Blatt 9. Abgabe bis 15.12.23

Additional problems are marked by *

44. The purpose of this question is to investigate the validity of the identity

$$W_0^{k,p}(\mathbb{R}^n) = W^{k,p}(\mathbb{R}^n). \tag{40}$$

- (a) Prove (40) for all $p \in [1, \infty)$ and $k \ge 1$. *Hint:* Use Exercise 42(b) and show that any function $f \in W^{k,p}(\mathbb{R}^n)$ can be approximated by a sequence of functions from $W_c^{k,p}(\mathbb{R}^n)$.
- (b) Prove that (40) does not hold if $p = \infty$ and k = 1, that is, $W_0^{1,\infty}(\mathbb{R}^n) \subsetneqq W^{1,\infty}(\mathbb{R}^n)$. *Hint.* Show that the function $u \equiv 1$ does not belong to $W_0^{1,\infty}(\mathbb{R}^n)$.
- 45. Let Ω be a bounded domain in \mathbb{R}^n and

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \partial_j u \right)$$

be a uniformly elliptic operator in Ω with measurable coefficients. Consider the Dirichlet problem

$$\begin{cases}
Lu = f & \text{weakly in } \Omega \\
u \in W_0^{1,2}(\Omega).
\end{cases}$$
(41)

Prove that if $f \in L^2(\Omega)$ then

$$\|\nabla u\|_{L^2} \le C \,|\Omega|^{\frac{1}{n}} \,\|f\|_{L^2} \,, \tag{42}$$

where $C = C(n, \lambda)$.

Hint. Use the same approach as in Exercise 22, but instead of the Friedrichs inequality use the Faber-Krahn inequality.

46. Consider in a bounded domain $\Omega \subset \mathbb{R}^n$ a uniformly elliptic divergence form operator

$$Lu = \sum_{i,j=1}^{n} \partial_i \left(a_{ij} \partial_j u \right) + \sum_{j=1}^{n} b_j \partial_j u + cu,$$

where the coefficients a_{ij} , b_j and c are bounded measurable functions and

 $c(x) \leq 0$ a.e. in Ω .

Prove that the Dirichlet problem

$$\begin{cases} Lu = f \text{ weakly in } \Omega\\ u \in W_0^{1,2}(\Omega) \end{cases}$$
(43)

has at most one solution.

Hint: Use the following fact from the proof of Theorem 1.3: if $u \in W_0^{1,2}(\Omega)$ satisfies the inequality

$$\int_{\Omega} \sum_{i,j=1}^{n} a_{ij} \partial_j u \partial_i \varphi \, dx \le b \int_{\Omega} |\nabla u| \, |\varphi| \, dx$$

for some constant b and for a function $\varphi = (u - \alpha)_+$ with any $\alpha > 0$, then $u \leq 0$.

47. (Chain rule for L) Consider in Ω a uniformly elliptic divergence form operator

$$Lu = \sum \partial_i \left(a_{ij} \partial_j u \right)$$

with measurable coefficients.

(a) Let J be a closed interval and ψ be a C^{∞} -function on J such that

$$\sup_{J} |\psi'| < \infty \text{ and } \sup_{J} |\psi''| < \infty.$$

Consider a function $u: \Omega \to J$ so that the composition $\psi(u)$ is well-defined. Prove that if

$$u \in W^{1,2}_{loc}(\Omega)$$
 and $Lu \in L^2_{loc}(\Omega)$

then

$$L\psi\left(u\right)\in L^{1}_{loc}(\Omega)$$

and

$$L\psi(u) = \psi'(u) Lu + \psi''(u) \sum_{i,j=1}^{n} a_{ij} \partial_j u \partial_i u.$$
(44)

Hint: Use Exercises 14 and 17.

(b) Assume that $u \in W^{1,2}_{loc}(\Omega)$ and $\operatorname{essinf}_{\Omega} u > 0$. Prove that if Lu = 0 in Ω then

$$L\ln\frac{1}{u} \ge 0$$
 in Ω .

48. * For any $\varphi \in \mathcal{D}(\mathbb{R}^n)$ and any distribution $f \in \mathcal{D}'(\mathbb{R}^n)$, define the convolution $f * \varphi$ as a function on \mathbb{R}^n as follows:

$$f * \varphi(x) = (f, \varphi(x - \cdot)),$$

where $\varphi(x - \cdot)$ denotes the test function $y \mapsto \varphi(x - y)$.

- (a) Prove that $f * \varphi \in C(\mathbb{R}^n)$.
- (b) Prove that $f * \varphi \in C^{\infty}(\mathbb{R}^n)$ and, for any multiindex α ,

$$D^{\alpha} \left(f * \varphi \right) = f * D^{\alpha} \varphi = D^{\alpha} f * \varphi.$$