Blatt 12. Abgabe bis 19.01.24

Additional problems are marked by *

Everywhere Ω is an open domain in \mathbb{R}^n .

60. (Strong minimum principle for weak solutions) Consider in Ω a uniformly elliptic operator

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \partial_j u \right)$$

with measurable coefficients. Let $u \in W^{1,2}(\Omega)$ satisfy Lu = 0 weakly in Ω . By De Giorgi's theorem, we can select a continuous version of u. Prove that if Ω is connected, $u \ge 0$ in Ω , and u(x) = 0 for some $x \in \Omega$ then $u \equiv 0$ in Ω .

Hint: Use the weak Harnack inequality.

61. Consider in the unit ball B in \mathbb{R}^n the following semi-linear Dirichlet problem:

$$\begin{cases} \Delta u = c \left(1 + |u|\right)^{\gamma}, \\ u \in W_0^{1,2}(B). \end{cases}$$
(54)

Prove that if n > 4 and $\gamma > \frac{n}{n-4}$ then, for some constant $c \in \mathbb{R}$, there exists a weak solution of (54) that has no continuous version.

Hint: Look for the function u in the form $u(x) = |x|^s - 1$ with s < 0 and use Exercises 51(b) and 52(b).

Remark: If $\gamma < 4/n$ then solutions of (54) are Hölder continuous by results of lectures.

62. Let K be a compact subset of \mathbb{R}^n . For any $p \in [1, \infty)$, define the *p*-capacity of K as follows:

$$\operatorname{cap}_{p}(K) := \inf_{\eta} \int_{\mathbb{R}^{n}} |\nabla \eta|^{p} \, dx, \tag{55}$$

where the infimum is taken over all functions $\eta \in Lip_c(\mathbb{R}^n)$ such that $0 \leq \eta \leq 1$ and $\eta|_K \equiv 1$ (any such function η is called a test function for $\operatorname{cap}_p(K)$).

(a) (Isocapacitory inequality) Prove that if n > p then

$$\operatorname{cap}_p(K) \ge c \left| K \right|^{\frac{n-p}{n}},\tag{56}$$

where c is a positive constant depending only on n and p. Hint: Use the Sobolev inequality.

(b) (*Capacity of balls*) Prove that if n > p then, for any closed ball \overline{B}_R in \mathbb{R}^n of radius R > 0,

$$\operatorname{cap}_p(\overline{B}_R) = c' R^{n-p},\tag{57}$$

where c' is a positive constant depending only on n and pHint: In fact, $c' = \operatorname{cap}_p(\overline{B}_1)$ which is positive by (a). *Remark:* Since $|\overline{B}_R| = \text{const } R^n$, it follows from (57) that $\operatorname{cap}_p(\overline{B}_R) = c'' |\overline{B}_R|^{\frac{n-p}{p}}$, for some c'' > 0, which shows that the estimate (56) is sharp, up to the value of the constant c.

63. As in Exercise 62, let K be a compact subset of \mathbb{R}^n . Fix some $p \in (1, \infty)$.

- (a) Prove that if n < p then $\operatorname{cap}_n(K) = 0$.
- (b) Prove that $\operatorname{cap}_p(K) = 0$ also in the case $n = p \ge 2$.

Hint: For any $\varepsilon > 0$, find a test function η for $\operatorname{cap}_p(K)$ such that $\int_{\mathbb{R}^n} |\nabla \eta|^p dx < \varepsilon$. For that, assuming that $K \subset B_R$, choose η in the form $\eta(x) = f(|x|)$, where f(r) = 1 for $r \leq R$ and f(r) = 0 for $r \geq \rho$ where ρ is large enough. For $r \in [R, \rho]$ choose f(r) to be linear in r in the case (a), and f(r) to be linear in n in the case (b).

- 64. * Fix two functions $u, v \in W_{loc}^{1,2}(\Omega)$ and set $w := \max(u, v)$.
 - (a) Prove that $w \in W_{loc}^{1,2}(\Omega)$. *Hint*: Use the identity $\max(u, v) = \frac{u+v+|u-v|}{2}$ and Exercise 15(a).
 - (b) Prove that

$$|\nabla w| \le \max(|\nabla u|, |\nabla v|) \text{ a.e.}.$$
(58)

Hint: Use Exercise 15(b) and the identities

$$w = u$$
 on $\{u > v\}$ and $w = v$ on $\{v \ge u\}$.

(c) (Subadditivity of capacity) Prove that if K_1 and K_2 are two compact subsets of \mathbb{R}^n and $p \in [1, \infty)$ then

$$\operatorname{cap}_p(K_1 \cup K_2) \le \operatorname{cap}_p(K_1) + \operatorname{cap}_p(K_1).$$
(59)

Hint: Use the definition of capacity (55) as well as (58).

65. * (Liouville theorem for positive supersolutions in \mathbb{R}^2) Consider in \mathbb{R}^2 a uniformly elliptic operator $Lu = \sum_{i,j=1}^2 \partial_i (a_{ij}\partial_j u)$ with measurable coefficients. Let $u \in W_{loc}^{1,2}(\mathbb{R}^2)$ be a non-negative supersolution of L in \mathbb{R}^2 . Prove that $u \equiv \text{const.}$

Hint: Assuming without loss of generality that $\operatorname{essinf}_{\mathbb{R}^2} u > 0$, set $v = \ln \frac{1}{u}$ and use the following inequality proved in lectures: for any $\eta \in Lip_c(\mathbb{R}^2)$

$$\int_{\mathbb{R}^2} |\nabla v|^2 \, \eta^2 dx \le C \int_{\mathbb{R}^2} |\nabla \eta|^2 \, dx,\tag{60}$$

where $C = C(\lambda)$. Deduce from (60) that, for any ball B_R ,

$$\int_{B_R} |\nabla v|^2 \, dx \le C \operatorname{cap}_2(B_R)$$

and then use Exercise 63(b).

Remark: By the classical Liouville theorem, any positive harmonic function in \mathbb{R}^n is constant. The above statement in the case $L = \Delta$ means that in \mathbb{R}^2 any positive superharmonic function is constant. Note that the latter statement is not true in \mathbb{R}^n with n > 2.