Path homology and join of digraphs

Alexander Grigor'yan University of Bielefeld

https://www.math.uni-bielefeld.de/~grigor/

Moscow, HSE, March 18, 2022

Contents

Re	eferences	
1	Paths in a finite set	3
2	Chain complex and path homology of a digraph	6
3	Examples of ∂ -invariant paths	8
4	Homology groups	10
5	Examples of spaces Ω_p and H_p	11
6	A join of two digraphs	15
7	A generalized join of digraphs	19

8	A monotone linear join	21
9	An arbitrary linear join	25
10	A cyclic join	29

34

11 Homology of a generalized join

References

- [1] Grigor'yan A., Lin Y., Muranov Yu., Yau S.-T., Homologies of path complexes and digraphs, preprint arXiv:1207.2834v4 (2013)
- [2] Grigor'yan A., Lin Y., Muranov Yu., Yau S.-T., Path complexes and their homologies, J. Math. Sciences, 248 (2020) no.5, 564–599.
- [3] Grigor'yan A., Muranov Yu., Yau S.-T., Homologies of digraphs and Künneth formulas, Comm. Anal. Geom., 25 (2017) no.5, 969–1018.
- [4] Grigor'yan, A., Tang, X.X., Yau, S.-T., Generalized join of digraphs and path homology, in preparation

1 Paths in a finite set

Let V be a finite set. For any $p \ge 0$, an *elementary* p-path is any sequence $i_0, ..., i_p$ of p+1 vertices of V.

Fix a field K and denote by $\Lambda_p = \Lambda_p(V, \mathbb{K})$ the K-linear space that consists of all formal K-linear combinations of elementary *p*-paths in *V*. Any element of Λ_p is called a *p*-path.

An elementary *p*-path $i_0, ..., i_p$ as an element of Λ_p will be denoted by $e_{i_0...i_p}$. For example, we have

$$\Lambda_0 = \langle e_i : i \in V \rangle, \quad \Lambda_1 = \langle e_{ij} : i, j \in V \rangle, \qquad \Lambda_2 = \langle e_{ijk} : i, j, k \in V \rangle, \quad \text{etc}$$

Define also an elementary (-1)-path as the unity e of \mathbb{K} so that

$$\Lambda_{-1} = \langle e \rangle = \mathbb{K}.$$

Any p-path u can be written in a form

$$u = \sum_{i_0, i_1, \dots, i_p \in V} u^{i_0 i_1 \dots i_p} e_{i_0 i_1 \dots i_p},$$

where $u^{i_0 i_1 \dots i_p} \in \mathbb{K}$.

Definition. Define for any $p \ge 0$ a linear boundary operator $\partial : \Lambda_p \to \Lambda_{p-1}$ by

$$\partial e_{i_0...i_p} = \sum_{q=0}^{p} (-1)^q e_{i_0...\hat{i_q}...i_p},$$

where $\widehat{}$ means omission of the index.

For example,

$$\partial e_i = e, \quad \partial e_{ij} = e_j - e_i, \ \partial e_{ijk} = e_{jk} - e_{ik} + e_{ij}, \quad \text{etc.}$$

Lemma 1.1 $\partial^2 = 0.$

Proof. Indeed, for any $p \ge 1$ we have

$$\partial^{2} e_{i_{0}\dots i_{p}} = \sum_{q=0}^{p} (-1)^{q} \partial e_{i_{0}\dots \hat{i_{q}}\dots i_{p}} = \sum_{q=0}^{p} (-1)^{q} \left(\sum_{r=0}^{q-1} (-1)^{r} e_{i_{0}\dots \hat{i_{r}}\dots \hat{i_{q}}\dots i_{p}} + \sum_{r=q+1}^{p} (-1)^{r-1} e_{i_{0}\dots \hat{i_{q}}\dots \hat{i_{r}}\dots i_{p}} \right)$$
$$= \sum_{0 \le r < q \le p} (-1)^{q+r} e_{i_{0}\dots \hat{i_{r}}\dots \hat{i_{q}}\dots i_{p}} - \sum_{0 \le q < r \le p} (-1)^{q+r} e_{i_{0}\dots \hat{i_{q}}\dots \hat{i_{r}}\dots i_{p}}.$$

After switching q and r in the last sum we see that the two sums cancel out, whence $\partial^2 e_{i_0...i_p} = 0$. This implies $\partial^2 u = 0$ for all $u \in \Lambda_p$.

Hence, we obtain a chain complex $\Lambda_*(V)$:

$$0 \leftarrow \Lambda_{-1} \stackrel{\partial}{\leftarrow} \Lambda_0 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \Lambda_{p-1} \stackrel{\partial}{\leftarrow} \Lambda_p \stackrel{\partial}{\leftarrow} \dots$$

Definition. An elementary *p*-path $e_{i_0...i_p}$ is called *regular* if $i_k \neq i_{k+1}$ for all k = 0, ..., p-1, and irregular otherwise.

Let I_p be the subspace of Λ_p spanned by irregular $e_{i_0...i_p}$. We claim that $\partial I_p \subset I_{p-1}$. Indeed, if $e_{i_0...i_p}$ is irregular then $i_k = i_{k+1}$ for some k. We have

$$\partial e_{i_0...i_p} = e_{i_1...i_p} - e_{i_0i_2...i_p} + ... + (-1)^k e_{i_0...i_{k-1}i_{k+1}i_{k+2}...i_p} + (-1)^{k+1} e_{i_0...i_{k-1}i_ki_{k+2}...i_p} (1.1) + ... + (-1)^p e_{i_0...i_{p-1}}.$$

By $i_k = i_{k+1}$ the two terms in the middle line of (1.1) cancel out, whereas all other terms are non-regular, whence $\partial e_{i_0...i_p} \in I_{p-1}$.

Hence, ∂ is well-defined on the quotient spaces $\mathcal{R}_p := \Lambda_p / I_p$, and we obtain the chain complex $\mathcal{R}_*(V)$:

$$0 \leftarrow \mathcal{R}_0 \stackrel{\partial}{\leftarrow} \mathcal{R}_1 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \mathcal{R}_{p-1} \stackrel{\partial}{\leftarrow} \mathcal{R}_p \stackrel{\partial}{\leftarrow} \dots$$

By setting all irregular *p*-paths to be equal to 0, we can identify \mathcal{R}_p with the subspace of Λ_p spanned by all regular paths. For example, if $i \neq j$ then $e_{iji} \in \mathcal{R}_2$ and

$$\partial e_{iji} = e_{ji} - e_{ii} + e_{ij} = e_{ji} + e_{ij}$$

because $e_{ii} = 0$.

2 Chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V of vertices and a set $E \subset \{V \times V \setminus \text{diag}\}$ of arrows (directed edges). If $(i, j) \in E$ then we write $i \to j$.

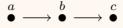
Definition. Let G = (V, E) be a digraph. An elementary *p*-path $i_0...i_p$ on *V* is called allowed if $i_k \rightarrow i_{k+1}$ for any k = 0, ..., p - 1, and non-allowed otherwise.

Let $\mathcal{A}_{p} = \mathcal{A}_{p}(G)$ be K-linear space spanned by allowed elementary *p*-paths:

 $\mathcal{A}_p = \langle e_{i_0 \dots i_p} : i_0 \dots i_p \text{ is allowed} \rangle.$

The elements of \mathcal{A}_p are called *allowed* p-paths. Since any allowed path is regular, we have $\mathcal{A}_p \subset \mathcal{R}_p$.

We would like to build a chain complex based on subspaces \mathcal{A}_p of \mathcal{R}_p . However, the spaces \mathcal{A}_p are in general *not* invariant for ∂ . For example, in the digraph



we have $e_{abc} \in \mathcal{A}_2$ but $\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \notin \mathcal{A}_1$ because e_{ac} is not allowed.

Definition. A *p*-path *u* is called ∂ -invariant if $u \in \mathcal{A}_p$ and $\partial u \in \mathcal{A}_{p-1}$.

The space of ∂ -invariant paths is denoted by Ω_p :

$$\Omega_p = \{ u \in \mathcal{A}_p : \partial u \in \mathcal{A}_{p-1} \} \,.$$

Important: $\partial \Omega_p \subset \Omega_{p-1}$. Indeed, $u \in \Omega_p$ implies $\partial u \in \mathcal{A}_{p-1}$ and $\partial (\partial u) = 0 \in \mathcal{A}_{p-2}$, whence $\partial u \in \Omega_{p-1}$.

Hence, we obtain a chain complex $\Omega_* = \Omega_*(G)$:

$$0 \leftarrow \Omega_{-1} \stackrel{\partial}{\leftarrow} \Omega_0 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_p \stackrel{\partial}{\leftarrow} \dots$$

Note that $\Omega_{-1} = \mathbb{K}$, $\Omega_0 = \mathcal{A}_0 = \langle e_i, i \in V \rangle$ and $\Omega_1 = \mathcal{A}_1 = \langle e_{ij}, i \to j \rangle$, while in general $\Omega_p \subset \mathcal{A}_p$.

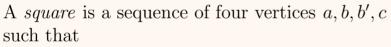
3 Examples of ∂ -invariant paths

A triangle is a sequence of three vertices a,b,c such that

 $a \to b \to c, \ a \to c.$

It determines 2-path $e_{abc} \in \Omega_2$ because $e_{abc} \in \mathcal{A}_2$ and

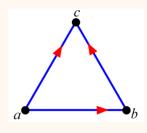
$$\partial e_{abc} = e_{bc} - e_{ac} + e_{ab} \in \mathcal{A}_1.$$

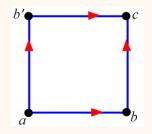


 $a \to b, b \to c, a \to b', b' \to c.$ It determines a 2-path

$$u = e_{abc} - e_{ab'c} \in \Omega_2$$

because $u \in \mathcal{A}_2$ and
$$\partial u = (e_{bc} - \underline{e_{ac}} + e_{ab}) - (e_{b'c} - \underline{e_{ac}} + e_{ab'})$$
$$= e_{ab} + e_{bc} - e_{ab'} - e_{b'c} \in \mathcal{A}_1$$

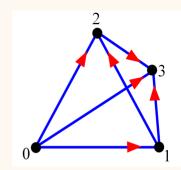




In general, Ω_2 has a basis that consists of triangles and squares and double arrows e_{aba} .

A *p*-simplex (or *p*-clique) is a sequence of p + 1 vertices, say, 0, 1, ..., p, such that $i \rightarrow j \Leftrightarrow i < j$. It determines a *p*-path $e_{01...p} \in \Omega_p$.

1-simplex is $\bullet \to \bullet$, 2-simplex is a triangle. Here is a 3-simplex:

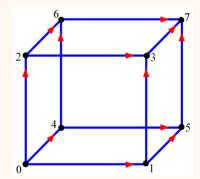


A 3-*cube* is a sequence of 8 vertices 0, 1, 2, 3, 4, 5, 6, 7, connected by arrows as here: It determines a ∂ -invariant 3-path

$$u = e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{0467} - e_{0267} \in \Omega_3$$

because $u \in \mathcal{A}_3$ and

$$\partial u = (e_{013} - e_{023}) + (e_{157} - e_{137}) + (e_{237} - e_{267}) - (e_{046} - e_{026}) - (e_{457} - e_{467}) - (e_{015} - e_{045}) \in \mathcal{A}_2$$



4 Homology groups

Alongside the chain complex

$$0 \stackrel{\partial}{\leftarrow} \Omega_{-1} \stackrel{\partial}{\leftarrow} \Omega_0 \stackrel{\partial}{\leftarrow} \dots \stackrel{\partial}{\leftarrow} \Omega_{p-1} \stackrel{\partial}{\leftarrow} \Omega_p \stackrel{\partial}{\leftarrow} \dots$$
(4.1)

consider also a *truncated* chain complex

$$0 \quad \stackrel{\partial}{\leftarrow} \quad \Omega_0 \quad \stackrel{\partial}{\leftarrow} \quad \dots \quad \stackrel{\partial}{\leftarrow} \quad \Omega_{p-1} \quad \stackrel{\partial}{\leftarrow} \quad \Omega_p \quad \stackrel{\partial}{\leftarrow} \quad \dots \tag{4.2}$$

The homology groups of (4.2) are called the *path homology groups* of the digraph G and denoted by H_p , that is,

$$H_p = \ker \partial|_{\Omega_p} / \operatorname{Im} \partial|_{\Omega_{p+1}}.$$

The homology groups of (4.1) are called the *reduced* path homology groups of G and are denoted by \widetilde{H}_p . We have

$$\widetilde{H}_p = H_p \text{ for } p \ge 1 \text{ and } \widetilde{H}_0 = H_0 / \mathbb{K}.$$

Define the Betti numbers $\beta_p = \dim H_p$ and the reduced Betti numbers $\tilde{\beta}_p = \dim \tilde{H}_p$ so that

$$\widetilde{\boldsymbol{\beta}}_p = \boldsymbol{\beta}_p \text{ for } p \geq 1 \text{ and } \widetilde{\boldsymbol{\beta}}_0 = \boldsymbol{\beta}_0 - 1.$$

It is known that β_0 is equal to the number of connected components of G. In particular, if G is connected then $\tilde{\beta}_0 = 0$.

If $G = X \sqcup Y$ - a disjoin union of two digraphs X, Y then

 $\beta_r \left(X \sqcup Y \right) = \beta_r \left(X \right) + \beta_r \left(Y \right)$

and

$$\widetilde{\beta}_{r}\left(X\sqcup Y\right) =\widetilde{\beta}_{r}\left(X\right) +\widetilde{\beta}_{r}\left(Y\right) +\mathbf{1}_{\left\{ r=0\right\} }.$$

In what follows, for a vector space S over \mathbb{K} we write $|S| = \dim_{\mathbb{K}} S$.

5 Examples of spaces Ω_p and H_p

A linear digraph of
$$n$$
 vertices:
 $|\Omega_0| = n, \quad |\Omega_1| = n - 1,$
 $\Omega_p = \{0\} \text{ for } p \ge 2,$
 $\widetilde{H}_p = \{0\} \text{ for all } p \ge 0.$

A triangle as a digraph:
$$\begin{split} \Omega_1 &= \langle e_{01}, e_{02}, e_{12} \rangle, \quad \Omega_2 &= \langle e_{012} \rangle, \quad \Omega_p = \{0\} \text{ for } p \geq 3 \\ & \ker \partial|_{\Omega_1} &= \langle e_{01} - e_{02} + e_{12} \rangle \\ \text{but} \qquad & e_{01} - e_{02} + e_{12} = \partial e_{012} \\ \text{so that } H_1 &= \{0\}. \quad \text{We have } \widetilde{H}_p = \{0\} \text{ for all } p \geq 0. \end{split}$$

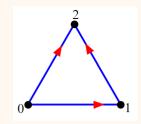
A square as a digraph:

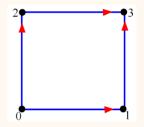
$$\Omega_1 = \langle e_{01}, e_{02}, e_{13}, e_{23} \rangle, \quad \Omega_2 = \langle e_{013} - e_{023} \rangle, \quad \Omega_p = \{0\} \text{ for } p \ge 3$$

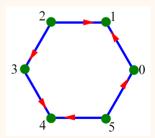
 $\ker \partial|_{\Omega_1} = \langle e_{01} + e_{13} - e_{02} - e_{23} \rangle$
but $e_{01} + e_{13} - e_{02} - e_{23} = \partial (e_{013} - e_{023})$
so that $H_1 = \{0\}$. We have $\widetilde{H}_p = \{0\}$ for all $p \ge 0$.

A hexagon:
$$|\Omega_0| = |\Omega_1| = 6$$
, $\Omega_p = \{0\}$ for all $p \ge 2$.
 $H_1 = \langle e_{01} - e_{21} + e_{23} + e_{34} - e_{54} + e_{50} \rangle$, $\widetilde{H}_p = \{0\}$ for $p \ne 1$.
The same is true for any cyclic digraph (directed polygon)
that is neither triangle nor square:

$$|H_1| = 1$$
 and $\widetilde{H}_p = \{0\}$ for all $p \neq 1$.

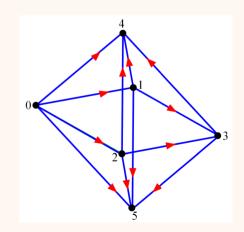






Octahedron: $|\Omega_0| = 6$, $|\Omega_1| = 12$ Space Ω_2 is spanned by 8 triangles: $\Omega_2 = \langle e_{024}, e_{034}, e_{025}, e_{035}, e_{124}, e_{134}, e_{125}, e_{135} \rangle$, $|\Omega_2| = 8$, $\Omega_p = \{0\}$ for all $p \ge 3$ $H_2 = \langle e_{024} - e_{034} - e_{025} + e_{035} - e_{124} + e_{134} + e_{125} - e_{135} \rangle$ $|H_2| = 1$, $\widetilde{H}_p = \{0\}$ for all $p \ne 2$.

Octahedron with different orientation: $\begin{aligned}
\Omega_2 &= \langle e_{024}, e_{025}, e_{014}, e_{015}, e_{234}, e_{235}, e_{134}, e_{135}, e_{013} - e_{023} \rangle \\
\Omega_3 &= \langle e_{0234} - e_{0134}, e_{0235} - e_{0135} \rangle \\
|\Omega_2| &= 9, \quad |\Omega_3| = 2, \quad \Omega_p = \{0\} \text{ for all } p \ge 4. \\
\ker \partial|_{\Omega_2} &= \langle u, v \rangle \text{ where} \\
& u = e_{024} + e_{234} - e_{014} - e_{134} + (e_{013} - e_{023}) \\
& v = e_{025} + e_{235} - e_{015} - e_{135} + (e_{013} - e_{023}) \\
\text{but } H_2 &= \{0\} \text{ because} \\
& u = \partial (e_{0234} - e_{0134}) \text{ and } v = \partial (e_{0235} - e_{0135}) \\
\text{So, } \widetilde{H}_p &= \{0\} \text{ for all } p \ge 0.
\end{aligned}$



A 3-cube:

We have $|\Omega_0| = 8$, $|\Omega_1| = 12$. Space Ω_2 is spanned by 6 squares:

$$\Omega_2 = \langle e_{013} - e_{023}, \ e_{015} - e_{045}, \ e_{026} - e_{046}, \\ e_{137} - e_{157}, \ e_{237} - e_{267}, \ e_{457} - e_{467} \rangle$$

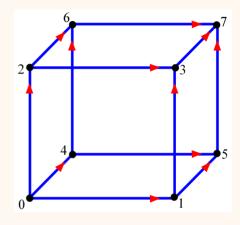
hence, $|\Omega_2| = 6$.

Space Ω_3 is spanned by one 3-cube:

$$\Omega_3 = \langle e_{0237} - e_{0137} + e_{0157} - e_{0457} + e_{0467} - e_{0267} \rangle$$

hence, $|\Omega_3| = 1$.

$$\Omega_p = \{0\}$$
 for all $p \ge 4$ and $\widetilde{H}_p = \{0\}$ for all $p \ge 0$.



6 A join of two digraphs

Given two digraphs X, Y, define their *join* X * Y as follows: take first a disjoint union $X \sqcup Y$ and add arrows from any vertex of X to any vertex of Y.

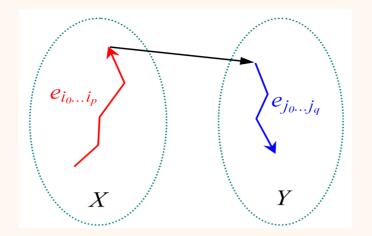
For example,

$$\{0,1\} * \{2,3\} = \begin{array}{cccc} 3 &\leftarrow 1 \\ \uparrow & \downarrow \\ 0 &\rightarrow 2 \end{array} \quad \text{and} \quad \begin{array}{c} 3 &\leftarrow 1 \\ \uparrow & \downarrow \\ 0 &\rightarrow 2 \end{array} * \{4,5\} = \begin{array}{c} 0 \\ 0 \\ \end{array}$$

Define the join uv of p-path u on X and q-path v on Y as a (p+q+1)-path on X * Y as follows: first define it for elementary paths by

$$e_{i_0...i_p}e_{j_0...j_q} = e_{i_0...i_pj_0...j_q}$$

and then extend this definition by linearity to all p-paths u on X and q-paths v on Y.



If u and v are allowed on X resp. Y then uv is allowed on Z = X * Y.

Lemma 6.1 The join of paths satisfies the product rule

$$\partial (uv) = (\partial u) v + (-1)^{p+1} u \partial v.$$

If $u \in \Omega_p(X)$ and $v \in \Omega_q(Y)$ then ∂u and ∂v are allowed, which implies that $\partial(uv)$ is also allowed, that is, $uv \in \Omega_{p+q+1}(Z)$. The product rule implies also that the join uv is well defined for homology classes $u \in \widetilde{H}_p(X)$ and $v \in \widetilde{H}_q(Y)$ so that $uv \in \widetilde{H}_{p+q+1}(Z)$. **Theorem 6.2** (Künneth formula) We have the following isomorphism: for any $r \geq -1$,

$$\Omega_r \left(X * Y \right) \cong \bigoplus_{\{p,q \ge -1: p+q=r-1\}} \left(\Omega_p \left(X \right) \otimes \Omega_q \left(Y \right) \right)$$
(6.1)

that is given by the map $u \otimes v \mapsto uv$ with $u \in \Omega_p(X)$ and $v \in \Omega_q(Y)$, and, for any $r \ge 0$,

$$\widetilde{H}_{r}\left(X*Y\right) \cong \bigoplus_{\{p,q\geq 0: p+q=r-1\}} \widetilde{H}_{p}\left(X\right) \otimes \widetilde{H}_{q}\left(Y\right)$$
(6.2)

$$\widetilde{\beta}_{r}(X*Y) \cong \sum_{\{p,q\geq 0: p+q=r-1\}} \widetilde{\beta}_{p}(X) \widetilde{\beta}_{q}(Y).$$
(6.3)

The identity (6.1) means that any paths in $\Omega_r(Z)$ can be obtained as linear combination of joins uv where $u \in \Omega_p(X)$ and $v \in \Omega_q(Y)$ with p + q + 1 = r, and (6.2) means the same for homology classes. Note that that the operation * of digraphs is associative. For a sequence X_1, \ldots, X_l of l digraphs we obtain by induction from (6.1), (6.2) and (6.3) that

$$\Omega_{r} (X_{1} * X_{2} * ... * X_{l}) \cong \bigoplus_{\substack{\{p_{i} \ge -1: \ p_{1}+p_{2}+...+p_{l}=r-l+1\}}} \Omega_{p_{1}} (X_{1}) \otimes ... \otimes \Omega_{p_{l}} (X_{l}) \quad (6.4)$$

$$\widetilde{H}_{r} (X_{1} * X_{2} * ... * X_{l}) \cong \bigoplus_{\substack{\{p_{i} \ge 0: \ p_{1}+p_{2}+...+p_{l}=r-l+1\}}} \widetilde{H}_{p_{1}} (X_{1}) \otimes ... \otimes \widetilde{H}_{p_{l}} (X_{l}) \quad (6.5)$$

$$\widetilde{\beta}_{r} (X_{1} * X_{2} * ... * X_{l}) = \sum_{\substack{\{p_{i} \ge 0: \ p_{1}+p_{2}+...+p_{l}=r-l+1\}}} \widetilde{\beta}_{p_{1}} (X_{1}) ... \widetilde{\beta}_{p_{l}} (X_{l}) . \quad (6.6)$$

Example. Consider an octahedron $Z = X_1 * X_2 * X_3$ where

$$X_1 = \{0, 1\}, X_2 = \{2, 3\}, X_3 = \{4, 5\}.$$

(see p. 15). Then

$$\Omega_{2}(Z) = \bigoplus_{\substack{\{p_{i} \geq -1: p_{1}+p_{2}+p_{3}=2-3+1\}}} \Omega_{p_{1}}(X_{1}) \otimes \Omega_{p_{2}}(X_{2}) \otimes \Omega_{p_{3}}(X_{3}) \\
= \Omega_{0}(X_{1}) \otimes \Omega_{0}(X_{2}) \otimes \Omega_{0}(X_{3}) \\
= \langle e_{0}, e_{1} \rangle \otimes \langle e_{2}, e_{3} \rangle \otimes \langle e_{4}, e_{5} \rangle \\
= \langle e_{024}, e_{025}, e_{034}, e_{035}, e_{124}, e_{125}, e_{134}, e_{135} \rangle$$

and

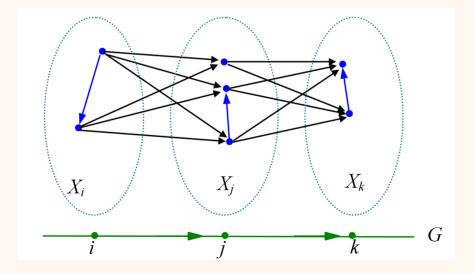
$$\begin{aligned} H_2(Z) &= \widetilde{H}_2(Z) &= \bigoplus_{\substack{\{p_i \ge 0: \ p_1 + p_2 + p_3 = 2 - 3 + 1\}}} \widetilde{H}_{p_1}(X_1) \otimes \widetilde{H}_{p_2}(X_2) \otimes \widetilde{H}_{p_3}(X_3) \\ &= \widetilde{H}_0(X_1) \otimes \widetilde{H}_0(X_2) \otimes \widetilde{H}_0(X_3) \\ &= \langle e_0 - e_1 \rangle \otimes \langle e_2 - e_3 \rangle \otimes \langle e_4 - e_5 \rangle \\ &= \langle e_{024} - e_{025} - e_{034} + e_{035} - e_{124} + e_{125} + e_{134} - e_{135} \rangle. \end{aligned}$$

(see p. 13).

7 A generalized join of digraphs

Given a digraph G of l vertices $\{1, 2, ..., l\}$ and a sequence $X_1, ..., X_l$ of l digraphs, define their generalized join $(X_1...X_l)_G = X_G$ as follows: X_G is obtained from the disjoint union $\bigsqcup_i X_i$ of digraphs X_i by keeping all the arrows in each X_i and by adding arrows $x \to y$ whenever $x \in X_i, y \in X_j$ and $i \to j$ in G.

Digraph X_G is also referred to as a *G*-join of $X_1, ..., X_l$, and *G* is called the *base* of X_G .



The main problem to be discussed here is

how to compute the homology groups and Betti numbers of X_G .

Denote by K_l a complete digraph with vertices $\{1, ..., l\}$ and arrows

$$i \to j \Leftrightarrow i < j$$

that is, K_l is an (l-1)-simplex. For example, $K_2 = \{1 \rightarrow 2\}$ and $K_3 = \{1 \rightarrow 2 \rightarrow 3, 1 \rightarrow 3\}$ is a triangle.

The digraph X_{K_l} is called a *complete* join of $X_1, ..., X_l$. It is easy to see that

$$X_{K_l} = X_1 * X_2 * \dots * X_l$$

It follows from (6.6) that, for any $r \ge 0$,

$$\widetilde{\beta}_{r}(X_{K_{l}}) = \sum_{\{p_{i} \ge 0: \ p_{1}+p_{2}+\ldots+p_{l}=r-l+1\}} \widetilde{\beta}_{p_{1}}(X_{1}) \ldots \widetilde{\beta}_{p_{l}}(X_{l}).$$
(7.1)

8 A monotone linear join

Denote by I_l a monotone linear digraph with the vertices $\{1, ..., l\}$ and arrows $i \to i + 1$:

$$I_l = \{1 \to 2 \to \dots \to l\}. \tag{8.1}$$

If $G = I_l$ then we use the following simplified notation:

$$(X_1 X_2 \dots X_l)_{I_l} = X_1 X_2 \dots X_l$$

and refer to this digraph as a monotone linear join of $X_1, ..., X_l$.

Clearly, $X_1X_2...X_n$ can be constructed as follows: take first a disjoint union $\bigsqcup_{i=1}^{l} X_i$ and then add arrows from any vertex of X_i to any vertex of X_{i+1} (see p. 19).

In the case l = 2 we obviously have $X_1X_2 = X_1 * X_2$ but in general $X_1X_2...X_l$ is a subgraph of $X_1 * X_2 * ... * X_l$. For example, we have

$$\{0\} \{1,2\} \{3\} = \begin{array}{cccc} 1 & \rightarrow & 3 \\ \uparrow & \uparrow & \uparrow \\ 0 & \rightarrow & 2 \end{array} \quad \text{while} \quad \{0\} * \{1,2\} * \{3\} = \begin{array}{cccc} 1 & \rightarrow & 3 \\ \uparrow & \nearrow & \uparrow \\ 0 & \rightarrow & 2 \end{array}$$
 (8.2)

Theorem 8.1 We have

$$\widetilde{H}_{r}\left(X_{1}X_{2}...X_{l}\right) \cong \bigoplus_{\{p_{i} \ge 0: \ p_{1}+p_{2}+...+p_{l}=r-l+1\}} \widetilde{H}_{p_{1}}\left(X_{1}\right) \otimes ... \otimes \widetilde{H}_{p_{l}}\left(X_{l}\right)$$
(8.3)

and

$$\widetilde{\beta}_{r}(X_{1}X_{2}...X_{l}) = \sum_{\{p_{i} \ge 0: \ p_{1}+p_{2}+...+p_{l}=r-l+1\}} \widetilde{\beta}_{p_{1}}(X_{1})...\widetilde{\beta}_{p_{l}}(X_{l}).$$
(8.4)

By (6.5) and (8.3), $X_1X_2...X_l$ and $X_1 * X_2 * ... * X_l$ are homologically equivalent.

Example. Let the base G be a square:

We have $G = \{1\} \{2, 3\} \{4\}$ which implies that $X_G = X_1 (X_2 \sqcup X_3) X_4.$ G =Hence, by Theorem 8.1,

	2	\rightarrow	4
G =	\uparrow		\uparrow
	1	\rightarrow	3

$$\widetilde{\beta}_{r}(X_{G}) = \sum_{\{p_{i} \geq 0: \ p_{1}+p_{2}+p_{3}=r-2\}} \widetilde{\beta}_{p_{1}}(X_{1}) \widetilde{\beta}_{p_{2}}(X_{2} \sqcup X_{3}) \widetilde{\beta}_{p_{3}}(X_{4})
= \sum_{\{p_{i} \geq 0: \ p_{1}+p_{2}+p_{3}=r-2\}} \widetilde{\beta}_{p_{1}}(X_{1}) \left(\widetilde{\beta}_{p_{2}}(X_{2}) + \widetilde{\beta}_{p_{2}}(X_{3}) + \mathbf{1}_{\{p_{2}=0\}}\right) \widetilde{\beta}_{p_{3}}(X_{4})
= \widetilde{\beta}_{r}(X_{1}X_{2}X_{4}) + \widetilde{\beta}_{r}(X_{1}X_{3}X_{4}) + \widetilde{\beta}_{r-1}(X_{1}X_{4}).$$
(8.5)

For a general base G, if $i_1...i_k$ is an arbitrary sequence of vertices in G then denote

$$X_{i_1...i_k} = X_{i_1} X_{i_2} ... X_{i_k}.$$

Note that by (8.4)

$$\widetilde{\beta}_{r}\left(X_{i_{1}\ldots i_{k}}\right) = \sum_{\substack{p_{1}+\ldots+p_{k}=r-(k-1)\\p_{1},\ldots,p_{k}\geq 0}} \widetilde{\beta}_{p_{1}}\left(X_{i_{1}}\right)\ldots\widetilde{\beta}_{p_{k}}\left(X_{i_{k}}\right),$$

and we consider the numbers $\widetilde{\beta}_r(X_{i_1...i_k})$ as known.

Using this notation, we can rewrite (8.5) as follows: if G is a square then

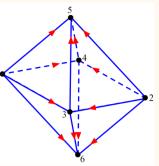
$$\widetilde{\beta}_{r}(X_{G}) = \widetilde{\beta}_{r}(X_{124}) + \widetilde{\beta}_{r}(X_{134}) + \widetilde{\beta}_{r-1}(X_{14}).$$

Example. Let G be an octahedron:

We have $G = \{1, 2\} * \{3, 4\} * \{5, 6\}$ whence

$$X_G = (X_1 \sqcup X_2) * (X_3 \sqcup X_4) * (X_5 \sqcup X_6)$$

By (7.1) we obtain



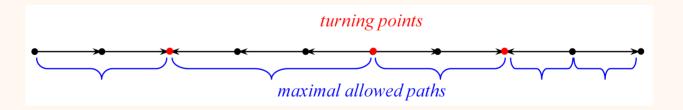
$$\begin{split} \widetilde{\beta}_{r}\left(X_{G}\right) &= \sum_{\{p_{i} \geq 0: \ p_{1}+p_{2}+p_{3}=r-2\}} \widetilde{\beta}_{p_{1}}(X_{1} \sqcup X_{2}) \widetilde{\beta}_{p_{2}}(X_{3} \sqcup X_{4}) \widetilde{\beta}_{p_{3}}(X_{5} \sqcup X_{6}) \\ &= \sum_{\{p_{i} \geq 0: \ p_{1}+p_{2}+p_{3}=r-2\}} (\widetilde{\beta}_{p_{1}}(X_{1}) + \widetilde{\beta}_{p_{1}}(X_{2}) + \mathbf{1}_{\{p_{1}=0\}}) (\widetilde{\beta}_{p_{2}}(X_{3}) + \widetilde{\beta}_{p_{2}}(X_{4}) + \mathbf{1}_{\{p_{2}=0\}}) \\ &\times (\widetilde{\beta}_{p_{3}}(X_{5}) \sqcup \widetilde{\beta}_{p_{3}}(X_{6}) + \mathbf{1}_{\{p_{3}=0\}}) \\ &= \widetilde{\beta}_{r}(X_{135}) + \widetilde{\beta}_{r}(X_{145}) + \widetilde{\beta}_{r}(X_{235}) + \widetilde{\beta}_{r}(X_{245}) + \widetilde{\beta}_{r}(X_{136}) + \widetilde{\beta}_{r}(X_{146}) + \widetilde{\beta}_{r}(X_{236}) + \widetilde{\beta}_{r}(X_{246}) \\ &+ \widetilde{\beta}_{r-1}(X_{13}) + \widetilde{\beta}_{r-1}(X_{23}) + \widetilde{\beta}_{r-1}(X_{14}) + \widetilde{\beta}_{r-1}(X_{24}) + \widetilde{\beta}_{r-1}(X_{15}) + \widetilde{\beta}_{r-1}(X_{25}) \\ &+ \widetilde{\beta}_{r-1}(X_{35}) + \widetilde{\beta}_{r-1}(X_{45}) + \widetilde{\beta}_{r-1}(X_{16}) + \widetilde{\beta}_{r-1}(X_{26}) + \widetilde{\beta}_{r-1}(X_{36}) + \widetilde{\beta}_{r-1}(X_{46}) \\ &+ \widetilde{\beta}_{r-2}(X_{1}) + \widetilde{\beta}_{r-2}(X_{2}) + \widetilde{\beta}_{r-2}(X_{3}) + \widetilde{\beta}_{r-2}(X_{4}) + \widetilde{\beta}_{r-2}(X_{5}) + \widetilde{\beta}_{r-2}(X_{6}) + \mathbf{1}_{\{r=2\}}. \end{split}$$

9 An arbitrary linear join

Let now G be a *linear digraph* but not necessarily monotone. That is, the vertex set of G is $\{1, ..., l\}$ and, for any pair (i, i + 1) of consecutive numbers there is exactly one arrow: either $i \to i + 1$ or $i \leftarrow i + 1$.

Definition. We say that a vertex v of G is a *turning point* if v has either two incoming arrows or two outcoming arrows. Denote by \mathcal{T} the set of all turning points.

An allowed path in G is called *maximal* if it is not a proper subset (as a set of vertices) of another allowed path. Denote by \mathcal{A}_{max} the family of all maximal allowed paths in G.



Clearly, the end vertices of a maximal path are either turning points or the vertices 1, l.

Theorem 9.1 If G is an arbitrary linear digraph then

$$\widetilde{\beta}_r(X_G) = \sum_{u \in \mathcal{A}_{\max}} \widetilde{\beta}_r(X_u) + \sum_{v \in \mathcal{T}} \widetilde{\beta}_{r-1}(X_v).$$

In other words, $\widetilde{\beta}_r(X_G)$ is the sum of all $\widetilde{\beta}_r$ of the linear joins of X_i along all maximal allowed paths in G plus the sum of $\widetilde{\beta}_{r-1}$ of all X_v sitting at the turning points v.

Example. Consider the base

$$G = \{1 \to 2 \leftarrow 3 \leftarrow 4 \to 5\}.$$

Then $\mathcal{T} = \{2, 4\}$, while maximal paths of L are

$$\mathcal{A}_{\max} = \{1 \to 2, 4 \to 3 \to 2, 4 \to 5\}.$$

Hence, by Theorem 9.1,

$$\widetilde{\beta}_{r}(X_{G}) = \widetilde{\beta}_{r}(X_{12}) + \widetilde{\beta}_{r}(X_{432}) + \widetilde{\beta}_{r}(X_{45}) + \widetilde{\beta}_{r-1}(X_{2}) + \widetilde{\beta}_{r-1}(X_{4}).$$

Example. Consider the following base:

It is easy to see that G itself is the following linear join:

 $G = (\{1\} \{2, 4\} \{3\} \{5, 7\} \{6\})_L$

where $L = \{\alpha \to \beta \leftarrow \gamma \leftarrow \delta \to \varepsilon\}$. Here the turning points of L are $\mathcal{T} = \{\beta, \delta\}$, while maximal paths of L are

$$\mathcal{A}_{\max} = \{ \alpha \to \beta, \ \delta \to \gamma \to \beta, \ \delta \to \varepsilon \}.$$

For L-join we have as above

$$\widetilde{\beta}_{r}(Y_{L}) = \widetilde{\beta}_{r}(Y_{\alpha\beta}) + \widetilde{\beta}_{r}(Y_{\delta\gamma\beta}) + \widetilde{\beta}_{r}(Y_{\delta\varepsilon}) + \widetilde{\beta}_{r-1}(Y_{\beta}) + \widetilde{\beta}_{r-1}(Y_{\delta}).$$

Setting $Y_{\alpha} = X_1$, $Y_{\beta} = X_2 \sqcup X_3$, $Y_{\gamma} = X_3$, $Y_{\delta} = X_5 \sqcup X_7$ and $Y_{\varepsilon} = X_6$ we obtain

$$\widetilde{\beta}_r (X_G) = \widetilde{\beta}_r \left((X_1 (X_2 \sqcup X_3) X_3 (X_5 \sqcup X_7) X_6)_L \right)$$

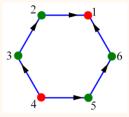
$$\begin{split} &= \widetilde{\beta}_{r}(X_{1}(X_{2} \sqcup X_{4})) + \widetilde{\beta}_{r}((X_{5} \sqcup X_{7})X_{3}(X_{2} \sqcup X_{4})) + \widetilde{\beta}_{r}((X_{5} \sqcup X_{7})X_{6}) \\ &\quad + \widetilde{\beta}_{r-1}(X_{2} \sqcup X_{4}) + \widetilde{\beta}_{r-1}(X_{5} \sqcup X_{7}) \\ &= \widetilde{\beta}_{r}(X_{12}) + \widetilde{\beta}_{r}(X_{14}) + \widetilde{\beta}_{r-1}(X_{1}) \\ &\quad + \widetilde{\beta}_{r}(X_{532}) + \widetilde{\beta}_{r}(X_{534}) + \widetilde{\beta}_{r}(X_{732}) + \widetilde{\beta}_{r}(X_{734}) \\ &\quad + \widetilde{\beta}_{r-1}(X_{32}) + \widetilde{\beta}_{r-1}(X_{34}) + \widetilde{\beta}_{r-1}(X_{53}) + \widetilde{\beta}_{r-1}(X_{73}) + \widetilde{\beta}_{r-2}(X_{3}) \\ &\quad + \widetilde{\beta}_{r}(X_{56}) + \widetilde{\beta}_{r}(X_{76}) + \widetilde{\beta}_{r-1}(X_{6}) \\ &\quad + \widetilde{\beta}_{r-1}(X_{2}) + \widetilde{\beta}_{r-1}(X_{4}) + \mathbf{1}_{\{r=1\}} + \widetilde{\beta}_{r-1}(X_{5}) + \widetilde{\beta}_{r-1}(X_{7}) + \mathbf{1}_{\{r=1\}}. \end{split}$$

$$\begin{aligned} \widetilde{\beta}_{r}(X_{G}) &= \widetilde{\beta}_{r}(X_{534}) + \widetilde{\beta}_{r}(X_{532}) + \widetilde{\beta}_{r}(X_{734}) + \widetilde{\beta}_{r}(X_{732}) \\ &+ \widetilde{\beta}_{r}(X_{12}) + \widetilde{\beta}_{r}(X_{14}) + \widetilde{\beta}_{r}(X_{56}) + \widetilde{\beta}_{r}(X_{76}) \\ &+ \widetilde{\beta}_{r-1}(X_{73}) + \widetilde{\beta}_{r-1}(X_{53}) + \widetilde{\beta}_{r-1}(X_{32}) + \widetilde{\beta}_{r-1}(X_{34}) \\ &+ \widetilde{\beta}_{r-1}(X_{1}) + \widetilde{\beta}_{r-1}(X_{2}) + \widetilde{\beta}_{r-1}(X_{4}) + \widetilde{\beta}_{r-1}(X_{5}) + \widetilde{\beta}_{r-1}(X_{6}) + \widetilde{\beta}_{r-1}(X_{7}) \\ &+ \widetilde{\beta}_{r-2}(X_{3}) + \mathbf{2}_{\{r=1\}}. \end{aligned}$$

10 A cyclic join

A digraph G is called *cyclic* if it is connected and each vertex has the undirected degree 2. Let G be a cyclic digraph with the set of vertices $V = \{1, 2, ..., l\}$. We assume that the vertices are ordered so that every vertex $i \in V$ is connected by arrows to i - 1 and i + 1 (where l is identified with 0). In the same way as above we define the set \mathcal{A}_{max} and \mathcal{T} .

For example, consider the following hexagon: Here $\mathcal{T} = \{1, 4\}$ and $\mathcal{A}_{\max} = \{4 \rightarrow 3 \rightarrow 2 \rightarrow 1, 4 \rightarrow 5 \rightarrow 6 \rightarrow 1\}$



Theorem 10.1 Let G be a cyclic digraph that is neither triangle nor square nor double arrow. Then

$$\widetilde{\beta}_{r}(X_{G}) = \sum_{u \in \mathcal{A}_{\max}} \widetilde{\beta}_{r}(X_{u}) + \sum_{v \in \mathcal{T}} \widetilde{\beta}_{r-1}(X_{v}) + \widetilde{\beta}_{r}(G).$$
(10.1)

Note that in this case $\widetilde{\beta}_r(G) = \mathbf{1}_{\{r=1\}}$. If G is a triangle or square or double arrow then (10.1) is wrong, which is shown in Examples below.

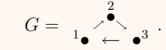
Example. If G is the above hexagon then we obtain

$$\widetilde{\beta}_{r}\left(X_{G}\right) = \widetilde{\beta}_{r}\left(X_{4321}\right) + \widetilde{\beta}_{r}\left(X_{4561}\right) + \widetilde{\beta}_{r-1}\left(X_{1}\right) + \widetilde{\beta}_{r-1}\left(X_{4}\right) + \mathbf{1}_{\{r=1\}}$$

Example. Consider the following 4-cyclic base:

Since $\mathcal{T} = \{1, 4\}$ and $\mathcal{A}_{max} = \{1 \rightarrow 2 \rightarrow 3 \rightarrow 4, 1 \rightarrow 4\}$, we obtain $\widetilde{\beta}_{r}(X_{G}) = \widetilde{\beta}_{r}(X_{1234}) + \widetilde{\beta}_{r}(X_{14}) + \widetilde{\beta}_{r-1}(X_{1}) + \widetilde{\beta}_{r-1}(X_{4}) + \mathbf{1}_{\{r=1\}}.$ (10.2)

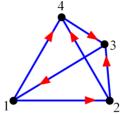
Example. Consider the following 3-cyclic base: $G = \frac{2}{10} e^{-3}$.



Then \mathcal{A}_{\max} and \mathcal{T} are empty, and we obtain $\widetilde{\beta}_r(X_G) = \mathbf{1}_{\{r=1\}} = \widetilde{\beta}_r(G)$.

Example. Consider the following tetrahedron as a base G:

We have $G = C * \{4\}$ where $C = \{1 \rightarrow 2 \rightarrow 3 \rightarrow 1\}$ It follows that $X_G = X_C * X_4$ and



$$\widetilde{\beta}_{r}(X_{G}) = \sum_{p+q=r-1} \widetilde{\beta}_{p}(X_{C}) \widetilde{\beta}_{q}(X_{4}) = \sum_{p+q=r-1} \mathbf{1}_{\{p=1\}} \widetilde{\beta}_{q}(X_{4}) = \widetilde{\beta}_{r-2}(X_{4}).$$

Hence, $\widetilde{\beta}_{r}(X_{G}) = \widetilde{\beta}_{r-2}(X_{4})$.

Example. Let G be a triangle: $G = \underset{1 \bullet}{\overset{2}{\xrightarrow{} \bullet}} \underset{\bullet}{\overset{\circ}{\xrightarrow{} \bullet}} \underset{\bullet}{\overset{\circ}{\xrightarrow{} \bullet}} \overset{*}{\xrightarrow{} \bullet} \overset{*}{\xrightarrow{} \overset{*}{\xrightarrow{} \bullet} \overset{*}{\xrightarrow{} \bullet} \overset{*}{\xrightarrow{} \bullet} \overset{*}{\xrightarrow{} } \overset{*}{\xrightarrow{} \overset{*}{\xrightarrow{} \overset{*}{\xrightarrow{} {} \overset{*}{\xrightarrow{} \overset{*}{\xrightarrow{}}} \overset{*}{\xrightarrow{} \overset{*}{\xrightarrow{}}{\xrightarrow{}$

$$\widetilde{\beta}_r(X_G) = \widetilde{\beta}_r(X_{123})$$

However, the right hand side of (10.1) is in this case

$$\widetilde{\beta}_{r}(X_{123}) + \widetilde{\beta}_{r-1}(X_{1}) + \widetilde{\beta}_{r-1}(X_{3}) \neq \widetilde{\beta}_{r}(X_{G}).$$

Example. Let G be a square:

Then we that by (8.5)

$$\widetilde{\beta}_{r}(X_{G}) = \widetilde{\beta}_{r}(X_{124}) + \widetilde{\beta}_{r}(X_{134}) + \widetilde{\beta}_{r-1}(X_{14}),$$

while the right hand side of (10.1) is in this case

$$\widetilde{\beta}_{r}(X_{124}) + \widetilde{\beta}_{r}(X_{134}) + \widetilde{\beta}_{r-1}(X_{1}) + \widetilde{\beta}_{r-1}(X_{4}).$$

Example. Let G be a double arrow: $G = \{1 \leftrightarrows 2\}$. Then

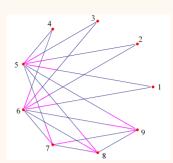
$$X_G = X_1 * X_2 * X_1$$

whence $\widetilde{\beta}_r(X_G) = \widetilde{\beta}_r(X_{121})$. However, in this case \mathcal{A}_{\max} and \mathcal{T} are empty, so that the right hand side of (10.1) is $\widetilde{\beta}_r(G) = 0$.

Example. Let G be as here:

We have $G = \{1, 2, 3, 4\} \{5, 6\} \{7 \rightarrow 8 \rightarrow 9 \rightarrow 7\}$

so that $X_G = (X_1 \sqcup X_2 \sqcup X_3 \sqcup X_4) (X_5 \sqcup X_6) X_{\{7 \to 8 \to 9 \to 7\}}$



It follows that

$$\widetilde{\beta}_{r}(X_{G}) = \sum_{p+q+s=r-2} \left(\widetilde{\beta}_{p}(X_{1}) + \widetilde{\beta}_{p}(X_{2}) + \widetilde{\beta}_{p}(X_{3}) + \widetilde{\beta}_{p}(X_{4}) + \mathbf{3}_{\{p=0\}} \right) \times \left(\widetilde{\beta}_{q}(X_{5}) + \widetilde{\beta}_{q}(X_{6}) + \mathbf{1}_{\{q=0\}} \right) \mathbf{1}_{\{s=1\}}$$

which yields after computation

$$\begin{split} \widetilde{\beta}_{r}(X_{G}) &= \widetilde{\beta}_{r-2}(X_{15}) + \widetilde{\beta}_{r-2}(X_{16}) + \widetilde{\beta}_{r-2}(X_{25}) + \widetilde{\beta}_{r-2}(X_{26}) \\ &+ \widetilde{\beta}_{r-2}(X_{35}) + \widetilde{\beta}_{r-2}(X_{36}) + \widetilde{\beta}_{r-2}(X_{45}) + \widetilde{\beta}_{r-2}(X_{46}) \\ &+ \widetilde{\beta}_{r-3}(X_{1}) + \widetilde{\beta}_{r-3}(X_{2}) + \widetilde{\beta}_{r-3}(X_{3}) + \widetilde{\beta}_{r-3}(X_{4}) + 3\widetilde{\beta}_{r-3}(X_{5}) + 3\widetilde{\beta}_{r-3}(X_{6}) + \mathbf{3}_{\{r=3\}}. \end{split}$$

11 Homology of a generalized join

Theorem 11.1 There exists a finite sequence of paths $\{u_k\}$ in G and a sequence $\{s_k\}$ of non-negative integers such that, for any sequence $\{X_i\}$ of digraphs and any $r \ge 0$,

$$\widetilde{\beta}_{r}(X_{G}) = \sum_{k} \widetilde{\beta}_{r-s_{k}}(X_{u_{k}}) + \widetilde{\beta}_{r}(G).$$
(11.1)

Besides, the sequence $\{u_k\}$ contains all maximal allowed paths, and $u_k \in \mathcal{A}_{\max} \Leftrightarrow s_k = 0$.

Example. Let the base G be a cube.

Use description of paths u_k from the proof of Theorem 11.1, we obtain

$$\widetilde{\beta}_{r}(X_{G}) = \widetilde{\beta}_{r}(X_{1248}) + \widetilde{\beta}_{r}(X_{1268}) + \widetilde{\beta}_{r}(X_{1348}) + \widetilde{\beta}_{r}(X_{1378}) + \widetilde{\beta}_{r}(X_{1568}) + \widetilde{\beta}_{r}(X_{1578}) + \widetilde{\beta}_{r-1}(X_{178}) + \widetilde{\beta}_{r-1}(X_{168}) + \widetilde{\beta}_{r-1}(X_{148}) + \widetilde{\beta}_{r-1}(X_{128}) + \widetilde{\beta}_{r-1}(X_{138}) + \widetilde{\beta}_{r-1}(X_{158}) + \widetilde{\beta}_{r-2}(X_{18})$$

