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1 A path chain complex

1.1 Paths in a finite set

Let V' be a finite set. For any p > 0, an elementary p-path is any sequence iy, ..., %, of
p + 1 vertices of V. Fix a field K and denote by A, = A, (V,K) the K-linear space that
consists of all formal K-linear combinations of elementary p-paths in V. Any element of
A, is called a p-path.

An elementary p-path ig, ..., 7, as an element of A, will be denoted by ¢;,.;,. For example,
we have

A0:<6iii€‘/>, A1:<eij:i,j€V>, A2:<eijk:i,j,k€‘/>

Any p-path u can be written in a form u = Zio,il,...,z’pev wolre; o, where uion-ir € K.

Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_; by

p
_ q ~
3€i0...ip = E (—1) Cio..igeip)
q=0

where ~ means omission of the index. For p = 0 set de; = 0.



For example, de;; = e; —e; and Oe;jr, = e — e, + €5
Lemma 1.1 9° = 0.

Proof. Indeed, for any p > 2 we have

p
Peig.iy =) (—1)"0e; 1 . (1.1)
q=0
D q—1 D
_ q r A i r—1 R
—Z(_l) (Z (1) TR T o Z (=1) eio...iq...ir...ip>
q=0 r=0 r=q+1
_ g+r A . _1\qtr A
= Z (=1) Cig..im. ige..ip Z (=1)""e;, iy
0<r<g<p 0<qg<r<p

After switching ¢ and r in the last sum we see that the two sums cancel out, whence
8262’0_”% —= 0. This implies 0%u = 0 for all u € A, m

Hence, we obtain a chain complex A, (V):

OHA0£A1<—... — A1 = A —



Definition. An elementary p-path e;,.;, is called reqular if iy # x4y forallk =0,...,p—1,
and irregular otherwise.

Let I, be the subspace of A, spanned by irregular e;, ;. We claim that 0I, C I,_;.
Indeed, if e;,. ;, is irregular then iy = ij4, for some k. We have

OCio..iy = €iy.ip — Cigig.ip T -

k k41
+(-1) €40..ik_19kt10042.p T (—1) * €40..if—1ikiks2-Ip (1.2)

+... + (_1)p eio_“ipfl o

By i = ixs1 the two terms in the middle line of (1.2) cancel out, whereas all other terms
are non-regular, whence 0e;,. ;, € I,—1.

Hence, 0 is well-defined on the quotient spaces R, := A,/I,, and we obtain the chain
complex R, (V):

a ) o ) )
0 « Rp « R1 « ... < Rp1 <« R, ...

By setting all irregular p-paths to be equal to 0, we identify R, with the subspace of A,
spanned by all regular paths. For example, if ¢ # j then e;; € Ry and

8eiji = Bji — €44 i Gij = eji = Gij

because e;; = 0. In what follows we always consider 0 acting on R,.
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1.2 Path chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V' of vertices and a
set £ C {V x V' \ diag} of arrows (directed edges). If (i,j) € E then we write i — j.

Definition. Let G = (V, E) be a digraph. An elementary p-path iy...i, on V is called
allowed if iy, — 1341 for any k =0, ...,p — 1, and non-allowed otherwise.

Let A, = A, (G) be K-linear space spanned by allowed elementary p-paths:
Ap = (€iy...i, © G0-..1p is allowed).

The elements of A, are called allowed p-paths. Since any allowed path is regular, we have
A, CR,.

We would like to build a chain complex based on subspaces A, of R,. However, the spaces
A, are in general not invariant for J. For example, in the digraph

a b c
o — 0 — @

we have ey € Ag but degpe = €pe — €ae + €ap & A1 because e, is not allowed.



Consider the following subspace of A,

Q,=0,(G):={uecA,: 0ue A, 1} |

Claim: 09, C Q,_;. Indeed, u € Q, implies du € A, ; and 0 (Ju) = 0 € A,_», whence
ou € Qp—l-

The elements of €2, are called 0-invariant p-paths. Hence, we obtain a path chain complex
0, = (G) :

) 8 8 8 8 8
0 « Qy « & <« ... & Q1 « Q <« Q1 — ...

By construction we have Qy = Ay and ; = A;, while in general Q,, C A,

Path homologies of G are defined as the homology groups of the path chain complex
0, (G):
H, (G) = kerd|q, /Imd|q

The elements of ker 0|, are called closed paths (or cycles), the elements of Im 0|, ,, are
called boundaries. Hence, H,(G) is a linear space that consists of closed paths modulo

boundaries.

The Betti numbers of G are defined by 3, (G) = dim H), (G).

p+1°

It is easy to prove that (3, (G) = #of (undirected) connected components of G.
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1.3 Examples of O-invariant paths

A triangle is a sequence of three vertices a, b, c
such that a — b — ¢, a — c.

It determines 2-path eq,. € €2y because ey € Ao
and O0egpe = €pe — €qc + €ap € Aj. d b

A square is a sequence of four vertices a, b, b, ¢
such that a — b, b — ¢, a — bV, b — c.

It determines a 2-path © = egpe — €ape € §22 because u € A,
and Ou = (ebc — €aot eab) — (eblc = Bz eab/)

o b
= €qb T €pc — €apr — Epic € Al
2
A p-simplex (or p-clique) is a sequence of p + 1 vertices, .
say, 0,1, ..., p, such that ¢ — j for all 7 < j. g
A p-simplex determines a p-path eq;. , € €2,.
For example, on a 3-simplex egia3 € (3. 0 !
A 3-simplex

11



A 3-cube is a sequence of 8 vertices 0,1,2,3,4,5,6,7,
connected by arrows as here.

A 3-cube determines a O-invariant 3-path
U = €p237 — €0137 + €0157 — €0457 + €oa67 — €0267 € (23
because u € Az and

Ou = (ep13 — €o023) + (€157 — €137) + (€237 — €267)
- (6046 - 6026) - (6457 - e467) - (6015 - e045) c A,

A broken cube consists of 9 vertices connected by
arrows as here.

It determines a O-invariant 3-path

U = €237 — €0137 1 €0157 — o457 + €os67 — o267 € (23

12
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1.4 Examples of spaces (), and H,

For a vector space A over K we write |A| = dimg A.

Consider a triangle as a digraph:

0 = <€01;€02,€12>, Qy = <6012>, Qp = {O} for p > 3.

We have ker 0|o, = (eg1 — €02 + €12) because

0 (aegr + Begr +7€12) =0 & a=v=—0.
However, eg; — egs + €12 = Oegio so that Hy = {0}.
Since degia # 0, we have H, = {0} for all p > 2.

Consider a hexagon with two diagonals:

We have ’Q()| = 6, |Ql‘ = 8, ’QQ| = 2,
where (), is spanned by 2 squares:

Qg = <€013 — €023, €014 — 6024>7
and Q, = {0} for all p > 3.

For this dlgraph H1 = <€13 — €53 + €54 — 614>,
so that |Hy| =1, and H, = {0} for all p > 2.

13
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Consider an octahedron, where [Qy| =6, || = 12.

The space 25 is spanned by 8 triangles:
Qy = <€0247 €034, €025, €035, €124, €134, €125, 6135>7

so that |Q| = 8, whereas 2, = {0} for all p > 3.

We have

Hy = (ep24 — €034 — €025 + €035 — €124 + €134 + €125 — €135)
so that |Hs| =1, and |H,| =0 forp=1and p >3

Consider an octahedron with a different orientation:
= (6024, €025, €014, €015, €234, €235, €134, €135, €013 — 6023>
Q3 = <€0234 — €0134, €0235 — 60135>

0] =9, Q3] =2and Q,={0} forall p>4.

We have ker 0|, = (u,v) where

U = €g24 + €234 — €014 — €134 + (€013 — €023)
U = €gg5 + €235 — €015 — €135 + (€013 — €023)
but Hy, = {0} because
u =0 (60234 - 60134) and v =20 (60235 - 60135)

14
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Consider a 3-cube:

Here ‘Qo| = 8, |Ql‘ =12.

Space {25 is spanned by 6 squares:

6
A
Qy = <6013 — €023, €015 — €045, €026 — €046, ’

€137 — €157, €237 — €267, €457 — 6467> 1

hence, |23] = 6.

A J

4
Space {23 is spanned by one 3-cube: /

Q3 = (ep237 — €o137 + €o157 — €oa57 + Co467 — €0267)
hence, |Q23] = 1.

€2,| =0 for all p >4 and |H,| =0 for all p > 1.

15
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1.5 An example of computation of (2, and H,

Consider the following digraph with 4 vertices and 5 arrows (a square with a diagonal):

Qo = Ay = (eo, e1,€2,€3), |Qo] =4, 2 g

O =A = (601,602761376237630% \Ql| = 9,

Ay = <€013, €023, €130, €230, €301, €3o2> \Az\ = 6.

In order to determine Qs = {v € Ay : Ov € A1}, 0 o

we first compute 0| 4, mod A;:

Oeg1s = e13 — €g3 + €91 = —ep3 mod A,
Oegaz = €23 — €3 + g2 = —ep3 mod A,
deizp = €30 — €10 + €13 = —e19 mod A;
Oeazp = €30 — €20 + €23 = —e€g9 mod A;
deso1 = eg1 — €31 + ez = —ez; mod A,
Oespe = €g2 — €32 + e390 = —ezy mod A,

16



Hence,

( €013 €023 €130 €230 €301 €302 \
€03 —1 —1 0
g €10 —1
matrix of 0|4, mod A; = =D
€920 —1
31 —1

\232 0 -1 )

)y = ker 0] 4, mod A; = nullspace D = (eg13 — €g23)-
One can show that |€2,| = 0 for all p > 3 and, hence, |H,| = 0 for all p > 3.

Let us compute H; and Hs. We have for the basis in €2;:

degr = —eg + e
dega = —eg + €3
6613 = —€1 + €3
degs = —eg + €3

8630 = €y — €3

17



Hence,
€o1 €02 €13 €23 €30
ep —1 —1 0 0 1
matrix of djg, = e2 1 0 -1 0 0 —: /D)
es 0 1 0 -1 0
e3 0 0 1 1 -1

and
ker 0|, = nullspace D = (eq1 + €13 — €2 — €23, €01 + €13 + €30)-

Similarly, for the basis in €25 we have
0 (e013 — €023) = (€13 — €p3 + €01) — (€23 — €03 + €02) = €1 + €13 — €g2 — €23

whence
Im (9\92 = <601 + €13 — €pg2 — 623> and ker 8\92 — {0} .

It follows that Hy = {0} and
Hy = ker0|q,/Im0|q, = (eo1 + €13 + €30)-

As we have seen, computation of the spaces 2, (G) and H, (G) amounts to computing
ranks and null-spaces of large matrices. We currently use for numerical computation of
H, (G,F3) a C++ program written by Chao Chen in 2012.

18



1.6 Structure of €2

As we know, )y = (e;) consists of all vertices and 23 = {e;; : ¢ — j} consists of all arrows.

Proposition 1.2 (a) The space Qo is spanned by all triangles eqpe, SQUATES €gpe — Capre
and double arrows egp,.

(b) || = |A2| —s where s is the number of semi-arrows, that is, pairs of vertices (z,y)
such that x /4 y but xt — z — y for some vertex z.

The triangles and double arrows are always linearly independent but the squares can be
dependent.

For example, on this digraph we have three squares:
€013 — €023, €043 — €013, €023 — €043
but they are linearly dependent as their sum is 0.
Since Ay = {eq13, €023, €043} and there is only one
semi-arrow (0, 3), we obtain

Q] =2=|A3] —s=3-1=2.

Clearly, Qs = <€013 — €023, €043 — 6013> .

19



Let X,Y be two digraphs. A map f: X — Y is called a morphism of digraphs if for any
arrow a — b in X we have either f (a) — f(b) or f(a) = f(b) (that is, the image of an
arrow is either an arrow or a vertex). Define images of paths by

f (eio---ip) = €f(io)...f (ip)

so that the image of an allowed path is either allowed or zero (that is also allowed). It is
easy to see that fod = 0o f so that the morphism images of d-invariant paths are again
O-invariant.

A triangle ey, and a double arrow e,, are morphism images of a square eg;3 — €p23 as on
these pictures:

2[]3 A&A | 2D3\ |
0 I L b 0% i .

20



Hence, we can rephrase Proposition 1.2 as follows: ()5 is spanned by squares and their
morphism images. Or: squares are basic shapes of €)s.

Problem 1.3 Describe all basic shapes in Qs (as well as in S, for p > 3).

21



1.7 Triangulation as a closed path

Let T be a triangulation of closed oriented n-manifold M, that is, a partition of M into
n-dimensional simplexes. Denote by V' = {0, 1, ...} the set of all vertices of the simplexes
of T and by E — the set of all edges, so that (V, E) is a graph embedded on M.

Let us make each edge (7,j) € F into an arrow ¢ — j if ¢ < j. Then each simplex from T
H
becomes a digraph—simplex._}Denote by T the set of all digraph simplexes constructed in

this way. That is, ig...7,, € T if iy...7,, is @ monotone increasing sequence that determines
a simplex from T'. Clearly, any such path i...i,, is allowed in the digraph G = (V, E).

For any simplex from T with the vertices ig...i,, define the quantity o to be equal to
1 if the orientation of the simplex %...7,, matches the orientation of the manifold M, and
—1 otherwise. Then consider the following allowed n-path on G:

o= Z O'Z.O"'ineiomin. (13)

N
20...in €T

Lemma 1.4 The path o is closed, that is, 0o = 0, which, in particular, tmplies that o is
O-invariant.

Proof. Observe that 0o is the a linear combination with coefficients +1 of the terms

D



€jo..in_, Where the sequence jo,..., j,—1 is monotone increasing and forms an (n — 1)-
dimensional face of one of the n-simplexes from 7. In fact, every (n — 1)-face arises
from two n-simplexes, say

A= jJoJk—1@fk- ot P o

and -

B — jO---jl—lbjl---jn—l = ,
that is, two n-simplexes A, B have M
a common (n — 1)-dimensional 7,

face j0...90 1. g

3-simplexes A and B

We have
k
Oea = 0€jy. iy _rajnegny = -+ (=1)" €0 orininoy T - -

Since interchanging the order of two neighboring vertices in an n-simplex changes its
orientation, we have

oA = gJo-Jk-1aJk-Jn-1 — (_1) g ®J0--Jk—1Jk--Jn—1

23



Multiplying the above lines, we obtain
o (O'AGA) — .+ Uajo...jn—1ej0mjn_1 ST

and in the same way
B bj0-..jin—
0 (0' GB) =...+0 0 lejo_._jn_l “F 500

However, the vertices a and b are located on the opposite sides of the face jg...7,—1, which
implies that the simplexes ajg...7,—1 and bjy...J,—1 have the opposite orientations relative

to that of M. Hence,
O.aj0-~-jn—1 + O-bjO---jn—l = O’

which means that the term ej, ;. , cancels out in the sum 0 (JAeA + UBeB) and, hence,
in O0o. This proves that doc = 0. =

The closed path o defined by (1.3) is called a surface path on M.

There is a number of examples when a surface path ¢ happens to be exact, that is, o = Jv
for some (n + 1)-path v. In this case v is called a solid path on M because v represents
a “solid” shape whose boundary is given by a surface path. If o is not exact then o
determines a non-trivial homology class from H, (G) and, hence, represents a “cavity” of
triangulation 7.

24



Example. M = S!.
A triangulation of S! is a polygon, and
the corresponding digraph G is cyclic.

On each edge (i, j) of a polygon we choose an
arrow i — j arbitrary (not necessarily if ¢ < j).

We have

g = Z aijeij

where ¢ = 1 if the arrow ¢ — j goes counterclockwise,

and oY = —1 otherwise.

On the digraph on the picture we have

0 = €01 — €21 T €23 T €34 — €54 + €50
Proposition 1.5 (a) If a polygon G is neither triangle nor square then 2, = {0} for all
p>2, Hi = (o) and H, = {0} for allp > 2.
(b) If G is either triangle or square then Q, = {0} for p > 3 and H, = {0} for allp > 1.

25



Example. Let M = S™ and let triangulation of S™ be given by an (n + 1)-simplex.
Then G is a (n + 1)-simplex digraph.

On this picture n = 2, 3
0 = €123 — €023 + €013 — €012 = O€p123

so that egpi93 is a solid path representing
a tetrahedron.

In general we also have
o = deo..nt1

so that ey 41 is a solid path representing
a (n + 1)-simplex.

26



Example. M = S?, octahedron.

Here is a triangulation of S? by an octahedron
with two ways of numbering.

Case A:  H, = {0}
0 = €024 — €025 — €014 T €015 — €234 + €235 + €134 — €135
= 0 (eg134 — €0234 + €0135 — €0235)

Hence,

U = €0134 — €0234 T €0135 — €0235
is a solid path, and the octahedron represents

a solid shape.

Case B:  Hy = (o)
0 = €024 — €034 — €025 T€035 — €124 + €134 + €125 — €135
and the octahedron represents a cavity.

27



Example. M = S?, icosahedron.

Consider an icosahedron as a triangulation of S*:
(here 1 — j if i < j).

We have |V| =12, |E|=30, H;={0},

and Hy = (o) where

0= —€p19 +€p12 —€1211 T €026 + €059
—€056 T €5610 — €139 T €1311 — €267
+€6710 — €2711 — €349 T €348 — €4810
+€3811 — €459 + €4510 T €7810 — €7811-

Hence, the icosahedron represents a cavity.

Conjecture 1.6 For icosahedron dim Hy (G) = 1 for any numbering of the vertices.

Conjecture 1.7 For a general triangulation of S™, the homology group H, (G) is either
trivial or is generated by o. All other homology groups H, (G) are trivial.

28



1.8 Computational challenge

An interesting paper:

Prrontiers | cncmu eseaty
in Computational Neuroscience doi: 10.3389/fncom.2017.00048

®

Check for
updates

Cligues of Neurons Bound into
Cavities Provide a Missing Link
between Structure and Function

Michael W. Reimann?, Max Nolte ', Martina Scolamiero?, Katharine Turner?,
Rodrigo Perin®, Giuseppe Chindemi', Pawet Diotko#, Ran Levi®, Kathryn Hess?* and
Henry Markram " 3**

" Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland, 2 Laboratory for Topology and
Neuroscience, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ° Laboratory of
Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, * DataShape,
INRIA Saclay, Palaiseau, France, ° Institute of Mathematics, University of Aberdeen, Aberdeen, United Kingdom
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They reconstruct a microcircuit from a rat brain as a graph (neurons and connections
between them). The size of the graph is |[V| ~ 31,000 and |E| ~ 8,000, 000.

Reconstructed Microcircuit |

A

Then they detect cliques in this graph, form out of the cliques a simplicial complex, and
compute its Betti numbers over Fy. They were able to compute Betti number 3 and to
show that (55 > 0.

Problem 1.8 Create computational tools capable of computing low dimensional Betti
numbers for path homologies of digraphs of similar size.

At present our program can compute 3, on a digraph with |V| ~ 7000 and |E| ~ 100, 000,
and [, on a digraph with |[V| ~ 4000 and |E| ~ 25000.
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2 Combinatorial curvature of digraphs

2.1 Motivation

Let I' be a finite planar graph. There is the following old notion of combinatorial curvature
K, at any vertex x of I":

_ deg (z) 1
Ko =1-— +;deg(f), (2.1)

where the sum is taken over all faces f containing z and deg (f) denotes the number of
vertices of f.

For example, for this graph we have
deg (z) =4

+5+1+

Wl
W
U=
=)
S

A planar graph I’

31



In particular, if all faces of I" are triangles then we obtain from (2.1)

deg(z) , dega (2)

K,=1- ,
2 3

(2.2)

where deg, () is the number of triangular faces having x as a vertex.

In general, denote by V, E and F' the number of vertices, edges and faces of I', respectively,
and observe that

1 1
Zx:deg(x)—QE and szeg(f) _zf:;deg(f) = F.

T faz

Hence, we obtain from (2.1)

Ktotal :ZKx:V_E+F:X7

where y is the Euler characteristic of the graph.

We try to realize this idea in order to define the curvature on an arbitrary digraph: to
“distribute” the Euler characteristic over all vertices and, hence, to obtain an analog of
the Gauss curvature that satisfies the Gauss-Bonnet formula.
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2.2 Curvature operator

Let G = (V, E) be a finite digraph and K = R. We would like to generalize (2.1) to
arbitrary digraphs, so that the faces in (2.1) should be replaced by the elements of a basis
in 2,,. However, the result should be independent of the choice of a basis.

Fix p > 0. Any function f : V — R induces a linear operator on the space R, of regular
p-paths
Tf : Rp — Rp

as follows
Trei..i, = (f (10) + ... + £ (ip)) €ig..ip-

For example, for a constant function f =1 on V, we have Tye;,. ;, = (p + 1) €;,..5, and,
hence,
Tww=((p+1)w for any w € R,,. (2.3)

If f=1, where x € V| then

11, €i..5, = ME;y..i,, Where m is the number of occurrences of x in i, ..., 7. (2.4)

Fix in R, an inner product (-,-). For example, this can be a natural inner product when
all regular elementary paths e;, ;, form an orthonormal basis in R,,.
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Let IT, : R, — €2, be the orthogonal ’.
projection onto €, in the space R,. ! . H
Considering Ty as an operator from 2, to R, ‘ |
. . . 1 Y Qp
we obtain the following operator in €2, : s -
1 1 A

TJ’C =1L,0T;: Q, — Q,

Definition. Define the incidence of f and €2, by | [f,€2,] = trace T} |.

Example. Assume that Qs = (€4 — €ape) and let
fla)=2,f()=f(c)=1f({)=0.
Then for w = e . — €qrye We have
Tiw=(f(a)+ f )+ f(c)ewe— (f(a)+ f )+ f(c)) eare = 4€abe — 3€apec-
Setting W = % we obtain

€abc —€ab/c

Tiw = (Tyw,w) W = (deabc — 3€apc, 54 )W = \/liw.
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It follows that [f, 2a] = trace T} = (T;w, w) = (%w, w) = %

In order to compute [f,€2,] in general, we need the following notion.

Definition. For any w € Q, define the incidence of f and w by |[f,w] = (Trw,w) |

Lemma 2.1 For any orthogonal basis {wy} in S, we have

1,9) = 2 o

-
k|wkl

(2.5)

Proof. It suffices to prove (2.5) for orthonormal basis when |wg|| = 1 for all k. By the
definition of the trace

trace Ty =3 (T]’cwk,wk) .
k

For any w € 2, (in particular, for w = w,) we have
(T]’cw,w) = (II,Tiw,w) = (Tiw, IIw) = (Tiw,w) = [f,w],

whence (2.5) follows. m
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Definition. For any N € N define the curvature operator K™) : RV — R of order N by

(="

p+1

[f: QP] .

N
KM f = S
p=0

If Q, = {0} for all p > N, then write K}N) = K.
For f =1, where x € V', we write
[z, Q] :=1[1,,9,] and [z,w]:=[1,,w],

If {wx} is an orthogonal basis of 2,,, then by (2.5)

fr, ] = 55 2

2
k|

If the inner product is natural so that {eio...ip} is orthonormal then by (2.4)

[a:, 6i0...ip] = m, where m is the number of occurrences of x in i, ..., 7, |.

For example,
[aa 6abca] - 27 [ba 6abca] - 17 [da eabca] = 0.
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In this case, for w =Y w"'re; ,; we have

el = X (@) [ e |

10...ipEV

Definition. For any N € N define the curvature of order N at a vertex x by

N
N —1)?
Y = KM, =y El [z 0|

p=0

Proposition 2.2 (Gauss-Bonnet) For any choice of the inner product in R, and for any
N we have
(N) (V) — S (_1)7 i ()
Ktotal - Z Kw = Z (_1) dlme =X o
zeV p=0

Proof. Since ) = 1, we obtain that

xGV

N
Kot = ZVKW = ¥ KW1, = KM= 5 (-1
HAS fAS b=
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On the other hand, by (2.3)
1,0 = (Thw,w) = (p+1) HW||2
If {wx} is an orthogonal basis in €2, then by (2.5)

1,0, =y Ll

2
ksl

= (p+1)dimQ,,

which implies
N X P (V)
Ktotal - Z:() (_1) dim Qp =X .
p:
n

Remark. If Q, = {0} for all p > N then

X = % (—1)"dim 2, = % (—1)" dim H,,.

p=0 p=0

Remark. It can happen that €, # {0} for all p. For example, let G = {a = b} . For this
digraph we have

QO — <€a7 €b>7 Ql - <eab7 eba>7 Q3 - <eaba; ebab>7 Q4 - {eabab7 ebaba}; etC,

38



so that [€2,| = 2 for all p > 0. Indeed, €4, € Az and
O€gba = €ba — €aa T+ €ab = €pa + €qp € Aj
so that ey € . Similarly, eqgq, € As and
O€abab = €bab — €aab T €abb — €aba = €hab — €aba € A2

so that e . € (13, etc.

Problem 2.3 How to decide whether the sequence {Q, (G)} vanishes for all large p?

Alternatively, one can always truncate the chain complex to make it finite by setting by
definition 2y, = {0} for some N :

0 — 0 < 0 & .. & av, & oy <0

and work with homology groups of this complex. This corresponds to the following
modification of the notion of allowed paths: all paths of length > N are declared non-
allowed.

39



2.3 Examples of computation of curvature

Let us fix in R, the natural inner product. Using the orthonormal basis {e;} in Qg we
obtain
[z, Qo] = Z [z,e] =1
and, using the orthonormal basis {e;; } with ¢ — j in €, we obtain
Z [z, €] = deg ().

’L—>j

Therefore,
KO —1_— deg—(:b)
v 2

and, for any N > 1,

®) 4 3 i Q). (2.6)

KQ(CN)zl—de
p=2p+1

By Proposition 1.2, in the absence of double arrows the space {2, has always a basis of
triangles and squares (but this basis is not necessarily orthogonal).
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For a triangle eg. € €29 we have

ew = { b 2El0

0, otherwise

and for a square egp. — €qpe € 29

2, ze€{a,c}
[l’, Cabc — eab’c] = 1, ze€ {b, b/}
0, otherwise

In particular, if G has no square then €25 has a basis {wy} that consists of all triangles in
(. This basis is orthonormal and

[z, ] = Z [z, wi] = deg, () := #triangles containing x.
k

It follows that

K@ —1_ deg (z) i deg ()
x 2 3 9
which matches (2.2).
Example. Let G be a line digraph, for example, ---¢ — e «— e — o ... . Then by (2.6)

1

K, = 5 for the endpoints, and K, = 0 for the interior points.
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Example. Let G be a cyclic digraph (polygon) different from triangle or square:
Then we have 2, = {0} for p > 1. 2 1
Hence by (2.6), for any vertex z,

deg (z) _ : 0
: .

K,=1—
and Ktotal =0.

For comparison,

Example. Consider a dodecahedron (with any orientation of edges):
We have || = 20, |24] = 30, |Qs]| =0,
and |H,| =11, |H,| =0 for p > 1.
Then, for any vertex =,

K o—1- deg () _ 1
and K,y = —10.

2 2
For comparison,
x=1—-11=20-30= —10.
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Example. Let G be a triangle. We have Q5 = (e¢12) and €2, = {0} for p > 2.

Hence, for each vertex =, 2

K o—1— deg () N dega (z) 1

2 3 3
and Ktotal = 1. 0 !

For comparison, x = Qo] — || + Q2] =3 -3+ 1=1.

Example. Let G be a square. Then 25 = (eg13 — €pa3) and Q, = {0} for p > 2.

Since |legis — eons||” = 2, we obtain 29 >3

0,9] =3[0,e013 —en2s] =1, [3,Q] =1

[1792] = % [176013 - 6023] = %, [2792] = % )\ -
0 >
It follows that
deg(0) 1 1 deg(1) 1 1
Ky=Ky=1-— - == Koy=K =1- — == Kpa=1=
3 0 5 +3 3’ 2 1 5 +6 6’ total X



Example. Let G be a 3-simplex

We have
Oy = <€012, €013, €023, 6123>
and
Q3 = <€0123>;

while @, = 0 for p > 3. It follows that, for any vertex z,
[,Qs] =degp (z) =3 and [z,Q3] =1

whence ; () [ Q] [ Q] .
€g (T R T, i3
K,=1- — =—, Kiga=1=x.
5 + 3 1 1 total X
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Example. Let G be an n-simplex, that is, a digraph with a set of vertices {0, 1, ...

and edges ¢ — 7 whenever ¢ < j. Then, for any p=0,1,....,n
Qp = Ap = <eio...ip : io <1 <..< ’Lp>

so that dim Q, = ("1). It follows that, for any vertex ,
p p+1

[z, ] = # {%...i,, such that = € {io, ...,z'p}} = (Z))

and

Change 7 = p+ 1 gives

AL - (n+1 ais
(n+1) K, =) (-1)""" Z Y =1,
j=1 il
whence N
Kw = nt1 and Ktotal = 1.
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Example. Let G be a bipyramid:

We have Qg =5, || =09,

QQ = <60137 €123, €023, €014, €124, €024, 6012>

Q3 = (eo123, €o124)

and |Q,| =0 for p > 4.

Hence, 7
X = |QO‘ _|Ql|+‘92|— ‘Qg,‘ =5—-94+7—92=1.
Let us compute the curvature:
x [z, Q] | [z,0] | 1 — deg(@) | [x,?f)lz] [m,i);;] _ k.
3. 3 1 —
3,4 3 1 1 — i3 =

2 3
Hence7 Ktotal =1 + 5 = 1.

46




Example. Let G be a 3-cube. We have

Qs = <€013 — €023, €015 — €045, €026 — €046,
€137 — €157, €237 — €267, €457 — 6467)

(note that this above basis in {25 is orthogonal)

Q3 = (eo237 — €0137 + €0157 — €0a57 + €0467 — €0267)

Let us compute the curvature:

—_—

[z,922] [z,923] deg(z) [z,820] [z,Q] | _
- 5 : 6 : 1_323+132_ . _{(x
uX AR RN S R S S L |
Consequently, Ko =2+ 5 =1=x
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Example. Consider on octahedron:

We have

Qs = (€024, €034, €025, €035, €124, €134, €125, €135)
and Q, = {0} for all p >3
For any vertex x we obtain

[z, (o] = dega (z) =4

whence

1 de(@) , degs (@)

—1—
2 3

N [

_|_

SV
W=

In particular, K, = g =2=.

48



Example. Consider on octahedron with a different orientation:

We have the following orthogonal bases:

Qy = <6024, €025, €014, €015, €234, €235, €134, €135, €013 — 6023>

Qs = (60234 — €0134, €0235 — 60135>

x = Q| = Q1] + Q] — Q3] =6-12+9-2=1

T [x,2] [x,923] 1 — deg2($) + [33,;12] . [95,23] =K,
0[4+2=1[2=2[1-2+2-2 = <
N FER Y e =
e E U T =
s[asf—s[i-ali-{+1-7 =
aE RS RS B =
514 Z=1]1-5+2-1 =L
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Example. Here is yet another octahedron. We have to orthogonalize the bases:

Qy = <€o14, €015, €024, €052, €134, €153, €234, €523,
€013 — €023, €013 — €053, €524 — 6534>

= (6014, €015, €024, €052, €134, €153, €234, €523,
€013 — €023, €013 + €023 — 2€053, €524 — 6534>

(3 = <€0153, €0523, €5234, €0134 — €0234, €0534 — €0134 — 60524>

= <€0153, €0523, €5234, €0134 — €0234, €0134 + €0234 — 2€0534 + 260524>

Qy = (605234>7 Qp

= {0} for p > 5.

[:L‘,Qg]

III',Q4]

T [z,€22] [,€23] [2,924] 1_deg2($)_|_[f€a§22] _ B 4+ | : ~- K,
0[4+2+8= 2+24+ 0=y [ 1 (1248141 <
1 [avdei=F [iejvb=f]0 [1-4 1 B =
2 |a4i4ipi=8]o4la-_3 | 1 [1-24+86 3,1 = 8L
R Y T S N W Y P S T I
41]44+2=5 1+:+80=3 [ 1 [1-s+3-2+1 = =
s[ariv3-0 [seg-2 |1 [1-i - BF ;

31 13 7 5 __ _
+1T80+@+@+%_1_X
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Example. Consider the following spider-like digraph G-

a

b() b m

The space {2, consists of squares €qp,. — €ap,c and their linear combinations, while 2, = {0}
for all p > 2. It is easy to see that

Q2 — <€aboc - eabjc>§n:1 (27)
so that |Qs| = m and Kipta = x = |Qo] — || + |22 =(m+3) —2(m+1)+m = 1.
Orthogonalization of (2.7) gives the following orthogonal basis in (25:

W1 = €abye — Eabic

W2 = €abgye + €abic — 26@()20
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Wi = €abge + ...+ €ab;_1c — ieabic

Wm = €abge + ...+ €aby,_1c — MeEgb,,c

We have [a,w;] = [¢,w;] = ||wi|” = i (i + 1) while
0, j>i
[bj,wi] = 1, ] <1
2, j =i

which implies

deg(a) 1 2 [a,w] m+1 m 5 m
Kc:Kazl— — :]__— —_— = = = —
2 +32-:21;@1.“2 2 3 6 6
and
deg (b, 1 ™ |bj,w; 1 2 1 1 1 1
Kb<=1—w+—2.[?’—w]=—%+—z — :—<1——).
J 2 3i:12(7’+1) 3]<]+1) 3i:j+1l(l+1) 3 m—l—l
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Example. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges and 26 faces,
among them 8 triangular and 18 rectangular.

Let us make it into a digraph G by choosing
direction i — j on an edge (7,7) if ¢ < j.
Then each face becomes a triangle or square.

For this digraph |Hy| =1 and H, = {0} for
p=1and p > 2.

Spaces 2, with p > 3 are trivial, while |{2y| = 26.
Space {2 is generated by 8 triangles and 18 squares:

Qy = <€023, €178, €456, €91011, €121415, €131920, €161718, €212223,
€018 — €038, €0113 — €01213, €0214 — €01214, €1719 — €11319, €236 — €246,
€2416 — €21416, €3611 — €3811, €4517 — €41617, €51011 — €5611, €51022 — €51722,
€7811 — €7911, €7921 — €71921, €91022 — €92122, €121320 — €121520;

€141518 — €141618, €151823 — €152023, €172223 — €171823, €192023 — €1921 23>,
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while the generator of Hs is a signed sum of all these 2-paths.

This basis in €25 is orthogonal. Hence, we compute the curvature:

= 0,11,23 1,3,4,6,8,9,12,13,15,16,18,20,21 | 2,5,7,14,17,19,22 | 10
x,(02|= 6 __ 4 5 _ 7 3 _ 5
NSNS FIUES =g {ire=g
-yt =l-5+5 | 1-5+3 l—g+ |[1-3+°
L 3 6 6
It follows that
Ktotal_§+%_%:2-
For comparison
X = |Qo] — ||+ =24 — 48 +26 =2

= |[Ho| — |Hy| + |Hy|.
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Example. Consider the following pyramid:
Let us make it into a digraph G by choosing U

direction ¢ — j on an edge (i,7) if i < j.
We have || =8, || = 18,

Qy = <60177 €027, €037, €047, €057, €067

€012, €023, €034, €045, €056, €127, €237, €347, €457, 6567> 0 3
(3 = (60127, €0237, €0347, €0457, 60567> 6 Y
5

Q, = {0} for p > 4.
Let us compute the curvature:

T [z,$22] [z.9s] | 1 _ degz(w) + [wé?z] _ [%23] - K,

7 L 11 _ b — 1

0,7 11 5! 1—3—1-33—1;1 —1—5

1, 6 3 1 1— Z + § - % = %

2,3,4,5 5 2 1_§+§_Z = g

It follows that Kipa = —35 +

= Do

—|—%:1. For comparison x =8 — 18 416 — 5 = 1.
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Example. Let us compute the curvature of icosahedron (cf. p. 28).

-
B)

Here we choose direction i — j if ¢ < j. We have

|H| =0, |Hy| =1, |H,| =0 for p> 2
IQ()| = 12, |Qll = 30, |Q2‘ = 25, |Qg| = 6,
| =1 and Q, = {0} for p > 5.

Hence, x = [Ho| — |H1| + |H2|
= |Qo| — || + || — |Q23] + |Q24] = 2.

We have
Qy = <60197 €012,€1211,€026,€059,€056,€5610,€139,€1311, €267,
€6710,€2711,€349,€348,€4810,€3811,€459,€4510,€7810,€7811;

€0111 — €0211; €0510 — €0610, €2610 — €2710, €3410 — €3810; 6027—6067>

Q3 = <€01211, €05610; €34810, €0267, €26710, —€06710 + €02710 — 602610>
2 7
a “snake like” path e;,. 4,
2 = (e026710) with iy — d541 and dp, — 4
£ v o k k+1 k k+2

is J-invariant

o6



Computation of the curvature:

= 0 1 3, 11
F”Zt 6+§: 8 54i=4 5+§=171 54+2=6
He3I= 3+2=14 1 3+§:? 1
o ha]= 1 0 1 0
4 [,2p] 5,8_4,1 5, 1172 1 5,7 3,1 5,6 1
2op=o ("1 R | 1o —ats | 1oty | I ts [ Lo ts—y
K —0 1 —7 T
¢ 30 12 60 4
4,5, 8 6 7 10
1__ 11 3__13 3__13 6__
5—{—5—7 5—|—g—g 5+g—87 ) 5—|—g— 8
1 3+§:? 2+§_§ 0 3+§: 4
0 1 1 0 1
5  11/2 1 5, 13/2 11/3 | 1 5, 13/2 8/3 | 1 5,5 5,8 4,1
1oty |1y tg | 1oty =g | 1945 | 1—2+5—3+5
—T — —1 T If
12 — 20 — 5 6 30
Note that K¢ = —% < 0.
The total curvature: Kippr = 552+ 54+ &+ 32— +2+35=2.
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Example. Consider a randomly generated digraph:

We have V =15, E =39
‘H1’:2, |H2‘:1, Hp:{O} fOI‘pZS
Q| =28, Q3] =4, Q,={0} forp>4.

Hence, x = |Ho| — |H1| + |H2|
= Qo] — [Qu] + || — 23] =0

<€13214 — €131214, €13214 — €13914, €0214 — €0914, €143 — €163,
€1413 — €1613, €506 — €516, €7214 — €7914, €914 — €9124,
€1014 — €10124, €1072 — €10112, €10113 — €10143, €1109 — €1179,
€1151 — €1171, €1243 — €12143, €1271 — €12141, €791, €91214, €9141,

€1071; €10117, €10127, €101214, €101415€1102, €1135; €1150, €1172; 613912)

Q3 = <€101172, €1391214, €101271 — €1012141, €110214 — €110914 + €117914 —6117214>

{Kx}iioz{ 7 1 23 111 1101321 11 13

1
T240 7 120 72 676767 3767072376718 12024J °
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2.4 Some problems

Problem 2.4 Compare this notion of curvature with other definitions of curvature of
graphs.

Problem 2.5 Is it true that for icosahedron (see p. 56) || = 25 for any numbering of
the vertices?

Problem 2.6 Devise an efficient algorithm/software for computation of the spaces €,
for arbitrary digraphs, possibly avoiding null-spaces of large matrices. Such algorithms
exist for Qo and €23.

Problem 2.7 Let a digraph G be determined by a triangulation of S* (see Section 1.7).
Assume that deg (x) < 4 for all x € G. Is it true that K, > 0 for all v € G?

For triangulations of S! we have always K, > 0: these are triangles and squares with
K, > 0 and other polygons with K, = 0.

For triangulations of S? we have verified above that K, > 0 for simplex, bipyramid,
octahedron, but with specific orientations of edges (the question remains open when the
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numbering of vertices is arbitrary). All these digraphs have deg (x) < 4. We have seen that
K, < 0 can occur for icosahedron with deg (z) = 5 and for a pyramid with deg () = 7.

Problem 2.8 Denote D = max,cqdeg (z). Is it true that |K,| < Cp for some constant
Cp depending only on D? The same question about K® and K.

Note that K, can be arbitrarily large, for example, for a strongly regular digraph satisfying

(B(k,m)), we have
_1-(-m"

I
km

while deg (z) = (k — 1) m.

Problem 2.9 What can be said about the curvature of random digraphs?
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3 Cartesian product of digraphs

3.1 Cross product of paths

Given two finite sets X, Y, consider their product
Z=XxY={(a,b):ae XandbeY}.

Let z = zp21...2, be a regular elementary r-path on Z, where 2z, = (ay, by) with ap € X
and b, € Y. We say that z is stair-like if, for any k = 1,...,r, either ax_1 = a; or
bp_1 = by is satisfied. That is, any couple z,_12z;, of consecutive vertices is either vertical
(when ay_1 = ay) or horizontal (when by_1 = by,).

For any stair-like path z on Z, define its v (324)

projection onto X as an elementary path

x on X obtained from z by removing the )

¥
Y -components in all the vertices of z and /

by collapsing in the resulting sequence of

points of X consecutive repeated vertices 11*

to one vertex. (xo.00) Xi Xp
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In the same way we define projection of z onto Y and denote it by y.

Projections x = xy...x, and y = yo...y, are regular elementary paths, and p + ¢ = r.

Every vertex (z;,y;) of path z can be represented
as a point (4, j) of Z? so that path z is represented
by a staircase S (z) in Z? connecting points (0, 0)

and (p, q).

Define the elevation L (z) of z as the number of

cells in Z2 below the staircase S (z).

(0,q)

5)

(P.q)

G

(0,0)

(p.0)

For given elementary regular paths z on X and y on Y, denote by II,, the set of all

stair-like paths z on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths e, and e, as a path e, X e, on Z as

follows:

er X €y = Z (=) @,

z€llz,y

(3.1)

and it extend by linearity to all u € R, (X) and v € R, (Y) so that u x v € R4, (Z).
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Example. Let us denote the vertices on X by letters a, b, ¢ etc and the vertices on Y by
integers 1,2, 3, etc so that the vertices on Z can be denoted as al, b2 etc as the fields on
the chessboard. Then we have

a3 b3
® c3
€a X €123 = €q1a2 a3y €abe X €1 = €41b1 cl
€ab X €12 = €41b102 — €ala2b2
b2

a? c2
€ab X €123 = €41b152b3 — €ala2b2b3 T €ala2a3b3
€abe X €123 = €g1blclc2¢3 — €alblb2c2c3 Tt €alblb2b3c3

+€a1a2b2¢2¢3 — €ala2b263¢c3 + €ala2a3b3c3
al bl cl

Lemma 3.1 Ifue R, (X) andv € R, (Y) where p,q > 0, then

J(uxv)=(0u)x v+ (—1)Pux (dv). (3.2)
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Example. For example, let © = ey, and v = e103. We have

9 (u x v) = 0 (ea1p16263 — €a1a26263 + €a1a24353)

= €p1b2b3 — €a1b2b63 T €a1b1b3 — €albl b2
>

— <€a2 b2b3 — €a1b263 T €a14a2b3 — €al a2 b2>

+ €4203b3 — €a1a3b3 T €ala2b3 — €ala2a3
>

(3€ab) X €123 = (Gb - aa) X €123 = €p1b2b3 — €ala2a3

(—1)p €ap X O€123 = —€qp X (623 —e13+ 612)

- (€a2b2b3 - €a2a3b3) + (€a1 b1b3 — €al a3b3) - (€a1 b1b2 — €a1a2b2) .

The comparison of all terms shows that the identity (3.2) holds.
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3.2 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given
two digraphs X and Y, define there Cartesian product as a digraph Z = X[1Y as follows:

e the set of vertices of Z is X x Y, that is, the vertices of Z are the couples (a,b)
where a € X and b € Y;

e the edges in Z are of two types: (a,b) — (a’,b) where a — a’ (a horizontal edge)
and (a,b) — (a,b’) where b — b’ (a vertical edge):

y (a) (@)
[ ) e [ ] — [ J
7 7 T

b (a,b) (a’,b)
° ce o — °
L e — °

/

S}

It follows that any allowed elementary path in Z is stair-like.
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Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and
its projections onto X and Y are allowed.

It follows from definition (3.1) of the cross product that
ueA,(X)andve A, (Y) = uxveAd,,(Z2). (3.3)

Furthermore, the following is true.
Lemma 3.2 Ifu e Q,(X) andv e Q,(Y) thenu xv € Q1 (Z) .

Proof. u x v is allowed by (3.3). Since du and Jv are allowed, by (3.3) also du x v and
u x Ov are allowed. By (3.2), 0 (u x v) is also allowed. Hence, u x v € ,,,(Z). =

Theorem 3.3 Any 0-invariant path w on Z = XY admits a representation in the form

m
w=> u; X
i=1

for some finite m, where u; and v; are O-invariant paths on X and Y , respectively.
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3.3 Kunneth formula

Here is the main result of this section.

Theorem 3.4 Let X,Y be two finite digraphs. Then, for any r > 0,

QXY)= - @ QLX) (),

{p,q>0:p+q=r}

where the isomorphism is given by
URUVH—UXV
foru e Q,(X) andv € Q,(Y). Consequently, we have

HXOY)= D H(X)eH(Y)

{p,q>0:p+q=r}

and

B, (XOY) = > B (X)B,(Y).

{p,q>0:p+q=r}
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Example. Let X be an interval and Y be a square:

X

Then Z = XY is a cube:

We have:
0 (X) = (ean)
Q,(X)=0forp>2

01 (Y) = (eo1, €13, €23, €02)
Qs (Y) = <€013 - 6023>
Q,(Y)=0 for ¢ > 3.

By (3.4) we obtain

e —o andY =

2@

T

— @3

— @]

a3=3

»
-

Y

Q3(Z) =y (X) ®@ Qs (Y) = (eas X (€013 — €023))-

Let us compute the cross-products:

b1=5



- a3 b3 3 7
€ab X €013 = €a0b0b1b3 — €a0albl b3 T €adal a3 b3

= €p457 — €0157 T €0137

and al b1 1 5

€ab X €023 = €0467 — €0267 T €0237

Hence, we obtain

Q3 (Z) = (eoas7 — €o157 + €0137 — €0467 + €0267 — €0237)
that is the 0-invariant 3-path associated with 3-cube.

Define n-cube as follows:
n-cube = JOION...00 =: ",
—_—

n

where [ = {® — e} . In particular, the square =12 and the above cube is I°.

Similarly one shows that €0, (n- cube) is spanned by a single n-path that is an alternating
sum of n! elementary n-paths connecting the vertices 0 and 2™ — 1. This corresponds to
partitioning of a solid n-dim cube into n! simplexes.
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Proposition 3.5 We have for any p > 0

dim Q,(I") = 277 (") ,

D

and
m_ ) 1, p=0
519(])_{0’ p>0'

Recall that 3, = dim H,.

For example,

dimQ (I°) =8, dimQ (1) =12, dimQ, (I°) =6,
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3.4 An example: 2-torus

Example. Denote by T the following 3-cycle (=1-torus):

b 1
T = AN = A0\
‘g «— of Ve « o2

Consider a 2-torus 7?2 = TOT shown here:

Let us compute 2, (G), H, (G), K, (G).

We know that

Qo (T') = (€0, €1,€2), h (T) = (eo1, €12,€20), € (T) = {0} for p>2
By (3.4) we obtain 2, = {0} for » > 3 and
0 (T%) =0 (T) © 0 (T)

= <€ab X €01, €ab X €12, €qp X €20, €pc X €01, Epc X €12, Epc X €20, €cq X €01, €cq X €12, €cq X €2o>
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Using

€ab X €ij = €aibibj — €aiajbj

we obtain that a b

2
2 (T ) = <€a0b0b1 — €a0albly €alblb2 — €ala2b2; €a20260 — €a2a0b0;
€b0c0cl — €b0blely Eblecle2 — €b1b2¢25 €b2c2c0 — €b2b0 05

€c0a0al — €c0claly €clala2 — €clc2a2; €c2a2a0 — €c2c0 a0>

that is,

2
Qs (T ) = <€034 — €014, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536

€601 — €671, €712 — €782, €820 — 6860>-

We see that Qs (T?) is generated by 9 squares.
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This can be visualized using
the following embedding of

G = T? on a topological torus:

Using €25 (G), let us compute
the curvature K, on G.

The above basis in Q5 (G) is

orthogonal and ||wl||* = 2

for any element w of the basis.

Besides, for any vertex x, we have [x,w] = 2 for two of w, [z,w] = 1 for two of w, and
[z,w] = 0 for the rest of w. Hence,

T,w 2:2+2-1
) =y ] 22421
> ol

and ] () [ ] A s
eg (x x, ()
K.=1-— + =1—=—4+-=0.
v 2 3 2 3 0
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Let us compute the homology groups of G. We know that
Hy(T) = (eo), Hi(T)=(en +e12+exn), H,(T)={0} forp>2.
By (3.5) we have
H, (G) = Hy (T) ® Hy (T) + Hy (T) ® Ho (T) = (v1,v2)
where
V1 = €q X (€01 + €12 + €20) = €ava1 + €ara2 + €a2a0 = €01 + €12 + €29
V2 = (€qb + €be + €ca) X €0 = €a050 + €0c0 + €c0a0 = €03 + €36 + €60-

Again by (3.5)
o Hy (G) = Hi(T) @ Hy (T) = (u),

where
U = (€ap + €be + €cq) X (€01 + €12 + €29)

and H, (Z) =0 for all r > 2.
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Hence, we obtain

U = €4060b1 — €a0albl T €alb1b2 — €ala2b2 T €a26260 — €a2a0b0
+ €p0c0cl — €hoblel T Ehlcle2 — Eb1b2¢2 T €b2¢2¢0 — €b250 O

+ €c0alal — €c0clal + €clala2 — €clc2a2 + €c2a2a0 — €c2c0a0

that is

u = (eg3s4 — €o14) + (€145 — €125) + (€253 — €203) + (€367 — €347) + (€478 — €458)

+ (es86 — €536) + (€601 — €671) + (€712 — €782) + (€820 — €860) -

16)



3.5 Cartesian product and curvature

Proposition 3.6 Let X be any digraph with a finite chain sequence {Q,} and Y be a
cyclic digraph
Y={0—-1—-2—..—>m—0}

with m > 2. Then, with respect to the natural inner product,
K, (XOY)=0

for any z € XOY. In particular, K(T™) = 0 where T is an 1-torus.

Consider an n-cube= I"™ where I = {0 — 1}. Then any vertex = of the n-cube is repre-
sented by a binary sequence (x1, ..., z,). Set |z| =1 + ... + .

Proposition 3.7 For any vertex x of the n-cube we have

1

K, (n-cube) = m

Problem 3.8 How to compute K (XOY) in general?
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3.6 Strong product

Define a strong product XIAY of digraphs as follows: the set of vertices of XIAY is X x Y,
while the arrows are defined as follows: (a,b) — (a’,b) where a — @’ (a horizontal edge),
(a,b) — (a,b’) where b — V' (a vertical edge), and (a,b) — (da’,0’) where a — o’ and
b — V' (a diagonal edge):

(a’b/) (a/’b/)
{ ] — { ]
R

(a,b) (a’,b)
[ J — ([ J

Conjecture 3.9 The Kinneth formula holds for the strong product:

H.(Xuy)= O (H,X)eH(Y)),

{p,¢>0:p+g=r}

where the isomorphism is given by u @ v — u X v.
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It suffices to prove an analogue of the theorem of Eilenberg-Zilber: there are chain maps
F:Q.(XY) - Q,(X) @02, (Y)

and
G:Q(X)®Q (Y) — Q, (XaY)
such that F'G = id and GF' is chain-homotopic to id.

In fact, one can define G by G (u ® v) = u X v, while the main difficulty is in construction
of F'. In the setting of Theorem 3.4, one uses Theorem 3.3 to show that G is bijective so
that one can take FF = G~ L.
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4 Join of digraphs

Given two digraphs X,Y, define their join X %Y as follows: take first a disjoint union
X UY and add arrows from any vertex of X to any vertex of Y.

For example,

{o,0} x {0 o} = T |l and T | x{e 0} = |

In order to compute homology of X xY we use the augmented chain complex

0 0 0 0

K «— Qp <« € «— ... <« Q 0 0

— Q. & ... (4.1)

p—1 D

where OJe; = e =the unity of K.
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The homology groups of (4.1) are called the reduced homology groups of G and are
denoted by H, (G). We have

H,(G) = H,(G) for p>1and Hy(G)= H,(G)/K.

Define the reduced Betti numbers: Bp (G) = dim f[p (G).
Define the join of elementary p-paths u = e;,. ;, on X and v = e¢;, ; onY by
U*V = €. ipj0...54
so that uxv is a (p+ ¢ + 1)-path on X %Y. Then extend this definition by linearity to all
paths v on X and v on Y.

If w and v are allowed then wu * v is also allowed. The join of paths satisfies the product

rule
O (u*v) = (Ou) * v+ (—=1)" u* dv.

It follows that the join of J-invariant paths is O-invariant: if u € Q, (X) and v € , (Y)
then uxv € Q, (X *Y) where r =p+ ¢+ 1.
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Theorem 4.1 We have the following isomorphism for any r > —1:

L= @ 9 0e) (12

that is given by the map u @ v — uxv with u € Q,(X) and v € Q, (V).
Consequently, for any r > 0,

H, (X xY) b HX)H®Y) (4.3)

{p,q>0:p+q=r—1}

and

B,(XxY)= 3 B, (X)B,(Y).

{p,q>0:p+qg=r—1}

81



5 Digraphs of constant curvature

Fix a finite digraph G = (V, E). The space A, of allowed p-paths on G consists of all
formal linear combinations of elementary allowed p-paths e;,. 4, (where ig — i1 — ... — 1,
on G). Consider its subspace Q, = {w e A, : 0w € A,_1}. Then we have a path chain
complex of digraph G"

o 9] 15) 9] 15) 19]
0 « Qy « & <« ... & Q1 «— Q) — Q1 — ...

Fix in each A, the natural inner product such that all allowed elementary p-paths e;,. ;,
form an orthonormal basis in A,. This induces an inner product in all chain spaces €2,,.

For any vertex = of G and any p-path w = > w""re;  ,; we have

zw]= ¥ (W) [z,

19...1pEV
where [:E, eio_,_ip} =the number of occurrences of x in 1, ..., 7p.

If {wy} is an orthogonal basis of €2, then by (2.5)

[z, wg]

[z, ] =2

2
k||l
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If the sequence {€1,} is finite, that is, €2, = {0} for large enough p, then we define the
combinatorial curvature of G at a vertex x by

p=0

[

p—

Recall the Gauss-Bonnet formula:

Kl 1= ZK Z )P dim €,

zeV p=0

In this section we construct a two-parameter family of digraphs with K, = const .

Recall that a graph is called regular if deg (x) is constant. We say that a digraph G is
strongly regular if the function = +— [z, 2] is constant for any p (and €2, = {0} for large
enough p). In particular, a strongly regular digraph G is regular because deg (z) = [z, {4].
In this case K, = const and, hence,

Ktotal _ X(G)
V] 14

K, = =: K(G).
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For any digraph G and any m € N
let us construct a new digraph by
adding to G m new vertices

{y1, .., ym } and all arrows x — y;
for all z € X.

This digraph is called m-suspension
of G and is denoted by sus,, G.

In fact, sus,,G =G *{y1,...,Ym} -

Theorem 5.1 Let G be a strongly reqular digraph, such that for some k,m € N and, any

p=0,
k
dim Q,(G) = (p—|— 1) mPTt, (B(k,m))
Then sus,, G' is also strongly regular, and for all p > 0,
k+1
dim Q,(sus,, G) = (pil)mpﬂ' (B(k+1,m))
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For the digraph G as in Theorem 5.1 we have

v@) =X (tpame, = ap (B Y= -5y (M 1o

p>0 p=0 =1

It follows that §
x(G) _ x(G) 1-(1-m)
V|  dim Q km '

Of course, the same formula is true for K(sus,, G) with k replaced by k + 1:

K(G) =

1 — (1 — )+
(k+1)m

K(sus,, G) =

Let us now construct a family {DF, } rmen Of digraphs, satisfying (B(k, m)) Denote by
D,, the digraph that consists of m disjoint vertices and no arrows: D,, { o ..o} Then

m vertlces

1
< N 1)mp+1 forp>1
p

D,, is strongly regular and satisfies (B (1,m)) because

1
dim Qg (D,,) = m = (p N 1) mP* for p=0, dimQ,(D,,) =0
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Define the digraph DF by
Df =D, % ...% Dy,

m J/

-~

k

that is, DFF! = sus,, D¥ . From Theorem 5.1 we obtain by induction that DF is strongly
regular and satisfies (B(k, m)).

Hence, DF has a constant curvature

1—(1—m)"
km '

K(Dk) = (5.1)

One can show that the only non-trivial Betti number of D with k& > 2 is

Br_1 = (m — 1)k-
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Example. For m = 1 we have by (5.1) K(Df) = +.
Digraph DY is
a (k — 1)-simplex:

D\=D, D2

Example. For m = 2 we have by (5.1)

K(D’;) _ { 0, k even

Digraph D3 is a diamond:
It is an analogue of 1-sphere.

It has constant curvature 0.
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D3 is the octahedron:
It is an analogue of 2-sphere.
1 1

It has constant curvature o

Dj is an analogue of 3-sphere.

It has constant curvature 0.

D5 is a digraph analogue
of a k-sphere S¥ because
D4 is obtained from DE

by 2-suspension.

Besides, the only non-trivial
Betti number of D5*!is 5, =1

like Betti numbers for SF.
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Example. For m = 3 we have by (5.1)

1—(=2f 1 (1-2% Fkeven
k\ __ - ) )
KDy = =5 3k{1+2k, k odd.
0 3
For example, D3 is a directed version of K33 :
We have
1
K(D3) = 3 1 4
and
K(D3) = 1.
2 5
D3
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6 Hodge Laplacian on digraphs

As above, we fix the natural inner product (-,-) in all spaces €2,,.

6.1 Definition of A,

For the operator 0 : €, — €2,_; consider the adjoint operator 0* : §2,_; — €1, so that

(Ou,v) = (u,0%v) for all u € Q, and v € Q,_1.

Definition. Define the Hodge-Laplace operator on paths A, : Q, — €, by
Apu = 0"0u + 00™u. (6.1)

) o
Here we use the following operators d and 0*: ,_; = Q, and Q, = Q,4;.
o ]

Proposition 6.1 The operator A, is self-adjoint and non-negative definite.
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Denote by Amax (Ap) and Ay (A,) the maximal and minimal eigenvalues of A,. As we
will see below, Awin (Ap) = 0 if and only if 3, > 0; moreover, 3, is the multiplicity of the
eigenvalue 0 of A,.

Problem 6.2 Find a reasonable upper bounds for Amax (A,). (Some upper bound for
Amax (A1) will be given below).

Problem 6.3 Find lower bounds for Amin (A,) when 3, = 0.
Problem 6.4 Devise a program for computing the spectrum of A, for large digraphs.

Problem 6.5 For which classes of digraphs the spectrum of A, can be computed exactly?
(Some partial answer will be given below).

We say that two digraphs G and G’are Hodge isospectral if spec A,(G) = spec A, (G") for
all p > 0. A natural question in the spirit of inverse spectral problems is whether Hodge
1sospectral digraphs are isomorphic. In general the answer is “no”, but in the existing
examples the digraph G’ is obtained from G by changing orientation of some arrows.

Problem 6.6 Is it true that Hodge isospectral digraphs are isomorphic as undirected
graphs?
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6.2 Harmonic paths

A path v € Q,, is called harmonic if A,u = 0. One can easily verify that a path u € Q,, is
harmonic if and only if du = 0 and 0*u = 0.

Denote by H, the set of all harmonic paths in €2, so that H, is a subspace of €2,,.

Theorem 6.7 (Hodge decomposition) The space €2, is an orthogonal sum:
Qp =011 P01 DH, (6.2)
where 0 and 0* are as follows:

o* 0
Qp—l — Qp — Qp_|_1.

Corollary 6.8 There is a natural linear isomorphism
H,=H,. (6.3)

In particular, dimH, = 3, that is, the multiplicity of 0 as an eigenvalue of A, is equal
to the Betti number 3,.
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Proof. Consider the operators
0
Q1 S Q.
a*

It follows from (6.2) that
ker Ao, = (3"Qp_1)" = 001 DH,

whence H), = kerdl|qg,/0Qp11 = H,. =
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6.3 Matrix of A,

Let {a;} be an orthonormal basis in €2, {(,,} be an orthonormal basis in 2,1 and {~,,}

be an orthonormal basis in €2, :

1o} 0
LWt S Q S QU

0 G
{Bm} {aq} {rn}
The operator 0 : Q, — ,_1 has in the bases {«a;} and {f,,} the matrix
B = ({8, 00i)) s

where m is the row index and 7 is the column index.

Similarly, the operator 0* : 2, — 2,1 has the matrix

O = ({1 ")) = (07 i) -

Since A, = 9*9 + (9*)" 9%, we obtain the matrix of A, in the basis {«;}:

matrix of A, = BTB+CTC|
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More explicitly, the (i, j)-entry of the matrix of A, in the basis {«;} is given by

(Apei, a5) = 32 (0, B,,) (D, Bra) + 2 (i, 07) (05 07,,) | (6.8)

m

Example. Recall that Q_; = {0}, Qo = {e; :i € V} and @y = (e; : k — [) . Assuming
that (-,-) is the natural inner product, we obtain by (6.8) that the matrix of Ag is
(Agei,e5) = > (€, Oen) (€5, Oerr)

k—l

= > (ei,e1 — ex) (ej,e1 — ex)

k—l

= > (0a — dix) (60 — djn)

k—l
= >0+ D 05— 1y — 1.9

k—1 i—l

= deg (i) dij — Lpgy — Loy

If G has no double arrow then the matrix of Ay = diag (deg (¢)) — 1f~;3 where 15y is
the adjacency matrix of G. Hence, A, is the usual unnormalized Laplacian (=Kirchhoff

operator) on functions on G.

Consequently, trace Ag = )., deg (i) = 2.
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6.4 Examples of computation of A,

Let us compute A; for the natural inner product. We use the orthonormal bases {e,,} in
Qo and {e;; : ¢ — j} in Q. Let {7, } be an orthonormal basis in (2s.
The matrix of A; has dimensions E x E and, by (6.8), its entries are

(Areij, eqjr) = D (0eij, em) (Oewjr, em) + D (€5, 0Vy) (e, 0Vy) (6.9)

m

for all arrows ¢ — j and ¢ — j’. For the first sum in (6.9) we have

D, (@2, Em)) (@) ) = 0, (@5 = @5y @) (@0 = @95 @) = 2 (Un = Vi) (Ot = Gom)

m m m

= 5jj’ — 5ij’ — 5ji’ —+ 52'1-/ = [Z], i/j/] 5

The values of [ij,¢'j'] are shown here: po—" / o -
i'=i e ="'

| o——) LN ——y

0 ! 1

Hence, in the case p = 1, we have

B'B = ([2‘7’ Zl]/]) ' .,»_./j, "." 7' ij/" J=i'

In particular, diagonal entries of BT B are 2.

[N}
N}
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Example. Consider an 1-torus

In this case 1 = (eq1, €12, €20), 22 = {0}, |H1| = 1. Hence, we obtain

the matrix of A; = B'B = ([ij,4'j])

€01 €12 €20
| eot [01, 01] 01, 12] [01, 20]
- €12 [12, 01] 12, 12] [12, 20]

€20 [20, 01]

[
[
[
% =il =il
(-1 2 -1
-1 -1 2

The eigenvalues of Ay are {0, 3,3} = {0, 3,}.

20,12] [20, 20]
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Example. Consider a dodecahedron (like on p.2.3):

coocococooo|moococoocoomc|iee oo
cocococococoococococooocoo ococoocoolr

cocococococoococococococoocoooo|mooo

cecccccscccs[deccsselte
-

coccoccccoccccocoooo oo oton
P e o O PP o P = e
ccocococococoocooooo oo oo oalq
ola[s[olo/c[sE=El|ss o=/ BEEs[=|s]=

coccoocoocoocoococooooo

cccccccccccccccoo|a—Ttee

cecccof[rlo[tleccccsfaescssss

cococococolfcococoocoofuamecococos

°c o oo ol7|e ccoof-lalmlcccccecce

ooilzloooooooo@

o o oo oly|e

o oflmlalmlccc oo

coo|Tec e

coeoly|jeoe -

10000000071‘00

011_700000 almlccccococooolmoo

D PSP decccccccldosss

ceecsceo cecco[dessccse

<1100 000000000000O0O0O0O0

SJecccccsco[decss

ccoccoof[fleccscecs
s o
o

ERCS
cecc[f[fleecccccss
ololooole

~
o o|7|o|=|ale

o o|7|o|a]~ cocoocoo

0000000000000O000O00O0O0O0O0O00O00O0

0000012000000
0
0

co[f[7lecccccccccs

ccocococoocoocooo

“|ol=lals o =
=|o[al=[=]7]e

Nocoocoo

B
B

B

-

B
cccccscoa
S

B

B

B

-

-

o[7[7f]leccccccoccocccs

SEFFleccccoccccccccccacas

ccoccocoo[flocococcccacacas

21000 0[1/o-1lo0o000000000000000000

1/12.0000000

1[1)-1/-1

Y
cococoluloftflcccccoccoccocococoe
£

1

cocococoocoo

=]
1

F[Flecccccceco

3 Y

54, (3£ V5)

The matrix of A; = BT B is shown here
0117 257 347

where the subscripts show multiplicity.

—
1:
| <
— |
o O
— g
= O
wra
=
= &
— Mm
g
[\
S 5

We have V = 20, £ = 30,
The eigenvalues of A, are

0 ol-1]ol1]2]0

0000102

00000O0O0O0OO0O0OT1/0000O00O0

0 00000000O000O0O00O0O0O0

0
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For a general digraph G with €y # {0}, let us compute the entry (e;;, dv,,) of the matrix
C' assuming that v, = v is a triangle or square (note that although Q5 has always a basis
of triangles and squares, the squares in this basis do not have to be orthogonal).

If v = e is a triangle then we have

(€ij, 07) = (€ij, €ab + €be — €ac) = [15,7],

1, ifij € {ab,bc}
[ij,7] .= ¢ —1 ifij =ac
0, otherwise. . .

If y = Sabe_Clable \@ is a (normalized) square then

where

L.
(ei,07) = 7 (€ij, Cab T Cbc — €apt — Erc) = E 37, 7],
where y .
if ij € {ab,bc} | ‘
3,7 —1 if ij € {ab',b'c}
otherwise. ) —,
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Example. Let G be a triangle {0 — 1 — 2,0 — 2} . Then €; = (eq1, €12, €g2) and

€o1 €12 €02 9 _1 1
T (T:e 07\ €01 [01,01] [01,12] [01,20] . .
BB =i777) = | ., n2o [212 (220 |~ 11 f ;

eoz [02,01] [02,12] [02,02]

The basis {v,,} of {2, consists of a single triangle v = eg15 so that

€= ( 01,] [12, [020,20 =@ 1 -

1 1 -1
ctfc=11 1 -1
-1 -1 1
2 -1 1 1 1 -1 3 00
matrixof Ay = -1 2 1]+ 1 1 —-1]=10 3 0
1 1 2 -1 -1 1 0 0 3
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Example. Let G be a square {0 — 1 — 3,0 — 2 — 3}. Then Q; = (eq1, €02, €13, €23) and

€01 €02 €13 €23 9 1 -1 0
eo1 [01,01] [01,02] [01,13] [01,23] s o
BB = ([ij,i'j]) = | esz [02,01] [02,02] [02,13] [02,23] | = 10 2 1
ers [12,01] [13,02] [13,13] [13,23] 0 1 1 o
ess [23,01] [23,02] [23,13] [23,23]
The basis {v,,} of {2y consists of a single square v = \/Li (€013 — €p23) so that

1 €o1 €02 €13 €23 1
9 :E@ 0L,4] [02,7] 13,7 [23%) VA

I1-1 1 -1 1

T = —
g 0_2 1 -1 1 -1
-1 1 -1 1
5 1 1 1
2 2 2 2
I 5 _1 _1
2 2 2 2

matrix of A= B'B+ C'C = , the eigenvalues are {23, 4}.

N [0 [~



Example. Consider a following digraph:

Here || = F =6, || =2 and 0

Qy = <6014 — €024, €014 — 6034>

1 3
However, this basis is not orthogonal.
Orthogonalization gives an orthonormal 4
basis in 2y:
V1= \/Li (€014 — €024)
Yo = \/Lg (eora + €024 — 2€034) -
Since
Oy, = \/Lﬁ (eor + €14 — €p2 — €24),
Ove = \/Lg (€01 + €oa + €02 + €24 — 2€03 — 2e€34)
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we compute the matrix C"

3o z_ﬁ
3 o Q_ﬁ
§154¢
3154

SIS
SIS

371
8’72

({ei5, 7)) = (

and

\ /
— || e e D
I N e

—| e e D

—| | —| =N
I I

oo — | | N

| O | | | N
D

— ||| |

~— -
I

QO
=
QO
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(lezs €wj])

BTB =

We compute also B:



whence

matrix of A, = BTB+ CTC =

The spectrum of Ay is {24,3,5}.

Example. Consider the following pyramid:

Here |Q0‘ = 5, ‘Ql‘ = 8, ‘QQ| =S 5,

and

Qy = (60147 €024, €134, €234, €013 — 6023> .

——
wlco

[SSIIN) Wi
Wl Wl

W=

104

w|oo
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wrNo
W=

wlno
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(SN wloo (SN
Wl Wl

W=

win
Wi

wloo
Wl

wiN
Wi

wloo Wi (SN
Wl Wl

W=

%)

\

wino
W=

wiry
W=

Wl

wloo
\



We have

BB = ([ij, ")) =

€014
€024
€134
€234

€01
€02
€13
€23
€04
€14

\;%3 (€013 — €023)

€24

\634

2 1 -1 0
1 2 0 -1
-1 0 2 1
o -1 1 2
1 1 0 O
-1 0 1 0
0O -1 0 1

)
e
|
—_
|
—_

€1 €02 €13 €23
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
4 -1 1 1
V2 V2 V2 V2
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e

o

4

== N OO =

€04

€14

_ o= N = O = O

€14

€24

—_ N = == O




—1

=S

—1

—1

(6.10)

~ N
oo oo 1 oo <
SO O OO -+ O
SO o oo < H O
S OO o H oo HA
— | |
_ _1_27_20000
— | N O
_ _7_21_20000
— || N
1_27_2_ _OOOO
— || N
7_21_2_ _0000
N -~
I
O
2
~
A
I
a
Gy
o
s
o r—
—
+~
=

The eigenvalues of A; are {35, 53}.
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Example. Consider the icosahedron:

Here V =12, E =30, |Q| =25

Space {25 is generated by 20 triangles
and 5 squares (see p.56).

Computation shows that
Amin = 0.810... and Amax = (5+ V),
Other multiple eigenvalues are

65 and (5—v/5),.

The full spectrum of Ay is shown here:

1 — - ——— - —— - —— 80—
0.0 0.5 10 1.5 20 25 30 35 4.0
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For icosahedron
the matrix of A; =

4505

1.0

0.0

1.0

-0.5]5.0

1.0

1.0

-0.5

1010

45

0.0

0.5

00]1.0

0.0

40

1.0

10|05

-0.5

1.0

5.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

1.0/ 0.0

0.0
0.0
0.0
0.0

0.5

0.5

00 00]-05/00
5] 00 05| 00

0.0
0.0
00

00 00 00 00

100 00 00 00
05/00 00 00

00 00

0.0

0.0

0.0
0.0

40

1.0

1.0

0.0

1.0 -1.0‘ 00 00

00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00[10]00 00 00

00

0.0
0.0

1.0

40

0.0

0.0

00 00 00

0.0
0.0

-1.01-1.0] 0.0

1000 00 00

00 00 00 00 00
05[-05/00 00 00

1100040/ 10 00

00 00(1.0]45/00

00 00 00 00 00

00[-05] 00 00 00

00-05] 00 00|05

<1000 00 00|50

00 00 00 00 00
05]-05/ 00 00 00
00 00 00 00 00
00 00 00 00 00

00 00 0.0 00

00 00 00 00 00

00 00 m 00 00

00 00 00 00 00
00 00 00[10]00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

00 00| 5 0.0
00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

00 00[05]00
00[-05/00 ooI

05/00 00 00 00

1.0/ 00 00 00]-05

45/1.0(00 00 00

00 00 OOLOO

00[10]00 00 00
00[-10/00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00[10]00 00
00 00 00 00 00
00 00 00 00
00 oooo 00
00 00 00 00 00
00 00 00 00]05

10]45/00 00 00

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0

1.0

0.0
0.0
0.0
0.0

00

0.0

00 00 00
00 00 00
00 00 00

0.0
0.0
0.0
0.0
0.0
0.0

00 00 00 00 00

00 00]05]00 00
0005 00]-05] 00

00 00 00 00 00

00 |05]05]-05] 00

00 00 00 00 00
00 00 00 00 00

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
00
0.0
0.0

00 00[10]00

00 00
00 00
00 00
00 00

00 00 00
00 00 00

00 00 00

00{10/00 00

00 00]45/-05/00

1.0

0] 00 00

00

00 00(-05/45[1.0

0.0

00 00 00]1.0|40

1.0

00]1.0(1.0]00[10

40

00 00 00
00 00 00
00 00 00

05/ 00

00 00

00 001000 00
00 00 00 00 00
00 00 00 00 00

00 00 00

00 00

00 00 00
00 00 00
00 00 00 00 00

00 00

00 00 00 00[-05

05]00 00 00 00

00 00 00 0010

00 00 0000

00 00 00|05

05‘00 00 00 00

00 00 ooLoo

00 00 00 00 00

00 00 00[10] 00

00 00
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0.0
0.0
0.0
0.0

00[-10]00 00 00[40

00[ 1000

0.0
0.0
0.0
0.0
0.0

4011000

101401000

00(1.0[40[1.0/00
00 00[1.0]45/00

00.00 00 00 00

00 00

00 00 00

00 00 00 o.omooz

00 00|

-0.5/-05(-1.0|-05

00 00 00

0.0 0.0 00 00

00 00
00 00
00 00

00 oo.oo

0.0

0000 00

00 00
00 00
00 00

00|-05/00|-05/00 00 00
00 00 00 00 00 0010
00 00 00 00 00

00 00[10]00 00 .

00 00 00 00 00 00 00

00 00 00 0.00.0 0.0

00 00 00 00 00 00 00

00 00[10]00 00 00[-10

00 00 00 00 00 00 00

00[10] 00[10]00[05] 00

1000

1.0/ 00 00 00 00 00 00

00 00 00 00]10

4010

00 00 00 00 00

10 (45

00 00 00 00 00 00 00
00[-05] 00[10]00[10] 00

00 00 00 00/-1.0

00 00

45/00(-1.0{0.0{-1.0{ 00 00

00 00 ooLoo
00[10]00 00 00

00 00 0.0 0.0

00 00 00 00 00[10]00 00 00 00 00

5]0500 00 00 00 00[05]00
00[10]00 00 00 00 00

10100 00 00

00[-05

00]50]00]-05]00]10] 00

00 00

1.0/ 0.0[4.0]00 00 00 00

00[10

00]-05/00]|45[1.0{00 00

00 00

1000 00[1.0[40]00 00

00[10]

00 00

00| 19]00 00 00]45/10
00 00 00 00 00|10]40




Example. Consider a rhombicuboctahedron (see also p.53):

15

Here V =24, E =48, || = 26.

Space {2 is generated by 8 triangles and

18 squares.

We have Apnax = 72 and Ay, = 0.518...,

and there are many multiple eigenvalues:
56, 44, 33, 23, 13 ete.

The spectrum of A; is shown here:

-

0.0 0. 10 LS 20 25 30 kN 40 45 50 53 6.0 6.5 10
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-0‘5‘00 0.0 00]-05/00 0.0 00 0.0 00 00 00 0.0 00 00 0.0{05]-0.5 0.0 0.0 0.0 00 0.0 0.0-0.50.0 0.0 00 0.0 0.0 00 0.0 00 00 0.0 00 00 0.0 00 0.0 00 0.0 00 0.0
1.0{35/00 00 00 00/-.0/00 00 00 00 00 0.0 00 00 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 0.0 00 0.0 00 00 00
0.5/00]35 OOE‘OU 0.0|-1.0]-05/00 0.0 00 0.0 00 00 00 0.0 00 00 0.0{10]00 0.0 00 00 00 0.0 00 00 0.0 0.0 00 0.0 00 00 0.0 00 00 0.0 00 0.0 00 0.0 00 00 0.0 00 00
-1.0/00 00/35/00 00 0.0 00 00 0.0 00 00 00 00 000.0 00 0.0 00 00[05 00 00 0.0 0500 00 00 0.0 0.0[-0.5/00 00 00 0.0 00 00 0.0 00 00 0.0 0.0 00 0.0 0.0 00 00
0.5 UOM 00(35/00 0.0 00/05 00 00 00 00 00 00 0000 00 00 0010 0.0 00 00 00 00 00 00 0.0 0.0 00 00 00 00 0.0 00 00 0.0 00 0.0 00 00 00 00 0.0 00 00
00 00 00[35/0.5]-05/-1.0 0.0|-0.5/00 00 0.0 00 0.0 00 00 0 00 00 00 00 000000 00 00 00 00 00 00 00 0.0 00 0.0 00 00 00 00 00 00
0.0 00 00]0.5/3.0|-0.5/00 -1.0{-0.5/00 0.0 0.0 00 00 00 00 0 00 00 00 00 00 0000 00 DOEOO 00 00 0.0 00 00 00 00 00 00 00 00 00
00 001.0/0.0 0.0)-0.5/-0.5/30/05 0.0[0.5/00 10[-05/00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 0.0 0.0 00 0.0 00 00 00 00 00 00
EUO 05 0.0‘0.5 -1.0/0.0/05[30 0.0 00 00 0.0]-05{10]0.0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 0.0 00 00 00 00 00 00
00 00 00 00 00 00-1.0{00 00 35]/00]-1.0 00 00 00 00 00 00 0500 00 00 00 0000 00 00 00 00 00 0000 00 00 00 0.0 00 00 0.0 00 00
00 00 00 00 UO‘-Oﬁ 0.5 0.5‘00 0.0/35/00 0.0/-1.0{0.0 00 00 00 00

00 00 00 00 0.0 0.0 00 00 00 00 00 0.0 00 00 0.0 00 00 00 00 00 00 00 00 00
00 0.0 00 0.0 0.0 00 0.0 0.0 00 -1.0{0.0/30 05]-05/00 00 0.000- 00 00 00 0.0 00 00 00 00 00 00
00 00 00 0.0 0.0 00 0.0{1.0/00 0.0 0.0/05 35/-05/00 0.0 0.0 00 00|-0. 0.0 00 00 00 00 00 00 0.0 00 00 00 00 00 00 0.0 00 00 0.0
00 00 00 00 00 00 00 -05&00‘-10-05 0.5/30{00 00]0.5/00)1.0)0.

00 00 00 00 00 00 0000 00 00 00 0.0 00 00 0.0 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00[10 00 00 00 00 00350 00 1.0/0.0 00 0.0 00 00 0.0 00 00 0.0 0.0 00 00 0.0 0.0 00 0.0 00 00 00 00 00 00
00 00 0000 00 00 0.0 00 0.0 00 00 0.0 0.0)0.5]3.0)-0.5/-1.0]-0.5 0.0 00 00 00 00 00 00 0.0 00 00 00 00
00 00 00 0.000 0.00.0 00 00 0.0‘0.5 0.50. 0005 1.0‘00 00 00 00 00 00 00 00 00 0.0 00 00 00 00 00 0.0 00 0.0 00 00 00 00
00 00 00 00 00 00 00 00 00 00 UOEOU 00 00/-1.0/0.0/35/00 00 0.0 00 00 00 00 00 U.SEIOQ 00 00 00 0.0 00 00 0.0 00 00 0.0 00 00 0.0
0.0 00 00 0.0 00 00 0.0 00 00 00 00 00 0.0‘1.0‘-05 -0.5/05|00{35/0.0 00 00 0.0 00 00 0.0/1.0{00 0.0 0.0 00 00 00 0.0 0.0 00 0.0 0.0 00 0.0 0.0 00 0.0 0.0 00 00 00 00
0.0 00 00 0.0 0.0 00 0.0 0.0 00 00 0.0|-05-0.5[0.5/00 00[1.0/00 00‘3.5 0.0 00 00 00 00 00 0.0{1.0/0.0 0.0 00 00 0.0 00 00 00 00 0.0 00 00 00 00 0.0 00 0.0 00 00 0.0
05 0,5‘1.0‘0.0 00 00 00 00 00 00 0.0 00 0.0 00 00 00 00 00 00 00(3.0]-0.5 -0.5‘0,0 05 -0.5‘-1‘0‘00 0.0 00 00 00 00 00 0.0 00 0.0 00 00 00 00 00 00 00
0.5/00 0.0/05/1.0/00 00 0.0 00 00 00 00 00 00 00 00 00 00 00 00{-0.5/3.0 00 0.0 105[0.0 0.0]-0.5-1. 00 00 00 00 00 0.0 00 00 00 00
00 0.0 00 00 00 00 00 0.0 00 0.0 00 00 0.0 0.0/-0.5/00 3.0{-05 0.0/05]00 0.0 0.0-1.0/-05]0. 0.0 00 00 00 0.0 00 0.0 00 00 0.0

0 00[05]00 00
For rhomblCUbOCtahedron 00 00 00 00 00 00,0500 0005[10]00 00 00 00 00 00 00 00 00 00 00 05[30]0. 00 00 00 00 10[00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 0.500[05/10]00 00 00 00 00 00 00 00 00 00|05 00 00 00 00 [25[10] 00 00 00 00 00 00 00

00 00 00
00 00 00

0005

the [[|atr1X Of Al =S 00 00 00[-05/00 00 00 00 00 00 00 00 00 00 00 00 00 00[05]00 00 00 00 00[05/00 00 00 00 00 00 00 00 00 00[10]-0500 00 00 00
00 00 00 0.0 00 00 00 00 00 00 00 00 00 00]05/10/00 00 00 00 00 00 0.0 0.0 00 00 00 00 00 00 00 0.0 00 00 00 00]05 00]-05]-1000

0.0 00 00 00 00 00 0.0 00 00 00 0,0IEO.U 0.0 00 00 0.0MOO‘LD L 0.0 00 0.0 00 00 00 00 00 00 00 0.000 0.0 00 00 00 00 |-1.0
-0.5/00 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 00 00 00 0.0|-0.505 00 00 00 0.0 00 003.0/1.0 0,5‘-10 -0.5‘00 00 0,000 00 00 00 00 00 00 0.0 00 00 00

OU 00 00 00 00 00 00 00 00 00 00 0.0 00 00 0.0 00 00 Oﬂﬁﬂﬂﬂﬂﬂ 00 00 00 00/1.0/3.5/00 00 0.0 00 -1.0/0.0 0.0 00 0.0 00 00 00 00 00 00 00 00 00
00 0.0 00 00 0.0 00 00 0.0 00 00 0.0 00 00 0.0 0.0 00 00 0.0|-1.0{00 0.0 00 00 0.0 00 00 0.5 0.0[35/00/-0.5/00 0.0|-1.0]-0.5/0.0 00 0.0 0.0 00 0.0 0.0 00 0.0 0.0 00
00 00 0000 00 00 00 00 0.0 00 00 0.0 00 00 0.0 00 00 0.0 0.0 00|-0.5 0.0 00 DOE0.0 00-1.0{00 0.0{35 0.0 0.0 00 0.0 0.0 00 0.0 0.0 00 0.0 0.0|-1.0 0.0 0.0 00 00
00 00 00 0.0 00 00 0.0 00 0.0 00 0.0 0.0 00 0.0 00 0.0 00 00 00 00 00 00 nogoo@no 35(00 00 00/05/00 00 00 00 00 00 00 -1.0/00 00 00
00 00 0.0 00 00 00 00 00 00 00 0.0 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 0.0]3.5/05]-0.5/-1.0/00]-0.5/00 00 00 00 00 00 00 00 00
0.0 00 00 00 00 0.0 00 00 00 00 00 0.0 00 0.0 00 00 0.0 - 00 00 00 00 00 -0.5/0.0{1.0/-0.5{0.0 00 0.0 00 0.0 00 00 00 00
0.0 00 00 00 00 00 0.0 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 00 00 0.0 00 0.0 0.0 00 0.0 0. 30[05/00]05]00(10 0500 00%0.0 00 00

00 00 0.0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 00 00 0.0 00 00 00 00 -0.5/0.0 - 0.5/3.0/00 00 00 00 -05{1.0]/00 -0.5/00 00 00
0.0 00 00 0.0 00 00 0.0 00 DUEU.O 00 00 0.0 00 00 00 00 00 0. . . .5/0.0 00 00 00 0.0 00 00 00 0.0/1.0/0.0 00|35 o.omonﬂu.o 00 00 00 00 00
0.0 00 00 0.0 00 00 0.0 00 0.0 00 0.0 0.0 00 0.0 00 0.0 0.0 00 0.0 O. . 00 00 00 00 00 00 00 00 0.0‘-0‘5 05 0.5‘00 00/35/00 00 -10/00 00 0.0 00 00 0.0
00 00 00 00 00 00 0.0 00 00 00 0,0@0.0 0.0 00 00 00 00 00 X 00 0.0 00 00 00 00 00 00 no\_n 0.03.0[05-0.5/00 00 0. Uoﬂ
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00 00 00 00 00 00 00[-1.0/00 00 00 0.0 0.0 0.0 00 00 00 00|1.0/00 00 00]05/35-05/00 00 00 00 00 0.5
0.0 00 00 0.0 00 00 0.0 00 0.0 00 00 0.0 00 0.0 00 0.0 00 00 0.0 0.0 0.0 00 0.0 0.0 00 0.0 00 00 00 00 0.0 0.0 00 00 00&-05 00‘-1.0 -05|:05/30/00 00 05/00(10 05
0.0 00 00 00 00 00 0.0 00 0.0 00 00 0.0 0.0 0.0 00 00 00 00 00 00 00 00 00 0.0 00 -1.0{0.0 0.0 0.0 0.0 00 0.0 00 00 0.0 0.0[1.0/00 00 0.0 00 0.0|35/0.5 -0.5/0.0/-0.5/0.0
00 00 00 0.0 00 00 0.0 00 0.0 00 00 00 00 00 UO0.0 00 00 00 00 00 00 00 00 -0.500 00 00 00[-1.0/ 00 00 00 0.0 00 00 0.0 00 00 0.0]05/3.0 -05/-1.0]-0.5/0.0

00 00 00 00 00 00 00 00 00 00 0.0 00 00 00 00 00 00 00 0.0 00 00 00 00 00 00 00 0.0 00 00 0.0 00 00-1.0{0.0 00 00 00 00 00 05]-0.5/-0.53.0[00/05 10
0.0 00 00 0.0 00 0.0 00 00 00 O.DOU 0.0 00]-1.0/00]35]00 00
0.0 00 00 0.0 00 0.0 00 00 00 00 00 00 1.0‘-0‘5 0.5 0.5/00[35 0.0
0.0 00 00 00 00 0.0 00 00 00 0.0‘-05‘-05 0.5‘00 00/1.0/00 00(35

0.0 00 00 0.0 0.0 00 0.0 00 00 00 0.0 0.0 00 0.0 00 0.0 0.0
0.0 00 00 0.0 00 00 0.0 00 00 00 00 0.0 00 0.0 00 0.0 00
00 00 00 0.0 00 00 0.0 00 0.0 00 00 00 00 0.0 00 0.0 00 00

00 00 00/-1.0(00
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6.5 Trace of A;

Recall that, for any digraph G,
trace Ag = > deg (i) = 2E.

eV

There is a similar result for the trace of A;.

Theorem 6.9 Let T' be the number of triangles in €y, S be the number of linearly inde-
pendent squares in (o, and D be the number of double arrows a = b. Then

trace Ay = 2E + 3T + 25 +4D. (6.11)

By a square here we mean an allowed 2-path eg,. — e such that a # ¢ and a 4 c.

For example, for this pyramid (as on p.104) 4
we have F =8, T =4, S=1and D =0,

whence traceA; =2-8+3-4+4+2-1= 230,

which matches the sum of the eigenvalues as 0

well as the sum of the diagonal entries of the 3
matrix of A in (6.10). s
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6.6 An estimate of A\, (A1)

Denote by Apax (A) the maximal eigenvalue of a symmetric operator A. It is easy to prove
that
)\max (AO) < 2 max deg (Z) :

For any arrow ¢ in G denote by deg, € the number of triangles containing ¢ and by degy £
the number of squares containing &.

Theorem 6.10 Assume that there is an orthogonal basis in €y that consists of triangles
and squares. Then

Amax (A1) < max (2 max deg, oS (3degx € + 2degp 5)) : (6.12)
1€ €

Problem 6.11 FExtend (6.12) to the general case.

Problem 6.12 Is it true that in zaCt
Pysaeess A1) < 2maxdegi ?
(A) < nax deg

This is the case in all known examples.
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6.7 Exact computation of spec A, on some digraphs
6.7.1 Spectrum of A, on digraph spheres

Let D, ={e, ..., 0 } be the digraph that consists of m > 1 disjoint vertices and no arrows.

m vertlces

Consider for any n > 1 the digraph Dp, = Dy, * ... % Dp,.

TV
n times

Theorem 6.13 We have, for all n,m > 1 and r > 2,

T

spec A,_1 (D) = {((n — BYM) (1) 2 )} (6.13)

k= 0

More explicitly, (6.13) means the following: if » > n then spec A,_1(D!) = 0, while for
r < n the spectrum of A,_1(D}) consists of the following r + 1 eigenvalues

(n—r)ym, (n—r+1)m, (n—r+2)m,...,(n—1)m, nm, (6.14)
with the multiplicities
(m=17 (), (m=17"1(), =172, m=Dr(?), (). (65)
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Example. Let m = 1, that is, D; = {e}. Clearly, D} = K,, where K, is a complete
digraph that consist of n vertices

{0,..,n —1}
and all arrows ¢ — 7 for ¢ < j, DI=D, D

that is, a directed (n — 1)-simplex.

[ ] o> 0

In this case all the multiplicities in (6.15) are 0 except for the last one (). Hence,

spec A, _1(K,) = {n(:) }.

Example. Let m = 2, that is, Dy = {e,e}. Then D} =: S"~! can be regarded as
a digraph sphere of dim =n — 1. A

3 < 1 k
0

and S? is an octahedron. \l

5

For example, St is a diamond

N
>

NV

1

/|
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In this case (6.13) becomes

spec et (57 = {2 = Ny -
Consequently, if 2 < r < n then
Amax (Ar_l(S”_l)) = Qn(g and Apin (Ar_l(S”_l)) =(2(n— T))(:) .

For example, for r = 2 we have

spec Ax(™) = {(2(n ~ 2)(z) . (2(n — D)yy) . (20) ) |

2 2

and for r = 3

spec Ao(5") = {(2(n = 8))(g) (2n = D)y 2 (0 = D)y @) -

3 3

For the octahedron S? (that is n = 3) we obtain

speCA ( ) = {23,46,63}

and
spec A (S ) ={0,23,43,6}.
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Example. Let m = 3 and n = 2.

Then D2 coincides with the
complete bipartite digraph Kj 3:

Then (6.13) yields for r = 2 that

spec Ay (Ks3) = {(3(2 — ),
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k=0

= {04, 34, 6}.



6.7.2 Spectrum of A, on cubes

Recall that the n-cube I is defined by )

[ =J070...071
—_—

n

where [ = {e — o}. |

The operator A, (™) is non-trivial if 0 < p < n. It is possible to prove that

spec Ag(I") = {(2]{:)<n) }n

k k=0 )

Theorem 6.14 For all 1 < p < n we have

spec A,(I") = { (%k) — } U { (% ) ()05 } |

k)\p—1 — k D

In particular,

and )\min (Ap<[n)) = 2(n+1)

p+1
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For example, for p = 1 we obtain

spec Ay (I") = {(%)(")}n U {k(’“”(

k k=

)}n , (6.18)

n
k) ) k=2

and
Amin (A1 (™)) = 2(3) and  Amax (A1(I")) = (2n), .

Example. For a 3-cube we obtain

spee A (1) = {2 ] U {Buono ) = 125,45,6) U {25,32) = (26,32, 45,6},

k) ) k=1

spec Ay (13) = {k(z)(kzl) }222 | ] { <§k> (3)(k1)} ={23,32} U {21} = {24, 32},

/2 k=3

E )= { (5) O } -

k 2
It follows from (6.18) that
spec A1 (I*) = {210, 35, 49, 61, 8}, spec Ay (I°) = {215, 320, 425, 5a, 610, 85, 10} .
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6.7.3 Spectrum of A, on tori

Recall that the n-torus T™ is defined by

T = 70O7T0..0T, o _
where T ={0 —-1— 2 — 0}.
We have "
spec Ag(T™) = {(3k)2k (Z>}k:o' (6.19)

Theorem 6.15 For all1 < p <n we have

n

e {g)zk(m(ﬂ)}:ou { <%>zk<z><zf>} -

p—1 k=0

In particular,

and >\min (Ap(Tn)) = O(n)

p
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For example, for p = 1 we obtain

spec Ay (T") = {<3k)2k(2)}

Example. For T? we obtain

k=0

and for T3

n

k=

(3.,
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