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1 Paths in a finite set

Let V' be a finite set. For any p > 0, an elementary p-path is any sequence iy, ..., %, of
p + 1 vertices of V.

Fix a field K and denote by A, = A, (V,K) the K-linear space that consists of all formal
K-linear combinations of elementary p-paths in V. Any element of A, is called a p-path.

An elementary p-path i, ..., 4, as an element of A, will be denoted by e;,. ;,. For example,
we have

A0:<ei:i€\/>, A1:<eij:i,j€V>, A2:<€ijkii,j,kev>, etc
Define also an elementary (—1)-path as the unity e of K so that
A_l = <€> = K.

Any p-path u can be written in a form

— E i9i1.ip p. . )
U U ezozl...zpv

10,81,...,.pEV

where wioii-ir € K.



Definition. Define for any p > 0 a linear boundary operator 0 : A, — A,_; by

P
_ q ~
Oeip..ip = E (—1) Cio..igeip)
q=0

where ~— means omission of the index.

For example,

Oe; =e, Oey; =e; — e, Oeyr = ejp — e + €55,  ete.
Lemma 1.1 9% = 0.
Proof. Indeed, for any p > 1 we have

p p q—1
826i0-~-ip — Z(_l)qaeio...i;...ip - Z (Z 1>T€zo...7;...z;...@p + Z ...zq...zr...1p>
9=

q=0 r=0 r=q+1
_ _1)9t" . _ _1\atr N
= (1) €l tr . ig.. ip E , (1) €t igeinip”
0<r<g<p 0<g<r<p



After switching ¢ and r in the last sum we see that the two sums cancel out, whence
0%e;y..;, = 0. This implies 0?u =0 for all w € A,. =

Hence, we obtain a chain complex A, (V):

0 0 0 0 19)
0 « Ay — Ay & ... &« Ay & A, — ...

Definition. An elementary p-path e;,.;, is called reqular if iy # x4y forallk =0,...,p—1,
and irregular otherwise.

Let I, be the subspace of A, spanned by irregular e;, ;,. We claim that 0I, C I,_;.
Indeed, if e;,. ;, is irregular then iy = i34, for some k. We have

Vet = @hisy — Gt b I 050
k k+1
+(-1) €40 ik 19kt 10042 0p T (—1) €i0...ik—_1ikips2--ip (1.1)
... + (_1)1) eiomipfl.

By iy = ig11 the two terms in the middle line of (1.1) cancel out, whereas all other terms
are non-regular, whence de;; ;, € I,_1.

Hence, 0 is well-defined on the quotient spaces R, := A,/I,, and we obtain the chain
complex R, (V):
0« Ry £ Ry & ... & Ry &R, &,



By setting all irregular p-paths to be equal to 0, we can identify R, with the subspace of
A, spanned by all regular paths. For example, if ¢ # j then e;;; € Ro and

Gem = eji — € + 67;3‘ = eji + eij

because e; = 0.

2 Chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V of vertices and a
set £ C {V x V' \ diag} of arrows (directed edges). If (7,j) € E then we write i — j.

Definition. Let G = (V, E) be a digraph. An elementary p-path iy...i, on V is called
allowed if iy, — 1341 for any k =0, ...,p — 1, and non-allowed otherwise.

Let A, = A, (G) be K-linear space spanned by allowed elementary p-paths:
Ay = (€ig...i, © G0-.-1p is allowed).

The elements of A, are called allowed p-paths. Since any allowed path is regular, we have
A, CR,.



We would like to build a chain complex based on subspaces A, of R,. However, the spaces
A, are in general not invariant for J. For example, in the digraph

a b c
e — 0 — o

we have ey € Az but Oegpe = €pe — €qe + €ap & A1 because e, is not allowed.

Definition. A p-path u is called 0-invariant it u € A, and Ou € A,_;.
The space of 0-invariant paths is denoted by (2,,:

Qp={uecA,:0uc A, 1}|

Important: 0, C Q, 1. Indeed, u € Q, implies du € A, and 0 (Ju) = 0 € A, o,
whence Ju € Q,_;.

Hence, we obtain a chain complex €2, = €, (G) :

3] 15) 0 9] o
0 «— Q; «— Qp <« ... & Qp 1 «— Q —...

Note that Q_; =K, Q= Ay = (e;;¢ € V) and Q; = Ay = (e;;,7 — j), while in general
Sy C Al



3 Examples of 0-invariant paths

A triangle is a sequence of three vertices a, b, ¢
such that
a—b—c a—c
It determines 2-path eg,. € €2y because ey € Ao
and
O€qbc = €pc — €ac + €ap € As.

A square is a sequence of four vertices a,b,b’, ¢
such that

a—bb—c a—0b, 0 —ec
It determines a 2-path

U = €ghec — Eqb/c € Q2
because u € Ay and
Ou = (€pe — ac + €ab) — (ere — ac + €a)
= €qb T Epc — €apr — Epic € Al

In general, 25 has a basis that consists of triangles

a b
b’ c
a b

and squares and double arrows egpq.



A p-simplex (or p-clique) is a sequence of

p + 1 vertices, say, 0,1, ..., p, such that
i e i<y

It determines a p-path ep;. , € .

1-simplex is ¢ — o, 2-simplex is a triangle.
Here is a 3-simplex:

A 3-cube is a sequence of 8 vertices 0,1,2,3,4,5,6,7,
connected by arrows as here:
It determines a J-invariant 3-path

U = €ep237 — €0137 + €0157 — €0457 + €0467 — €0267 € (13

because u € Az and

Ou = (ep13 — €o23) + (€157 — €137) + (€237 — e267)
- (6046 - 6026) - (6457 - 6467) - (6015 - 6045) c Ay




4 Homology groups

Alongside the chain complex

0 & o, o ... &La, o & (4.1)
consider also a truncated chain complex
0L & ... 2aq., &aq &.. (4.2)

The homology groups of (4.2) are called the path homology groups of the digraph G and
denoted by H,, that is,
H, =kerd|q,/Imd|q,,,.

The homology groups of (4.1) are called the reduced path homology groups of G and are
denoted by H,. We have

H,=H, for p>1and Hy= Hy/K.

Define the Betti numbers §, = dim H, and the reduced Betti numbers Ep = dim f[p SO
that

gp:ﬁpforp21and 60:60—1.

10



It is known that 3, is equal to the number of connected components of . In particular,
if G is connected then 3, = 0.

If G=XUY - a disjoin union of two digraphs X,Y then

B, (XUY)=p,(X)+6,(Y)

and

In what follows, for a vector space S over K we write |S| = dimg S.

5 Examples of spaces (), and H,

A linear digraph of n vertices:
— — _ ) (] [
Q] =n, |]=n-1, Iadind Rk S et o —

Q, = {0} for p > 2,
H, = {0} for all p > 0.

11



A triangle as a digraph:

Q1 = (eo1, €02, €12), 22 = {ep12), §2, = {0} for p >3
ker a|Q1 = <601 — €2 + 612>

but €01 — €02 + €190 = 86012

so that Hy = {0}. We have H, = {0} for all p > 0.

A square as a digraph:

O = (eot, €02, €13, €23), §do = (eo13 — €o3), €2 = {0} for p >3
ker 8\91 = <€01 -+ €13 — €p2 — 623>

but €01 1 €13 — €2 — €23 = 0 (6013 - 6023)

so that H; = {0}. We have H, = {0} for all p > 0.

A hexagon: || = || =6, Q, = {0} for all p > 2.

Hy = (ep1 — €21 + ea3 + €34 — esq + €50), H, = {0} for p # 1.
The same is true for any cyclic digraph (directed polygon)
that is neither triangle nor square:

|H,| =1 and ﬁlp = {0} for all p # 1.

12
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Octahedron: || =6, [ =12

Space (25 is spanned by 8 triangles:

y = (6024, €034, €025, €035, €124, €134, €125, 6135>,

2| =8, Q,={0} forallp>3

Hy = (ep2a — €034 — €025 T €035 — €124 T €134 + €125 — €135)
|Ho| =1, H,={0} forall p# 2.

Octahedron with different orientation:
y = <€024, €025, €014, €015, €234, €235, €134, €135, €013 — 6023>
Q3 = (60234 — €0134, €0235 — 60135>
10| =9, [Q]=2, Q,={0} forallp>4.
ker 0]q, = (u,v) where

U = €g24 + €234 — €014 — €134 + (€013 — €023)

U = €p25 + €235 — €015 — €135 + (€013 — €023)
but Hy, = {0} because

= 9, (60234 - 60134) and v =20 (60235 - 60135)

So, H, = {0} for all p > 0.

13




A 3-cube:

We have || =8, || = 12.
Space {25 is spanned by 6 squares:

6
Q _ A
g = <6013 — €023, €015 — €045, €026 — €046, 5

€137 — €157, €237 — €267, €457 — €467>

hence, |23] = 6.

Y

[
=

4
Space (13 is spanned by one 3-cube: /

Q3 = (ep237 — €o137 + €0157 — €oa57 + €o467 — €0267)

hence, |Q23] = 1.

Q, = {0} for all p >4 and H, = {0} for all p > 0.

14



6 A join of two digraphs

Given two digraphs X,Y, define their join X %Y as follows: take first a disjoint union
X UY and add arrows from any vertex of X to any vertex of Y.

For example,

T
T

and x {4,5} =

{0,1} x {2,3} =

S — W
DO — =
o — w
DO — =

l

Define the join uv of p-path w on X and g-path v on Y as a (p+ ¢+ 1)-path on X Y
as follows: first define it for elementary paths by

€io...ipCjo...5¢ — €io...ipjo.--3q

and then extend this definition by linearity to all p-paths v on X and g¢-paths v on Y.

15



If w and v are allowed on X resp. Y then wv is allowed on Z = X %Y.

Lemma 6.1 The join of paths satisfies the product rule
0 (uv) = (Qu) v + (=1)"" udv.

If ueQ,(X)and v e, (Y) then Ou and Ov are allowed, which implies that 0 (uv) is
also allowed, that is, uv € Q1,41 (Z). The product rule implies also that the join uv is

well defined for homology classes u € H, (X) and v € H, (Y) so that wv € H, 1 (Z).

16



Theorem 6.2 (Kiinneth formula) We have the following isomorphism: for any r > —1,

(X +Y) = D (2 (X) @9, (Y)) (6.1)

{p,q>—1:p+q=r—1}

that is given by the map u® v — wv with u € Q, (X) and v € Q, (Y), and, for any r > 0,

~

BXxY) 2 @ HX)9H) 62
{p,q>0:p+q=r—1}
b (Xxy) = ¥ 5 06®). (6.3)

{r,q>0:p+q=r—1}

The identity (6.1) means that any paths in €2, (Z) can be obtained as linear combination
of joins uv where v € Q,(X) and v € Q,(Y) with p+ ¢+ 1 = r, and (6.2) means the
same for homology classes. Note that that the operation * of digraphs is associative. For
a sequence Xy, ..., X; of [ digraphs we obtain by induction from (6.1), (6.2) and (6.3) that

Q (X % Xo %ok X)) 2 ® Q, (X1)® .00, (X)) (64)
{pi>—1: p1+p2+..+p=r—I+1}

H, (Xl *x Xo * ... *Xl) = GB le (Xl) ®...®le (Xl) (6.5)
{pi>0: p1+po+..+p=r—I+1}

B (X% X% .. % X)) = 5 B, (X)) .5, (X)) (6.6)

{pi>0: p1+p2+..+p=r—I+1}

17



Example. Consider an octahedron Z = X7 % X5 % X35 where
Xl = {071}7 X2 = {273}7 X3 = {475}
(see p. 15). Then

Q2 (2) = D Qp, (X1) ® Qy, (X2) @ Uy, (X3)

{pi>—1: p1+p2+p3=2—3+1}

= Qo (X1) ® Qo (X2) ®Qp (X3)
= (eg,€1) ® (€9, €3) ® (ey, €5)

= <€024, €025, €034, €035, €124, €125, €134, 6135>

and
Hy(Z)=Hy(Z) = ® Hy, (X1) ® Hp, (X2) ® Hp, (X3)
{pi>0: p1+p2+p3=2—3+1}
= Hy(X1) ® Hy (X2) ® Hp (X3)
= (eg—e1)®{ex —e3) Q (g — e5)
= (€024 — €025 — €034 t+ €035 — €124 + €195 + €134 — €135).
(see p. 13).

18



7 A generalized join of digraphs

Given a digraph G of [ vertices {1,2,...,1} and a sequence Xj, ..., X; of [ digraphs, define
their generalized join (X;...X;), = X¢ as follows: X is obtained from the disjoint
union | |, X; of digraphs X; by keeping all the arrows in each X; and by adding arrows
x — y whenever z € X;, y € X; and ¢ — j in G.

Digraph X is also referred to as a G-join of X1, ..., X;, and G is called the base of Xg.

X, X X
o o >—o G
i j k



The main problem to be discussed here is
how to compute the homology groups and Betti numbers of X¢.

Denote by K; a complete digraph with vertices {1, ...,l} and arrows
11— )& 1<y

that is, K;isan ([ — 1)-simplex. For example, Ky = {1l — 2}and K3 ={1 -2 — 3,1 — 3}
is a triangle.

The digraph X, is called a complete join of X, ..., X;. It is easy to see that
Xi, = X1 x Xo*x ... x X

It follows from (6.6) that, for any r > 0,

~ ~ ~

B, (Xx,) = > By (X1) ..y, (X0) (7.)

{p;>0: p1+pa+...+p=r—I+1}

20



8 A monotone linear join

Denote by I; a monotone linear digraph with the vertices {1, ...,l} and arrows ¢ — i + 1:
L[ ={1-2—..->1} (8.1)
If G = I; then we use the following simplified notation:
(X1 X2.. Xy = X1 Xs... X

and refer to this digraph as a monotone linear join of X, ..., X,

Clearly, X;X,...X,, can be constructed as follows: take first a disjoint union |_|§:1 X, and
then add arrows from any vertex of X; to any vertex of X, (see p. 19).

In the case [ = 2 we obviously have X; X, = X; *x Xy but in general X;X5...X; is a
subgraph of X7 x X5 % ... x X;. For example, we have

—

(8.2)

PN

1 3 1
{0}{1,2} {3} = 1 T while {0} *{1,2}%{3} = 1
0 2 0

—

21



Theorem 8.1 We have

& (X Xp Xo) = D ﬁpl (X1)®..® PNIpz (X)) (8.3)
{pi>0: p1+pa+..+p=r—Ii+1}

and

B (X1 Xs.. X)) = D B,, (X1) .5, (X1). (8.4)

{pi>0: p1+p2+..+p=r—Ii+1}

By (6.5) and (8.3), X1 X5...X; and X; * Xs * ... * X are homologically equivalent.

Example. Let the base G be a square:

We have G = {1} {2,3} {4} which implies that 2 — 4

Xe = X1 (Xo U X;5) Xy G= 1 7

Hence, by Theorem 8.1, 1 — 3
Br (XG) - Z Bpl (Xl) Bpg (X2 L X3) Bpg; (X4)

{p:>0: p1+p2+p3=r—2}

- S By (X0) (B (X2) + By (Xs) + Lipamoy ) By (Xa)

{p:>0: p1+p2+p3=r—2}

= B, (XiXoX4) + B, (X1 X3 Xy) + B,y (X1X4). (8.5)

D



For a general base G, if 7...17; is an arbitrary sequence of vertices in G then denote

Xiy iy, = Xy Xy Xy,
Note that by (8.4)
ﬁr (X’Lllk) = Z ﬁpl (XZ ) Bpk (Xlk) 9
p1+...+pr=r—(k—1)
PPk 20

and we consider the numbers (3, (Xi,..i,) as known.

Using this notation, we can rewrite (8.5) as follows: if G is a square then

~ ~ ~ ~

B, (Xe) = B, (X124) + B, (Xu34) + B,_1 (X14) .

23



Example. Let G be an octahedron:
We have G = {1,2} % {3,4} « {5,6} whence

XG: (X1|_|X2)>I<(X3|_|X4)*(X5|_|X6) :

By (7.1) we obtain \V 2

B, (Xg) = > By (X1 U X2)B,, (X5 U X4) B, (X5 U Xe) °

{pi>0: p1+p2+p3=r—2}

— > (B, (X1) + By, (X2) + Lipy—0p) (B, (X3) + By (Xa) + Lipp—oy)

{pi>0: p1+p2+p3=r—2}
(B (Xs) '—'g ,(X6) + Lips=0y)
5 (Xi35) + 5 (X145) + 5 (Xos5) + 5 (Xaa5) + 5 (Xis6) + 5 (Xi46) + 5 (Xas6) + 5 (Xo46)

+ By (Xas) + Br_y (Xa3) + By_1(X1a) + By_1(Xaa) + By (Xis) + Br_1 (Xos)
+ Bo_1(Xss) + B,_1(Xas) + Br_1 (Xa6) + Br_1(Xa6) + Br_1(Xs6) + B,_1(Xas)
5T—2( 1) + @«—2(X2) + 5r—2(X3) + 57~—2(X4> + 57~—2(X5) + ﬁr—2(X6> + 1{r:2}-

24



9 An arbitrary linear join

Let now G be a linear digraph but not necessarily monotone. That is, the vertex set of GG
is {1,...,1} and, for any pair (i,7 + 1) of consecutive numbers there is exactly one arrow:
either i — ¢+ 1 or i« 7+ 1.

Definition. We say that a vertex v of G is a turning point if v has either two incoming
arrows or two outcoming arrows. Denote by 7 the set of all turning points.

An allowed path in G is called maximal if it is not a proper subset (as a set of vertices)
of another allowed path. Denote by A,,.x the family of all maximal allowed paths in G.

turning points

° >0 > < o< o< - > > < . >0
N J\- '\ J\ A )
Y Y Y

maximal allowed paths

Clearly, the end vertices of a maximal path are either turning points or the vertices 1, (.

25



Theorem 9.1 If G is an arbitrary linear digraph then

Br (XG> - Z Br(Xu) + Z 67"—1 (Xv) .

ueAmax 'UGT

In other words, ET (Xg) is the sum of all ET of the linear joins of X, along all maximal
allowed paths in G plus the sum of 3,_; of all X, sitting at the turning points v.

Example. Consider the base
G={1—-2«3—4—5}.
Then 7 = {2, 4} ,while maximal paths of L are
Apax ={1—2, 4—3—2, 4—5}.

Hence, by Theorem 9.1,

~ ~ ~ ~ ~ ~

B, (Xa) = B, (X12) + B, (Xuz2) + B, (Xu5) + 8,1 (X2) + 8,1 (X4) .

26



Example. Consider the following base:

It is easy to see that G itself is the following linear join:

G = ({13{2,4} {3} {5, 7} {6}),,

where L = {a — 3 < v« § — €} . Here the turning points of L are 7 = {3, §}, while
maximal paths of L are

Apax ={a— 0, 0 >y — 0, d —¢}.
For L-join we have as above
B, (Y2) = B, (Yap) + B, (Yors) + By (Yae) + B,y (Y5) + B,-1 (¥5) -
Setting Y, = X, Y = Xo U X3, Y, = X3, V5 = X5 U X7 and Y. = X we obtain

B, (Xa) = B, (X1 (X2 U X3) X3 (X5 U X7) X6) )

27



= B,(X1(X2 U Xy)) + B,((X5 U X7) X5(X2 U Xa)) + B,((X5 U X7) Xe)
+ Er—l(XQ U Xy) + @—1(){5 L X7)
= B, (X12) + B, (X1a) + B, (X1)
+ E«(X532) + BT(X534) + BT(X732) + ET(X734)
t Br—1(Xs2) + B,_1(Xaa) + By (Xs3) + B,1(Xr) + By (X)
+ B, (Xs6) + B, (X76) + 5,1 (Xs)
+ Br—l (X2) + Br—l (X4) + 1y + Br—l (Xs5) + Br—l (X7) + 1g—y;.

BT(XG) = BT(X534) + BT(X532) + BT(X734) + BT(X732)
+8,(X12) + B,(X14) + B, (Xs6) + B,(X76)
+08, 1 (X73) + B,y (Xs3) + 8,1 (Xa2) + B, (X34)
+6,-1(X1) + By (Xz) + B, (Xa) + B,y (X5) + By (Xo) + B2 (X7)
+8,_5(X3) + 20—13.

28



10 A cyclic join

A digraph G is called cyclic if it is connected and each vertex has the undirected degree
2. Let G be a cyclic digraph with the set of vertices V = {1,2,...,1}. We assume that the
vertices are ordered so that every vertex i« € V is connected by arrows to ¢ — 1 and ¢ + 1
(where [ is identified with 0). In the same way as above we define the set A, and 7.

2 1
For example, consider the following hexagon:
Here 7 = {1,4} and 3 6
Apax ={4—>3—-2—->1,4—-5—-6—1}

Theorem 10.1 Let G be a cyclic digraph that is neither triangle nor square nor double
arrow. Then

~

B, (Xe)= ¥ B(X)+ X Bro1 (%) +5,(G). (10.1)

ueAmax 'UET

Note that in this case ET (G) = 14—1y. If G is a triangle or square or double arrow then
(10.1) is wrong, which is shown in Examples below.

29



Example. If GG is the above hexagon then we obtain

gr (Xa) = gr (X4321) + gr (Xys61) + @-1 (X1) + gr—l (X4) + 1=y

Example. Consider the following 4-cyclic base:

—

G =

— — DO
S — o

—

Since 7 = {1,4} and Ap.x = {1 -2 — 3 — 4,1 — 4}, we obtain

Br(Xe) = B,(Xi234) + B, (Xua) + B,y (X1) + Bry (Xa) + 1y (10.2)
2
Example. Consider the following 3-cyclic base: G = | N -
e — ©0

Then A,,.x and 7 are empty, and we obtain BT (X¢) = 1p=ny = B,.(G).

30



Example. Consider the following tetrahedron as a base G"

4
We have G = C {4} where

C={1-2—-3—-1} 3
It follows that

Xag=Xco*xXy
and

B, (Xo)= > Bp(Xc)By(Xa)= Y Lp=nyB,(Xa) =B,_5 (Xa).
p+qg=r—1 p+qg=r—1

Henceu ﬁr (XG) — 67“—2 (X4) :

2
Example. Let G be a triangle: G = | 20N , - Then Xg = X x Xy x X3 and we know
e — ©o

that

~ ~

Br (Xg) = B, (X123) -
However, the right hand side of (10.1) is in this case

B, (X12) + Bry (X1) + B,_1 (X3) # B, (Xa) -

31



Example. Let G be a square:

l

W —

2
G=1
1 —

Then we that by (8.5)

B, (Xc) = B, (X124) + B, (X134) + Br_1 (X1a),

while the right hand side of (10.1) is in this case

~

B, (X124) + By (X13) + Br_y (X1) + By (Xu) .

Example. Let G be a double arrow: G = {1 < 2}. Then

XG:Xl*XQ*Xl

~ ~

whence 3, (X¢g) = 5, (Xi21) . However, in this case An.x and 7 are empty, so that the

right hand side of (10.1) is 5, (G) = 0.
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Example. Let GG be as here:

We have
G=1{1,2,3,4}{5,6}{T—-8—9— T}

so that
Xo = (X1 U Xy U X3 Xy) (X5 U Xe) Xpr—s-9-7)

It follows that

B (Xa)= Y (B, (X0)+ B, (Xa) + B, (Xs) + B, (Xa) + 30}

p+q-ts=r—2
x (B, (X5) + B, (X6) + L=y ) 1go=y
which yields after computation
B,(Xa) = B,_o(X15) + B,_o(Xi6) + B, _5(Xas) + B,_(Xas)
+ B, 9(X35) + B,_o(Xz6) + B,_o(Xa5) + B,y (Xas)
+ B, _5(X1) + B,_5(X2) + B,_5(X3) + Br_5(Xa) + 35,_5(X5) + 38,_3(Xe) + 3r=s).

33



11 Homology of a generalized join

Theorem 11.1 There exists a finite sequence of paths {ux} in G and a sequence {sy} of
non-negative integers such that, for any sequence {X;} of digraphs and any r > 0,

= By (Xu) + B, (G). (11.1)

Besides, the sequence {uy} contains all maximal allowed paths, and uy, € Apax < sp = 0.

Example. Let the base G be a cube.

Use description of paths uy from the proof of Theorem 11.1, 7 —pt
we obtain

B.(Xa) = ﬁr£X1248) + ﬁr£X1268) + Br£X1348) ‘
‘1‘5 (Xi378) + B, (X1568) + G, (X1578)
+5r 1 (X17g) + 57~ 1(X168) + 57« 1 (X1as)
@ _1(X128) + B,y (Xuzs) + B, (Xass) ! :
+0,_2(X1s)
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