Prof. A. Grigoryan, Elliptic PDEs

WS 2023/24

Blatt 10. Abgabe bis 05.01.23

49. Let $u \in C^1(B_R \setminus \{0\})$, where B_R is a ball in \mathbb{R}^n . Assume that the function u satisfies in $B_R \setminus \{0\}$ the following inequality:

$$|u(x)| \le C |x|^s$$

for some constants C > 0 and

$$s > 1 - n.$$

Prove that if the classical derivative $\partial_i u$ belongs to $L^1_{loc}(B_R)$ then $\partial_i u$ is also the weak derivative of u in B_R .

Hint: You meed to verify that, for any $\varphi \in \mathcal{D}(B_R)$,

$$\int_{B_R} \partial_i u \,\varphi \, dx = -\int_{B_R} u \,\partial_i \varphi \, dx.$$

For that apply the integration-by-parts formula in $B_R \setminus \overline{B}_{\varepsilon}$, for a small $\varepsilon > 0$, and then pass to the limit as $\varepsilon \to 0$.

50. Consider the function $u(x) = |x|^s$ in a ball B_R in \mathbb{R}^n . Prove that if

$$s > k - n/p, \tag{45}$$

where $p \in [1, \infty)$ and $k \ge 0$ is an integer, then $u \in W^{k,p}(B_R)$. *Hint*: Prove the following statements:

(i) the classical derivative $D^{\alpha}u$ of any order $l = |\alpha|$ satisfies in $\mathbb{R}^n \setminus \{0\}$ the inequality

$$|D^{\alpha}u(x)| \le C |x|^{s-l};$$

- (ii) any classical derivative $D^{\alpha}u$ with $|\alpha| \leq k$ belongs to $L^{p}(B_{R})$;
- (iii) any classical derivative $D^{\alpha}u$ with $|\alpha| \leq k$ is also the weak derivative of u (use Exercise 49).
- 51. Consider in \mathbb{R}^n a non-divergence form operator

$$Lu = \sum_{i,j=1}^{n} a_{ij} \partial_{ij} u$$

with the coefficients

$$a_{ij}(x) = \begin{cases} \delta_{ij} + c\frac{x_i x_j}{|x|^2}, & x \neq 0, \\ \delta_{ij}, & x = 0, \end{cases}$$

where c is a positive constant and $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ii} = 1$.

(a) Prove that L is uniformly elliptic in \mathbb{R}^n .

(b) Prove that if

$$1 > s > 2 - \frac{n}{2}$$

and $c = \frac{n-2+s}{1-s}$ then the function

$$u\left(x\right) = |x|^{s} - R^{s}$$

belongs to $W^{2,2}(B_R)$ and solves the strong Dirichlet problem

$$\begin{cases} Lu = 0 \text{ in } B_R, \\ u \in W_0^{1,2}(B_R). \end{cases}$$

Hint: Use Exercise 50, the computation of $L|x|^s$ from Exercise 5, and Exercise 28.

Remark: This example shows non-uniqueness in the strong Dirichlet problem for nondivergence form operator if the coefficients a_{ij} are discontinuous. If the coefficients a_{ij} are Lipschitz then the existence and uniqueness in the strong Dirichlet problem were proved in lectures.

- 52. Let Ω be a bounded domain in \mathbb{R}^n .
 - (a) Consider a divergence form uniformly elliptic operator in Ω with measurable coefficients:

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \partial_j u \right).$$

Fix some

$$q \in [2, \infty] \cap (n/2, \infty]. \tag{46}$$

Prove that

if
$$u \in W^{1,2}_{loc}(\Omega)$$
 and $Lu \in L^q_{loc}(\Omega)$ then $u \in L^{\infty}_{loc}(\Omega)$.

Hint: Use Theorem 1.15 that says the following:

if $u \in W_0^{1,2}(\Omega)$ and $Lu \in L^q(\Omega)$ then $u \in L^{\infty}(\Omega)$.

(b) Let B be the unit ball in \mathbb{R}^n where n > 4. For any $q \in [2, n/2)$, give an example of a function u such that

$$u \in W^{1,2}(B)$$
 and $\Delta u \in L^q(B)$ but $u \notin L^{\infty}_{loc}(B)$.

Hint: Use Exercise 51.

Remark. The example of (b) shows that the restriction q > n/2 in (a) is essential.