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1 Spaces of ∂-invariant paths

1.1 Paths and the boundary operator

Let us fix a finite set V and a field K. For any p ≥ 0, an elementary p-path is any sequence
i0, ..., ip of p + 1 vertices of V ; it will be denoted by ei0...ip .
A p-path is any formal linear combinations of of elementary p-paths with coefficients in
K; that is, any p-path u has a form

u =
∑

i0,i1,...,ip∈V

ui0i1...ip ei0i1...ip ,

where ui0i1...ip ∈ K. The set of all p-paths is a K-linear space denoted by Λp = Λp (V,K).

For example, Λ0 = 〈ei : i ∈ V 〉, Λ1 = 〈eij : i, j ∈ V 〉, Λ2 = 〈eijk : i, j, k ∈ V 〉.

Definition. Define for any p ≥ 1 a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
, (1.1)

where ̂ means omission of the index. For p = 0 set ∂ei = 0 (and, hence, Λ−1 = {0}).
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For example,
∂eij = ej − ei and ∂eijk = ejk − eik + eij .

It is easy to show that ∂2 = 0. Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ0
∂
← Λ1

∂
← . . .

∂
← Λp−1

∂
← Λp

∂
← . . .

An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all k = 0, ..., p−1, and irregular
otherwise. A p-path is called regular (resp. irregular) if it is a linear combination of regular
(resp. irregular) elementary paths.

It is easy to show that if u is irregular then ∂u is also irregular. Denote by Rp the space
of all regular p-paths. Then ∂ is well defined on the spaces Rp if we identify all irregular
paths with 0. For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij ∈ R1,

because eii = 0. Hence, we obtain a chain complex

0 ← R0
∂
← R1

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . .
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1.2 Chain complex on digraphs

A digraph (directed graph) is a pair G = (V,E) of a set V of vertices and E ⊂ {V×V \diag}
is a set of arrows (directed edges). If (i, j) ∈ E then we write i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path ei0...ip on V is called
allowed if ik → ik+1 for any k = 0, ..., p−1, and non-allowed otherwise. A p-path is called
allowed if it is a linear combination of allowed elementary p-paths.

Let Ap = Ap (G,K) be the space of all allowed p-paths. Since any allowed path is regular,
we have Ap ⊂ Rp.

We would like to build a chain complex based on spaces Ap. However, in general ∂ does

not act on the spaces Ap. For example, in the digraph
a
• →

b
• →

c
• we have eabc ∈ A2

but ∂eabc = ebc − eac + eab /∈ A1 because eac is not allowed.

Consider the following subspace of Ap:

Ωp ≡ Ωp (G,K) := {u ∈ Ap : ∂u ∈ Ap−1} .

We claim that ∂Ωp ⊂ Ωp−1. Indeed, u ∈ Ωp implies ∂u ∈ Ap−1 and ∂ (∂u) = 0 ∈ Ap−2,
whence ∂u ∈ Ωp−1.
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Definition. The elements of Ωp are called ∂-invariant p-paths.

Hence, we obtain a chain complex Ω∗ = Ω∗ (G,K):

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (1.2)

that reflects the digraph structure of G. Homology groups of the chain complex (1.2) are
called path homologies of G and are denoted by Hp(G).
By construction we have

Ω0 = A0 = 〈ei : i ∈ V 〉 and Ω1 = A1 = {eij : i→ j}

while in general Ωp ⊂ Ap.

1.3 Examples of ∂-invariant paths

A triangle is a sequence of three distinct vertices a, b, c

such that a→ b→ c, a→ c.

It determines a 2-path eabc ∈ Ω2 because eabc ∈ A2

and ∂eabc = ebc − eac + eab ∈ A1.

The path eabc is also referred to as a triangle.

6



A square is a sequence of four distinct vertices a, b, b′, c such

that a→ b→ c, a→ b′ → c while a 6→ c.

It determines a 2-path u = eabc − eab′c ∈ Ω2 because u ∈ A2

and ∂u = (ebc − eac + eab)− (eb′c − eac + eab′)
= eab + ebc − eab′ − eb′c ∈ A1.

The path u is also referred to as a square.

An m-square is a sequence of m + 3

distinct vertices

a, b0, b1, ..., bm, c

such that a→ bk → c ∀k = 0, . . . ,m,

while a 6→ c.

Clearly, a square is an 1-square. Any m-square with m ≥ 2 is also called a multisquare.

The m-square determines ∂-invariant 2-paths (squares) as follows:

uij = eabic − eabjc ∈ Ω2 for all i, j = 0, ...,m,

and among them the following m squares are linearly independent:

u0j = eab0c − eabjc, j = 1, ...,m.
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A 3-cube is a sequence of 8 vertices 0, 1, 2, 3, 4, 5, 6, 7,
connected by arrows as shown here:

A 3-cube determines a ∂-invariant 3-path

u = e0237 − e0137 + e0157 − e0457 + e0467 − e0267 ∈ Ω3,

also called a 3-cube. Indeed, we have u ∈ A3 and

∂u = (e013 − e023) + (e157 − e137) + (e237 − e267)

− (e046 − e026)− (e457 − e467)− (e015 − e045) ∈ A2.

A trapezohedron of order m ≥ 2 is a configuration

of 2m + 2 vertices: a, b, i0, . . . , im−1, j0, . . . , jm−1

with 4m arrows: a→ ik, jk → b, ik → jk, ik → jk+1,

∀k = 0, . . . ,m − 1, where k + 1 is understood mod m.

It determines the following ∂-invariant 3-path:

τm =
m−1∑

k=0

(
eaikjkb − eaikjk+1b

)
(1.3)
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that is called a trapezohedral path. Clearly, τm is allowed. Let us verify that ∂τm ∈ A2.
Indeed, we have

∂τm =
m−1∑

k=0

∂
(
eaikjkb − eaikjk+1b

)

=
m−1∑

k=0

(
eikjkb − eikjk+1b

)
−

m−1∑

k=0

(
eaikjk

− eaikjk+1

)
(1.4)

−
m−1∑

k=0

(
eajkb − eajk+1b

)
+

m−1∑

k=0

(eaikb − eaikb) ∈ A2, (1.5)

because the both sums in (1.4) are allowed, while the both sums in (1.5) vanish.

For example, a trapezohedron of order m = 2 is shown here:

In this case we have

τ 2 = eai0j0b − eai0j1b + eai1j1b − eai1j0b.
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Trapezohedra of order m ≥ 3 can be realized as convex polyhedra in R3. For example,
trapezohedron of order m = 3 coincides with a 3-cube:

In this case we have

τ 3 = eai0j0b − eai0j1b + eai1j1b − eai1j2b + eai2j2b − eai2j0b,

and τ 3 coincides (up to a sign) with the aforementioned
∂-invariant 3-path determined by a 3-cube (see p. 8).

Trapezohedron of order m = 4 can be realized in R3

as a tetragonal trapezohedron:

In this case we have

τ 4 = eai0j0b − eai0j1b + eai1j1b − eai1j2b

+eai2j2b − eai2j3b + eai3j3b − eai3j0b.
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Here are some pictures from Wikipedia of trapezohedra as convex polyhedra:

Tetragonal trapezohedron
m=4

Pentagonal trapezohedron
m=5

Heptagonal trapezohedron
m=7

Decagonal trapezohedron
m=10
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1.4 Digraph morphisms

Let X and Y be two digraphs. For simplicity of notations, we denote the vertices of X
and Y by the same letters X resp. Y .

Definition. A mapping f : X → Y between the sets of vertices of X and Y called a
digraph map (or morphism) if

a→ b on X ⇒ f (a) → f (b) or f (a) = f (b) on Y.

In other words, any arrow of X under the mapping f either goes to an arrow of Y or
collapses to a vertex of Y .

We say that a digraph Y is a subgraph of a digraph X if the sets of vertices and arrows
of Y are subset of the sets of vertices and arrows of X, respectively. In this case we have
a natural inclusion i : Y → X that is clearly a digraph morphism.

To give another example of a morphism, let us split the vertex set of a digraph X into
a disjoint union of n subsets A1, ..., An, and construct a digraph Y of n vertices a1, ..., an

that is obtained from X by merging all the vertices from Ai into a single vertex ai of Y .
More precisely, we have an arrow ai → aj in Y if and only if there are x ∈ Ai and y ∈ Aj

such that x→ y in X.
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An example of a merging map μ

We have a natural merging map μ : X → Y such that μ (x) = ai for any x ∈ Ai. Clearly,
a merging map is a digraph morphism that keeps any arrow x → y if x and y belong to
different sets Ai and collapses an arrow x→ y into a vertex if x, y belong to the same Ai.

Any mapping f : X → Y induces a mapping f∗ : Λn (X)→ Λn (Y ) as follows: first set

f∗ (ei0...in) = ef(i0)...f(in),

and then extend f∗ by linearity to all of Λn (X).

Proposition 1.1 Let f : X → Y be a digraph morphism. Then the induced mapping
f∗ : Λn (X) → Λn (Y ) extends to a chain mapping f∗ : Ωn (X) → Ωn (Y ) and, hence, to
homomorphism f∗ : Hn (X)→ Hn (Y ) .

13



1.5 Structure of Ω2

As we know, Ω0 = 〈ei〉 consists of all vertices and Ω1 = 〈eij : i→ j〉 consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x, y) of distinct vertices x, y such that
x 6→ y but x→ z → y for some vertex z. We write in this case x ⇀ y

Theorem 1.2

(a) We have dim Ω2 = dimA2 − s where s is the number of semi-arrows.

(b) Space Ω2 is spanned by all triangles eabc, squares eabc− eab′c and double arrows eaba:

a•� •b

Observe that all the triangles and double edges are linearly independent whereas the
squares can be dependent as the example of multisquare shows.
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Proof. (a) Recall that
A2 = span {eabc : a→ b→ c}

and
Ω2 = {v ∈ A2 : ∂v ∈ A1} = {v ∈ A2 : ∂v = 0 modA1} .

Since a→ b and b→ c, we have

∂eabc = ebc − eac + eab = −eac modA1.

If a = c or a → c then eac = 0 modA1. Otherwise we have a semi-arrow a ⇀ c, and in
this case

eac 6= 0 modA1.

For any v ∈ A2, we have
v =

∑

{a→b→c}
vabceabc

whence it follows that
∂v = −

∑

{a→b→c,a⇀c}
vabceac modA1.

The condition ∂v = 0 modA1 is equivalent to

∑

{a→b→c, a⇀c}
vabceac = 0 modA1. (1.6)
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Fixing a semi-arrow a ⇀ c and summing up in all possible b, we obtain that (1.6) is
equivalent to ∑

{b:a→b→c}
vabc = 0 for any semi-arrow a ⇀ c. (1.7)

The number of the equations in (1.7) is exactly s, and they all are linearly independent for
different semi-arrows. Hence, Ω2 is obtained from A2 by imposing s linearly independent
conditions on vabc, which implies dim Ω2 = dimA2 − s.

(b) Let us prove that any ∂-invariant 2-path ω is a linear combination of triangles, squares
and double arrows. Since ω is allowed, it is a linear combination of some elementary 2-
paths eabc with a→ b→ c, with non-zero coefficients. If a = c then eabc is a double arrow.
If a → c then eabc is a triangle. Subtracting from ω all double arrows and triangles, we
can assume that ω has no such terms any more.

Then, for any term eabc in ω, we have a 6= c and a 6→ c, that is, a ⇀ c. Fix such a, c and
consider all vertices b with a→ b→ c so that we get a multisquare:
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Denote by γb the coefficient with which eabc enters ω, and set

ωac =
∑

b

γbeabc. (1.8)

Clearly, we have ω =
∑

a⇀c

ωac. Hence, it suffices to verify that each ωac is a linear combi-

nation of squares. We have

∂ωac =
∑

b

γbeab − γbeac + γbebc = −
∑

b

γbeac modA1.

Since ∂ω is allowed but eac is not allowed, the terms γbeac should cancel out that is,

∑

b

γb = 0. (1.9)

Let us fix one of the vertices b0 such that a→ b0 → c. It follows from (1.8) and (1.9) that

ωac =
∑

b

γbeabc =
∑

b

γb (eabc − eab0c) =
∑

b 6=b0

γb (eabc − eab0c) .

Hence, ωac is a linear combination of the squares eabc − eab0c, which was to be proved.
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Observe that a triangle eabc and a double arrow eaba are images of a square e013 − e023

under some merging maps (cf. Section 1.4) as shown on these pictures:

a merging map from a square onto a triangle

e013 − e023 7→ eabc − eacc = eabc

a merging map from a square onto a double arrow

e013 − e023 7→ eaba − eaaa = eaba

Hence, we can rephrase Theorem 1.2 as follows: Ω2 is spanned by squares and their
morphism images. Or: squares are basic shapes of Ω2.
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2 Trapezohedra and structure of Ω3

2.1 Spaces Ωp for trapezohedron

For any integer m ≥ 2, define a trapezohedron Tm of order m as the following digraph:

Tm consists of 2m + 2 vertices

a, b, i0, ..., im−1, j0, j1, ..., jm−1

and 4m arrows

a→ ik, jk → b, ik → jk, ik → jk+1

for all k = 0, . . . ,m − 1 mod m.

A fragment of Tm is shown here:

It is clear that all allowed paths

in Tm have the length ≤ 3, and,

hence, Ωp (Tm) = {0} ∀p > 3.
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Proposition 2.1 For the trapezohedron Tm we have

dim Ω2 = 2m, dim Ω3 = 1,

and Hp = {0} for all p ≥ 1.

Proof. It is easy to detect all the squares in Tm:

eaik−1jk
− eaikjk

and eikjkb − eikjk+1b, (2.1)

where k = 0, ...,m−1. Hence, Tm contains 2m squares, and they are linearly independent.
Since there are neither triangles no double arrows in Tm, we conclude by Theorem 1.2
that dim Ω2 = 2m.

All allowed 3-paths in Tm are as follows:

eaikjkb and eaikjk+1b,

for all k = 0, ...,m − 1.
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Let us find all linear combinations of these paths that are ∂-invariant. Consider such a
linear combination

ω =
m−1∑

k=0

(
αkeaikjkb + βkeaikjk+1b

)

with coefficients αk, βk. We have

∂ω =
m−1∑

k=0

∂
(
αkeaikjkb + βkeaikjk+1b

)

=
m−1∑

k=0

(
αkeikjkb + βkeikjk+1b

)
−

m−1∑

k=0

(
αkeaikjk

+ βkeaikjk+1

)
(2.2)

−
m−1∑

k=0

(
αkeajkb + βkeajk+1b

)
+

m−1∑

k=0

(αkeaikb + βkeaikb) . (2.3)

The both sums in (2.2) consist of allowed paths. In the rightmost sum in (2.3), the path
eaikb is not allowed and, hence, must cancel out, which yields

αk = −βk.

The leftmost sum in (2.3) is then equal to

m−1∑

k=0

(
αkeajkb − αkeajk+1b

)
=

m−1∑

k=0

(αk − αk−1) eajkb,
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and it must vanish as eajkb is not allowed, whence

αk = αk−1.

Setting αk ≡ α and, hence, βk ≡ −α, we obtain that

ω = α
m−1∑

k=0

(
eaikjkb − eaikjk+1b

)
= ατm ,

where τm is a trapezohedral path that was defined by (1.3). It follows that Ω3 = 〈τm〉
and, hence, dim Ω3 = 1.

It follows from (2.2)-(2.3) that

∂τm =
m−1∑

k=0

(
eikjkb − eikjk+1b

)
−

m−1∑

k=0

(
eaikjk

− eaikjk+1

)
6= 0.

Hence, ker ∂|Ω3 = 0 whence H3 = {0} . Let us show that H2 = {0} . Since dim Im ∂|Ω3 = 1,
it suffices to show that

dim ker ∂|Ω2 = 1. (2.4)

Consider the following general element of Ω2:

u =
m−1∑

k=0

αk

(
eaik−1jk

− eaikjk

)
+ βk

(
eikjkb − eikjk+1b

)
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with arbitrary coefficients αk, βk. We have

∂u =
m−1∑

k=0

αk

(
eaik−1

+ eik−1jk
− eaik − eikjk

)
+ βk

(
ejkb + eikjk

− ejk+1b − eikjk+1

)

=
m−1∑

k=0

(αk+1 − αk) eaik +
m−1∑

k=0

(
βk − βk−1

)
ejkb

+
m−1∑

k=0

(βk − αk) eikjk
+

m−1∑

k=0

(αk+1 − βk) eikjk+1
.

The condition ∂u = 0 is equivalent to

αk+1 = αk = βk = βk−1 for all k = 0, ....,m − 1

which implies (2.4).

Finally, we determine dim H1 by means of the Euler characteristic

χ = dim Ω0 − dim Ω1 + dim Ω2 − dim Ω3 = (2m + 2)− 4m + 2m− 1 = 1.

Hence, we obtain
dim H0 − dim H1 + dim H2 − dim H3 = 1,

which yields dim H1 = 0.
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2.2 A cluster basis in Ωp

We start with the following definition.

Definition. A p-path v =
∑

vi0...ipei0...ip is called an (a, b)-cluster if all the elementary
paths ei0...ip with non-zero values of vi0...ip have i0 = a and ip = b. A path v is called a
cluster if it is an (a, b)-cluster for some a, b.

Lemma 2.2 Any ∂-invariant p-path is a sum of ∂-invariant clusters.

Proof. Let v ∈ Ωp. For any points a, b ∈ V , denote by va,b the sum of all terms vi0...ipei0...ip

with i0 = a and ip = b.

Then va,b is a cluster and v =
∑

a,b∈V

va,b, that is,

v is a sum of clusters. Let us prove that each
non-zero cluster va,b is ∂-invariant.

Since v is allowed, also all non-zero terms vi0...ipei0...ip are allowed, whence va,b is also
allowed. Let us prove that ∂va.b is allowed, which will yield the ∂-invariance of va.b. The
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path va,b is a linear combination of allowed paths of the form eai1...ip−1b. We have

∂eai1...ip−1b = ei1...ip−1b + (−1)p eai1...ip−1 +
p−1∑

k=1

(−1)k eai1..îk...ip−1b.

The terms ei1...ip−1b and eai1...ip−1 are clearly allowed, while among the terms eai1..îk...ip−1b

there may be non-allowed. In the full expansion of

∂v =
∑

a,b∈V

∂va,b

all non-allowed terms must cancel out. Since all the terms eai1..îk...ip−1b form a (a, b)-cluster,
they cannot cancel with terms containing different values of a or b. Therefore, they have
to cancel already within ∂va,b, which implies that ∂va,b is allowed.

Definition. For any p-path v =
∑

vi0...ipei0...ip define its width ‖v‖ as the number of
non-zero coefficients vi0...ip .

Definition. A ∂-invariant path ω is called minimal if ω cannot be represented as a sum
of other ∂-invariant paths with smaller widths.

Example. A square ω = eabc − eab′c has width 2 and is minimal because eabc and eab′c

having width 1 are not ∂-invariant.
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Let a, {b0, b1, b2} , c be a 2-square. The following path

ω = eab1c + eab2c − 2eab0c

is then ∂-invariant, has width 3 but is not minimal because it can be represented as a
sum of two squares:

ω = (eab1c − eab0c) + (eab2c − eab0c),

where each square has width 2.

Lemma 2.3 Every ∂-invariant cluster is a sum of minimal ∂-invariant clusters.

Proof. Let ω be a ∂-invariant cluster that is not minimal. Then we have

ω =
n∑

k=1

ω(k), (2.5)

where each ω(k) is a ∂-invariant path with
∥
∥ω(k)

∥
∥ < ‖ω‖ . By Lemma 2.2, each ω(k) is a

sum of clusters ω
(k)
a,b , and it is clear from the definition of ω

(k)
a,b that

‖ω(k)
a,b‖ ≤ ‖ω

(k)‖.

26



Hence, we can replace in (2.5) each ω(k) by
∑

a,b ω
(k)
a,b and, hence, assume without loss of

generality that all terms ω(k) in (2.5) are ∂-invariant clusters.

If some ω(k) in this sum is not minimal then we replace it further with sum of ∂-invariant
clusters with smaller widths. Continuing this procedure we obtain in the end a represen-
tation ω as a sum of minimal ∂-invariant clusters.

Proposition 2.4 The space Ωp has a basis that consists of minimal ∂-invariant clusters.

Proof. Indeed, letM denote the set of all minimal ∂-invariant clusters in Ωp. By Lemmas
2.2, 2.3, every element of Ωp is a sum of some elements of M. Choosing inM a maximal
linearly independent subset, we obtain a basis in Ωp.

2.3 Structure of Ω3

We use here the trapezohedra Tm and associated trapezohedral paths τm that are ∂-
invariant 3-paths for all m ≥ 2 (see (1.3) and Section 2.1). We prove here that, under an
additional mild hypothesis, Ω3 (G) has a basis that consists of trapezohedral paths and
their morphism images.
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We start with some examples of morphism images of τm.

Example. Here is a merging map from T2 onto a 3-snake:

The trapezohedral path τ 2 is given by

τ 2 = e0123 − e0153 + e0453 − e0423,

and its merging image is the 3-path

v = e0123 − e0133 + e0233 − e0223 = e0123,

that is, the ∂-invariant 3-path e0123 associated with a 3-snake.
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Example. Here is a merging morphism of T3 (=a 3-cube) onto a pyramid:

The cubical 3-path is given by

τ 3 = e0237 − e0137 + e0157 − e0457 + e0467 − e0267

and its merging image of τ 3 is the following ∂-invariant 3-path in a pyramid:

v = e0234 − e0134 + e0144 − e0444 + e0444 − e0244

= e0234 − e0134.
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Example. Consider another merging morphism of T3 onto a prism:

The merging image of the cubical 3-path

τ 3 = e0237 − e0137 + e0157 − e0457 + e0467 − e0267

is the following ∂-invariant 3-path of the prism:

u = e0233 − e0133 + e0153 − e0453 + e0423 − e0223

= e0153 − e0453 + e0423.
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Example. Here is a merging morphism μ : T4 → G where the digraph G is a broken cube:

The path τ 4 in the present notation is given by

τ 4 = e0159 − e0169 + e0269 − e0279 + e0379 − e0389 + e0489 − e0459,

and the merging image of τ 4 is the following ∂-invariant 3-path on the broken cube:

w = e0158 − e0168 + e0268 − e0278 + e0378 − e0388 + e0488 − e0458

= e0158 − e0168 + e0268 − e0278 + e0378 − e0458.
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The next theorem describes the structure of Ω3 (G) for a digraph G under the following
hypothesis:

G contains neither multisquares (see p.7) nor double arrows. (N)

Under the hypothesis (N), Ω2 (G) has a basis that consists of triangles and squares. The
condition (N) implies that if a→ b→ c and a 6→ c then there is at most one b′ 6= b such
that a→ b′ → c.

Theorem 2.5 Under the hypothesis (N), there is a basis in Ω3 (G) that consists of trape-
zohedral paths τm with m ≥ 2 and their merging images.

In other words, trapezohedra are basic shapes for Ω3.

Proof. By Proposition 2.4, Ω3 has a basis that consists of minimal ∂-invariant clusters.

Let a 3-path ω be a minimal ∂-invariant (a, b)-cluster.

It suffices to prove that ω is a merging image of one of

the trapezohedral paths τm up to a constant factor.

Denote by Q the set of all elementary terms eaijb of ω.
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Clearly, the number |Q| of elements in Q is equal to ‖ω‖. We claim that, for any eaijb ∈ Q,

either a→ j or a↗ j

where the notation a↗ j means that a and j form a diagonal of a square.

Indeed, if a 6→ j then the term eajb appearing in

∂eaijb is non-allowed and must be cancelled out in

∂ω by the boundary of another elementary 3-path

from Q that can only be of the form eai′jb with

a→ i′ → j.

Hence, a and j form diagonal of a square a, i, i′, j.

By hypothesis (N), the vertex i′ with these properties is unique. Hence, in this case we
have

ω = ceaijb − ceai′jb + ... (2.6)

for some scalar c 6= 0. In the same way, we have

either i→ b or i↗ b,

and, for some eaij′b ∈ Q and c 6= 0,

ω = ceaijb − ceaij′b + ... . (2.7)
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If, for some path eaijb ∈ Q, we have both conditions

a→ j and i→ b,

then eaijb is ∂-invariant and, by the minimality of ω,

ω = const eaijb.

Since eaijb is in this case a 3-snake, the path ω is a

merging image of τ 2 (see Example on p. 28).

Next, we can assume that, for any path eaijb ∈ Q, we have a 6→ j or i 6→ b, that is,

a↗ j or i↗ b. (2.8)

Define a graph structure on Q with edges of two types (i) and (ii) as follows: for two

distinct elements eaijb and eai′j′b of Q set

eaijb
(i)
∼ eai′j′b if a↗ j = j ′

and

eaijb
(ii)
∼ eai′j′b if i′ = i↗ b.

Both relations
(i)
∼ and

(ii)
∼ are symmetric

and, hence, can be considered as edges. eaijb
(i)
∼ eai′j′b eaijb

(ii)
∼ eai′j′b
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Before continuing the proof, consider some examples of graphs Q.

Example A. Let ω be the trapezohedral path of T2, that is,

ω = τ 2 = e0123 − e0153 + e0453 − e0423.

This path is an (a, b)-cluster with a = 0 and b = 3. In this case the graph Q consists of 4
vertices as follows:
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Example B. Let ω be the ∂-invariant 3-path of the broken cube (see Example on p.
31), that is,

ω = e0158 − e0168 + e0268 − e0278 + e0378 − e0458.

This path is a (a, b)-cluster with a = 0 and b = 8. The graph Q consists of 6 vertices as
follows:
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By the hypothesis (N), for any eaijb ∈ Q,

there is at most one edge of type (i) and

at most one edge of type (ii).

In particular, the degree of any vertex of

the graph (Q,∼) is at most 2.

Fix a path eaijb ∈ Q. By (2.8) we have

a↗ j or i↗ b. eaijb
(i)
∼ eai′jb eaijb

(ii)
∼ eaij′b

By the above argument, if a↗ j then there exists eai′jb ∈ Q such that eaijb
(i)
∼ eai′jb and

ω = ceaijb − ceai′jb + ... (2.9)

(cf. (2.6)). Similarly, if i↗ b then there exists eaij′b ∈ Q such that eaijb
(ii)
∼ eaij′b and

ω = ceaijb − ceaij′b + ... (2.10)

(cf. (2.7)). In particular, the degree of any vertex of the graph Q is at least 1.

Let us prove that the graph (Q,∼) is connected. Assume from the contrary that Q is
disconnected, then Q is a disjoint union of its connected components {Qk}

n
k=1 with n > 1.
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Denote by ω(k) the sum of all elementary terms of ω lying in Qk, with the same coefficients
as in ω, so that

ω =
n∑

k=1

ω(k). (2.11)

Let us prove that each ω(k) is ∂-invariant. Clearly, ω(k) is allowed, and we need to verify

that ∂ω(k) is also allowed. Indeed, assume that

∂ω(k) contains a non-allowed term. Then this

term comes from the boundary ∂eaijb of some

term eaijb of path ω(k). The non-allowed term

of ∂eaijb is either eaib or eajb; let it be eaib, that

is, let i 6→ b. Then the term eaib cancels out in Clusters ω(k) and ω

∂ω, which can only happen when ω contains another term of the form eaij′b. However,
then eaijb and eaij′b are connected by an edge in Q:

eaijb
(ii)
∼ eaij′b.

Therefore, eaij′b and eaijb belong to the same connected component of Q, that is, to Qk.
Hence, eaij′b is also an elementary term of ω(k), and eaib cancels out also in ∂ω(k). This
proves that ∂ω(k) is allowed and, hence, ω(k) is ∂-invariant.
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As the number n of components is > 1, we have |Qk| < |Q|, whence ||ω(k)|| < ||ω||. But
then (2.11) is impossible by the minimality of ω. Hence, n = 1 and Q is connected.

Since each vertex of Q has at most two adjacent edges, there are only two possibilities:

(A): Q is a simple closed polygon;

(B): Q is a linear graph.

Consider first the case (A). In this case every vertex of

Q has two edges: exactly one edge of each type (i), (ii).

Hence, the number of edges is even, let 2m, and Q has

necessarily the following form:

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai1j1b

(ii)
∼ . . .

(i)
∼ eaim−1jm−1b

(ii)
∼ eaim−1j0b

(i)
∼ eai0j0b (2.12)

for some vertices i0, ..., im−1 and j0, ..., jm−1 of G. Note that m ≥ 2 because if m = 1 then
(2.12) becomes

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai0j0b,
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which is impossible as edges of different types between the same vertices of Q do not exist.

Since all the terms in (2.12) enter ω with the same coefficients ±c (cf. (2.9) and (2.10)),
we see that

ω = c(eai0j0b − eai0j1b + eai1j1b − eai1j2b + ... + eaim−1jm−1b − eaim−1j0b). (2.13)

Suppose that all the vertices a, i0, . . . , im−1, j0, . . . , jm−1, b are distinct. It follows from
(2.12) that these vertices form a trapezohedron Tm as on the next picture:

By (1.3), the trapezohedral path of Tm is

τm = (eai0j0b − eai0j1b) + (eai1j1b − eai1j2b)

... +
(
eaim−2jm−2b − eaim−2jm−1b

)

+
(
eaim−1jm−1b − eaim−1j0b

)
.

Comparison with (2.13) shows that ω = cτm.

If some of these vertices coincide then the

configuration (2.12) in G is a merging image of Tm, and ω is a merging image of cτm.
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Consider now the case (B). In this case the linear graph Q has two end vertices of degree
1, while all other vertices have degree 2. There are two essentially different subcases:

(B1) the end edges of Q are of different types:

(B2) the end edges of Q are of the same type (ii):

(the case of type (i) is similar).

Consider first the case (B1) when the graph Q must have the form

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai1j1b

(ii)
∼ eai1j2b

(i)
∼ . . .

(ii)
∼ eaim−1jmb

(i)
∼ eaimjmb. (2.14)

Consequently, we have

ω = c(eai0j0b − eai0j1b + eai1j1b − eai1j2b + ...− eaim−1jmb + eaimjmb). (2.15)

Computation of ∂ω gives

∂ω = c (−eaj0b + eaimb) modA2.
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Since ∂ω = 0 modA2, we must have either eaj0b = eaimb or the both eaj0b and eaimb are
allowed, that is,

a→ j0 and im → b. (2.16)

In the case eaj0b = eaimb we have j0 = im whence (2.16) follows again so that (2.16) is
satisfied in the both cases.

We claim that in the case (B1) the configuration (2.14) is a merging image of Tm+2.
Indeed, denote the vertices of Tm+2 by

a, i0, ..., im, im+1, j0, ..., jm, jm+1, b,

and map all the vertices of Tm+2, except for im+1, jm+1, to the vertices of G with the

same names; then merge: im+1 7→ j0 and jm+1 7→ b.

The following arrows in Tm+2

a→ im+1, im → jm+1, im+1 → jm+1

are mapped to the arrows in G:

a→ j0, im → b, j0 → b

(cf. (2.16)), while the arrows

im+1 → j0 and jm+1 → b go to vertices.
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It follows that this mapping of Tm+2 into G is a digraph morphism. Since by (1.3)

τm+2 = (eai0j0b−eai0j1b)+(eai1j1b−eai1j2b)+...+(eaimjmb−eaimjm+1b)+(eaim+1jm+1b−eaim+1j0b),

the image of τm+2 is the following path, where we replace im+1 by j0 and jm+1 by b:

u = (eai0j0b − eai0j1b) + (eai1j1b − eai1j2b) + ... + (eaimjmb − eaimbb) + (eaj0bb − eaj0j0b)

= eai0j0b − eai0j1b + eai1j1b − eai1j2b + ...− eaim−1jmb + eaimjmb.

Comparison with (2.15) shows that ω = cu, that is, ω is a merging image of cτm+2.

In the case m = 1, this merging morphism of T3 is shown here (cf. Example on p.30):
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Consider now the case (B2) when the graph Q has the form

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai1j1b

(ii)
∼ eai1j2b

(i)
∼ . . .

(i)
∼ eaim−1jm−1b

(ii)
∼ eaim−1jmb, (2.17)

so that

ω = c(eai0j0b − eai0j1b + eai1j1b − eai1j2b + ... + eaim−1jm−1b − eaim−1jmb). (2.18)

Since
∂ω = c (−eaj0b + eajmb) modA2,

it follows that either j0 = jm or the both paths eaj0b and eajmb are allowed, that is,

a→ j0 and a→ jm. (2.19)

However, j0 = jm is not possible because it would imply that

eai0j0b
(i)
∼ eaim−1j0b

and the line graph Q would close into a polygon, which gives the case (A). Hence, (2.19)
is satisfied. We claim that the configuration (2.17) is then a merging image of Tm+1.
Indeed, denote the vertices of Tm+1 by

a, i0, ..., im, j0, ...jm, b.
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Then we map all the vertices of Tm+1,

except for im, to the vertices of G with

the same names; then map im 7→ a.

Clearly, the following arrows in Tm+1

im → j0 and im → jm

are mapped to the arrows in G:

a→ j0 and a→ jm (cf. (2.19)),

and the arrow a→ im goes to a vertex.

Hence, we obtain a merging morphism of Tm+1 into G. Since by (1.3)

τm+1 = (eai0j0b−eai0j1b)+(eai1j1b−eai1j2b)+...+(eaim−1jm−1b−eaim−1jmb)+(eaimjmb−eaimj0b),

the image of τm+1 is the following path, where we replace im by a:

v = (eai0j0b − eai0j1b) + (eai1j1b − eai1j2b) + ... + (eaim−1jm−1b − eaim−1jmb) + (eaajmb − eaaj0b)

= eai0j0b − eai0j1b + eai1j1b − eai1j2b + ... + eaim−1jm−1b − eaim−1jmb.

Comparison with (2.18) shows that ω = cv so that ω is a merging image of cτm+1.
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2.4 Examples and problems

For example, in the case m = 2

the above morphism gives the

following merging image of T3:

(T3=3-cube)

In the case m = 3, the above

morphism gives the merging

image of T4 as broken cube:

(cf. Example on p. 31)
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Problem 2.6 Prove Theorem 2.5 in the general case without the hypothesis (N).

Perhaps, one can prove the absence of multisquares inside each minimal cluster ω using
the minimality of ω. Then the rest of the proof remains unchanged.

Problem 2.7 Devise an algorithm for computing a basis in Ω3 based on Theorem 2.5.

Denote by Q the set of all elementary allowed 3-paths. For each eaijb ∈ Q, we have

∂eaijb = −eajb + eaib modA2.

We say that eajb is a bond of type (i) if a 6→ j; and eaib is a bond of type (ii), if i 6→ b.

Define edges between elements q1, q2 ∈ Q as follows:

q1
(i)
∼ q2 if q1, q2 have a common bond of the type (i);

q1
(ii)
∼ q2 if q1, q2 have a common bond of the type (ii).

Some bonds may be attached to only one vertex of Q, so that we allow in Q edges
with only one vertex. Then the minimal ∂-invariant clusters in G are determined by the
maximal paths in graph Q that go along the edges with alternating types.
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For example, consider the following digraph:

and try to determine Ω3. For that first find

all elementary allowed 3-paths with all their

bonds as shown in the following table:

Q \ bonds 054 034 154 012 123 124
0134 (i)
0152 (ii)
0153
0234 (i)
0523
0524 (ii)
0534 (ii) (i)
1523 (i)
1524 (ii) (i)
1534 (ii)
5234
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This table determines a (hyper)graph structure in Q is as follows:

0134 0153
�(i) |(i) |(ii) |(i)

|(i) 0534
(ii)

− 0524 1524 0152 1523 0523
�(i) |(ii)

0234 1534 5234

The maximal alternating paths in this graph are

0134
(i)
∼ 0234 , 0134

(i)
∼ 0534

(ii)
∼ 0524 , 0153 , 0523 , 5234 ,

which yields five minimal ∂-invariant clusters

e0134 − e0234, e0134 − e0534 + e0524, e0153, e0523, e5234,

that form a basis in Ω3. In particular, dim Ω3 = 5.

Problem 2.8 State and prove similar results for Ω4. Are the basic shapes in Ω4 given by
polyhedra in R4? Devise an algorithm for computing a basis in Ω4. The same questions
for Ωp with p > 4.
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3 Combinatorial curvature and products

3.1 Definition

Let G = (V,E) be a finite digraph and K = R. Definition of curvature depends on the
choice of inner product in the spaces Rp of regular p-paths. Let us fix in each Rp the
natural inner product 〈, 〉 when all regular elementary paths ei0...ip form an orthonormal
basis in Rp. Then, for any path ω =

∑
ωi0...ipei0...ip ∈ Rp, we have

‖ω‖2 =
∑

i0...ip∈V

(
ωi0...ip

)2
.

For any regular elementary path ei0...ip and for any vertex x, define

[
x, ei0...ip

]
= the number of occurrences of x in i0, ..., ip.

For example, [a, eabca] = 2, [b, eabca] = 1, [d, eabca] = 0.

For a path ω =
∑

ωi0...ipei0...ip ∈ Rp and for any x ∈ V , define the incidence of x in ω by

[x, ω] =
∑

i0...ip∈V

(
ωi0...ip

)2 [
x, ei0...ip

]
.
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Recall that Ωp is a subspace ofRp that is defined by Ωp = {ω ∈ Rp : ω and ∂ω are allowed} .
Fix an orthogonal basis {ωk} in Ωp and define the incidence of any vertex x in Ωp by

[x, Ωp] =
∑

k

[x, ωk]

‖ωk‖
2 . (3.1)

It is possible to prove that the sum in (3.1) is independent of the choice of a basis {ωk}.

Definition. For any N ∈ N define the curvature of order N at a vertex x by

K(N)
x :=

N∑

p=0

(−1)p

p + 1
[x, Ωp] .

Recall that the Euler characteristic is defined by χ(N) :=
∑N

p=0 (−1)p dim Ωp.

Proposition 3.1 (Gauss-Bonnet) For any choice of the inner product in Rp and for any
N ∈ N, we have

K
(N)
total :=

∑

x∈V

K(N)
x = χ(N).

If dim Ωp = 0 for all p > N , then write K
(N)
x ≡ Kx and χ(N) ≡ χ. In this case we have

χ =
∞∑

p=0

(−1)p dim Hp.
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3.2 Examples of computation

Using the orthonormal basis {ei} in Ω0 we obtain, for any x ∈ V ,

[x, Ω0] =
∑

i

[x, ei] = 1.

Using the orthonormal basis {eij} with i→ j in Ω1, we obtain

[x, Ω1] =
∑

i→j

[x, eij ] = deg (x) .

Therefore, for any N ≥ 1,

K(N)
x = 1−

deg (x)

2
+

N∑

p=2

(−1)p

p + 1
[x, Ωp] . (3.2)

Example. Let G be a triangle {0→ 1→ 2, 0→ 2}.

Then Ω2 = 〈e012〉 and Ωp = {0} for p > 2.

Since ‖e012‖
2 = 1, we obtain, for any x ∈ {0, 1, 2} ,

[x, Ω2] = [x, e012] = 1,

whence

Kx = 1− deg(x)
2

+ 1
3
[x, Ω2] = 1− 2

2
+ 1

3
= 1

3
.
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Example. Let G be a square {0→ 1, 0→ 2, 1→ 3, 2→ 3}.

Then Ω2 = 〈e013 − e023〉 and Ωp = {0} for p > 2.

Since ‖e013 − e023‖
2 = 2, we obtain

[0, Ω2] = 1
2
[0, e013 − e023] = 1, [3, Ω2] = 1

[1, Ω2] = 1
2
[1, e013 − e023] = 1

2
, [2, Ω2] = 1

2

It follows that

K3 = K0 = 1−
deg (0)

2
+

1

3
=

1

3
, K2 = K1 = 1−

deg (1)

2
+

1

6
=

1

6
,

and Ktotal = 1. Note for comparison that

χ = dim Ω0 − dim Ω1 + dim Ω2 = 3− 3 + 1 = 1.

The main purpose of what follows is to compute the curvature of the n-cube. For that we
revise first the notions of cross product of paths and Cartesian (box) product of digraphs.
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3.3 Cross product of paths

Given two finite sets X,Y , consider their Cartesian product

Z = X × Y = {(a, b) : a ∈ X and b ∈ Y } .

Let z = z0...zr be a regular elementary r-path on Z; let zk = (ak, bk) with ak ∈ X, bk ∈ Y .

We say that z is stair-like if, for any k = 1, ..., r,

either ak−1 = ak or bk−1 = bk.

That is, any pair zk−1zk of consecutive vertices is

• either vertical (when ak−1 = ak)

• or horizontal (when bk−1 = bk).

Given a stair-like path z on Z, define its projection x

onto X as a regular elementary path x on X obtained

from a0...ar by collapsing any subsequence of repeated

vertices onto one vertex.

In the same way define the projection y of z onto Y .
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The projections x = x0...xp and y = y0...yq are regular elementary paths, and p + q = r.

Let us map every vertex (xi, yj) of the path z to a

point (i, j) of Z2, so that the path z is mapped to

a staircase S(z) in Z2 connecting (0, 0) and (p, q).

Define the elevation L(z) of z as the number of

cells in Z2
+ below the staircase S(z).

For given elementary regular paths x on X and y on Y , denote by Πx,y the set of all
stair-like paths z on Z whose projections on X and Y are x and y, respectively.

Definition. Given elementary paths ex ∈ Rp(X) and ey ∈ Rq(Y ), define their cross
product ex × ey as a path in Rp+q(Z) as follows:

ex × ey =
∑

z∈Πx,y

(−1)L(z) ez. (3.3)

Then extend the operation × by linearity to all u ∈ Rp (X) and v ∈ Rq (Y ) so that
u× v ∈ Rp+q (Z).
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Example. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by
integers 1, 2, 3, etc. Then the vertices on Z can be denoted as a1, b2 etc as the fields on
a chessboard.

We have then

ea × e12 = ea1 a2, eab × e1 = ea1 b1

eab × e12 = ea1 b1 b2 − ea1 a2 b2

eab × e123 = ea1 b1 b2 b3 − ea1 a2 b2 b3 + ea1 a2 a3 b3

eabc × e123 = ea1 b1 c1 c2 c3 − ea1 b1 b2 c2 c3 + ea1 b1 b2 b3 c3

+ea1 a2 b2 c2 c3 − ea1 a2 b2 b3 c3 + ea1 a2 a3 b3 c3

Lemma 3.2 If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = ∂u× v + (−1)p u× ∂v. (3.4)
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3.4 Cartesian product of digraphs

We denote here digraphs and their sets of vertices by the same letters. Given two digraphs
X and Y , define their Cartesian product (box product) as a digraph Z = X�Y as follows:

• the set of vertices of Z is X × Y , that is, the vertices of Z are pairs (a, b) where a ∈ X
and b ∈ Y ;

• the arrows in Z are of two types:
- vertical arrows (a, b)→ (a, b′) if b→ b′ in Y ;
- horizontal arrows (a, b)→ (a′, b) if a→ a′ in X.

b′• ∙ ∙ ∙
(a,b′)
• →

(a′,b′)
• ∙ ∙ ∙

↑ ↑ ↑
b• ∙ ∙ ∙

(a,b)
• →

(a′,b)
• ∙ ∙ ∙

...
...

...
Y / X ∙ ∙ ∙ •

a
→ •

a′
∙ ∙ ∙

It follows that any allowed elementary path in Z is stair-like.

Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.
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It follows from definition (3.3) of the cross product that

u ∈ Ap (X) and v ∈ Aq (Y ) ⇒ u× v ∈ Ap+q (Z) .

It follows from the product rule (3.4) that

u ∈ Ωp (X) and v ∈ Ωq (Y ) ⇒ u× v ∈ Ωp+q (Z) .

Theorem 3.3 (Künneth formula for product) For any r ≥ 0, we have

Ωr (X�Y ) ∼=
⊕

{p,q≥0:p+q=r}
Ωp (X)⊗ Ωq (Y ) , (3.5)

where the isomorphism is given by u⊗ v 7→ u× v for u ∈ Ωp (X) and v ∈ Ωq (Y ).

Equivalent formulation. For any n ≥ 0, choose a basis Bn(X) in Ωn(X) and a basis Bn(Y )
in Ωn(Y ).Then Ωr(X�Y ) has the following basis:

{u× v : u ∈ Bp(X), v ∈ Bq(Y ), p + q = r, p, q ≥ 0} .
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3.5 ∂-invariant paths on n-cube

Consider the digraph I = {0→ 1}, and define n-cube for any n ∈ N as follows:

n- cube = I�n = I�I�...�I︸ ︷︷ ︸
n

.

Our purpose here is to compute the curvature of n-cube.

For that, we determine first the structure of the spaces

Ωp(n-cube).

Each vertex a ∈ n-cube can be identified with a binary sequence (a1, ..., an) . For example,
0n = (0, ..., 0) and 1n = (1, ..., 1) are the corners of the n-cube.

For two vertices a, b ∈ n-cube, there is an arrow a→ b if bk = ak +1 for exactly one value
of k and bk = ak for all other values of k. Denote

|a| = a1 + ... + an.

We write a � b (a precedes b) if there is an allowed path in n-cube from a to b, that is,

a � b ⇔ ak ≤ bk for all k = 1, . . . , n.
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Fix a pair of vertices a � b and define an induced subgraph Da,b of the n-cube as follows:

the vertices of Da,b are all the vertices c ∈ n- cube

such that

a � c � b

(and an arrow exists between two vertices of Da,b

if and only if that arrow exists in n- cube).

Here are a 4-cube, its subgraph Da,b (in red color)

and a vertex c ∈ Da,b.

Fix two vertices a, b ∈ n-cube such that a � b and set p = |b| − |a|. Then (a1, ..., an)
and (b1, ..., bn) differ exactly at p positions, say i1, ..., ip; that is, ai1 = ... = aip = 0 and
bi1 = ... = bip = 1. The mapping

Da,b → p- cube

(c1, ..., cn) 7→
(
ci1 , ..., cip

)

is clearly a digraph isomorphism that sends a and b to the corners 0p and 1p of p-cube .

Denote by Pa,b the set of all elementary allowed paths in n-cube going from a to b. Each
path in Pa,b lies in Da,b, has the length p, and the total number of the paths in Pa,b is p!.
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Lemma 3.4 There is a function σ : Pa,b → {0, 1} such that the following p-path on I�n

is ∂-invariant:
ωa,b =

∑

x∈Pa,b

(−1)σ(x) ex . (3.6)

For example, in a 3-cube as shown here, we have

ω0,1 = e01,

ω0,3 = e013 − e023,

ω0,7 = e0137 − e0237 − e0157 + e0457 + e0267 − e0467

(cf. p. 8).

Proof. As Da,b
∼= p-cube, we can assume without loss of generality, that Da,b = I�n, that

is, a = 0n, b = 1n, p = n. Proof by induction in n. Induction basis for n = 1 is clear.
For the induction step from n to n+1, we use the fact that the cross product of ∂-invariant
paths is ∂-invariant. Set for simplicity of notation 0 ≡ 0n, 1 ≡ 1n, 0′ ≡ 0n+1, 1′ ≡ 1n+1.

By the induction hypothesis, there is a ∂-invariant n-path on I�n of the form

ω0,1 =
∑

x∈P0,1

(−1)σ(x) ex.

Since e01 is ∂-invariant 1-path in I, taking the cross product of ω0,1 and e01, we obtain
the following ∂-invariant (n + 1)-path on I�(n+1):
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ω0,1 × e01 =
∑

x∈P0,1

(−1)σ(x) ex × ey

=
∑

x∈P0,1

∑

z∈Πx,y

(−1)σ(x) (−1)L(z) ez,

where y = 01 and where we have used (3.3).

A path x∈P0,1 and z∈Πx,y

Here z is any stair-like path on I�(n+1) that projects onto x and y, respectively, while x
is any allowed path on I�n from 0 to 1. Clearly, z runs over all allowed paths in I�(n+1)

from 0′ to 1′, that is, z ∈ P0′,1′ . Defining the function σ on the paths z ∈ P0′,1′ by

σ(z) = σ(x) + L(z) mod 2,

we obtain that the following (n + 1)-path on I�(n+1) is ∂-invariant:

ω0′,1′ :=
∑

z∈P0′,1′

(−1)σ(z) ez = ω0,1 × e01,

which concludes the proof.
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Proposition 3.5 For any p ≥ 0, we have

Ωp (n- cube) = 〈ωa,b : a � b and |b| − |a| = p〉 .

Moreover, {ωa,b} is a basis of Ωp (n- cube) .

Proof. The proof is again by induction in n. The induction basis for n = 1 is obvious.
For the induction step from n to n+1 we use the Künneth formula (3.5). By this formula,
the basis in Ωp

(
I�(n+1)

)
consists of the p-paths of the form

u× v,

where u runs over a basis in Ωp′(I
�n) and v runs over a basis in Ωp′′(I) with p′ + p′′ = p.

Since
Ω0 (I) = 〈e0, e1〉 , Ω1(I) = 〈e01〉 and Ωp′′(I) = {0} for p′′ > 1,

we obtain the following basis in Ωp

(
I�(n+1)

)
:

{
ωa,b × ei : ωa,b ∈ Ωp(I

�n), i = 0, 1
}
∪
{
ωa,b × e01 : ωa,b ∈ Ωp−1(I

�n)
}

.

The products ωa,b × ei give us the p-paths ω(a,0),(b,0) and ω(a,1),(b,1), while the products
ωa,b × e01 give the p-paths ω(a,0),(b,1). Clearly, we obtain in this way all p-paths ωa′,b′ on
(n + 1)-cube with a′ � b′, |b′| − |a′| = p, which finishes the proof.
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3.6 Curvature of n-cube

Theorem 3.6 For any vertex x ∈ n-cube, the curvature Kx is given by the identity

Kx =
1

(n + 1)
(

n
|x|

) . (3.7)

For example, in a 4- cube that is shown here,

for a marked vertex x = (0, 1, 0, 1), we have

|x| = 2 and

Kx =
1

5
(
4
2

) =
1

30
.

Observe the following interesting consequence of (3.7): for

any integer l ≥ 0, the number of vertices x with |x| = l is equal to
(

n
l

)
, which implies that

∑

{x:|x|=l}
Kx =

1

n + 1
.

Since |x| takes the values 0, ..., n, we obtain Ktotal = 1 = χ.
We start the proof with some properties of the binomial coefficients.
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Lemma 3.7 We have, for all integers a ≥ m ≥ 0,

m∑

j=0

(−1)j

(
a

j

)

= (−1)m

(
a− 1

m

)

. (3.8)

Proof. Induction in a. Induction basis: for a = m we have

m∑

j=0

(−1)j

(
m

j

)

= (1− 1)m = 0 = (−1)m

(
m− 1

m

)

.

Induction step from a to a + 1:

m∑

j=0

(−1)j

(
a + 1

j

)

=
m∑

j=0

(−1)j

((
a

j

)

+

(
a

j − 1

))

= (−1)m

(
a− 1

m

)

+
m∑

j=1

(−1)j

(
a

j − 1

)

= (−1)m

(
a− 1

m

)

−
m−1∑

i=0

(−1)i

(
a

i

)

(i = j − 1)

= (−1)m

(
a− 1

m

)

− (−1)m−1

(
a− 1

m− 1

)

= (−1)m

(
a

m

)

.
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Lemma 3.8 We have, for all integers a ≥ 0 and b ≥ 1,

a∑

l=0

(
a

l

)
(−1)l

l + b
=

1

b
(

a+b
b

) . (3.9)

For example, for b = 1, we obtain by (3.9)

a∑

l=0

(
a

l

)
(−1)l

l + 1
=

(
a

0

)

−
1

2

(
a

1

)

+
1

3

(
a

2

)

− ... + (−1)a 1

a + 1

(
a

a

)

=
1

a + 1
. (3.10)

Proof. We start with the binomial identity

a∑

l=0

(
a

l

)

(−z)l = (1− z)a

for all z ∈ R. Multiplying it by (−z)b−1, we obtain

a∑

l=0

(
a

l

)

(−z)l+b−1 = (−1)b−1 (1− z)a zb−1.
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Integrating this identity from 0 to 1 yields

−
a∑

l=0

(
a

l

)
(−z)l+b

l + b

∣
∣
∣
∣
∣

1

0

= (−1)b−1

∫ 1

0

(1− z)a zb−1dz

= (−1)b−1 B (a + 1, b)

= (−1)b−1 Γ (a + 1) Γ (b)

Γ (a + b + 1)

= (−1)b−1 a!b!

b (a + b)!

=
(−1)b−1

b
(

a+b
b

) . (3.11)

On the other hand, the left hand side of the above identity is equal to

−
a∑

l=0

(
a

l

)
(−1)l+b

l + b
= (−1)b+1

a∑

l=0

(
a

l

)
(−1)l

l + b
. (3.12)

Comparing (3.11) and (3.12), we obtain (3.9).
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Lemma 3.9 We have, for all integers m, l ≥ 0,

Sm,l :=
m∑

k=0

(
m

k

)
(−1)k

(
k+l

l

)
(k + l + 1)

=
1

m + l + 1
. (3.13)

For example, for l = 0 we obtain

m∑

k=0

(
m

k

)
(−1)k

k + 1
=

1

m + 1
,

which coincides with (3.10). For l = 1 we have

m∑

k=0

(
m

k

)
(−1)k

(k + 1) (k + 2)
=

1

m + 2
.

Proof. We have

Sm,l = l!
m∑

k=0

m (m− 1) ... (m− k + 1)

k!

(−1)k

(k + 1) ... (k + l) (k + l + 1)

=
l!

(m + l + 1) ... (m + 1)

m∑

k=0

(−1)k (m + l + 1) .... (m + 1) m (m− 1) ... (m− k + 1)

(k + l + 1)!
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=
l!m!

(m + l + 1)!

m∑

k=0

(−1)k

(
m + l + 1

k + l + 1

)

=
l!m!

(m + l + 1)!

m∑

k=0

(−1)k

(
m + l + 1

m− k

)

=
l!m!

(m + l + 1)!

m∑

j=0

(−1)m−j

(
m + l + 1

j

)

(j = m− k).

By (3.8) with a = m + l + 1 we obtain

m∑

j=0

(−1)j

(
m + l + 1

j

)

=
m∑

j=0

(−1)j

(
a

j

)

= (−1)m

(
a− 1

m

)

= (−1)m

(
m + l

m

)

.

It follows that

Sm,l =
l!m!

(m + l + 1)!

(
m + l

m

)

=
l!m!

(m + l + 1)!

(m + l)!

l!m!
=

1

m + l + 1
,

which was to be proved.
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Lemma 3.10 We have, for all integers m,m′ ≥ 0,

Km :=

m∑

k=0

m′∑

l=0

(
m

k

)(
m′

l

)
(−1)k+l

(
k+l

l

)
(k + l + 1)

=
1

(m + m′ + 1)
(

m+m′

m

) .

Proof. Using (3.13) and applying (3.9) with a = m′ and b = m + 1, we obtain

Km =

m′∑

l=0

(
m′

l

)

(−1)l
m∑

k=0

(
m

k

)
(−1)k

(
k+l

l

)
(k + l + 1)

=
m′∑

l=0

(
m′

l

)

(−1)l Sm,l

=
m′∑

l=0

(
m′

l

)
(−1)l

m + l + 1
=

a∑

l=0

(
a

l

)
(−1)l

l + b
=

1

b
(

a+b
b

) =
1

(m + 1)
(

m+m′+1
m+1

)

=
(m + 1)!(m′)!

(m + 1) (m + m′ + 1)!
=

m! (m′)!

(m + m′ + 1) (m + m′)!
=

1

(m + m′ + 1)
(

m+m′

m

) ,

which finishes the proof.
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Proof of Theorem 3.6. Fix a vertex x ∈ n-cube, some p ≥ 0 and compute [x, Ωp]. Let
a and b be two vertices of the n-cube such

a � x � b and |b| − |a| = p.

Set
k = |x| − |a| , l = |b| − |x|

so that k + l = p. We claim that, for the ∂-invariant p-path ωa,b between a and b (cf.
(3.6)),

‖ωa,b‖
2 = p! and [x, ωa,b] = k!l!.

Indeed, ωa,b is an alternating sum of p! elementary allowed paths going from a to b, and
the number of the elementary allowed paths from a to b that go through x is equal to k!l!,

because the number of such paths
from a to x is equal to k! and the
number of such paths from x to b
is equal to l!.

Consequently, we obtain
[x, ωa,b]

‖ωa,b‖
2 =

k!l!

p!
=

1
(

k+l
k

) .
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Set m = |x| and observe that the number of vertices a with

a � x and |x| − |a| = k

is equal to
(

m
k

)
. Indeed, in the binary representations a = (a1, ...an, ) and x = (x1, ...xn, ),

we have ai ≤ xi and
∑

i (xi − ai) = k which is only possible if ai = 0 at k out of m
positions where xi = 1.

Similarly, the number of the vertices b with

x � b and |b| − |x| = l

is equal to
(

n−m
l

)
. Hence, the number of pairs a, b such that

a � x � b, |x| − |a| = k, |b| − |x| = l,

is equal to (
m

k

)(
n−m

l

)

.

By Proposition 3.5, all p-paths ωa,b with a � b form an orthogonal basis in Ωp (n- cube).
If x does not satisfy the condition a � x � b then we have

[x, ωa,b] = 0.
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Hence, we obtain

[x, Ωp] =
∑

|b|−|a|=p

[x, ωa,b]

‖ωa,b‖
2 =

∑

a�x�b
|b|−|a|=p

[x, ωa,b]

‖ωa,b‖
2

=
∑

k+l=p

∑

a�x�b
|x|−|a|=k
|b|−|x|=l

[x, ωa,b]

‖ωa,b‖
2 =

∑

k+l=p

(
m

k

)(
n−m

l

)
1

(
k+l
k

) .

By Lemma 3.10 with m′ = n−m, we obtain that

Kx =
∑

p≥0

(−1)p

p + 1
[x, Ωp]

=
m∑

k=0

n−m∑

l=0

(
m

k

)(
n−m

l

)
(−1)k+l

(
k+l

l

)
(k + l + 1)

=
1

(m + m′ + 1)
(

m+m′

m

) =
1

(n + 1)
(

n
m

) ,

which was to be proved.
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Problem 3.11 The above proof of Theorem 3.6 is done by a “brute force” computation.
Give a conceptual proof without long computations.

Problem 3.12 How to compute Kz (X�Y ) for general digraphs X,Y (or at least for
some classes of digraphs X,Y )?

It is known that if Y is a cyclic digraph {0→ 1→ 2→ ...→ 0} of at least 3 vertices then
Kz (X�Y ) ≡ 0.

Problem 3.13 How the notion of combinatorial curvature compares to other notions of
curvature of graphs?
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3.7 Appendix: proof of the product rule

We prove here Lemma 3.2: if u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = ∂u× v + (−1)p u× ∂v. (3.14)

It suffices to prove (3.14) for the case u = ex and v = ey where x = x0...xp and y = y0...yq

are regular elementary p-path on X and q-path on Y , respectively. Set r = p + q so that
ex × ey ∈ Rr (Z).

If p = q = 0 then all the terms in (3.14) vanish. Assume p = 0 and q ≥ 1 (the case p ≥ 1
and q = 0 is similar). Then Πx,y contains the only element z = z0...zq where zi = (x0, yi).
Since L (z) = 0, we obtain by (3.3) that

ex × ey = ez0...zq

By (1.1) obtain
∂ (ex × ey) = ∂ez0...zq = ex × ∂ey0...yq ,

which is equivalent to (3.14), because ∂u = 0.

Consider now the main case p, q ≥ 1. We have by (3.3) and (1.1)

∂ (ex × ey) =
∑

z∈Πx,y

(−1)L(z) ∂ez =
∑

z∈Πx,y

r∑

k=0

(−1)L(z)+k ez(k)
, (3.15)
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where we use a shortcut

z(k) = z0...ẑk...zr = z0...zk−1zk+1...zr.

Switching the order of the sums, rewrite (3.15) in the form

∂ (ex × ey) =
r∑

k=0

∑

z∈Πx,y

(−1)L(z)+k ez(k)
. (3.16)

Given an index k = 0, ..., r and a path z ∈ Πx,y, consider the following four logically
possible cases how horizontal and vertical couples combine around zk:

(H) :
zk−1

• −→
zk• −→

zk+1

•

zk+1
•
↑

(V ) :
zk•
↑

zk−1

•

(R) :
zk+1

• (L) :
zk• −→

zk+1

•
↑ ↑

zk−1

• −→
zk•

zk−1

•
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Here (H) stands for a horizontal position, (V ) for vertical, (R) for right and (L) for left.
If k = 0 or k = r then zk−1 or zk+1 should be ignored, so that one has only two distinct
positions (H) and (V ).

If z ∈ Πx,y and zk stands in (R) or (L) then consider a path z′ ∈ Πx,y such that z′
i = zi

for all i 6= k, whereas z′
k stands in the opposite position (L) or (R), respectively, as on

the diagrams:
z′k• −→

zk+1

•
↑ ↑

zk−1

• −→
zk•

zk• −→
zk+1

•
↑ ↑

zk−1

• −→
z′k•

Clearly, we have L (z′) = L (z) ± 1 which implies that the terms ez(k)
and ez′

(k)
in (3.16)

cancel out.

Denote by Πk
x,y the set of paths z ∈ Πx,y such that zk stands in position (V ) and by Π k

x,y

the set of paths z ∈ Πx,y such that zk stands in position (H). By the above observation,
we can restrict the summation in (3.16) to those pairs k, z where zk is either in vertical
or horizontal position, that is,

∂ (ex × ey) =
r∑

k=0

∑

z∈Πk
x,ytΠ k

x,y

(−1)L(z)+k ez(k)
. (3.17)
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Let us now compute the first term in the right hand side of (3.14):

(∂ex)× ey =

p∑

l=0

(−1)l ex × ey =

p∑

l=0

∑

w∈Πx(l)
,y

(−1)L(w)+l ew. (3.18)

Fix some l = 0, ..., p and w ∈ Πx(l),y.

Since the projection of w on X is

x(l) = x0...xl−1xl+1...xp,

there exists a unique index k such

that wk−1 projects onto xl−1 and

wk projects onto xl+1.

Then wk−1 and wk have a common

projection onto Y , say ym. Stair-like paths w and z.
The shaded area represents the difference

L(z)− L(w).
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Define a path z ∈ Π k
x,y by setting

zi =






wi for i ≤ k − 1,
(xl, ym) for i = k,
wi−1 for i ≥ k + 1.

(3.19)

By construction we have z(k) = w. It also follows from the construction that

L (z) = L (w) + m.

Since k = l + m, we obtain that

L (z) + k = L (w) + l + 2m.

We see that each pair l, w where l = 0, ..., p and w ∈ Πx(l),y gives rise to a pair k, z where

k = 0, ..., r , z ∈ Π k
x,y , and

(−1)L(z)+k ez(k)
= (−1)L(w)+l ew.

By reversing this argument, we obtain that each such pair k, z gives back l, w so that this
correspondence between k, z and l, w is bijective. Hence, we conclude that

(∂ex)× ey =

p∑

l=0

∑

w∈Πx(l)
,y

(−1)L(w)+l ew =
r∑

k=0

∑

z∈Π k
x,y

(−1)L(z)+k ez(k)
. (3.20)
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The second term in the right hand side of (3.14) is computed similarly:

(−1)p ex × ∂ey =

q∑

m=0

(−1)m+p ex × ey(m)
=

q∑

m=0

∑

w∈Πx,y(m)

(−1)L(w)+m+p ew.

Each pair m,w here gives rise to a pair k, z where k = 0, ..., r and z ∈ Πk
x,y in the following

way: choose k such that wk−1 projects onto ym−1 and wk projects onto ym+1. Then wk−1

and wk have a common projection onto X, say xl. Define the path z ∈ Πk
x,y as in (3.19).

Then we have w = z(k) and L(z) = L(w) + p− l.

Since k = l + m, we obtain L(z) + k = L(w) + p + m

and

(−1)p ex × ∂ey =

q∑

m=0

∑

w∈Πx,y(m)

(−1)L(w)+m+p ew

=
r∑

k=0

∑

z∈Πk
x,y

(−1)L(z)+k ez(k)
.

Combining this with (3.17) and (3.20), we obtain (3.14).

Paths w and z.
The shaded area represents

L(z)− L(w).
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