## Blatt 5. Abgabe bis 17.11.23

In all Exercises, $\Omega$ is an open subset of $\mathbb{R}^{n}$.
26. Let $u$ be a non-negative function from $W_{0}^{1,2}(\Omega)$ and $\left\{u_{k}\right\}$ be a sequence of functions from $W_{0}^{1,2}(\Omega)$. Prove that if

$$
u_{k} \xrightarrow{W^{1,2}} u \text { and } u_{k} \xrightarrow{\text { a.e. }} u,
$$

then also

$$
\left(u_{k}\right)_{+} \xrightarrow{W^{1,2}} u .
$$

Hint: Prove that $\left\|\nabla\left(u_{k}\right)_{+}-\nabla u\right\|_{L^{2}}^{2}=\int_{\left\{u_{k}>0\right\}}\left|\nabla u_{k}-\nabla u\right|^{2} d x+\int_{F_{k}}|\nabla u|^{2} d x$, where

$$
F_{k}=\left\{x \in \Omega: u_{k}(x) \leq 0, u(x)>0\right\},
$$

and verify that, for almost all $x \in \Omega$,

$$
x \notin F_{k} \text { for large enough } k,
$$

which implies $\mathbf{1}_{F_{k}} \rightarrow 0$ a.e. as $k \rightarrow \infty$.
27. Consider in $\Omega$ an operator

$$
L u=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{j} u\right)+\sum_{i=1}^{n} b_{i} \partial_{i} u,
$$

where the coefficients $a_{i j}$ and $b_{i}$ are measurable functions, the matrix $\left(a_{i j}\right)$ is uniformly elliptic, and all functions $b_{i}$ are bounded. Assume that $u \in W^{1,2}(\Omega)$ and $f \in L^{2}(\Omega)$ satisfy the inequality $L u \geq f$ weakly in $\Omega$, that is, for any non-negative function $\varphi \in \mathcal{D}(\Omega)$,

$$
\begin{equation*}
-\int_{\Omega} \sum_{i, j=1}^{n} a_{i j} \partial_{j} u \partial_{i} \varphi d x+\int_{\Omega} \sum_{i=1}^{n} b_{i} \partial_{i} u \varphi d x \geq \int_{\Omega} f \varphi d x \tag{25}
\end{equation*}
$$

The purpose of this question is to prove that then (25) is satisfied for any non-negative function $\varphi \in W_{0}^{1,2}(\Omega)$.
(a) Prove that if $f \in W_{c}^{1,2}(\Omega)$ and $f \geq 0$ then there exists a sequence $\left\{f_{k}\right\}$ of functions from $\mathcal{D}(\Omega)$ such that $f_{k} \geq 0$ and $f_{k} \xrightarrow{W^{1,2}} f$.
Hint: Use the solution of Exercise 8.
(b) Prove the claim of (a) for any non-negative function $f \in W_{0}^{1,2}(\Omega)$.

Hint: Use Exercise 26 and (a).
(c) Prove that if (25) holds for any non-negative function $\varphi \in \mathcal{D}(\Omega)$ then it holds also for any non-negative function $\varphi \in W_{0}^{1,2}(\Omega)$.
Hint: Use (b).
28. Let $\Omega$ be a bounded open subset of $\mathbb{R}^{n}$. Let $f$ be a function on $\Omega$ such that $f \in W^{1,2}(\Omega)$ and, for any $x \in \partial \Omega$,

$$
\begin{equation*}
\lim _{y \rightarrow x, y \in \Omega} f(y)=0 \tag{26}
\end{equation*}
$$

Prove that $f \in W_{0}^{1,2}(\Omega)$.
Hint: First observe that it suffices to prove this claim assuming that $f \geq 0$. Then, for any $\varepsilon>0$, show that the function $(f-\varepsilon)_{+}$belongs to $W_{0}^{1,2}(\Omega)$ and that

$$
(f-\varepsilon)_{+} \xrightarrow{W^{1,2}} f \text { as } \varepsilon \rightarrow 0 .
$$

Use Exercises 16 and 8.
29. (Green's formula for $L$ ) Consider in $\Omega$ a uniformly elliptic divergence form operator

$$
L u=\sum \partial_{i}\left(a_{i j} \partial_{j} u\right)
$$

with measurable coefficients $a_{i j}$. For any $u \in W_{l o c}^{1,1}(\Omega)$ we understand $L u$ in the distributional sense. Let $p, q \in(1, \infty)$ be a pair of Hölder conjugate exponents.
(a) Prove that if $u \in W^{1, p}(\Omega)$ and $L u \in L^{p}(\Omega)$ then, for any $v \in W_{0}^{1, q}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} L u v d x=-\int_{\Omega} \sum_{i, j=1}^{n} a_{i j} \partial_{j} u \partial_{i} v d x \tag{27}
\end{equation*}
$$

Hint. First prove (27) for $v \in \mathcal{D}(\Omega)$ and then pass to all $v \in W_{0}^{1, q}(\Omega)$.
(b) Prove (27) if $u \in W_{l o c}^{1, p}(\Omega), L u \in L_{l o c}^{p}(\Omega)$ and $v \in W_{c}^{1, q}(\Omega)$.

Here $W_{c}^{1, q}(\Omega)$ is a subspace of $W^{1, q}(\Omega)$ that consists of functions with compact support in $\Omega$.
Hint. You can use without proof that $W_{c}^{1, q}(\Omega) \subset W_{0}^{1, q}(\Omega)$ (in the case $q=2$ this was considered in Exercise 8). Reduce the domain of integration in (27) to a precompact open set $U \subset \Omega$ where $u \in W^{1, p}(U), L u \in L^{p}(U)$ and $v \in W_{0}^{1, q}(U)$, and use (a).

