Blatt 11. Abgabe bis 12.01.24

Additional problems are marked by *

Everywhere Ω is a domain in \mathbb{R}^n .

53. Let

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \partial_j u \right) \tag{47}$$

be a uniformly elliptic operator in Ω with measurable coefficients. Let u be a nonnegative supersolution of L in Ω . Prove that, for any p < 0 and for any ball $B_{3R} \subset \Omega$,

$$\operatorname{essinf}_{B_R} u \ge c \left(\int_{B_R} u^p dx \right)^{1/p},\tag{48}$$

where $c = c(n, \lambda, p) > 0$.

Hint: In the case p = -1 this estimate was proved in lectures (Corollary 3.5). Use the same approach for an arbitrary p < 0.

54. Let Ω be a bounded domain in \mathbb{R}^n and L be the operator (47). For any function $g \in W^{1,2}(\Omega)$, consider the following Dirichlet problem:

$$\begin{cases}
Lu = 0 \text{ weakly in } \Omega \\
u - g \in W_0^{1,2}(\Omega)
\end{cases}$$
(49)

(where the function g plays a role of the boundary condition). Prove that

$$||u||_{W^{1,2}(\Omega)} \le C ||g||_{W^{1,2}(\Omega)},$$

where C depends on n, λ and Ω .

Hint: Use substitution v = u - g and then estimate $||v||_{W^{1,2}}$ by means of Exercise 24. *Remark*: The problem (49) has a unique solution by Exercise 7.

- 55. Let L be an operator (47).
 - (a) Prove that

$$u \in W^{1,2}_{loc}(\Omega)$$
 and $Lu \in L^{\infty}_{loc}(\Omega) \Rightarrow u \in L^{\infty}_{loc}(\Omega).$

Hint: For any precompact open set U s.t. $\overline{U} \subset \Omega$, solve the Dirichlet problem

$$\begin{cases} Lv = f \text{ weakly in } U, \\ v \in W_0^{1,2}(U), \end{cases}$$
(50)

where f = Lu. Then use Theorem 1.14 and Corollary 3.3 from lectures.

(b) Prove that

$$u \in W^{1,2}_{loc}(\Omega), \ Lu \in W^{1,2}_{loc}(\Omega) \text{ and } L(Lu) \in L^{\infty}_{loc}(\Omega) \Rightarrow u \in L^{\infty}_{loc}(\Omega).$$

- 56. * Let L be an operator (47) and let $u \in W^{1,2}(\Omega)$ be a subsolution of L in Ω .
 - (a) Let $f \in C^2(\mathbb{R})$ be a function on \mathbb{R} such that, for some A > 0,

$$0 \le f'(t) \le A \text{ and } 0 \le f''(t) \le A \text{ for all } t \in \mathbb{R}.$$
 (51)

Prove that v = f(u) is also a subsolution of L in Ω . *Hint*: In order to prove the inequality $Lf(u) \ge 0$ with a test function φ , use the inequality $Lu \ge 0$ with a test function $\psi = f'(u)\varphi$.

- (b) Prove that the function $v = u_+$ is a subsolution of L. *Hint*: Approximate the function $f(t) = t_+$ by a sequence of C^2 functions $\{f_k\}$ satisfying (51).
- 57. Let Ω be a bounded domain in \mathbb{R}^n and

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \partial_j u \right) \tag{52}$$

be a uniformly elliptic operator in Ω with measurable coefficients. Define the Green operator

$$G: L^2(\Omega) \to L^2(\Omega)$$

of L in Ω as follows: for any $f \in L^2(\Omega)$, set Gf := u, where u is the unique solution of the following weak Dirichlet problem:

$$\begin{cases} Lu = -f \text{ in } \Omega, \\ u \in W_0^{1,2}(\Omega). \end{cases}$$

- (a) Prove that G is a bounded linear operator from $L^2(\Omega)$ to $L^2(\Omega)$.
- (b) Prove that G is a self-adjoint operator in $L^2(\Omega)$.

Hint: Use the same approach as in Exercise 30.

- 58. * Under the hypotheses of Exercise 57, prove the following properties of the Green operator G.
 - (a) G is a positive definite operator in $L^2(\Omega)$.
 - (b) G is a compact operator in $L^2(\Omega)$.

Hint: Use the same approach as in Exercise 31, as well as Exercise 57.

59. * Let Ω be bounded and consider the following eigenvalue problem for the operator (52):

$$\begin{cases} Lv + \gamma v = 0 \text{ in } \Omega\\ v \in W_0^{1,2}(\Omega) \setminus \{0\}, \end{cases}$$
(53)

where γ is a spectral parameter. If a pair v, γ satisfies (53), then γ is called an eigenvalue of L in Ω and v is called an eigenfunction.

- (a) Prove that function v is an eigenfunction of the Green operator G with the eigenvalue α then $\alpha > 0$ and v is an eigenfunction of L in Ω with the eigenvalue $\gamma = \frac{1}{\alpha}$.
- (b) Prove that there exists an orthonormal basis $\{v_k\}_{k=1}^{\infty}$ in $L^2(\Omega)$ that consists of eigenfunctions of L in Ω ; moreover, the corresponding eigenvalues γ_k are positive, and the sequence $\{\gamma_k\}$ is monotone increasing and diverges to $+\infty$ as $k \to \infty$.

Hint: Apply the Hilbert-Schmidt theorem to the Green operator G from Exercises 57 and 58.