Blatt 3. Abgabe bis 03.11.23

Additional problems are marked by *
In all Exercises, Ω is an open subset of \mathbb{R}^{n}.
14. Let $u \in W_{l o c}^{1,2}(\Omega)$ and $\eta \in \mathcal{D}(\Omega)$. Prove that $\eta u \in W_{0}^{1,2}(\Omega)$ and, for any $i=1, \ldots, n$,

$$
\partial_{i}(\eta u)=\left(\partial_{i} \eta\right) u+\eta \partial_{i} u,
$$

where the derivative ∂_{i} is understood in the weak sense.
Hint. Use Exercises 8 and 9.
15. Prove the following statements.
(a) If $u \in W_{l o c}^{1,2}(\Omega)$ then also $u_{+} \in W_{l o c}^{1,2}(\Omega)$ and

$$
\nabla u_{+}=\left\{\begin{array}{cc}
\nabla u & \text { a.e. on }\{u>0\} \tag{15}\\
0 & \text { a.e. on }\{u \leq 0\} .
\end{array}\right.
$$

Hint. The identity (15) was proved in lectures for $u \in W_{0}^{1,2}(\Omega)$. In order to extend it to $u \in W_{l o c}^{1,2}(\Omega)$, use the function ηu from Exercise 14.
(b) If $u \in W_{\text {loc }}^{1,2}(\Omega)$ then $\nabla u=0$ a.e. on the set $\{u=\alpha\}$ for any $\alpha \in \mathbb{R}$.
16. Let $u \in W^{1,2}(\Omega)$.
(a) Prove that $(u-\alpha)_{+} \in W^{1,2}(\Omega)$ for any $\alpha \geq 0$.
(b) Prove that

$$
(u-\alpha)_{+} \xrightarrow{W^{1,2}} u_{+} \text {as } \alpha \rightarrow 0+
$$

Hint. Use Exercise 15.
17. (Chain rule in $W_{\text {loc }}^{1,2}$ and $W^{1,2}$) Let J be a closed interval in \mathbb{R} and $\psi: J \rightarrow \mathbb{R}$ be a C^{∞}-function such that

$$
\sup _{J}\left|\psi^{\prime}\right|<\infty .
$$

Consider a function $u: \Omega \rightarrow J$ so that the composition $\psi(u): \Omega \rightarrow \mathbb{R}$ is well-defined.
(a) Prove that if $u \in W_{l o c}^{1,2}(\Omega)$ then $\psi(u) \in W_{l o c}^{1,2}(\Omega)$ and

$$
\begin{equation*}
\nabla \psi(u)=\psi^{\prime}(u) \nabla u \tag{16}
\end{equation*}
$$

Hint. A similar chain rule was proved in lectures assuming in addition that $u \in W_{0}^{1,2}(\Omega)$ and $\psi(0)=0$. Reduce the claim of (a) to that case by adding to ψ a constant and by multiplying u by a test function η as in Exercise 14.
(b) Prove that if Ω is bounded and $u \in W^{1,2}(\Omega)$ then also $\psi(u) \in W^{1,2}(\Omega)$.
18. * (Nash inequality) Prove that, for $n>2$ and for any $u \in W_{0}^{1,2}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \geq c\left(\int_{\mathbb{R}^{n}} u^{2} d x\right)^{\frac{n+2}{n}}\left(\int_{\mathbb{R}^{n}}|u| d x\right)^{-\frac{4}{n}} \tag{17}
\end{equation*}
$$

where $c=c(n)>0$.
Hint. Use an appropriate Hölder inequality and the Sobolev inequality in the form

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \leq C \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \tag{18}
\end{equation*}
$$

19. * Let

$$
L=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j}(x) \partial_{j}\right)+\sum_{i=1}^{n} b_{i} \partial_{i} u
$$

be a uniformly elliptic operator in Ω with bounded measurable coefficients. We say a function $u \in W_{l o c}^{1,2}(\Omega)$ satisfies $L u \geq 0$ (resp. $L u \leq 0$) weakly in Ω if

$$
-\int_{\Omega} \sum_{i, j=1}^{n} a_{i j} \partial_{j} u \partial_{i} \varphi d x+\int_{\Omega} \sum_{i=1}^{n} b_{i} \partial_{i} u \varphi d x \geq 0 \quad(\text { resp. } \leq),
$$

for any non-negative function $\varphi \in \mathcal{D}(\Omega)$. Prove that if

$$
\underset{\Omega}{\operatorname{essinf}} u>0 \text { and } L u \leq 0 \text { weakly in } \Omega
$$

then

$$
L \frac{1}{u} \geq 0 \text { weakly in } \Omega
$$

