Blatt 4. Abgabe bis 10.11.23

Additional problems are marked by *
In all Exercises Ω is an open subset of \mathbb{R}^{n}.
20. (Integration by parts for weak derivatives)
(a) Prove the following identity for all $u \in W^{1,2}(\Omega), v \in W_{0}^{1,2}(\Omega)$ and any $i=1, \ldots, n$:

$$
\begin{equation*}
\int_{\Omega}\left(\partial_{i} u\right) v d x=-\int_{\Omega} u \partial_{i} v d x . \tag{19}
\end{equation*}
$$

Hint. Consider first the case $v \in \mathcal{D}(\Omega)$.
(b) Prove that (19) holds for all $u \in W_{l o c}^{1,2}(\Omega)$ and $v \in W_{c}^{1,2}(\Omega)$.

Hint: Use Exercise 8, where also the definition of $W_{c}^{1,2}(\Omega)$ was given.
21. (Product rule in $W_{l o c}^{1,2}$) Prove that if $u, v \in W_{l o c}^{1,2}(\Omega)$ then $u v \in W_{l o c}^{1,1}(\Omega)$ and

$$
\begin{equation*}
\partial_{i}(u v)=\left(\partial_{i} u\right) v+u \partial_{i} v . \tag{20}
\end{equation*}
$$

Hint: Use the definition of the distributional derivative ∂_{i} and Exercises 14, 20(b).
22. Consider in a bounded domain Ω a uniformly elliptic operator

$$
\begin{equation*}
L u=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{j} u\right) \tag{21}
\end{equation*}
$$

with measurable coefficients $a_{i j}(x)$. Let u be a solution of the weak Dirichlet problem

$$
\left\{\begin{array}{l}
L u=f \text { weakly in } \Omega, \\
u \in W_{0}^{1,2}(\Omega) .
\end{array}\right.
$$

Prove that

$$
\|u\|_{W^{1,2}} \leq \lambda\left(D+D^{2}\right)\|f\|_{L^{2}}
$$

where λ is the ellipticity constant of L and $D=\operatorname{diam}(\Omega)$.
Hint: Use the Friedrichs inequality

$$
\int_{\Omega} u^{2} d x \leq D^{2} \int_{\Omega}|\nabla u|^{2} d x
$$

for all $u \in W_{0}^{1,2}(\Omega)$.
23. Let Ω be bounded and L be a uniformly elliptic divergence form operator (21) with measurable coefficients $a_{i j}(x)$. Given $f \in L^{2}(\Omega)$ and some $k=1, \ldots, n$, consider the following Dirichlet problem

$$
\left\{\begin{array}{l}
L u=\partial_{k} f \text { in } \Omega, \tag{22}\\
u \in W_{0}^{1,2}(\Omega),
\end{array}\right.
$$

where both $L u$ and $\partial_{k} f$ are understood as distributions. Prove that the problem (22) has exactly one solution u.

Hint: Rewrite the problem (22) in the form of an integral identity and use the same approach that was used in lectures for the equation $L u=f$.
24. * Prove that the solution u of (22) satisfies the following estimate

$$
\begin{equation*}
\|u\|_{W^{1,2}} \leq C\|f\|_{L^{2}} \tag{23}
\end{equation*}
$$

where the constant C depends on $\operatorname{diam}(\Omega)$ and λ.
25. * Consider in a bounded domain Ω an operator

$$
L u=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{j} u\right)+\sum_{i=1}^{n} b_{i} \partial_{i} u+c u
$$

where $a_{i j}, b_{i}$ and c are measurable functions in Ω. Assume that L is uniformly elliptic with the ellipticity constant λ and that b_{i}, c are bounded, that is,

$$
\sum_{i=1}^{n}\left|b_{i}\right|+|c| \leq b \text { in } \Omega
$$

for some constant b. Prove that if

$$
\begin{equation*}
|\Omega|<\delta, \tag{24}
\end{equation*}
$$

for some $\delta=\delta(n, \lambda b)>0$, then the weak Dirichlet problem

$$
\left\{\begin{array}{l}
L u=f \text { weakly in } \Omega, \\
u \in W_{0}^{1,2}(\Omega)
\end{array}\right.
$$

has a unique solution for any $f \in L^{2}(\Omega)$.
Hint: Use (24) and the Faber-Krahn inequality to ensure that the bilinear form of L is coercive. Then apply the Lax-Milgram theorem.

