Prof. A. Grigoryan, Elliptic PDEs

Blatt 3. Abgabe bis 03.11.23

Additional problems are marked by *

In all Exercises, Ω is an open subset of \mathbb{R}^n .

14. Let $u \in W_{loc}^{1,2}(\Omega)$ and $\eta \in \mathcal{D}(\Omega)$. Prove that $\eta u \in W_0^{1,2}(\Omega)$ and, for any i = 1, ..., n,

$$\partial_i (\eta u) = (\partial_i \eta) \, u + \eta \partial_i u,$$

where the derivative ∂_i is understood in the weak sense. *Hint.* Use Exercises 8 and 9.

- 15. Prove the following statements.
 - (a) If $u \in W^{1,2}_{loc}(\Omega)$ then also $u_+ \in W^{1,2}_{loc}(\Omega)$ and

$$\nabla u_{+} = \begin{cases} \nabla u \text{ a.e. on } \{u > 0\}, \\ 0 \text{ a.e. on } \{u \le 0\}. \end{cases}$$
(15)

Hint. The identity (15) was proved in lectures for $u \in W_0^{1,2}(\Omega)$. In order to extend it to $u \in W_{loc}^{1,2}(\Omega)$, use the function ηu from Exercise 14.

(b) If $u \in W_{loc}^{1,2}(\Omega)$ then $\nabla u = 0$ a.e. on the set $\{u = \alpha\}$ for any $\alpha \in \mathbb{R}$.

16. Let $u \in W^{1,2}(\Omega)$.

- (a) Prove that $(u \alpha)_+ \in W^{1,2}(\Omega)$ for any $\alpha \ge 0$.
- (b) Prove that

$$(u-\alpha)_+ \xrightarrow{W^{1,2}} u_+ \text{ as } \alpha \to 0+.$$

Hint. Use Exercise 15.

17. (*Chain rule in* $W_{loc}^{1,2}$ and $W^{1,2}$) Let J be a closed interval in \mathbb{R} and $\psi: J \to \mathbb{R}$ be a C^{∞} -function such that

$$\sup_{I} |\psi'| < \infty.$$

Consider a function $u: \Omega \to J$ so that the composition $\psi(u): \Omega \to \mathbb{R}$ is well-defined.

(a) Prove that if $u \in W^{1,2}_{loc}(\Omega)$ then $\psi(u) \in W^{1,2}_{loc}(\Omega)$ and

$$\nabla\psi\left(u\right) = \psi'\left(u\right)\nabla u.\tag{16}$$

Hint. A similar chain rule was proved in lectures assuming in addition that $u \in W_0^{1,2}(\Omega)$ and $\psi(0) = 0$. Reduce the claim of (a) to that case by adding to ψ a constant and by multiplying u by a test function η as in Exercise 14.

(b) Prove that if Ω is bounded and $u \in W^{1,2}(\Omega)$ then also $\psi(u) \in W^{1,2}(\Omega)$.

18. * (Nash inequality) Prove that, for n > 2 and for any $u \in W_0^{1,2}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} |\nabla u|^2 \, dx \ge c \left(\int_{\mathbb{R}^n} u^2 \, dx \right)^{\frac{n+2}{n}} \left(\int_{\mathbb{R}^n} |u| \, dx \right)^{-\frac{4}{n}},\tag{17}$$

where c = c(n) > 0.

Hint. Use an appropriate Hölder inequality and the Sobolev inequality in the form

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \le C \int_{\mathbb{R}^n} |\nabla u|^2 dx,\tag{18}$$

19. * Let

$$L = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \left(x \right) \partial_j \right) + \sum_{i=1}^{n} b_i \partial_i u$$

be a uniformly elliptic operator in Ω with bounded measurable coefficients. We say a function $u \in W_{loc}^{1,2}(\Omega)$ satisfies $Lu \ge 0$ (resp. $Lu \le 0$) weakly in Ω if

$$-\int_{\Omega}\sum_{i,j=1}^{n}a_{ij}\partial_{j}u\partial_{i}\varphi\,dx+\int_{\Omega}\sum_{i=1}^{n}b_{i}\partial_{i}u\,\varphi dx\geq 0 \quad (\text{resp.}\leq),$$

for any non-negative function $\varphi \in \mathcal{D}(\Omega)$. Prove that if

essinf
$$u > 0$$
 and $Lu \le 0$ weakly in Ω

then

$$L\frac{1}{u} \ge 0$$
 weakly in Ω .