Blatt 2. Abgabe bis 27.10.23

Additional problems are marked by *

- 9. Let Ω be an open set in \mathbb{R}^n
 - (a) For any distribution $u \in \mathcal{D}'(\Omega)$ and for any smooth function $\psi \in C^{\infty}(\Omega)$ define the product ψu as a distribution in Ω by

$$(\psi u, \varphi) = (u, \psi \varphi) \quad \forall \varphi \in \mathcal{D}(\Omega)$$

(observe that $\psi \varphi \in \mathcal{D}(\Omega)$). Prove the product rule:

$$\partial_i \left(\psi u \right) = \left(\partial_i \psi \right) u + \psi \partial_i u. \tag{9}$$

- (b) Prove that if $u \in W_{loc}^{1,p}(\Omega)$ and $\psi \in C^{\infty}(\Omega)$ then $\psi u \in W_{loc}^{1,p}(\Omega)$.
- (c) Consider in Ω a divergence form operator

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij}(x) \partial_j u \right)$$

where the functions $a_{ij}(x)$ belong to $C^{\infty}(\Omega)$. By (a), the operator L is defined on all distributions $u \in \mathcal{D}'(\Omega)$. Prove that if $u \in W^{1,2}_{loc}(\Omega)$ and $f \in L^2_{loc}(\Omega)$ then the identity Lu = f in the weak sense is equivalent to the same identity in the distributional sense.

10. Let Ω be an open subset in \mathbb{R}^n and let

$$L = \sum_{i,j=1}^{n} \partial_i \left(a_{ij}(x) \partial_j \right)$$

be a divergence form uniformly elliptic operator in Ω with measurable coefficients $a_{ij}(x)$. Let c(x) be a measurable function in Ω such that $c_1 \leq c(x) \leq c_2$ for almost all $x \in \Omega$ where c_1 and c_2 are two positive constants. Consider the following Dirichlet problem

$$\begin{cases} Lu - cu = f & \text{in } \Omega\\ u \in W_0^{1,2}(\Omega) \end{cases}$$
(10)

- (a) Formulate the equation Lu cu = f in the weak sense.
- (b) Prove that the weak problem (10) has a unique solution $u \in W_0^1(\Omega)$ for any $f \in L^2(\Omega)$.

Hint. Reduce the problem to the Riesz representation theorem.

11. (*Faber-Krahn inequality, case* n > 2) Let Ω be a bounded domain in \mathbb{R}^n and u be a function from $W_0^{1,2}(\Omega)$. Consider the set

$$U = \{ x \in \Omega : u(x) \neq 0 \}$$

Assuming that n > 2, prove that

$$\int_{\Omega} |\nabla u|^2 \, dx \ge c \, |U|^{-2/n} \int_{\Omega} u^2 dx,\tag{11}$$

where c = c(n) > 0 and |U| is the Lebesgue measure of U.

Hint. Use the Hölder inequality and the Sobolev inequality

$$\left(\int_{\Omega} |u|^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \le C \int_{\Omega} |\nabla u|^2 dx.$$
(12)

where C = C(n) and u is any function from $W_0^{1,2}(\mathbb{R}^n)$.

12. Let Ω be a bounded domain in \mathbb{R}^n . Prove that if $1 \leq p < q$ then

 $W^{1,q}(\Omega) \subset W^{1,p}(\Omega)$

and

$$W_0^{1,q}(\Omega) \subset W_0^{1,p}(\Omega).$$
(13)

Hint. Use the Hölder inequality.

13. * (*Faber-Krahn inequality, case* n = 2) Prove the inequality (11) of Exercise 11 in the case n = 2.

Hint. Use the Hölder inequality as well as the Sobolev inequality in the form

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{pn}{n-p}} dx\right)^{\frac{n-p}{n}} \le C \int_{\mathbb{R}^n} |\nabla u|^p dx,\tag{14}$$

where $1 \leq p < n$, C = C(n, p) and u is any function from $W_0^{1,p}(\mathbb{R}^n)$. In the case n = 2 use (14) with any $p \in (1, 2)$, for example, with $p = \frac{3}{2}$. Observe that $W_0^{1,2}(\Omega) \subset W_0^{1,p}(\Omega)$ by (13).