Blatt 6. Abgabe bis 24.11.23

Additional problems are marked by *
In all Exercises Ω is an open subset of \mathbb{R}^{n}.
30. Let

$$
L u=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{i} u\right)
$$

be a uniformly elliptic operator in Ω with measurable coefficients. For any $\alpha>0$ consider the following Dirichlet problem

$$
\left\{\begin{array}{l}
L u-\alpha u=-f \quad \text { weakly in } \Omega, \tag{28}\\
u \in W_{0}^{1,2}(\Omega) .
\end{array}\right.
$$

By Exercise 10 this problem has a unique solution u for any $f \in L^{2}(\Omega)$. Hence, define the resolvent operator $R_{\alpha}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ as follows: if $f \in L^{2}(\Omega)$ then $R_{\alpha} f$ is equal the solution u of (28). Prove the following properties of R_{α}.
(a) R_{α} is a bounded linear operator in $L^{2}(\Omega)$ and $\left\|R_{\alpha}\right\| \leq 1 / \alpha$.
(b) R_{α} is a self-adjoint operator in $L^{2}(\Omega)$.
31. Under the hypotheses of Exercise 30 prove the following properties of the resolvent operator R_{α}.
(a) R_{α} is a positive definite operator in $L^{2}(\Omega)$.
(b) If Ω is bounded then R_{α} is a compact operator in $L^{2}(\Omega)$.

Hint: Use the compact embedding theorem.
32. Consider a non-divergence form operator

$$
L u=\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j} u+\sum_{i=1}^{n} b_{i} \partial_{i} u
$$

in a bounded domain Ω of \mathbb{R}^{n}. Assume that ($a_{i j}$) is uniformly elliptic with the ellipticity constant λ and that b_{i} are bounded: for some constant b

$$
\sum_{i=1}^{n}\left|b_{i}\right| \leq b \text { pointwise in } \Omega .
$$

Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a classical solution of the Dirichlet problem

$$
\begin{cases}L u=-1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Let D be the diameter of Ω. Prove that

$$
\sup _{\Omega} u \leq C_{1} \exp \left(C_{2} D\right)
$$

where C_{1} and C_{2} are constants depending on λ and b.
Hint: Use the same approach as in Exercise 2: compare u with a function

$$
v(x)=-\alpha \exp \left(\gamma x_{1}\right)+\beta
$$

with appropriate constants α, β, γ and apply the comparison principle.
33. Under the hypotheses of Exercise 32, assume that the diameter D of Ω is small enough, namely,

$$
\begin{equation*}
D<\frac{n}{2 \lambda b} \tag{29}
\end{equation*}
$$

Prove that

$$
\sup _{\Omega} u \leq \lambda D^{2}
$$

Hint: Assuming that the origin belongs to Ω, compare u with a function

$$
v(x)=-\alpha|x|^{2}+\beta
$$

with appropriate constants α, β and apply the comparison principle of Exercise 2.
34. * Consider a ball B_{R} in $\mathbb{R}^{n}, n>2$, and assume that a function $u \in C^{2}\left(B_{R}\right) \cap C\left(\bar{B}_{R}\right)$ solves the classical Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u=-f \text { in } B_{R}, \\
u=0 \text { on } \partial B_{R} .
\end{array}\right.
$$

(a) Prove that, for any $q \in(n / 2, \infty]$,

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq M\|f\|_{L^{q}}, \tag{30}
\end{equation*}
$$

where $M=C R^{2-n / q}$ and C is a constant depending on n, q.
(b) Prove that the estimate (30) cannot hold for $q \leq n / 2$ with any finite M.

Hint: Use the representation

$$
\begin{equation*}
u(x)=\int_{B_{R}} G(x, y) f(y) d y \tag{31}
\end{equation*}
$$

where $G(x, y)$ is the Green function of the ball B_{R}. Use also that

$$
\begin{equation*}
G(x, y) \leq \frac{1}{\omega_{n}(n-2)|x-y|^{n-2}} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
G(0, y)=\frac{1}{\omega_{n}(n-2)}\left(\frac{1}{|y|^{n-2}}-\frac{1}{R^{n-2}}\right) . \tag{33}
\end{equation*}
$$

