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1 Paths in a finite set

Let V be a finite set. For any p ≥ 0, an elementary p-path is any sequence i0, ..., ip of
p + 1 vertices of V .

Fix a field K and denote by Λp = Λp (V,K) the K-linear space that consists of all formal
K-linear combinations of elementary p-paths in V . Any element of Λp is called a p-path.

An elementary p-path i0, ..., ip as an element of Λp will be denoted by ei0...ip . For example,
we have

Λ0 = 〈ei : i ∈ V 〉, Λ1 = 〈eij : i, j ∈ V 〉, Λ2 = 〈eijk : i, j, k ∈ V 〉, etc

Define also an elementary (−1)-path as the unity e of K so that

Λ−1 = 〈e〉 = K.

Any p-path u can be written in a form

u =
∑

i0,i1,...,ip∈V

ui0i1...ip ei0i1...ip ,

where ui0i1...ip ∈ K.
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Definition. Define for any p ≥ 0 a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =

p∑

q=0

(−1)q ei0...îq ...ip
,

where ̂ means omission of the index.

For example,

∂ei = e, ∂eij = ej − ei, ∂eijk = ejk − eik + eij , etc.

Lemma 1.1 ∂2 = 0.

Proof. Indeed, for any p ≥ 1 we have

∂2ei0...ip =

p∑

q=0

(−1)q∂ei0...îq ...ip
=

p∑

q=0

(−1)q

(
q−1∑

r=0

(−1)rei0...îr ...îq ...ip
+

p∑

r=q+1

(−1)r−1ei0...îq ...îr ...ip

)

=
∑

0≤r<q≤p

(−1)q+r ei0...îr ...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr...ip
.
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After switching q and r in the last sum we see that the two sums cancel out, whence
∂2ei0...ip = 0. This implies ∂2u = 0 for all u ∈ Λp.

Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ−1
∂
← Λ0

∂
← . . .

∂
← Λp−1

∂
← Λp

∂
← . . .

Definition. An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all k = 0, ..., p−1,
and irregular otherwise.

Let Ip be the subspace of Λp spanned by irregular ei0...ip . We claim that ∂Ip ⊂ Ip−1.
Indeed, if ei0...ip is irregular then ik = ik+1 for some k. We have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+ (−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip (1.1)

+... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (1.1) cancel out, whereas all other terms
are non-regular, whence ∂ei0...ip ∈ Ip−1.

Hence, ∂ is well-defined on the quotient spaces Rp := Λp/Ip, and we obtain the chain
complex R∗ (V ):

0 ← R0
∂
← R1

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . .

5



By setting all irregular p-paths to be equal to 0, we can identify Rp with the subspace of
Λp spanned by all regular paths. For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij

because eii = 0.

2 Chain complex and path homology of a digraph

Definition. A digraph (directed graph) is a pair G = (V,E) of a set V of vertices and a
set E ⊂ {V × V \ diag} of arrows (directed edges). If (i, j) ∈ E then we write i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path i0...ip on V is called
allowed if ik → ik+1 for any k = 0, ..., p − 1, and non-allowed otherwise.

Let Ap = Ap (G) be K-linear space spanned by allowed elementary p-paths:

Ap = 〈ei0...ip : i0...ip is allowed〉.

The elements of Ap are called allowed p-paths. Since any allowed path is regular, we have
Ap ⊂ Rp.
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We would like to build a chain complex based on subspaces Ap of Rp. However, the spaces
Ap are in general not invariant for ∂. For example, in the digraph

a
• −→

b
• −→

c
•

we have eabc ∈ A2 but ∂eabc = ebc − eac + eab /∈ A1 because eac is not allowed.

Definition. A p-path u is called ∂-invariant if u ∈ Ap and ∂u ∈ Ap−1.

The space of ∂-invariant paths is denoted by Ωp:

Ωp = {u ∈ Ap : ∂u ∈ Ap−1} .

Important: ∂Ωp ⊂ Ωp−1. Indeed, u ∈ Ωp implies ∂u ∈ Ap−1 and ∂ (∂u) = 0 ∈ Ap−2,
whence ∂u ∈ Ωp−1.

Hence, we obtain a chain complex Ω∗ = Ω∗ (G) :

0 ← Ω−1
∂
← Ω0

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . .

Note that Ω−1 = K, Ω0 = A0 = 〈ei, i ∈ V 〉 and Ω1 = A1 = 〈eij , i → j〉, while in general
Ωp ⊂ Ap.
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3 Examples of ∂-invariant paths

A triangle is a sequence of three vertices a, b, c
such that

a→ b→ c, a→ c.
It determines 2-path eabc ∈ Ω2 because eabc ∈ A2

and
∂eabc = ebc − eac + eab ∈ A1.

A square is a sequence of four vertices a, b, b′, c
such that

a→ b, b→ c, a→ b′, b′ → c.
It determines a 2-path

u = eabc − eab′c ∈ Ω2

because u ∈ A2 and
∂u =

(
ebc − eac + eab

)
−
(
eb′c − eac + eab′

)

= eab + ebc − eab′ − eb′c ∈ A1

In general, Ω2 has a basis that consists of triangles and squares and double arrows eaba.
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A p-simplex (or p-clique) is a sequence of
p + 1 vertices, say, 0, 1, ..., p, such that

i→ j ⇔ i < j.
It determines a p-path e01...p ∈ Ωp.

1-simplex is • → •, 2-simplex is a triangle.
Here is a 3-simplex:

A 3-cube is a sequence of 8 vertices 0, 1, 2, 3, 4, 5, 6, 7,
connected by arrows as here:
It determines a ∂-invariant 3-path

u = e0237 − e0137 + e0157 − e0457 + e0467 − e0267 ∈ Ω3

because u ∈ A3 and

∂u = (e013 − e023) + (e157 − e137) + (e237 − e267)
− (e046 − e026)− (e457 − e467)− (e015 − e045) ∈ A2
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4 Homology groups

Alongside the chain complex

0
∂
← Ω−1

∂
← Ω0

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (4.1)

consider also a truncated chain complex

0
∂
← Ω0

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (4.2)

The homology groups of (4.2) are called the path homology groups of the digraph G and
denoted by Hp, that is,

Hp = ker ∂|Ωp/ Im ∂|Ωp+1 .

The homology groups of (4.1) are called the reduced path homology groups of G and are

denoted by H̃p. We have

H̃p = Hp for p ≥ 1 and H̃0 = H0/K.

Define the Betti numbers βp = dim Hp and the reduced Betti numbers β̃p = dim H̃p so
that

β̃p = βp for p ≥ 1 and β̃0 = β0 − 1.
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It is known that β0 is equal to the number of connected components of G. In particular,

if G is connected then β̃0 = 0.

If G = X t Y - a disjoin union of two digraphs X,Y then

βr (X t Y ) = βr (X) + βr (Y )

and

β̃r (X t Y ) = β̃r (X) + β̃r (Y ) + 1{r=0}.

In what follows, for a vector space S over K we write |S| = dimK S.

5 Examples of spaces Ωp and Hp

A linear digraph of n vertices:
|Ω0| = n, |Ω1| = n− 1,
Ωp = {0} for p ≥ 2,

H̃p = {0} for all p ≥ 0.

•
0
→ •

1
→ •

2
← •

3
→ ...← •

n−2
→ •

n−1
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A triangle as a digraph:
Ω1 = 〈e01, e02, e12〉, Ω2 = 〈e012〉, Ωp = {0} for p ≥ 3

ker ∂|Ω1 = 〈e01 − e02 + e12〉
but e01 − e02 + e12 = ∂e012

so that H1 = {0}. We have H̃p = {0} for all p ≥ 0.

A square as a digraph:
Ω1 = 〈e01, e02, e13, e23〉, Ω2 = 〈e013 − e023〉, Ωp = {0} for p ≥ 3

ker ∂|Ω1 = 〈e01 + e13 − e02 − e23〉
but e01 + e13 − e02 − e23 = ∂ (e013 − e023)

so that H1 = {0}. We have H̃p = {0} for all p ≥ 0.

A hexagon: |Ω0| = |Ω1| = 6, Ωp = {0} for all p ≥ 2.

H1 = 〈e01 − e21 + e23 + e34 − e54 + e50〉, H̃p = {0} for p 6= 1.
The same is true for any cyclic digraph (directed polygon)
that is neither triangle nor square:

|H1| = 1 and H̃p = {0} for all p 6= 1.
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Octahedron: |Ω0| = 6, |Ω1| = 12
Space Ω2 is spanned by 8 triangles:
Ω2 = 〈e024, e034, e025, e035, e124, e134, e125, e135〉,
|Ω2| = 8, Ωp = {0} for all p ≥ 3
H2 = 〈e024 − e034 − e025 + e035 − e124 + e134 + e125 − e135〉
|H2| = 1, H̃p = {0} for all p 6= 2.

Octahedron with different orientation:
Ω2 = 〈e024, e025, e014, e015, e234, e235, e134, e135, e013 − e023〉
Ω3 = 〈e0234 − e0134, e0235 − e0135〉
|Ω2| = 9, |Ω3| = 2, Ωp = {0} for all p ≥ 4.
ker ∂|Ω2 = 〈u, v〉 where

u = e024 + e234 − e014 − e134 + (e013 − e023)
v = e025 + e235 − e015 − e135 + (e013 − e023)

but H2 = {0} because
u = ∂ (e0234 − e0134) and v = ∂ (e0235 − e0135)

So, H̃p = {0} for all p ≥ 0.
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A 3-cube:

We have |Ω0| = 8, |Ω1| = 12.
Space Ω2 is spanned by 6 squares:

Ω2 = 〈e013 − e023, e015 − e045, e026 − e046,
e137 − e157, e237 − e267, e457 − e467〉

hence, |Ω2| = 6.

Space Ω3 is spanned by one 3-cube:

Ω3 = 〈e0237 − e0137 + e0157 − e0457 + e0467 − e0267〉

hence, |Ω3| = 1.

Ωp = {0} for all p ≥ 4 and H̃p = {0} for all p ≥ 0.
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6 A join of two digraphs

Given two digraphs X,Y , define their join X ∗ Y as follows: take first a disjoint union
X t Y and add arrows from any vertex of X to any vertex of Y .

For example,

{0, 1} ∗ {2, 3} =
3 ← 1
↑ ↓
0 → 2

and
3 ← 1
↑ ↓
0 → 2

∗ {4, 5} =

Define the join uv of p-path u on X and q-path v on Y as a (p + q + 1)-path on X ∗ Y
as follows: first define it for elementary paths by

ei0...ipej0...jq = ei0...ipj0...jq

and then extend this definition by linearity to all p-paths u on X and q-paths v on Y.
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If u and v are allowed on X resp. Y then uv is allowed on Z = X ∗ Y .

Lemma 6.1 The join of paths satisfies the product rule

∂ (uv) = (∂u) v + (−1)p+1 u∂v.

If u ∈ Ωp (X) and v ∈ Ωq (Y ) then ∂u and ∂v are allowed, which implies that ∂ (uv) is
also allowed, that is, uv ∈ Ωp+q+1 (Z) . The product rule implies also that the join uv is

well defined for homology classes u ∈ H̃p (X) and v ∈ H̃q (Y ) so that uv ∈ H̃p+q+1 (Z) .
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Theorem 6.2 (Künneth formula) We have the following isomorphism: for any r ≥ −1,

Ωr (X ∗ Y ) ∼=
⊕

{p,q≥−1:p+q=r−1}
(Ωp (X)⊗ Ωq (Y )) (6.1)

that is given by the map u⊗ v 7→ uv with u ∈ Ωp (X) and v ∈ Ωq (Y ), and, for any r ≥ 0,

H̃r (X ∗ Y ) ∼=
⊕

{p,q≥0:p+q=r−1}
H̃p (X)⊗ H̃q (Y ) (6.2)

β̃r (X ∗ Y ) ∼=
∑

{p,q≥0:p+q=r−1}
β̃p (X) β̃q (Y ) . (6.3)

The identity (6.1) means that any paths in Ωr (Z) can be obtained as linear combination
of joins uv where u ∈ Ωp (X) and v ∈ Ωq (Y ) with p + q + 1 = r, and (6.2) means the
same for homology classes. Note that that the operation ∗ of digraphs is associative. For
a sequence X1, ..., Xl of l digraphs we obtain by induction from (6.1), (6.2) and (6.3) that

Ωr (X1 ∗X2 ∗ ... ∗Xl) ∼=
⊕

{pi≥−1: p1+p2+...+pl=r−l+1}
Ωp1 (X1)⊗ ...⊗ Ωpl

(Xl) (6.4)

H̃r (X1 ∗X2 ∗ ... ∗Xl) ∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl

(Xl) (6.5)

β̃r (X1 ∗X2 ∗ ... ∗Xl) =
∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (6.6)

17



Example. Consider an octahedron Z = X1 ∗X2 ∗X3 where

X1 = {0, 1} , X2 = {2, 3} , X3 = {4, 5} .

(see p. 15). Then

Ω2 (Z) =
⊕

{pi≥−1: p1+p2+p3=2−3+1}
Ωp1 (X1)⊗ Ωp2 (X2)⊗ Ωp3 (X3)

= Ω0 (X1)⊗ Ω0 (X2)⊗ Ω0 (X3)

= 〈e0, e1〉 ⊗ 〈e2, e3〉 ⊗ 〈e4, e5〉

= 〈e024, e025, e034, e035, e124, e125, e134, e135〉

and

H2 (Z) = H̃2 (Z) =
⊕

{pi≥0: p1+p2+p3=2−3+1}
H̃p1 (X1)⊗ H̃p2 (X2)⊗ H̃p3 (X3)

= H̃0 (X1)⊗ H̃0 (X2)⊗ H̃0 (X3)

= 〈e0 − e1〉 ⊗ 〈e2 − e3〉 ⊗ 〈e4 − e5〉

= 〈e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135〉.

(see p. 13).
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7 A generalized join of digraphs

Given a digraph G of l vertices {1, 2, ..., l} and a sequence X1, ..., Xl of l digraphs, define
their generalized join (X1...Xl)G = XG as follows: XG is obtained from the disjoint
union

⊔
i Xi of digraphs Xi by keeping all the arrows in each Xi and by adding arrows

x→ y whenever x ∈ Xi, y ∈ Xj and i→ j in G.

Digraph XG is also referred to as a G-join of X1, ..., Xl, and G is called the base of XG.
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The main problem to be discussed here is

how to compute the homology groups and Betti numbers of XG.

Denote by Kl a complete digraph with vertices {1, ..., l} and arrows

i→ j ⇔ i < j

that is, Kl is an (l − 1)-simplex. For example, K2 = {1→ 2} and K3 = {1→ 2→ 3, 1→ 3}
is a triangle.

The digraph XKl
is called a complete join of X1, ..., Xl. It is easy to see that

XKl
= X1 ∗X2 ∗ ... ∗Xl

It follows from (6.6) that, for any r ≥ 0,

β̃r (XKl
) =

∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (7.1)

20



8 A monotone linear join

Denote by Il a monotone linear digraph with the vertices {1, ..., l} and arrows i→ i + 1:

Il = {1→ 2→ ...→ l}. (8.1)

If G = Il then we use the following simplified notation:

(X1X2...Xl)Il
= X1X2...Xl

and refer to this digraph as a monotone linear join of X1, ..., Xl.

Clearly, X1X2...Xn can be constructed as follows: take first a disjoint union
⊔l

i=1 Xi and
then add arrows from any vertex of Xi to any vertex of Xi+1 (see p. 19).

In the case l = 2 we obviously have X1X2 = X1 ∗ X2 but in general X1X2...Xl is a
subgraph of X1 ∗X2 ∗ ... ∗Xl. For example, we have

{0} {1, 2} {3} =
1 → 3
↑ ↑
0 → 2

while {0} ∗ {1, 2} ∗ {3} =
1 → 3
↑ ↗ ↑
0 → 2

(8.2)
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Theorem 8.1 We have

H̃r (X1X2...Xl) ∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl

(Xl) (8.3)

and
β̃r (X1X2...Xl) =

∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (8.4)

By (6.5) and (8.3), X1X2...Xl and X1 ∗X2 ∗ ... ∗Xl are homologically equivalent.

Example. Let the base G be a square:

We have G = {1} {2, 3} {4} which implies that
XG = X1 (X2 tX3) X4.

Hence, by Theorem 8.1,
G =

2 → 4
↑ ↑
1 → 3

β̃r (XG) =
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1) β̃p2
(X2 tX3) β̃p3

(X4)

=
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1)
(
β̃p2

(X2) + β̃p2
(X3) + 1{p2=0}

)
β̃p3

(X4)

= β̃r (X1X2X4) + β̃r (X1X3X4) + β̃r−1 (X1X4) . (8.5)
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For a general base G, if i1...ik is an arbitrary sequence of vertices in G then denote

Xi1...ik = Xi1Xi2 ...Xik .

Note that by (8.4)

β̃r (Xi1...ik) =
∑

p1+...+pk=r−(k−1)
p1,...,pk≥0

β̃p1
(Xi1) ...β̃pk

(Xik) ,

and we consider the numbers β̃r (Xi1...ik) as known.

Using this notation, we can rewrite (8.5) as follows: if G is a square then

β̃r (XG) = β̃r (X124) + β̃r (X134) + β̃r−1 (X14) .
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Example. Let G be an octahedron:

We have G = {1, 2} ∗ {3, 4} ∗ {5, 6} whence

XG = (X1 tX2) ∗ (X3 tX4) ∗ (X5 tX6)

By (7.1) we obtain

β̃r (XG) =
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1 tX2)β̃p2
(X3 tX4)β̃p3

(X5 tX6)

=
∑

{pi≥0: p1+p2+p3=r−2}
(β̃p1

(X1) + β̃p1
(X2) + 1{p1=0})(β̃p2

(X3) + β̃p2
(X4) + 1{p2=0})

× (β̃p3
(X5) t β̃p3

(X6) + 1{p3=0})

= β̃r(X135) + β̃r(X145) + β̃r(X235) + β̃r(X245) + β̃r(X136) + β̃r(X146) + β̃r(X236) + β̃r(X246)

+ β̃r−1(X13) + β̃r−1(X23) + β̃r−1(X14) + β̃r−1(X24) + β̃r−1(X15) + β̃r−1(X25)

+ β̃r−1(X35) + β̃r−1(X45) + β̃r−1(X16) + β̃r−1(X26) + β̃r−1(X36) + β̃r−1(X46)

+ β̃r−2(X1) + β̃r−2(X2) + β̃r−2(X3) + β̃r−2(X4) + β̃r−2(X5) + β̃r−2(X6) + 1{r=2}.
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9 An arbitrary linear join

Let now G be a linear digraph but not necessarily monotone. That is, the vertex set of G
is {1, ..., l} and, for any pair (i, i + 1) of consecutive numbers there is exactly one arrow:
either i→ i + 1 or i← i + 1.

Definition. We say that a vertex v of G is a turning point if v has either two incoming
arrows or two outcoming arrows. Denote by T the set of all turning points.

An allowed path in G is called maximal if it is not a proper subset (as a set of vertices)
of another allowed path. Denote by Amax the family of all maximal allowed paths in G.

Clearly, the end vertices of a maximal path are either turning points or the vertices 1 , l.
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Theorem 9.1 If G is an arbitrary linear digraph then

β̃r (XG) =
∑

u∈Amax

β̃r(Xu) +
∑

v∈T
β̃r−1 (Xv) .

In other words, β̃r (XG) is the sum of all β̃r of the linear joins of Xi along all maximal

allowed paths in G plus the sum of β̃r−1 of all Xv sitting at the turning points v.

Example. Consider the base

G = {1→ 2← 3← 4→ 5} .

Then T = {2, 4} ,while maximal paths of L are

Amax = {1→ 2, 4→ 3→ 2, 4→ 5} .

Hence, by Theorem 9.1,

β̃r (XG) = β̃r (X12) + β̃r (X432) + β̃r (X45) + β̃r−1 (X2) + β̃r−1 (X4) .
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Example. Consider the following base:

G =

2 5
↗ ↖ ↙ ↘

1 3 6
↘ ↙ ↖ ↗

4 7

It is easy to see that G itself is the following linear join:

G = ({1} {2, 4} {3} {5, 7} {6})L

where L = {α→ β ← γ ← δ → ε} . Here the turning points of L are T = {β, δ} , while
maximal paths of L are

Amax = {α→ β, δ → γ → β, δ → ε} .

For L-join we have as above

β̃r (YL) = β̃r (Yαβ) + β̃r (Yδγβ) + β̃r (Yδε) + β̃r−1 (Yβ) + β̃r−1 (Yδ) .

Setting Yα = X1, Yβ = X2 tX3, Yγ = X3, Yδ = X5 tX7 and Yε = X6 we obtain

β̃r (XG) = β̃r ((X1 (X2 tX3) X3 (X5 tX7) X6)L)
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= β̃r(X1(X2 tX4)) + β̃r((X5 tX7)X3(X2 tX4)) + β̃r((X5 tX7)X6)

+ β̃r−1(X2 tX4) + β̃r−1(X5 tX7)

= β̃r (X12) + β̃r (X14) + β̃r−1 (X1)

+ β̃r(X532) + β̃r(X534) + β̃r(X732) + β̃r(X734)

+ β̃r−1(X32) + β̃r−1(X34) + β̃r−1(X53) + β̃r−1(X73) + β̃r−2(X3)

+ β̃r (X56) + β̃r (X76) + β̃r−1 (X6)

+ β̃r−1 (X2) + β̃r−1 (X4) + 1{r=1} + β̃r−1 (X5) + β̃r−1 (X7) + 1{r=1}.

β̃r(XG) = β̃r(X534) + β̃r(X532) + β̃r(X734) + β̃r(X732)

+β̃r(X12) + β̃r(X14) + β̃r(X56) + β̃r(X76)

+β̃r−1(X73) + β̃r−1(X53) + β̃r−1(X32) + β̃r−1(X34)

+β̃r−1(X1) + β̃r−1(X2) + β̃r−1(X4) + β̃r−1(X5) + β̃r−1(X6) + β̃r−1(X7)

+β̃r−2(X3) + 2{r=1}.
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10 A cyclic join

A digraph G is called cyclic if it is connected and each vertex has the undirected degree
2. Let G be a cyclic digraph with the set of vertices V = {1, 2, ..., l}. We assume that the
vertices are ordered so that every vertex i ∈ V is connected by arrows to i− 1 and i + 1
(where l is identified with 0). In the same way as above we define the set Amax and T .

For example, consider the following hexagon:
Here T = {1, 4} and
Amax = {4→ 3→ 2→ 1, 4→ 5→ 6→ 1}

Theorem 10.1 Let G be a cyclic digraph that is neither triangle nor square nor double
arrow. Then

β̃r (XG) =
∑

u∈Amax

β̃r(Xu) +
∑

v∈T
β̃r−1 (Xv) + β̃r (G) . (10.1)

Note that in this case β̃r (G) = 1{r=1}. If G is a triangle or square or double arrow then
(10.1) is wrong, which is shown in Examples below.
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Example. If G is the above hexagon then we obtain

β̃r (XG) = β̃r (X4321) + β̃r (X4561) + β̃r−1 (X1) + β̃r−1 (X4) + 1{r=1}.

Example. Consider the following 4-cyclic base:

G =
2 → 3
↑ ↓
1 → 4

Since T = {1, 4} and Amax = {1→ 2→ 3→ 4, 1→ 4}, we obtain

β̃r(XG) = β̃r(X1234) + β̃r(X14) + β̃r−1 (X1) + β̃r−1 (X4) + 1{r=1}. (10.2)

Example. Consider the following 3-cyclic base: G = ↗

2
•↘

1• ← •3
.

Then Amax and T are empty, and we obtain β̃r (XG) = 1{r=1} = β̃r(G).
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Example. Consider the following tetrahedron as a base G:

We have G = C ∗ {4} where
C = {1→ 2→ 3→ 1}

It follows that
XG = XC ∗X4

and

β̃r (XG) =
∑

p+q=r−1

β̃p (XC) β̃q (X4) =
∑

p+q=r−1

1{p=1}β̃q (X4) = β̃r−2 (X4) .

Hence, β̃r (XG) = β̃r−2 (X4) .

Example. Let G be a triangle: G = ↗

2
•↘

1• → •3
. Then XG = X1 ∗X2 ∗X3 and we know

that
β̃r (XG) = β̃r (X123) .

However, the right hand side of (10.1) is in this case

β̃r (X123) + β̃r−1 (X1) + β̃r−1 (X3) 6= β̃r (XG) .
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Example. Let G be a square:

G =
2 → 4
↑ ↑
1 → 3

Then we that by (8.5)

β̃r (XG) = β̃r (X124) + β̃r (X134) + β̃r−1 (X14) ,

while the right hand side of (10.1) is in this case

β̃r (X124) + β̃r (X134) + β̃r−1 (X1) + β̃r−1 (X4) .

Example. Let G be a double arrow: G = {1� 2} . Then

XG = X1 ∗X2 ∗X1

whence β̃r (XG) = β̃r (X121) . However, in this case Amax and T are empty, so that the

right hand side of (10.1) is β̃r (G) = 0.
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Example. Let G be as here:

We have
G = {1, 2, 3, 4} {5, 6} {7→ 8→ 9→ 7}

so that
XG = (X1 tX2 tX3 tX4) (X5 tX6) X{7→8→9→7}

It follows that

β̃r (XG) =
∑

p+q+s=r−2

(
β̃p (X1) + β̃p (X2) + β̃p (X3) + β̃p (X4) + 3{p=0}

)

×
(
β̃q (X5) + β̃q (X6) + 1{q=0}

)
1{s=1}

which yields after computation

β̃r(XG) = β̃r−2(X15) + β̃r−2(X16) + β̃r−2(X25) + β̃r−2(X26)

+ β̃r−2(X35) + β̃r−2(X36) + β̃r−2(X45) + β̃r−2(X46)

+ β̃r−3(X1) + β̃r−3(X2) + β̃r−3(X3) + β̃r−3(X4) + 3β̃r−3(X5) + 3β̃r−3(X6) + 3{r=3}.
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11 Homology of a generalized join

Theorem 11.1 There exists a finite sequence of paths {uk} in G and a sequence {sk} of
non-negative integers such that, for any sequence {Xi} of digraphs and any r ≥ 0,

β̃r(XG) =
∑

k

β̃r−sk
(Xuk

) + β̃r (G) . (11.1)

Besides, the sequence {uk} contains all maximal allowed paths, and uk ∈ Amax ⇔ sk = 0.

Example. Let the base G be a cube.

Use description of paths uk from the proof of Theorem 11.1,
we obtain

β̃r(XG) = β̃r(X1248) + β̃r(X1268) + β̃r(X1348)

+β̃r(X1378) + β̃r(X1568) + β̃r(X1578)

+β̃r−1(X178) + β̃r−1(X168) + β̃r−1(X148)

+β̃r−1(X128) + β̃r−1(X138) + β̃r−1(X158)

+β̃r−2(X18)
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