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1 Spaces of O-invariant paths

1.1 Paths and the boundary operator

Let us fix a finite set V' and a field K. For any p > 0, an elementary p-path is any sequence
ig, ..., 1y Oof p + 1 vertices of V'; it will be denoted by e;,. .,

A p-path is any formal linear combinations of of elementary p-paths with coefficients in
K; that is, any p-path u has a form

_ Qi1 ip p. ..
u= Yy,  uwore o
io,il,...,iPEV

where wiir» € K. The set of all p-paths is a K-linear space denoted by A, = A, (V,K).
For example, Ag = (e; : i € V), Ay =(e;j:4,j€V), Ao = (eijk 1 4,5,k € V).

Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_; by
P
aeio...z‘p = Z (—1>q ot i) (1-1>
L - igenip
where " means omission of the index. For p = 0 set de; = 0 (and, hence, A_; = {0}).
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For example,
Geij = Gj — €; and 8eijk = ij; — Cik -+ eij.

It is easy to show that 9 = 0. Hence, we obtain a chain complex A, (V):

OHA0£A1<—... — A1 = A — o

An elementary p-path e;;.;, is called regqular if iy, # i1y forall k = 0, ..., p—1, and irreqular
otherwise. A p-path is called regular (resp. irregular) if it is a linear combination of regular
(resp. irregular) elementary paths.

It is easy to show that if w is irregular then Ou is also irregular. Denote by R, the space
of all regular p-paths. Then 0 is well defined on the spaces R, if we identify all irregular
paths with 0. For example, if 7 # j then e;; € Ry and

Oeiji = eji — ey + €55 = ej; + €5 € R,

because e; = 0. Hence, we obtain a chain complex

OHR0£R1<—... — Rpo1 «— R, «—...



1.2 Chain complex on digraphs

A digraph (directed graph) is a pair G = (V, E) of aset V of vertices and £ C {V xV'\diag}
is a set of arrows (directed edges). If (4,7) € E then we write i — j.

Definition. Let G = (V, F) be a digraph. An elementary p-path €io...i, ON V' is called
allowed if i), — igq1 for any k =0, ...,p—1, and non-allowed otherwise. A p-path is called
allowed if it is a linear combination of allowed elementary p-paths.

Let A, = A, (G, K) be the space of all allowed p-paths. Since any allowed path is regular,
we have A, C R,.

We would like to build a chain complex based on spaces A,. However, in general 0 does

: ) b
not act on the spaces A,. For example, in the digraph e e — e we have Cabe € Aa

but deupe = €pe — €ac + €ap & A1 because e, is not allowed.

Consider the following subspace of A,:

Q,=Q,GK):={uecA,:0uec A, 1}|

We claim that 0€2, C Q,_1. Indeed, v € Q, implies Ju € A, ; and 0(Ou) =0 € A,_»,
whence Ou € Q,_;.



Definition. The elements of €2, are called J-invariant p-paths.

Hence, we obtain a chain complex Q, = Q, (G, K):

0 — 0 £ o & .. L a, & & (1.2)

that reflects the digraph structure of G. Homology groups of the chain complex (1.2) are
called path homologies of G and are denoted by H,(G).
By construction we have

QOZA0:<€Z'Z7:€V> and 91:441:{62']'22'%]‘}

while in general 2, C A,,.

1.3 Examples of J-invariant paths

A triangle is a sequence of three distinct vertices a, b, ¢
such that a - b — ¢, a — c.

It determines a 2-path eg,. € €2y because ey € As
and 0egpe = €pe — Cae + €ap € Aj.

The path ey, is also referred to as a triangle.



A square is a sequence of four distinct vertices a, b, b, ¢ such b' —c
that a — b — ¢, a — b — ¢ while a 4 c.

It determines a 2-path u = ey — €qpe € 22 because u € A,

and Ou = (epe — €ac + €ap) — (€re — €ac + €arr)

= €qb T €bc — €apy — Epc € Al- a g b
The path w is also referred to as a square.
An m-square is a sequence of m + 3 a
distinct vertices

CL, b07b17"'7bm7 C bo bm
such that a — by — ¢ Vk=0,...,m, A\
while a 4 c. c

Clearly, a square is an 1-square. Any m-square with m > 2 is also called a multisquare.

The m-square determines 0-invariant 2-paths (squares) as follows:
Uij = Cabse — €abse € 2 forall 4,7 =0,...,m,
and among them the following m squares are linearly independent:

Uoj = €aboe — €abjer J — 17 ceey M.
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A 3-cube is a sequence of 8 vertices 0,1,2,3,4,5,6,7,
connected by arrows as shown here:

A 3-cube determines a O-invariant 3-path 2 —

U = €ep237 — €0137 + €0157 — €0457 + €o467 — €o267 € (13,

also called a 3-cube. Indeed, we have u € A3 and 4 —p5

Ou = (eq13 — €o23) + (€157 — €137) + (easr — eapr) 0 —

- (6046 - 6026) - (6457 - 6467) - (6015 - 6045) € As,.

A trapezohedron of order m > 2 is a configuration
of 2m + 2 vertices: a, b, ig,. .., tm_1, Joy-- - Jm—1
with dm arrows: a — ix, jx — b,k = Jk, U = Jk+1, i ik

Vk=0,...,m — 1, where k 4 1 is understood mod m.

It determines the following 0-invariant 3-path: Jm-1

m—1

Tm = k;) (eaikjkb - eaikjk+1b) (1'3)



that is called a trapezohedral path. Clearly, 7,, is allowed. Let us verify that or,, € A,.

Indeed, we have

m—1
OTm = Z 0 (eaikjkb - 6aikjk+1b>

k=0
m—1 —1
- (eikjkb - 6ikjk+1b) - Z (eaikjk - 6aikjk+1)
m—1 m—1
— 2 (o> — Bt T 2 (Caiy — ) € Ay

(1.4)

(1.5)

because the both sums in (1.4) are allowed, while the both sums in (1.5) vanish.

For example, a trapezohedron of order m = 2 is shown here:

In this case we have

T2 = €aigjob — Caigjrb T €airjib — Cairjob-

Jo /1



Trapezohedra of order m > 3 can be realized as convex polyhedra in R3. For example,
trapezohedron of order m = 3 coincides with a 3-cube:

In this case we have
T3 = €aigjob — €aigjrb T €ai1jrb — €airjob T €aisjob — Caisjobs

and T3 coincides (up to a sign) with the aforementioned
O-invariant 3-path determined by a 3-cube (see p. 8).

a
Trapezohedron of order m = 4 can be realized in R?
as a tetragonal trapezohedron:
In this case we have iy i
Ta = Cofyreh — oo - Catifud — Cofiin® Ji J3
T Caizjob — Caigjsb T Caizjab — Caisgob:
b
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Here are some pictures from Wikipedia of trapezohedra as convex polyhedra:

Tetragonal trapezohedron Pentagonal trapezohedron Heptagonal trapezohedron Decagonal trapezohedron
m=4 m=>5 m="T7 m=10
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1.4 Digraph morphisms

Let X and Y be two digraphs. For simplicity of notations, we denote the vertices of X
and Y by the same letters X resp. Y.

Definition. A mapping f : X — Y between the sets of vertices of X and Y called a
digraph map (or morphism) if

a—bonX = f(a) — f(b) or f(a)=f(b) onY.

In other words, any arrow of X under the mapping f either goes to an arrow of Y or
collapses to a vertex of Y.

We say that a digraph Y is a subgraph of a digraph X if the sets of vertices and arrows
of Y are subset of the sets of vertices and arrows of X, respectively. In this case we have
a natural inclusion 7 : Y — X that is clearly a digraph morphism.

To give another example of a morphism, let us split the vertex set of a digraph X into
a disjoint union of n subsets Ay, ..., A,, and construct a digraph Y of n vertices aq, ..., a,
that is obtained from X by merging all the vertices from A; into a single vertex a; of Y.
More precisely, we have an arrow a; — a; in Y if and only if there are z € A; and y € A;
such that r — y in X.

12



An example of a merging map pu

We have a natural merging map p: X — Y such that pu(x) = a; for any x € A;. Clearly,
a merging map is a digraph morphism that keeps any arrow x — y if x and y belong to
different sets A; and collapses an arrow x — y into a vertex if z,y belong to the same A;.

Any mapping f: X — Y induces a mapping f, : A, (X) — A, (Y) as follows: first set
fi (€ig..in) = €f(i0)...f(in)>
and then extend f, by linearity to all of A,, (X).

Proposition 1.1 Let f : X — Y be a digraph morphism. Then the induced mapping
fe : A (X) — A, (Y) extends to a chain mapping f. : Q, (X) — Q, (Y) and, hence, to
homomorphism f. : H, (X) — H, (Y).

13



1.5 Structure of 2

As we know, Qy = (e;) consists of all vertices and ©; = (e;; : i — j) consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x,y) of distinct vertices z,y such that
xr /4y but x — z — y for some vertex z. We write in this case x — y

Theorem 1.2

(a) We have dim Qs = dim Ay — s where s is the number of semi-arrows.

(b) Space Qs is spanned by all triangles eqpe, Squares €qpe — €qpre and double arrows eqp,:
< b’ c

A

Observe that all the triangles and double edges are linearly independent whereas the
squares can be dependent as the example of multisquare shows.

14



Proof. (a) Recall that
Ay = span {eg. 1 a — b — ¢}
and

Q={veAdy:0ve A;} ={ve Ay : 0v=0mod A, }.

Since a — b and b — ¢, we have
8eabc = €pc — €ac + Eab = —€qc mod Al.

If a = cora— cthen e,. = Omod . A;. Otherwise we have a semi-arrow a — ¢, and in
this case

€qe 7 0 mod Aj;.

For any v € Ay, we have

abc
v=" >, 1"
{a—b—c}

whence it follows that
ov = — > v™®e,. mod A;.

{a—b—c,a—c}

The condition dv = 0 mod A; is equivalent to

> v®e,. = 0mod A;. (1.6)

{a—b—c, a—c}

15



Fixing a semi-arrow a — ¢ and summing up in all possible b, we obtain that (1.6) is
equivalent to
S v =0 for any semi-arrow a — c. (1.7)
{b:a—b—c}
The number of the equations in (1.7) is exactly s, and they all are linearly independent for
different semi-arrows. Hence, {25 is obtained from A, by imposing s linearly independent
conditions on v®¢, which implies dim Qy = dim A, — s.

(b) Let us prove that any 0-invariant 2-path w is a linear combination of triangles, squares
and double arrows. Since w is allowed, it is a linear combination of some elementary 2-
paths e, with a — b — ¢, with non-zero coefficients. If a = ¢ then ey, is a double arrow.
If a — c then ey, is a triangle. Subtracting from w all double arrows and triangles, we
can assume that w has no such terms any more.

Then, for any term ey, in w, we have a # ¢ and a /4 c¢, that is, a — c¢. Fix such a, ¢ and
consider all vertices b with a — b — ¢ so that we get a multisquare:

a
bo (
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Denote by 7, the coefficient with which ey, enters w, and set
Wae = Zf)/beabo (18)
b

Clearly, we have w = ) w,.. Hence, it suffices to verify that each wg. is a linear combi-

nation of squares. We have
OWwge = zb: Voab — Vp€ac + Vp€be = — zb: Yp€ae Mmod Aj.
Since Jw is allowed but e,. is not allowed, the terms 7,e,. should cancel out that is,
Eb) vy = 0. (1.9)
Let us fix one of the vertices by such that a — by — c. It follows from (1.8) and (1.9) that

Wae = Zybeabc — Z Yo (eabc - eaboc) — Z Yo (eabc - eaboc) .
b b b#bo

Hence, wq. is a linear combination of the squares egp. — €4p,c, Which was to be proved. =
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Observe that a triangle ey, and a double arrow e,, are images of a square eg;3 — €p23
under some merging maps (cf. Section 1.4) as shown on these pictures:

2¢ 3 Hac

0 AN 1\ ,,1 a 5 b

a merging map from a square onto a triangle a merging map from a square onto a double arrow
€013 — €023 = €abc — €acc = €abe €013 — €023 V7 €aba — €aaa = €aba

Hence, we can rephrase Theorem 1.2 as follows: {25 is spanned by squares and their
morphism images. Or: squares are basic shapes of €.
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2 Trapezohedra and structure of ()3

2.1 Spaces (2, for trapezohedron

For any integer m > 2, define a trapezohedron T,, of order m as the following digraph:
a

T,,, consists of 2m + 2 vertices
a, b, 1o, .oy bm—1, J0> J1s s Jm—1

and 4m arrows

s (s B s e e i

for all k=0,...,m — 1 modm.

A fragment of T, is shown here:

-
It is clear that all allowed paths

in 7, have the length < 3, and,
hence, Q, (T,,,) = {0} Vp > 3.
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Proposition 2.1 For the trapezohedron T,, we have
dim Q9 =2m, dimQ3 =1,

and H, = {0} for all p > 1.
Proof. It is easy to detect all the squares in T,,:

€ai_1jr — Cairjk and Cirixb — Cikjrr1b (2'1)

where k£ = 0, ..., m—1. Hence, T}, contains 2m squares, and they are linearly independent.
Since there are neither triangles no double arrows in 7,,, we conclude by Theorem 1.2
that dim Qy = 2m.

All allowed 3-paths in T;, are as follows:

Caiyjib and Caijri1b

forall k=0,...,m — 1. J Jien
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Let us find all linear combinations of these paths that are d-invariant. Consider such a

linear combination
m—1

w = z (@kzeaikjkb + Bkeaiwkﬂb)
k=0

with coefficients ay, 3,. We have

m—1
aw - a (akeaikjkb + 5k€aikjk+1b)
=
m— —1
- kZ—O (ake’ikjkb + /Bkeikjlﬂ»lb) - = (akeaikjk + ﬁkeaikjkﬂ)
m—1 m—1
- > (akeajkb + ﬁk;eaijrlb) + > (akeairp + BrCairh) -
k=0 k=0

— O

(2.2)

(2.3)

The both sums in (2.2) consist of allowed paths. In the rightmost sum in (2.3), the path

€qipp 15 DOt allowed and, hence, must cancel out, which yields

The leftmost sum in (2.3) is then equal to

m—1 m—1

> (kCajeb — CkCaje,1b) = 2 (Qk — k1) €ajpb;
=0 =0
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and it must vanish as e, is not allowed, whence

A — 1.
Setting a = o and, hence, 3, = —«a, we obtain that
m—1
W=« Z (eaikjkb - eaikjk+1b) = QT ,
k=0

where 7, is a trapezohedral path that was defined by (1.3). It follows that Q3 = (7,,)
and, hence, dim Q3 = 1.

It follows from (2.2)-(2.3) that

m—1 m—1
aTm = Z (eikjkb - eikjk+1b) - Z (eaikjk - eaikjk+1) 7& 0.
k=0 k=0

Hence, ker 0]q, = 0 whence H; = {0} . Let us show that Hy = {0} . Since dim Im 0|, = 1,
it suffices to show that

dim ker 0|q, = 1. (2.4)
Consider the following general element of €2:
m—1
u = k;) Ok (eaikqjk - eaikjk) + ﬁk: (eikjkb - eikjk+1b)

D



with arbitrary coefficients oy, 3. We have

m—1
Ju = i Ak (eaik—1 + Cir—1jx — Caip — eikjk) + ﬁk (6jkb + Cirik — Cipt1d — eikjk+1)

m—1 m—1

= (Qry1 — ag) €aiy T > (ﬁk - ﬁk—l) b
k=0 k=0
m—1 m—1

+ kZ (Br — o) iy, + kzo (k41 — Br) i -

—0 —

The condition du = 0 is equivalent to
a1 =0 =0, =0 forall k=0,.....m—1
which implies (2.4).
Finally, we determine dim H; by means of the Euler characteristic
X =dimQy — dimQ; +dim Qs —dim Q3 = (2m+2) —4m+2m —1=1.

Hence, we obtain
dlmHO — d1mH1 =F d1mH2 — dim H3 = 1,

which yields dim H; = 0. =
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2.2 A cluster basis in (2,

We start with the following definition.

Definition. A p-path v = ) v"r¢; ,; is called an (a,b)-cluster if all the elementary
paths ;. ;, with non-zero values of v have iy, = a and i, = b. A path v is called a
cluster if it is an (a, b)-cluster for some a, b.

Lemma 2.2 Any 0-invariant p-path is a sum of O-invariant clusters.

Proof. Let v € ,. For any points a,b € V, denote by v, the sum of all terms v""re;; ;
with 79 = a and 7, = b.

Then v, is a cluster and v = ) w,y, that is, Vs oh
a,beV

v is a sum of clusters. Let us prove that each
non-zero cluster v, is 0-invariant. a

Since v is allowed, also all non-zero terms viO“'iPeiOmiP are allowed, whence v, is also
allowed. Let us prove that dv,, is allowed, which will yield the J-invariance of v,;. The
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path v,y is a linear combination of allowed paths of the form eg;,. i, 5. We have

p—1
k
86@2’1”-7:]7711) = Ciy.ip_1b + (_1);0 €aiy...ip—1 + ]{Z (_1) eail..z’;...ip_lb'
=1
The terms e;, ;,_,p and €g4,.5,_,
there may be non-allowed. In the full expansion of

v = > Ougp

a,beVv

are clearly allowed, while among the terms €air. Frnrip_1b

all non-allowed terms must cancel out. Since all the terms e, = , , forma (@, b)-cluster,
they cannot cancel with terms containing different values of a or b. Therefore, they have
to cancel already within Ov,, which implies that Ov,; is allowed. m

Definition. For any p-path v = Y v"e¢; ,; define its width ||v| as the number of
non-zero coefficients v,

Definition. A O-invariant path w is called minimal if w cannot be represented as a sum
of other d-invariant paths with smaller widths.

Example. A square w = ey — €qe has width 2 and is minimal because ey, and egy.
having width 1 are not O-invariant.
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Let a, {bo,b1,b2}, ¢ be a 2-square. The following path
W = eablc + eabgc — 26&[)06

is then O-invariant, has width 3 but is not minimal because it can be represented as a
sum of two squares:

w = (€abyec — €aboc) 1 (Eabse — €aboc),

where each square has width 2.

Lemma 2.3 Fvery 0-invariant cluster is a sum of minimal O-invariant clusters.

Proof. Let w be a O-invariant cluster that is not minimal. Then we have

n

w=> w®, (2.5)
k=1

where each w®) is a d-invariant path with Hw(k)H < ||lw||. By Lemma 2.2, each w™® is a
(k)

sum of clusters w, ,,

and it is clear from the definition of wgkg that
k
B < lw®].
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Hence, we can replace in (2.5) each w® by > bwg}z and, hence, assume without loss of

generality that all terms w® in (2.5) are O-invariant clusters.

If some w® in this sum is not minimal then we replace it further with sum of J-invariant
clusters with smaller widths. Continuing this procedure we obtain in the end a represen-
tation w as a sum of minimal J-invariant clusters. m

Proposition 2.4 The space ), has a basis that consists of minimal O-invariant clusters.

Proof. Indeed, let M denote the set of all minimal J-invariant clusters in 2,,. By Lemmas
2.2, 2.3, every element of (), is a sum of some elements of M. Choosing in M a maximal
linearly independent subset, we obtain a basis in {2,. ®

2.3 Structure of ()3

We use here the trapezohedra 7,, and associated trapezohedral paths 7,, that are O-
invariant 3-paths for all m > 2 (see (1.3) and Section 2.1). We prove here that, under an
additional mild hypothesis, Q23 (G) has a basis that consists of trapezohedral paths and
their morphism images.
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We start with some examples of morphism images of 7,,.

Example. Here is a merging map from 75 onto a 3-snake:

The trapezohedral path 74 is given by

To2 = €0123 — €0153 t €0453 — €0423,
and its merging image is the 3-path
UV = €0123 — €0133 T €0233 — €0223 = €0123,

that is, the O-invariant 3-path egpi23 associated with a 3-snake.
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Example. Here is a merging morphism of 75 (=a 3-cube) onto a pyramid:

The cubical 3-path is given by

T3 = €0237 — €0137 + €0157 — €0457 + €467 — €0267

and its merging image of 73 is the following J-invariant 3-path in a pyramid:

UV = €0234 — €0134 T €0144 — €0444 + €0444 — €244

= €0234 — €0134-
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Example. Consider another merging morphism of 75 onto a prism:

The merging image of the cubical 3-path

T3 = €0237 — €0137 + €0157 — €0457 1 €0467 — €0267

is the following O-invariant 3-path of the prism:

U = €0233 — €0133 T €0153 — €0453 T €0423 — €0223

= €0153 — €0453 T €0423-
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Example. Here is a merging morphism p : Ty — G where the digraph G is a broken cube:

0
7, G 0

—_— 2 1

The path 74 in the present notation is given by

T4 = €0159 — €0169 T €0269 — €0279 1 €0379 — €0389 T €0489 — €0459,

and the merging image of 7, is the following O-invariant 3-path on the broken cube:

W = €p158 — €0168 T €0268 — €0278 T €0378 — €0388 + €0488 — €0458

= €p158 — €0168 T €0268 — €0278 + €0378 — €0458-
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The next theorem describes the structure of Q25 (G) for a digraph G under the following
hypothesis:

G contains neither multisquares (see p.7) nor double arrows. (N)

Under the hypothesis (N), 25 (G) has a basis that consists of triangles and squares. The
condition (N) implies that if @ — b — ¢ and a 4 ¢ then there is at most one ¥’ # b such
that a — 0 — c.

Theorem 2.5 Under the hypothesis (N), there is a basis in Q3 (G) that consists of trape-
zohedral paths T,, with m > 2 and their merging images.

In other words, trapezohedra are basic shapes for (23.

Proof. By Proposition 2.4, {23 has a basis that consists of minimal d-invariant clusters.

Let a 3-path w be a minimal d-invariant (a,b)-cluster. Y, o

It suffices to prove that w is a merging image of one of ;

the trapezohedral paths 7,, up to a constant factor.

Denote by () the set of all elementary terms eg;;, of w. b
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Clearly, the number |@Q)| of elements in @) is equal to ||w||. We claim that, for any e;;, € @,
eithera — 5 or a 7

where the notation a " j means that a and j form a diagonal of a square.

Indeed, if a /4 j then the term e,j; appearing in

Oeqijp 1s non-allowed and must be cancelled out in

Ow by the boundary of another elementary 3-path

from @) that can only be of the form eq;, with

a— i — 7.

Hence, a and j form diagonal of a square a, 1,7, j.

By hypothesis (N), the vertex " with these properties is unique. Hence, in this case we
have

W = CEqiib — CEqish T --- (2.6)
for some scalar ¢ # 0. In the same way, we have

either : — b or ¢ 70,
and, for some ey, € Q and ¢ # 0,

W = Ceqijb — CEqij’b + --- - (2.7)

33



If, for some path e, € @), we have both conditions a
a— j and i — b, i
then ey, is O-invariant and, by the minimality of w,
w = const €g;jp.
Since eg p 1s in this case a 3-snake, the path w is a
merging image of 7o (see Example on p. 28). b

Next, we can assume that, for any path ey, € @), we have a /4 j or ¢ /4 b, that is,

a /7 or 1,/ b (2.8)

Define a graph structure on @) with edges of two types (i) and (ii) as follows: for two

distinct elements ey, and eqy i, of @ set (i) (i)

a

(i) . . .
€aijb ™~ €ai'j'b ifa /" j=7 i

and

(i)

€aijb ™~ €ai’j'b if i/ =1 / b.

Both relations Si.)/ and (rlvl) are symmetric ()b (ii)

and, hence, can be considered as edges. €aijb ~ €qilj'b €qijb ™~ Caili'b

b
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Before continuing the proof, consider some examples of graphs Q).

Example A. Let w be the trapezohedral path of 75, that is,

W = Tg = €0123 — €0153 T €0453 — €0423-

This path is an (a, b)-cluster with a = 0 and b = 3. In this case the graph @ consists of 4
vertices as follows:

Cluster o: Graph QO:

M ®
(i)
z s E——E)

3=b
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Example B. Let w be the 0-invariant 3-path of the broken cube (see Example on p.
31), that is,

W = €p158 — €0168 T €0268 — €0278 + €0378 — €0458-

This path is a (a,b)-cluster with a = 0 and b = 8. The graph @ consists of 6 vertices as
follows:

Cluster : V=a Graph Q:

2“ "1
6
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By the hypothesis (N), for any ey, € @,
there is at most one edge of type (i) and
at most one edge of type (ii).
In particular, the degree of any vertex of
the graph (@, ~) is at most 2.

Fix a path ey, € Q. By (2.8) we have
. . (i) (ii)
a7 or 1,/ D €aijb ™~ €ailjb €aijb ™~ €aij'b

By the above argument, if a / j then there exists e, € Q) such that eg;p @ €qirjp and
W =Ceyiib — CEGish 1 - (2.9)
(cf. (2.6)). Similarly, if i /b then there exists ey € Q such that eqijy  eqijn and
W = Ceqijp — CEqij’h T+ --- (2.10)

(cf. (2.7)). In particular, the degree of any vertex of the graph @ is at least 1.

Let us prove that the graph (Q,~) is connected. Assume from the contrary that @ is
disconnected, then @ is a disjoint union of its connected components {Q}y_, with n > 1.
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Denote by w® the sum of all elementary terms of w lying in Qj,, with the same coefficients
as in w, so that

w=Y w®, (2.11)
k=1

Let us prove that each w® is O-invariant. Clearly, w® is allowed, and we need to verify

that Ow® is also allowed. Indeed, assume that
Ow® contains a non-allowed term. Then this
term comes from the boundary de,;j, of some

term e, of path w®). The non-allowed term

of Degijp is either eqp o eq; let it be eqp, that
is, let ¢ 4 b. Then the term ey cancels out in Clusters w® and w

Ow, which can only happen when w contains another term of the form eg;;,. However,
then e, and eq;5 are connected by an edge in Q:

(ii)
€aijb ™~ €aij'b-

Therefore, e, and e,5, belong to the same connected component of (), that is, to Q.
Hence, e, is also an elementary term of w® and ey cancels out also in Ow®. This
proves that Ow™® is allowed and, hence, w® is O-invariant.
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As the number n of components is > 1, we have |Qx| < |@Q|, whence ||w™®|| < ||w]||. But
then (2.11) is impossible by the minimality of w. Hence, n = 1 and @ is connected.

Since each vertex of () has at most two adjacent edges, there are only two possibilities:

(A): @ is a simple closed polygon; (A) (B)

———— 06— 00— 0 —0

(B): @ is a linear graph.

Consider first the case (A). In this case every vertex of
() has two edges: exactly one edge of each type (i), (ii).

Hence, the number of edges is even, let 2m, and () has

necessarily the following form:

(i1) (i) (it) @) (i) @)
€aigjob ™ €aigjib ™~ €airjib ™ -+ ~ €aip_1jm_1b ~ €ai__ job ™ €aigjob (2.12)
for some vertices i, ..., 4y,—1 and jo, ..., jm—1 of G. Note that m > 2 because if m = 1 then
(2.12) becomes
(ii) (i)

6aioj0b ~ eai()jlb ~ 6ai0j0b7
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which is impossible as edges of different types between the same vertices of () do not exist.

Since all the terms in (2.12) enter w with the same coefficients £c¢ (cf. (2.9) and (2.10)),
we see that

W = (€aipjob — Eaigjub T atrjib — Catngeb T -+ T Coimy 116 — €ai__ job)- (2.13)

Suppose that all the vertices a, ig,...,%m_1, Jo,---,Jm—1, b are distinct. It follows from
(2.12) that these vertices form a trapezohedron T, as on the next picture:

By (1.3), the trapezohedral path of T,, is

Tiio = (@atainh = Catagals) I (B = Coot)
.. + (eaim—Qjm—Qb o e(17;7n—2j7n—1b)

+ (eaimfljmflb - eaimqjob) o
Comparison with (2.13) shows that w = c7,.

If some of these vertices coincide then the

configuration (2.12) in G is a merging image of T},,, and w is a merging image of ¢7,,.
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Consider now the case (B). In this case the linear graph @ has two end vertices of degree
1, while all other vertices have degree 2. There are two essentially different subcases:

(B1) the end edges of @ are of different types: @ D) o) o 1) o) o o O 4

(By) the end edges of Q are of the same type (ii): o) o 1) o 1) o O o 1) g
(the case of type (i) is similar).
Consider first the case (B1) when the graph ) must have the form
€aigjob 3 Caigjrb R €ai1jrb R €ai1jab R €atim_1jmb R €aimjmb- (2.14)
Consequently, we have
w = C(€aigjob — Caigj1b T Cairgib — Cairjob T -+ = Caim_1jmb T Catmjmb)- (2.15)

Computation of Jw gives

Oow = c¢ (—eajob + em'mb) mod AQ.
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Since Jw = O0mod Ay, we must have either eq;» = €44, Or the both ey, and ey, are
allowed, that is,
a— jo and i, — b. (2.16)

In the case e,jop = €ai,,p We have jo = i, whence (2.16) follows again so that (2.16) is
satisfied in the both cases.

We claim that in the case (Bp) the configuration (2.14) is a merging image of T),.2.
Indeed, denote the vertices of T,,.o by

a, iO? LLD im: Z'TTH-lu jOJ ---;jm;jm+1; b?
and map all the vertices of T}, 2, except for 2,11, Jmi1, to the vertices of G with the

same names; then merge: %,,.1 — Jo and J,,.11 — b.

The following arrows in 715,12

o Im+1
a — Z.m—i—la 7:m — jm—i—l: Z.m—i—l - jm—i—l

are mapped to the arrows in G:

. . . Jo
a — Jo, Zm_>b7 j0_>b

(cf. (2.16)), while the arrows

tm+1 — Jo and 11 — b go to vertices.
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It follows that this mapping of T),,2 into G is a digraph morphism. Since by (1.3)

Tm42 = (eaiojob_eaiojlb)+(eailjlb_eailjgb)+---+(eaimjmb_eaimjm+1b>+(€aim+1jm+1b_eaim+1job>a

the image of 7,,.- is the following path, where we replace ¢,,.1 by jo and j,,.1 by b:

B = (Batigih — Gotugnn) - (Bl = Ctasm) - ovo 1 (Bt = Gotnhy) - (Cood> = Cogogon)

= Caigjob — €aiojib T Cairjib — Cairjob T -+~ Cainy_1jmb T Caimimb-

Comparison with (2.15) shows that w = cu, that is, w is a merging image of ¢7,, 2.
In the case m = 1, this merging morphism of 73 is shown here (cf. Example on p.30):

a
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Consider now the case (By) when the graph @ has the form
(ii) () (ii) (i) (i) (it)

€aigjob ™~ Caigjrb ~ Cairjrb ~ Cairjzb ~ -+« ™~ €aip_1jm_1b ™ €ai b, (2.17)

so that

&) = @t = ot =F Cotngud = Catngeld T 000 1= Ctns il = Ctmi il (2.18)

Since
Ow = ¢ (—€qjop + €ajnp) mod Ay,

it follows that either j, = j,,, or the both paths e, and e,;,.» are allowed, that is,
a— jo and a — Jp,. (2.19)
However, jo = j is not possible because it would imply that
(i)

€aigjob ™ €ai, , job

and the line graph ) would close into a polygon, which gives the case (A). Hence, (2.19)
is satisfied. We claim that the configuration (2.17) is then a merging image of T},;.
Indeed, denote the vertices of T,,.1 by

Ay 10y -5 tmy JOs -+ Jm; b.
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Then we map all the vertices of T, .1,
except for 7,,, to the vertices of G with

the same names; then map 1,, — a.

Clearly, the following arrows in 7}, 1
im _>j0 and Z.m _>jm
are mapped to the arrows in G:

a—jo and a— j, (cf. (2.19)),

and the arrow a — 17,, goes to a vertex.

N\
Hence, we obtain a merging morphism of 7, into G. Since by (1.3)

Tm+l = (eaiojob_eaiojlb)+(eai1j1b_eai1j2b)+---+(eaim_ljm_lb_eaim_ljmb)+(€aimjmb_eaimjob>a

the image of 7,,.1 is the following path, where we replace 7,, by a:

0 = (oo = Cotng®)) T (Betiib = Bemgeh)) I o00 T (Botrmi o = Bt f) I (i = Good)

= €aigjob — €aigjib T €airjib — €airjob T -+ T €airy_1jm_1b — Caim_1jmb-

Comparison with (2.18) shows that w = cv so that w is a merging image of ¢7,,,11. ®
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2.4 Examples and problems

For example, in the case m = 2
the above morphism gives the
following merging image of Tj:
(T5=3-cube)

i

LN

In the case m = 3, the above
morphism gives the merging
image of Ty as broken cube:

(cf. Example on p. 31)
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Problem 2.6 Prove Theorem 2.5 in the general case without the hypothesis (N).

Perhaps, one can prove the absence of multisquares inside each minimal cluster w using
the minimality of w. Then the rest of the proof remains unchanged.

Problem 2.7 Dewvise an algorithm for computing a basis in (3 based on Theorem 2.5.

Denote by Q the set of all elementary allowed 3-paths. For each ey, € Q, we have
8em~jb = —€qjb + €uib mod ./42.

We say that e, is a bond of type (i) if a /4 j; and ey is a bond of type (ii), if i /4 b.

N e W
Define edges between elements ¢, g2 € Q as follows: D Caip = A2 Caij D™ Caib = A2 Cais

Q1 Y q2 if ¢1, g2 have a common bond of the type (i); i
(i)

@1 ~ @2 if q1, g2 have a common bond of the type (ii).

b

Some bonds may be attached to only one vertex of Q, so that we allow in Q edges
with only one vertex. Then the minimal O-invariant clusters in G are determined by the
maximal paths in graph Q that go along the edges with alternating types.
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For example, consider the following digraph:
and try to determine €23. For that first find

all elementary allowed 3-paths with all their

bonds as shown in the following table:

Q \ bonds

054

154

123

124

0134

0152

0153

0234

0523

0524

0534

1523

1524

1534

5234
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This table determines a (hyper)graph structure in @ is as follows:

Y 15 it i)

©  [o534] - [0524]
/(0) I

The maximal alternating paths in this graph are

[0134] ¥ [0234],  [0134]¥[0534] O [0524]  [0153] [0523] [5234]

which yields five minimal O-invariant clusters

€0134 — €0234, €0134 — €0534 + €0524, €0153, €0523, €5234,

that form a basis in 23. In particular, dim €23 = 5.

Problem 2.8 State and prove similar results for Q4. Are the basic shapes in 24 given by
polyhedra in R*? Devise an algorithm for computing a basis in Qy. The same questions
for Q, with p > 4.
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3 Combinatorial curvature and products

3.1 Definition

Let G = (V, E) be a finite digraph and K = R. Definition of curvature depends on the
choice of inner product in the spaces R, of regular p-paths. Let us fix in each R, the
natural inner product (,) when all regular elementary paths €io...i, Torm an orthonormal
basis in R,. Then, for any path w = )" w e, ,; € R,, we have

HWH2 _ Z (wig...ip)Q.

19...1pE€EV
For any regular elementary path e;, ;, and for any vertex z, define

x.e; . | = the number of occurrences of z in g, ..., %,.
» Cio...7p 0y -y lp

For example, [a, €apea] =2,  [b, €abea) =1, [d, €abea) = 0.

For a path w = Zwio"'ipeio_,_ip € R, and for any = € V, define the incidence of x in w by

[z, w] = > (wio'“ip)2 [w,eio,..ip] .

10...1pEV
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Recall that €, is a subspace of R, that is defined by 2, = {w € R, : w and Jw are allowed} .
Fix an orthogonal basis {wy} in €2, and define the incidence of any vertex z in €, by

[z, wg]

[z, Q] = 2

F llwell®
It is possible to prove that the sum in (3.1) is independent of the choice of a basis {wy}.

(3.1)

Definition. For any N € N define the curvature of order N at a vertex x by

K(N):ﬁﬂ[xg].
48 p:0p+1 iy 2

Recall that the Euler characteristic is defined by y) := Z;V:o (—1)” dim ©,,.

Proposition 3.1 (Gauss-Bonnet) For any choice of the inner product in R, and for any
N € N, we have
KM . S KM = ),

total *
zeV

If dim$, = 0 for all p > N, then write KN = K, and ) = x. In this case we have
x = > (=1)"dim H,.

p=0

ol



3.2 Examples of computation

Using the orthonormal basis {e;} in 2y we obtain, for any z € V,
[z, Q0] =" [z,6;] = 1.
Using the orthonormal basis {e;;} with i — j in €;, we obtain

[z, ] = > [z, e;] = deg ().

Therefore, for any N > 1,

deg (z) )
2

1y
KM =1— 2 = [z, Q). (3.2)
Example. Let G be a triangle {0 — 1 — 2,0 — 2}.
Then QQ = <€012> and Qp = {O} for p > 2. 2
Since |leg1z||” = 1, we obtain, for any = € {0,1,2},
[x7Q2] - [1’76012] - 17

whence 0 1

szl__deg;x)+%[x792]:1_%+%:%
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Example. Let G be a square {0 — 1,0 — 2,1 — 3,2 — 3}.
Then Q5 = (ep13 — €p23) and Q, = {0} for p > 2.

A |
(98]

2
Since ||eg13 — 6023H2 = 2, we obtain
0, Q] = % 0,e013 — €3] =1, [3,Q) =1
1,9 =3 [1,e03 —eos) =3, [2,] =13 0
It follows that
deg(0) 1 1 deg (1) 1 1
Ky=Kyg=1— Sl K=K =1- o
3 0 5 + 3= 3 2 1 5 + 5T &

and Ky, = 1. Note for comparison that

x =dim €y —dimy +dimQy =3 -3+1=1.

The main purpose of what follows is to compute the curvature of the n-cube. For that we
revise first the notions of cross product of paths and Cartesian (box) product of digraphs.
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3.3 Cross product of paths

Given two finite sets X, Y, consider their Cartesian product
Z=XxY={(a,b):ae XandbeY}.

Let z = 2y...2, be a regular elementary r-path on Z; let z = (ag, by) with ax, € X, by € Y.

We say that z is stair-like if, for any k=1, ...,7, : 7=t

either ap_1 = ay or by_1 = by. -

That is, any pair z,_12z;, of consecutive vertices is ,,}Z_kl z:, ‘x:

e cither vertical (when ax_1 = ay) | ool
e or horizontal (when by_1 = by). — 11,
Given a stair-like path z on Z, define its projection x 7 S
onto X as a reqular elementary path x on X obtained ) o)

from aq...a, by collapsing any subsequence of repeated : i

vertices onto one vertex. 'f’{a;{t’{z 7]
In the same way define the projection y of z onto Y . e 2 — mx,,
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The projections x = zy...x, and y = yo...y, are regular elementary paths, and p +q = r.

(0.9) (».q)

Let us map every vertex (z;,y;) of the path z to a S)

point (4, 7) of Z2, so that the path z is mapped to -
J (i)

a staircase S(z) in Z? connecting (0,0) and (p, q).

Define the elevation L(z) of z as the number of

cells in Z2 below the staircase S(z). 00) 0.0)

For given elementary regular paths = on X and y on Y, denote by II,, the set of all
stair-like paths z on Z whose projections on X and Y are z and vy, respectively.

Definition. Given elementary paths e, € R,(X) and e, € R,(Y), define their cross
product e, X e, as a path in R, ,(Z) as follows:

er X €y = Z (=) P e,. (3.3)

z€lz y

Then extend the operation x by linearity to all v € R,(X) and v € R, (Y) so that
UXvE Ry, (Z).
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Example. Let us denote the vertices on X by letters a, b, ¢ etc and the vertices on Y by
integers 1, 2,3, etc. Then the vertices on Z can be denoted as al, b2 etc as the fields on
a chessboard.

Y
We have then a3 b3 3
3 @
€q X €12 = €4q142, €ab X €1 = €415l
€ab X €12 = €4106162 — €al a2b2 aZ. b2 c2
2
€ab X €123 = €41b162b3 — €ala2b2b3 T €ala2a3b3
€abe X €123 = €qlblclc2c3 — €alblb2c2¢3 T €albl b2b3 c3 1
al bl cl
+€a1a262¢2¢3 — €ala2b2b3¢3 + €ala2a3b3c3
a b c X

Lemma 3.2 Ifu e R, (X) andv € R, (Y) where p,q > 0, then
J(uxv)=0uxv+(—1)"ux dv. (3.4)
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3.4 Cartesian product of digraphs

We denote here digraphs and their sets of vertices by the same letters. Given two digraphs
X and Y, define their Cartesian product (box product) as a digraph Z = XY as follows:

e the set of vertices of Z is X x Y, that is, the vertices of Z are pairs (a,b) where a € X
and b €Y,

e the arrows in Z are of two types:

- vertical arrows (a,b) — (a,b’) if b — b in Y;

- horizontal arrows (a,b) — (a’,b) if a — a' in X.

b (a,b) (a’,b")
° e e — °
T T T

b (a,b) (a’,b)
° e e — e
Y/X -+ e — e

It follows that any allowed elementary path in Z is stair-like.

Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.
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It follows from definition (3.3) of the cross product that
veA,(X) andve 4, (Y) = uxveAd,,(Z).
It follows from the product rule (3.4) that

ueQ,(X)andveQ(Y) = uxveQ,(2).

Theorem 3.3 (Kiinneth formula for product) For any r > 0, we have

Q. (XOy) = a Q,(X)®Q,(Y), (3.5)

{r,q>0:p+q=r}

where the isomorphism is given by u @ v — u X v for u € , (X) and v € Q, (V).

Equivalent formulation. For any n > 0, choose a basis B,,(X) in ,,(X) and a basis B, (Y)
in 2,(Y).Then Q,(XOY) has the following basis:

{uxv:iueB,(X), veB,(Y), p+q=r p,q>0}.

o8



3.5 O-invariant paths on n-cube

Consider the digraph I = {0 — 1}, and define n-cube for any n € N as follows:

n-cube = V" = [J100...01 .
——

n

Our purpose here is to compute the curvature of n-cube.
For that, we determine first the structure of the spaces
2, (n-cube).

Each vertex a € n-cube can be identified with a binary sequence (ay, ..., a,) . For example,
0, =(0,...,0) and 1,, = (1,...,1) are the corners of the n-cube.

For two vertices a, b € n-cube, there is an arrow a — b if by, = ay + 1 for exactly one value
of k and b, = a; for all other values of k. Denote

la| = a1 + ... + a,.
We write a < b (a precedes b) if there is an allowed path in n-cube from a to b, that is,

a=b <& a,<byforallk=1,...,n.
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Fix a pair of vertices a =< b and define an induced subgraph D, of the n-cube as follows:

the vertices of D, are all the vertices ¢ € n-cube
such that

a=<c=b
(and an arrow exists between two vertices of D,
if and only if that arrow exists in n- cube).

Here are a 4-cube, its subgraph D, (in red color)

and a vertex ¢ € Dgy.

Fix two vertices a,b € n-cube such that a < b and set p = |b| — |a|. Then (aq,...,a,)
and (by, ..., b,) differ exactly at p positions, say i, ...,4,; that is, a;, = ... = a;, = 0 and
by, = ... =b;, = 1. The mapping

D, — p-cube
(C1yeees Cp) — (cil, e cz-p)
is clearly a digraph isomorphism that sends a and b to the corners 0, and 1, of p-cube.
Denote by F,; the set of all elementary allowed paths in n-cube going from a to b. Each

path in P,; lies in D, ;, has the length p, and the total number of the paths in P, is pl.
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Lemma 3.4 There is a function o : P,y — {0,1} such that the following p-path on ™"
is O-invariant:

_ o(z)
wap= X (~1)"@e,. (3.6)
CCEPa’b
: 6 7
For example, in a 3-cube as shown here, we have g
A 4
Wo,1 = €01, 5 —’

Wo,3 = €013 — €023,

Wo,7 = €0137 — €0237 — €0157 T €457 1+ €0267 — €0467
(cf. p. 8). —

Proof. As D, = p-cube, we can assume without loss of generality, that D, , = I™", that
is, a = 0,,b =1,,p = n. Proof by induction in n. Induction basis for n = 1 is clear.

For the induction step from n to n+1, we use the fact that the cross product of d-invariant
paths is O-invariant. Set for simplicity of notation 0 =0,, 1 =1,,0 =0,,1,1 = 1,.

By the induction hypothesis, there is a O-invariant n-path on I=" of the form
wo,1 = Z (—1)0(30) €.

r€Py 1

Since eg; is O-invariant 1-path in I, taking the cross product of wg1 and ey, we obtain
the following O-invariant (n + 1)-path on J5M+1):
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1!

Y

Wo,1 X €pg1 = Z (_1)0(1’) €x X €y

1 >
xEPo,l ) In+] )
_ o(@) (_1\E() !
— Z Z (_1) (_1) €z b% ¥
r€Pg,1 z€Il; y e
1,
where y = 01 and where we have used (3.3). 070 ”

A path x€Pp 1 and z€ll; 4

Here z is any stair-like path on 7™tV that projects onto = and vy, respectively, while
is any allowed path on I™ from 0 to 1. Clearly, z runs over all allowed paths in /91
from 0’ to 1’, that is, z € Py 1. Defining the function o on the paths z € Fy 1/ by

o(z) =o(z)+ L(z) mod 2,
we obtain that the following (n + 1)-path on I7™*V is d-invariant:

— o(z) , _
Wo'1’ ‘= Z (—1) €, = Wo,1 X €o1,
ZGPO/J/

which concludes the proof. =
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Proposition 3.5 For any p > 0, we have
), (n-cube) = (wap : a X b and |b| —|a| =p).
Moreover, {wap} is a basis of §, (n-cube) .
Proof. The proof is again by induction in n. The induction basis for n = 1 is obvious.

For the induction step from n to n+1 we use the Kiinneth formula (3.5). By this formula,
the basis in (2, (I D(”+1)) consists of the p-paths of the form

u X v,

where u runs over a basis in Q,/(I=") and v runs over a basis in Q,(I) with p’ + p” = p.

Since
QO ([) = <60,€1> : Ql(I) = <€01> and Qp//(]) = {0} for p” > 1,

we obtain the following basis in , (/7+1):
{wa,b X € Wap € Qp([D"),i =0, 1} U {wa’b X €01 Wap € Qp_l(]D")} .

The products w, X €; give us the p-paths w(,0),5,0) and w,1),»,1), while the products
Wap X €01 give the p-paths w(q ) ,1). Clearly, we obtain in this way all p-paths w,/ y on
(n + 1)-cube with o’ XV, |V/| — |a’| = p, which finishes the proof. m
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3.6 Curvature of n-cube

Theorem 3.6 For any vertex x € n-cube, the curvature K, is given by the identity
K= — (3.7)
T+ () '
For example, in a 4- cube that is shown here,
for a marked vertex x = (0,1,0,1), we have

|z| = 2 and

Observe the following interesting consequence of (3.7): for
any integer [ > 0, the number of vertices x with || = [ is equal to (7), which implies that

1
Z K, =

=i n+1

Since |x| takes the values 0, ...,n, we obtain Ky = 1 = x.
We start the proof with some properties of the binomial coefficients.
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Lemma 3.7 We have, for all integers a > m > 0,

(- ()



Lemma 3.8 We have, for all integers a > 0 and b > 1,

i (CzL) (fﬁif - b(algb)‘

=0

For example, for b = 1, we obtain by (3.9)

;G)%— (g) ‘%(cf) +§(§) = o (ST —

Proof. We start with the binomial identity

a

> (7)ot =a-ap

=0

for all z € R. Multiplying it by (—z)b_1

> (§) =)

=0

, we obtain
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Z
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Integrating this identity from 0 to 1 yields

SO

= (-1 /01 (1—2)"2"dz

(1) B(a+1,b)

 waT@+ )T
=(=1) ['(a+b+1)
:(_1 b—1

alb!
b(a—+0b)!
B (_1)6—1

b(a+b) '

b

(3.11)

On the other hand, the left hand side of the above identity is equal to

SO g e

=0

Comparing (3.11) and (3.12), we obtain (3.9). m

67



Lemma 3.9 We have, for all integers m,l > 0,

& (m (—1)F B 1
SmJ'_k:O(k)(kH)(k—l—l—F )_m—l—l—l—l' (3.13)

For example, for [ = 0 we obtain

> :
P ( ) E+1 m+1
which coincides with (3.10). For [ = 1 we have

"\ (m -n* 1
Z(k)(k+1)(k+2) Com+2

k=0

Proof. We have

& mm—1)...(m—k—+1) (-1)*

Sm,z—l!; o (k+1)...(k:+l)(k+l+1)
B m m+l+1) (m+1)mm—-1)...(m—-k+1)
_(m—i—l+ ,; (oa-t=m )k
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(e R N gy |
:(m+l+1)'z(_1) (k+l+1>
bml O (ml+1
:(m—|—l—|—1)'z(_1) ( m—k:)

_ I'm! i (1) <m + l -

(m—+1+1)!

By (3.8) with a = m + [ + 1 we obtain

Jj=0 j=0

It follows that

['m!

i(—w‘(mHH) zm: () _1)m<a;1>:(_1)m<m£l.

g [!m! m+1\
T m i+ 1)\ m )

which was to be proved. =

m+1+1)!
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Lemma 3.10 We have, for all integers m,m’ > 0,

) L e N e

k=0 1=0

Proof. Using (3.13) and applying (3.9) with a = m’ and b = m + 1, we obtain

(g (e

_ m\ (-1)" & fa\ (=)' 1 1
! (l)m”“_g(l)lw_b(azb>_<m+1><m;ﬁ’#)
(m + 1)I(m)! B m! (m’)! B 1

which finishes the proof. m
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Proof of Theorem 3.6. Fix a vertex « € n-cube, some p > 0 and compute [z, ),]. Let
a and b be two vertices of the n-cube such

a<x=b and |b—|a|=p.

Set
k=|z|—|al, 1=1b|—|z|

so that £ + 1 = p. We claim that, for the O-invariant p-path w,; between a and b (cf.

(3.6)),

=l and [z, wqp] = K.

Hwa,b|

Indeed, w,y is an alternating sum of p! elementary allowed paths going from a to b, and
the number of the elementary allowed paths from a to b that go through x is equal to k!i!,

because the number of such paths
from a to x is equal to k! and the
number of such paths from x to b
is equal to [!.

Consequently, we obtain
[T,wap] KNI 1

lwaol® 2t ()
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Set m = |x| and observe that the number of vertices a with
a=z and |z|—|a| =k

is equal to (TIZ) Indeed, in the binary representations a = (a1, ...a,, ) and x = (x1, ...z, ),
we have a; < x; and ), (#; —a;) = k which is only possible if a; = 0 at k out of m
positions where x; = 1.

Similarly, the number of the vertices b with
r=<b and |[b] —|z|=1

n—m

is equal to ( ’ ) Hence, the number of pairs a, b such that

Qj@?jb, ‘I”—|CL’:]{J, ’bl_’x‘:la

m\ [n—m

k [ '
By Proposition 3.5, all p-paths w,, with a < b form an orthogonal basis in 2, (n- cube).
If x does not satisfy the condition a < x =< b then we have

is equal to

[z, wap] = 0.
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Hence, we obtain

[x7 QP] - Z [l’, wa,b2] — Z [l’, wa,b2]

|b|—la|=p ”wa’bH a=x=b ”wa,bH
L Ial—p
- ¥ =y (0 )m
k+I\ -
k+l=p a=z=b HwabH ktimp k [ (k)
|| =|al=k
|b]—|x|=t

By Lemma 3.10 with m' = n — m, we obtain that

p>0 P
) kzmg nl: (7;) (n _l m) (k+l)( (klf;; 1)

which was to be proved. =
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Problem 3.11 The above proof of Theorem 3.6 is done by a “brute force” computation.
Give a conceptual proof without long computations.

Problem 3.12 How to compute K, (XOY) for general digraphs X,Y (or at least for
some classes of digraphs X,Y )?

It is known that if Y is a cyclic digraph {0 — 1 — 2 — ... — 0} of at least 3 vertices then
K, (XOY) = 0.

Problem 3.13 How the notion of combinatorial curvature compares to other notions of
curvature of graphs?
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3.7 Appendix: proof of the product rule

We prove here Lemma 3.2: if u € R, (X) and v € R, (Y) where p,q > 0, then
J(uxv)=0uxv+(—1)"ux dv. (3.14)

It suffices to prove (3.14) for the case u = e, and v = e, where x = xy...x, and y = yo...y,
are regular elementary p-path on X and g-path on Y, respectively. Set r = p + ¢ so that
er X e, € R, (2).

If p = ¢ =0 then all the terms in (3.14) vanish. Assume p =0 and ¢ > 1 (the case p > 1
and ¢ = 0 is similar). Then II,, contains the only element z = 2...z, where z; = (2o, ¥;).
Since L (z) = 0, we obtain by (3.3) that

B X By = @y s,

By (1.1) obtain
8(633 X ey) = 862«0“.2«(1 — € X aeyo...yq7

which is equivalent to (3.14), because du = 0.
Consider now the main case p,q > 1. We have by (3.3) and (1.1)

0 (e X €y) = Z (—=1)X%) ge, = Z Z 1)LE*E ¢ €21y (3.15)

z€llz y z€lly 4 k=0

75



where we use a shortcut
Z(k) = 0Bk Br = 20+ Zk—12k41-+2r
Switching the order of the sums, rewrite (3.15) in the form
(= —i—k:
(ex X €y) Z Z ) €y (3.16)
k=0 z€Il,

Given an index k = 0,...,r and a path z € II, ,, consider the following four logically
possible cases how horizontal and vertical couples combine around zj:

Zk+1
°
T
(H): ol — o — & (V): s
1
Zh_1
°
(R) Yo' (L): o — 7'
T 7
Rk—1 2k Rk—1
e — o °
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Here (H) stands for a horizontal position, (V') for vertical, (R) for right and (L) for left.
If k=0 or k=r then 2,1 or 2z, should be ignored, so that one has only two distinct
positions (H) and (V).

If 2 € II,, and 2;, stands in (R) or (L) then consider a path 2’ € II,, such that 2 = z;
for all ¢ # k, whereas z;, stands in the opposite position (L) or (R), respectively, as on
the diagrams:

% e ¢ —
1 1 7 7
Zk—1 2k Zk—1 2
[ ] _— o o —_— o

Clearly, we have L (z') = L (2) & 1 which implies that the terms e,,, and ez, in (3.16)
cancel out.

Denote by II% | the set of paths z € II,, such that z, stands in position (V') and by II_ ¥
the set of paths z € II, , such that z; stands in position (H). By the above observation,
we can restrict the summation in (3.16) to those pairs k, z where zj is either in vertical
or horizontal position, that is,

deaxe) =Y 3 (<)% | (3.17)

k=0 zel‘[k’ UIT, ij
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Let us now compute the first term in the right hand side of (3.14):

P
L(w)+l
(Oey) X e, = E (— ex X €y = g g Cw- (3.18)
1=0 1=0 wEHm(l),y
Fix some [ =0,...,p and w € I, ,.
. — : * *—
Since the projection of w on X is e
L
SL‘(l) = Z9-.. Lj—1TL)41---Tp, ®
y < Zk=(x/.}’m)
m —— ’ '
there exists a unique index k such =) | =(1.3m)
[ 2
that wy_q1 projects onto x;_; and
@ L 2 L 4
wy projects onto x4 1.
L1
Then wy_; and w; have a common Yoo *—s —e
) Xi1 Xp Xp4 Xp

projection onto Y, say Y. Stair-like paths w and z.

The shaded area represents the difference
L(z) — L(w).
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Define a path z € II, ¢ by setting

w; fori <k —1,
zi =1 (x,ym) fori=k, (3.19)
Wi_1 fore>k+1.

By construction we have z) = w. It also follows from the construction that
L(z) =L (w)+m.
Since k = [ + m, we obtain that
L(z)+k=L(w)+1+2m.
We see that each pair [, w where [ =0, ...,p and w € I,y gives rise to a pair k, z where

k=0,...,r,z¢clIl_F and

ZL'y’

(_1)L(z)+k‘e _ (_1)L(w)—|—l €.

(k)

By reversing this argument, we obtain that each such pair k, z gives back [, w so that this
correspondence between k, z and [, w is bijective. Hence, we conclude that

(Deg) X €, = Z > (-t Z Z 1) e, . (3.20)

=0 wEHI(l) Y k=0 zell,, .
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The second term in the right hand side of (3.14) is computed similarly:

q

(1) ex x Dy = (1) e, x ey, Z > 1)Lermte g

m=0 m=0 well,, Y(m)

Each pair m, w here gives rise to a pair k, z where k =0, ...,r and z € H];’y in the following
way: choose k such that wy_; projects onto y,,_1 and w; projects onto 9,,+1. Then wy_
and wy have a common projection onto X, say x;. Define the path z € Hg,y as in (3.19).

Then we have w = 2y and L(z) = L(w) +p — L. Y
Since k = [ 4+ m, we obtain L(z) + k = L(w) +p+m

We=(X1 Y1)
and YVm+1

ylH

L(w)+m+p 2i=(X1Ym)
(—1)P e, x Je, = Z Z Cu .

Weat =(X1 Y1)
m=0 wecll,, Y(m)

L(z)+k Yo
- Z(k) o X0 X Xp

k=0 zeﬂk, Paths w and z.
The shaded area represents
Combining this with (3.17) and (3.20), we obtain (3.14). L(z) — L(w).
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