

V=30, E=27, D=289
p=q=0.3

By (3.2) we have N, = 4,
while N, = 3 and the actually computed
Betti numbers are 1,0, 0, 0.

Since D = 8.9 > N,, no reliable conclusion
about the value of dim; G can be made.

For such digraphs we need either to use a more powerful computer or to improve the
algorithm of the program.

Problem 3.6 Compute for this digraph (3, for all k < 9.
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4 Combinatorial curvature of digraphs

4.1 Motivation

Let T' be a finite planar graph. There is the following old notion of a combinatorial
curvature K, at any vertex x of I':

K,—1-3e@ 3 ! (4.1)
Pz

2 deg (f)’

where the sum is taken over all faces f containing x and deg (f) denotes the number of
vertices of f. For example, if all faces are triangles then we obtain

deg (z)  dega ()
= (4.2)

where deg, () is the number of triangles having x as a vertex.

K,=1-

In general, denoting by E,V and F' the number of vertices, edges and faces of I' and
observing that

1 1
zm:deg(x)—2E and szeg(f) _zf:;deg(f) = F,

Tz faz
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we obtain
Y K,=V-E+F=x

We try to realize this idea on digraph: to “distribute” the Euler characteristic over all
vertices and, hence, to obtain an analog of Gauss curvature that satisfies Gauss-Bonnet.

4.2 Curvature operator

Let G = (V,E) be a finite digraph and K = R. We would like to generalize (4.1) to
arbitrary digraphs, so that the faces in (4.1) should be replaced by the elements of a basis
in 2,,. However, the result should be independent of the choice of a basis.

Fix p > 0. Any function f: V — R on the vertices induces an linear operator
Tf - Rp — Rp

by
Treq. i, = (f (lo) + ... + f (ip)) €ig...ip-
For example, for a constant function f = 1 on V, we have The;,. i, = (p+ 1) €;..5, and,

hence,
Thw=(p+1)w for any w € R,. (4.3)
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If f=1, where x € V, then

11, €ip...i, = Mejy..i,, Where m is the number of occurrences of x in i, ..., 9. (4.4)

Fix in R, an inner product (-, -). For example, this can be a natural inner product when
all regular elementary paths e;, ;, form an orthonormal basis in R,,.

i lro R, i

Let 1T, : R, — €, be the orthogonal 1' i

projection onto €2,,. i T én |

Considering T as an operator from 2, to R, !

: . : ! v Qo

we obtain the following operator in €2, : s - L
1 O

T}::Hpon:Qper ' !

Definition. Define the incidence of f and €2, by
[f, Q] := trace T}.
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Definition. For any w = Zwio“'ipeiom@-p € (), define the incidence of f and w by

If,w] = (Thw,w)

Lemma 4.1 For any orthogonal basis {wy} in €2, we have

1, Q] = 3 W

.
£ Jlws]

(4.5)

Proof. It suffices to prove (4.5) for orthonormal basis when |wg|| = 1 for all k. By the

definition of the trace
trace Ty = Z (T}wk,wk) .
k

For any w € (), we have
(T}W,W) = (HprCU,W) = (wa,HpCU) = (waaw) = [f7 w] )

whence (4.5) follows. =
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Definition. For any N € N define the curvature operator K™) : RV — R of order N by

(="

p+1

[f: QP] :

N
KM f = S
p=0

If Q, = {0} for all p > N, then write K}N) = K.
For f =1, where x € V', we write
[z, Q] :=1[1,,9,] and [z,w]:=[1,,w],

If {wx} is an orthogonal basis of €2,,, then by (4.5)

fr, ) = 35 2

2
ksl

If the inner product is natural so that {eio...ip} is orthonormal then by (4.4)

[a:, 6i0...ip] = m, where m is the number of occurrences of x in i, ..., 7, |.

For example,
[aa 6abca] — 27 [ba 6abca] — 17 [da eabca] = 0.
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In this case, for w =Y w"'re; ,; we have

el = X (@) [, i) |

10...ipEV

Definition. For any N € N define the curvature of order N at a vertex x by

N p
K = KM1, = 5 C 0|

= Pt

Proposition 4.2 (Gauss-Bonnet) For any choice of the inner product in R, and for any
N we have

xzeV

N
> K =i | K = x| = 3 (-1)" dim @,
p=0

Proof. Since ) ., 1, = 1, we obtain that

N
K = X K = & K1, = K01 = 52 (-1 22
HAS HAS b=
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On the other hand, by (4.3)
1,0 = (Thw,w) = (p+1) HW||2
If {wx} is an orthogonal basis in €2, then by (4.5)

1,0, = ¥ Ll

2
ksl

= (p+1)dimQ,,

which implies
N _ X P 1 (V)
Ktotal - Z:() (_1) dim Qp =X .
p:
n

Remark. If Q, = {0} for all p > N then

X = % (—1)"dim 2, = % (—1)" dim H,,.

p=0 p=0

Remark. It can happen that €2, # {0} for all p. One example is given on p.40. Here is
a much simpler example: G = {a = b} . For this digraph we have

QO — <€a7 €b>7 Ql — <eab7 eba>7 Q3 — <eaba; ebab>7 Q4 — {eabab7 ebaba}; etC,
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so that [€2,| = 2 for all p > 0. Indeed, €4, € A and
O€gba = €ba — €aa + €ab = €pa T €ap € Ai
so that e € Q. Similarly, eqgq, € A3 and
O€abab = €bab — aab T €abb — €aba = €hab — €aba € A2

so that e . € (13, etc.

Problem 4.3 How to decide whether the sequence {Q, (G)} vanishes for all large p?

Alternatively, one can always truncate the chain complex to make it finite by setting by
definition Q43 = {0} for some N :

0 — 0 £ 0 & .. & av, & oy <0

and work with homology groups of this complex. This corresponds to the following
modification of the notion of allowed paths: all paths of length > N are declared non-
allowed.
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4.3 Examples of computation of curvature

Let us fix in R, the natural inner product. Using the orthonormal basis {e;} in Qg we
obtain
[z, Qo] = Z [z,e] =1
and, using the orthonormal basis {e;; } with ¢ — j in )y, we obtain
Z [z, €] = deg ().

’L—>j

Therefore,
KO —1_ deg—(:b)
v 2

and, for any N > 1,

ol RS (4.6)

KQ(CN)zl—de
p=2p+1

By Proposition 1.2, in the absence of double arrows the space {2, has always a basis of
triangles and squares (but this basis is not necessarily orthogonal).
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For a triangle e € €29 we have

|1, ze{ab,c}
[, Eabe] = { 0, otherwise

and for a square egp. — €qpe € 29

2, ze{a,c}
[l’, Cabe — eab’c] = 1, z € {b, b/}
0, otherwise

In particular, if G has no square then €25 has a basis {wy} that consists of all triangles in
G. This basis is orthonormal and

[z, ] = Z [z, wi] = degn () := #triangles containing x.
k

It follows that

K@ —1_ deg (z) n degx ()
x 2 3 Y
which matches (4.2).
Example. Let G be a line digraph, for example, ---¢ — ¢ «— e — o ... . Then by (4.6)

1

K, = 5 for the endpoints, and K, = 0 for the interior points.
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Example. Let G be a cyclic digraph (polygon) different from triangle or square:

Then we have 2, = {0} for p > 1. 2 1
Hence by (4.6), for any vertex z,

deg (z) _ ’ 0
: .

K,=1—
and Ktotal =0.

For comparison,

Example. Consider a dodecahedron (with any orientation of edges):

We have |Qo| = 20, ‘Ql| = 30, |Q2| = O,
and |H,| =11, |H,| =0 for p > 1.
Then, for any vertex =,
1
K, —1_del@

7 2
and Ktotal = —10.

For comparison,
x=1-—11=20—-30= —10.
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Example. Let G be a triangle. We have Q3 = (e¢12) and €2, = {0} for p > 2.

Hence, for each vertex =, 2

K o—1-— deg () N dega (z) 1

2 3 3
and Ktotal = 1. 0 !

For comparison, x = Qo] — || + Q2] =3 -3+ 1=1.

Example. Let G be a square. Then 25 = (eg13 — €p23) and Q, = {0} for p > 2.

Since |legis — eons||” = 2, we obtain 29 >3

[0,9] =3[0,e013 —en2s] =1, [3,Q] =1

[1792] = % [176013 - 6023] = %, [2792] = % )\ -
0 >
It follows that
deg(0) 1 1 deg(1) 1 1
Ky=Ky=1-— - == Ko=K =1- — == Kip=1=
3 0 5 +3 3’ 2 1 5 +6 6’ total X



Example. Let G be a 3-simplex

We have
Q= <€012, €013, €023, 6123>
and
Q3 = <€0123>;

while Q, = 0 for p > 3. It follows that, for any vertex z,
[, Q3] =degp (z) =3 and [z,Q3] =1

whence ; () [ Q] [ Q] |
€g (T L,1Ll2 T,di3
K,=1- — =—-, Kiga=1=x.
5 + 3 1 1 total X
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Example. Let G be an n-simplex, that is, a digraph with a set of vertices {0, 1, ...

and edges 1 — j whenever ¢ < j. Then, for any p=0,1,...,n
Qp = Ap = <6Z‘0.._ip g <1 < ... < Zp>

so that dim (2, = (;Lﬁ) It follows that, for any vertex =,

[z, (] = # {%...i,, such that = € {io, ...,z'p}} = (z))

and

p+1

KZL‘ = Z (_1)p (p)

Change 7 = p + 1 gives

nil (1 () ‘_
(n+1) K, =Y (-1 - = = S P (=1
j=1 J=1
whence 1
Kx = n 1 and Ktotal = 1.
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Example. Let G be a bipyramid:

We have || =5,

Qy = (eo13, €123, €023, €014, €124, €024, €012)

Q3 = (eo123, €o124)

| =9,

and [Q2,| =0 for p > 4.

Hence, 1
X = Qo] = ||+ || — Q] =5-9+7—2=1.
Let us compute the curvature:

x [2,Q)] | [£,9] | 1 — :e%(m; n [??2] [x,izg] — {(x

2
HGHCQ Ktotal — 1 + % =1.
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Example. Let G be a 3-cube. We have

Qy = <€013 — €023, €015 — €045, €026 — €046,
€137 — €157, €237 — €267, €457 — 6467)

(note that this above basis in {25 is orthogonal)

[9%)

Q3 = (eo237 — €0137 + €0157 — €0a57 + €0467 — €0267)

Let us compute the curvature:

—_—

[z,922] [z,923] deg(z) [z,920] [z,Q] | _
- 5 : 5 : 1_323+132_ . _{(x
uX AR RN R S S |
Consequently, Ko =2+ 5 =1=x
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Example. Consider on octahedron:

We have

Qs = (€024, €034, €025, €035, €124, €134, €125, €135)
and Q, = {0} for all p >3
For any vertex x we obtain

[z, (o] = dega (z) =4

whence

K1 (@) , degs (@)

—1—
2 3

N [

_|_

SV
W=

In particular, K, = g =2=x.
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Example. Consider on octahedron with a different orientation:

We have the following orthogonal bases:

Qy = <6024, €025, €014, €015, €234, €235, €134, €135, €013 — 6023>

Qs = (60234 — €0134, €0235 — 60135>

x = Q| = Q1]+ [|Q = Q3] =6-12+9—-2=1

T [x,92] [x,923] 1 — deg2($) + [33,;12] . [95,23] =K,
0[4+2=1[2=2[1-2+2-2 = <
D[ e e =
e e e T =
sasf—s[i-nli-{+1-7 =
aE RS RS B =
54 Z=1]1-5+2-1 =L
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Example. Here is yet another octahedron. We have to orthogonalize the bases:

Qy = <€o14, €015, €024, €052, €134, €153, €234, €523,
€013 — €023, €013 — €053, €524 — 6534>

= (6014, €015, €024, €052, €134, €153, €234, €523,
€013 — €023, €013 + €023 — 2€053, €524 — 6534>

(3 = <€0153, €0523, €5234, €0134 — €0234, €0534 — €0134 — 60524>

= <€0153, €0523, €5234, €0134 — €0234, €0134 + €0234 — 2€0534 + 260524>

Qy = (605234>7 Qp

= {0} for p > 5.

[:L‘,Qg]

(II',Q4]

- z[m’sz]s [ZQS] 10 il e je%(m; - [:’;22]1_ . [ : — {{m
0 4+§+5= 2+5+E:4 1 1—54—5—1—1—5 =
i ei=w |Toien=2]0 |1 o0 9 =
2 |a4iyiei=8l]o4lpa_3 | 1 [1-24+86 3,1 — 8L
AT T I P P
4]4+2=5 1+2+8=3 [ 1 [1-5+3-2+1 = =
s[avivi-F [org-® |1 [1-f+ 1 BF ;

31 13 7 5 __ _
+@+@+@+%—1—X
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Example. Consider the following spider-like digraph G-

a

b() b m

The space {25 consists of squares €qp,c — €ap,c and their linear combinations, while 2, = {0}
for all p > 2. It is easy to see that

Q2 — <€aboc - eabjc>§n:1 (47)
so that || = m and Kipra = X = Q0] — || + |22 =(m+3) —2(m+1)+m =1
Orthogonalization of (4.7) gives the following orthogonal basis in 25:

W1 = €abye — Eabic

W2 = €abgye + €abic — 26@()20
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Wi = €Eabge U oo I €ab;_1c — ieabic

Wm = €abge + ...+ €aby_1c — MEap,,.c

We have [a,w;] = [¢,w;] = ||wi|” = i (i + 1) while
0, j>i
[bj,wi] = 1, ] <1
2, j=i

which implies

deg(a) 1 2 [a,w] m+1 m 5 m
Kc:Kazl— — :]_—— - = - —
LA 2 "37°6 6
and
deg (b; 1™ [b;,w; 1 2 1 m 1 1 1
Kb<=1—w+—2.[?’—w]=—%+—z - :—<1——).
J 2 3i:12(7’+1) 3](]+1) 3i:j+1l(l+1) 3 m—l—l
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Example. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges and 26 faces,
among them 8 triangular and 18 rectangular.

Let us make it into a digraph G by choosing
direction i — j on an edge (7,7) if ¢ < j.
Then each face becomes a triangle or square.

For this digraph |Hy| =1 and H, = {0} for
p=1and p > 2.

Spaces 2, with p > 3 are trivial, while |{23| = 26.
Space {2 is generated by 8 triangles and 18 squares:

Qy = <€023, €178, €456, €91011, €121415, €131920, €161718, €212223,
€018 — €038, €0113 — €01213, €0214 — €01214, €1719 — €11319, €236 — €246,
€2416 — €21416, €3611 — €3811, €4517 — €41617, €51011 — €5611, €51022 — €51722,
€7811 — €7911, €7921 — €71921, €91022 — €92122, €121320 — €121520;

€141518 — €141618, €151823 — €152023, €172223 — €171823, €192023 — €1921 23>,
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while the generator of Hs is a signed sum of all these 2-paths.

This basis in €29 is orthogonal. Hence, we compute the curvature:

z= 0,11,23 1,3,4,6,8,9,12,13,15,16,18,20,21 | 2,5,7,14,17,19,22 | 10
x,(02|= 6 __ 4 5 _ 7 3 _ 5
NS FIUIES =g {ire=g
-yt =15 +5|1-5+3 -+ |1-2+°
L 3 6 6
It follows that
Ktotal_§+%_%:2-
For comparison
X = |Qo] — ||+ Q0| =24 — 48 +26 =2

= |Ho| — |Hy| + |Hy|.

74




Example. Consider the following pyramid:
Let us make it into a digraph G by choosing U

direction ¢ — j on an edge (i, 7) if i < j.
We have || =8, || = 18,

Qy = <€0177 €027, €037, €047, €057, €067

€012, €023, €034, €045, €056, €127, €237, €347, €457, 6567> 0 3
Q3 = (60127, €0237, €0347, €0457 60567> 6 Y
5

Q, = {0} for p > 4.
Let us compute the curvature:

T [z,$22] [z.9s] | 1 _ degz(w) + [xéh] _ [%23] - K,

7 L 11 _ b — 1

0,7 11 5) 1—3—1-33—1;1 —1—5

1, 6 3 1 1— Z + § - % = %

2,3,4,5 5 2 1_§+§_Z = g

It follows that Kia = —35 +

= Do

—|—%:1. For comparison x =8 — 18 16 — 5 = 1.
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Example. Let us compute the curvature of icosahedron (cf. p. 36).

A
o)

Here we choose direction i — j if ¢ < j. We have

|H| =0, |Hy| =1, |H,| =0 for p>2
IQ()| = 12, |Qll = 30, |Q2‘ = 25, |Qg| = 6,
| =1 and Q, = {0} for p > 5.

Hence, x = [Ho| — |H1| + |H2|
= |Qo| — || + Q| — |Q23] + |Q24| = 2.

We have
Qy = <60197 €012,€1211,€026,€059,€056,€5610,€139,€1311, €267,
€6710,€2711,€349,€348,€4810,€3811,€459,€4510,€7810, €7811;

€0111 — €0211;, €0510 — €0610, €2610 — €2710, €3410 — €3810; 6027—6067>

Q3 = <€01211, €05610; €34810, €0267, €26710, —€06710 + €02710 — 602610>
2 7
a “snake like” path e;,.
2 = (e026710) with iy — i1 and dp, — 4
£ v o k k+1 k k+2

is J-invariant
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Computation of the curvature:

o= 0 1 3, 11
F”Zt 6+§: 8 54i=4 5+§=171 5+2=6
He3I= 3+2=14 1 3+§:? 1
(mha]= 1 0 1 0
4 [,2] 5,8_ 4,1 5, 1172 1 5.7 3,1 5,6 1
2op=o ("1 R | Ios—ats | 1oty | I ts | Lo sy
K — 1 —7 T
& 30 12 60 4
4,5, 8 6 7 10
1__ 11 3__13 3__13 6__
5—{—5—7 5—|—g—g 5+g—87 ) 5—|—g— 8
1 3+§:? 2+§_§ 0 3+§: 4
0 1 1 0 1
5  11/2 1 5, 13/2 11/3 | 1 5, 13/2 8/3 | 1 5,5 5,8 4,1
1oty |1t tg | 1oty =g | 1945 | 1—9+5—3+5
—T — 1 —1 T If
12 — 20 — 5 6 30
Note that K¢ = —% < 0.
The total curvature: Ky =552+ 354+ &+ 32— +2+5=2.
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Example. Consider a randomly generated digraph:

We have V =15, E =39
‘H1’:2, |H2‘:1, Hp:{O} fOI‘pZB
Q| =28, Q3] =4, Q,={0} for p>4.

Hence, x = |Ho| — |Hi1| + |H2|
= Qo] — [Qu] + || — Q3] =0

<€13214 — €131214, €13214 — €13914, €0214 — €0914, €143 — €163,
€1413 — €1613, €506 — €516, €7214 — €7914, €914 — €9124,
€1014 — €10124, €1072 — €10112, €10113 — €10143, €1109 — €1179,
€1151 — €1171, €1243 — €12143, €1271 — €12141, €791, €91214, €9141,

€1071; €10117, €10127, €101214, €101415€1102, €1135; €1150, €1172; 613912)

Q3 = <€101172, €1391214, €101271 — €1012141, €110214 — €110914 + €117914 —6117214>

{Kx}iio:{ 7 1 23 111 1101321 11 13

1
T240 7 120 727 676767 3767072376718 12024J °
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4.4 Digraphs of constant curvature

Recall that a graph is called regular if deg (x) is constant. We say that a digraph G is
strongly regular if the function x — [z, Q] is constant for any p (in particular, G is regular
because deg (z) = [z, (2] is constant). In this case the function x — K is constant and

we set
_x(G)
V]

For any digraph G and any m € N
let us construct a new digraph by
adding to G m new vertices
{y1, ..., ym} and all arrows

L= Yi

for all x € X.

This digraph is called m-suspension
of G and is denoted by sus,, G.
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Theorem 4.4 Let G be a strongly reqular digraph, such that for some k,m € N and any

p=0
dim Q,(G) = ( _kli1> mPtt, (binom(k, m))
p
Then sus,, G is strongly reqular, and for all p > 0
1
dim €2,(sus,, G) = 95 mPTL binom(k + 1, m
p p_|_1

For the digraph G as in Theorem 4.4 we have

X(6) =Y (1P dm0, = 3 (-1 r (5 )mﬁlz—i(—l)j(f)mj:1—<1—m>k.

p>0 p=0

It follows that §
x(G) _ x(G) 1-(1-m)
V] dimQ km '

Of course, the same formula is true for K(sus,, G) with k replaced by k + 1:

1 — (1 —m)**t
(k+1)m

K(G) =

K(sus,, G) =
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Example. We have seen that a triangle (= 2-simplex) is strongly regular and
dimQy =3, dim{; =3, dimy =1, dimQ, =0 for p >3

that is, the sequence {dim(2,} . is the sequence (pil) that satisfies (binom(3,1)). The
1-suspension of an n-simplex is an (n + 1)-simplex. Hence, we obtain by induction that
the n-simplex is strongly regular and satisfies (binom(n + 1,1)). In particular,

1
n+1

K (n-simplex) =

For any m € N denote by D™ a digraph with m vertices and no arrows. Then

dim Qo (D) =m = ( !

N 1>mp+1 for p =10
p

dim €2, (D(m)) =0= ( )mpJrl forp >1

p+1
so that (binom(1,m)) is satisfied. Clearly, D™ is strongly regular.

81



m) | (m) (m)
Define inductively a sequence of digraphs {D,E, )} by @\ - 6)

k=1
D™ = D, |
D,(C"J:)l = SUS,, D,im)
In fact, Dl(cm) is a digraph version of a complete
k’—partite graph Km7 m,...,m @_(m)%%l)@
k
i

By induction we obtain that D,gm) is strongly regular and satisfies (binom(k,m)).

Hence, D,im) has a constant curvature

1—(1—m)"

K(D™) = —

(4.8)

One can show that the only non-trivial Betti number of D,im) is
k
Ber=(m—1)".
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Example. For m = 1 we have by (4.8) K(D(l)

D,(:) is a (k — 1)-simplex: D DY
D= Do Dy
[ ] *r—> 0

Example. For m = 2 we have by (4.8)

@~ | 0, kK even,
K (D) = { .,k odd.

1 3 3 1
For example, Dg) is a 4-cycle: —
It is an analogue of 1-sphere.
It has constant curvature 0.
0 2 0 2
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D§2) is the octahedron:
It is an analogue of 2-sphere.
1

It has constant curvature 0

Df) is an analogue of 3-sphere.
It has constant curvature 0.

D,(jzl is a digraph analogue
of a k-sphere S¥ because
D), is obtained from D{”
by 2-suspension.

Besides, the only non-trivial
Betti number of D;(fﬁl is B, =1
like Betti numbers for S*.

84



Example. For m = 3 we have by (4.8)

1—(=2* 1 (1-2% keven
(3)\ _ _ ) )
KD = =5 3k{1+2k, k odd.
0 3
For example, Dég) is a directed version of K33 :
We have
K(Dy) = ! ‘
and
K(D{) =1
2 5
Iy
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4.5 Some problems

Problem 4.5 Compare this notion of curvature with other definitions of curvature of
graphs.

Problem 4.6 Is it true that for icosahedron (see p. 76) || = 25 for any numbering of
the vertices?

Problem 4.7 Devise an efficient algorithm/software for computation of the spaces €,
for arbitrary digraphs, possibly avoiding null-spaces of large matrices. Such algorithms
exist for Qo and €23.

Problem 4.8 Let a digraph G be determined by a triangulation of S* (see Section 2.3).
Assume that deg (x) < 4 for all x € G. Is it true that K, > 0 for all v € G?

For triangulations of S! we have always K, > 0: these are triangles and squares with
K, > 0 and other polygons with K, = 0.

For triangulations of S? we have verified above that K, > 0 for simplex, bipyramid,
octahedron, but with specific orientations of edges (the question remains open when the
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numbering of vertices is arbitrary). All these digraphs have deg (x) < 4. We have seen that
K, < 0 can occur for icosahedron with deg (z) = 5 and for a pyramid with deg () = 7.

Problem 4.9 Denote D = max,eq deg (x). Is it true that |K,| < Cp for some constant
Cp depending only on D? The same question about K? and K.

Note that K, can be arbitrarily large, for example, for a strongly regular digraph satisfying
(binom(k, m)), we have
1-(1-m)

K,
km

while deg (z) = (kK — 1) m.
Problem 4.10 What can be said about the curvature of random digraphs?

Problem 4.11 Let S be a simplicial complex and Gs be its Hasse diagram (see Section
2.2). Is there any relation of K, (Gs) to properties of S? For example, we have

Ktotal (GS) =X (GS) = Xsimp (8) :

Can one give an explicit formula for computing K, (Gs) for any simplexr 0 € §?
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5 Homology and Cartesian product of digraphs

5.1 Cross product of paths

Given two finite sets X, Y, consider their product
Z=XxY={(a,b):ae XandbeY}.

Let z = 2921...2, be a regular elementary r-path on Z, where z, = (ax, bx) with ax € X
and b, € Y. We say that z is stair-like if, for any k& = 1,...,r, either ax_1 = ay or
bp_1 = by is satisfied. That is, any couple z,_12z;, of consecutive vertices is either vertical
(when ay_; = ay) or horizontal (when by_1 = by,).

Yq
Given a stair-like path z on Z, define its projection
onto X as an elementary path x on X obtained from
z by removing Y-components in all the vertices of z Y : >
and then by collapsing in the resulting sequence any

pathz
subsequence of repeated vertices to one vertex. P
In the same way define projection of z onto Y and
denote it by y. (x00) X %
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Projections x = xg...x, and y = ...y, are regular elementary paths, and p +¢q = r.

(0.9) (P9)

|
Every vertex (z;,y;) of path z can be represented S(2)
as a point (4, j) of Z? so that path z is represented \'
by a staircase S (z) in Z? connecting points (0, 0) ¢
and (p, q).

Define the elevation L (z) of z as the number of
cells in ZZ below the staircase S (z).

0.0) (».0)
For given elementary regular paths z on X and y on Y, denote by X, the set of all
stair-like paths z on Z whose projections on X and Y are respectively z and y.

Definition. Define the cross product of the paths e, and e, as a path e, X e, on Z as

follows:
er X €, = Z (—=1)t# e, (5.1)

2€X ¢,y

and it extend by linearity to all u € R, (X) and v € R, (Y) so that u x v € R, (Z).

89



Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by
integers 1,2, 3, etc so that the vertices on Z can be denoted as al, b2 etc as the fields on
the chessboard. Then we have

a3 b3
® c3
€q X €12 = €414a2; €ab X €1 = €4151
€ab X €12 = €41b162 — €ala2b2
b2

a? c2
€ab X €123 = €41b152b3 — €ala2b2b3 T €al a2a3b3
€abc X €123 = €g1blclc2e3 — €alblb2c2c3 Tt €alblb2b3c3

+€a1a2b2¢2¢3 — €ala2b263¢c3 + €ala2a3b3c3
al bl cl

Lemma 5.1 Ifue R, (X) andv € R, (Y) where p,q > 0, then

J(uxv)=(0u) x v+ (—1)Pux (dv). (5.2)
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5.2 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given
two digraphs X and Y, define there Cartesian product as a digraph Z = X[1Y as follows:

e the set of vertices of Z is X x Y, that is, the vertices of Z are the couples (a,b)
where a € X and b € Y;

e the edges in Z are of two types: (a,b) — (a’,b) where a — da’ (a horizontal edge)
and (a,b) — (a,b’) where b — b (a vertical edge):

o ... B e
7 7 7
(a,b) (a’,b)
be e — e
Y/ x .. e — .

It follows that any allowed elementary path in Z is stair-like.
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Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.

It follows from definition (5.1) of the cross product that
ueA,(X)andve A, (Y) = uxveAd,,(Z2). (5.3)

Furthermore, the following is true.
Lemma 5.2 Ifu e Q,(X) andv e Q,(Y) thenu x v € Q1 (Z) .

Proof. u x v is allowed by (5.3). Since du and Jv are allowed, by (5.3) also du x v and
u x Ov are allowed. By (5.2), 0 (u x v) is also allowed. Hence, u x v € ,,,(Z). =

Theorem 5.3 Any 0-invariant path w on Z = XOY admits a representation in the form

m
w=> u; X
i=1

for some finite m, where u; and v; are O-invariant paths on X and Y , respectively.
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5.3 Kunneth formula

Here is the main result of this chapter.

Theorem 5.4 Let X,Y be two finite digraphs. Then, for any r > 0,

Q&Y)= @ 4 X)eQ(Y),

{p,q>0:p+q=r}

where the isomorphism is given by
URUVH—UXV
foru e Q,(X) and v € Q,(Y). Consequently, we have

H(XOY)= @ H(X)eH,(Y)

{p,q>0:p+q=r}

and

B, (XOY) = > B (X)B,(Y).

{p,q>0:p+q=r}
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Example. Let X be an interval and Y be a square:

X

Then Z = XY 1is a cube:

We have:

0 (X) = (ean)
Q,(X)=0forp>2

(Y) <€01, €13, €23, €o2>
(Y) <€013 - 6023>
 (Y)=0for ¢ > 3.

By (5.4) we obtain

oD 0

O3(7) =

Let us compute the cross-products:

X)®@Q (V) =

b and Y =

2@

T

— @3

— @]

»
-

Y

(€ap X (€013 — €023))-

b1=5



_ a3 b3 3 7
€ab X €013 = €a0b0b1b3 — €a0albl b3 T €adal a3 b3

= €0457 — €0157 T €0137

and al b1 1 5

€ab X €023 = €0467 — €0267 T €0237

a ) 0

Hence, we obtain

Q3 (Z) = (eoas7 — €o157 + €0137 — €0467 + €0267 — €0237)
that is the O-invariant 3-path associated with 3-cube.

Define n-cube as follows:
n-cube = ILI0]...[01,
—_—

n

where [ = {®@ — o} . Similarly one shows that (2, (n- cube) is spanned by a single n-path
that is an alternating sum of n! elementary n-paths connecting the vertices 0 and 2™ — 1.
This corresponds to partitioning of a solid n-dim cube into n! simplexes.

By the Kiinneth formula, H, (n-cube) = {0} for all p > 1.
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5.4 An example: 2-torus

Example. Denote by T the following 3-cycle (=1-torus):

b 1
T = A0\ = ~O\
‘g «— of Ve « o2

Consider a 2-torus G = TUOT shown here:

Let us compute 2, (G), H, (G), K, (G).

We know that

Qo (T') = (€0, €1,€2), h (T) = (eo1, €12,€20), € (T) = {0} for p > 2
By (5.4) we obtain 2, = {0} for r > 3 and
2 (G) = (T) @M (T)

= <€ab X €01, €ab X €12, Eqp X €20, €pc X €01, Epc X €12, Epc X €20, €cq X €01, €cq X €12, €cq X €2o>
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Using

€ab X €ij = €aibibj — €aiajbj

we obtain that a b

Qs (G) = <€a0b0b1 — €a0albly €albld2 — €ala2b2; €a2020 — €a2a0b0;
€b0c0cl — Eb0blely €Eblele2 — €b1b2¢2; €b2¢2¢0 — €b210c0;

€c0a0al — €c0claly €clala2 — €clc2a2; €c2a2a0 — €c2 cOa0>

that is,

Qs (G) = <6034 — €014, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536

€601 — €671, €712 — €782, €820 — e860>-

We see that €25 (G) is generated by 9 squares.
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This can be visualized using
the following embedding of
G = TUT on a topological torus:

Using €25 (G), let us compute
the curvature K, on G.

The above basis in Q5 (G) is
orthogonal and ||wl||* = 2

for any element w of the basis.

Besides, for any vertex z, we have [z,w] = 2 for two of w, [z,w] = 1 for two of w, and
[z,w] = 0 for the rest of w. Hence,

lz,w] 2-242-1

[337Q2]:Z - 3
el |12] 2
and fep @) w0 4 3
eg\x PRYD)
K,=1- —1--+2=0.
5 T3 5 +t3=0

Let us compute the homology groups of G. We know that
Hy (T) = (eo), Hi(T)={eop1 +e12+e), H,T)={0} forp>2.
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By (5.5) we have
Hl (G) = HO (T) X H1 (T) + Hl (T) X HO (T) = <U1,U2>

where v; = e, X (€g1 + €12 + €20) = €anal + €a1a2 + €a2a0 = €01 + €12 + €29
Vo = (€ap + €pe + €ca) X €0 = €a0p0 + €100 + €c0a0 = €03 + €36 + €60-

Again by (5.5)
H, (G) = Hi (T) ® H1 (T) = (u),

where u = (eqp + €pe + €ca) X (€01 + €12 + €29), and H,. (Z) = 0 for all » > 2. Hence,

U = €a0b0b1 — €a0albl T €a1b1b2 — €ala2b2 T €a26260 — €a2 a0 b0
+ €p0cocl — Eboblcl T Ehlcle2 — Eb1b2¢2 T €b2¢2c¢0 — €260 O

+ €c0alal — €c0clal + €clala2 — €clc2a2 + €c2a2a0 — €c2c0a0

that is u = (ep3a — €o14) + (€145 — €125) + (€253 — €203) + (€367 — €347) + (€478 — €458)

+ (es86 — €536) + (€601 — €671) + (€712 — €782) + (€820 — €860) -
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5.5 Cartesian product and curvature

Proposition 5.5 Let X be any digraph with a finite chain sequence {Q,} and Y be a
cyclic digraph
Y={0—-1—-2—..—>m— 0}

with m > 2. Then, with respect to the natural inner product,
K, (XOY)=0

for any z € XQY. In particular, K(T°") = 0 where T is an 1-torus.

Consider an n-cube= I™" where I = {0 — 1}. Then any vertex x of the n-cube is repre-

sented by a binary sequence (xy, ..., x,). Set |x| =x1 + ... + z,.

Proposition 5.6 For any vertex x of the n-cube we have

1

K, (n-cube) = m

Problem 5.7 How to compute K (XOY) in general?
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5.6 Strong product

Define a strong product XIAY of digraphs as follows: the set of vertices of XIAY is X x Y,
while the arrows are defined as follows: (a,b) — (a’,b) where a — &’ (a horizontal edge),
(a,b) — (a,b’) where b — ¥ (a vertical edge), and (a,b) — (da’,0’) where a — o’ and
b — V' (a diagonal edge):

(a’b/) (a/’b/)
{ ] — { ]
R

(a,b) (a’,b)
([ J — ([ J

Conjecture 5.8 The Kinneth formula holds for the strong product:

H.(Xuy)= @O (H,X)eH(Y)),

{p,¢>0:p+g=r}

where the isomorphism is given by u ® v — u X v.

It suffices to prove an analogue of the theorem of Eilenberg-Zilber: there are chain maps

F:Q,(XQY) — Q. (X) ® 2 (V)

101



and
G:Q(X)®Q (Y) — Q, (XY)

such that F'G = id and GF' is chain-homotopic to id.

In fact, one can define G by G (u ® v) = u x v, while the main difficulty is in construction
of F'. In the setting of Theorem 5.4, one uses Theorem 5.3 to show that G is bijective so
that one can take FF = G~ L.
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6 Path cohomology

As before, V' is a finite set and K is a field. Recall that A, is a K-linear space spanned
by all elementary p-paths e;;. ;.

6.1 p-forms and exterior derivative

Definition. For any p > 0 define a p-form on V' as any linear functional w : A, — K .
The linear space of all p-forms is denoted by AP. That is, A? is the dual space of A,,.

If we A? and v € A, then write (w,v) = w (v). For any elementary p-path e;,. ;, there is
a dual elementary p-form e®-% such that

’io...ip ) ) ) _ ZOZp
(e » €jo...Jp _5j0...jp-

Any p-form w € AP can be represented as a linear combination of elementary p-forms

_ 20-..0
W= Y, Wi, e,
10,50, 2p €V

where w;,. 5, = (w, eio,,,ip) e K.
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For any p-path

=T SR BN E A
io,...,’ipev
we have then
_ 10...1
(w, U) - Z wio...ipv P,
10,0 0pEV

Definition. For any p > 1, define the exterior derivative d : AP~t — AP by

p
=Y (-1)%w, ~ . | for any w € AP,

Recall for comparison that

p
aeio...ip - Z (_1)q eio...i/(;...’ip‘

q=0
For example, for O-form w = > w;e’ we have

(dw);; = wj — wi,
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for a 1-form w = Y w;;e” we have

(dw)ijk, = Wik — Wik + Wij-

It follows from (6.1) that

p+l

dein = 3 33 (=17 eo-irabia-is | (6.3)

keV q=

For example,

de' = Y (e’” — eik) and de? =Y (e’”j — R 4 eijk) .
keV keV

Proposition 6.1 (Stokes’s theorem) Let p > 1. For any p-path u and any (p — 1)-form

w, the following identity holds
(dw,u) = (w,0u) .

Hence, the operators d : AP~1 — AP and 0 : A, — A,_1 are dual, and d*> = 0.

Proof. It suffices to prove this identity for u = e;,.;,. Using (6.1) and (6.2), we obtain

(duw, ) = (dw);, Zﬁi( 1w, oo

q:
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and
p p
@00 = (@ 5 (Ve 5.0 ) = 2 (D045
whence the required identity follows. m

Consider the following regular subspace of AP:
RP = (" : ig..i, is regular).

Then the spaces R? and R, are dual with the same pairing (-,-) .

Lemma 6.2 If w € R? then dw € RP™L. Moreover, the operator d : RP — RPYL and the
reqular boundary operator 0 : RPTt — RP are dual.

Proof. It suffices to prove this for an elementary regular p-form w = e, By (6.3) we

have
p+1

dw = deio...zp _ Z Z( )q 10...1q—1Kiq.. zp

keV g=

A (p+ 1)-path e'o-*a—1¥a" can be non-regular only if k = i, or k = i4_;. For example,
let k& = i;. The above sum contains also the term (—1)7*! gio-iariah-in that cancels out
with (—1)? ¢"0"a-1*ar 4o that dw is a sum of regular terms. m
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6.2 Example: Sperner’s lemma

Consider a triangle ABC on the plane R? and its triangulation 7". The set of vertices of T
is colored with three colors 1, 2, 3 in such a way that the following conditions are satisfied:

e the vertices A, B, C are colored with 1,2, 3 respectively;

e cach vertex on any edge of ABC' is colored with one of the two colors of the endpoints
of the edge.

Sperner’s coloring
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A classical lemma of Sperner says the following: under the above hypotheses, there exists
in T a 3-color triangle, that is, a triangle, whose vertices are colored with the three
different colors. Moreover, the number of 3-color triangles is odd.

We give here a proof using Stokes’s formula of Proposition 6.1.

Step 1. Let us modify the triangulation 7" so that there are no vertices on the edges
AB, AC, BC except for A, B, C.

Indeed, if X is a vertex on AB then we move X
a bit inside the triangle ABC.

This gives rise to a new triangle that is formed
by X and its former neighbors, say Y and Z,
on the edge AB (while keeping all old triangles).

However, since all X,Y, Z are colored with two
colors, no 3-color triangle emerges after that move.

Repeating this procedure, we remove all the vertices
from the interior of edges of ABC.
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Step 2. We map the triangle ABC and the triangulation 7" onto the sphere S? and add
to the set T' the triangle ABC' itself from the other side of the sphere.

a

\ C °B

Then we obtain a triangulation of S?; denote it again by 7. Now we need to prove that
the number of 3-color triangles in 7" is even (because the newly added triangle ABC' is
3-color). From now on we do not need any restriction on coloring of the vertices of T —
it can be arbitrary.
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Step 3. Let us regard T as a graph on S? and construct a dual graph G.

/\

Chose at each face (triangle) of 7" a point
and regard these points as the vertices of

the dual graph G. 2 1

The vertices in GG are connected by

an edge if the corresponding triangles / v \
in 7" have a common edge. 3

The graphs T (black) and G (grey)

Then the faces of G are in one-to-one correspondence to the vertices of T, and we color
each face of G in the same color as the corresponding vertex of 7.

Hence, we obtain a planar graph G on S? such that each vertex of G has degree 3 and
each face is colored with one of the colors 1, 2,3. We need to prove that the number of
3-color vertices of G (that is, the vertices, whose adjacent faces have all three colors) is
even.
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Step 4. Let us make G into a digraph as follows. Choose the orientation of any edge &
of G according to the color of the faces from the both sides of ¢ as follows:

7 2

If the colors are the same from the both sides then £ becomes a double arrow —. Examples
of such orientations are shown here:

111



Step 5. Consider an 1-path on the digraph G:
V= Z eij'
1—J
We have for any vertex a € V' of GG
(Ov)* = (9v,e%) = 3 (Oeij,e”) = (ej—ee)=> 1- 371
U] 1= 1—a a—]
= F#{incoming arrows at a} — #{outcoming arrows at a}.

If a is 3-color, then either all three arrows at a are incoming or all are outcoming so that
(Ov)* = +3 or —3, respectively. If a is not 3-color then (Ov)* = 0.
Denoting by n; the total number of 3-color vertices with all incoming arrows and by ns
the total number of 3-color vertices with outcoming arrows, we obtain that
Z (81))“ =3 (n1 — 712) .
acV
On the other hand, we have by Proposition 6.1
> (0v)* = (v, > e*) = (v, 1) = (v,dl) = 0.
acV acV

Hence, we conclude that ny = ny. Consequently, the total number of 3-color vertices is
equal to 2nq, that is, even, which was to be proved. H
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6.3 d-invariant forms

Let G = (V, E) be a digraph. For any p > 0, consider the following subspaces of R”:
AP = (e g0, is allowed)
NP = (' : jgy..i, is non-allowed but regular)

so that
RP = AP ¢ NP. (6.4)

Set

JP = NP + dNP~1| C RP

(where N =1 = {0}) and

Qr =RP /P |

Definition. The elements of (2P are called d-invariant p-forms.

For ¢,v9 € RP we write ¢ ~ ¢ if ¢ = ¢y mod JP, that is, if ¢ and ¢ represent the same
element of Q. In other words, the symbol ~ means equality in {2P.

Using (6.4) it is easy to see that
QP = AP /(JP N AP),
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that is, | d-invariant p-forms are allowed p-forms considered mod J? |. Since all allowed ele-

mentary p-forms e constitute a basis in A?, choosing from the sequence {e*» mod J?}

a maximal linearly independent subsequence, we obtain a basis in 2?. Note also that
J%={0} and J* N A' = {0} so that Q° = A° and Q' = A

Example. Let G be a square. We have ¢% € N'! and

de%B = 3 k03 _ 37 Q03 4 S 08k — 013 _ 028 |, 2: T
k k k
where ¢ € N2 Tt follows that
0. > .1

eVl3 + €23 = — de% e N2 +dNt = J2.

Hence, €3 ~ —e%23 that is, €3 and —e®?3 represent the same element of Q2.

Lemma 6.3 If w € JP then dw € JP'. Hence, d is well defined on spaces Q¥ = RP/JP.

Proof. For w € J? then w = o + df where a € NP and 3 € NP~L. It follows that
dw = do + d?6 = da € ANP C JPTL.
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Lemma 6.4 Let v € R,. Then v is an annthilator of JP if and only of v € €2, that is,
(w,v) =0 forallwe J’ & vel,

Hence, the pairing (w,v) is well defined for allw € QP and v € Q),, and is non-degenerate.

Proof. Let w = a + d3 where o € NP and 3 € NP~!. Then
(w,v) = (@ +dB,v) = (o, v) + (B, 0v).

This sum vanishes for all & € N? and 8 € NP~1 if and only is (o,v) = 0 and (3, 9v) = 0,
which is the case if and only if both v and dv are allowed, that is, v € 2,. m

Consequently, the spaces (2P and (2, are dual, and the operators d on 2* and 0 on €2, are
also dual. We obtain the duality of that cochain complex
040  Lordgrtt s (6.5)

and the chain complex

o o 19) o 19)
0—Qyge—...—Q, — Qg ...

Every allowed p-form w € AP determines a d-invariant p-form w mod JP. The following
lemma is useful for determination of the linear independence of a sequence of d-invariant
p-forms w; mod JP.
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Lemma 6.5 Let {Uj}?zl be a basis in Q, and {w;};", be a sequence of allowed p-forms.
Then the rank of {w; mod JP}*  in QF is equal to the rank of the m x n matriz (w;, v;).

Particular cases: (i) an allowed p-form w determines a non-zero element w mod J? of QP
if and only if one of the values (w, v;) is non-zero;

(i1) if {w;},_, is a sequence of allowed p-forms (for example, of some allowed elementary
p-forms e’"») then {w; mod JP}!_| is a basis of Q? if and only if the n x n matrix (w;, v;)
is non-singular.

Example. Let G be a square.
We know that QQ = <€013 — 6023>.

Since (6013, €013 — 6023) =1 7é O,

we obtain by (ii) that Q% = (e%3).

Y

We have seen above that €913 ~ —¢023,

013 + 6023

This follows also from (i) because (e €013 — €g23) = 0 and, hence, €3 + 0% ~ (.
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Example. Let G be the 3-cube. We know that

6 —n
€25 = (€013 — €023, €046 — €026, €157 — €137, ‘ ‘
€015 — €045, €237 — €267, €457 — 6467> 2 3
and 1 1
4 5
Q3 = (eo237 — €0137 + €0157 — €0a57 + €0467 — €0267)

By Lemma 6.5, we obtain

522 — <6013,€O46,6157 e015 e237 6457>

Y Y Y

because the matrix (w;,v;) is in this case idg . Similarly we have
QF = (OBT) = (D18T) = (0157 — <60457> _ <60467> _ <€0267>'

Observe also, that
0157 ~ __ 0137

0137

because €57 + €937 annihilates Qs:

0157 |, 0137
(6 + €77, €p237 — €0137 T+ €157 — €0457 T+ €0467 — 60267) = 0.
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6.4 Concatenation of forms

Definition. For p,q > 0 and for any two forms ¢ € AP and ¢ € A% define their

concatenation o € APTY by

(‘P@D)io,,,iﬁq = Spio...z'p%pipﬂ...iﬁq-

For elementary forms e'* and e79J¢ we have

10-+1p 00+ Jq — { 0, tp # Jo,

elotpdlta g = gg.
Clearly, concatenation is associative.

12 ,234 _ e1234

For example, e'?e 12345 — (.

and e
Example. For the 0-form _
oc=1=>Y ¢ A’

eV

and any other form ¢ € AP we have 0 = po = ¢ because (o)
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Jo--Jq

ip — Pig.ipTip = Pig...ip



Lemma 6.6 For all p,q > 0 and p € AP, b € A, we have
d (o) = (dp) ¥ + (=1)" dip. (6.7)

Clearly, if ¢ € RP, 1) € R then oy € RPT and if ¢ € AP, ¢ € A7 then oy € APTI,

Lemma 6.7 If o € JP ory € J? then i € JPT9. Consequently, concatenation is well-
defined as an operation from QP x Q2 to QPTe,

Proof. If o € NP then clearly ¢y € NPT If o € JP then ¢ = o+ df3 where o € NP and
B e NP~1. We have

o = ayp + (dB) ¢ = ayp + d (By) — (=1)"" Bdy.
Since atp, $¢ and Bdiy are non-allowed, pip € JPT9. The case ¢ € J9 is similar.

Elements in QP and Q7 have representatives ¢ € A” and ¢ € A% Then ¢ € AP™? and if
¢ ~ ¢ and 1)’ ~ 1) are other representatives of the same elements then

Y —op=(g — )V + o —¢) e JHH,

whence @) ~ i)', =
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Example. Let G be the 3-cube. We have

6 7
A
ded! — Zk (ekzm _ Okl 601k;) ~ 015 | (013 ) /
A
del3 — Zk (€k13 _ olk3 4 613I<:) ~ 013 | 137
4 >—5
It follows that 0 —
de"3 — (601613) _ (d€01) o3 _ Ol gp13 ~ (6015 4 6013) o13 _ Q01 (6013 4 6137) _ 0137

Proposition 6.8 If dim Q" <1 then QP = {0} for allp > n+ 1.

Proof. Assume first that dim Q" = 0 so that e ~ ( for all allowed paths ig...i,,. For
any p > n we obtain for any allowed path ig...i, that e = elo-ingin» ~ () whence

O = {0} .
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Assume now dim 2" = 1. We have for any p > n and any allowed path i...7,

eZO...zp — 620...Znezn...zp — 61011611...Zn+1ezn+1...1p. (68)
N——— N——
n-form n-form
If
ezo...ln ~ 0 or 621...Zn+1 ~ O, (69)

then we obtain e'» ~ (. If (6.9) fails then the both n-forms e’» and e"*~»+1 represent
non-zero elements of 2. Since dim Q2" = 1, there is ¢ € K,

e'lintl ~ pel0in

Substituting into (6.8), we obtain

el 2 ce 0t et et

Since the path 7y...7, is allowed and, hence, regular, we have iy # 7;. It follows that
glotigio-in — () whence e ~ (), which finishes the proof. =

Proposition 6.9 If G contains no double arrow and if dim Q™ < 2 then QP = {0} for all
p=>n+2.

Problem 6.10 Find practical criteria for QP = {0} for all large p.
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6.5 Cohomology classes

Define the cohomology groups of the chain complexes
0005 Lot Lord et

by
H? = kerd|gr/Im d|gp-1.
A p-form ¢ € QP is called closed if dp = 0, and exact if p = di) for some 1 € QP~1.

If p,v are two closed p-forms then we write ¢ ~ 1 if ¢ and ¥ represent the same
cohomology class, that is, if ¢ — 1 is exact.

Lemma 6.11 The pairing (¢,v) with ¢ € H? and v € H, is well defined and is non-
degenerate. Hence, the spaces HP and H, are dual.

Proof. Indeed, if ¢’ ~ ¢ and v ~ v then ¢’ = ¢ 4+ dip and v = v 4+ Ju, and we obtain
(#',v') = (0, v) + (dip,v) + (p, Ou) + (dy, Ou).

Since (dip,v) = (¢,0v) = 0 and similarly all other terms vanish, we obtain (¢’,v") =
(p,v). =
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Lemma 6.12 Ifp € QP andy € Q7 are closed forms then o is also closed. If in addition

one of the forms p,1 is exact then i is also exact. Consequently, concatenation is well
defined for o € HP, vp € HY and results in oip € HPYI,

Proof. If ¢ and v are closed then
d(pp) = (dp) ¥ + (1) pdip = 0
so that ¢ is closed. If ¢ is exact, say ¢ = da then
d(on)) = (da) Y + (=1)""" adyp = gy
so that ¢ is exact. =

Example. Consider an 1-torus

o <— O

We have QY = (e, ¢!, e?) and Q' = (e, e'?,e?") while O = {0} for p > 2. Since

deO — Zeko o ZBOk ~ e20 . 601,
k k
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del — Zekl Zelk ~ e 612,
k k
d€2 _ Z €k2 Z €2k 620,
k k
we see that
ker d|go = (€ + e + &%)
and

Imd|go = (20 — !, e — e'?). (6.10)
In particular,

H® = kerd|go = (€” + &' + €?).
Since 2% = {0}, we have

ker d|gr = Q' = (%, e'?, e®°).
Note that €% ~ e? ~ e!? because their differences belong to Im d|qo by (6.10). It follows

that
H' = kerd|o1 /Imd|g, = (™).

Remark. For a connected digraph G we have always §, = 1 and Hy = (eo). We claim that
in this case H° = (o), where 0 = 1 = 3. ¢* € Q. Indeed, we have (do)” = ¢/ — o’ =0
and, hence, do = 0, while 0 ¢ 0 as (0,¢ep) = 1.
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6.6 Star product and Kiinneth formula

Definition. Let X and Y be two digraphs. For a p-form ¢ on X and a ¢-form v on Y,
define their star product ¢ 1) as a (p + ¢)-form on Z = XOY as follows: for elementary
forms set

p0-dp o pdo-da — p(i030)(i10)---(ipjo) (ipj1)--(indq)
where i € X, j € Y and (ij) is a vertex in XY, and then extend this operation using
bilinearity:.

(ipJq)
<

Ja *

L ]

Jo#-e <
(i0jo) (Ih/())

X

Clearly, if ¢ and 1 are allowed then ¢ % 1 is also allowed.
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In the next statement we use pairing (¢, u) that so far was defined for p € R? (G) and
u€R,(G). Let us set (p,u) =0if ¢ € RP (G) and u € Ry (G) with p’ # p.

Lemma 6.13 For all p € RP (X), p € R1(Y) and u € Ry (X), v € Ry (Y) we have
(oxp,uxw) = (@, u)(,v). (6.11)

Lemma 6.14 If ¢ ~ 0 or ¢p ~ 0 then p x 1 ~ 0. Consequently, the operation © x 1 is
well defined for all p € QP (X), ¥ € Q1(Y), and px 1 € QPT1(Z) .

Proof. If ¢ ~ 0 then p = o + df for a, f € N* (X). For all u € Q, (X) and v € Q, (V)

we have
(axt,uxv)=(a,u)(,v) =0
because a € N* (X) and u € A, (X) . Similarly,
(dBx ¢, u xv) = (dB,u) (,v) = (8,0u) (Y,v) =0
because # € N* (X) and du € A, (X) . Hence,
(p*x1,uxv)=0.

By Theorem 5.3, €2, (Z) is spanned by the terms like u x v, which implies that ¢ * 9
annihilates €2, (Z) and, hence, px¢ ~ 0. m
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Lemma 6.15 For all p € QP (X), v € Q1 (Y), we have

d(px) =dpxp+ (=1)" o x di. (6.12)

Proof. For arbitrary u € Q, (

X) and v € Qy (YY), we have by the duality of d and 0 and

by the product rule for the cross product:

(d(p*1),uxv)=

(ox 9,0 (uxv))

= (e*x,0u X v) + (gp*w,(—l)p/uX&J)
= (0, 0u) (¢, v)
= (
= (
=1

+ (=1 (p,w) (3, 00)
dp, u) (¥, v) + (=1)° (¢, u) (d¢, v)
dgp*w,uxv)—k(—l)p(gp*dw,u><U)
dpox+ (=1’ pxdip,u x v).

The proof is concluded by application of Theorem 5.3 as above. m

It follows from (6.12) that ¢ * ¢ is well defined for cohomology classes ¢ € HP (X),
e HI(Y), and px1p € HPY(Z).

Note that for the forms ¢ and ¢ from R* the product rule (6.12) is not true. In this case
the above proof fails at the last step because R. (Z) is not spanned by the terms u X v.
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Theorem 6.16 (Kiinneth formula for product in cohomology) Let Z = XOY. We have,
for any r >0
()2 P (X)) (Y)) (6.13)
{r,q>0:p+q=r}
and
H (Z)= @ (H(X)@H'(Y)) (6.14)
{,q>0:p+q=r}

where the isomorphism is given by the map © @ 1 +— p % 1.

Example. Consider the digraph G = TUT where T an 1-torus:

Let us compute QP (G) and H? (G).

We know that

QY (T) = (e e',e?),  QNT) = (" e e*®) and O = {0} for p > 2
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and
HO(T) = (" +e' +¢e?), H'(T)= ().
By the Kiinneth formula of Theorem 6.16, we obtain
H'(G)=H°(TY® H' (T)+ H' (T) ® H°(T)

— <(ea+€b+ec) *601, eab* (€0+€1+€2)>

— <ea0a1 o+ ebObl 4 6cOcl eaObO T 6albl 4 e0L2b2>

— <601 +634—|—€67 603 —|—€14—|—625>
and

H2 (G) _ Hl (T) ® Hl (T) — <6ab*€01> — <ea0b0b1> — <€034>
Similarly, we have
QQ (G) — Ql (T) ® Ql (T) — <€ab7 ebc’ 6ca> ® <€017 612, 620>

that is

Q2 G — 6ab‘k601 eab*eIZ eab*€20 €bc*601 ebc*€12 6bc‘ke20 6ca‘k601 eca*€12 eca*e20 .
) ) ) ) ) ) ) )

Next we compute

ptb 4 Q01 _ ,a0b0bl _ 034
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ab 12 aldblb2 __ 145

e ke =e€ =€

eab * e20 — 6a2 b2b0 __ 6253
6bc*€01 — 6bOcO cl _ 6367
61707‘(612 — 6bl cle2 _ 6478
ebc * e20 — eb2 €2c0 _ 6586
e *601 — 6cO(LOal — 6601
eCo *612 — 6c1a10¢2 — 6712
eca*eQO — ec2a2a0 — 6820

= Q2 (G):<6034 145 253 367 478 586 601 712 820>

Recall for comparison that

Qs (G) = (6034 — €014, €145 — €125, €253 — €203, €367 — €347,
€478 — €458, €586 — €536, €601 — €671, €712 — €782, €820 — 6860>
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7 Intersection forms

7.1 Summary of d-invariant forms and cohomology

Let V be a finite set, K = R or Q. Space AP of p-forms is generated by elementary p-forms
e'o-» where g...i, is any sequence of p 4+ 1 vertices. Any p-form w € AP has a form

W= ) Wi, where w; ; €K
10,0 ipEV

The spaces AP and A, are dual with the pairing
i0--.ip

10...9p ) ] ) _
(e ) €jo...Jp —5j0...jp-

The exterior derivative d : AP~ — AP is defined by
p
(@), = 3 (i oy forany € AP

Concatenation of p-forms and g-forms is defined by

eio...ipejo...jq _ { O) Zp # Jo,

e'otpdlta g = .
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The operator d satisfies the product rule with respect to concatenation:

d () = (dp) ¥ + (—1)° pdy.

Both d and concatenation are well defined on the spaces R? of regular p-forms spanned
by elementary p-forms e» with regular paths ig...i,.

Given a digraph G = (V, E), consider the following subspaces of RP:
AP = (e 1.0, is allowed)
NP = (e : jy...i, is non-allowed but regular)
so that RP = AP ®NP. Set JP = NP +dNP~! and define the space of d-invariant p-forms:
QP =RP/JP = AP /(JP N AP)
so that any d-invariant p-form is an allowed p-form considered modulo JP.
Both d and concatenation are well defined on spaces €2*. The cochain complex
0L 4. Lor Lot L (7.1)
is dual to the chain complex

1o} 1o} 1o}
0 Qo ... —Qy Qg — ...
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The cohomology groups
H? = Kker d|Qp/Im dep—1

and the homology groups H, are dual. Concatenation is well defined on cohomology
classes: for ¢ € H? and ¢ € H? we have oy € HPTY,

7.2 Graded symmetry

Conjecture 7.1 The concatenation of cohomology classes is graded-symmetric: for all
w € H? and ¢ € H?
o = (=1)" . (7.2)

Note that concatenation is not graded-symmetric in Q* x Q* — Q*. For example, if a — b
then e* € Q°, e® € Q! and

efe®™ = e® and e*e® = 0.

On the other hand, it is easy to verify (7.2) if p = 0. For example, if G is connected then
|H"| =1 and, hence, ¢ = co where 0 = Y. €', and (7.2) is trivially satisfied.
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Example. Let G = TOT where T'={0 — 1 — 2 — 0} is an 1-torus.

4
We have seen above that A
H' (G) = (1, 09) '

where

0, = Ol 4 o34 4 67 A A
0 8
0y = 03 4 gl4 4 25 "

Let us verify that the concatenation is graded symmetric in H?!, that is,

o = —pp for all ¢, € H.

We clearly have
P11 = Yo =0
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while
010y = (601 1By 667) (603 Lol 625) _ou

and

Pap1 = (603 + el + 625) (601 +e3* + 667> — 934,

It remains to verify that
6034 ~ —6014 . (73)

For that we use that

where

u = (eg34 — €o14) + (€145 — €125) + (€253 — €203) + (€367 — €347) + (€478 — €458)

+ (ess6 — es36) + (€601 — €671) + (€712 — ers2) + (€820 — €s60)

(see p. 99). Since
(6034,u) =1 and (6014,u) = -1,

we see that (7.3) is satisfied.
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7.3 Intersection form and signature

Definition. We say that a homology class v € H, is proper if, for all ¢ € HP? and
b e H(G)

If Conjecture 7.1 is true then all homology classes are proper.

For any homology class u € Hy, consider the following bilinear form

Qu (p,¥) = (pY,u) where ¢, ¢ € H?,

that is called the intersection form of u. If u is proper and if p is even then (7.4) implies
that (), is a symmetric bilinear form in HP?. Hence, the notion of signature of @), is
well-defined:

0 (Qu) =a—b,
where a and b are the numbers of positive resp. negative eigenvalues of @),,.
Definition. Let u € H,. be proper. Define the signature o (u) of u as follows:

- if r is divisible by 4 then set o (u) = 0 (Q.) ;
- if 7 is not divisible by 4 then set o (u) = 0.
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Theorem 7.2 Assume that the homology classes u € H, (X) and v € H, (Y') are proper.
Then u x v € H, (XOY) is also proper and

o(uxv)=oc(u)o(v). (7.5)

Conjecture 7.3 There exists a digraph G and a proper homology class w € Hy (G) such
that o (w) # 0.

Note that such a path w cannot be constructed as a product w = u X v because u and v
must have orders < 4 whence o (u) = o (v) = 0, and by Theorem 7.2 also ¢ (w) = 0.

Here is an approach how one can try to construct w € Hy with o (w) # 0. It is known that
o (CP?) # 0 and the Betti numbers of CP? are 1,0,1,0,1. We may try to find digraphs
with the same Betti numbers and compute o (w) for a generator w € Hy. Let ¢ be a
generator of H2. Then the question amounts to verification of the fact that

Qu (¥, ¢) = (pp,w) # 0.
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One of digraphs with Betti =1,0,1,0,1
is shown here:

Another possibility is as follows. Let S be a simplicial complex that is a triangulation of
CP? with the same Betti numbers 1,0, 1,0,1. Let Gg be the Hasse diagram of S, that is,
the vertices of Gg are all simplices of S, and for two simplices s,t € S we have an arrow
s — t in Gg if and only if ¢ is a face of s of the codimension 1.

By Theorem 2.1, we have .
H™ (S) ~ H. (Gs),

Hence, the Betti numbers of G are also 1,0, 1,0, 1.
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If Conjecture 7.3 is true then a question arises how to characterize homology classes u
with o (u) # 0. For simplicity we denote by w also its representative path. Note that if
Ou = 0 on G then also Ou = 0 on any larger digraph G D G. Hence, u determines a
homology class not only on G, but also on G'. However, it can happen that u # 0 in
H, (G) while v = 0 in H, (G’), that is, u is a boundary on G'.

Conjecture 7.4 Assume that u € H, (G) is proper. Suppose that u is a boundary on a
certain larger digraph G' O G. Then o (u) = 0.

If Conjecture 7.3 is true then G’ cannot be arbitrary. Indeed, by adding all possible arrows
to GG, we obtain a complete digraph G’ with H, (G') = {0} so that all cycles in G’ are
boundaries. Hence, one must put certain restrictions on G'.

Note that in order to determine a symmetric bilinear form ), up to isomorphism, it is not
enough to know just the signature o ((Q),): one needs also the rank of @), (=the number
of non-zero eigenvalues) and/or the nullity of ), (=the number of zero eigenvalues). If
u € Hy, then

rank (Q,) + nullity (Q,,) = dim H? = 3.

Problem 7.5 How to compute rank (Q,x.,) and/or nullity (Quxv)?
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7.4 An example of computation of intersection form

For any p-path u we write |u| = p, and for any p-form ¢ we write || = p.

Lemma 7.6 Let XY be two digraphs and Z = XOY . Let u € R, (X), v € R.(Y) and
01,9 € R*(X), ¥y,0¥y € R*(Y). Then for pairing on Z we have

(1 *x91) (g *1g) ,u X v) = (_1)“’[}1”%' (1602, u) (P11, v) (7.6)

that 1s,
Quxwv (91 * 1, 3 xy) = (_1>|¢1H¢2| Qu (01, 02) Qv (V1,75) .

If {¢;} is a basis in H* (X) and {¢,} is a basis in H* (Y) then {p, x¢,} is a basis in
H* (Z) by the Kiinneth formula of Theorem 6.16. Hence, Lemma 7.6 allows to determine
Quxv Via @y, and Q.
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Example. Consider the digraph G = T%" where T = {0 — 1 — 2 — 0} is 1-torus.

4
Here is X = 72 =707 : /A\
e 6 X0 7

We compute Q,, in H? (G), where w is a generator of Hy (G). By the Kiinneth formula
we have

H2(G) = H*(X)® H*(X)+ H' (X) ® H' (X) + H*(X) ® H? (X)

and
Hy(G) = Hy (X) ® Hy (X) .

We have seen above that

H® (X) = {p,) where @, =€ + ... + €°
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H'(X) = (p1,¢0) where ¢; =" +e* +e%, ¢, =e" +e" +e*
H? (X) = (w) where w = %,

and Hs (X) = (u) where

u = (€p3a — €o14) + (€145 — €125) + (€253 — €203) + (€367 — €347) + (€478 — €458)
+ (ess6 — es36) + (€601 — €671) + (€712 — e7s2) + (es20 — €s60)
Hence,
Hy (G) = (w) where w =u X u
and
H? (G) = (po*xw, @1 %P1, P1*Pg, Po* P, Py* Py, WK Py, )

Computation by means of (7.6) shows that the matrix M, of @, in this basis of H? (G)
is antidiagonal:
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This matrix has the eigenvalues 1 and —1, each with multiplicity 3. Hence,
o(w)=0, rank(w)=06, nullity(w)=0.
The signature can also be computed by Theorem 7.2: ¢ (w) = o (u)* = 0 because |u| = 2.

Let us show how to compute the entries of M,,. For example, the (3,4)-entry is

Qu (91 % 9z, 09 % 1) = ((p1 * ©q) (Yo * @1) ,u X u)
= - (9019027 U) (@29017 U)
= — (6014,u) (6034,u) =—(-1)-1=1,
the (2, 5)-entry is

Qu (01 % 01,09 * ©g) = ((01 * 1) (Yo * @), u X u)
= - (@1%027 u) ((101@27 U)
_ (6014,u) (6014,u) — 1,

and the (1, 6)-entry is

Qu (o *w,wxpg) = ((g*w) (w*wp), uxu)
(SOOCWU) (w9007u)
_ (6034,U) (6034,16) — 1
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8 Hodge Laplacian

Here K = R. Let us fix an arbitrary inner product (-,-) in each of the spaces R, so that
we have an inner product also in all €2,,. In all examples we use the natural inner product.

8.1 Definition and spectral properties of A,

For the operator 0 : €2, — €2,_; consider the adjoint operator 0* : §},_; — €1, so that

(Ou,v) = (u,0%v) for all u € Q, and v € Q.

Definition. Define the Hodge-Laplace operator on paths A, : €, — €2, by

Apu = 0" 0u + 00™ . (8.1)
] o
Here we use the following operators 0 and 9*: €, 1 = Q, and €, = Q4.
o ]

Proposition 8.1 The operator A, is self-adjoint and non-negative definite.
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Proof. We have for all u,v € (),
(Apu,v) = (0"0u + 00" u,v) = (Ju, Ov) + (0" u, 0"v) = (u, Apv)
so that A, is symmetric, and
(Apu,u) = [|0u]® + [|0%u]|* > 0, (8.2)

so that A, > 0. Hence, the spectrum of A, is real, non-negative and consists of a finite
sequence of eigenvalues. =

Proposition 8.2 Denote D = max;cy deg (7). If (-,-) is natural then spec Ag C [0,2D] .

Proof. By the variational principle, it suffices to prove that for all u € )

Since du = 0, we have by (8.2)

(Aou, u) = [|0%ul|”.
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Since for any ¢ — j
(0%u, ei5) = (u, dey;) = (u,e; — e;) = w — ',
it follows that
loul)® = 3 (v — ')’ <23 (W) +2 3 (u) =2 deg (i) (v')* < 2D |lul*, (8.3)
i—j i—j i—j i

whence the claim follows. =

The bottom eigenvalue of Ay is always 0 because if all u* = 1 then by (8.3) 8*u = 0 and,
hence, Agu = 00*u = 0. If G = Kp p — a complete bipartite graph, then G is D-regular
and 2D is the top eigenvalue of Ay.

For a general p, the multiplicity of 0 as an eigenvalue of A, is equal to the Betti number
B, as we will see below.

Problem 8.3 Find a reasonable upper bounds for spec A,. The question amounts to ob-
taining an upper bound for the Rayleigh quotient for non-zero u € €, :

LOull® +0*ul®
Jull? -

Problem 8.4 Find estimates of the eigenvalues of A, in terms of geometric and combi-
natorial properties of G.
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8.2 Matrix of A,

Let {a;} be an orthonormal basis in €2, {(,,} be an orthonormal basis in 2,1 and {~,,}

be an orthonormal basis in €2, :

1o} 0
LWt S Q 5 Qo

) )
{Bm} {aq} {rn}
The operator 0 : Q, — ,_1 has in the bases {«a;} and {f,,} the matrix
B = (<ﬁm7aQi>)m,i

where m is the row index and 7 is the column index.

Similarly, the operator 0* : 2, — 2,1 has the matrix

O = ({1 "))y = (07 i) -

Since A, = 9*9 + (9*)" 9%, we obtain the matrix of A, in the basis {«;}:

matrix of A, = BTB+CTC|
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More explicitly, the (i, j)-entry of the matrix of A, in the basis {«;} is given by

(Apei, o) = 32 (0, B,,) (Dtj, Bra) + - (i, 07) (055 07,,) | (8.7)

m

Example. Recall that Q_; = {0}, Qo = {e; :i € V} and @y = (e; : k — [) . Assuming
that (-,-) is the natural inner product, we obtain by (8.7) that the matrix of Ag is
(Agei,e5) = > (€, Oen) (€5, Oexr)

k—l

= > (e, &1 — ex) (ej,e1 — ex)

k—l

= > (0a — dix) (61 — djn)

k—l
= > 0+ D 05— 1y — 1.9

k—1 i—l

= deg(?)dij — Lygy — Loy

If G has no double arrow then the matrix of Ay = diag (deg (¢)) — 1f~;3 where 15y is
the adjacency matrix of G. Hence, A, is the usual unnormalized Laplacian (=Kirchhoff

operator) on functions on G.

Consequently, trace Ag = )., deg (i) = 2.
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8.3 Examples of computation of A,

Let us compute A; for the natural inner product. We use the orthonormal bases {e,,} in
Qo and {e;; : ¢ — j} in ;. Let {7, } be an orthonormal basis in (5.
The matrix of A; has dimensions E x E and, by (8.7), its entries are

(Areij, eqyr) = D (0eij, em) (Oewjr, em) + D (€5, 0Vy) {eitjr, 0Vy) (8.8)

m

for all arrows ¢ — j and ¢ — j’. For the first sum in (8.8) we have

D, (@2 @) (@R, Gy = D, (@5 = @5y @) (@ = @5 Gn) = 2 (U = Vo) (Ot = G

m m m

= 5jj’ — 5ij’ — 5ji’ —+ 52'1-/ = [Z], i/j/] 5

The values of [ij,4'j'] are shown here: " / o e
i'=i e J="

| o——) LN ——y

Hence, in the case p = 1, we have

BTB - ([Zj? Zl]/]) . _ri_./j, ’.:" J=" ij/" J=i'

In particular, diagonal entries of BT B are 2.
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Example. Consider an 1-torus

In this case 1 = (eq1, €12, €20), 22 = {0}, |H1| = 1. Hence, we obtain
the matrix of A; = B' B = ([ij,4'j])
€01 €12 €20
eor [01,01] [01,12] [01,20]

ep [12,01] [12,12] [12,20]
es0 [20,01] [20,12] [20,20]

[
[
[
2 =l =l
(-1 2 -1
-1 -1 2
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Example. Consider a dodecahedron (like on p.4.3):

We have V = 20, F = 30,
QQ = {0} and |H1| =11.

In particular, CTC = 0.
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°
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1]o
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For a general digraph G with 5 # {0}, let us compute the entry (e;;, dv,,) of the matrix
C' assuming that v, = v is a triangle or square (note that although Q5 has always a basis
of triangles and squares, the squares in this basis do not have to be orthogonal).

If v = eqe is a triangle then we have

(€ij, 07) = (€ij, €ab + €be — €ac) = [15,7],

1, ifij € {ab,bc}
[ij,v] =< —1 ifij =ac
0, otherwise. . .

If y = Sabe_Cable \@ is a (normalized) square then

where

I
(ei,07) = 7 (€ij, €ab T Cbc — €apt — Erc) = E 37, 7],
where y .
if ij € {ab,bc} | ‘
3,7 —1 if ij € {ab',b'c}
otherwise. ) —,
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Example. Let G be a triangle {0 — 1 — 2,0 — 2} . Then €y = (eq, €12, €g2) and

€o1 €12 €02 9 _1 1
T (T:e 11\ €01 [01,01] [01,12] [01,20] . .
BB =i777) = | ., n2o [212 (220 |~ 11 f ;

ez [02,01] [02,12] [02,02]

The basis {v,,} of {2, consists of a single triangle v = eg15 so that

€= ( 0L,] [12, [020,20 =@ 1 -

1 1 -1
ctlc=11 1 -1
-1 -1 1
2 -1 1 1 1 -1 3 00
matrixof Ay = -1 2 1]+ 1 1 —-1]=10 3 0
1 1 2 -1 -1 1 0 0 3
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Example. Let G be a square {0 — 1 — 3,0 — 2 — 3}. Then Qy = (eq1, €02, €13, €23) and

€01 €02 €13 €23 9 1 -1 0
eo1 [01,01] [01,02] [01,13] [01,23] 9 o
BB = ([ij,i'j]) = | esz [02,01] [02,02] [02,13] [02,23] | = 10 9 1
ers [12,01] [13,02] [13,13] [13,23] 0 1 1 o
ess [23,01] [23,02] [23,13] [23,23]
The basis {v,,} of 2, consists of a single square v = \/Li (€013 — €p23) so that

1 €o1 €02 €13 €23 1
g :E@ 0L,4] [02,7] 13,7 [23%) VA,

I1-1 1 -1 1

T e
g 0_2 1 -1 1 -1
-1 1 -1 1
5 1 1 1
2 2 2 2
1 5 _1 _1
2 2 2 2

matrix of A= B'B+ C'C = , the eigenvalues are {23, 4}.
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Example. Consider a following digraph:

Here || = E =6, || =2 and 0

Qy = <6014 — €024, €014 — 6034>

1 3
However, this basis is not orthogonal.
Orthogonalization gives an orthonormal 4
basis in s:
V1= \/Li (€014 — €024)
Yo = \/Lg (eo14 + €024 — 2€034) -
Since
Oy, = \/Lﬁ (eor + €14 — €p2 — €24),
e = \/Lg (€01 + €oa + €02 + €24 — 2€03 — 2e34)
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we compute the matrix C"

3o z_ﬁ
3 o Q_ﬁ
§154¢
31548

SIS
SIS

371
6’72

({ei5, 7)) = (

and

\ /
— oo e D
I I e

—| ||| D

—| | — | | N
I B

o™ — | | N

| O | | | N
D

| | O e |

~— -
I

QO
~
QO
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(lesz: €wj])

BTB =

We compute also B:



whence

matrix of A, = BTB+ CTC =

The spectrum of Ay is {24,3,5}.

Example. Consider the following pyramid:

Here |Q0‘ = 5, ‘Ql‘ = 8, ‘QQ| = 5,

and

Qy = (6014, €024, €134, €234, €013 — 6023> .
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We have

BB = ([ij,']']) =

€014
€024
€134
€234

€01
€02
€13
€23
€04
€14

\;%3 (€013 — €023)

€24

\634

2 1 -1 0
1 2 0 -1
-1 0 2 1
o -1 1 2
1 1 0 O
-1 0 1 0
0O -1 0 1

)
e}
|
—_
|
—_

€1 €02 €13 €23
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
4 -1 1 1
V2 V2 V2 V2
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matrix of A; = BYB + C*C

The eigenvalues of A; are {35, 53}.
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Example. Let G be an (n — 1)-simplex, that is, the vertices are {0,1,...,n — 1} and
i j o<y
Let us show that
A :=matriz of Ay = diag(n).
Let 75 and ¢'j" be two arrows. Then (ij,'j’)-entry of A is

Aijwy = (B'B),. ., + (CTC), .., = 13,451 + Y [ig, vl '3, 74l » (8.9)

i, i,
where {7, } is an orthonormal basis of €25 that in this case consists of all triangles in G.

If ij = i’y then [ij, ' j'] = 2. Since the arrow ij belongs to (n — 2) triangles 7,,, we obtain
A”,w=2+(n—2) =n

that is, all the diagonal entries of A; are equal to n. It remains to show that if ij # 'y’
then
Ay = 0. (8.10)

If 7j and i'j" have no common vertex then they cannot belong to the same triangle -,
and, hence, all the terms in (8.9) vanish.
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Let ¢ = ¢’ while j #£ 5"
J
/.

Lo — o
Then [ij,7'j'] = 1 while [ij,v,,][i'7’,7,] does not vanish only of ~, is the triangle formed
by i, 7, 7. In this case the arrows ij and 'j’ have opposite orientations with respect to ,,,
whence [i7,7,] ¢, 7,] = —1 and (8.10).
Let ¢ = j" while 7 # i :
J

/.

i‘,. — .i,

j
Then [ij,d'j'] = —1 while [ij,,,] [i'7’,7,] does not vanish only if ~, is the triangle 75, and
in this case the arrows ij and i’j’ have the same orientation with respect to +,, whence

(i3, ¥ul '3, vn] = 1 and again (8.10).

The cases j =4’ and j = j' are similar.
Problem 8.5 Describe all digraphs where Ay has only one eigenvalue.

Problem 8.6 Dewvise a program for computing the matrix and spectrum of Ay for large
digraphs.
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8.4 Trace of A,

Recall that

trace Ag = Y deg (i) = 2F.
i€V

There is a similar result for the trace of Aj.

Theorem 8.7 Let T be the number of triangles in €y, S be the number of linearly inde-
pendent squares in o, and D be the number of double arrows a = b. Then

trace Ay = 2E + 3T + 25 +4D. (8.11)
By a square here we mean an allowed 2-path e, . — €4 Such that a # ¢ and a 4 c.
For example, for the pyramid on p.157 we have E =8, T =4, S =1 and D = 0, whence
trace Ay =2-8+3-442-1 =30,

which matches the sum of the eigenvalues as well as the sum of the diagonal values of the
matrix of A in this example.
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Proof. Let {~,} be an orthogonal basis in 25. Let us first prove that

[0vall®
1yall®

By (8.6), trace A; = trace BT B + trace CTC. As we have seen above (see p.149), all the
diagonal entries of BT B are equal to 2 so that

trace Ay = 2E + Z (8.12)

trace BT B = 2F.

Let us compute trace CTC. Without loss of generality assume that the basis {v,} is
orthonormal basis. Let {a;} be the sequence of all arrows. Since {«;} is an orthonormal
basis in €21, we have by (8.5)

C = ({87 @),

and, hence,

(CTC) Z <87n7 ai) <ar}/n7 aj> 0
It follows that

trace CTC = Z > (07, o)’ = > 2 (07, i) = > 107,117,

n (3

whence (8.12) follows.
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As we know, €25 has a basis {v,,} that consists of triangles, squares and double arrows.
The only non-orthogonal pairs in this basis can be pairs of squares containing the same
elementary 2-path, like egp. — €ape and €4pe — €qpre. Assume first that the entire basis {,, }
is orthogonal.

A double arrow a &= b gives two elements of the basis {7, }: €ws and epep. If 7,, = €upa
then
2
yall> =1, 87, = € +e€ar, 107,]° =

and

2
197,

2
7l
The same is true for v, = epqp so that each double arrow contributes 4 to the sum

5 12" A -
Il

If ,, is a triangle eq. then

Ival® =1, 070 = €be = €ac +ary 07,ll° =
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whence )
107,117

- =
(o
so that each triangle contributes 3 to the sum (8.13).

Y

If 7, is a square egp. — €qpe then
H7nH2 =2, 07, = €a+ e — Eaty — Ec, ”a’VnH2 =4,

so that )
oval?

L _
(o

so that each square contributes 2 to the sum (8.13). Hence, we obtain that the sum (8.13)
is equal to 3T + 25 + 4D, which proves (8.11) in this case.

Y

In the general case, assume that there is an allowed 2-path ey, that forms m squares:

€abc — €abicy €abe — €abscs -5 €abe — €abme -

They are linearly independent but not orthogonal. Orthogonalization gives a sequence
W1 = €abe — Cabyc
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Wo = €gbe T €abic — 2€abgc
Wg = €gpc + ... T Caby,_1c — keabkc

Whiy, = Gl = voe - €ab,_1c — MEqgph,,c-
(see Example on p.71). We have

Owg, = (€ap + €pc) + ... + (eabk_l + ebk_lc) — k (€qp;, + €b,c)
10w |® = 2k + 22, ||lwi||® = &k + K2,
whence )
|Owg]”

2
s |

Hence, each wy, contributes 2 to the sum (8.13), which completes the proof. =

Since the sum of all eigenvalues is trace A; and the eigenvalue 0 has the multiplicity [,
we obtain that the average value of positive eigenvalues is

\ _ trace A
average - E . /81 .
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8.5 An estimate of A\, (A1)

Denote by Apax (A) the maximal eigenvalue of a symmetric operator A. Recall that, by
Proposition 8.2,
)\max (AO) S 2 max deg (Z) :

For any arrow ¢ — j in G denote by deg, (ij) the number of triangles containing the
arrow ¢ — j, and by deg (i7) the number of squares containing i — j.

Theorem 8.8 Assume that there is an orthogonal basis {~,} in Qs that consists of tri-
angles and squares. Then

Amax (A1) < 2maxdeg (i) + 3maxdeg, (7j) + 2 max deg (i7) . (8.14)
3 i—j i—

Proof. Recall that

2 * 2
Ao (A) = sup <|au| Lo u|>.

2 2
wei\{o} \ |lu] |

Since the operators 0 : 1y — Qg and 0* : Qg — {2; are dual, the have the same norm.
The norm of the latter was estimated in the proof of Proposition 8.2 (cf. (8.3), whence

167



we obtain the same estimate for the norm of the former, that is, for any non-zero u € €}y,

|9u]]”
2maxdeg (¢
u? = 2
Let us prove that
0" ul|”
HH ”‘““2' < 3max deg, (i) + 2 max degs (i) . (8.15)
U i—j 1—7
Let u = Y, ,;u”e;; and, hence,

Jul = ¥ (u¥)’

1—7

Using the basis {7,,} in Q9, we obtain

(07w, 7n)” (u, 07,)°
=) ——5 =) Z
o A n 7.l
If ~,, is a triangle eq. then ||v, | = 1,
(u,07,) = (U, eqp — €qc + €ap) = u® — U + u?,
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(u, 07,)° < 3 (™) + (u™)? + (u™)?).
Summing up over all triangles v, and using that any arrow i — j occurs in degx (47)
triangles, we obtain

(u,07,)°
n:y,, is triangle H,YnH2

<33 (u¥) degy (if) < 3 Jull maxdegy (i7).  (8.16)
11—

Let now ~y,, be a square g — €apye (such that a 4 ¢). Then ||, ||* = 2,

b b oo Y
(u,07y,) = (U, €ap + €c — €ar + €p/c) = u® + u*® —u® — v’

<u,8’yn>2 <4 ((uab)Q ()2 + (uab’)Q X (ub’c)Q) .

Summing up over all squares <, and using that any arrow i — j occurs in degq (ij)
squares, we obtain

’LL7a n ? 11 .. . o
» Oy > ()2 dogs (1) < 2l maxdegs (7). (8.17)

2
n:y,, is square ||’}/n H 1—j

Adding up (8.16) and (8.17), we obtain (8.15). =

Problem 8.9 How sharp is the upper bound of Amax (A1) in (8.14)7 Is it attained on
some digraphs? Extend (8.14) to the general case.
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8.6 Examples of computation of spec A

Example. Consider a 3-cube:

Here V=8, E =12, [Qs] =6, ‘ /]
H, ={0} for p > 1. | \

Space (), is generated by 6 squares. 4 .

Using S =6, T = 0 we obtain 0 —

trace Ay =2EF +25=2-12+2-6 = 36.

Since 3, = 0, we obtain

Aaverage = E_g, trace A; = 3.

In fact, the eigenvalues of A; are

{267 327 437 6} ’

where the subscript denotes the multiplicity.
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Example. Let G be the n-cube, that is, G = [OI...00] where I = {0 — 1}.
—_—

n times

Then
V=2" E=n2"1 S=|0=2""nHn-1)
and 7" = 0. Hence,
trace A; = 2E + 2S5 = 2""?n (n + 3)
and
1 2" ?n(n+3) n+3

Aaverage - rﬁl trace Ay = non—1 ~ 9

For example, for a 4-cube we obtain trace A; = 2% -4 - 7 = 112. The full spectrum of A,
on a 4-cube is {219, 3s, 49, 64, 8}.

For a 5-cube we obtain trace A; = 2% -5 -8 = 320. The full spectrum of A; on a 5-cube is
{2157 3207 4257 547 6107 857 10} .

Problem 8.10 Determine the full spectrum of Ay on the n-cube. In particular, prove
that Amax = 2n and Apin = 2nm+y) . It seems that spec Ay consists of all even integers from

2
2 to 2n and of all odd integers from 3 to n.
A difficulty is that the method of separation of variables does not work for A; on Cartesian
products.
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Example. Consider an octahedron:

We have V =6, E =12, |y =38.
The space €2, is generated by 8 triangles: L

Qg = (6024 » €025 , €034 , €035 , €124 , €125 , €134 6135>

Hence, T' =38, S = 0 and we obtain

trace Ay =2FE +37T =2-12+ 3-8 = 48.

Since 3, = 0, we obtain

48
Aaverage = rﬁl trace Al = E =4.

The eigenvalues of A; are
{237 467 63} .
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Consider a family of digraphs: Xy = {0,1} and
Xpi1 = susy X,.

For example, X5 is the above octahedron and X is its middle section (a diamond). The
digraph X,, can be regarded as an analogue of n-sphere.

Proposition 8.11 We have for n > 1

spec A (X,) = {2 (n — 1)n<n2+1) y 2Mn(nt1)s 2(n 4+ 1) nmey) } . (8.18)

2

For example,
spec A (X;) = {0, 29,4}

and
spec Ay (Xz) = {23,46, 63}

as we have seen above. For n = 3 we have

spec A; (X3) = {4¢, 612, 86} -
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Example. Consider 2-torus G = TOT where T'={0 — 1 — 2 — 0}.

Here V=9, E=18, [Q] =09, |H|=2.

Space {25 is generated by 9 squares, whence
trace Ay =2-18+2-9 = 54.

In fact, the full spectrum of A; on 2-torus is

{027 1'547 387 64} .

For a 3-torus G = T2 we have E =81, S = || =81, |H,| = 3.
Hence, trace A1 = 2 - 81 + 2 - 81 = 324. The full spectrum of A; on 3-torus is

{037 1'5127 330) 4'5167 6127 98}
For n-torus G = TP" we have E = n3", S = |Qy| = @3”, |H1| = n, whence

trace Ay =2E+2S=n(n+1)3" and Agyerage = (R +1) 33:.

Problem 8.12 Compute the full spectrum of Ay for n-torus. In particular, prove that
Amax = (30)on . In fact, Apin = 0, which is a consequence of 3, = n.
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Example. Consider the icosahedron:

Here V =12, E =30, |Q|=25

Space (25 is generated by 20 triangles
and 5 squares (see p.76).

Hence, T'=20, S =15 and

trace Ay =2-30+3-20+2-5=130.

Since 3, = 0, we have

Aaverage = E+m trace A = % = 4.333...

In fact, Apin = 0.810... and M. = (5 — \/5) . Other multiple eigenvalues are 65 and
(5 — \/5)3 The full spectrum of Ay is shown here:

1:}:0—0{—0:}:“—3—9—0—04—04—&«:}:¢:H—0|—0+¢.—m—”:}0{
0.0 0.5 1.0 1.5 20 25 30 35 4.0 45 50 33 6.0 6.5 10 1.5
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For icosahedron
the matrix of A
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Example. Consider a rhombicuboctahedron (see also p.73):

Here V =24, E =48, [Q,] = 26.

Space {25 is generated by 8 triangles and 18 squares
so that T'= 8 and S = 18. Hence,

trace Ay =2-48+3 -8+ 218 = 156.

Since 3, = 0 we have

Aaverage = E+/31 trace Ay = % = 3.25.

We have also A\.x = 72 and A, = 0.518... There are many multiple eigenvalues: 5g, 44,
33, 23, 13 etc. The spectrum of A; is here:

b ‘ '.l . +6 Y ¢ ¢ ... & Fy . | . | : l
T v ' A 4 T | ' | ! |

0.0 0.5 10 LS 20 25 30 35 40 45 50 53 0.0 6.5 10
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For rhombicuboctahedron
the matrix of A; =

05]1.0]05[00 00 00 -05]00
10[35]00 00 00 00-10[00 00 00
[25]00 00[10]05] 00
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0[-0500[35]00 00 0005]00
00 00 00[35 05]05 10|00

00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00[-10]00 00
00 00]1000

100 00 00 00
00 00 00

00 00 00{05 3.0]-0.5 0.0]-1.0
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8.7 Harmonic paths

A path u € ), is called harmonic if A,u = 0.
Lemma 8.13 A path u € ), is harmonic if and only if Ou =0 and 0*u = 0.

Proof. Indeed, If Ou = 0 and 0*u = 0 then by (8.1) we have A,u = 0. Conversely, if
A,u = 0 then we obtain by (8.2) that

|9ull® + 0% ull* = (Apu, u) =0,
whence ||Ou|| = [|0*ul| =0. =

Denote by H, the set of all harmonic paths in {2, so that H, is a subspace of (2,,.

Theorem 8.14 (Hodge decomposition) The space €Y, is an orthogonal sum:

Q, =09, 1 D 1 DH, (8.19)

Proof. If u € 0,1 and v € 9*Q),_; then u = Ju’ and v = 9*v’, and we have
(u,v) = (Ou',0™") = <82u',v'> — ()
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so that the subspaces 0€2,.; and 0*(2,_; are orthogonal.

e

€. €,

Denote by K the orthogonal complement of 0€,1 € 0*2,_1 in ,. Then we have
we K& (wu) =0 Yue oy, and (w,v) =0 Vv € 0"Q, 4

that is,

weK < (wou)=0 Vu' €, and (w,00)=0 W' € Q, 4
S (w,u)y =0 Yu' € Q1 and (Qw,v’) =0 Yo' € Q,4

&S J'w=0 and Jw =0
& w e H,.

Hence, K = H,, which finishes the proof. =
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Corollary 8.15 There is a natural linear isomorphism
H, ~2H,. (8.20)

In particular, dimH,, = 3, that is, the multiplicity of 0 as an eigenvalue of A, is equal
to the Betti number 3,.

Proof. Observe that Z, := kerd|q, is the orthogonal complement of 9*€),_; in €,
because, for any u € €2,,

uwe Z,=0u=0%& (0u,v) =0 YveQ, 1 & (u,0) =0 YweQ,_; ©uld"Q, ;.
Since by (8.19)
p = 01 D H, D "2

we obtain

Zp - (a*Qp—l)L — anJrl @Hp (8-21)
whence H, = Z,/00,11 = H,.
Remark. It follows from this argument that H, is an orthogonal complement of B, in

Z, and that any homology class w € H, has a unique a harmonic representative v € H,,.
In addition, v minimizes the norm ||-|| among all representatives of w.
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9 A fixed point theorem

9.1 Lefschetz number and a fixed point theorem

Everywhere here K =R (or Q). Let f, : Q, — Q, be a sequence of linear mappings that
commutes with 0, that is,

00 foy1= fno0 (9.1)
for any n > 0. In other words, the following diagram is commutative:
e Oy 20, X 9 e
[ [ [fr (9.2)
e O 2, 2 0 e
Denote
Z, =kerd|q,, B,=Im0|q,,,
so that

H, = Z./B,.
It follows from (9.1) that f, acts in Z,, B, and H,,.
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Definition. Denote shortly by f the sequence {f,} of the mappings as above. For any

non-negative integer NN, define the Lefschetz number of f of order N by

LW (f) = fj (—1)" trace f|q, -

n=0

For example, if each f, = id then L™ (f) =N (=1)"dim Q,, = x™.

n=0

Lemma 9.1 The following identity holds:

L) (f) = % (—1)" trace fn|m, + (—l)Ntrace fvlBy -

n=0

Proof. Using the following identity (that will be proved later on)

trace fn|Hn = trace fn|Qn — trace fn—1|Bn—1 — trace fn‘Bn

we obtain
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n=0
N n N n N n

- Z (_1> trace fn‘Qn - Z (_1) trace fn—1|Bn71 - Z (_1) trace fn|Bn
n=0 n=1 n=0
N N-1 K N

= > (=1)"trace fylo, + >° (=1)" trace fulp, — >_ (—1)" trace fu|s,
n=0 k=0 n=0
N N

= > (—1)"trace fylo, — (—1)" trace fn|gy
n=0

— V) (f) — (—1)Ntrace fN|BN7

whence (9.3) follows. =

Let now f : G — G be a digraph map, that is, |i — 7 = f (i) — f(j) or f(i) = f(j)|

Extend f to a mapping A, — A, as follows: first set

f (€io..in) = €f(i0)...F (in)

and then extend f by linearity to all of A,,. If e;, ;, is non-regular then f (e;, ;. ) is also
non-regular. Hence, f maps the space R,, of regular paths into itself.
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Next, f maps the space A, of allowed paths into itself: if e;, ;, is allowed then i — 7511,
which implies that either f (ix) — f (ix41) for all k and, hence, f (e;,. ;) is also allowed,
or f (ix) = f (igs+1) for some k so that f(e;,. ;. ) is non-regular and, hence, f (e;,. i) = 0.

Clearly, f commutes with 0, which implies that f maps also {2, into itself. Hence, we

obtain the diagram (9.2) where all f, = f. In particular, L") (f) is defined.

Theorem 9.2 Let f : G — G be a digraph map. If, for some N > 0, we have LN) (f) #0
then f has a fized point, that is, a vertex a of G such that f (a) = a.

Definition. Let a,b be two vertices of G. A p-path v = ). eV Ui0~~-ipei0“_ip is called
an (a,b)-cluster if, for any p-path ig...i, with v =£ 0, we have igp = a and i, = b.
A path v is called a cluster if it is a (a, b)-cluster for some a, b.

For example, €4, — €qpe is an (a, ¢)-cluster whereas eqp. + €40 is N0t a cluster.

Lemma 9.3 In each €, there is an orthogonal basis (with respect to the natural inner
product) that consists of clusters.

Proof of Theorem 9.2. Assume that f has no fixed point. We will prove that
trace f|g, =0 for any n > 0, (9.6)
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which gives by (9.3) that L) (f) = 0 thus contradicting the hypothesis that L™ (f) # 0.

By Lemma 9.3, there is an orthogonal basis uq, ..., u,, in £2,, where all u; are clusters.
Denote by (c;;) the matrix of operator f : (2, — €, in this basis, that is,

f(uj) = )" ciju;, whence ¢ = M);uz)
= i |
Consequently, we have
tracef|Qn — Z Ckk = Z M
h=1 =1 [l

It remains to show that f (uy) Lug, which will imply (9.6). Indeed, let u; be an (a,b)-
cluster, that is, uy is a linear combination of elementary n-paths of the form

Cait..ip_1b; (97)
where a, b are fixed while 7y, ...,4,_1 are variable. Then f (uy) is a linear combination of
the n-paths

€ (@) f(j1)--f Gin-1) £ (b); (9.8)
where 71, ..., j,_1 are variable. Since a # f (a), we see that the paths (9.7) and (9.8) are

orthogonal, which implies that f (uy) and ug are orthogonal, too, which was to be proved.
|
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9.2 A fixed point theorem in terms of homology

Definition. Define the path dimension of a digraph G by dim, G = sup {n : |2,| > 0} .
Assume that dim, G < oo. Then for any N > dim, G we have by (9.4)

N

(—1)" trace flo, = » _ (—1)" trace f|n,. (9.9)

n=0

LW (f) =

M=

|
o

n

Recall the definition of the homological dimension: dim; G' = sup {n : |H,| > 0}.

Theorem 9.4 Let G be a connected digraph. Let dim, G < oo and dim, G = 0. Then
any digraph map f : G — G has a fixed point.

Proof. The condition dim; G = 0 means that H, = {0} for all n > 1, and the con-

nectedness means that |Hy| = 1. The space H, is spanned by a single homology class
lea] where a is one of the vertices. Then f(e,) = efn) ~ €, so that f([eq]) = [eq]. It
follows that trace f|g, = 1 while trace f|g, = 0 for all n > 1. ...... By (9.9) we obtain

LM (f) =1 # 0, and by Theorem 9.2 we conclude that f has a fixed point. m
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The condition that a mapping f : G — G is a digraph map can be reformulated as follows.
Define a directed distance between vertices a,b of G by

H
d (a,b) =inf{n : 3 a path a — iy — ... — i, — b}.

Then f is a digraph map if and only if
d (f(a), f(b)) < d (a,b) for alla,be V.

Let us relax this condition.

Problem 9.5 Dewvise a fized point theorem for maps f : G — G with
d (f(a), f(0)) < Cd (a,b) for alla,beV,

where C > 1 is a constant.

Alternatively, one can strengthen conditions on f, assuming that f is a digraph isomor-
phism, which is equivalent to

d (fa), f(b)) = d (a,b) for all a,be V.

Problem 9.6 Devise a fized point theorem for a digraph isomorphism f: G — G.
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9.3 Examples

Example. Here are some examples of digraphs satisfying the hypotheses of Theorem 9.4.

4

2 2 >—93
4 A
0
0 3
3
0 1 0 e 2
triangle square pyramid octahedron based on square
2 g — ¢
A A
7 8 3
3
6
5 i
4 4
0 I 0 1 0 > 1 0
3-simplex 3-cube broken cube prizm

In all these examples the vertices admit a monotone numbering: arrows go in direction
of increase of numbers. In this case all allowed paths have bounded length and, hence,

dim, G < o0.
The triviality of H, (that is, dim;, G = 0) for each of these digraphs was mentioned in the
previous sections.
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Example. Consider a digraph G with 7 vertices and 16 arrows.

2

1
There are arbitrarily long allowed paths
because there are loops: 31
0—-2—-1—-0, 5—=0—6—5 etc. o
Nevertheless, dim, G < 6, 4
and all homology groups are trivial. \/6

5

Hence, G satisfies the hypotheses of Theorem 9.4 and we conclude that any digraph map
f: G — G has a fixed point.

Let us show why ¢ = {0}, which will imply by Proposition 6.8 that 2, = {0} Vp > 6.
For that we first obtain by computation

O3 = (60243, €2165 , 61504) . N

0 4

190



Hence, out of all allowed elementary 3-forms e“%%  only the following are non-zero as

elements of Q3:

60243 62165

, elood (9.10)

Y

(in fact, (9.10) is a basis in 23). It is easy to observe that for any pair of 3-forms ¢,
from (9.10) the concatenation i) vanishes. It follows that

o ~ 0 for all allowed elementary 3-forms ¢, 1, (9.11)

because if one of ¢, is not from the list (9.10), say, ¢, then ¢ ~ 0 whence @i ~ 0 by
Lemma 6.7.

Any allowed 6-form e%-% is a concatenation of two allowed 3-forms

U = O

whence by (9.11) ¢ ~ 0 and, hence, 2° = {0} .

Example. Assume that G contains a double arrow {a = b}. Then dim, G = oo since
each ), contains p-paths egpapap... and €papapa... Define a map f : G — G by f(a) = b
and f(x) = a for x # a. Clearly, f is a digraph map without fixed points. Hence, the
hypotheses dim, G < oo is essential for Theorem 9.4.
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Example. Here are some examples of digraphs that admit digraph maps f without fixed
points. All they have dim, G < oo but dim;, G > 0.

1-torus diamond octahedron based on diamond
4
2 29— 1
A
1
0
\
0 1 0 3 5
|Hq| =1 |Hqi| =1 |Hy| =1
f =rotation f =central symmetry f =central symmetry
0 3
2-torus: [_(>3’3;
|H1‘ =2 ‘H1| =2 I 4
[Hy| =1

f:0—1—2—0,

3|—>4|_>5|_>3 ) 5

f = rotation

Problem 9.7 Suppose that Hy (G) contains a non-trivial class ey + e1a + e (like for
L-torus). Is it true that there exists a digraph map f: G — G without a fixed point?
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Example. Consider the following digraph G with 7 vertices and 14 arrows:

2
The arrows on G are as follows:

i—i+1andi—i+2 ;

where addition is considered mod 7.

For this digraph |€Q2,| =14 for allp > 1
so that dim, G = oo, while dim;, G = 0.

(=)}

The digraph G does not satisfy the hypotheses of Theorem 9.4. In fact, the digraph map
f (i) =i+ 1 has no fixed point.

Let us explain why |€2,| = 14. This digraph can also be shown as a periodic snake:

where the vertices with the same numbers are merged (like a Mo6bius band).
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Each elementary p-path
€4(i+1)(i42)...(i+p) (9.12)

is snake-like and, hence, is O-invariant. Let us refer to any path (9.12) as a p-snake.
Hence, we obtain in (2, already 7 linearly independent p-snakes. Another group of 7
linearly independent p-paths in €2, is given by the boundaries of (p + 1)-snakes:

8€i(i+1)(z’+2)...(z’+p)(i+p+1) )

which makes dim (2, = 14. Since 9> = 0, while the boundaries of p-snakes (9.12) are
linearly independent for p > 2, we obtain that dimkerd|g, = 7. By the rank-nullity
theorem dimImd|q,,, = 14 — 7 =7, whence H, = {0} for all p > 2.

p+1

For the case p = 1 we have
Hy = (eo1 + €12 + €23 + €34 + €45 + €56 + €60) -

It is curious that this digraph is strongly regular and its curvature is K;EN) = (—1)N :

Problem 9.8 Describe classes of strongly regular digraphs with dim, G = oo having a
non-trivial pertodic sequence {K(N)}]ovozl :
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Problem 9.9 Devise a fixed point theorem that would work with digraphs containing
double arrows. For that we need to impose additional restriction on f : G — G, for
example, let us assume that f is a digraph isomorphism, that is, i — j = f (i) — f(j).

Problem 9.10 Assume that G s connected, dim;, G = 0 and that G has no double
arrow. Prove or disprove the claim that any digraph map f : G — G has a fixed point.
Of course, the main interest here lies in the case when dim, G = oo.

Example. Here is a candidate for a positive example with dim, G = oc.

2

This is the above snake with
an additional vertex 7 such that 3
i— T7forall ie€d{0,..6}.

For this digraph we have 4

dimy, G = 0 and dim, G = oo. 8

Problem: prove that any digraph map f : G — G for this digraph has a fixed point.
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Example. Here is a candidate for a counterexample.

For this digraph again 3 !

dimp, G = 0 and dim, G = oo,

where the latter is the case because
(G contains a periodic snake

€01234560123456...

Problem: construct for this digraph a digraph map f without fixed points (or prove a
fixed point theorem for this digraph). Simple rotations f (i) = i+a mod 8 are not digraph
maps here. For example, for f (i) =i+ 4 the arrow 0 — 3 goes to 4 /4 7, for f (i) =i+5
the arrow 5 — 0 goes to 2 /4 5.

Problem 9.11 Create efficient computations tools for computing the spaces 1, or at least
for computing dim €2,,.

Problem 9.12 Dewvise convenient sufficient conditions for dim, G' < oo.
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Example. For all 1 < k < n, the Johnson digraph 7 (n, k) is defined as follows. The

vertices of J (n, k) are all k-element subsets of S, = {1,2,...,n}. To define the arrows, for
any subset a C S,, denote sum (a) = > _._ 4. Then, for two k-element subsets a,b C S,

1€a

a—bin J (n,k) < anb contains exactly k — 1 elements and sum (a) > sum (b) |.

21

For example, here is T (4,2): N
—_— J
The vertices of J (4,2) are the pairs A A

A
(O8]
o

43, 42, 41, 32, 31, 21,

A
&~
(3]

41

and there are 12 arrows.
In fact, this is yet another octahedron. 1

Theorem 9.13 All digraphs 7 (n, k) are homologically trivial.

The length of allowed paths in T (n, k) is bounded because sum (a) decreases along arrows.
— —
Hence, dim, J (n,k) < oo. Consequently, J (n,k) satisfies the hypotheses of Theorem
H
9.4 and, hence, any digraph map f in J (n, k) has a fixed point.
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Example. Given n digraphs X, ..., X,,, define their monotone linear join X1Xs...X,, as
follows: take first a disjoint union | | ; X; and then add arrows from any vertex x of X;
to any vertex y of X, 1.

Theorem 9.14 Assume that the following two conditions are satisfied:

(i) Ji such that X; is connected and dimy, X; = 0.

Then any digraph map f in X1...X,, has a fived point.

The proof uses an analogue of Kiinneth formula for X = X;...X,, that insures that X is
homologically trivial (see Theorem 10.3 below). Then we can apply Theorem 9.4.
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9.4 A cluster basis in (2,

We prove below Lemma 9.3. Recall that a p-path v = Zvio“'il’eiom% is called an (a,b)-
cluster if, for any p-path ig...i, with v £ 0, we have igc = a and i, = b. A p-path v is
called a cluster if it is a (a, b)-cluster for some a, b.

Lemma 9.15 Any 0-invariant p-path is a sum of O-invariant clusters.

Proof. Let v € Q,. For any points a,b € V, denote by v, the sum of all terms vio"'ipeio_uip
with 7p = a and 7, = b.

Then v, is a cluster and v = Za,bEV Vap, that is,
v is a sum of clusters. Let us prove that each
non-zero cluster v, is J-invariant.

Since v is allowed, also all non-zero terms viO"'iPeiomiP are allowed, whence v, is also
allowed. Let us prove that dv,, is allowed, which will yield the J-invariance of v,;. The
path v, is a linear combination of allowed paths of the form eq;, .., 5. We have

—1 k
aeah-.-iqu = €iy.ip_1b + (_1)17 €aiy...ip_1 + ZZ:I (_1) eail..i;...ip_lb'
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are clearly allowed, while among the terms e . -

The terms e;, ;.5 and eg,..i, , ait. By _1b

there may be non-allowed. In the full expansion of

v = Za7bev Ovap

all non-allowed terms must cancel out. Since all the terms e,; ~ , , forma (a,b)-cluster,
they cannot cancel with terms containing different values of a or b. Therefore, they have

to cancel already within Jv,, which implies that dv,; is allowed. m

Proof of Lemma 9.3. Let us prove that (), has an orthogonal basis that consists of
clusters. Let C be the set of all 0-invariant clusters in 2,,. By Lemma 9.15, ), is spanned
by C. Choosing in C a maximal linearly independent subset, we obtain a basis B in €,
that consists of clusters. Let us show how to make an orthogonal basis of clusters. Let
u, v be two elements from B, and

u b v o
let u be a (a, b)-cluster and v be an (@', b')-cluster.
If (a,b) # (a’,b") then we have clearly u_lwv. ,

If B has more than one (a,b)-cluster, then among all (a, b)-clusters in B, we run a Gram-
Schmidt orthogonalization process and obtain an orthogonal set of (a,b)-clusters in B.
Note that during this process all newly arising elements are again (a,b)-clusters. Doing
that for all pairs (a,b), we obtain an orthogonal basis in €2, that consists of clusters. m
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9.5 Rank-nullity formulas for trace

The purpose of this section is to prove the identity (9.5) — see Lemma 9.18 below. Recall
that we have a commutative diagram

0 0

Q1 — Q — Quy
[ I R [ I
Qo < Q, <& Qi
and Z,, = kerdlq,, By = Imdlq, .., Hy = Zy/Ba.
Lemma 9.16 We have
trace f,|n, = trace f,,|z, — trace f,|p, . (9.13)

Proof. Let uq,...,u; be a basis in B,,. Choose in Z,, elements v, ..., v} so that the sequence
U, ..., U, V1, ..., U iS & basis in Z,,. Then

l

fo(us) = ) agju

j=1
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and

k
fn (v) = Z b;jv; 4 terms with u;.
j=1
For the homology classes we have
k
o (i) =) bij [vs].
j=1

It follows that

l k
trace fn|z, = Z ai; + Z b;; = trace fi|p, + trace f,|m,,

=1 1=1

which is equivalent to (9.13). m

Lemma 9.17 We have the identity

trace f,|z, + trace f,_1|B,_, = trace f,|q,
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For example, if f,, and f,,_; are the identity operators then this becomes the rank-nullity
theorem for the operator 0:

dim Z,, + dim B,,_; = dim €,,. (9.14)
Proof. Let vy,...v; be a basis in Z,, and u},...,u; be a basis in B,_;. Choose any vector

u; € 071 (u}), that is, du; = . Let us show that the sequence vy, ..., vy, Uy, ..., u; is linearly
independent in €2,,.

P

S B=E<dy, o>

Indeed, if there is a vanishing linear combination
l k
Z ol + Zﬁjvj — 0,
i=1 j=1
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then it follows that
! k !
0= 820@% —1—62@% = Zoziug + 0,
i=1 j=1 i=1

whence it follows that all a; = 0. Consequently, Z?Zl B;v; = 0 and, hence,

Since by (9.14) k + [ = dim (), it follows that the sequence vy, ..., vk, u,
in €,,.

Hence, for some coefficients a;; and b;;,

l
fn (Uz) = Z Qi U; + terms with O

g=1

and .
b (Uz) = Z bz‘jvj-
j=1

The latter expansion contains no u; because f, (Z,) C Z,. Hence,

! k
trace fu|q, = Z @i + Z by
i=1

=1
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On the other hand, we have
k
trace fy|z, = Z bii.
i=1

It remains to prove that
!

trace fo_1|B,_, = Z i -

i=1
Since f,_1 maps B,_; into itself, there are coefficients agj such that

fno1 (u)) = Z RT (9.16)

=l
It follows from (9.15) that

l l

=1 j=1
On the other hand, using (9.1) and (9.16), we obtain that

l
Ofn (U;) = frn1 (Ows) = fro1 (u;) = Z U

J=1
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Comparison with (9.17) shows that a;; = a;; and, hence,

!
/
trace f,_1|B, , = g Oy = g Qis,

l
—1

=1 0
which finishes the proof. m

Finally, we can prove (9.5).

Lemma 9.18 The following identity holds

trace f,|m, = trace f,|q, — trace f,_1|p,_, — trace f,|g,

Proof. By Lemma 9.16 we have
trace f,|m, = trace f,|z, — trace f,|B, ,

and by Lemma 9.17
trace f,|z, = trace f,|q, — trace f,_1|p

n—1)

which yields (9.18). =
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10 Reduced homology and join of digraphs

10.1 Augmented chain complex

In this section we use the augmented chain complex
K <o £ o .0 &2aq,2q &.. (10.1)
where the leftmost 0 in (10.1) is define by
Oe; = e = the unity of K.

The homology groups of (10.1) are called the reduced homology groups of G and are
denoted by H,(G). We have

H,(G) = H,(G) for p > 1 and Hy(G) = Hy(G)/K.
Define the reduced Betti numbers: EP(G) = dim ﬁp(G). We have
B,(G) = B,(G) for p > 1 and Fy(G) = 4,(G) — 1.

For a disjoint union X 'Y of two digraphs we have

ﬁr (X L Y) - 67‘ (X) +6r (Y) + 1{7”20}-
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10.2 A join of two digraphs

Given two digraphs X,Y, define their join X %Y as follows: take first a disjoint union
X UY and add arrows from any vertex of X to any vertex of Y.

For example,

T
T

(0,1}« {2,3) = and « {4,5) = .

oS — W
DO — =
oS — w
DO —

l

The join uv of p-path u on X and a ¢-path v on Y
is a (p+ g + 1)-path on X %Y that is defined as
follows: for elementary paths set

€ig...ip€50...5¢ — €io...ipjo---Jq v v

and then it extend by linearly to all paths.
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If w and v are allowed on X resp. Y then wv is allowed on Z = X %Y.

Lemma 10.1 The join of paths satisfies the product rule for all p,q > —1:

0 (wv) = (Ou) v+ (=1)P* udv.

If ueQ,(X)and v e, (Y) then Ou and Ov are allowed, which implies that 0 (uv) is
also allowed, that is, uv € Q4,41 (Z). The product rule implies also that the join wv is

well defined for homology classes u € H, (X) and v € H (Y') so that uv € Hp+q+1 (Z).

Theorem 10.2 (Kiinneth formula) We have the following isomorphism: for any r > —1,

QX+Y)E @ (Q(X)8Q 1) (10.2)

{p,q>—1:p+q=r—1}

that is given by the map u @ v — wv with u € Q, (X) and v € Q, (Y), and, for any r > 0,

B(XxY) = @  HX)ed,Vy) (103)
{r,q>0:p+g=r—1}
B (X+Y) = > B ()5 (). (10.4)

{p,q>0:p+g=r—1}
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The identity (10.2) means that any paths in 2, (Z) can be obtained as linear combination
of joins uv where u € Q,(X) and v € Q,(Y) with p+ ¢+ 1 = r, and (10.3) means the
same for homology classes.

Example. Let Y consist of a single vertex.

In this case the join X %Y is called a cone over X.

Since all homology groups H, (Y') are trivial, the cone X Y is also homologically trivial.

For example, the following digraphs are cones and, hence, they are homologically trivial.

MA A
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Example. Let Y consist of m vertices without arrows.

Then X * Y coincides with the m-suspension sus,, X.

Here is an example of sussg X :

Since 3, (Y) =m — 1 and Z3p (Y)=0forp>1,
we obtain that

~ ~

B, (susm X) = (m = 1) 5, (X).

For example, on this picture X = susy {-, -},
whence 3, (X) =1 and 3, (X) =0 for p # 1.

For G =suss X: [3,(G) =2 and 8, (G) =0 for r # 2.

The operation * of digraphs is associative. For a sequence Xi,..., X; of [ digraphs we
obtain by induction from (10.2), (10.3) and (10.4) that

Qr (X1>I<X2>I<...>I<Xl) = @ Qm (X1)®“'®Qpl (Xl) (10.5)
{pi>—1: p1+p2+..+p=r—1+1}
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B i ) S D H, (X1)®..® H, (X)) (10.6)
{pi>0: p1+pa+...+p=r—I+1}

B (ax X s i) = 2 By (X1) .8y, (X2). (10.7)
{p;>0: p1+pa+...+p=r—I+1}

Example. Consider an octahedron Z = X * X5 x X3 where X; = {0,1}, X5 = {2, 3},
X3 ={4,5} (see p. 208). Then

Q2 (2) = D Qp, (X1) ® Qy, (X2) @ €y, (X3)

{pi>—1: p1+p2+p3=2—3+1}
= Qo (X1) ® Qo (X2) ® Qo (X5)
= (e, €1) ® (e2,€3) ® (e4, €5)

= <€024, €025, €034, €035, €124, €125, €134, 6135)

~

and Hy(Z)=Hy(Z) = @{ppo p14p2+p3=2—3+1} Hp1 (X1) ® Hp, (X2) ® Hp, (X3)

= Hy (X1) ® Hy (X3) @ Hy (X3)
= <€0 = €1> X <€2 - 63> %Y <64 - 65>

= (€024 — €025 — €034 + €035 — €124 + €125 + €134 — €135).
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10.3 A generalized join of digraphs

Given a digraph G of [ vertices {1,2,...,{} and a sequence Xj, ..., X; of [ digraphs, define
their generalized join (X;...X;), = X¢ as follows: X¢ is obtained from the disjoint
union | |, X; of digraphs X; by keeping all the arrows in each X; and by adding arrows
x — y whenever z € X;, y € X; and 7 — j in G.

Digraph X is also referred to as a G-join of X, ..., X;, and G is called the base of Xg.

T [>—20 »—0 G
i J k



The main problem to be discussed here is
how to compute the homology groups and Betti numbers of X¢.

Denote by K; a complete digraph with vertices {1, ...,l} and arrows
11— )& 1<y

that is, K;isan ([ — 1)-simplex. For example, Ky = {1l — 2}and K3 ={1 -2 — 3,1 — 3}
is a triangle.

The digraph X, is called a complete join of X, ..., X;. It is easy to see that
Xi, = X1 x Xo*x ... x X

It follows from (10.7) that, for any r > 0,

~ ~ ~

B (Xi) = > B, (X1)...B, (X1). (10.8)

{p;>0: p1+pa+...+p=r—I+1}
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10.4 A monotone linear join

Denote by I; a monotone linear digraph with the vertices {1, ...,l} and arrows ¢ — i + 1:
L[ ={1-2—..—1} (10.9)
It G = I; then we use the following simplified notation:
(X1 X2.. Xy, = X1 Xo... X

and refer to this digraph as a monotone linear join of Xy, ..., X;.

Clearly, X;X5...X,, can be constructed as follows: take first a disjoint union |_|i:1 X, and
then add arrows from any vertex of X; to any vertex of X, ; (see p. 213).

In the case [ = 2 we obviously have X;X, = X7 % Xy but in general X;X5...X; is a
subgraph of X7 * X5 * ... ¥ X;. For example, we have

—

(10.10)

LN

1
while {0} % {1,2} x {3} = 1
0

N — W

1
{0}3{1,2} {3} = (T)

—
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Theorem 10.3 We have

Hy (X1Xo. X1) = N7 H,, (X)) ® ... ® Hy, (X)) (10.11)
{pi>0: p1+p2+...+p=r—Il+1}

and

B (X1 Xs.. X)) = D B,, (X1) .8, (X1). (10.12)

{pi>0: p1+p2+..+p=r—Ii+1}

By (10.6) and (10.11), X;X5...X; and X3 % X5 * ... x« X are homologically equivalent.

Example. Let the base G be a square:

We have G = {1} {2,3} {4} which implies that 2 — 4

XG :X1 (XQUX3)X4. G: T T

Hence, by Theorem 10.3, 1 - 3
Br (XG) - Z Bpl (Xl) Bpg (X2 L X3) Bpg; (X4)

{p;i>0: p1+p2+p3=r—2}

- S By (X0) (B (X2) + By (Xs) + Liamoy ) By (X)

{p:>0: p1+p2+p3=r—2}

= B, (X1 XoXy) + B, (X1 X3X4) + Br_y (X1X4) . (10.13)
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For a general base G, if 7...17; is an arbitrary sequence of vertices in G then denote

Xiy iy, = X Xy Xy,
Note that by (10.12)
ﬁr (X’Lllk) = Z ﬁpl (XZ ) Bpk (Xlk) )
p1+...+pr=r—(k—1)
PPk 20

and we consider the numbers (3, (Xi,..i,) as known.

Using this notation, we can rewrite (10.13) as follows: if G is a square then

B, (Xc) = By (X124) + B, (X1za) + B,_1 (Xia) -
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Example. Let G be an octahedron:
We have G = {1,2} % {3,4} % {5,6} whence

XG: (X1|_|X2)*(X3|_|X4)*(X5|_|X6) :

2
By (10.8) we obtain \V

B, (Xg) = > By (X1 U X3)8,, (X5 U X4) B, (X5 U Xe) °

{pi>0: p1+p2+p3=r—2}

— > (B, (X1) + By, (X2) + Lipy—0p) (B, (X3) + By (Xa) + Lippmoy)

{pi>0: p1+p2+p3=r—2}
(3 (X5) '—'g ,(X6) + Lips=0y)
5 (Xi35) + 5 (X145) + 5 (Xos5) + 5 (Xaa5) + 5 (Xis6) + 5 (Xi46) + 5 (Xas6) + 5 (Xo46)

+ By (Xas) + By (Xa3) + By_1(X1a) + By_1(Xa) + By (Xis) + Br_1 (Xos)
+ Bo_1(Xss) + B,_1(Xas) + Br_1 (Xa6) + Br_1(Xa6) + Br_1(Xs6) + B,_1(Xas)
Br_o(X1) + Br_g(X2) + Bo_n(Xs) + By_o(Xe) + Br_o(X5) + Br_s(Xe) + Lirey.
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10.5 An arbitrary linear join

Let now G be a linear digraph but not necessarily monotone. That is, the vertex set of G
is {1,...,1} and, for any pair (7,7 + 1) of consecutive numbers there is exactly one arrow:
eithert -1+ 1or¢«— 17+ 1.

Definition. We say that a vertex v of G is a turning point if v has either two incoming
arrows or two outcoming arrows. Denote by 7 the set of all turning points.

An allowed path in G is called mazimal if it is not a proper subset (as a set of vertices)
of another allowed path. Denote by A,,. the family of all maximal allowed paths in G.

_turning points
1 P i _ [
S J AN J\ A )
Y Y Y
maximal allowed paths

Clearly, the end vertices of a maximal path are either turning points or the vertices 1, 1.
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Theorem 10.4 If G is an arbitrary linear digraph then

Br (XG> - Z BT‘(XU) + Z Br—l (Xv) :

UEAmaX 'UGT

In other words, ET (Xg) is the sum of all BT of the linear joins of X, along all maximal
allowed paths in G plus the sum of 3,_; of all X, sitting at the turning points v.

Example. Consider the base
L={1—-2«34—-5}.
Then 7 = {2, 4} ,while maximal paths of L are
Apax ={1—2, 4—3—2, 4—5}.

Hence, by Theorem 10.4,

~ ~ ~ ~ ~ ~

B, (Xa) = B, (X12) + B, (Xuz2) + B, (Xu5) + 8,1 (X2) + 8,1 (X4) .
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Example. Consider the following base:

It is easy to see that G itself is the following linear join:

G =({13{2,4} {3} {5, 7} {6}),,

where L = {a — (< v« § — €} . Here the turning points of L are 7 = {3, §}, while
maximal paths of L are

Amax ={a— 0, 0 >y — 0, d —¢}.
For L-join we have as above
B, (Y2) = B, (Yap) + B, (Yors) + By (Yae) + By (Y5) + B,-1 (¥5) -
Setting Y, = X, Y = Xo U X3, Y, = X3, V5 = X5 U X7 and Y. = X we obtain

B, (Xg) = B, (X1 (X2 U X3) X5 (X5 U X7) X))

2



= B,(X1(X2 U Xy)) + B,((X5 U X7) X5(X2 U Xa)) + B,((X5 U X7) Xe)
+ 51 (Xo U Xy) + B,y (X5 U Xr)
= B, (X12) + B, (X1a) + B, (X1)
+ ET(X532) + BT(X534) + BT(X732) + ET(X734)
t Br—1(Xs2) + B,_1(Xaa) + By (Xs3) + B,1(Xra) + Br_a(Xs)
+ B, (Xs6) + B, (X76) + 5,1 (Xs)
+ Br—l (X2) + Br—l (X4) + 11y + Br—l (Xs5) + Br—l (X7) + Lg—yy.

BT(XG) = ET(X534) + BT(X532) + BT(X734) + BT(X732)
+8,.(X12) + B, (X14) + B, (Xs6) + B,(X76)
+68, 1 (X73) + B,y (Xs3) + 8,1 (Xa2) + By (X34)
+6,_1(X1) + Br_1(X3) + B, (Xa) + B,y (X5) + By (Xo) + B2 (X7)
+8,_(X3) + 20—13.
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10.6 A cyclic join

A digraph G is called cyclic if it is connected and each vertex has the undirected degree
2. Let G be a cyclic digraph with the set of vertices V = {1,2,...,1}. We assume that the
vertices are ordered so that every vertex ¢ € V' is connected by arrows to ¢ — 1 and ¢ 4 1
(where [ is identified with 0). In the same way as above we define the set A, and 7.

2 1
For example, consider the following hexagon:
Here 7 = {1,4} and 3 6
Apax ={4—3—-2—-1,4—-5—-6—1}

Theorem 10.5 Let G be a cyclic digraph that is neither triangle nor square nor double
arrow. Then

6, (Xe)= ¥ B(Xu)+ X Broy (X)) +5,(G). (10.14)

’U/EAmax 'UET

Note that in this case ET (G) = 14—ny. If G is a triangle or square or double arrow then
(10.14) is wrong, which is shown in Examples below.
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Example. If GG is the above hexagon then we obtain

Br (Xa) = gr (X4321) + gr (X4s61) + @-1 (X1) + gr—l (X4) + 1oy

Example. Consider the following 4-cyclic base:

—

G =

— — DO
S — o

—

Since 7 = {1,4} and Ay = {1 -2 — 3 — 4,1 — 4}, we obtain

~

B,(Xa) = B, (X1231) + B(X1a) + Br_y (X1) + By (Xa) + Ly,

Example. Consider the following 3-cyclic base: G = . 7"~

Then A,,.x and 7 are empty, and we obtain BT (Xe) = 1p=ny = B,.(G).
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Example. Consider the following tetrahedron as a base G"

4
We have G = C {4} where

C={1-2—-3—-1} 3
It follows that

Xag=Xco*xXy
and

B, (Xa)= > Bp(Xc)By(Xa)= Y Lp=nyB,(Xa) =B,_5(Xa).
p+qg=r—1 p+qg=r—1

HGHCG, ﬁr (XG) — 67“—2 (X4) :

2
Example. Let G be a triangle: G = | 20N , - Then Xg = X x Xy x X3 and we know
e — ©

that

~ ~

B, (Xg) = B, (X123) -
However, the right hand side of (10.14) is in this case

B, (X12) + Bry (X1) + B,_1 (X3) # B, (Xa) -
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Example. Let G be a square:

!
W —

l

Then we that by (10.13)

B, (Xc) = B, (X124) + B, (X134) + Br_1 (X1a),

while the right hand side of (10.14) is in this case

~

B, (X124) + B (X134) + Br_y (X1) + By (Xu) .

Example. Let G be a double arrow: G = {1 &2 2} . Then
XG = Xl * X2 * X1

whence Br (Xg) = ér (Xlgl).NHowever, in this case A, and 7 are empty, so that the
right hand side of (10.14) is 3, (G) = 0.
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Example. Let GG be as here:

We have
G=1{1,2,3,4}{5,6}{T—-8—-9— T}

so that
Xo = (X1 U Xy U X3 Xy) (X5 U Xe) Xpr—s-9-7)

It follows that

B (Xa)= Y (B, (X0)+ B, (Xa) + B, (Xs) + B, (Xa) + 30y

p+q-ts=r—2
x (B, (Xs) + B, (X6) + Lg=y ) go=y
which yields after computation
B,(Xa) = B,_o(X15) + B,_o(Xi6) + B,_5(Xas) + B,_(Xas)
+ B, 9(Xs5) + B,_o(Xz6) + B,_o(Xa5) + B,y (Xas)
+ B,_s(X1) + B,_5(X2) + B,_5(X3) + B,_5(Xa) + 35, _5(X5) + 38,_5(Xe) + 3r=s).
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10.7 Homology of a generalized join

Theorem 10.6 There exists a finite sequence of paths {uy} in G and a sequence {s;} of
non-negative integers such that, for any sequence {X;} of digraphs and any r > 0,

~

B.(Xa) = B,y (Xu) + B, (G). (10.16)

Besides, the sequence {uy} contains all maximal allowed paths, and ug € Apax < s = 0,

Example. Let the base G be a cube.

Use description of paths uy from the proof of Theorem 10.6, y s
we obtain . ‘

Br(Xa) = B,(Xi248) + B, (X1268) + B, (X1345) ‘
+08,(X1378) + B, (X1568) + B, (Xi578)
+8,-1(Xu7s) + B, -1 (X16s) + Br—1(X148)
+B,-1(X12s) + B,_1(X13s) + B,_1(Xiss) ! J

+8,_2(X18)
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10.8 Mayer-Vietoris exact sequence

A digraph Y is called a subgraph of a digraph X if both sets of vertices and arrows of
Y are subsets of those sets of X. If Y] and Y5 are two subsets of X then Y; U Y5 is their
union, that is, a subset of X whose sets of vertices and arrows are unions of those of Y;
and Y5. In the same way one defines the intersection Y; NY5.

A subgraph Y of X is called induced if for any two vertices a, b of Y, if there is an arrow
a — b in X then there is also an arrow a — b in Y. Clearly, the intersection of induced
subgraphs is also an induce subgraph.

Assume that a digraph X can be represented as a union of two induced subgraphs Y;
and Ys, that is, X = Y; U Y,. In particular, every arrow of X lies in Y] or Y5. Denote
Z =Y NYs,.

Any p-path v € R, (X) has a form

_ 10...0p , ]
u= Y ure,
iQ0...0p

with the coefficients u""» € K. We say that e;, ; (or ure; ;) isan elementary term
of w if u-r £ (.
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Theorem 10.7 (Mayer-Vietoris exact sequence) Assume that, for any p > 2,
Vo € Q,(X) we have x = y1 + yo for some y; € Q, (Y1) and y2 € Q, (Y2).  (10.17)

Then we have a long exact sequence of homology groups:

~ ~ ~ ~

B Hn(Z) - f[n(yl) D ﬁn(%) - HR(X) - Hn—l(Z) - Hn—1<Y1) > ﬁn—l(YZ) .

Corollary 10.8 Assume that the hypotheses of Theorem 10.7 are satisfied.
(a) If, for some n, H,(Z) = {0} and H,_1(Z) =0, then

~ ~ ~

H,(X)=® H,(Y1)® H,(Y>). (10.18)
(b) If, for some n, the homology groups H, (Y1), Ho(Ys), Hu1(Y1), Ho1(Y2) are trivial

then

Example. Assume that Z consists of a single vertex a. Let us verify that the hypothesis
(10.17) is satisfied. For any x € €, (X) with p > 2, consider an elementary term ce;, ..,
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of x and show that e;,.;, lies in Y} or in Y5. Assume that this is not the case, that is, one
of the vertices 41, ...,%,—1 1s a, say a = ¢4, while i,_; and i,1; belong to different Y7, Y5.

e m——

The path Oe;,. ;, contains the term PR N T
’ N7 \
eio...iqfliq+1..ip ,/ Y/ /,x\\ I/7 \\
: g . / . - \
that is not allowed because i4_1 / ig+1. , \a=\y, \
. . . I
This term must be cancelled in 0z using \ /\ |
th 1 t t f Ve . \ , . ................... '
other elementary terms of x. \ iy . i /
. ' ’ q /
However if another elementary term e, ;, . RN o
x contains e;,. 4, _yi,.1..4, 0 its boundary, Seelo- - RREE T
then

20---tg—1%g+1---1p = J0---Jg—1Jg+1---Jp

which implies j, = a because this is the only choice of j, to make j...j, allowed. Hence,
€io...i, = €jo...j, and the above cancellation is not possible. Finally, denoting by (where
k = 1,2) the sum of all elementary terms of = that are contained in Yj we obtain y; €
Q, (Yx) and y = y; + y2, which proves (10.17).

Since H, (Z) = {0}, Corollary 10.8(a) applies in this case and yields (10.18) for all n.
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Example. Let X = Y; UY; be an octahedron as here:
)5 (X) is spanned by 8 triangles:

4
€024, €034, €025, €035, €124, €134, €125, €135, g
each of them lying in Y; or Y5, while 0
Q, ={0} forall p >3,
Hence, the hypothesis of Theorem 10.7
is satisfied. Y

All H, (Y;) and H, (Y3) are trivial,
the only nontrivial group H, (Z) is

H, (Z) ={eo2 — e12+ €13 — ep3} -

By Corollary 10.8(b) we conclude that Hy(X) = H{(Z).

Indeed, we have seen above that Hj (X) is one-dimensional.
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Example. Consider the following digraph X = Y; U Y5:
Y1 contains the vertices {1,2,4,6,8,9},

Y5 contains all the vertices except for 6,

Z contains the vertices {1,2,4,8}.

All Y1,Y5, Z are homologically trivial
while dim Hy (X) = 1.

In fact, we have

Hs (X) = (eo12 — (€014 — €034) + (€025 — €035) — (€126 — €146) — (€250 — €269)

— (€348 — e378) + (€350 — €379) — (€469 — €489) + €789)-

Therefore, (10.18) fails for n = 2. The hypothesis of Theorem 10.7 fails either: the square
T = €959 — €og9 18 O-invariant on X but it does not satisfy (10.17) because esg9 is not
O-invariant on Y] and egsg is not O-invariant on Y5.
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11 Homotopy and related notions

11.1 Homotopy equivalent digraphs

For vertices a,b of a digraph, write a=b if either a — b or a = b. Let X and Y be two
digraphs.

Definition. A mapping f: X — Y called a digraph map (or morphism) if

a—bonX = f(a) =f()onY.
Any digraph map f: X — Y induces a linear map

faor Ap(X) — A(Y), f. <€i0...ip) = €f(ip)...f (ip)"

It is easy to check that f.0 = O0f,, which implies that f, provides a morphism of chain
complexes f, : 2,(X) — ,(Y) and, consequently, a homomorphism of homology groups
o H)(X) > Hy(Y).

Definition. For any n > 1 define a line digraph I, as any digraph with n + 1 vertices

{0,1,...,n} and such that, for any ¢ = 0, ...,n — 1 holds either i — (i+1) or (i + 1) — ¢,
and there is no other arrow.
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Definition. Let X,Y be two digraphs. Two digraph maps f,g: X — Y are called
homotopic if there exists a line digraph I,, and a digraph map ®: X[/, — Y such that

(I)|X><{o} = f and (I)|X><{n} = 4.

In this case we write f ~ ¢g. The map P is called a homotopy between f and g.

Definition. Two digraphs X and Y are called homotopy equivalent if there exist digraph
maps
f: X-=Y ¢g:Y—-X (11.1)

such that
fog~idy, go f ~idy. (11.2)

In this case we write X ~ Y.

Theorem 11.1 (i) Let f,g: X — Y be two digraph maps. If f ~ g then they induce the
wdentical maps of homology groups:

fo it Hy(X)—H,(Y) and ¢.:H,(X)— H,(Y).
(12) If the digraphs X and Y are homotopy equivalent, then H, (X) = H, (Y).
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In particular, if a digraph X is contractible, that is, if X ~ {x}, then all the homology
groups of X are trivial except for Hy.

We say that a digraph Y is a subgraph of X if the set of vertices of Y is a subset of that

of X and the arrows of Y are all those arrows of X whose adjacent vertices belong to Y.

Definition. Let X be a digraph and Y be its subgraph. A retraction of X onto Y is a
digraph map r : X — Y such that r|y = idy.

Theorem 11.2 Letr : X — Y be a retraction of a digraph X onto a subgraphY . Assume
that
either x =r (z) for allx € X or r(z) =z for all x € X. (11.3)

Then X ~Y and, consequently, H, (X) = H, (Y).
A retraction that satisfies (11.3) is called a deformation retraction.

Example. Let us show that n-cube is contractible. Indeed, a natural projection of n-
cube onto (n — 1)-cube is a deformation retraction. Hence, by induction we obtain n-
cube ~ {x}.
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Example. Consider the digraph X as here.

4

Let Y be its subgraph with the vertex set {1,3,4}. Consider a retraction r : X — Y
given by r (0) = 1, r(2) = 3. It is easy to see that r is a deformation retraction, whence
X ~ Y. Then we obtain

Hy (X) =2 H (Y)=(e13+e3ten) =K

and H, (X) = {0} for p > 2.
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Example. Consider the following two digraphs.

The digraph at the left panel is 4 4
contractible as there is a sequence
of two deformation retractions

ANSERVANS

reducing it to {x}:
()= (5)=3 1 1
ra (1) =12(2) =3 2 2

The digraph at the right panel differs 5 5
only by one arrow 3 — 1, but it is
not contractible because Hy # {0}

In fact, for this digraph

Hy = (€124 + €234 + €314 — €125 — €235 — €315).
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11.2 C-homotopy of loops

For any digraph G and a vertex * of G, denote by G* a based digraph.

Definition. A loop on G* is a digraph map ¢ : I,, — G such that ¢ (0) = ¢ (n) = *.
Here I, is any line digraph with any n > 0.

Definition. Consider in G* two loops ¢: I, — G and v: I,, — G. An one-step direct
C-homotopy from ¢ to 1 is a digraph map h : I, — I,, such that

(@) h(0) =0, h(n)=mand h(i) < h(j) whenever i < j;

(b) ¢ (i) = (h(z)) forall i € I,,.

If in (b) holds ¢ (i) =4 (h (i) for all ¢ € I, then h is called an one-step inverse C-
homotopy.

We denote an one-step direct C-homotopy with ¢ A v and the one-step inverse C-

homotopy with ¢ &£ .
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Example. On the next diagram we have ¢ A Y.

*=() 1 2 3

L, ——a—>e i

1, ® >@< d) >
*=() 1 2 3 4 5

Condition (b) means that ¢ and 1 provide a digraph map from the digraph on the left
panel to G.

Definition. We call two loops ¢, C-homotopic and write ¢ ~ 1) if there exists a finite
sequence {p},—, of loops in G* such that ¢, = ¢, ¢,, =¥ and, for any k =0,...,m — 1,

C C
holds ¢}, — @11 O VY, < V-

C
Obviously, C-homotopy is an equivalence relation. A loop ¢ is called contractible if ¢ ~ e
where e : [y — G is a trivial loop.
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The following theorem gives an efficient way of verifying if two loops are C-homotopic.

Any loop ¢: I,, — G defines a sequence 0, = {¢ (i) };_, of vertices of G. We consider 6,
as a word over the alphabet V.

Theorem 11.3 Two loops ¢ : I,, — G and ¢ : I,, — G are C-homotopic if and only if
0, can be obtained from 0, by a finite sequence of the following word transformations (or
inverses to them):

b

. . . Py . .
() ...abc... — ..ac... where a,b,c is a triangle W >, n G or any permutation of a
e — O

triangle.

4@ — @,

(%) ...abc... — ..adc... where a,b,c,d is a square | T wn G or any cyclic permu-
a® — @

tation of a square or an inverse cyclic permutation of a square.

(idi) ...abcd... — ...ad... where a,b,c,d is as in (ii).
(iv) ...aba... — ...a... if a — b or b — a.

(v) ...aa... — ...a...
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Examples

1. Consider a triangular loop
p:(0-1—-2-—3) -G

It is contractible because

0, = abca @ aca () a.

2. Consider a square loop o(1)=b b(2)=c
0: (0512234 =G

It is contractible because

T

0, = abcda (i) ada () a.
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3. Consider the loops ¢ : Is — G and ¢ : I3 — G as on p.240. It is shown here how to
transform 6, to 6, by means of Theorem 11.3: using successively transformations (7),
(i), (it) and (iii) .
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11.3 Fundamental group m;

The C-homotopy equivalence class of a loop ¢ : I,, — G will be denoted by [¢]. For any
two loops ¢ : I, — G and ¥ : I, — G define their concatenation ¢ V¢ : I, 1, — G by

go\/w(z'){@(i)a 0<i<n

(i —n), n<i<n+m.

Then the product [¢] - [¢] := [¢ V ¢] of equivalence classes is then well-defined.

Theorem 11.4 (a) The set of all equivalence classes [¢] with the above product is a group
with the neutral element [e]. It is denoted by m(G*).

(b) Any based digraph map f: X* — Y™ induces a group homomorphism
m(f) : m(XF) = m(Y™),  (m(f))[o] = [f o ¢].
(¢) If f,g: X* — Y* are two digraph maps then f ~ g implies w1 (f) = 71 (g) .

(d) If X, Y are connected and X ~Y then m (X*) = m (Y*).
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Theorem 11.5 For any based connected digraph G* we have an isomorphism
m(G*) /[m(G7), m(G")] = Hi(G, Z),

where [m1(G*), 71(G*)] is a commutator subgroup.
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11.4 An application to graph coloring

An an illustration of the theory of digraph homotopy, we give here a new proof of the
classical lemma of Sperner, using the notion the fundamental group of digraphs.

Consider a triangle ABC' on the plane R? and its triangulation 7'. Assume that the set
of vertices of T' is colored in three colors 1, 2,3 so that:

e the vertex A in colored in 1, B —in 2, C' —in 3;

e cach vertex on the side AB is colored in 1 or 2, on the side AC —in 1 or 3, on the side
BC —in 2 or 3.

Lemma of Sperner.

Under the above hypotheses,

there exists in 7" a 3-color triangle,
that is, a triangle, whose vertices

are colored with three different colors.
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Let us first modify the triangulation 7" so that there are no vertices on the sides AB, AC, BC
except for A, B,C. If X € AB then move X a bit inside of ABC. A new triangle XY Z

arises, where Y, Z are former neighbors of X on AB. However, since X,Y, Z are colored

in two colors, no 3-color triangle emerges after that move. By induction, we remove all

the vertices from all sides of ABC.

Consider the triangulation 7" as a graph and make it into a digraph G as follows. If a,b
are two vertices on 7" and a ~ b then choose direction between a, b using the colors of a, b
and the following rule:
1—2, 2—-3, 3—1
151, 252,353
1

Denote by S the following colored digraph N and define a mapping f : G — S

3.<—.2

to preserve colors of vertices. Then f is a digraph map by the choice of arrows in G.
Consider a 3-loop ¢ on G* (with * = A) with the word
0, = ABCA.

For the loop f oy on S we have 0., = 1231. This loop is not contractible because none
of the transformations of Theorem 11.3 can be applied to the word 1231. By Theorem
11.4(b), the loop ¢ is also not contractible and, hence, 7, (G*) # {0} .
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Assume now that there is no 3-color triangle in 7". Then each triangle from 7" looks in G
like

AN or -0 or PN
o S o e S o o S o

In particular, each of them contains a triangle in the sense of Theorem 11.3. Using the
partition of G into the triangles and transformations (ii) and (iv) of Theorem 11.3, we
contract any loop on G to the empty word, which contradicts to 7;(G) # {0}.
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