Blatt 10. Abgabe bis 05.01.23

49. Let $u \in C^{1}\left(B_{R} \backslash\{0\}\right)$, where B_{R} is a ball in \mathbb{R}^{n}. Assume that the function u satisfies in $B_{R} \backslash\{0\}$ the following inequality:

$$
|u(x)| \leq C|x|^{s},
$$

for some constants $C>0$ and

$$
s>1-n .
$$

Prove that if the classical derivative $\partial_{i} u$ belongs to $L_{l o c}^{1}\left(B_{R}\right)$ then $\partial_{i} u$ is also the weak derivative of u in B_{R}.
Hint: You meed to verify that, for any $\varphi \in \mathcal{D}\left(B_{R}\right)$,

$$
\int_{B_{R}} \partial_{i} u \varphi d x=-\int_{B_{R}} u \partial_{i} \varphi d x .
$$

For that apply the integration-by-parts formula in $B_{R} \backslash \bar{B}_{\varepsilon}$, for a small $\varepsilon>0$, and then pass to the limit as $\varepsilon \rightarrow 0$.
50. Consider the function $u(x)=|x|^{s}$ in a ball B_{R} in \mathbb{R}^{n}. Prove that if

$$
\begin{equation*}
s>k-n / p \tag{45}
\end{equation*}
$$

where $p \in[1, \infty)$ and $k \geq 0$ is an integer, then $u \in W^{k, p}\left(B_{R}\right)$.
Hint: Prove the following statements:
(i) the classical derivative $D^{\alpha} u$ of any order $l=|\alpha|$ satisfies in $\mathbb{R}^{n} \backslash\{0\}$ the inequality

$$
\left|D^{\alpha} u(x)\right| \leq C|x|^{s-l}
$$

(ii) any classical derivative $D^{\alpha} u$ with $|\alpha| \leq k$ belongs to $L^{p}\left(B_{R}\right)$;
(iii) any classical derivative $D^{\alpha} u$ with $|\alpha| \leq k$ is also the weak derivative of u (use Exercise 49).
51. Consider in \mathbb{R}^{n} a non-divergence form operator

$$
L u=\sum_{i, j=1}^{n} a_{i j} \partial_{i j} u
$$

with the coefficients

$$
a_{i j}(x)= \begin{cases}\delta_{i j}+c \frac{x_{i} x_{j}}{|x|^{2}}, & x \neq 0, \\ \delta_{i j}, & x=0,\end{cases}
$$

where c is a positive constant and $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i i}=1$.
(a) Prove that L is uniformly elliptic in \mathbb{R}^{n}.
(b) Prove that if

$$
1>s>2-\frac{n}{2}
$$

and $c=\frac{n-2+s}{1-s}$ then the function

$$
u(x)=|x|^{s}-R^{s}
$$

belongs to $W^{2,2}\left(B_{R}\right)$ and solves the strong Dirichlet problem

$$
\left\{\begin{array}{l}
L u=0 \text { in } B_{R}, \\
u \in W_{0}^{1,2}\left(B_{R}\right) .
\end{array}\right.
$$

Hint: Use Exercise 50, the computation of $L|x|^{s}$ from Exercise 5, and Exercise 28.
Remark: This example shows non-uniqueness in the strong Dirichlet problem for nondivergence form operator if the coefficients $a_{i j}$ are discontinuous. If the coefficients $a_{i j}$ are Lipschitz then the existence and uniqueness in the strong Dirichlet problem were proved in lectures.

52 . Let Ω be a bounded domain in \mathbb{R}^{n}.
(a) Consider a divergence form uniformly elliptic operator in Ω with measurable coefficients:

$$
L u=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{j} u\right) .
$$

Fix some

$$
\begin{equation*}
q \in[2, \infty] \cap(n / 2, \infty] . \tag{46}
\end{equation*}
$$

Prove that

$$
\text { if } u \in W_{l o c}^{1,2}(\Omega) \text { and } L u \in L_{l o c}^{q}(\Omega) \text { then } u \in L_{l o c}^{\infty}(\Omega)
$$

Hint: Use Theorem 1.15 that says the following:

$$
\text { if } u \in W_{0}^{1,2}(\Omega) \text { and } L u \in L^{q}(\Omega) \text { then } u \in L^{\infty}(\Omega) \text {. }
$$

(b) Let B be the unit ball in \mathbb{R}^{n} where $n>4$. For any $q \in[2, n / 2)$, give an example of a function u such that

$$
u \in W^{1,2}(B) \text { and } \Delta u \in L^{q}(B) \text { but } u \notin L_{l o c}^{\infty}(B)
$$

Hint: Use Exercise 51.
Remark. The example of (b) shows that the restriction $q>n / 2$ in (a) is essential.

