Prof. A. Grigoryan, Elliptic PDEs

WS 2023/24

Blatt 0. Keine Abgabe

1. Consider the differential operator L

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x) \partial_{ij}u + \sum_{k=1}^{n} b_k(x) \partial_k u,$$

where a_{ij} and b_k are continuous functions of x defined in an open subset D of \mathbb{R}^n . Assume that the operator L is elliptic at any point, that is, the matrix $(a_{ij}(x))_{i,j=1}^n$ is positive definite at any point $x \in D$. Prove the maximum principle: if Ω is a bounded domain such that $\overline{\Omega} \subset D$ and a function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies in Ω the inequality $Lu \geq 0$ then

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

- 2. Let L, D, Ω be the same as in Exercise 1. Let u, v be functions of the class $C^2(\Omega) \cap C(\overline{\Omega})$.
 - (a) (The comparison principle) Prove that if $Lu \ge Lv$ in Ω and $u \le v$ on $\partial\Omega$ then $u \le v$ in Ω .
 - (b) Prove that if

$$\begin{cases} Lu = f \text{ in } \Omega\\ u = g \text{ on } \partial \Omega \end{cases}$$

then

$$\sup_{\Omega} |u| \leq C \sup_{\Omega} |f| + \sup_{\partial \Omega} |g| \,,$$

where C is a constant that depends on Ω and on the coefficients of L in Ω . Hint: Compare u with the function $v(x) = -\alpha \exp(\gamma x_1) + \beta$ with suitable positive constants α, β, γ .

3. Consider a divergence form operator

$$L = \sum_{i,j=1}^{n} \partial_{x_i} \left(a_{ij} \left(x \right) \partial_{x_j} \right)$$

defined in a domain $U \subset \mathbb{R}^n$. Assume that $a_{ij} \in C^1(U)$. Let V be another domain in \mathbb{R}^n and let $\Phi : U \to V$ be a C^2 -diffeomorphism between U and V. We consider $y = \Phi(x)$ as change of coordinates in U and define for all l, k = 1, ..., n the following functions:

$$b_{kl} = \sum_{i,j=1}^{n} a_{ij} \frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j}.$$
(1)

Set also $D = \det (\partial y_k / \partial x_i)^{-2}$. Prove that the operator L can be written in the coordinates y as follows:

$$L = \frac{1}{\sqrt{D}} \sum_{i,k=1}^{n} \partial_{y_k} \left(b_{kl} \sqrt{D} \partial_{y_l} \right).$$
(2)

Hint. For arbitrary functions $u, v \in C_0^2(U)$ use the Green formula

$$-\int_{U} Lu \ v \, dx = \int_{U} \sum_{i,j=1}^{n} a_{ij}(x) \,\partial_{x_j} u \,\partial_{x_i} v \, dx, \tag{3}$$

express $\partial_{x_j} u$ and $\partial_{x_i} v$ through the derivatives $\partial_{y_l} u$ and $\partial_{y_k} v$, and make change $x = \Phi^{-1}(y)$ in the both integrals.

- 4. Let φ be a mollifier in \mathbb{R}^n and $f \in L^2(\mathbb{R}^n)$.
 - (a) Prove that $f * \varphi \in L^2(\mathbb{R}^n)$ and

$$\|f * \varphi\|_{L^2} \le \|f\|_{L^2} \,. \tag{4}$$

(b) Prove that

$$f * \varphi_{\varepsilon} \xrightarrow{L^2(\mathbb{R}^n)} f \text{ as } \varepsilon \to 0+,$$
 (5)

where $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(x/\varepsilon)$.

Hint: Use the following two facts: (i) the set $C_0(\mathbb{R}^n)$ of continuos compactly supported functions is dense in $L^2(\mathbb{R}^n)$ (ii) if $g \in C_0(\mathbb{R}^n)$ then $g * \varphi \in C_0^{\infty}(\Omega)$ and $g * \varphi_{\varepsilon} \rightrightarrows g$ as $\varepsilon \to 0$.

(c) Prove that if $f \in W^{k,2}(\mathbb{R}^n)$ then $f * \varphi \in W^{k,2}(\mathbb{R}^n)$ and

$$f * \varphi_{\varepsilon} \stackrel{W^{k,2}(\mathbb{R}^n)}{\longrightarrow} f \text{ as } \varepsilon \to 0.$$

Hint. Use the following identity for distributional derivatives:

$$D^{\alpha}(f * \varphi) = (D^{\alpha}f) * \varphi.$$
(6)