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Chapter 0

Introduction

9.10.23 Lecture 1

0.1 Elliptic operators with variable coefficients

In this course we are concerned with partial differential equations in R™ of the form
Lu = f where f is a given function, v is an unknown function, and L is a second order
differential operator of one of the two forms:

1. Lu= Z 0; (a;j(x)0ju) (a divergence form operator)
i,j=1

2. Lu= E a;;(z)0;ju (a non-divergence form operator).
t,j=1

In the both cases, the matrix (a;;) depends on x € R", is symmetric, that is,
a;; = aj;, and positive definite. The operators L with positive definite matrices (a;;)
are called elliptic.

For example, the Laplace operator

=1

is both divergence and non-divergence form elliptic operator with the matrix (a;;) = id.
Note that the divergence form operator can be represented in the form

n

Lu= Z 82 (aij (l')aﬂi) = Z a,-j(:c)aiju + (&am) 8ju,

1,j=1 i,j=1

that is the sum of the non-divergence form operator and lower order terms. However,
this works only for differentiable coefficients a;;. In fact, the most interesting applica-
tions in mathematics requires operators with discontinuous coefficients a;;. Of course,
in this case the divergence form operator cannot be understood in the the sense of
classical derivatives, and we will define the meaning of Lu in a certain weak sense.
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0.2 Origin of divergence form operators

One of the origins of divergence form operators is heat diffusion. Let u(x,t) denote the
temperature in some medium at a point x € R3 at time ¢. Fix a region Q C R3. By the
Fourier law of thermoconductance, the amount d() of the heat energy that has flown
into €2 through a surface element do of its boundary 02 between the time moments ¢

and t + dt is equal to
3

dQ = Z a;;(z)v;0;u dodt

ij=1
where v is the outer unit normal vector field to 02 at a point x € do and a;;(x) is the
tensor of the thermal conductance of the material of the body.

The dependence of a;; of x means that the conductance may be different at different
points, and the dependence on the indices ¢, 7 reflects the fact that the conductance
may be different in different directions.

The expression

3
Z aij(x)yiaju (01)
1,j=1

can be regarded as an inner product of the vectors v = (v;);_; and Vu = (0;u)’_, with
the coefficients a;;(x) (the symmetry and positive definiteness of this matrix ensure
that the expression (0.1) has the properties of an inner product). Hence, the total
energy () that has flown into 2 through its entire boundary between time moments ¢

and t + h is

t+h 3
Q :/ / a;j(x)v;0;u dodt,
), > (@),

ij=1
On the other hand, the amount of heat energy d@’ acquired by a volume element dx
of Q2 from time ¢ to time ¢ + A is equal to

dQ = (u(z,t+h) —u(z,t)) cpdx,

where p is the density of the material of the body and ¢ is its heat capacity (both ¢ and
p are functions of z). Indeed, the volume element dx has the mass pdz, and increase
of its temperature by one degree requires cpdr of heat energy. Hence, increase of the
temperature from u (x,t) to u(x,t + dt) requires (u(x,t+ h) —u(x,t)) cpdr of heat
energy. We obtain that the total amount @’ of energy acquired by the entire body (2
from time ¢ to time ¢ + h is equal to
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Q = /Q (u(x,t+h) —u(x,t))cpd.

By the law of conservation of energy, in absence of heat sources and sinks, we have
Q = Q', that is,

/tt+h (/89 23: a;;v;0ju da) dt = /Q (u(x,t+h) —u(x,t))cpdr.

1,j=1

Dividing by h and passing to the limit as h — 0, we obtain

3
/ Z a;jv;0;udo = / (Opu) ep dx. (0.2)
o0 ; Q

i,j=1

Observing that
3

—
E aijyiaju = F -V

t,j=1

H
where the vector field F' has the components

3
F; = E a;;0u,
j=1

and applying the divergence theorem, we obtain

3
/ Z a;jv;0;u do = / Fvdo = / div Fdz
o0 ; o0 Q

7,7=1
3 3
:/Z(@-Fi)d:c:/ Z@i (a;;0;u) da::/Lud:c,
0 Q) Q

i,7=1
where
3
Lu= Z az (aijaju) .
3,j=1

is the divergence form operator. This implies together with (0.2) that

/cpatudx:/Ludx,
Q )

Since this identity holds for any region (2, it follows that the function u satisfies the
following heat equation
cp Oyu = Lu.

In particular, if u is stationary, that is, does not depend on ¢, then u satisfies Lu = 0.
We have seen that in the above derivation the operator L comes out exactly in the
divergence form because of an application of the divergence theorem.
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0.3 Origin of non-divergence form operators

The operators in non-divergence form originate from different sources, in particular,
from stochastic diffusion processes. A stochastic diffusion process in R" is mathematical
model of Brownian motion in inhomogeneous media. It is described by the family
{P.},crn of probability measures, where P, is the probability measure on the set €2,
of all continuous paths w : [0, 00) — R™ such that is w (0) = x.

Define for any ¢ > 0 a random variable X (t) on Q, by X (f) (w) = w(t). The
random path t — X (t) can be viewed as a stochastic movement of a microscopic
particle with the initial position X (0) = z.

3

The diffusion process is described by its infinitesimal means

E, (X;(t+dt)— X;(t)) =bdt+ o(dt) asdt — 0,
for any ¢ = 1,...,n, and its infinitesimal covariances
E, (X;(t+dt) — X;(t) (X (t+dt) — X, (t))) = a;jdt + o (dt) as dt — 0,

for all 4,5 = 1,...,n, where b; and a,; are some functions that in general may depend
in x and t, but we assume for simplicity that they depend only on .

By construction, the matrix (a;;) is symmetric and positive definite, as any covari-
ance matrix. The functions a;; and b; determine the non-divergence form operator with

lower order terms: . .
Lu= Z aij&-ju + Z bl&u,
ij=1 i=1
that has the following relation to the process: for any bounded continuous function f
on R"™, the function

u(z,t) =E; (f (X (1))

satisfies the heat equation
Owuw = Lu

with the above operator L. This equation is called the Kolmogorov backward equation.
This operator L is called the generator of the diffusion process because it contains all
the information about this stochastic process.



Chapter 1

Weak Dirichlet problem for
divergence form operators

In this Chapter we deal with the divergence form elliptic operator

Lu = Z 0; (a;j(x)0ju)

ij=1

defined in an open set 2 C R™. Since the coefficients a;; may be not differentiable, we
have to specify exactly how the equation Lu = f is understood.

1.1 Distributions

Let Q be an open subset of R". Denote by D (Q2) the linear topological space that as
a set coincides with Cg° (§2), the linear structure in D (2) is defined with respect to
addition of functions and multiplication by scalars from R, and the topology in D ()
is defined by means of the following convergence: a sequence {p,} of functions from
D (22) converges to ¢ € D(Q) in the space D () if the following two conditions are
satisfied:

1. ¢, = ¢ in Q and D%p,, = D%p for any multiindex « of any order;

2. there is a compact set K C (2 such that supp ¢, C K for all &.

It is possible to show that this convergence is indeed topological, that is, given by
a certain topology.

Any linear topological space ) has a dual linear space V'’ that consists of continuous
linear functionals on V.

Definition. Any linear continuos functional f : D (£2) — R is called a distribution in
Q (or generalized functions). The set of all distributions in € is denoted by D’ (). If
f € D' () then the value of f on a test function ¢ € D () is denoted by (f, ¥).

Any locally integrable function f : 2 — R can be regarded as a distribution as
follows: it acts on any test function ¢ € D (2) by the rule

/f¢dx (1.1)

The distributions that are represented in this way by locally integrable functions are
called regqular distributions.
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Note that two locally integrable functions f, g determine the same distribution if
and only if f = g almost everywhere, that is, if the set

{reQ: fz) # g(x)}

has measure zero. We write shortly in this case

f=gae (1.2)

Clearly, the relation (1.2) is an equivalence relation, that gives rise to equivalence classes

of locally integrable functions. The set of all equivalence classes of locally integrable

functions is denoted' by L] (). The identity (1.1) establishes the injective linear
() can be regarded as a subspace of D’ ().

mapping L} (Q) — D' (Q) so that L]
There are distributions that are not regular, that is, the difference D’ (Q2)\ L}, (Q)

loc loc
loc

is not empty. For example, define the delta-function §,, for any xy € Q as follows:

(55607 90) = (1‘0) .

Although historically ¢,, is called delta- function, it is a distribution that is not regular
and is not determined by any function.

Definition. Let f € D’ (). Fix a multiindex a. A distributional partial derivative
D f is a distribution that acts on test functions ¢ € D () as follows:

(D°f, ) = (=1)"! (f,D*p) Vo eD(Q), (1.3)

where D%y is the classical (usual) derivative of .

Note that the right hand side of (1.3) makes sense because D%p € D (£2). Moreover,
the right hand side of (1.3) is obviously a linear continuous functions in ¢ € D (),
which means that D®f exists always as a distribution.

12.10.23 Lecture 2

Let f € L}, .(Q). If the distributional derivative D[ is a regular distribution then
the corresponding L}, -function is also denoted by D®f and is called the weak derivative
of f. An equivalent definition of the weak derivative D f is as follows: it is a function

from L} . (Q) such that

loc

/Dafgodm:(—l)o‘|/fD°‘godx Vo e D(Q). (1.4)

If f € CF(Q) then its classical derivative Df with |a| < k satisfies (1.4) and, hence,
is at the same time the weak derivative as well as its distributional derivative.

(Q) is loosely used to denote the set of all locally integrable functions in €.

1. () are not functions but their equivalence classes.

!Sometimes L},

However, in a strict sense, the elements of L
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1.2 Sobolev spaces

As before, let {2 be an open subset of R". Fix p € [1,00). A Lebesgue measurable
function f : Q2 — R is called p-integrable if

/|f|pdx<oo.
0

Two measurable functions in € (in particular, p-integrable functions) are called equiv-
alent if

f=gas.
This is an equivalence relation, and the set of all equivalence classes of p-integrable

functions in 2 is denoted by L? (). It follows from the Holder inequality, that L (2) C
L} . (9). In particular, all the elements of L? () can be regarded as distributions.

loc
The set LP () is a linear space over R. Moreover, it is a Banach space (=complete

normed space) with respect to the norm

1/p
1l = ( L1 dx) |

The Banach spaces L? (Q2) are called Lebesgue spaces.
The case p = 2 is of special importance because the space L? () has inner product

(f.9)p2 = /Q fgd,

whose norm coincides with || f||, as

1/2
g0 = ([ £as) =15l

Hence, L? () is a Hilbert space.

Definition. Define the Sobolev space W*P for arbitrary non-negative integer k and
p € [1,00) as follows:

WkP(Q) ={f e LP(Q): D*f € L (Q) for all a with |a| < k}, (1.5)
where D®f is a distributional derivative (that by (1.5) is also a weak derivative).

In words, WP () is a subspace of L? (Q) that consists of functions whose all weak
partial derivatives of the order < k are also in LP(Q). In particular, W% = [P, It is
easy to see that C¥ (Q) C WkP (Q) for any k and p.

Let us introduce in W#P (Q2) the following norm:

Wl = [ 32 / D P da

alal<k

1/p

It is possible to show that |||+, is indeed a norm, and W*?(§) is a Banach space
with this norm. In the case p = 2 this norm is given by the inner product:

s = X [ Do Dy

a:lal<k
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so that W*2(Q) is a Hilbert space.
Denote by L7 () the space of (equivalence classes of) measurable functions f on
Q such that | f|” is locally integrable. For example, all continuous functions in € belong
to L (). Define the local Sobolev space W7 (Q) by
WP (@Q)={felLl (Q):DfcLl (Q) forall awith |a| <k}. (1.6)

loc loc loc

It is easy to see that C* (Q) € WP (Q) for any k and p.

loc

1.3 The weak Dirichlet problem

Let €2 be an open subset of R™. Consider in €2 an elliptic operator in the divergence
form:

Lu =Y 0;(a;(x)0u) . (1.7)

ij=1
where all functions a;;(z) are measurable in €2. As before, the matrix (a;;) is symmetric
and positive definite. Moreover, here (and everywhere below) we assume that (a;;) is

uniformly elliptic, that is, for all x € 2 and £ € R,

ATHEP <) ay(@)€€; < AL, (1.8)
ij=1
for some positive constant \. Equivalently, this means that, for any fixed z € €, all
eigenvalues of the matrix (a;;(z)) are contained in the interval [—A~", A].
We define now how to understand the equation Lu = f in the weak sense.

Definition. Let u € W2 and f € L2 (©). We say that the equation Lu = f is

loc loc

satisfied in a weak sense or weakly if, for any ¢ € D (),

/ Z a;j Oju;pdr = —/ fed. (1.9)
Q; 0

,j=1

Note that the integral on the right hand side of (1.9) makes sense because the
integration can be reduced to a compact set supp ¢ where ¢ is bounded and f is
integrable. The left hand side makes sense similarly because d;u € L7 and, hence, is
integrable on supp ¢, while ;¢ and a;; are bounded (the latter follows from (1.8)).

Motivation for this definition is as follows. Assume that a;; € C' and u € C2.
Then the equation Lu = f can be understood in the classical sense. Multiplying it by

v € D () and integrating in {2 using integration by parts, we obtain

/f@dil‘ => / 0 (ai0ju) pde = = / a;;Oju Oy dz,
Q Q Q

i,j=1 4,j=1

that is the identity (1.9). Hence, the weak meaning of the equation Lu = f is consistent
with the classical one.

Define W, (Q) as the subspace of W2 (Q) that is obtained by taking the closure
of D () in W2 (Q), that is

wi2Q) =) .
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Lemma 1.1 Letu € W12 (Q) and f € L? (Q). Then the equation Lu = f holds weakly
if and only if (1.9) holds for all o € W, ().

Proof. If (1.9) holds for all ¢ € W,* () then, of course, it holds also for all ¢ € D ().
Let us prove the converse statement. For any ¢ € I/VO1 2 (Q2) there is a sequence {p;}
of functions from D (Q) such that ¢, — ¢ in the norm of W12 (Q). Any ¢, satisfies
(1.9), and we would like to pass to the limit as & — oo. For that, it suffices to verify
that the both sides of (1.9) are continuous functionals of ¢ € W2 (Q). Since they
both are linear functionals, it suffices to verify that they are bounded linear functionals
in W12(Q).
The functional ¢ — [, feda is bounded because

] / fso' < 1Lz ele < € gl

where C' = || f|| ;.. Let us show that the functional

Q

ij=1

is also bounded in W12 (Q), that is,

[A(p)] < Cllellyre, (1.10)

for some constant C and all ¢ € W12 (Q). Fix z € Q and consider in R™ the bilinear

form
n

(&n)y = Z aij(x)§;m; for & n € R™
ij=1
This bilinear form is symmetric and positive definite by the ellipticity of (a;;). Hence,
(&,m), is an inner product in R"”. By the Cauchy-Schwarz inequality and (1.8), we
obtain

(€ mal < €8 O, < Mgl
It follows that

/ Z a;;(2)0u0;p dx
Q

i,7=1

/ (Vu, Vo), dx
Q

S/)\]Vu] V| dx
)
1/2 1/2
<A (/ |V d:r;) (/ |Vgp|2dw) :
Q Q

[A (@)l < Mlullyrz [l@llwr2 (1.11)

|A(p)| =

It follows that
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which proves (1.10) with C = A ||ul| 1. ®

Definition. We say that a function u solves the Dirichlet problem

Lu=f in
u=0 on 0f)

in the weak sense if

Lu = f weakly in €2,
{ (D)

ue Wy (Q).

In other words, the weak meaning of the boundary condition u|gg = 0 is u €
Wy (Q).

Theorem 1.2 Let ) be a bounded domain and L be a uniformly elliptic operator in
the divergence form in ) with measurable coefficients. Then the weak Dirichlet problem
(D) with the operator (1.7) has exactly one solution for any f € L*(Q).

We use in the proof the Riesz representation theorem: in any Hilbert space H with
inner product [-, -], the equation

[u, o] =L () YoeH

has a unique solution u € H provided ¢ is a bounded linear functional on H.

16.10.23 Lecture 3

Proof. We need to prove that the weak equation Lu = f has a unique solution
w e Wi (Q) for any f € L?(Q). Consider in W,*(Q) the following bilinear form

[u,v], = /Q Z a;;(z)0u(x)0v(z)dr

i,7=1

(the integral converges because a;; are bounded and d;u,d;v € L? (Q)). This form is
symmetric by the symmetry of the matrix (a;;).

Applying the uniform ellipticity condition (1.8) with §; = J;u and observing that
€| = |Vul|, we obtain

(u,u], = / Z a;j(x)0ju(z)Oiu(x)dr < )\/ Vul* dz < M ullfs (1.12)
Q=1 @

and similarly

[w, ul, > /\_1/ \Vul|? dz.
Q

On the other hand, by the Friedrichs inequality we have, for any u € VVO1 2 (Q) that

/|Vu|2 dx > c/ugdx,
" 0
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with some positive constant ¢ = ¢ (£2). Assuming without loss of generality that ¢ < 1,

we obtain
c

/ \Vul* dz > g/ (v + \VU\Q) dr = 3 [ ul|Fs
0 Q

whence it follows that c
2
el > o5l (1.13)

In particular, [u,v], is positive definite and, hence, is an inner product in VVO1 2(Q).
By (1.12) and (1.13), the norm [u, u](ll/2 is equivalent to |[u| 1,2, which implies that
W,*(2) with the inner product |-, ], is a Hilbert space.
The weak equation Lu = f can be rewritten in the form

wol, == [ fode o WiA@), (1.14)
Q
The right hand side ¢ (¢) := — [, fe dx is a bounded linear functional of ¢ € Wy (Q)

with respect to the norm of [-, -], because

1/2
@) < 1f 12 Il 2 < 1Fll e lpllwra < comst [, ]2

By the Riesz representation theorem, the equation
[u, ], = £(p) Vo € Wy (),

that is equivalent to (1.14), has a unique solution u € I/VO1 ’Q(Q), which was to be proved.
|

1.4 Weak Dirichlet problem with lower order terms

Here we consider a more general operator

=1

ij=1

in an open set {2 C R". We assume that the coefficients a,;, b; are measurable functions

of x € Q, the second order part szzl 0; (a;j0ju) is uniformly elliptic, and that all

functions b; are bounded, that is, there is a constant b, such that

> bl <bin Q.
=1

Definition. Assume that v € W' (Q) and f € L*(Q). We say that the equation
Lu = f is satisfied weakly if, for any ¢ € W, (Q),

/ <Z a;; 0ju 0jp — Zbi oiu go) dr = — / fedr. (1.16)
) P Q

4,j=1



12 CHAPTER 1. WEAK DIRICHLET PROBLEM

1.4.1 Uniqueness

Theorem 1.3 (Uniqueness) Let Q2 be a bounded domain and L be the operator (1.15).
Then the weak Dirichlet problem

Lu = f weakly in )
ue Wy?(Q)

has at most one solution.

For the proof we need some facts about weak derivatives that will be proved later
on. Everywhere (2 is an open subset of R™.

Lemma 1.4 If u € Wy* (Q) then, for any o >0, also (u — a), € Wy? (Q) and

Vu a.e. on the set {u > a}

Viu—a), = { 0 a.e. on the set {u<a} (L.17)

Lemma 1.5 Ifu € I/Vol’2 (Q) then, for any a € R,

Vu =0 a.e. on the set {u=a}.

Besides we are going to use the following inequality that also will be proved later
(see Corollary 1.10).

Sobolev inequality. Ifn > 2 then, for any ¢ € I/Vol’2 (Q),

n—2

/IVsolzdcmcn (/ |so|f"2dm) "
Q Q

where ¢, 1s a positive constant depending only on n.
If n =2 and ) is bounded then, for any ¢ > 1 and for any ¢ € VVOI’2 (Q),

1/q
/ |Vso|2d:z:2c( / |so|2qczx) |
Q Q
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where ¢ 1s a positive constant depending on q and €.

Proof of Theorem 1.3. We need to prove that if u € W,* () and Lu = 0 then
u = 0 a.e. in . It suffices to prove that © < 0 a.e. in (2 since the similar inequality
u > 0 a.e. follows by the same argument applied to —u.

We use the notion of the essential supremum that is defined by

esssupu = inf{k e R:u <k a.e.}
Q

(note that u < k a.e. means that the set {u > k} has measure 0). Then u < 0 a.e. is
equivalent to esssup u < 0. Let us assume from the contrary that

g = esssupu > 0
Q

and bring this to contradiction (note that ag = oo is allowed). The weak equation
Lu = 0 implies that, for any ¢ € W, (Q),

/ Z a;;0;ud;p dx = / Zbi&-ugod:c. (1.18)
Q=1 Q=1

The right hand side of (1.18) admits a simple estimate

/Zbi (Ou) @ dx < b/ V| || dz. (1.19)
Q. Q

Now we specify function ¢ as follows: choose « from the interval
0<a<ag

and set
p=(u—a),.

By Lemma 1.4, ¢ € Wy? (Q) so that we can use this ¢ in (1.18). Consider the set

Se ={r € :a<u(r) <a}.
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Let us verify that

Vo — { Vu a.e.on S, (1.20)

Cc
0 a.e. on S5,

where S¢ = Q\ S,. Indeed, S, C {u > a}, so that the first line in (1.20) follows from
that in (1.17). Note that
Sé={u<alU{u>am}.

By the second line in (1.17) we have Vi = 0 a.e. on the set {u < a}. On the {u > ap}
we have by (1.17)
Vp =Vu ae.,

so it suffices to verify that

Vu=0ae. on{u>ap}. (1.21)
Indeed, since the set {u > ap} has measure 0 by definition of «y, we see

u=qg ae. on {u>am},

which implies (1.21) by Lemma 1.5. Thus we finish the proof of (1.20).
Let us now prove that

| [Vele ae. on S,,
Vulp = { 0, a.e.on S¢. (1.22)

Indeed, the first line in (1.22) follows from that of (1.20). On the set {u < a} we have
¢ = 0, while on {u > ap} we have by (1.21) Vu = 0 a.e., which proves the second line
n (1.22).

It follows from (1.22) that

[ vulods = [ 1velan< ([ 2dx) (/ Vol daz) "

For the left hand side of (1.18) we have by (1.20) and the uniform ellipticity

/Zawa u@lgodx—/ Zaw 0jp0;pdx > N\~ / IVel|? da.
Q

3,j=1 Sazgl

Combining the above two calculations with (1.18), we obtain

1/gq IVso|2dxgb</ Zd:z:) </ Vel dw) y (1.23)

/ V| dr < )\2b2/ dr. (1.24)
Sa Sa

By the Sobolev inequality we have

1/q 1/q
/ V| de = / V| dz > ¢ (/ gqudm) >c (/ <,02qu) , (1.25)
Sa Q Q «

It follows that
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where
q="5, n>2

q>1, n=2.
and ¢ = ¢(q,]2|) > 0. On the other hand, we obtain by the Holder inequality,

/ 1/q 1/q , 1/q
/ cp2dx — / 1. g02dac < (/ 19 dx) (/ g02qdac) = |Sa|1/q (/ 902qu)
Sa Sa Sa Sa Sa

where ¢’ is the Holder conjugate of ¢, that is, % +§ =1 (so that ¢ = qqu), and |S,] is
the Lebesgue measure of the set S,. Hence,

1/q
(/ 302qu> 2|Sa]_1/q/ ©*dx
Sa Sa

Combining this with (1.24) and (1.25), we obtain
C\Sa|1/ql/ prdr < )\262/ .

Since essup ¢ = ag — a > 0 and, hence, [, ¢*dz > 0, we obtain

q/
c /
‘Sa’ > (W) =.C (126)

where the constant ¢ is positive and does not depend of a.
Now let us bring (1.26) to contradiction. Consider an increasing sequence {ay},,
that converges to ag as k — oo. Then the sequence of sets S,, is decreasing and

N So, ={z€Q:VE ap <u(z) <oy} =0.
k=1

Hence, by the continuity property of the Lebesgue measure,
lim |Sak| = ‘mzozl Sak| =0,
k—oo

which contradicts (1.26). =

19.10.23 Lecture 4

1.4.2 Some properties of weak derivatives
Here €2 is an open subset of R™. Recall that
W2 (Q) = {u € L2(Q) : Vu e [2 (Q)}

and
2 2 2
Jullypre = lullzz + I1Vaulll7: -

Recall also that W,* () is the closure of D (Q) in W2 (Q),
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Lemma 1.6 (Chain rule in W,?) Let ¢ be a C*°-function on R such that

¥ (0) =0 and sup|y’ (t)| < oo. (1.27)

teR
Then v € W, (Q) implies 1 (u) € Wy (Q) and

Vi (u) =9 (u) Vu. (1.28)

Proof. Let us first observe that, by (1.27), we have [¢ (u)| < C'|u| where C' = sup [¢'].
It follows that ¢ (u) € L*(Q). The boundedness of 1’ implies also that ¢’ (u) Vu €
L2(Q).

If w € D () then obviously ¥ (u) is also in D (£2) (in particular, because 1 (0) = 0)
and, hence, 1 (u) € W,* (Q). In this case the chain rule (1.28) is true because V) (u)
is the classical derivative.

An arbitrary function v € W, () can be approximated by a sequence {u,} C
D (Q) that converges to u in W2 (Q), that is,

L? L?
uy — u and Vup — Vu.
By selecting a subsequence, we can assume that also uy(x) — u(x) for almost all z € €.

Let us prove that

W () 25 0 (w) (1.29)
Vo (ug) 5 o (u) V. (1.30)

The convergence (1.29) follows trivially from wuy, 2w and
¢ (uk) = (u)] < C'lug —ul .
To prove the convergence (1.30) observe that

Ve (w) = ¢ (u) V| = [0 (u) Vg — ¢ (u) Vul
< @ (uk) (Vg = V)| + (8 (ur) = ¢ (u)) Vul,

whence

IV () = ¢ (u) V2 < ClIVug = Va2 + [| (8 (ur) = " (u)) Vul|2. (1.31)

The first term on the right hand side of (1.31) goes to 0 because Vuy 2 V. It
remains to verify that

I (ur) = 4" (w)) V1> = /Q [ () = ¢ () |Vul* du — 0 (1.32)

as k — oo. Since ug(z) — u(x) a.e. , we have

P (ug) — ' (u) — 0 a.e.
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and, hence, )
W’ (ur) — Y (u)] ’VUIQ — 0 a.e..

Since

[ () =& ()] [Vul* < 4C* |Vuf?

and the function |Vu|® is integrable on Q, we conclude that (1.32) holds by the domi-
nated convergence theorem.
For the next argument we need the convergence in D' (Q): if f and fr € D' (Q)

then f, 2> f if
(fr,®) — (f,¢) forallp € D(Q) as k — oo.

This convergence has the following property: if f 2, f then, for any multiindex «,
D° f % D,
because for any ¢ € D ()
(D*fi,0) = (=1)" (f, D*0) — (=) (. D¢) = (D[, ).
The convergence (1.29) implies that
Vi) (ur) = Vi) (u),
which together with (1.30) yields
Vi (u) =" (u) Vu. (1.33)

It follows that ¢ (u) € W12(Q). Since v (ux) € D () and, by (1.29)-(1.30) and (1.33),

() "5 (),

we will conclude that ¢ (u) € W, ?(Q). m

Lemma 1.7 Let {1, (t)} be a sequence of C*°-smooth functions on R such that

¥, (0) =0 and supsup ¢, (t)] < oo. (1.34)
k teR

Assume that, for some functions i (t) and ¢ (t) on R,

U (t) = (t) and ) (t) — @ (t) forallt € R. (1.35)

Then, for any u € I/Vol’2 (Q), the function 1 (u) is also in VVOl’2 (Q) and
Vi (u) = ¢ (u) Vu.

Proof. The function ¢ (u) is the pointwise limit of measurable functions 1, (u) and,
hence, is measurable; by the same argument, ¢ (u) is also measurable. By (1.34), there
is a constant C' such that

[ ()] < O, (1.36)
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for all £ and t € R, and the same holds for function . Therefore, ¢ (u)| < C'|ul,
which implies
Y (u) € L*(Q).
By (1.34), we have also |¢ (t)| < C, whence
o (u) Vu e L*(Q).
Since each function v, is smooth and satisfies (1.27), Lemma 1.6 yields that
Uy (u) € Wy * () and Vi (u) = 4 (u) Vu
Let us show that

L? L2

Uy (u) — 1 (u)  and Vi (u) — ¢ (u) Vu. (1.37)

The dominated convergence theorem implies that

| W) =0 ) du —o.
because the integrand functions tend pointwise to 0 as k — oo and, by (1.36),

Wy (u) — 2 (u)* < 4C%02,

while u? is integrable on €. Similarly, we have
1900w =0 @) Valtda = [ 10}, 0) — (0 [V du — 0,

because the sequence of functions |1}, (u) — ¢ (u) * |Vul? tends pointwise to 0 as k — oo
and is uniformly bounded by the integrable function 4C? |Vu/|.

It follows from ¢, (u) =, Y (u) that

Vi (u) = Vi (),
and comparison with (1.37) yields that
Vi (u) = ¢ (u) Vu. (1.38)

Consequently, ¥ (u) € W12 (Q). It follows from (1.37) and (1.38) that

O (1) "5 (w).

Since ¥y, (u) € Wy?(Q) and Wy? () is a closed subspace of W2 (Q), we conclude
that ¢ (u) € Wy (Q), which finishes the proof. m

Proof of Lemma 1.4. We need to prove that if u € W, (Q) then, for any o > 0,
also (u —a), € Wy? (Q) and

Vu a.e. on the set {u > a}

Viu—a), = { 0 ae. ontheset {u<a} ° (1.39)
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Consider the functions

Y (t)=(t—a), and gp(t):{ é: EEZ’

y(t)=(t-a)s

(1)

Then the claim of Lemma 1.4 can be reformulated as follows: 1 (u) € W,* () and

Vi (u) = ¢ (u) Vu.

By Lemma 1.7, it suffices to verify that ¢ and ¢ that can be approximated as in (1.35).
For that fix any nonnegative C* function 7 (¢) on R such that

t, t>1,
77<t>:{0 t<0.

Define 1, for any k£ € N by

W'(f)

0 o arlk : 0 o arl/k 7

If t <« then ¢, (t) = 0. If ¢ > a then, for large enough k, we have k(t —a) > 1
whence

Uy (1) = (k?(t—a))z%k‘(t—a)zt—oz—w/}(t) as k — oo.

| =
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Hence, 9, (t) — ¢ (t) for all t € R.
Similarly, if ¢ < a then ¢}, (t) = 0, and if ¢ > « then, for large enough k, we have
k(t —a) > 1 whence

Vo) =n(k(t—a))=1—¢(t) ask — oc.

Proof of Lemma 1.5. By Lemma 1.4 with o = 0, we have uy € W,"* and

Vu, u>0,

Applying this to function (—u), we obtain that u_ € Wy and

0, u > 0,
Vu- = { —Vu, u<0. (1.41)

Consequently, since Vu, = Vu_ = 0 on the set {u = 0}, we obtain
Vu=0ae on {u=0}. (1.42)

In particular, (1.42) implies the following: if u,v are two functions from W, (Q) and
S is a subset of {2 then

u=vaeonsS =Vu=Vv ae onb.
Let us now prove that, for any a € R,
Vu=0ae. on {u=a}. (1.43)
If the constant function v = a were in W, then by
u=v on {u=a}

we could obtain
Vu=Vv=0a.eon {u=a}

thus proving (1.43). However, the constant function is not in I/VO1 2 and we argue as
follows. Choose a closed ball K C Q and a function v € C§° (€2) such that v = a in K.
Then

u=v on {u=a}NK

which implies that
Vu=Vv=0 ae on {u=a}NK.

Covering €2 by a countable family of balls K, we obtain (1.43). m
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23.10.23 Lecture 5

1.4.3 Sobolev inequality

Theorem 1.8 Assume 1 < p < n. Then there is a constant C = C (p,n) such that,
for all uw € WP (R™),

p

( |u| 7 dm) e |Vul? d. (1.44)
R" R"

Remark. Let us explain the geometric meaning of (1.44) in the (main) case p = 1.
In this case the Sobolev inequality becomes as follows: for n > 1 and for any u €

Wy (R,
n—1
( |u|71 dx) <C [ |Vu|dz, (1.45)
RTL Rn
with some constant C' = C'(n). Fix an bounded open set 2 C R" with smooth

boundary 0f2, and, for any € > 0, denote by €). the open e-neighborhood of €2. Let u.
be a continuous function in R™ such that

1, z€Q,
uE(‘/L‘) = 07 x 6 (Qa)c’
linear in dist(z,2), = € .\ Q.

It is possible to prove that u is a Lipschitz function and, hence, u, € VVO1 -1 (R™).

R/l

Since u. = 1 in Q and |2, \ Q| — 0 as ¢ — 0, we obtain
lue|™1 dz — Q] ase — 0.
R”

Since |Vu| ~ L in Q. \ Q and Vu = 0 otherwise, we obtain

1
\Vu|de ~ = |Q.\ Q] — 0 (02) ase — 0,
R™ 9
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which implies from (1.45) as € — 0 that
Q| F < Co (092). (1.46)

This is a so called isoperimetric inequality that bounds the volume || from above by
the boundary area of 9€). One can show that, conversely, the Sobolev inequality (1.45)
can be derived from the isoperimetric inequality (1.46) so that these two statements
are equivalent.

Let €2 be a ball of radius R. Then we have

o (09) = w, R"!

and w
|Q| = _an7
n
whence it follows that B
Q" = c,0 (09),

where ¢, = (w, /n)%1 Jwn. It is possible to prove that the optimal constant C in
(1.46) is exactly c¢,, that is, among all domains €2 with a fixed boundary area o (0€2)
(=perimeter), the ball has the maximal volume (the isoperimetric property of balls in
R™).

In the proof of Theorem 1.8 we will use the following extended Holder inequality.

Lemma 1.9 For non-negative measurable functions { f;},~, on R, we have

m m 1/m
1/m ‘
/R I dth( / fzdt> | (1.47)

Proof. For m = 1 the inequality (1.47) is trivial as the both sides are equal to [, fidt.
In the case m = 2 (1.47) follows from the Cauchy-Schwarz inequality

s (o) (fs)”

For a general m, we make the inductive step from m — 1 to m by means of the Holder

inequality . 1
[os(/=)" ()

Using (1.48) and the inductive hypothesis, we obtain

/fl 1fm <
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which is equivalent to (1.47). m

Proof of Theorem 1.8. Step 0. Let us first show that it suffices to prove (1.44) for
u € D (R™). Indeed, assuming that (1.44) is known to be true for all u € D (R"). For
any u € Wy" (R"), choose a sequence {u;} from D (R") such that u; — w in the norm
of WHP_ Since uj, — u in LP, choosing a subsequence we can assume that also uj, — u
a.e.. By the assumption of validity of (1.44) for functions from D (R™), we have, for
any k,

n—p

( |uk|"% d$) ' <C |Vug |’ d. (1.49)
R’!L R”
Since uy, e u, we have

/ \Vug|? de — |Vul? dx as k — oo.

Rn
Since uy, =5 u, we obtain by Fatou’s lemma that

|u]nLILP dr < liminf |uk|npfp dzx.
k—oo R™

R
Hence, taking liminf in (1.49), we obtain

P

(/ M= d;c) "t < 0/ Vul dr,
n Rn
which was to be proved.

Step 1. Let us prove (1.44) in the case p =1 (and n > 1) for any v € C} (R") (and,
hence, for any u € D (Q2)). For p =1 (1.44) becomes

n—1
( |u|71 d:c) <C [ |Vu|dz. (1.50)
Rn R"
Since u has a compact support, we have, for any index i = 1, ..., n,

z;
u(x):/ Ot (T1y ooy T 1, Yiy Tig 1y oy Tny) AYi,
—00

which implies

|U(l’)| < / |VU| (xla“in—layhxﬂ-l?”'?xn) dyl (151)
Consider function F' = |Vu| and let us use the following notation: for any sequence

i1, ...,1 of distinct indices, set

Fi i :/R.../RF(m)dxildxiQ...da:ik.

By construction, Fj, ;, is a function of all components x; where j # i1, ..., iy. However,
it will be convenient to consider Fj, ;, as a function of all components of z = (1, ..., ;)

that does not depend on z;,, ..., z;,.



24 CHAPTER 1. WEAK DIRICHLET PROBLEM

Inequality (1.51) can be then rewritten in a short form

u(x)] < Fi(x).

Multiplying all these inequalities for 7 = 1, ..., n and raising to the power ——, we obtain

5 < ﬁFl
i=1

Let us integrate this inequality in x;. Since F} does not depend on 1, we obtain, using
(1.47) with m = n — 1, that

/|u(a:)\"nldx1 < Fl"l/ (HFll) dxy
R R\

n

L AT
S Flnfl H (/R F’Zd.r]_)

=2
S UL O
_ n—1 n—1
=Fy | | Fo.
=2

Now let us integrate the last inequality in . Noticing that Fis does not depend on
x9 and using again (1.47), we obtain

o 1
u(x )|n Udrydry < FlZ 5 / Fr! HFf;_l dxs
R

R? i=3

1

1 T =)
S Flz_l </R Fld[)’}g) H (/R Fh'dl'g)
=3

1=

S U WL O
_ n—1 n—1 n—1
= Fiy Fy ||F12z"

1=3

Integrating the last inequality in w3, noticing that Fjs3 does not depend on x3 and
using (1.47), we obtain

()| 7T doydaadrs < Fiy' / (FlglF;;l HF121> dus
R i=4

1 1
1 n—1 n—1
< Fisg! (/R F12d$3> (/R F12d$3>

nl nl n—1
= Fiy Fiy F23 HF1232'

R3

n 1
n—1
(/ Flzz‘dx:a)
—4 R

i

Continuing further by induction, we obtain that, for any 1 < k < n,

u(z)

RFE

ﬁ n— 1 n— 1
dxy..dxp < F' H F'
i=k+1
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In particular, for £k = n we obtain
. n =
o) < A= ([ vulae) ™
Rn Rn

which proves (1.50) with C' = 1.

Step 2. Let us prove now the Sobolev inequality (1.44) in the case p > 1, also for
any v € C} (R"). For that we will apply (1.50) to the function |u|* with some « > 0.
Observe that, for any a > 1, the function |u|* belongs to C3 (R") because |u|* = f (u)
where the function f (¢) = |¢|* is continuously differentiable in R and

f1(t) = alt|* " sgnt.

It follows that
V |ul* = a|ul*" sgnuVa. (1.52)

Applying (1.50) to the function |u|* and using (1.52), we obtain

n—1

(/ |u|md$> g/ |V\u|°‘|dx:oz/ WVl de. (153)

By the Holder inequality, we have

/ lu|* ! V| de < / lu| 2=t Jdx (/ |Vu|pdx>p. (1.54)
n Rn n

Choose a so that

(a—1)p an

p—1 n-1

Solving this equation in o we obtain

p n _ b
« - - )
p—1 n-—-1 p—1

=P _ P
p-1m-1) p-1
_(n—=1)p

n—p

Note that a > 1 due to the assumption 1 < p < n. For this a we have

an pn

n—1 mn-—p
and we obtain from (1.53)-(1.54)

n—1 p=1

</ |u|qdac> " <a </ |u|qu> ’ < |Vu]pdx>p.
n n ]RTL
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It follows that

n—1_ p—1

(/ |u|qu) C <a ( |Vul? dx) ’ ,
n Rn
n—p 1
(/ |u]qu) <a (/ |Vul? dx) :

Rasing this inequality to the power p, we obtain (1.44) with

O ab — (M)p

n—p

26.10.23 Lecture 6

Now let us prove the Sobolev inequality in the form that was used in the proof of
Theorem 1.3.

Corollary 1.10 Let €2 be an open subset of R". If n > 2 then, for any u € I/Vol’2 (),

/|Vu|2dx20(/ = dac) " (1.55)
Q Q

where ¢ = ¢(n) > 0. Ifn = 2 and Q is bounded then, for any q¢ > 1 and any

u€ Wy (),
1/q
/ \Vul*dz > ¢ (/ |u|*? d$> , (1.56)
0 0

where ¢ = ¢ |79 and ¢y = ¢y (q) > 0.

Proof. Since D () € D (R™), it follows that Wy? (Q)  W,y* (R™). More precisely,
any function from W, (Q) that is extended by 0 outside Q, belongs to W, (R").
Therefore, (1.55) is a particular case of (1.44) with p = 2.

Assume n = 2. By Exercise 12, we have, for any p € [1,2),

Wo () € Wy™(Q).

Hence, for any v € Wy (Q), we can apply the Sobolev inequality (1.44) with any
p € [1,2) and obtain

2—p

2p 2
(/ |u|2=> dx) < C’/ |Vul? dx.
Q Q

By the Holder inequality, we have
%
< / |Vul? > dx)
Q

1—
/]Vu|pdx:/1-|Vu\pdac§ (/l-dac>
Q Q Q
|0 (/ |Vu|2dx) |
Q

(M)



1.4. WEAK DIRICHLET PROBLEM WITH LOWER ORDER TERMS 27

It follows that

2—p

(/ |u|22ppd93) <cl0=" (/ |Vu|2d:v)
Q Q

2

(/ |u|22ppda:) ' g0|9|2£”/|vu\2dx.
Q Q

Let us set ¢ = ﬁ and observe that ¢ can be any number from [1,00) as p is any
number from [1,2). Rewriting the above inequality in the form

1/q
/|Vu|2dx20_1 Qe </ |u|2qu) ,
Q Q

b
2

and

we obtain (1.56). m

1.4.4 Theorem of Lax-Milgram

Let H be a Hilbert space with an inner product [-,:]. The following theorem is a
generalization of the Riesz representation theorem for non-symmetric bilinear forms.

Theorem 1.11 Let B (u,v) be a bilinear form in H. Assume that

1. B is bounded, that is, for some constant C,

|B (u,v)| < Cul| ||v] for all u,v € H.

2. B is coercive, that is, for some constant ¢ > 0,

B (u,u) > c||ul|* for allu e H.

Then, for any bounded linear functional | on H, the equation
B(u,v)=1(v) Yve H (1.57)
has a unique solution uw € H. Moreover, for this solution we have

| < 1] (1.58)

If the bilinear form B (u,v) is symmetric then B(u,v) is an inner product in H
whose norm B(u,u)'/? is comparable with ||u||. It follows that the linear space H with
the inner product B (u,v) is again a Hilbert space, and the solvability of the equation
(1.57) is given by the Riesz representation theorem. The strength of Theorem 1.11 is
that it works for non-symmetric forms B.

Proof. For any fixed u € H, the function v — B (u,v) is a bounded linear functional
on H. Hence, by the Riesz representation theorem, the equation

[z,v] = B (u,v) Yve H
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has a unique solution z € H. Since z depends on u, we obtain a mapping A: H — H,
defined by Au = z. In other words, A is defined by the identity

[Au,v] = B (u,v) Vv € H. (1.59)

Operator A is called the generator of the bilinear form B. Clearly, the equation (1.57)
is equivalent to
[Au,v] =1 (v) Vv e H. (1.60)

Again by Riesz representation theorem, there is w € H such that
[w,v] =1(v) Yve H.

Therefore, in order to solve (1.60) it suffices to find u so that Au = w.

Hence, the question of solving of (1.57) amounts to verifying that A is bijective, so
that the equation Au = w has a solution uv = A~ 1w.

Let us prove that A is bijective in the following few steps.

Step 1. Operator A is linear. Indeed, for any uy,us € H and for all v € H we have
by (1.59)

[A (u1 + u2) ,v] = B (ug + ug,v) = B (u,v) + B (ug,v) = [Auq, v] + [Aug, v],

which implies Au; + Augs = A (u; + uz) . Similarly one shows that A (Au) = AA (u) for
any A € R.
Step 2. Operator A is bounded. Indeed, it follows from (1.59) that, for all u,v € H,

|[Au, v]| < Clull o]
Setting here v = Au, we obtain
[Aul* < C [Jull || Au|

whence [|Au|| < C'||ul|, which proves the claim.
Step 3. Operator A is injective. Indeed, setting v = w in (1.59), we obtain

[Au,u] = B (u,u) > c||ul|*. (1.61)

In particular, Au = 0 implies u = 0, that is, A is injective. Moreover, applying
Cauchy-Schwarz inequality to the left hand side of (1.61), we obtain

FAull Jlull > ¢ llull”

and, hence,
|Au|| > c||ul] Vu € H. (1.62)

Step 4. The image Im A is dense in H. Indeed, if Im A # H then there is a non-zero
vector u in H that is orthogonal to Im A. In particular, [Au,u] = 0, which by (1.61) is
not possible.

Step 5. Operator A is surjective, that is, Im A = H. In the view of Step4, it suffices
to verify that Im A is a closed set. Indeed, let {w;} be a sequence of elements from



1.4. WEAK DIRICHLET PROBLEM WITH LOWER ORDER TERMS 29

Im A that converges to w € H. Let us show that w € Im A. We have w, = Auy, for
some u, € H. It follows from (1.62) that, for all £,/ € N,

[w — wil| = [[A (ux —w)|| = ¢ flur —wll,
which implies that the sequence {uy} is Cauchy. Hence, there exists the limit

w = lim uy.
k—o00

By the boundedness of A we obtain

Au = Jim A= Jim v = u
and, hence, w € Im A.

By Steps 3 and 5, we conclude that A is bijective and, hence, the equation (1.57)
has a unique solution u.

Step 6. Finally, let us prove (1.58). Setting in (1.57) v = u and using the coercive
property of B, we obtain

cllul® < B (u,u) =1 (u) < ||} ull,

whence |Ju]| < ¢t |l]] follows. m

1.4.5 Fredholm’s alternative

Theorem 1.12 Let K be a compact linear operator in a Hilbert space H. Set A =
I + K. If the operator A is injective then A is surjective.

Here [ is the identity operator in H. Recall that K is a compact operator if, for
any bounded sequence {x;} C H, the sequence {Kz;} has a convergent subsequence.
Remark. Theorem 1.12 is a particular case of the following more general statement,
a full Fredholm alternative: if A = I + K where K is a compact operator in a Hilbert
space then

1. dimker A = dim ker A* < o0;

2. Im A = (ker A*)*.

In particular, if A is injective then ker A* = {0} and, hence, Im A = H, that is, A
is surjective.

Remark. In a finite dimensional Euclidean space H, any linear operator A: H — H
has this property: if A is injective then A is surjective, because each of this properties is
equivalent to det A # 0. In infinite dimensional spaces this is not the case for arbitrary
bounded linear operators. For example, let {ej},-, be an orthonormal basis in H, and
define the linear operator A by

Aep = ejyq for all £ > 1.



30 CHAPTER 1. WEAK DIRICHLET PROBLEM

(shift in the basis). Then, for any x = .~ | xe;, we have

oo
Ax = E TReEi1-
k=1

Consequently, if Az = 0 then all z; = 0 and, hence = 0 so that A is injective.
However, A is not surjective as e; ¢ Im A.

30.10.23 Lecture 7

Proof of Theorem 1.12. Assuming that ker A = 0, we will prove that Im A = H.
The proof consists of a few steps.

Step 1. Let us show that if {z;} is a bounded sequence of elements of H and if
the sequence {Az;} converges then {z;} has a convergent subsequence. Indeed, by the
compactness of K, the sequence {Kz;} has a convergent subsequence {Kw;, }. Since
{Ax;, } converges and Ax;, = xz;, + Kz, , it follows that also {z;_ } converges, which
proves the claim.

Step 2. Let us prove that Im A is a closed subspace of H. The image of any linear
operator is always a subspace, so we need to prove that Im A is closed. Let {y;} be a
sequence of elements in Im A such that y; — y € H as i — oo. We need to prove that
y € ImA.

Since y; € Im A, we have y; = Ax; for some x; € H.

Xi

e ® o..2 ee Vi=AX
L]

oy

It suffices to prove that the sequence {z;} has a convergent subsequence. Indeed,
if this is known already, then passing to that subsequence, we can assume that {z;}
converges. Setting x = lim x; we obtain

y = limy; = lim Az, = Az € Im A,

which will finish the proof.

By Step 1, in order to prove that {z;} has a convergent subsequence, it suffices
to prove that {z;} is bounded, because we already know that {Ax;} converges (to
y). Assume that {z;} is unbounded. Passing to a subsequence we can assume that

||i]| — oo. Setting z; = o we have

~ AIZ o Y;

X

= = — 0 as 1 — o0.
[E22 (e

Since the sequence {7;} is bounded and Az; converges, we conclude by Step 1 that
{Z;} has a convergent subsequence. Passing to this subsequence, we can assume that
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{Z;} converges, say, to z € H. Clearly,
2] = Jim [ = 1

and
Az = lim Az; =0,
1—00
that is, z € ker A. Since ker A = 0, we obtain z = 0 which contradicts to ||z| = 1.
Hence, the sequence {x;} is bounded.
Step 3. Consider the sequence {V},-, of subspaces

Vi := Im A,

that is, Viy1 = A (V). In particular, Vo = H and V; = Im A. Clearly, we have
Vi1 C Vi By Step 2, V; is a closed subspace of V. In particular, V; is a Hilbert
space. Since A can be considered as an operator in V;, we conclude by Step 2 that
Vo = A(V7) is a closed subspace of V;. Continuing by induction, we obtain that each
Vi1 is a closed subspace of V.

In this step let us prove that

Virr = Vi for some k£ > 0.
Assume from the contrary that this is not the case, that is,
Vier & Vi forall £ > 0.

Hence, for any k£ > 0, there exists a non-zero vector x, € V) that is orthogonal to
Vi+1; choose it so that ||zx]| = 1. We will bring to contradiction the existence of such
a sequence {}po .-

Xk

Vi

Since the sequence {z;} is bounded, the sequence {Kz;} must have a convergent
subsequence. However, we will show that the sequence { Kx;} cannot have a convergent
subsequence, which will finish the proof. For that, we start with the identity

Assuming that 7 > ¢ and, hence, j > i+ 1, we obtain

Z; + A[L’Z — AZL‘]‘ S ‘/’H-l?
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because z; € V;, Ax; € Viyy and Ax; € V1, and, hence, all these vectors are in V.
Since x; LV, it follows that
x; L (x; + Az; — Azj) .
Hence, by Pythagoras’ Theorem,
1Ka; — Kaj || = all® + || (a5 + Az — Azy)||* > 1.

Consequently, no subsequence of { Kxz;} is a Cauchy sequence, which was to be proved.
Step 4. Finally, let us prove that if A is injective then Im A = H. Let k be the
minimal non-negative integer such that Vi, = Vi. We need to prove that k£ = 0, that
is, V1 = Vp, which is equivalent to Im A = H.
Assume that k£ > 1 and bring this to contradiction. For that consider the following
orthogonal decomposition of Vj_1:

Vit = Vi @ V5,

where V- is the orthogonal complement of Vj in V;_;. Note that the subspace V- is
non-trivial because by the minimality of & we have V} g Vi_1.

7 VieVen

Consider the mapping A : Vi_; — V. Note that
A(Vi) = Vg = Vi

However, A (V,j) lies also in Vj, which implies that some of the points in V}, must
have at least two preimages in V;_1: one in Vj, and another in V1. Hence, the operator
A Vi_1 — Vi is not injective. This contradiction shows that k£ = 0, which finishes the
proof. m

1.4.6 Existence

Consider again an operator

i=1

ij=1
in an open set 2 C R™. As before, we assume that the coefficients a;;, b; are measurable

functions, the second order part > =1 0i (ai;05u) is uniformly elliptic divergence form

operator, and that all functions b; are bounded, that is, there is a constant b such that

> bl <bin Q.
=1
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Theorem 1.13 If Q is bounded and L is the operator (1.63) in € then the Dirichlet
problem

{ Lu = f weakly in Q (1.64)

uwe W,”?(Q)
has a solution u for any f € L*(Q).

Recall that by Theorem 1.3 the Dirichlet problem (1.64) has at most one solution,
which together with Theorem 1.13 implies that (1.64) has exactly one solution.

Proof. Consider the following bilinear form on W,'* (€):
B (u,v) := / Z a;;0;udv dx — / Zbi(@-u)v dx.
2ij=1 "

As we know, the weak equation Lu = f means that

B (u,p) = —/ fedr Yo e Wy (Q). (1.65)
Q
The bilinear form B is bounded because as we have seen in the proof of Lemma 1.1)
(cf. (1.11))
/ Z al-jaju&-'u dx < A ”’LLHW1,2 HUHWl,z
=1
while
| Yo owods| < [ 37101 1Vul ol do < ITuls s < ullyes olhons
i=1 i=1
whence

1B (0, 0)] < A+ 0) fullyrs ol (1.66)
If the form B were coercive, that is, if for all u € W,*(Q)

B (u,u) > clull5. (1.67)

with some positive constant ¢, then we could conclude by the Lax-Milgram theorem
that the equation (1.65) has a solution u € W (Q2), which yields also a solution of
(1.64). However, the form B is not necessarily coercive.

We will use instead another bilinear form

Be (u,v) = B (u,v) + C (u,v) 2

with some positive constant C, and show that B¢ is coercive if C' is large enough.
We start with the following inequality:

B (u,u) = /Q Z a;;0;ud;udr — /Q Z b;(O;u)udx
' i=1

t,j=1

> )\_1/ \Vul|? dz — b/ |Vul|u| de.
0 0
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Note that, for any € > 0,
1
IVl [u] < e |Vul® + gu2,

so that

B(u,u) Z)\_l/ |Vu|2dm—6b/ |Vu|2da:—é/u2da:
Q Q €Ja

:c/ |Vu|2dx—é/u2drc,
Q € Ja
where ¢ = A1 — be.

Choosing e small enough, say ¢ = %b‘l)\_l, we can ensure that ¢ > 0. It follows

that
2 2 b 2
B(u,u)Zc(/ |Vu| d:c+/uda:)—(—+c)/udm
Q Q € Q

> cllulfiyrz = C ullze

where C' = g +c.
Rewrite this inequality as follows:

B(u,u) + Clullz2 > ellullye,

that is, )
Be(u,u) = clullye

which means that the bilinear form B is coercive. Since B is bounded, the form Bg
is also bounded.
Hence, let us consider instead of (1.65) an auxiliary problem:

Be(u, ) = — /Q fodr Yo € Wy (Q). (1.68)

By the Lax-Milgram theorem, the equation (1.68) has a unique solution u € Wy* ().
Moreover, for this solution we have

lullyre < e fllge (1.69)

because the norm of the functional {(¢) = [, fe in W, (Q) is bounded by || f]| -
Denote by R the resolvent operator of (1.68), that is, the operator

R:L*(Q) — Wi (Q)
Rf =u,

where u is the unique solution of (1.68). Obviously, R is a linear operator. Moreover,
R is a bounded operator because by (1.69)

IRf s < e 1Nl pe
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Now let us come back to the equation (1.65) and add C (u, ¢);» to the both sides.
We obtain an equivalent equation

Be (u,¢) = — / fodi +C (u,0)s,

that is,
Beug) == [ (= Cu)pds Vo€ W32 (). (1.70)
Q
By the definition of the resolvent R, the equation (1.70) is equivalent to
u=R(f—Cu)

that is, to the equation
u+ CRu = Rf. (1.71)

Define the operator K : L? — L? as composition of the following operators

i

L2 (Q) L wi?() S L2 Q)

where ¢ is the identical inclusion; that is,
K =io(CR).

By the Compact Embedding Theorem, the operator ¢ is compact. Since C'R is bounded,
we obtain that K is a compact operator. Let us rewrite (1.71) in the form

(I+K)u=Rf. (1.72)

We consider this equation in the Hilbert space L? (€2), that is, the unknown function
u is assumed to be in L% (Q).
Claim. Solving (1.72) for u € L (Q) is equivalent to solving (1.71) for u € W, (Q).

Indeed, the direction (1.71)=(1.72) is trivial because if u € Wy (Q) then u €
L? (). For the opposite direction observe that if u € L? (2) solves (1.72) then

u=Rf - Ku=Rf—CRueW,*(Q)

by definition of the operator R.

Hence, it suffices to prove that the equation (1.72) has a solution u € L? (Q) for
any f € L?(Q). For that, it suffices to prove that I + K is surjective. By Fredholm’s
alternative, it suffices to prove that the operator I+ K is injective, that is, the equation

[+ K)u=0

has the only solution u = 0. If u € L? () satisfies this equation then u satisfies also
(1.71), (1.70), (1.65) and (1.64) with f = 0, that is,

Lu = 0 weakly in €2,
we Wy (Q).

By Theorem 1.3 this problem has the only solution u = 0, which finishes the proof. m
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1.5 Estimate of L°°-norm of a solution

In this section we use the oo-norm of a measurable function f in an open subset €2 of
R™:
[f]l oo := esssup | f].
Q
The space L™ (§2) consists of all measurable functions f on Q with ||f||; . < oco. It is

possible to prove that L is a linear space, |||/« is a norm in L* (Q2), and L* () is
a Banach space. The following extension of the Holder inequality is obviously true:

/Q gl de < 1l N9l -

The Sobolev spaces W (Q) are now defined by (1.5) also for p = co, as well as the
spaces WP (Q) (cf. (1.6)).

loc

1.5.1 Operator without lower order terms
Theorem 1.14 Let Q) be a bounded domain in R™ and let
Lu= Z 81 (aijaju)
ij=1

be a divergence form uniformly elliptic operator in ) with measurable coefficients. If u
solves the Dirichlet problem

Lu = —f weakly in )
{ ue Wy?(Q) (1.73)
where f € L* (), then
lll oo < C LA™ | f1] e (1.74)

where C'= C'(n, \) and X is the ellipticity constant of L.

Remark. In the proof we use the following Faber-Krahn inequality: if u € VVO1 2 ()
and

U={zeQ:u(z)#0}
then
/|Vu|2dxzc|U|2/n/u2dx, (1.75)
0 0

where ¢ = ¢(n) > 0. This inequality is proved in Exercise 11 in the case n > 2 and in
Exercise 13 in the case n = 2. In fact, it is valid also in the case n = 1. Indeed, in
this case any function from VVOl 2 ig continuous, the set U is open and, hence, consists
of disjoint union of open intervals, say U = L;I;. In each interval I;, the function u
vanishes at the endpoints, which implies by Friedrichs’ inequality that

/ \Vu|* dz > |[j|2/ u? dx > |U|2/ u? d.
I I I

J J J
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Summing up in all j, we obtain (1.75) with n = 1 and ¢ = 1.

Remark. Denote by A; (2) the first (smallest) eigenvalue of the weak eigenvalue prob-
lem in 2

Av+ v =0in
ve W, (Q)

By the Rayleigh principle, we have

Vul*d
MO = me delVuld
wewlr@\foy o uld

Since |U| < |Q], it follows from (1.75) that
A (Q) > c|Q /™. (1.76)

This inequality is related to the following Faber-Krahn theorem: if * denotes a ball
of the same volume as €2 then

A(Q) > A (). (1.77)

In other words, among all domains with the same volume, the minimal value of \; is
achieved on balls. This is related to isoperimetric property of balls: among all domains
with the same volume, the minimal boundary area is achieved on balls.

Observe that if Q* = B then

Cl

)\1 (Q*) = )\1 (BR) = ﬁ

where ¢ = ¢ (n) > 0. Since |Bg| = ¢”R", we obtain
M (@) = |7,
which implies by (1.77) and |Q2*| = |€2| that
A (Q) > c|Q /" (1.78)

Of course, this looks the same as (1.76), except for the constant ¢ in (1.78) is sharp

and is achieved on balls, whereas the constant ¢ in (1.76) was some positive constant.

However, for our applications we do not need a sharp constant c.

Proof of Theorem 1.14. If || f||;. = oo then (1.74) is trivially satisfied. If || f|| ;0 =

0 then by Theorem 1.2 we have u = 0 and (1.74) holds. Let now 0 < ||f|;~ < oo.

Dividing v and f by || f]| «, we can assume without loss of generality that || f]|; = 1.
Fix a > 0 and consider the function

v:(u—a)+EW01’2(Q)

(cf. Lemma 1.4). Since the equation Lu = —f holds weakly, we have the identity

/Zaijﬁju@vdx:/fvdx. (1.79)
Q; Q

,j=1
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Let us show that J;u here can be replaced by d;v. Indeed, by Lemma 1.4, we have

[ Vu ae.on {u>a}={v>0},
VU_{O a.e.on {u <a}={v=0}.

It follows that, for all i, =1,...,n,
Ojudv = 0;v0;v a.e. in €, (1.80)

because, on the set {v = 0} we have J;v = 0 a.e. so that the both sides of (1.80) vanish,
while on {v > 0} we have 0;u = 0;v a.e..

Let us estimate the left hand side of (1.79) from below. Using (1.80) and the
uniform ellipticity of L, we obtain

/ Z a;j0;ud;v de = / Z a;;0;v0;v dx > )\_1/ Vol da. (1.81)
Q- Q- Q

2,7=1 i,j=1

To estimate further the right hand side of (1.81) from below, consider the set

Uy :={u>a}={v#0},

and apply the Faber-Krahn inequality (1.75) to the function v:
)\_1/ \Vo|* dz > )\_10|Ua|2/”/02 dz, (1.82)
Q Q

where ¢ = ¢(n) > 0. Combining (1.79), (1.81) and (1.82), we obtain

c/\_1|Ua|_2/n/v2dx§/fvdx.
Q Q

Next, let us estimate the right hand side here from above using that ||f]|,~ = 1 and
the Cauchy-Schwarz inequality:

1/2
/fvda: < / vdx :/ 1-vdz < |Uy|"? (/ Uzda:) . (1.83)
Q Q o Q

It follows that ”
et |Ua|_2/n/ v dx < |Uy|"? </ v2dx>
Q Q

1/2
(/ vzdx) <c A |Ua|1/2+2/".
Q

Let us rewrite this inequality in the form

and, hence,

/Q(u ~a)l de < K U (1.84)

where K = (¢*A\)? and p = 1 + 4/n. It is important for what follows that p > 1.
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Claim. Assume that a measurable function u in € satisfies for any o > 0 the inequality
(1.84) with some K and p > 1. Then

esssupu < C' |Q|% , (1.85)
0

where C = C (K, p).

In particular, if as above w is a solution of (1.73) with || f|| ;- = 1 then (1.84) holds
with p = 1+ 4/n. Since Z1 = 2, we obtain by (1.85)

esssupu < C |Q|% :
Q

Since the same argument applies to —u, we obtain
e < C1Q7",

which coincides with (1.74) when ||f||;« = 1. The constant C here depends on K and
p, that is, on A and n.
Now let us prove the above Claim. For any # > « consider the set Ug = {u > (}.

Rn

Since u — o > 3 — « on Ug, we obtain

/ (u—a)id:v > / (u—a)id:v > (B — )’ |Us|,
Q Ug
which together with (1.84) implies

(B —a)*|Us| < K|Ual",

and, hence,

K
Us| < manV’. (1.86)

Fix some a > 0 (to be specified below) and consider a sequence {oy}r-, where

ak:a(2—2’k).

This sequence is increasing, ayg = « and oy, — 2« as k — o0.
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Set
my = |[{u > ay}

and observe that by (1.86)

K p
my < 5y _q-
(g — ag-1)
Since oy — a1 = a27%, it follows that
my < K0724km£_1 = ZlkAmi_1 (1.87)

where A = Ka™2.

We would like to make sure that my — 0 as k — oco. Indeed, if this is already
known then we argue as follows. Since «a; " 2a as k — oo, the sequence of sets
{u > ay} is shrinking in k& and

]ﬁ {u>ap} ={u>2a}.
=0
It follows that
[{u>20}] = lim [{u > ag}| = lim m; =0
and, hence, u < 2« a.e., that is,
esssup u < 2a. (1.88)
In order to prove that my — 0, let us first iterate inequality (1.87):
my, < 4"”Am£_1
<4FA (41 Aam? )"
_ 4k+p(k—1)A1+pmzi2

2
< 4k+p(k—1)A1+p (4k_2AmZ_3)p

_ 2(L._ 2 3
— gFtp(k=1)+p*(k=2) gl+p+p mi,g

o G e L e o A (1.89)

Next, let us use the identity

2 e P11
l+p+p°+..+p :p_l (1.90)
and the following inequality?
prH
E4+pk—1)4+p*(k—=2)+..+p 1< (1.91)

2In fact, the following identity takes place:

w1 PPt —(k+1)p+k

k+pk—1)+p2(k—2)+..+p —
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Indeed, dividing (1.90) by p* we obtain
1
p—1 pk(p—1)

which after differentiation in p and changing the sign yields

pFpp D p =

1 1 !
kp~® ) L (k=D p P+ . +p 2= +( ) .
(k=1) v—1” T \F oD

Observing that the function # is decreasing on {p > 1} so that its derivative is

p—1)
negative, and multiplying the resulting inequality by p**!, we obtain (1.91). Alterna-
tively, (1.91) can be easily proved by induction.

Hence, we obtain from (1.89) that

k+1 k

L pi-1 k P _ 1 A
my < 4e-0* AT mlb = [4<P—1>2Apflm0 A7r T, (1.92)

Since mg < ||, in order to achieve that m; — 0, it suffices by (1.92) to have the
inequality
p

407 ArT Q| < 1,
that is,

P 1 2

4e-12 K1 p1 |Q| < 1.

We can ensure this inequality by choosing « to satisfy, for example, the following

equation:

4(prl>2 Kﬁa_p%l ’Q| = %

that is,

p—1

o= (2 4T K |Q|)T — 0,

where C] depends on K and p. As we have already seen, for this value of a we have
(1.88), that is,

esssupu < 2a = 204 |Q|% , (1.93)
which finishes the proof of (1.85) with C'=2C,. =

Remark. Theorem 1.14 provides a non-trivial estimate even in the case L = A. Con-
sider the following weak Dirichlet problem:
{ Au=—11in Q

u =0 on Of. (1.94)

We know that the solution u(x) is a smooth function in €. In fact, it has the following
probabilistic meaning: if x € Q is the starting point of Brownian motion {X;} in R"
then u(x) is the mean exit time from €. In other words, if we define the first exist time
Tq from 2 by

To=1inf{t >0: X, ¢ Q},

then
u(z) = E,7q. (1.95)
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Q

More generally, the Dirichlet problem

Au=—fin Q
uw =0 on 0f)

has solution "
u(z) = Em/ f(Xy)dt,
0

which implies (1.95) for f = 1.
Let u be the solution of (1.94). Then by Theorem 1.14 we have

supu < C Q"
v

that is, the mean exit time from € is bounded from above by C |Q|2/ ", In particular,
if 2 = Bg then || = ¢, R™ and we obtain the estimate

Sup u < C'R%. (1.96)
R

Note that the classical Dirichlet problem

Au = —1 in By
u=>0 on 0Bp

has an obvious solution

R? — |zf’
on

u(z) = (1.97)

The graph of function (1.97), case n = 2
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In particular, we see that

R2
supu = u (0) = —,
BE (> 2n

which shows that the estimate (1.96) is optimal up to the value of the constant.

Let us emphasize the following probabilistic meanlng of the latter 1dent1ty the
mean exit time from the center of the ball is equal to £, that is, Eo7p, = I;“n

In particular, the mean exit time is not proportlonal to R as it would be in the
case of a constant outward speed, but to R?, which means that, in long term, the
propagation of diffusion is very slow in comparison with a constant speed movement.
This happens because Brownian particle does not go away in radial direction but spends
a lot of time for moving also in angular directions. For example, an observer staying
at the origin and watching in the direction of the particle, will have to turn around all
the times in order to keep the particle in the view.

1.5.2 Operator with lower order terms

Now we state and prove a more general version of Theorem 1.14. Consider in {2 a more
general operator

Lu—za (a;;0;u) —i—Zb@u (1.98)
i,j=1

where the coefficients a;; and b; are measurable functions, the matrix (a;;) is uniformly
elliptic with the ellipticity constant A, and all b; are bounded, that is, there is a constant
b > 0 such that

D bl <b in Q. (1.99)
=1

Definition. Given functions u € W' (Q) and g € L2, (Q), we say that the inequality

loc

Lu > g is satisfied weakly in € if, for any non-negative function ¢ € D (),

/Zazjﬁuachdx+/2baugpdx>/ggpdm (1.100)

i,j=1
Similarly one defines the meaning of Lu < g.
Claim. Ifu € W2 (Q) and g € L*(Q) then the test function @ in (1.100) can be any
. , 1,2
non-negative function from Wy~ ()
Recall that a similar result for the equality Lu = g was proved in Lemma 1.1. For

the inequality Lu > g the proof is more difficult — see Exercise 27.

Theorem 1.15 Let Q2 be a bounded domain in R™ and let L be the operator (1.98).
Assume

Q] < 6, (1.101)
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where § = ¢, (Ab)™" with some ¢, > 0. If u € W12(Q) and f € L*(Q) satisfy

Lu > —f weakly in €2,
{ e € W2 (Q). (1.102)
then, for any q € [2,00] N (n/2, 00|, the following estimate holds:
esssupu < C' \Q\%_% | fll o (1.103)
Q

with a constant C = C (n, A, q) .

Remark. Theorem 1.15 extends Theorem 1.14 in four ways:

e we allow in operator L the lower order terms;
e we allow inequality Lu > —f instead of equality;
e we allows a weaker boundary condition uy € W, (Q2) instead of u € Wy* (Q);

e the main estimate in given in terms of ||f;||;, instead of ||f|;~, where ¢ in
particular can be oo.

Let us explain how to deduce Theorem 1.14 from Theorem 1.15. Indeed, if all ; = 0
and, hence, b = 0 then § = oo and the restriction (1.101) on || is void. Assuming that

Pt v
and applying (1.103) with ¢ = 0o, we obtain
esssupu < CIQI [ fill o < C 1207 [ (1.105)
Applying this inequality to function —u, we obtain
esssup (—u) < ¢ QL 1 oe
whence it follows that
esssup [u| < C1Q" £l (1.106)

which is equivalent to the estimate (1.74) of Theorem 1.14.

Remark. Theorem 1.15 implies also the uniqueness result of Theorem 1.3 because if
(1.104) holds with f = 0 then by (1.106) w = 0. Note that Theorem 1.3 does not follow
from Theorem 1.14 because in the proof of the latter we used Theorem 1.3, whereas in
the proof of Theorem 1.15 the uniqueness result of Theorem 1.3 will not be used.

Remark. Applying Theorem 1.15 with f = 0, we obtain the following weak maximum
principle:

if Lu > 0 weakly in Q and u, € W, (Q) and then u <0 a.e. in Q.
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The condition uy € VVO1 2(Q) can be regarded as a weak version of the boundary
condition “u, = 0 on 027, that is, a weak version of “u < 0 on 0Q)”.
Observe that if a;; € C* (Q) and u € C?(Q) N C(Q) then Lu can be considered in the
classical sense, and the maximum principle of Exercise 1 implies that

if Lu>0in Q and v < 0 in 092 then u <0 in .

09.11.23 Lecture 10

Proof of Theorem 1.15. Since f can be replaced in (1.102) by f,, we can rename
f+ in f and assume without loss of generality that f > 0. If || f]|;, = oo then there is
nothing to prove. If 0 < ||f]|;, < oo then dividing f and w by || f]|;,, We can assume
that || f||,, = 1. Finally, the case ||f||,, = 0 amounts to the previous case as follows.
Indeed, if Lu > 0 then also Lu > —¢ for any € > 0. Applying (1.103) with f = ¢, we
obtain . .
esssupu < C'[Q» "« [le]| , -
Q

Letting € — 0 we obtain esssupg u < 0, that is (1.103) with f = 0.
Hence, we assume in what follows that f > 0 and ||f||;, = 1. As in the proof of
Theorem 1.14, we will prove that, for any a > 0

/Q(u— oz)i dr < K |U,[*

where U, = {u > a}, K, p are positive constants, and p > 1.
Fix some o > 0 and consider a function

vi=(u—a), =(up —a), .

Clearly, v > 0 and, by Lemma 1.4, v € W,* (Q) because u, € W, (Q). Using v as a
test function in the inequality Lu > —f | we obtain

—/ Z a;;0;u0;v dx + / Zbi&-uvdm > —/ fudex,
Q45=1 Q=1 @
that we rewrite as follows:
/ Z a;;0;udiv dx < / Zbiaiuvdx +/ fudz. (1.107)
Q=1 Q= Q

We estimate the left hand side of (1.107) from below similarly to (1.81). In order to
express d;u via d;v we use Exercise 15 that says the following: if w € W, (Q) then
also wy € W22 (Q) and

[ Vw ae.on {w>0},
Vw+_{ 0 ae. on {w<0}.
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Since u € W2 (Q) and, hence, also u — a € W12 (Q), we can apply this identity to
w = u — « and obtain

B [ V(u—a)=Vu ae on {u—a>0}={v>0},
VU—V(u—a)+—{O a.e.on {u—a<0}={v=0}.

Note that if u € W, *(Q) then this identity is true also by Lemma 1.4. It follows that,

forall 4,7 =1,...,n,
O;u 0w = 0;v0v a.e. in (1.

Indeed, on the set {v = 0} we have 9;v = 0 a.e., while on the set {v > 0} we have
0;v = O;ju a.e..

Hence, we obtain

/ Z a;;0judiv dr = / Z a;;0;v0;v dx > )\_1/ IVol|® dz. (1.108)
Q; Q Q

,j=1 ,j=1

Now let us estimate from above the first term in the right hand side of (1.107). By the
above argument, we have also

O;uv = 0;vv a.e. in €.

Substituting into in the right hand side of (1.107), using |0;v| < |Vv| and (1.99), we
obtain . .
/ Zbiﬁiuvdx = / Zbiﬁivvda: < b/ |Vou| vdz.
Qo1 Q=1 Q

Applying further the inequality

1 2 1o

XY <= (ex?+-v?),

2 €
that holds for all X,Y > 0 and € > 0, we obtain

1 1

Voo < = (8 IVol” + —U2>
2 €

and, hence,

o 1
/ Zbi@uvd:p < é/ (5 IVol* + —1)2> dx. (1.109)
Qi 2 Ja €

It follows from (1.107), (1.108) and (1.109) that
-1 2 be 2 b 2
A \Vo["de < — [ |[Vu|"de + — [ v*de+ [ fodz.
Q 2 Jo 2e Jo Q
Let us choose ¢ to satisfy the condition be = A™', that is,

€:E.
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Then we obtain

1 2
)\_1/ |Vol? dz < —)\_1/ |Vv|2dx+&/v2dx—l—/fvdx,
Q 2 Q 2 Ja Q

/|Vv]2dyc < )\262/v2dx+2)\/fvd:c. (1.110)
Q Q Q

By the Faber-Krahn inequality (1.75) we have
/ Vol dz > c]Ua|_2/"/ v? dx
0 0
because {v # 0} = U, (note that ¢ = ¢(n) > 0). Substituting into (1.110), we obtain

Can|_2/n/U2d.T < >\262/02dx+2)\/fvdx. (1.111)
Q Q Q

We would like to have here

whence

UL 2™ > 2222, (1.112)
Since |U,| < |€], it suffices to have

Q7" > 2222,

c n/2
Q< | ==
< (2>\2b2> ’

which in turn is equivalent to (1.101) with

which is equivalent to

n/2
c -n

Hence, with this choice of §, (1.112) follows from the hypothesis (1.101). Using (1.112),
we obtain from (1.111) that

1
—c|Ua|2/"/02d$§ 2)\/fvd:r. (1.114)
2 Q Q

Applying in the right hand side the Holder inequality with the Holder exponents ¢ and

q = q%l and uSinngHLq = 1, we obtain

) 1/¢
/ fode < |11l ol e = ( / v daz)
Q Q

(note that if ¢ = oo then ¢’ = 1). Since ¢ > 2 and, hence, ¢’ < 2, applying the Holder

inequality with one of the Holder exponents % > 1, we obtain

~

q 'l
2

! ! /% 7 1_
/qux:/ vq-ldx§</ (vq>qu) (/ 1dm)
Q @ o a
= (/ v2dx> Ua| ™7 .
Q
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/fvdx<(/ 2dx) U7

Combining with (1.114), we obtain

1
1
—c|Ua|—3/u2dx <9\ (/ v2da:) U, |7
2 Q Q

It follows that

\\H

1
2

_1

\\H
l\J

whence )
2 2 1 1
(/ v2dx) < 40_1)\|Ua]5 a2
Q
and
/v2d:v < (47N UL 77 (1.115)
Q
Set
4 2
pP=— + - = 1
n q

and observe that p > 1 because ¢ > % and, hence,
4 1 4 2

p—1:—+2(1——>—2:———>0.

n q

Let us rewrite (1.115) in the form
/Q(u— a)idx < K|U,|",

where p > 1 and K = (4¢~'A)>. This inequality coincides with the inequality (1.84)
from the proof of Theorem 1.14. Using the Claim from the proof of Theorem 1.14, we
obtain (1.85), that is,

esssupu < C' \Q\Lgl =C ]Q|%_% ,
Q
where C' = C (K, p) = C (n, A, q), which finishes the proof of (1.103). m

Remark. If n < 3 then the condition ¢ € [2, 00] N (%, 00] is satisfied for ¢ = 2. Hence,
the estimate (1.103) holds with ¢ = 2. Consequently, the solution to the Dirichlet
problem
Lu = f weakly in €2
ot i

with any f € L?(Q) satisfies the estimate
2 1
[ull oo < T2 I £l 2

in particular, u is essentially bounded. In dimensions n > 4 there may exist unbounded
solutions u with f € L?(Q).
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Remark. Let us discuss the restriction Q)] < § that appears in the statement of
Theorem 1.15. Consider the operator

i=1

in a bounded domain 2 C R™ and the Dirichlet problem

Lu=—11in Q
{ w e W), (1.116)
The estimate (1.103) of Theorem 1.15 yields, for ¢ = oo, that
u(z) < C1QY" in Q, (1.117)

provided |€2| < §. The function u(x) has the following probabilistic meaning. Operator
L is the generator of a diffusion process {X;} with a drift b = (b1, ..., b,). In the case
? = 0 this is Brownian motion, but in the case of non-zero ? one can think of this
diffusion process as Brownian motion under the wind with velocity ?(a:) The function
u(x) that solves (1.116) gives the mean exit time of this diffusion from 2 assuming that
the starting point is . The estimate (1.117) provides an upper bound for the mean

exit time, saying that the exit on average occurs before time C' |Q|2/ "

3

é
The inward drift b

However, if the drift ?(m) is directed inwards the domain €, then one can imagine
that the wind prevents the particle to escape from the domain, which may result in
a longer exit time. As Theorem 1.15 says, this cannot happen if |2 is small enough,
but, as we will see in example below, a longer exit time can actually occur if || is
large enough (as for large domains/times the effect of drift becomes dominating over
diffusion).

Example. Consider the case n = 1 with Q = (=R, R) and

Lu=4"+ W/,
where
1, x<0,
b(x)=—sgnx=4¢ 0, =0,

-1, z>0.
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Let us solve explicitly the Dirichlet problem

Lu= -1 in (—R,R)
{ w(—R) = u(R) =0 (1.118)
It suffices to solve the problem
Lu= -1 in (0,R)
{ W (0) = u(R) = 0 (1.119)

and then extend u evenly to (—R, 0), that is, by setting u (—x) = u(x). Since u satisfies
in (0, R) the equation
u' = =1, (1.120)

in (—R,0) it will satisty
u +u = —1.

Due to the the boundary condition u'(0) = 0, the function u is a weak solution of
Lu=—1on (—R,R).
The ODE (1.120) has the general solution®
u(x) = c1 + ce” + .

The boundary conditions u’ (0) = u (R) = 0 give the following equations for ¢; and c,:

CQ—|—1:0
ci+cee+R=0

whence ¢ = —1 and ¢; = e — R. Hence, (1.119) has solution

u(z) = (e" = R) — (¢" — x).

-l=.2 -I',U -(:8 -(:.6 -0‘,4 -(;.2 0.0 0?2 0?4 0?6 0?8 ITU )I(b
Solution of (1.118) for R =1

In particular, we have

maxu =u(0) =e® — R —1.

We see that for small R
R2

maxu & -, (1.121)

3Indeed, the homogeneous equation u” — ' = 0 has two independent solutions u; = 1 and uy = €,
so that its general solution is c¢; + coe®, while the equation u” —u’ = —1 has a special solution ug = .
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while for large R
max u ~ e’ (1.122)

Note that the estimate (1.103) with ¢ = oo gives in this case
maxu = ||[ul . < CR?, (1.123)

provided [Q] < ¢, that is, when R is small enough. The estimate (1.123) agrees
with (1.121), but (1.122) shows that (1.123) fails for large R. Hence, in general, the
restriction |Q2| < ¢ cannot be dropped.
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Chapter 2

Higher order derivatives of weak
solutions

13.11.23 Lecture 11

Recall the following property of the distributional Laplace operator in a domain of R":
if u € W2 and Au € L3, then u € W22, Moreover, if Au € W, then u € WS, In
this Chapter we prove the same property for divergence form elliptic operators. The
technique of Fourier series that worked for the Laplace operator, does not work for
the operator with variable coefficients, so we use entirely different techniques based on

difference operators.

2.1 Existence of 2nd order weak derivatives

Consider the operator
ij=1

in a domain 2 C R”. As before, we assume that this operator is uniformly elliptic and
the coefficients a;; are measurable.

Recall that if u € W,2% (Q) and f € L2, () then we say that the equation Lu = f
holds weakly if, for any ¢ € D (Q),

—/ Zaij(‘?ju@gpdm:/ﬂpdw. (2.2)
Q; Q

1,j=1

Recall also that if in addition v € W2 (Q) and f € L? (Q) then the identity (2.2) holds
also for all ¢ € W, ? (Q) (cf. Lemma 1.1).

Claim. For any u € Wo* () (and even for u € W21 (Q)) the expression Lu in (2.1)
is well-defined in the distributional sense. The identity (2.2) for all ¢ € D(Q) is
equivalent to the fact that Lu = f holds in the distributional sense.

53
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Note that, for a general distribution u € D’ (Q2) the expression Lu is not well-defined
because the product a;;0;u of a measurable function a;; and a distribution d;u does

not makes sense in generall.

Proof. The function d;u belongs to L, () and, since a;; are bounded, the function

a;;0;u belongs also to L7, (), in particular, to D’ (Q2). Hence, 0; (a;;0;u) is defined as
an element of D’ (§2), where 0; is understood in distributional sense. Consequently, Lu
is defined as an element of D’ (2).

By definition of distributional derivative, we have, for any ¢ € D (),

(LU, QD) = Z ((91 (aijaju) ,(p) = — Z (aijaju, &ga) = — Z /Qal-jaju&-ga dz.
1,7=1 3,7=1 1,7=1

Hence, the identity (2.2) becomes

(Lu,p) = (f,¢) Vo eD(),

which is equivalent to Lu = f.
For u € W,.! () the proof is the same because L?,, can be replaced everywhere by
]

L}OC'
Hence, from now on we understand the expression Lu as an element of D’ (2) for
any u € VVlt,Cz
Denote by W12 (2) the set of functions from W2 (Q) with compact support in €.
By Exercise 8 we have

W2 (Q) € W™ (9).

Claim. Ifu € W)?(Q), f € L2_(Q) then Lu = f holds if and only if the identity (2.2)

loc loc

holds for all p € W12 (Q).

Proof. Fix a function ¢ € W2 (Q) and let U be a precompact open set such that
suppp C U and U C Q. Clearly, the integration in (2.2) can be restricted to U. Since
ue W2 (U), fe L*(U) and ¢ € Wy* (U), we conclude that (2.2) holds by Lemma
1.1. =

Now we can state the first main result of this Chapter.

Theorem 2.1 Let L be the operator (2.1) and assume that all the coefficients a;;
of L are locally Lipschitz functions in Q. If u € W22 (Q) and Lu € L}, (Q) then
u € Wil ().

The notion of Lipschitz functions is explained below.

Remark. Assuming that u € VVZQOC2 and using formally a product rule for 9;, we have

Lu= Z al-j(?iju + Z &;aijﬁju.
.3 .3

LA product av of a distribution v € D’ (Q) and a function a on Q makes sense only if a € C°° (Q2).
In this case av is defined as an element of D’ (2) as follows:

(av,p) = (v,ap) Ve €D(Q),

which makes sense because ap € D ().
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Here 0;;u € L}, and, hence, also a;;0;u € L} If Lu € L} then one can expect

that also 0;a;;0;u € L? . Since dju € L? | we expect that Oia;; € LS. As we will

loc* loc?
see below, this conditions is satisfied when the coefficients a;; are locally Lipschitz

, o 2,2
functions. Hence, the latter condition is to some extend necessary for v € W,

2.1.1 Lipschitz functions

Definition. Let S be a subset of R™. A function f : S — R is called Lipschitz (or
Lipschitz continuous) if there is a constant L such that

|f(x)— fly)| < Llxr—y| Vzr,yeSs.
The constant L is called a Lipschitz constant of f on S.

The set of all Lipschitz functions on S is denoted by Lip (.5).

Definition. Let €2 be an open subset of R”. A function f : 2 — R is called locally
Lipschitz if, for any point = € 2, there is € > 0 such that B.(z) C ©Q and f is Lipschitz
in B.(x).

The set of all locally Lipschitz functions in €2 is denoted by Lip,. (2) . Let us list
some simple properties of locally Lipschitz functions (see Exercises 35, 36 for the
proof).

1. Any locally Lipschitz function in €2 is continuous in €.

2. If f,g are locally Lipschitz functions in €2 then f + ¢ and fg are also locally
Lipschitz in Q2. Consequently, Lip,. (2) is a vector space and even an subalgebra
of C' (92).

3. Any functions from C' (Q) is locally Lipschitz in Q. Consequently, we have?
C' () C Lipi. () C C(Q). (2.3)
It follows that Theorem 2.1 holds if all the coefficients a;; belong to C* ().

4. If f € Lipie () then f € Lip (K) on any compact subset K of €.

2.1.2 Difference operators

For the proof of Theorem 2.1 we need the notion and properties of difference operators.
Fix a unit vector e € R", a non-zero real number h and denote by 9" an operator that
acts on any function f: R"™ — R by

sy = LT =)

that is,
f(+he)—f
. .

2Both inclusions in (2.3) are strict. For example, function |z| in R is Lipschitz but not C*, whereas

Nf=

function \x|1/ ? is continuous but not locally Lipschitz.
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Obliviously, if f is differentiable at some z then

O f(x) — O.f(x) as h — 0.

Claim. If f € C2 (R") then

O'f =0.f ash—0

Proof. By the Taylor formula for the function v (t) = f (x + te) we have

U () = (0) + 0 (0) 0 (€) I

for some £ between 0 and ¢. Since

n

() =2 0if (w+te)e; = Of (x + te)

=1

and similarly ¢" = 0..f (z + te), we obtain

f(x+he)=f(x)+0.f(x)h + %&gef (z -+ &h) B2,

whence

1
sup|8£f—8ef’ < §sup|8eef|h—>0ash—>0.

Our purpose is to use the differences 9" f in order to make conclusions about the
distributional derivative 0. f provided f € L* (R").

Note that if f belongs to a function space F that is translation invariant®, then
also 0" f € F. All function spaces over R” that we use: LP, L. Wk? WP WP etc.,
are translation invariant.

Clearly, the operator 9" is linear. In the next lemma we state and prove some
simple properties of difference operators.

Lemma 2.2 (Properties of the difference operators)
(a) Product rule: for arbitrary functions f,g on R™ we have

0 (fg) = f (- +he) g+ (92 f) g. (2.4)
(b) Integration by parts: if f,g € L* (R") then

/n (01f) gdx = —/n f(8:"g) da. (2.5)

(¢) Commutation with 9;: If f € L. (R™) and the distributional derivative 0;f belongs
to L. (R™) then

loc

O (0:f)=0; (91f).

3A space F of functions on R™ is translation invariant if f € F implies that also f (- +v) € F for
any vector v € R".
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Proof. (a) We have

01 (£9) () = 7 (f (2 + he) g (2 + he) — f(x)g(x)
= (o4 he) (g (o + he) — 9(a)

b (o he) = £()) (o)
= [ (x + he) O g(x) + O f(w)g(x),

which is equivalent to (2.4).

(b) Since all functions f,0"f,g,0-"g are in L? the both integrals in (2.5) are
convergent. We have

[ @ngas=5 [ e+ ne) = s@)gla)ds

— % o [ (xz+ he) g(x)dx — %/R" f(z)g(x)dx (change x + he — )

- % 5 f(x)g (x — he) dz — %/ f(@)g(x) da
= | @) gla)de.
() We have
0, (01 f) = o (z + hz) — f(z)
_ % (0:f (x + he) — 0, f(x))

= 8? (@f)-

In the next lemma we prove an important test for 9, f € L?.
Lemma 2.3 If f € L? (R") and there is a constant K such that
e 1] 2 = K

for some unit vector e and all small enough |h|, then
(a) the distributional derivative O.f belongs to L* (R");
() 10 [l > < K

(c) Ohf — Dof as h — 0 where — means the weak convergence in L? (R™).

Recall that a sequence {uy} of elements of a Hilbert space H converges weakly to
uec Hit

(ug,v) — (u,v) Yv e H.

The weak convergence is denoted by up — u, and it is generally weaker that the strong
(norm) convergence uy — u.
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Proof. (a) Take any sequence {hy} of non-zero reals that converges to 0. The sequence
{82’“ f } is bounded in L? by hypothesis. We use the fact that any norm-bounded
sequence in a Hilbert space contains a weakly convergent subsequence. Hence, passing
to a subsequence, we can assume that the sequence {82”“ f} converges weakly in L? to
some function g € L?:

oef—g ask — oo. (2.6)

By the definition of the weak convergence, we have, for any ¢ € L? (R"),

(0% f,0) = (g,9) as k — oo, (2.7)

where (-, -) is the inner product in L? (R™). Let us show that 9. f = g, which will settle
the claim. Recall that the distributional derivative 0, f is defined by

(aef: @) = (f7 8690) V(p c D(Rn)>

where (-, ) now is the pairing of distributions and test functions. Hence, we need to
verify that

(9790) = _<faae§0)‘

Since f and g are L* functions, (+,-) can be understood again as the inner product in
L?. Comparing to (2.6) we see that it remains to prove the following:

(8élkf7 90) - = (f7 8690) :

For any ¢ € D (R"), we have by (2.5)

@ fop) = [ o fidn = [ fortpds = ~(£,0;).
n Rn
Since
07" p = 0.0 as k — oo
it follows that also

2(n
07h’“g0L(—R> )6e<p as k — oo

e

because all the supports of the functions 9;" ¢ lie in a neighborhood of supp . It
follows that

(f,0;"p) — (f,0ep) as k — 00

and, hence,
(O f,0) = = (f,0ep) as k — oo,

which was to be proved.
(b) Note that by (2.6)
ol f —~0.f as k — oo. (2.8)

Since H@fk f H < K for all k large enough, the weak convergence (2.8) implies that
also ||0.fl|;» < K, which was claimed. Indeed, this is a general property of the weak
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convergence a Hilbert space H: if uy — uwin H and ||ug|| < K then also ||u|| < K. For
the proof observe that, for any v € H,

[(ur, V)] < Junl ol < K flof],

which implies as £ — oo that
|(u, )] < K l]].

Setting here v = u we obtain
2
[l < K [Jul]

whence ||Ju|| < K.
(¢) We need to prove that, for any ¢ € L? (R"),

(@, 0) = (Bt ) as h — 0. (2.9)
Let us first prove this for all ¢ € D (€2). Using the fact that

oo = Opp as h — 0

and arguing as in (a), we obtain

Ok f, @) == (f,0."0) = — (f,0e0) = (0cf. ),

which was claimed.
Now let us prove (2.9) for any ¢ € L?*(R"). For that take some @ € D (R")
(considered as an approximation to ¢) and write

(3:}]”,90) - <86f7()0) = (a£f730) - (a£f7w) + (8£f7¢) - (a€f7w) + <8€f7w) - (aefa(p>
= (O fo 0 =) + (OLf = 0ef, 00) + (Bef 0 — ).
It follows that, for all small enough h,
(0L F, ) = (Befr0)| < |02 S| 2l = 0l + [(O2f = Def, )| + 10ef Il 2 lp = I 2
< 2K o = llpe + |(O1f = 0ef )|

Letting h — 0 we obtain that, by the first part of the proof,
(OLf = 0ef ) = 0

whence
limsup (9, f — 0.f,4)| < 2K llp = ¢l 2.
Since ||¢ —||;» can be made arbitrarily small by choice of ¢ € D (R"™), we obtain
(29). =
For any open set 2 C R", denote by Lip. (€2) the set of Lipschitz functions in 2

with compact supports.

Corollary 2.4 (Lipschitz functions as elements of Sobolev spaces)
(a) If f € Lip. (R") then f € W' (R") and f € W (R").
(b) If f € Lipioe (Q) then f € W2 (Q) and f € W5 (Q).
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Proof. (a) Let L be the Lipschitz constant of f, Then, for all z and all h # 0, we have

z + he) — f(x) < L |he| _

o8 ()] = [T <o

L.

For all |h| < 1 the support of 8" f lie in 1-neighborhood of supp f, which implies that
also the L2-norms ||83 f H ;2 are uniformly bounded. By Lemma 2.3 we conclude that
O.f € L* (R™). Since this is true for any unit vector e, it follows that f € W2 (R").

Let us now show that f € WY (R"). Since f is continuous and has compact
support, we see that f is bounded, that is, f € L> (R"). Let us show that

10efll L < L,
which will imply that 0.f € L* (R"). Indeed, since |8£f(x)‘ < L, we have, for any
¢ € D(R"),
|02 f,0)| < Llellp -
Since 9" f — 0.f as h — 0, it follows that

@ef o)l < Lol

which implies that

10 = sup  [OLON M@LON

peL1(R™)\{0} H<P||L1 0eD(R™)\{0} ||<PHL1

Hence, 0.f € L>® (R") and f € Wh> (R").

(b) Let U be an arbitrary precompact open set such that U C . Let ¢ be a cutoff
function of U in €2, that is, ¢ € D (2) and ¢ =1 on U. Since ¢ is Lipschitz, it follows
that fo € Lipioe (2).

Since f¢ has compact support in €, it follows that fy € Lip. (2); extending f¢
by 0 outside €2, we obtain that fo € Lip. (R™) (cf. Exercise 36). It follows by (a) that
fo € WH2(R™). Since ¢ = 1 in U, it follows that f € W2 (U) and f € Wh>(U).
Since U is arbitrary, we conclude that f € W22 (Q) and f € WL (). =

Lemma 2.5 If f € W2 (R") then

HasfHH < [0 fl 2 - (2.10)
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Proof. Note that the both sides of (2.10) are continuous functionals in W12 (R").
Since C! functions are dense in W% (R") (see Exercise® 4), it suffices to prove (2.10)
assuming that f € C*.

Fix z € R", a unit vector e € R", and consider the following function of ¢ € R:

g(t)=f(x+te).

dg
%zgaxif(x+te)ei:86f(x+te)
and
O F(x) =~ (f (x4 he) — f(2)) = ~ (g () — g (0))

h

h
1 ["dg 1 [

=— | Zdt=- A te) dt.
h/o 7 h/oﬁf(x—ke)

It follows that

h 2 h
0 f ()] = (%/0 aef(x—l—te)dt) S%/o 0.F (2 + te)[2 dt.

Integrating over R™ and using Fubini’s formula to interchange the integrals, we obtain

2 1 h 9
et < i [ ([ ons s sertar) as

1

h
= —/ ( |0 f (x + te)|2d:17) dt (change y = x + te)
h Jo R®

h
7 / < 10:f () dy) dt (the internal integral does not depend on t)
0 \Jre

1 h
5 [ 101 de = oA

which finishes the proof. m

4If f € WH2 (R") then, for any mollifier ¢ and any ¢ > 0, the convolution f x ¢, is a C°° function
1,2
that also belongs to W12 (R™), and f * ¢, W fase—0.
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20.11.23 Lecture 13

2.1.3 Product rule for L

Consider in an open domain 2 C R™ a uniformly elliptic operator

ij=1
with measurable coefficients a;;.

Lemma 2.6 (Product rule for L) If u,v € W,2*(Q) and Lu, Lv € L3, () then

loc

L (uv) = (Lu) v+ u(Lv) + 2 Z a;;0;ud;v. (2.12)
ij=1
Motivation. Before the proof in full generality, let us prove the formula (2.12) in a

simpler setting assuming that a;; € C* (Q) and u,v € C* (). Then all the derivatives
involved are classical, and we obtain by the product rule

0; (@;;0j(wv)) = 0; (a;;0;uv) + 0; (a;;0;v )
= 0; (a;;0;u) v + a;;0;ud;v
+ 0; (@;j0;v) u + a;;0;v0;u.
Adding up in all 4, j and using the symmetry of a,;, we obtain that

L (w) = (Lu)v+ (Lv)u+ 2 Z a;;0;ud;v,

ij=1
that is (2.13).

Note that under the assumptions u, v € VVlif () the above argument does not work

since a;;0;u can be claimed only to belong to L7 (). Hence, the term 9; (a;;0;u) v is

meaningless as a product of a distribution 0; (a;;0;u) with a measurable function v.

Proof of Lemma 2.6. We will use in the proof the following product rule from
Exercise 21: if u,v € W22 (Q) then wv € W,2! () and

0; (uwv) = (O;u) v + (0;v) u. (2.13)

Observe also that the expression L (uv) is well-defined as a distribution sense because
uww € W (Q).

loc

Using the distributional definition of L and the product rule (2.13), we obtain, for
any ¢ € D (Q),
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Using again the product rule in the form
—v 8190 = —&- (UQO) + 81"2] @,

we obtain for the first term in (2.14):

—Z (a;j(O;u)v, Oip) = /Zawauv@zgodx

1,j=1 4,j=1
/Zawaua v dx—l—/ZaU@uavgodx (2.15)
i,7=1 3,7=1

Next, recall that Lu satisfies the following identity:

/Zawau@wdx—/([/u)l/)dx

i,7=1

for any test function ¥ € W12 (Q). Since vp € W2 (Q), setting here 1 = vy, we
obtain

. /Q S aydyud (vg) di = / (Lu) vpde = (vLu, p).

ij=1 Q

Hence, (2.15) yields

_ Z (aij (Oju) v, 0;p) = (vLu, ) + (Z aij0;ud;v go) : (2.16)

i,j=1 i,j=1

By interchanging here u and v, we obtain that a similar identity holds for the second
term in (2.14):

- Z (aiju 8]‘1), &cp) = (ULU, QO) + (Z aijﬁjv @u s (,D) . (217)

i,j=1 hj=1

Noticing that a;; = a;; and interchanging the indexes ¢ and j in the last sum in (2.17),
we obtain that it is equal to the last sum in (2.16). Hence, adding up (2.16), (2.17)
and using (2.14), we obtain

(L (UU) 790) = (UL’LL, (70) + (ULU, 90) + 2 (Z aijﬁju 0ﬂ] ) 90) )
ij=1

which is equivalent to (2.12). m

2.1.4 Proof of Theorem 2.1
Let L be the operator (2.11), where a;; € Lipjo. (€2). We need to prove that

weW2(Q) and Luec L, (Q) =ue W2

loc loc

Q).
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Idea of proof. We need to prove that any second derivative d;;u belongs to L2 (Q).

loc

Denote v = dpu. We know that v € L} () and we need to prove that d;v € L2 ().

loc loc

By Lemma 2.3, if v € L*(R") then in order to prove that d.v € L*(R"™) it suffices to
verify that HagvH ;» is uniformly bounded for all small enough [h|. For that we need to
obtain an upper bound for HE)QUH 2

Let us first explain how to obtain such an estimate in a simpler situation. For that,
we assume in addition that a;; € C* (Q2) and u € C§ (), and obtain an upper bound
for ||Vvl|;2, where v = Jyu for a fixed index k (in the actual proof we use a similar
argument to estimate ||8£v||L2).

Set f = Lu. Then we have the identity

- [ S apuoed= [ fods forallp e WiH (@),
Q=1 Q@

Let us use here the test function ¢ := dyv = Ipu € C§ (Q). Since both functions a;;0;u
and ;v belong to CJ (€2), we can use the integration by parts formula and obtain

—/ Z a;;0;u 0;(Opv)dx = —/ Z a;;0;u 0x(O;v) dz (integrations by parts)
Q; o T

i,j=1 ,j=1

= / Z Ok(a;;0;u)Ovdx  (product rule)
0 Ligts™

i,j=1

= / Z aijﬁk(?ju aﬂ} dx + / Z (6kaij) 8ju 61'1} dx.
Q Q-

i.j=1 ig=1

Observing 0;0;u = 0;v and combining the above identities, we obtain

/ Z a;;0;0 Qv dx = / fopvdz —/ Z (Oka;;) Oju O;v dx.
Q . Q Q!

t,j=1 =1

By the uniform ellipticity condition, we have

/ Z a,-j@jv @U 2 )\71 ||V'U”iz 5
Q

ij=1

and by the Cauchy-Schwarz inequality

/Q fowode < 1l V0l

Since all Oa;; are bounded on supp u, we obtain

/ Z (akal-j) @-u @v dx
Q'

ij=1

< > |0as;| [Vul Vo] da

SUpp U j—1

< ClVaull 2 [[Voll 2,
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where C' = SUDgypp0 D j—1 [Okai] < 00. Combining together all the above inequalities,
we obtain

AVl < Ul V0l + C IVl e (190 e

whence it follows that

IVUll 2 < Al + ClIVull 2) -

Proof of Theorem 2.1. Set f = Lu. Consider first a special case when u € W12 (Q)
and f € L? (), and prove that in this case u € W2 (). Tt suffices to prove that all
distributional derivatives 9;,u belong to L? ().

Let us extend u to a function on R"™ by setting v = 0 in ¢ Then we have
u € Wh? (R™). We will prove that all second order derivatives 0 (;u) are in L? (R").
Since ;u € L? (R™), by Lemma 2.3 it suffices to verify that, for any unit vector e,

|92 (G| < K

for some constant K and for all small enough |A|. Since 87 (9;u) = 0; (9'u), it suffices
to prove that

o (@), < K.

Setting v = du, we see that it suffices to prove that

Iz

Vvl < K. (2.18)
We are going to show that (2.18) holds with
K= A fll2 +ClVull2),

where C' depends on n and on the Lipschitz constant of the coefficients a;; on supp .
For simplicity of notations, we write 9" = 9*. We always assume that |h| is small

enough, in particular, |h| is much smaller that the distance from supp u to the boundary
of . Clearly, we have then v € W2 () and 9~"v € W2 (Q). Since Lu = f, we have,
for any ¢ € W, (Q),

—/ Z a;j0;u O0;jp do = / fpdz.
Q50 Q
Setting here ¢ = 0~"v (that is, ¢ = 9"(0"u)), we obtain
—/ Z a;;0u0;(0” ") dr = / fo " dx.
Q50 Q

On the left hand side, we apply the integration by parts formula® and the product rule
for difference operators from Lemma 2.2:

°The integration by parts formula (2.5) of Lemma 2.2 was proved for functions from L? (R").
However, if both functions have compact supports in 2 then, for sufficiently small h, the integration
in the both sides of (2.5) can be reduced to €.
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—/ Z a;;05u 0;(0 ") dx = —/ Z a;;0;ud~"(Ow)dr  (integration by parts)
Q. Q-

ij=1 ij=1

= / Z " (ai;05u) Opv da (product rule)
Q'

Z7]:]‘

= / Z ai;(- + eh)0"0u O dx + / Z (0"ai;)0u O da.
Q - Q.

2,7=1 2,7=1
Observing that 9"9;,u = 9;0"u = d;v and combining the above identities, we obtain
/ Z a;; (- + eh)ojv Ojvdr = / fovdr — / Z (8ha,»j)8ju ovdz.
Q.. Q ot
Z’J Z?]
By the uniform ellipticity we have
/ Z ag(- + eh)dv Qv dr > N7 ||Vol[2, .
O =
i,7=1

By the Cauchy-Schwarz inequality inequality and Lemma 2.5, we obtain

[ sortuds <1l 07 ol < 1le 1901

Also we have

< / Z 0" a;;| |Vul |Vv| dx

Upp U j—1

/S; Z (8haij)8ju8iv dx

ij=1

< sup > [0"ay| [Vl 2 Vol o

SuPpui,j:l
Let us fix a precompact open neighborhood U of suppu such that U C €. Since
a;; € Lipjoe (€2), it follows that a;; € Lip(U) (cf. Exercise 36).

Let L be a common Lipschitz constant of all functions a,;; in U. Then, for any
x € supp u and small enough |h|, we have

(lij(l' + h@) — a,»j(x) <

|8haij(1:)| = h S Ly

whence

sup Z |8haij‘ <n’L =:C < oo.

supp u ij—1
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Hence, combining all the above inequalities, we obtain
- 2
ATVl S Il Vol + CHIVul 2 [Vl
whence it follows that
IVl < ANl + ClIVull2) =: K,
which is equivalent to (2.18).

23.11.23 Lecture 14

Consider now a general case when u € I/Vlif () and Lu € L2 (). In order to

prove that u € W2’ () it suffices to prove that u € W22 (U) for any precompact

loc

domain U such that U C Q. Fix U, choose a cutoff function 7 of U in Q (as in the
proof of Corollary 2.4(b)), and consider the function

w=un € W (Q).

By Lemma 2.6 we have

Lw = (Lu)n +uln+ 2 Z a;;0;u 0.
ij=1
Observe that all the terms in the right hand side here belong to L? (€2). For example,
the function

L?] = Z 02 (aijajn) = Z &»aij 8J77 + Z Qij &8]77
ij=1 ij=1 ij=1
is compactly supported and belongs to L (£2) because 0;a;; € Lys. (2) (by Corollary
2.4), which implies uLn € L*(Q).
Hence, Lw € L? (). By the above special case, we conclude that w € W22 (),
which implies that w € W22 (U). Since u = w on U, it follows u € W22 (U), which
finishes the proof. m

Proposition 2.7 If a;; € Lipiee (Q) and u € W2 (Q) then in the expression

loc
Lu = Z 01 (aijaju)
3,7=1

the derwatives 0; and 0; act on functions from VVIIOC2 (Q). In particular, this is the case
under the hypothesis of Theorem 2.1.
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Remark. If the both derivatives 9; and 9; in L act in W2 (Q) then one says that
the operator L is understood in the strong sense. Recall that if u € W2 (Q) then 9,
acts in W2 (Q), whereas 0; acts in D’ (2); in that case we say (as before) that L is
understood in the weak sense.

Recall for comparison that L is understood in the classical sense if the both oper-

ators 0;,0; act in C''(Q2), which is the case when u € C? and a;; € C.

Proof. Let us first prove the following general fact:

ve W (Q) and a € Lipe. (Q) = ave W2 (Q).

loc loc

Since v € L2 _.(92) and a is locally bounded, it follows that av € L2 (). Let us

loc loc

prove that also 0; (av) € L2 (Q) for any index i. Indeed, by Corollary 2.4 we have

loc

a € VVlif (2), and by Exercise 21, we have av € W'licl (Q) and
0; (av) = (0;a)v + ad;v.

By Corollary 2.4 we have also a € I/I/'llo’coO (2) so that 0;a is locally bounded and, hence,
(D;a)v € L2 (). Since also ad;v € L2 (Q), it follows that 9; (av) € L} (), which was
to be proved.

Now let us prove that the both operators 0; and 0; in Lu act on functions from
WL2(Q). The operator 9; acts in WL2(€) because u € W,?(Q). Since d;u € W2 (Q)

and a;; € Lipj,. (€2), it follows that a;;0,u € VV;CQ(Q) and, hence, the operator 0; also
acts in W2 (Q), which completes the proof. m

2.2 Existence of higher order weak derivatives

As above, consider in a domain {2 C R™ a uniformly elliptic operator

Lu = Zn: 0; (a;;05u) . (2.19)

ij=1

Theorem 2.8 Let u € W' (Q). If. for a non-negative integer k, we have

loc

a; € C*N(Q) and Lu € W22 (Q)

loc

then u € W2 (Q).

loc

Remark. In the case & = 0 this statement says the following: if a;; € C'(Q) and
Lu € L2 () then v € W;>*(Q2), which follows from Theorem 2.1 because C'(Q) C

loc loc

Liploc (Q) .

For the proof we need the following lemma.

Lemma 2.9 Ifv € W2 (Q) and a € W™ (Q) then av € W2 (Q).

loc loc loc
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Remark. In fact, we have proved this statement for £ = 1 in the proof of Proposition
2.7,

Proof. Induction in k. For k = 0 the claim is obvious: if v € L? () and a € L52, (Q)
then av € L} (). Let us make the inductive step from k to k + 1, that is, assuming
that

veWHQ) and a e WiTh,

loc loc

let us prove that av € WH?(Q). Since av € L?,(R), it suffices to prove that

loc
0;(av) € WiZ(9)

for any index ¢. Since both functions a, v belong to I/Vi)f(Q), we obtain by the product
rule of Exercise 21, that av € W2 (Q) and

Oi(av) = (0;a)v + ad;v.

Since v € W72 (Q) and d;a € W} (), we conclude by the inductive hypothesis that

loc

(8;a)v € W2 (). In the same way we obtain that ad;v € W,? (), whence it follows

loc loc

that 0;(av) € W22 (Q), which completes the proof. m

Proof of Theorem 2.8. Induction in k. As it was mentioned above, the case k =0
is covered by Theorem 2.1.
Assuming k£ > 1, let us make the inductive step from k£ — 1 to k. Assuming that

a; € C*H(Q) and Lu e W2 (Q),

we need to prove that u € W;">*(Q). Since also a; € C* () and Lu € Wy "2 (Q),

loc loc

and the inductive hypothesis yields that
uwe W Q).

loc

In order to prove that u € Wht22 (€), it suffices to verify that any partial derivative

loc

dyu belongs to W (Q). For that, it will be sufficient to show that

oc

L (Qu) € W2 (Q). (2.20)

loc

Indeed, assuming that (2.20) is true, observing that du € W22 (Q) ¢ W2 () and
applying the inductive hypothesis to dyu, we conclude that du € W/llzzrl’z (Q) thus
finishing the proof.

It remains to prove (2.20). We have
L (@u) = Z & (aijajﬁlu) = Z 81 (aijalf)ju) .
ij=1 ij=1

Since both d;u and ay; belong to W2 (Q), we have by the product rule in W2 (Q)

loc loc
al (awaju) = aljalaju + (alafl]) aju7

whence

a;;0,0;u = 0 (a;;0;u) — (Ojai;) Oju
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and, hence,

L (alu) = Z (9, [61 (aijﬁju) — (8laij) 8Ju] = (‘9l (Lu) — Z 81 (@aijaju) .
i,j=1 i,j=1

Note that 9 (Lu) € W) "* (). Since

loc

Ou € W2 (Q) and Qi € CF(Q) € WX (Q),
it follows by Lemma 2.9 that the product (da;;)d;u belongs to W2 () whence
0; (Ja;;0;u) € WV (Q). Hence, we obtain that L (du) € W "*(Q), which fin-

ishes the proof. m

2.3 Operators with lower order terms

Here we extend the results of Theorems 2.1 and 2.8 to the operator with lower order
terms. Consider in a domain €2 C R™ the operator

=1

ij=1

where the coefficients a;j, b;, c are measurable functions in 2. As before, for any u €
W2 (Q) the expression Lu is understood in the weak (distributional) sense. That is,

the terms a;;0;u, b;0;u and cu are elements of L; . (£2), while the terms 9; (a;;0;u) are
elements of D’ (2).

Theorem 2.10 Let L be the operator (2.21). Assume that (a;;) is uniformly elliptic
and that the coefficients b; and ¢ are bounded in Q. Let u € W22 (Q).

loc

(a) Assume that a;; are locally Lipschitz. If Lu € L}, (Q) then u € W22 (Q).

loc
(b) Let k be a non-negative integer. If a;; € C*1(Q), b;,c € C*(Q) and Lu € W) (Q)
then u € W2 (Q).

loc

Proof. We use the operator L, defined by

Lou := Z 0; (a;;0;u) = Lu — (Z b;O;u + cu) .

ij=1 i=1

(a) If u € W2 () then

> bidu+cu € L}, ().

=1

If Lu € L} (Q) then also Lou € L} (), and we conclude by Theorem 2.1 that
u € Wil (Q).

(b) Induction in k. The inductive basis k = 0 is covered by part (a). Inductive step
from £ — 1 to k. By the inductive hypothesis we already know that u € Wk+1’2(Q)

loc
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and, hence, d;u € W}2(Q). Since b; and ¢ are in C*(Q) € W}™(Q), it follows from
Lemma 2.9 that

Z bidsu 4 cu € W2 (Q).

loc
i=1

Since also Lu € W,22(Q), we obtain Lou € W, (Q) and conclude by Theorem 2.8 that
we W (Q). =

loc

27.11.23 Lecture 15

2.4 Sobolev embedding theorem and classical deriva-
tives

Our next purpose is to conclude (under appropriate assumptions) that a solution u of
Lu = f is in some class C" and, hence, is a classical solution. For that we use so called
embedding theorems.

Recall Theorem 1.8 that says the following: if 1 < p < n then, for any u €
Wh? (R"),

p

</ |u| =7 dac) ' gC/ |Vul|’ dz, (2.22)
n R

with some constant C' = C'(n,p). Theorem 1.8 was stated for u € Wy (R"), but one
can prove that W, ?(R") = WP?(R") (see Exercise 44) so that the subscript ‘0’ can be
omitted here.
Set .
g =2 (2.23)

and rewrite (2.22) as follows:
[ull e < C NIVl (2.24)
which implies that v € LI(R™). That is, if v and O;u are in LP then, in fact, u € L4

with ¢ > p.
We can write this as an inclusion

WP(R") C LY(R™),

or as an embedding (=injective linear mapping)

Whe(R™)— Ld(RM) ], (2.25)

given by u — u. Moreover, this embedding is a bounded operator because by (2.24)

[ull e < Cllullyrs -
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Corollary 2.11 (Sobolev embedding theorem I) Let k € N and p,q € [1,00).
(a) If

1 1 k
Sk (2.26)
qa p N
then there is an embedding
WEP(R™)— LY(R™). (2.27)
(b) If for some non-negative integer m < k
1 1 k-
R (2.28)
q P n
then there is an embedding
WHEP(R™)e—s W™1(R™). (2.29)

Note that when k gets larger, then ¢ also gets larger, so that a higher degree of
differentiability of u yields a higher degree of integrability of wu.

Proof. (a) Induction basis for £ = 1. In this case (2.26) becomes

which implies that p < n and ¢ = -, that is, (2.23). Hence, (2.27) is equivalent in
this case to (2.25).
Induction step from k to k + 1. Assume that v € W TLP(R"), and prove that
u € LY (R™) where
1 1 k+1

¢ p n
Indeed, both functions u and d;u belong to W*P?(R"), which implies by the induction
hypothesis that

uw and Jju € LT (R"), (2.30)
where ¢ is as in (2.26), that is,
11k
g p n

which implies that ¢ < n and ¢’ = ;. By (2.25) we conclude u € LY (R™), which was
to be proved.

(b) Let u € WHEP(R™). In order to prove that u € W™ (R"), we need to verify that
D%y € L1 (R™) for any |o| < m. Indeed, we have

Dy € WF™P(R™),

and by (a) we obtain that D*u € LI(R"), where ¢ satisfies (2.28), which completes the
proof. m
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Corollary 2.11(b) can be applied provided

n
m<k<m-+—,
p

where the second inequality follows from (2.28) and % > 0. In the limiting case ¢ = oo
the identity (2.28) becomes

k=m+ 2

p

Although the above statements do not cover the case ¢ = 0o, one still can expect that,
for this or a larger value of k, the following is true: if u € W#*P(R") then u has essentially
bounded partial derivatives up to the order m. This idea is rigorously implemented in
the next theorem that provides even the existence of continuous derivatives up to the
order m.

Theorem 2.12 (Sobolev embedding theorem II) Let Q2 be an open subset of R™. Fix
p € (1,00) and let m, k be non-negative integers such that

k>m+ - (2.31)
p

(a) If u € WrP (Q) then u € C™ ().

loc

(b) If u € WHP(Q) then, for any precompact open set U such that U C (,

HUHCW(U) <C HuHWk,p(Q) ) (2.32)

where the constant C' depends on n, k,m,p, U, §2.
Remark. Note that u is an element of LY () and, hence, is a equivalence class of
measurable functions. However, when we say that v € C™ () and, in particular,
u € C'(Q), then we understand u as a function that is defined pointwise. A precise
meaning of the claim of Theorem 2.12(a) is as follows: if u € W,"? (Q) and k satisfies
(2.31) then u as an equivalence class has a representative, also denoted by wu, that
belongs to C™ (2).

The identification of u € W,'” (Q) with its C"™-representative allows to define an
embedding
WP (Q)— C™(Q).

loc

Since C™(Q) C W">°(Q), it also follows that

loc

WP (Q) — W™ (Q).

loc loc

The estimate (2.32) means that the embedding of the normed (Banach) spaces
Wh? (Q) — C™(U)

is a bounded operator. Recall that the norm in C™(U) is defined by

= Du(z)| .
[l e 17y |gg§gg§\ u(z)]
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The next diagram combines Corollary 2.11 and Theorem 2.12.

Embedding of Wk» depending on k

| |

%Wm,q (_)Cm ;)Cm-/-l ;)Om—/—?

v

m m+ln/p m+1+n/p  m+2+n/p k

Example. Let n = 1. Then the condition (2.31) becomes k > m —{—i that is equivalent
to k > m + 1. Hence,
we WP =y e ch 1,

loc

provided k£ > 1. In particular, any function from I/Vi)f is continuous.

For example, the continuous function u(xz) = |z| in R has the weak derivative
u’ = sgn x and, hence, belongs to I/Vllof On the other hand, the function u(z) = 1y
that has only one point of discontinuity at = = 0 has the distributional derivative v’ = §

and, hence, is not in W, ”.

Example. For a general n and for m = 0, the condition (2.31) becomes

s

o (2.33)

That is, if (2.33) holds then

ue WP (R") = ueC(RY).

loc
Let us show that the condition (2.33) is sharp. For that, consider in R™ the function
u(z) = |z/*
where a is a real number. This function is clearly C'*° smooth outside the origin, but
it is not continuous at 0 if a < 0. Let us verify that v € L} (R"™) if and only if

n
a>——. 2.34
p (2.34)

Indeed, integrating in the polar coordinates (r,0) we obtain, for any R > 0,

R R
/ |ul? dx = / / roPr"ldrdd = wn/ r Pt dr = W, R < oo
BR 0 Sn—1 0

provided ap + n > 0, which is equivalent to (2.34). Similarly, any classical derivatives
D%y of the order |a| = k (which is defined outside 0) belongs to L (R™) provided

loc

n
a>k——, 2.35
p (2.35)
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because
|D%u| < const |z]*F .

In this case the classical derivative coincides with the weak derivative that, hence,
belongs to L”, (R™). Hence, under the condition (2.35) we obtain u € W;"? (R™).

loc loc

If k < 2 then there exists a negative number a that satisfies (2.35). Then the

function u(z) = |z|* belongs to W,"? (R™) but is not continuous at 0. In the borderline

case k = . there is also an example of a function u € I/V/Zf(R") that is not continuous.

These examples show that the condition k& > %, under which all functions from

WP are continuous, is sharp.
Combining Theorems 2.10 and 2.12 (case p = 2), we obtain the following.

Corollary 2.13 (Existence of classical derivatives of a weak solution) Let L be the
operator

Lu= zn: 87, (aijaju) + Zn: bz&u + cu,

i,j=1 i=1

where (a;;) is uniformly elliptic and b, ¢ are bounded in Q. Let u € Wb? (). Assume
that
ai; € C*™(Q) and b, c € C*(Q),

where k is a non-negative integer such that

n
k > - —2
m+2 ,

where m s a non-negative integer. Then

Lue W2 (Q)=ueCm(Q).

loc
Consequently, if a;j,b;,c € C™ (Q) then
LueC*(Q)=ueC>*(Q).

Proof. Indeed, by Theorem 2.10 we have u € W2 (2). Since

loc

k’—l—2>m+g,

Theorem 2.12 with p = 2 yields u € C™ ().
The second statement follows from the first one as C*(Q) € W,22(Q) for any k
and, hence, u € C™(Q2) for any m. m

30.11.23 Lecture 16

Proof of Theorem 2.12. We split the proof into a series of claims.
Claim 1. For any u € D (Bg) and

k> —, (2.36)

S
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we have
u ()] < Cllullwsr(sg), (2.37)

where the constant C' depends on n,k,p, R (which is a particular case of (2.32) for
m=0).

We use for the proof the polar coordinates (r,0) centered at the origin 0 € R”,
where r > 0 and # € S*~!. The relations between the Cartesian and polar coordinates
are given by the identities

Tj = Tfj (6) )
where f; are the smooth functions of # € S"~! such that |f;] < 1 (for example, in the
case n = 2 we have f; () = cos@ and f5 (0) = sinf).

Considering u as a function of r and 6 (away from the origin), we obtain by the

chain rule 5
Z 0ryus " “’V Z (60 (2.38)
It follows by induction in k € N that

afu: Z f]l( ) f]k( ) j1.dk U

whence
0| < ¢ Z | D%l ,
la|=k

8k
8$?1““8$%”
many ways as d;, j, but the number of such representations is bounded by a constant

depending on n and k only).
By the Holder inequality, we obtain

Oful” <Y [Duf?, (2.39)

la|=k

where ¢ = ¢/(n, k) (note that any derivative D* = can be represented in

where ¢ = ¢ (n, k, p). In particular, we see that the function d*u is bounded in R™\ {0}
(note that this function is not defined at 0), which allows to integrate d%u in r over
the interval [0, R)].

For any € S" ! we have u(R,0) = 0 whence by the fundamental theorem of
calculus

u(0) = u(0) —u(R,0) = /8ur0

(R.9)

~
L/
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Integration by parts yields

u(0) = —[0u(r,0) ]R / r0%u (r,@)dr:/o ro?u (r,0) dr

&/82r9 -5 [routsar

_ 6/33 (r,0) dr® é/ B0 (r, 0) dr

Continuing by induction, we arrive at

u(0) = —(li__l)l)|/0 r*= 10k (r, ) dr.

Integrating this identity in 6 over S*~! and using
r"drdd = dx,

where dx denotes the Lebesgue measure, we obtain

wpu (0) =

f (-1"
R 0R (r, 0) drdf = / rEn ok de,
(k=1 Jp,

where w,, is the surface measure of S*~!. The Hélder inequality yields then

1/q 1/p
lu(0)] < C (/ r(k_")qu) (/ }6fu|p dx) ) (2.40)
Bgr Bgr
p

where ¢ = oo s the Holder conjugate of p.
We want the first integral in (2.40) to be finite, that is, the function 7*~" belong to

S§n—1

L . (R™). As we have seen above, the latter is the case provided
n
kE—n>——
q

which is equivalent to

1
k>n (1 — —) = 2,
q p
that is, to (2.36). Hence, the first integral in (2.40) is just a constant depending on

n,k,p, R. By (2.39), we have

1/p

(/ ‘Gfu}pdx> / S IDufde | < M ullwros,-
Br

BR ja|=k

Substituting this inequality into (2.40) we obtain (2.37).
For the next Claims 2-4, () is a bounded open set in R".
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Claim 2. For any u € D(Q) and k > n/p, we have

Sup ul < Cllullwerg) (2.41)

where the constant C' depends on n, k,p and diam 2.

Indeed, let « be a point of maximum of |u| and R = diam Q. Since u € D (Bg(x)),
applying Claim 1 in the ball Bg(x) and using x as the origin, we obtain

[u(z)] < CllullwrrBra))

whence (2.41) follows.

Claim 3. Assume that u € W (Q), where k > n/p. Then u € C(Q) and the
estimate (2.41) holds.

Let us extend u to all R™ by setting v = 0 outside (2. Since
WEP(Q) € Wy () € Wi (R™),

(see Exercise 42), we have u € Wk» (R").
Let ¢ be a mollifier, that is, ¢ € D (B1(0)), ¢ > 0 and [, ¢dx = 1. For any j € N
consider the function

i(r) = j"e(jz)
that is also a mollifier with supp ¢; C By/;(0). Set

Uj i =uxp; = / u(- —y)p;(y)dy.

Then u; € C* (R™) (see Exercise 39) and

k,
U T as j— o0 (2.42)

(see Exercises 4, 40, 41).

u

U;
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Since supp ¢; C Byj, the support of u; lies in the closed (1/j)-neighborhood of
supp u (Exercise 39). Hence, if j is large enough, then supp u; C €, that is, u; € D (Q).
Applying (2.41) to the difference u; — u;, we obtain

Sup i = u;| < Cllus — ujllwes(g)- (2.43)

By (2.42) we have
|ui — ujllwrr@) — 0,

which together with (2.43) implies that the sequence {u;} is Cauchy with respect to
sup-norm in Q. Hence, {u;} converges uniformly to a function u € C'(Q):

u; 3 U as j — oo. (2.44)

On the other hand, it follows from (2.42) that there is a subsequence of {u;} that
converges to u a.e.. Comparing to (2.44) we conclude that v = w a.e., that is, the
function u has a continuos version u, that will be now denoted also by w.

Since each u; satisfies (2.41), that is,

Slgllp luj| < Cllugllwrr

passing to the limit as j — oo and using that {u;} converges to u both in sup-norm
and in W"*P-norm, we obtain that u also satisfies (2.41).

04.12.23 Lecture 17

Claim 4. Assume that u € WEP (Q), where k > m +n/p and m is a positive integer.
Then u € C™ () and
[ullom@) < Cllullwer @), (2.45)

where the constant C' depends on n,k, m,p, and diam 2.

If o is a multiindex with || < m then D*u € WF™P(Q). Since k —m > n/p, we
conclude by Claim 3 that D% € C' () and

sup |D%u| < C||D*ulwr—mr0) < Cllullwrs)- (2.46)
The fact that the weak derivatives D*u are continuous for all |o| < m implies that

they are actually classical derivatives. Let us prove this for the first derivative d;u. We
have as above in Claim 3 that u; = u * ¢; € C* () and

as j — oo. Applying Claim 3 to Q;u, we obtain (using Exercise 41) that

Comparing (2.47) and (2.48) we conclude that O;u is the classical derivative of w.
By induction, we obtain that also D%u with |a| < m is the classical derivative of
u. Hence, u € C™(Q2), and (2.45) follows from (2.46).
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Finally, let us prove the statements of Theorem 2.12.

(a) Assume u € W7 (Q) where k > m + n/p. Fix a precompact open set U, such
that U C , and choose another precompact open set Q’ such that U C € and & C Q
(we need € because {2 may be unbounded). Choose also a function n € D (') such
that n =1 on U. Then

€ Wi (@)
and, by Claim 4, we conclude that

nu e C™ ().

Consequently, u € C™ (U) because u = nu in U. Since U may be chosen arbitrarily,
we conclude that v € C™ (Q).

(b) If w € WHP (Q) then applying (2.45) to the function nu € WkP (V') we obtain

[ullem@y < lInullem@y < Cllnullwrs @y < Cllullwrsq),
which finishes the proof. m

Remark. The statement of Theorem 2.12 is true also for p = 1 and p = oc.
In the case p = 1 the condition (2.31) becomes k > m + n, but in this case it can
be relaxed to
k>m+n.

Indeed, in the above proof the assumption p > 1 was used only in the Hélder inequality
(2.40). If p = 1 then we replace (2.40) by a trivial inequality

/ r* R d
Br

where the sup-term is finite provided & > n. Hence, Claim 1 works if £ > n, and the
rest of the proof works if &k > m + n.
Hence, if k > n then setting m = k — n, we obtain the embedding

[u(0)f <C

< Csuprk"/ |6,’fu’dx,
Br

Br

W Q)— CF(Q)

loc

In the case p = oo the condition (2.31) becomes k > m that is,
k>m-+1.

For the proof in this case, observe that if u € W/IIZCOO(Q) then u € VWZ?(Q) for any
p < 0o. Choose p so large that &k > m + n/p. Applying Theorem 2.12 with this p we
obtain that u € C™(Q).

Hence, if £ > 1 then setting m = k — 1, we obtain the following embedding:

W (Q)— CF1(Q).

loc

Alternatively, this can be proved using that W, (Q)=Lipy. (Q) (see Exercise 43).

loc
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2.5 Non-divergence form operator

Recall that for a divergence form uniformly elliptic operator

Lu = Z (91 (aiji?ju) + Z bjﬁju
j=1

ij=1

in a domain 2 C R", the equation Lu = f is understood in the weak sense if d; acts
in I/Vlif (while 9; acts in L), and Lu = f is understood in the strong sense if both

. 1.2 . . . . 1,2
0; and 0; act in W,)7. In particular, in the case of a weak solution w must be in W,

while in the case of a strong solution u must be in I/Vlif

Consider now a non-divergence form elliptic operator

Lu= Z aijaiju + Z bjaju (249)
j=1

,j=1

in a domain 2 C R™. In this case the notion of a weak solution is not defined, while
the notion of a strong solution makes sense as follows.

Definition. We say that the equation Lu = f is satisfied in 2 in the strong sense if
u € W2(Q) (so that d;; and 9; act in W) and Lu(z) = f(z) holds for almost all
x € .

We say that the equation Lu = f is satisfied in  in the classical sense if u € C? (Q)

and Lu(x) = f(x) holds for all x € Q.

Example. Consider in R the function u(z) = |z|. Obviously, we have u”(z) = 0 for
all z # 0, in particular, for almost all x € R. However, this function is not a strong
solution of u” = 0 because u ¢ W27 (Q). Indeed, for distributional derivatives we have
u' =sgnx € L}, and u” =20 ¢ L2,
In fact, every strong solution of Au = 0 in R" is also a weak solution, and we obtain

by Corollary 2.13 that u € C* (R").
Consider the Dirichlet problem

Lu=f in Q,
Lt o) a0

where L is the operator (2.49) and the equation Lu = f is understood in the strong
(or classical) sense.

Theorem 2.14 Let L be the operator (2.49) in a bounded domain 2 C R™. Assume
that (a;;) is uniformly elliptic in Q, a;; are Lipschitz in Q, b; are bounded and mea-
surable. Then, for any f € L* (), the Dirichlet problem (2.50) has a unique strong
solution.

If in addition all the functions a;j, bj, [ belong to C* (Q2), then the solution u of
(2.50) belongs to C* (), and the equation Lu = f is satisfied in the classical sense.

Proof. By Corollary 2.4 we have a;; € W22, If u € W22 (Q) then 9;u € W,5? and, by
the product rule,
82' (aij(?ju) = (@a,j) @ju + aij(?iju.
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Therefore, for u € W2 (), we have

Lu = zn: a,-j@-ju + i bjé?ju
j=1

ij=1

= Z & (aijaju) — Z (az@z]) aju + Z bjaju
ij=1 i,j=1 J=1

= Lu,

where L is a divergence form operator defined by

ZU = Z 81 (aijﬁju) + Zgjaju
j=1

1,j=1

with i
Ej = bj — Z&aij.
i=1

Since functions a;; are Lipschitz in €, the weak derivatives 0;a,; are bounded in 2 (see
Corollary 2.4(a) and Exercise 38). Since also b; are bounded in €2, we obtain that the

coefficients b; are bounded in €.
The above computation shows that Lu = Lu for u € W>? (Q). In particular, the

loc

strong Dirichlet problem (2.50) is equivalent to the strong Dirichlet problem

Lu = f inQ
’ 2.51
ey 231

where u is sought in the class Wfof (Q). However, unlike the operator L, the divergence
form operator L can be regarded also in a weak sense, that is, on functions from
Wie (42).

Hence, consider (2.51) first in the weak sense. By Theorem 1.13, the weak Dirichlet
problem (2.51) has a solution u. Since a;; are locally Lipschitz, we obtain by Theorem
2.10 that u € W2 (Q). Hence, the same function u is a strong solution of the Dirichlet
problem (2.50), which proves the existence of solution of (2.50).

Since any strong solution u of (2.50) is a strong and, hence, a weak solution of
(2.51), we obtain by Theorem 1.3 the uniqueness of u.

If a;j, b;, f € C* (£2) then by Corollary 2.13 the solution w of (2.51) belongs to C'*

and, hence, Lu = f is satisfied in the classical sense. m
Remark. Theorem 1.15 yields the following estimate of the solution u of (2.51):

2_1
[l oo < €15 (1 1] o

with any ¢ € [2,00] N (n/2, 00|, provided
©Qf <6,
where § = cn)\fnﬁl;_” depends on the ellipticity constant A of (a;;) and on the constant

b= supz |E]| < sup (Z b;| + Z |((9Z»az-j|> < b+ n%,
o 4 o \%4
J=1 7=1

1,j=1
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where b = supg > 7, |b;| and £ is a common Lipschitz constant of all a;;. Hence, the

same estimate holds for the solution w of (2.50). Note that b may be non-zero even if
b = 0 because of ¢ # 0.

Example. Let us give an example to show that the uniqueness statement of Theorem
2.14 fails if the coefficients a;; are not Lipschitz. Consider the operator L = Z’; =1 Qi 0;j
in R™ (n > 2) with the coefficients

5i'—|—6%, $7£0,
ai(x) = { 5.]. - r=0
179 - Y%

where c is a positive constant. It is easy to verify that L is uniformly elliptic. Consider
the following Dirichlet problem in a ball Bg:

Lu=0 in BR

where L is understood in the strong sense, that is, u € V[/lic2 (Bg). If the coefficients
a;; were Lipschitz as in the statement of Theorem 2.14 then this problem would have
a unique strong solution u = 0.

However, the coefficients a;; are not Lipschitz near 0 (not even continuous), and

the problem (2.52) can have a non-zero solution. Indeed, it is possible to prove that if

n
1>s>2——
s 2

and ¢ = ”I—Ej‘” then the function

u(z) = |z|” — R?

belongs to W22 (Bg) N W, (Bg) and solves in By the equation Lu = 0 (see Exercise
51 for details). Hence, u is a non-zero strong solution of the Dirichlet problem (2.52)
so that the uniqueness fails in this case.
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Chapter 3

Holder continuity for divergence
form equations

07.12.23 Lecture 18

In this Chapter we will consider again a divergence form uniformly elliptic operator

ij=1

with measurable coefficients and will prove that any weak solution u of Lu = 0 is, in
fact, a continuous function! Moreover, we will prove that weak solutions are Holder
continuous.

Definition. A function f on a set S C R" is called Holder continuous with the Holder
exponent a > 0 if there is a constant C' such that

[f(@) = fy)l < Clz =y
for all z,y € S.

For example, f is Lipschitz if and only if f is Holder continuous with o = 1.

Definition. Let S be a subset of R". We say that a function f on S is locally Holder
continuous in S with the Holder exponent o > 0 if, for any point x € S, there exists
e > 0 such that f is Holder continuous in B.(z) NS with the exponent .

It is easy to prove that if f is locally Holder continuous in S then f is Holder
continuous on any compact subset of S with the same Holder exponent (the proof is
the same as that in the case of Lipschitz functions). In particular, if S is compact then
any locally Holder continuous function on S is Holder continuous.

The set of all locally Holder continuous functions on S with the Hoélder exponent
a € (0,1) is denoted by C* (S) (or sometimes by C%*(S5)).

Theorem 3.1 (Theorem of de Giorgi) If u € WL? (Q) is a weak solution of Lu = 0 in
Q then u € C* () where a = ac(n, \) > 0 (where X is the constant of ellipticity of L ).

85
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In particular, weak solutions are always continuous functions. For comparison, let
us observe that in order to obtain the continuity of a weak solution u by Corollary 2.13,
we have to assume that a;; € C**! with non-negative k > % — 2. Theorem 3.1 ensures
the continuity of u without any assumption about a,; except for uniform ellipticity and
measurability.

Theorem 3.1 was proved by Ennio de Giorgi in 1957, which opened a new era in
the theory of elliptic PDEs. A year later John Nash proved the Holder continuity for
solutions of parabolic equation 0;u = Lu, which contained the theorem of de Giorgi as
a particular case for time-independent solutions.

We will prove Theorem 3.1 after a long preparatory work.

3.1 Mean value inequality for subsolutions

Let L be the operator (3.1) defined in a domain Q of R™. We always assume that
L is uniformly elliptic with the ellipticity constant A and that the coefficients a;; are
measurable.

Definition. A function u € W22 (Q) is called a subsolution of L in Q (or that of the

loc

equation Lu = 0 in Q) if it satisfies the inequality Lu > 0 weakly, that is, if

Q

ij=1
for any non-negative function ¢ € D (). Similarly, u is called a supersolution if it

satisfies Lu < 0 weakly.

If w € W2 (Q) is a subsolution in €2 then (3.2) is satisfied also for any non-negative
function ¢ € Wy* (Q) (Exercise 27).

For example, any subharmonic function is a subsolution of the Laplace operator A.
Sometimes subsolutions of L are also referred to as L-subharmonic functions.

Theorem 3.2 (The mean-value inequality for subsolutions) Let Br C Q2 and let u €
W2 (Bg) be a subsolution of L in Br. Then

C 1/2
esssupu < — (/ u? dx) : (3.3)
Rn/2 Br +

Bry2
where C'= C'(n, A).
Since |Bg| = const R"™, the inequality (3.3) is equivalent to

1/2
esssupu < C' (][ uidx) : (3.4)
Br

Bpr/2

where the constants C' in (3.3) and (3.4) may be different (but both depend only on n

and \). The value
1/2
(][ uidx)
Br

is called the quadratic mean of u, in Bg. Hence, esssupp, Lo U is bounded by the
quadratic mean of u, in Bg, up to a constant factor C'.
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Corollary 3.3 If u € W22 (Q) solves Lu = 0 in Q then u € L2, (Q) .

Proof. Indeed, in any ball Bg such that Br C Q we have u € W% (Bg) and, by
Theorem 3.2,

C
esssupu < —— ||u )
BR/QP = Rn/2 | ”LQ(BR)

Applying the same inequality to —u, we conclude that

HUHLoo(BB/Q) < Rl [ull 2(p,) < o0

Hence, u € L (Bpgs), which implies u € LS, (). =

loc

Recall that, for a harmonic function u in Bg, we have the mean value property

u (0) :]{33 uda.

Using the Cauchy-Schwarz inequality, we obtain

w(0) < ]é e (]i R uidx> " (3.5)

Fix a point 2 € Br/2. Applying (3.5) to the ball Bg/, (2) instead of B (0) and noticing
that Brs (2) C Bg(0), we obtain

u(z) < ][ uidac < (2”][ uidm) ,
Bpry2(2) Bgr

which proves (3.4) for harmonic functions. Using the maximum principle, one can
extend this inequality also to subharmonic functions.

The proof of (3.3) for a general operator L is much more complicated because we
do not have the mean value property in general. The proof uses some ideas from the
proof of Theorem 1.14. Recall that Theorem 1.14 says the following: if u solves the
weak Dirichlet problem

Lu=—f in €,
{ u€ Wy (),

then
lull e < CIQP™ [ £]] e

where C' = C(n,A). In particular, u € L*>®(Q) provided f € L>*(Q2). The essential
difference between Theorem 1.14 and the present setting is that in Theorem 1.14 u €
W,? whereas now u € W2 or even u € W;.2.

Proof. The proof consists of two parts.
Part 1. Fix two values 0 < a < f as well as 0 < r < p < R and set

a:/B (u—a)® dr and b:/T(u—ﬁ)id:ﬁ. (3.6)

P
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Clearly, b < a.

The purpose of the first part of the proof to obtain a stronger inequality showing
that b is essentially smaller than a. In the second part of the proof we will use an
iteration procedure similarly to the proof of Theorem 1.14.

Consider the function

v:(u—ﬁ)+

that belongs to W2 (Bg) (see Lemma 1.4 and Exercise 16). Unlike the proof of
Theorem 1.14, we cannot claim that v € VVO1 2 and, hence, cannot use v as a test
function ¢ in (3.2). To overcome this difficulty, we use instead the function ¢ = vn?,
where

1, lz| <7,
n(x) =4 24, r<a <p,
0, fz[=p
In other words, n(z) = F (|z|) where
1, t <,
F(t)y=4{ =, r<t<p,
0, t>p.

F(?)

Clearly, F'(t) is a Lipschitz function with the Lipschitz constant ;ﬁ, and |z| is a
Lipschitz function with the Lipschitz constant 1. Hence, the composition n = F on
is a Lipschitz function with the Lipschitz constant p%T. Since 7 is bounded, it follows
that n? is also a Lipschitz function.
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Set ¢ = vn? and let us verify that ¢ € W12 (Bg). Indeed, we have clearly vn? €
L?(Bg) and, by the product rule,

0; (vn”) = (Br)n* + v(@m®) = (O0)n® + 2vndm, (3.7)
where 1? and 19;n are bounded while ;v and v belong to L*(Bg), whence also 9; (vn?) €
L*(Bg).

Since supp ¢ C suppn = B, we have ¢ € W1?(Bg) and, hence, ¢ € W, (Bg).
Since ¢ > 0, the function ¢ can be used as a test function in (3.2).

11.12.23 Lecture 19

Substituting ¢ = vn? unto (3.2), that is,
Q=1

yields

/ Z a;;0;u 0;(vn?)dx < 0. (3.9)
B

Rjj—1
Since by (3.7)
di(vn*) = (Ov)n* + 2undim,

we obtain from (3.9) that

> aydudunde < _2/3 > aidjuondinda. (3.10)

Br i j=1 R j=1

Recall that 0;ud;v = 0;v0;v because on the set {u < §} we have v = 0 and, hence,
O;v = 0, while on the set {u > 8} we have 0;u = 0;u. Hence, the left hand side of
(3.10) is equal to

/ Z a;;0;v O n*dr > )\_1/ Vol n’de.
Br =1 Br

Since in the same way 0;uv = d;v v, the right hand side of (3.10) is equal to

-2 Z a;j0;v Omundr < 2)\/B Vol |[Vn|vndx
R

Br =1
1/2 1/2
< 2) (/ |Vv|2n2dx) (/ \Vn* dex) .
Br Br
Therefore, (3.10) implies

1/2 1/2
/\1/ \Vol” n?dz < 2X (/ ]Vv\%fdx) (/ V| U2dl’> :
Br Br Br
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whence
1/2 1/2
(/ Vol nzd:z:) < 2)\? (/ |V77]2v2dx>
BR BR
and
/ |Vv]2172d:1:§4)\4/ \Vn|? v?d. (3.11)
BR BR

This inequality is called a Caccioppoli inequality. 1t is obtain from (3.8) by using a test
function ¢ = vn?.
Next, we will use (3.11) in order to estimate the integral of |V (vn)|>. We have

V(vn) =nVu+oVn

and
IV(on)* < (InVo] + [oVn))* < 2|Vo*n® + 2| Vy|* 0%

Combining with (3.11) yields

/ ]V(vn)\zdeQ/ |Vv]2n2dx+2/ (V| v2dx
Br Br Br
S(S/\4+2)/ \Va|* v2dz.
Br

Setting C' = 8A* + 2 and observing that |Vn| = 0 outside B, and |Vr| < ﬁ in B,, we

obtain that o
/ IV (on)2 da < —2/ . (3.12)
Br (p - T) B,

A

Choose some p’ that is a bit larger than p. Since suppn = EP C B, we have by the
above argument that vn € VVO1 ’2(Bp/). Applying the Faber-Krahn inequality (1.75) to
the function vy in B,, we obtain

J

where ¢ = ¢(n) > 0 and

V(on)do 2 |0 [ (on)da, (3.13)

pl Bp/

U :={x € By : vn(z) > 0}.

Since 1 = 0 outside B, and n > 0 in B,, we see that

U={x€B,:v(x) >0} ={x e B,:u(x) > p}.
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For the same reason the integration over B, in (3.13) can be replaced by that over B,,
so that

IV (vn)|? da > c|U|_2/"/ (vn)3dz. (3.14)

B, B,

Combining with (3.12) and using that 7 = 1 on B,, we obtain
—2/n C
[oaht / (vn)?dw < —2/ vida,
By (IO - 7’) By

where we have absorbed ¢ and C' into a single constant C.
Since n =1 on B,, it follows that

/v2dm§ ¢ 2|U|2/"/ vidr.
: (p—r) B

P

Finally, since v = (u — ), < (u — «),, we obtain, using the notations a and b from

+ +7

_ o2 C 2/n N2
b—/r(u 5)+dx§(p—7“)2|U| /B(u a) dx

__¢ U|*™ a. (3.15)
(p—r)*

Let us estimate |U]| from above as follows. Since v > (3 on U and, hence, u—a > 3 —«
on U, we obtain

o= [ w-afiarz [@-ofidez [ (5-a)rde=(3-ar ],

p U

whence

a2/n

a 2/n
|U|§—(6—a)2 and |U] S—(B—a)él/".

Substituting this into (3.15) yields

b< ¢ att?m, (3.16)

T (p=r) (Bt

Part 2. Consider now a decreasing sequence { Ry}, of radii:

1 1
=—(14— .
Ry, 2(+2k)R

Clearly, Ry = R and Ry \, g as k — oo. Also, fix some a > 0 and consider an
increasing sequence {oy }po

Clearly, ap = a and ay, " 20 as k — o0.
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Set

my, = / (u— ak)i dx.

Since the sequence { B, } of balls is shrinking and the sequence { (u — o) } of function
is monotone decreasing, we see that the sequence {my} is monotone decreasing.
Our aim is to choose « so that m, — 0 as k — oo. Since

lim my, = / (u — 20z)3r dx,
Bpr/2

k—oo

in this case we will obtain that
2
/ (u—2a)l dr =0,
Br2

esssup u < 2aq, (3.17)
Bpr/2

which will lead us to the desired estimate (3.3).
Applying (3.16) to the pair my_q, my instead of a, b, we obtain

whence

¢ 1
+2/n
my < my_7 .

" (Reo1 — Ri)* (og — ak—1)4/n

Since R,_1 — Ry, = % (Q*kR) and oy — ap_; = 2 %a, it follows that

C40+2/m)k 142/n
i S g
Denoting
2 C

rewrite this inequality in the form

my, < 4PFAmME_ . (3.19)
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This inequality is similar to the inequality (1.87) obtained in the proof of Theorem
1.14:
my, < 4P Amb . (3.20)

The difference between (3.20) and (3.19) is only that (3.19) uses 47 instead of 4, which
does not make any difference for the next argument. Indeed, iterating (3.20), we
obtained in the proof of Theorem 1.14 the estimate (1.92), that is,

ko —(k+1)p+k

P __ 1 p _ 1
my < |:4(P*1)2Apflm0i| 4 -2 A1,

Hence, iterating in the same way (3.19) and replacing everywhere 4 by 47, we obtain
that

ko —(k+Dptk

p —p12 %1 " —1)2 _%1
my < |4 @D Ar-Tmy| 47 e-D? ATe-1, (3.21)

We would like to derive from (3.21) that my — 0 as k — oco. This will be the case
whence the term in the square brackets is smaller than 1. Since

mo—/ (u—a)id:vg/ u’ dz,
Br Br

it suffices to have the following inequality
P2 1
4-1? Apl/ uid:p < 1.
Bgr

Substituting from (3.18) A = # and p = 14 2/n, we replace this inequality by the
equality

46-0% [ —— 2de = =
’ (R2a4/n) /BR U =5

which allows us to determine the desired value of « as follows:

2 _ ¢

a —_ —
R" Jg,

2
uidx.

Substituting into (3.17), we obtain

ok 1/2
esssupu < —-— </ u? dx) ,
Brys Rn/2 B +

which finishes the proof. m
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3.2 Weak Harnack inequality for positive superso-
lutions

Theorem 3.4 Let Bz C Q) and assume that uw € WY2 (Bsg) is a non-negative super-
solution of L in Bsg, that is, Lu < 0 in Bsg. Fix some a > 0 and set

E={z€ Bgr:u(z)>a}.

For any € > 0 there exists 6 = 0 (n, A\,e) > 0 such that if

|E| > ¢|Bg| (3.22)
then
essinf u > da. (3.23)
Bgr
u=0

Recall that any positive harmonic function v in a ball Bsg satisfies the Harnack
inequality
supu < C'inf u,
Br Bgr

where C' = C (n). In particular, for any 0 < a < supg, u, we have

infu > da,
Bgr

where § = C~!, which looks similarly to (3.23). However, for the Harnack inequality
we do not need to know that the measure of the set E' = {u > a} N By is positive — in
fact, it suffices to know that this set is non-empty as the latter will imply a < supg, u.
This is the reason why Theorem 3.4 is referred to as a weak Harnack inequality.

Before the proof, let us derive from Theorem 3.4 the following mean value inequality
for supersolutions.
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Corollary 3.5 (Mean-value inequality for supersolutions) Let Bsg C €2 and assume
that u € Wh?2 (Bsg) is a non-negative supersolution of L in Bsg. Then

-1
essinfu > ¢ <][ u_ldx> , (3.24)
Br B

where ¢ = ¢ (n,\) > 0.

The value

(jgupdx)l”

is called the p-mean of function u in 2. If p = 1 then this is the arithmetic mean, if
p = 2 — the quadratic mean. For example, the quadratic mean was used in the mean-
value inequality for subharmonic functions. If p = —1 as in (3.24) then the p-mean
is called the harmonic mean. Hence, for a non-negative supersolution, essinfp, u is
bounded from below by the harmonic mean of u in Bg, up to a constant factor.

Proof. If f, w™'dw = oo then (3.24) holds trivially. Assume that this integral is
finite. For any a > 0, we have

w<ansa=|{1> o< o [ tae—am f Lo
Choosing 1
1 1 -
a= 3 (]i ' de) ,
we obtain |
[{u < a} 1 Bal < 5u(B)
and, hence,

{u>a} N Byl > Su(B).

Applying Theorem 3.4 with ¢ = 1/2, we obtain

-1
essinf u > da = é <][ ldm) ,
Br 2 Bgr u

which proves (3.24) with ¢ = £6(n, A, ). =

18.12.23 Lecture 20

Proof of Theorem 3.4. Assuming that u is a non-negative supersolution of L in
Bsr and that, for the the set

E ={x € Bg:u(zx) >a},

we have
|E| > ¢ |Bgl (3.25)
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for some € > 0, we need to prove that

essinf u > da, (3.26)

Br

where § = §(n, A, e) > 0. Without loss of generality, we can assume that essinf g, u > 0.
Indeed, if essinfp,, v = 0 then consider the function u + m for a positive m. Clearly,
L(u+m) < 0 so that u + m is also a supersolution, and essinfp,, (u+m) > 0.
Applying (3.26) to the function u + m and observing that

u>a & u+m>a+m,

we obtain
essinf (uw +m) > 6 (a+m).

Br

Letting m — 0, we obtain (3.23). Hence, we can assume that essinfp,, u > 0.
Besides, by replacing u by u/a, we can also assume that a = 1. In this case we have

E = {U Z 1} N BR
and, assuming (3.25), we need to prove that

essinf u > 4,
Br

where 6 = § (n, A\,e) > 0.
The main idea of the proof is to consider the function

1
v=1In-—.
U

In terms of this function, we have
E:{USO}HB}% |E|Z€|BR|7

and we need to prove that

esssupv < C' = C'(n, A €) . (3.27)
Br
v=In(1 /)
u
1
0 By B E
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The plan of the proof is as follows. Firstly, we will verify that v is a subsolution of
L, which will imply by Theorem 3.2 that

C (/ ) )1/2
vidx .
BR Rn/2 BQR *

esssupv <

Secondly, using a certain Poincaré inequality (similar to the Friedrichs inequality), we

will deduce that
/ vidr < / V| da.
Bagr Bagr

Thirdly, using again specific properties of Lv, we will obtain an upper bound for

/ Vol de,
Bar

which together with the previous estimates will yield (3.27).

Step 1. Now let us prove that v is a subsolution of L in B3g. Let us first verify that
v € WH2(Bsg). On the set {u < 1} function v is non-negative. Since u is separated
from 0, we see that in this case

0 < v < const.

On the set {u > 1} function v is negative and

1
o =—=In— =Ilnu < u.
U

Hence, in the both cases
|v| < const +u,

which implies v € L?(Bsg). Since (ln%)/ = —% is a bounded function outside a
neighborhood of 0, that is, in the range of u, we obtain by the chain rule of Exercise

17, that
1 o;u
@-U = 8j lna = —JT eL? (BgR) .
Hence, v € W2 (Bsg).
In the same way also the function < belongs to W? (Bg), which will be used below.
Indeed, % is essentially bounded and, hence, is in L? (Bsg), and by the same chain rule

1 0
9; (—> = —J—f € L?(Bsg).

u u

Now let us verify that v is a subsolution of L, that is, Lv > 0 in Bsg. In fact, this is
shown in Exercise 47 using the chain rule for L, but we give here a direct independent
proof.

Motivation. The motivation for Lv > 0 comes from the following observation. In the simplest
2
casen=1and L = L, ifu € C%(R), u > 0 and u” < 0 then we have

de )

2 2
U// _ ln l " _ _'LL/ / _ (’LL/) _ ’LLN’LL 2 (u/) Z 0.
U U u? u2
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Ifn>1,L=AuecC*R"), u>0and Au < 0 then similarly

- 1 N (9u)? — (0 2 (A
Av=3 =" (O)” = G _ Vol ~ (Awu [Vl
j— (7

u? u?
i=1
Noticing that [Vv| = |¥%|, we obtain from the above computation that
Av > |Vol*. (3.28)
In fact, the above computation shows that (3.28) is equivalent to Au < 0.

In the present general case, we have to verify that, for any non-negative test function

(NS D (BgR)
—/ Z a;;0jv Opdx > 0.
Bsr jj=1

Since a part of the following computation will also be used below for a different purpose,

we will do it for non-negative functions ¢ € Lip.(Bsg). Since 0;v = —%, we have
/ Z a;;0;v Oy dx = / Z a”-— ipdr = / Z a;;0ju—- O dr. (3.29)
B3RZ] 1 BSR’LJ 1 B3R1J 1

The next idea is to use the function ¢/u as a test function in inequality Lu < 0. Since
u is a supersolution, we have

B

3R §j=1

for any non-negative 1) € VVO1 “(Bsg). Let us verify that the function ) = ¢/u belongs
to Wy*(Bsg). Since ¢ € WH(Bsg) and 1/u € W'2(Bsg), the function ¢ = ¢/u
belongs to W12(Bsr) (as it was done in the proof of Theorem 3.2). Since supp ) C
supp ¢ C Bsg, we have ¢ € W12 (Bsg). Since also ¢ > 0, we can use this function in

(3.30) and obtain that
/ Z a;;0;u 0; ( ) dx > 0. (3.31)
B

3R 4 5=1

By the product rule we have
1 0; 0;

o(2) =0 (vy) =2 -2
u u u u

2 a0(2) %

u u?
into (3.29) and using (3.31), we obtain

Substituting

n

_ a;j0;v Ojp dx = Zamau( (90> az';tgo) dx

Bsr j j=1 B3Rzg 1
/ 5 a;;0;u 2g0dx—/ E a;;0; u&u 5 dx >0,
Bir i j=1 Bir i j=1

(3.32)
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where we have also used the ellipticity of L. Hence, v is a subsolution of L.
Noticing that in the right hand side of (3.32) 0,u/u = —0;v and J;u/u = —0v, we
obtain that
-,

which is an analog of (3.28)!. The inequality (3.33) will be used below.
Applying the mean value inequality of Theorem 3.2 to a subsolution v, we obtain

C 1/2
esssupv < —- (/ v? d:B) , (3.34)
BR Rn/z BQR *

where C' = C(n, \), which completes the first step towards the proof of the bound
(3.27).
Step 2. In order to estimate the integral in (3.34), we need the following fact.

> a0 0 de > / > a0 0w pd, (3.33)

3R =1 Bsr ij=1

Poincaré inequality. Let v € W2 (B,) and consider the set

H={xe€ B, :v(x)<0}.

Then 2|5
/ vidr < ol 5| Vo, | da (3.35)
. [H| JB,

where C' = C'(n).

Comment. Recall that the Friedrichs inequality says that if v € VVO1 2 (B;) then

/ vide < 0r2/ |Vo|? da. (3.36)
B, B,

For an arbitrary function v € W2 (B,) this type of inequality cannot be true because if v = 1 then
the right hand side vanish while the left hand side is positive. Assume for simplicity that v > 0. Then

(3.35) amounts to
2 Br
/ vzdeC’T | |/ \Vo|? de,
B, \H| /B,

Indeed, observing that the left hand side of (3.33) is equal to (Lv, ) where Lv is regarded as
distribution, we can rewrite (3.33) as follows: Lv > > a;;0;v O;v.

n
ij=1
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where H = {v = 0}. Hence, if v vanishes on a large enough set (in the sense that |H| > ¢|B,|), then
we obtain again (3.36). As we see, the validity of (3.36) or similar inequalities depends on the property

of v to vanish on certain sets.

The proof of (3.35) is non-trivial and will be given below (see Theorem 3.10 and
Corollary 3.11).
Now let us apply (3.35) for the function v = In % in the ball Byg, that is, for r = 2R.
Since
E:{’U§0}QBRC{’USO}HBQR:H,

we have
|H| > |E| > ¢|Br| =€2™" | Bag| .

Then (3.35) yields

2
/ vidr < CR? Vo, |* dz < C’ERz/ Vol dz,
Bar

Bor Bsog

where C. depends on &,n, \. Combining with (3.34), we obtain

C 1/2
esssup v < T3 (C€R2/ |Vv|2dx) . (3.37)
Br Bagr

Step 3. In this step we estimate the integral

/ Vol d.
Bsr

Let n € Lip.(Bsg) be such that n = 1 on Bsygr (we will specify n below). Using in
(3.33) the function ¢ :=n? € Lip.(Bsg), we obtain

/ Z aijﬁjv &;v 772 dI’ S — Z aijajv 8@ (7]2) dl’ (338)
B

3R j j=1 B3r j j=1

Using the uniform ellipticity of (a;;), we estimate the left hand side of (3.38) as follows:

/ Z ;00 O n* dx > N1 / \Vo|* n?dz,
B3R =1 Bsr

while the right hand side of (3.38) is estimated as follows:

_ Z a;;0;v 0; (n*) dz < )\/ Vol |[Vn?| do = 2)\/ |Vo|n|Vn|dz.
B3r B3r

Bsr ; j=1

Hence, we obtain

/ Vol nde < 2)\2/ Vol n|Vn|dx
Bsgr Bsr

1/2 1/2
szv(/ <|W|n>2dx) (/ |Vn|2dx) |
Bsr Bsgr
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whence

/ \Vol* n?dz < 4)\4/ V| da. (3.39)
Bsgp Bsgr
Let us now specify n as follows:
1, lz| <7,
pw) ={ 2 <o)<,
0, lz[=p

where r = 2R and p = gR < 3R.

A “bump” function 7

Since 7 = 1 on Byg and |Vn| < p%r, where p —r = R/2, we obtain from (3.39) that

B
/ Vol de < 422 Byl 5 =CR"2,
Bagr (p—T)

where C' = C'(n, A). Finally, substituting this estimate into (3.37), we obtain

n—oy1/2
essBsupv < T2 (RQC"ER 2) =C(n,\e),
R
which finishes the proof of (3.27). =
21.12.23 Lecture 21

3.3 Oscillation inequality and Theorem of de Giorgi
Define the oscillation of a function u in a domain D by

OSCU = essup u — essinf u.
D D D

Observe that, for all real a,b,

osc (au + b) = |a] osc u.
D D
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As above, let
Lu= Z 8i(a7;j8ju)

ij=1
be a uniformly elliptic operator with measurable coefficients in a domain 2 C R".

The next theorem is a simple consequence of the weak Harnack inequality, but it
provides a key argument for the proof of De Giorgi’s theorem.

Theorem 3.6 (Oscillation inequality) Let Bsg C Q and assume that u € W2 (Bsg)
15 a weak solution of Lu =0 in Bsr. Then

oscu < 7y 0sC U, 3.40
osc s < 1 98¢ (3.40)

where v =y (n, ) < 1.

Proof. If oscp,, v = 0 or oo then there is nothing to prove. If 0 < oscp,, u < 00,
then, by adding a constant to u and rescaling u, we can assume that

essinfu =0 and esssupu = 2.
Bsr Bsr

Consider the two sets
{u>1}NBr and {u<1}NBg. (3.41)

One of these sets has measure > % | Bg|. Assume that this is the first set, that is,

1
[{u =1} N Br| 2 5 [Brl-

Applying Theorem 3.4 with a =1 and ¢ = %, we obtain that
. 1
essinfu > § = d(n, A, =).
Bp 2

It follows that

oscu <2 —0 = 0sc U,
Br Bsgr
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which proves (3.40) with y = 22 < 1.
Assume now that the second set in (3.41) has measure at most 5 |Bg|, that is,

1

Consider the function v = 2 — u. For this function, the oscillation in any domain is
equal to that of u. Also we have Lv = 0 in Bsp and

u<lesov>1,

which implies

1
[{v =1} N Br| = 5 |Brl.
Applying the same argument as above, we obtain that

oscv < 7y 0sC v,
Br Bsr

which implies the same inequality for u, thus finishing the proof. m

Recall that C'%(.S) denotes the set of all locally Holder continuous functions on a set
S with the Holder exponent a. Assume that S is a compact. Then C* (S) coincides
with the set of all Hélder continuous functions on S with the Holder exponent a (cf.
Exercise 36, where this was proved for o« = 1, but the case of any « is similar). The
set C*(S) is obviously a linear space. The following expression

o [12) = u)
syes | —yl
TFy

is the minimal Hélder constant of u and, hence, is finite for any function u € C*(S5).
Moreover, this expression as a functional on the space C*(S) is a seminorm that is
called the Holder seminorm. It gives rise to the following C*-norm:

|u(z) — u(y)]
U||carqy = SUp |U| + Sup ——x—.
H HC’ (S) p: | ’ w,l%lfs ‘x_y‘
Y

One can show that C* (S) with this norm is a Banach space.

Theorem 3.7 (Theorem of De Giorgi) If u € W'?(Q) and Lu = 0 weakly in Q then
ue C® (Q) where a« = a(n,\) > 0. Moreover, for any precompact open set U, such
that U C (Q,

el ey < € e (3.42)

where C'= C (n, A\, p) and p = dist (U, 092).

For the proof of Theorem 3.7 we need the following lemma that will be proved
below.
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Lemma 3.8 Let U be a domain in R™ and u be a function from L*(U) such that, for
some positive a, e, A,

lu(z) —u(y)| < Alx —y|* for almost all v,y € U s.t. |x—y| <e.

Then there exists a continuous version u of u.

Remark. The expression “for almost all z,y € U” has the following rigorous meaning;:
for almost all points (z,y) € U x U. Hence, here we use the Lebesgue measure in
R” x R® = R?",

Proof of Theorem 3.7. The proof consists of four steps. N
Step 1. Set p = dist(U, 092) and observe that, for any z € U, the ball B, (z) is

contained in §).
@ p

For any non-negative integer k, set
pr, =37 p.

Fix a point z € U and consider the sequence of balls B, (2).

By Theorem 3.6, we have

osc u < 0osc  u, 3.43
Bpk (2) - ’prkfl(z) ( )

which implies by induction that, for all £ > 1,

osc u <~ osc u < 298 esssup lul .
By, (2) By, (2) By, (2)

Applying the mean value inequality of Theorem 3.2 in the ball B,(z) with functions u
and —u, we obtain that

C
esssup |u| < esssup |u] < —— [Jullr2(5,()) < C l|ull 20,
By, (2) Bp/2(z) pn/Q (Be () @
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where ¢ = ¢(n, ) and C' = C (n, A, p). Combining the above inequalities, we obtain

osc u < CvF |lull oy | (3.44)
Bﬂk(z)

Note that, without application of Theorem 3.2, we obtain from (3.43)

osc u < ~F osc u <29 |lull; o - 3.45
056 0 <7 pse w < 2 ullage (3.45)

Step 2. Let us prove that, for almost all z,y € U with
0<l|z—yl<p/2, (3.46)

the following inequality holds

(3.47)

u(z) = u(y)l < Clo—y|" lull 2(q)

for some a > 0 and C' = C (n, A, p).

Idea of proof. One of the difficulties in the proof of (3.47) is that this inequality has to be proved
for almost all x,y. In order to show the idea of the proof let us first assume that u is continuous and
prove (3.47) for all z,y € U satisfying

0<|z—y|l<p.
Fix such a pair z,y and find a non-negative integer k such that
Prp1 < |7 =yl < py.
Since y € B, (), using the continuity of u and (3.44), we obtain

. k
fule) —ulw)l < posg, u < O lullzoy

Setting a = logy % > (0, we obtain v = 37 and

Ah = 3=hka _ (’”@)a < <3|x_y|>a
p p

3|z — @
u(x)—u(y>§0( | - y') il oo

It follows that

which is equivalent to (3.47).

For any couple x,y € U satisfying (3.46) there is a non-negative integer k such that

1

1
§pk+1 <l|lx—y| < Epk. (3.48)

Let us fix k& and prove (3.47) for almost all z,y € U satisfying (3.48).2

The compact set U can be covered by a finite number of balls of radius % Pr, Say
By, (2;) where z; € U. Then, for any = € U there is 2; such that x € Bi,, (z;); more-
over, it follows from (3.48) that y € B,, (2;). Hence, for any couple z,y € U satisfying

2Indeed, if we know already that the set Sj of points (z,y) € U x U satisfying (3.48) and not
satisfying (3.47) has measure 0 in R?", then the set of points (z,y) € U x U satisfying (3.46) and not
satisfying (3.47) is Uy, Sk, which also has measure zero.
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(3.48) there is z; such that z,y € B, ().

Therefore, it suffices to prove (3.47) for almost all z,y € B, (z;) satisfying (3.48).
Applying (3.44) with z = 2;, we obtain that, for almost all z,y € B, (z),

[u(z) —u(y)| < ose u< Oy [full 2 q)- (3.49)

P \Zi

Let us estimate v* via |z — y| using (3.48). Setting
1
a:=logs — > 0,
v
we obtain 7 = 37 and

b gak (&) _ (%) < (M) ’ (3.50)
p p p

where we have used (3.48). Substituting this into (3.49), we obtain (3.47).
Alternatively, if we use (3.45) instead of (3.44) and (3.49), then we obtain, for
almost all z,y € U satisfying (3.46) that

u(e) — uly)| <2 (6'”””—;‘”') ol ey | (351)

Step 3. By (3.47), the function u in U satisfies the hypotheses of Lemma 3.8 with
e = p/2. Hence, u has a continuous version u in U. Since {2 can be covered by a
countable family {U;} of precompact open sets U; such that U; C €, we obtain in any
set U; a continuous version of u denoted by ;.

@
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In any intersection U; N U; we have w; = v = u; a.e., which implies that w; = u;
pointwise in U; N U;. Hence, we can now define a continuous function w in the entire
set € by setting

It follows that u = u a.e.in each U;, whence u = u a.e.in Q.
Step 4. Now we prove the estimate (3.42). Let us rename u back to u so that now
u is continuous in 2. By Theorem 3.2 we have, for any =z € U,

u(@) < sup u < Cllullpep @) < Cllullzg)
Bp/Z(QC)

where C' = C(n, A, p). Applying the same estimate to —u, we obtain the same inequality
for —u(x), which implies that

sgp jul <C ||U||L2(Q) :

By inequality (3.47) of Step 2, we have, for all z,y € U such that 0 < |z — y| < p/2,
u(z) —u(y)| < Clz—y* lull L2 (g

(it was proved above for almost all x,y but now, due to the continuity of u, we obtain
that it holds for all z,y). Hence, we obtain

z,y€eU, | yl
0<|z—y|<p/2
Observe that
u(x) —uly 2\"
sup M <2 (—) sup [u] < C'[[ull p2q) -
lz—y|>p/2

Finally, combining all these estimates, we obtain

|u(z) — u(y)
Hu”ca(ﬁ) = sup |u| + sup —a - = C HUHLZ(Q) 5
U z,yel, | y|
Ay
which finishes the proof of (3.42). =
08.01.24 Lecture 22

Corollary 3.9 Under the hypotheses of Theorem 3.7, it is also true that, for any
precompact open set U such that U C Q and for all xz,y € U,

ule) — uly) so('l”;y') ol ey (3.52)

where p = dist (U, 89) and the constant C' depends only on n, \ (and does not depend
on p).
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Proof. Indeed, if |z — y| < p/2 then (3.52) was proved at the end of Step 2 for almost
all x,y satisfying the above restrictions (see (3.51)). Since u is now continuous, the
inequality (3.52) holds for all such z,y. If |[x — y| > p/2 then (3.52) follows from

u(z) = u(y)] < 2|[ull p(q) -
[ ]

Proof of Lemma 3.8. Assuming that a function v € L*(U) is “almost” Holder in
the sense that

lu(z) —u(y)] < Alz —y|® for almost all z,y € U s.t. |z —y| <e, (3.53)

for some positive constants «,e, A, we need to prove that there exists a continuous
version u of u.
Choose a mollifier ¢, that is, a function ¢ € C§° (R") such that

@ >0, suppy C By and / pdr = 1.

n

Set for any positive integer k
pr(x) = k"¢ (k) (3.54)
so that
supp ¢, C By, and / ppdr = 1. (3.55)

n

Let us extend the function u to all R™ by setting u = 0 outside U. Then u € L* (R"),
and we can consider the mollification of w, that is, the sequence of functions {ug},;-,
defined by

un(z) = wr oy (z) = / u (e — y) op(v)dy.

n

It is known that u, € C*(R™) N L?*(R™) and

uy, L ask — oo (3.56)

(cf. Exercises 4, 39, 40). The idea of what follows is to show that the limit

u(r) = klim ug(z) (3.57)
exists for all x € U, and
|u(x) —u(y)| < Alz —y|® forall z,y € U s.t. |z —y| <e/2 (3.58)

(note that (3.58) holds for all z,y in contrast to (3.53) that holds for almost all z,y).
Consequently, @ is continuous. By (3.56), there is a subsequence {uy, } such that

Uy, — U a.e..

Comparing to (3.57) we conclude that ©w = u a.e.; that is, u is a continuous version of
u.
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Now let us prove the existence of limy_ ux(x). It suffices to prove that, for any
x € U, the sequence {uy(z)} is Cauchy. Fix some x € U. Since supp ¢, C By, let us
rewrite the definition of u; in the form

UM@=1éw@uw—ﬂM%@My=/‘ u(2) ¢y (x — 2) dz. (3.59)

By k()

For all k,m we have, using (3.59) and (3.55),

ug(r) = w(2)pr(r—2)-1dz = u(2)pp(x —2)dz | p,,(x—1)dt,
w=[, = él/mm(/&/k(x)”“ >>go< 1t

where z € By,(v) and t € By (7).

Similarly, we have

Um () = /Bl/m(x) u(t)p,,(z —t)dt = /Bl/k(x) </121/m(x) u(t)p,,(r — t)dt) or(r — 2)dz.

Using Fubini’s theorem we obtain
() — () = / / (u(2) — u(t)) o (x — 2o, (x — )dzdt.  (3.60)
By p(z)XB1/m (@)

If k£ and m are large enough then the balls B/ (xz) and By (x) lie in U. Since
2 € Byji(x) and t € By (), we have

1 1
<o+ =<
|2 ’_k—i_m c

(where € is from (3.53)), provided k,m are large enough. Hence, for almost all z,¢ in
the domain of integration in (3.60), we have

1 1\°
—u()| <Alz—t|*"<A[-+—) .
0 - <Al - <A+ )
Substituting into (3.60) and using (3.55), we obtain

1 1\*
lug(x) — U ()] §A<E+_) — 0 as k,m — oo.
m
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Therefore, the sequence {ug(x)} is Cauchy for any = € U and, hence, there exists the
limit
u(z) == klim ug(z).

Let us now show that @ satisfies (3.58). For all 2,y € U we have

ug(x) = w(2)pi(r — 2)dz = w(2)pp(x —2)dz | pr(y —t)d
W=[, - /BU,C@)(/BI/MW( ))so(y i

and

un(y) = / L ue = = / " ( / RCEUE t)dt) opla — 2)dz.

Hence, using Fubini’s theorem, we obtain
wo) - ) = [[ (u(=) — (D)) gl — 2)pply — Ozt (361)
Bk (w)xByk(y)

Fix some x,y € U such that |z — y| < &/2. If k is large enough then both balls B ()
and By(y) lie in U. For all z € By(x) and t € Byx(y) we have by the triangle
inequality

2
|z—t|<|x—y|+E<e

provided k is large enough. Hence, for almost all z,¢ in the domain of integration in
(3.61), we have

2 [e%
u@ -l <Ak <A(lo-yl+F)
Substituting into (3.61), we obtain
2 (03
ue(z) —u(y)l < A{le —y[+ )
Letting k — oo we obtain

ji(z) —u(y)] < Alz —y|”,

which finishes the proof. m
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3.4 Poincaré inequality

We start with the following more general version of the Poincaré inequality.

Theorem 3.10 Let p € [1,00). For any ball Br in R™ and any f € WP (Bg), the
following inequality is true:

/ / y)|P dedy < C’R”*p/ IV fIP de, (3.62)
Bgr v Bpr Br

where C'= C (n,p).

Dividing the both sides of (3.62) by |Bg|” and recalling that |Bp| = ¢, R", we can
rewrite it in the following form:

][ ][ y)|P dedy < C’Rp][ IV fIP du.
BgrJ Br Br

Proof. Let us first prove (3.62) for f € C' (Bg). Fix some z,y € By and consider the
function

pt) =flz+tly—w), tel01],
that is well defined and differentiable because x + t(y — x) = (1 — t) x + ty € Bg.

T+t (y-1)

Applying the fundamental theorem of calculus and the chain rule, we obtain

1

[F(y) = f(@)] = le(1) — 9(0)] =

go’(t)dt’
~|[ave+io-oia

_ /01Vf<x+t<y—x>>~<y—x>dt\

s/o VAl @4ty — ) |y — ol de

ng/o V| (x4t (y— ) dt.
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Next, applying the Holder inequality, we obtain

|f(y) = f(x)] < 2R (/01 IV f|? (a:+t(y—x))dt)1/p.

Raising this inequality to the power p and integrating over (z,y) € Bg X Bg, we obtain

/BR /BR )P dzdy < (2R) / /BR /Ollvflp (x4t (y — z))dtdzdy. (3.63)

In the view of (3.63), in order to prove (3.62) it suffices to show that

/BR/BR/Ol !Vflp(x+t(y—x))dtdxdyg(jRn/BRWﬂpm

Set F' = |V f|" and rewrite this inequality as follows:

1
/ / / Fla+t(y— ) dtdedy < CR" / Fdz. (3.64)
Br JBgr JO Br

Let us prove (3.64) for any non-negative F' € C(Bg), with a constant C' = C(n). Let
us extend F' to the entire R" by setting F' = 0 outside Bgi. By Fubini’s theorem, the
integrations in the left hand side of (3.64) are all interchangeable. In the integral

/F(a:—l—t(y—x))dy

Br

let us make change z = y — x, so that
/F(x+t(y—:c))dy:/ F(m+tz)dz§/ Fz+2)dz
Br Br(-=) Bar

and, hence,

1 1
/ / / F(x+t(y—))dtdedy < / / F (x4 tz) dtdxdz.
Br JBgr JO Bor Y Br JO0

Next, in the integral
/ F(x+tz)dx,
Br

let us make change ' = x + tz so that

/ F(zx+tz)de :/ F(2')dx' < / F (2") da' :/ F(2')da'.
Br Br(tz) n Br

It follows that

/ / / (x +t(y — z))dtdedy < / / ") dt dx'dz
Br JBr Bar J Br

=1-|Bapg] F(2')dx'

Br

:C’R"/ F(x)dx,
Br
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which finishes the proof of (3.64) for f € C'(Bg).

11.01.24 Lecture 23

Let now f € WP (Bg). It suffices to prove that, for any r < R,

/ (@) — @) dedy < Crme / VFP de, (3.65)
r J By B

and then let r — R. Let n € Lip.(Bgr) be a cutoff function of B, in Br. Then
fn € W (Bg) € Wy* (Bg) and, setting fn = 0 in B%, we obtain fn € W,” (R™).

Since f = fnin B,, the function f in (3.65) can be replaced by fn. Hence, renaming
fn back into f, we can assume that f € W, (R").

Consider mollifications f, = f * p, where {¢,} is a sequence of mollifiers defined
by (3.54). Then f; € C* (R"™) and, hence, by the first part of the proof, we have

/ [ o) i) dady < o [ [whpas (3.66)

By

By Exercise 41, we have
1, n
i T as k- oo,

in particular,

IV filf do — IV FIPda.

B, B

Since f 2> f, there is a subsequence of k such that fr(z) — f(z) for almost all x € R™,
whence

fr(x) — fuly) — f(x) — f(y) for almost all z,y € R™.

By Fatou’s lemma, we obtain

[ [ 1@ - sl sy < it [ 1) = 5ol ddy
r 7 By ©

r J By

< liminf Cr™™? [ |V fi|’ dz

k—oo B,

:Cr”+p/ IV f|? da,

which proves (3.65). ®



114CHAPTER 3. HOLDER CONTINUITY FOR DIVERGENCE FORM EQUATIONS

Remark. In the case p = 1, the Poincaré inequality (3.62) has the following geometric
meaning. Let I' be a smooth hypersurface that divides a ball B into two open subsets
)y and €2,. We claim that

min (€], ]€s])
r >
where ¢ = ¢(n) > 0. That is, the surface measure o(I') of I' cannot be too small in
comparison to the volumes of €2; and €25. In other words, a ball has no bottleneck.

06

A ball and another domain with a bottleneck

(3.67)

Let us sketch the proof of (3.67). Fix some ¢ > 0 and define a Lipschitz function
f- in Bp as follows:

1
min(1, —dist(z, ")), x € Qy,
€
1
—min(1, —dist(z, ")), x € .
£

Denote by T'. the e-neighborhood of I'. Then f. = 1in Q3 \ ., fo = —11in Qy \ [,
while f, = :I:%dist(x, ') if z € I'.. In particular, f =0 on T'.

By (3.62) with p = 1 we have

C

/ (kI g / R / VAe) — £y (3.68)

for some ¢ = ¢(n) > 0. One can show that |V f.| = in I so that

£

1
/ |V f.|de == — 20(T) as e — 0,
Br €
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where we have used that |[['.| ~ 2e0 (I'). As ¢ — 0, we have, for any = € Bg \ I,

1, x € Ql,
—1, x € QQ,

fo(z) — f(z) = {
which implies

[ @) = sty ~ [ [ 15 - )1 dody

BRXBR BRXBR

]+ // [+ ] |1 = stotasas

QlXQQ QQXQl QlXﬂl QQXQQ

- [ [t <|M@+/ £(@) — (y)]dady
Ql QQ Q2 Q1 %/_/
= 4104] |Q0] .
Hence, letting € — 0 in (3.68), we obtain
€] €2

g (F) zc Rn+1
Since || + |Qs]| = |Bgr| = ¢, R", it follows that

01192

sy > S UL e a0,

- R’Qﬂ + ‘Qz‘ - R
which was claimed.

Now let us prove the Poincaré inequality in the form that was used in the proof of
Theorem 3.4.

Corollary 3.11 Let v € WY2 (Bg) and consider the set
H={x € Bg:v(z) <0}.
Then

R?*|B
/ vide < C ‘JLI‘R’ Vo, |* dz
BR BR

where C' = C'(n).
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Proof. By Exercise 16, we have v, € W2 (Bg). Renaming v, into v, we can assume
that v > 0. Hence, we prove that

2
B

/ v2dx§0R| |

Bn H| g,

where H = {v = 0}. By (3.62) with p = 2 we have

Vol d,

/BR / (0(0) = v(y)* dody < R [ Vol ds

Br

Restricting the integration in y € By in the left hand side to y € H and noticing that
v(y) = 0, we obtain

// v(x)dedngR””/ Vol dz
H JBgr Br

whence

|H| v(x)’dr < C’R”+2/ |Vo|® dz.

Bgr Br

Finally, it remains to observe that R"*? = cR? |Bg|. =

Remark. Here is yet another form of the Poincaré inequality in the case p = 2: for
any ball Bp in R" and for any f € W2 (Bg),

/ (f =) de < ORQ/ IV f|? da, (3.69)
Br Br

where C' = C'(n) and

(see Exercise 66). In particular, if

fdz =0 (3.70)

Br

then f =0 and (3.69) becomes

fdx < (JRP/ VS| de, (3.71)

Bg Br

which has the same shape as the Friedrichs inequality in Bg. However, the Friedrichs
inequality holds for f € W,*(Bg) while the Poincaré inequality in the form (3.71)
holds for f € W'?(Bpg) satisfying (3.70).
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3.5 Holder continuity for inhomogeneous equations

As above, consider in a domain {2 C R" a divergence form uniformly elliptic operator
n
Lu= Z ('31 (aijaju)
ij=1
with measurable coefficients.

Theorem 3.12 Let u € WH2(Q) be a weak solution of Lu = f in 2, where f € LY(Q)
with
q € (2,00 N (n/2,00]. (3.72)

Then u € CP(Q) where 3 = 3 (n, A, q) > 0.

Remark. Assume that 2 is bounded (then f € L%(Q2) implies f € L*(Q)). By Theorem
1.15, if w is a solution of the Dirichlet problem

Lu = f weakly in 2,
u € Wo*(Q),

where f € LI(Q2) with ¢ as in (3.72) then u € L>(2) and, moreover,

2_1
[l oo < €15 (11| o -

Theorem 3.12 says that also u € C?(Q).

Remark. Note that if f € L9 with ¢ < n/2 then there may exist a solution u € W12(Q)
of Lu = f that does not admit a continuous version (see Exercise 52).

Proof. Fix a precompact open set U such that U C Q. Recall that, in Step 1 of the
proof of Theorem 3.7, we have proved the inequality (3.44): if Lu = 0 in Q then, for
any z € U and any k € N,
osc u < Cy*, 3.73
s us Oy (3.73)
where p = dist (U,99), p, = 37 %p, v = v(n,\) € (0,1), and C depends on u and U,
but does not depend on z, k. In the next steps of the proof, we have used only (3.73)
and showed that it implies that u € C*(Q2) with a = log; =
Hence, here it is also sufficient to verify that a solution u of Lu = f satisfies (3.73).
In fact, we will prove that, for all small enough » > 0 and all z € U,

osc u < Cr”, (3.74)
By (2)

where 3 = B(n, A\, q) € (0,1) and C does not depend on z,r (in fact, C' will depend on
n, A, q as well as on ||ul|;» and || f| ;). Indeed, (3.74) implies (3.73) because setting in
(3.74) r = p;, we obtain

08¢ u S Cpy = C (p°377) = (Cp" ),
P \Z
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where v = 377, By the argument of Theorem 3.7, it follows that v € C%(Q) with
a = log;, % = 0.

15.01.24 Lecture 24

Hence, let us prove (3.74). First we choose some positive R < dist(U, 02) so that

BR = BR (Z) C Q.

Let v be the solution of the Dirichlet problem in Bg:

Lv = f weakly in Bpg
v E WOLQ (BR)

that exists by Theorem 1.2. Consider the difference
w=u—v € W"*(Bpg)

that satisfies
Lw =0 weakly in Bpg.

Then v = v + w and, hence, for any positive r < R,

oBscu < oscv + oscw.

I T T

Let us estimate the term oscp, v simply by [|v]| o

oscv <2 [0l oo () -
Then we apply Theorem 1.15 to estimate [0 o, as follows:

2_1
V]l o8y < C1Brl™ 4 || fll La(sy)

that is,

HU”LOO(BR) < CR*s Hf”Lq(Q) 3 (3.75)

where C' = C(n, A, q).

Next, we estimate oscp, w by means of Corollary 3.9. By Theorem 3.7, we know
that w € C* (Bg) where o = a(n, ) > 0. Applying Corollary 3.9 to the subset B, of
Bpg, we obtain that, for all z,y € B,,

w(e) - w(y)| < ('—;y') . (3.76)
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where p = dist (B,,0Bg) = R —r and C = C(n, \).

Assume further that r < R/2 so that p > %R. Since |z —y| < 2r, we obtain from
(3.76) that
r\Q
oscw < C (%) 1l e g -
Applying the same argument to R/2 instead of R, we obtain the following: if r < R/4
then

Let us estimate ||w|| 1 (Bgys) @ follows. By the mean value inequality of Theorem 3.2,

we have
Hw“LOO(BR/Q) S W ”w||L2(BR) :

Since w = u — v, we have

1wl 2y < Nl 2y + 10 L2
< Nl oy + CRYZ 0]l oy -

and, hence,

C
00 1 0) < s Ny + C 1ol |

Combining the above inequalities, we obtain

oscu < 0SCU + oscw

T T T

rye ( C
< 2ol gy + € () (—R"/2 el 2y + ||v||Lm(BR>)
T (e

1
< Cloll o +C (5) s el (3.77)

Finally, substituting (3.75) into (3.77), we obtain

r

n a ]
2
oscu < CR7 |l ey + C (7)o Nl iz |

(3.78)

Let us emphasize that that C' = C(n, A, q) and the norms of f and w here do not
depend on R, 7,z (in contrast to the norms of v and w from the previous estimates).
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So far R and r are arbitrary positive numbers such that
R < dist (U,09?) and r < R/4. (3.79)

Now, for any r > 0, we choose R = R (r) so that
2-n/q _ L)a L
R (R Rn/?’
that is,
R = r¥wjatatarz,
Note that 2 —n/q > 0 as ¢ > n/2. Clearly, we have

«

< 1.
2—n/g+a+n/2

0<

Therefore, if r — 0 then R — 0 and R/r — oo. Hence, if r is small enough then the
both conditions (3.79) are satisfied. For these values of r and R, we obtain from (3.78)
that, for any z € U,

osc u < CR% (|1 fll ooy + Il )

By (2)
= 1 (Il fll gy + Ml 2y

where 2 1)
B —n/q)
ﬁ_Q—n/q—i—oH—n/Q >0,

thus proving (3.74). =

3.6 Applications to semi-linear equations

Consider a divergence form uniformly elliptic operator

Lu= Z 81 (aijaju)

ij=1

in a bounded domain € with measurable coefficients. Given a function f(z,v)on QxR,
consider the following semi-linear Dirichlet problem

{ Lu = f(z,u) in §2

e WOLQ(Q)? (3.80)

where the operator Lu is understood weakly as before. We assume that function f is
such that the composition f(x,u(x)) belongs to L*(2) whenever u € L*(€). Our goal
is to investigate the solvability of the problem (3.80).

For that, fix first a function v € L*(Q) and consider the following linear Dirichlet
problem

{ Lu = f(x,v) in (3.81)

ue Wy (Q),
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By Theorem 1.2, it has a unique solution u. Hence, we obtain the mapping

T:L*(Q) — L*(Q)
T(v) = u.

The problem (3.80) amounts then to solving of the equation T'(u) = u. Hence, we face
the problem of finding a fixed point of the mapping T.

3.6.1 Fixed point theorems

Let us discuss some fixed point theorems, that is, the statements that ensure the
existence of a fixed point of a mapping under certain hypotheses. In this section X is
a Banach space. We use the following theorem without proof.

Theorem 3.13 (Fixed point theorem of Schauder ) Let K be a compact convex subset
of a Banach space X. If T : K — K is a continuous mapping then T has a fized point,
that is, there ezists a point x € K such that T'(z) = x.

If X = R™ then then K can be any bounded closed convex subset of R™. In this case
Theorem 3.13 is referred to as the fixed point theorem of Brouwer. In fact, theorem
of Schauder is normally proved by using theorem of Brouwer and finite dimensional
approximations of K.

The following is an alternative version of the fixed point theorem of Schauder that
we prove using Theorem 3.13.

Theorem 3.14 Let K be a closed convex subset of a Banach space X andT : K — K
is a continuous mapping such that the image T(K) is precompact. Then T has a fized
point.

Proof. Denote £ = T(K) so that E is a precompact subset of K. Let E denote the

~

convex hull of F, that is, E consists of all finite convex combinations of the points of
E that is

E:{chxk:neN, r, € E, ¢, >0, chzl}.
k=1 k=1

In fact, E is the minimal convex set that contains E.
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We will show below that E is also precompact. Since F' C K and K is convex, we
have E C K. Since K is closed, the closure Eis contained in K.
The restricted mapping T'|= has the image in £ C E so that T |5 can be regarded

as a mapping from E to itself. Since E is a compact convex set, we obtain by Theorem
3.13 that T|§ has a fixed point, which finishes the proof.

18.01.24 Lecture 25

It remains to prove that Eis precompact. Since E is precompact, there exists for
any € > 0 a finite e-net S, that is, a finite sequence S of points in E such that

E c U B:(z). (3.82)
zeS
It follows that R
E C B.(x). (3.83)
zeS

Indeed, every point y € E is a convex combination of some points {yx} of E, that is,
Y= kY,
k

where y, € E, ¢p > 0, >, ¢ = 1. By (3.82), each y; lies in some ball B.(zy) with
T € S.

Then the point
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belongs to S and

<> ke =¢,
K

ly— 2l = Hzckyk Sy
k k

; Ck(yk - xk)

that is, y € B.(z), which proves (3.83).

The set S is in general infinite, and we need to replace it in (3.83) by a finite set
in order to obtain a finite e-net. Since the sequence S is finite, its convex hull Sisa
bounded subset of a finite dimensional subspace of X. Therefore, S is precompact and,

hence, there exists a finite e-net Z of S. In particular, each = € S lies in some ball
B.(z) with z € Z, which implies

B.(x) C By.(2).

It follows that R
E C U BQe(Z),

zeZ

that is Z is a finite 2e-net of E , which proves that E is precompact.

Definition. A mapping T : X — X is called compact if, for any bounded set E C X,
the image T (F) is precompact.

Note that if 7" is linear and compact then T is also bounded and, hence, continuous.

However, in general a compact mapping 7" does not have to be continuous.

Theorem 3.15 (Fixed point theorem of Leray-Schauder) Let T : X — X be a com-
pact, continuous mapping. Assume that

the set {z € X : x = aT(z) for some a € (0,1)} is bounded. (LS)
Then T has a fixed point.

The condition (LS) is called the Leray-Schauder condition.

Remark. Let us say that © € X is an eigenvector of T if T'(z) = Az for some \ € R,
where A is called an eigenvalue. The condition (L.S) means that all the eigenvectors of
T with eigenvalues > 1 are uniformly bounded.

Example. Consider an affine mapping 7T'(x) = x + b with some non-zero b € X. The
equation x = oT'(z) is equivalent to z = « (z + b), that is, to

ab

1—a’

xr =

This can be satisfied with any « € (0,1), and the norm of z is clearly unbounded as
a — 1. Hence, condition (LS) fails. Obviously, T" has no fixed point in this case.

Example. Let T'(z) be a continuous function on X = R that satisfies the condition
(LS). Let us prove directly that 7" has a fixed point. By (LS), there exists R > 0 such
that

if v = oT'(x) for some a € (0,1) then |z| < R. (3.84)
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We claim that in this case

T(R)<R and T(—R)> —R. (3.85)

Indeed, if T(R) > R then R = oT(R) y=u
with some « € (0,1). Using (3.84)

we obtain |R| < R, which is wrong. y="T(z)

If T(—R) < —R then (—R) = aT(—R)
with some « € (0, 1), whence by (3.84)
|R| < —R.

This contradiction proves (3.85).

Next, consider the function f(z) = — T'(x). It follows from (3.85) that
F(R)>0 and f(~R) <0,

which implies by the intermediate value theorem that f(x) = 0 for some = € [-R, R|,
that is, T'(x) = x.

Proof of Theorem 3.15. The condition (LS) means that there R > 0 such that
if x = aT'(x) for some o € (0,1) then ||z < R.

By dividing the norm in X by R, we can assume without loss of generality that R = 1.
Hence, we assume that

if ¥ = aT'(z) for some v € (0,1) then ||z| < 1. (3.86)
Consider a mapping S : X — X defined by

S(x) = { T(x), if |T(x)] <1

g, it [T(@)]| > 1.

(3.87)

Consequently, ||S(x)|| <1 for all z € X. We claim that S is continuous and compact.
To see that, let use represent .S in the form of composition

S=doT,

where @ : X — X is defined by

[ iyl
@(?J)—{ ity > 1

Mapping ® is continuous because

O(y) = @ (llyll) v



3.6. APPLICATIONS TO SEMI-LINEAR EQUATIONS 125

where ¢ is the following function on [0, 00):
1 t<1
e ={1 157
4 t>1

Since ¢ is continuous, ® is also continuous, whence also S = ® o T' is continuous.

Let us show that S is compact. Since T' is compact, for any bounded set £ C X,
the image T (F) is precompact. Since ® is continuous, the set S (EF) = ® (T (F)) is
precompact as a continuous image of a precompact set. Hence, S is compact.

Denote by B the closed unit ball of radius 1 in X centered at the origin. Since
|S(z)]] <1 forall z € X, we have S (X) C B and, in particular, S (B) C B. Hence, S
can be regarded as a mapping from B to B. Since B is convex and closed, and S (B)
is precompact, we obtain by Theorem 3.14 that S has a fixed point x € B.

Let us verify that z is also a fixed point of 7. Indeed, if T'(z) € B then by (3.87)
T(x) = S(x) and, hence, T'(z) = x. Assume now that T'(z) ¢ B, that is, ||T'(x)| > 1.
In this case we obtain from (3.87)

T(x)

R e}

(3.88)

that is, x = oT'(x) where o = m < 1. By (3.86) we obtain ||z| < 1, whereas (3.88)

implies ||z|| = 1. This contradiction shows that the case T'(x) ¢ B is impossible, which
finishes the proof. m

3.6.2 A semi-linear Dirichlet problem
Consider a divergence form uniformly elliptic operator
Lu= Z 81 (aijaju)
ij=1
in a bounded domain €2 with measurable coefficients, and the following semi-linear

Dirichlet problem
Lu = f(z,u) in 2
{ u € Wy?(), (SD)

where the operator Lu is understood weakly as before. Function f = f(z,u) is defined
in 2 xR, and we assume that it is Borel measurable. Then, for any measurable function
u on £, the composite function f (z,u(x)) is also measurable.

We assume in addition that f satisfies the following two conditions:

|f (@, 0)] < C(1+ o), (3.89)
for all v € R and x € €2, and
|f(z,v1) = f(z,02)] < C'|v1 — 02 (3.90)

for all vy,vy € R and x € €2, where v, C' are positive constants.
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Theorem 3.16 Assume that the above hypotheses (3.89) and (3.90) hold with v < 1.
Then the following is true.

(a) The problem (SD) has a solution w.

(b) If in addition || is small enough then the solution u is unique.

(¢) If in addition v < % then u € CP(Q) for some 3= 3(n,\,7) > 0.

22.01.24 Lecture 26

Remark. In part (b), without restriction on || there is no uniqueness for the problem
(SD). Indeed, even in the one dimensional case, the Dirichlet problem

Le® =0

has two solutions u = 0 and u(z) = sinz. Although the function f(x,u) = —u does
not satisfy (3.89), it is easy to modify it to satisfy (3.89) with any v > 0:
f(z,u) := —min (ug,1).

Then the problem

u' = f(x,u)
u(0)=wu(r)=0
still has two solutions u = 0 and u(x) = sinx because both solutions take values in
[0,1], and for u € [0, 1] we have f(z,u) = —u.
Similarly, if €2 is a bounded domain in R™ and u is an eigenfunction of the Laplace
operator in €2, that is,

u e Wy?(Q), (3:91)

then we obtain again an example of non-uniqueness because u Z 0 and the problem
(3.91) has also a solution u = 0.

Remark. In part (c), the restriction v < 4/n is not optimal. In fact, if (3.89) holds
with v < 1 then any solution u of (SD) is Holder continuous (see Exercise 70). In
particular, all the eigenfunctions of L are Holder continuous (see Exercise 59). On the
other hand, if v > —"- then solution u does not have to be continuous (see Exercise
61).

Proof of Theorem 3.16. For any v € L?(Q), the function
Fo(z) = f (2, 0()) (3.92)

belongs to L*(2), because by (3.89) and v < 1

{ Au = —)u in Q,

|Fy(z)] < C(1+v|") <C 2+ |v]) € L*(Q). (3.93)

(a) For any v € L*(Q), consider the following linear Dirichlet problem

{ Lu=F,in Q) (3.94)

u € W,?(Q)
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that has a unique solution u by Theorem 1.2. Define the mapping

T : L*Q) — L*Q)
T(v) =u

that is, for any v € L%*(Q), the function T'(v) is defined as the solution u of (3.94)
considered as an element of L*(Q). Clearly, if u solves (SD) then

T(u) = u.

Conversely, if u € L*(Q) is a fixed point of 7', then necessarily u € W,*(€2) because
the range of T lies in VVO1 (), and u solves the equation Lu = F,, which is equivalent
to (SD).

Hence, the existence of solution of (SD) is equivalent to the existence of a fixed
point of the mapping T : L?(2) — L?(Q). Let us first prove that 7' is continuous and
compact. Clearly, T is the composition of the following mappings:

LY Q) — LAQ) — Wy (Q) — LX(Q)

v — F, F,—u u—u

where w is the solution of the Dirichlet problem (3.94).
The mapping v — F,, given by (3.92), is continuous because by (3.90)

1Eo = Fo |2 < Cllor = va| 2 - (3.95)

Besides, the mapping v +— F, is bounded in the sense that image of any bounded set
is bounded, because by (3.93)

[Elle < C+ C ol -

By the properties of the linear Dirichlet problem (3.94), the mapping F, — u is
linear and bounded because

[ullwie < CIE L2, (3.96)

where C' = C'(\, diam(£2)) (cf. Exercise 22), which implies that it is continuous.
Finally, the identical mapping u — u from W;*(Q) to L? is continuous and compact,
the latter by the compact embedding theorem. Hence, we conclude that 7' is continuous
as a composition of continuous mappings, and compact as a composition of bounded
and compact mappings.
In order to apply Leray-Schauder theorem for existence of a fixed point of 7', we
need to prove that, for some R > 0,

if v = aT'(v) for some a € (0,1) then [[v] < R.
Since the function u = T'(v) solves the Dirichlet problem

Lu=F, in ,
u e Wy?(Q),
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and v = oT'(v) = au, we obtain by (3.96)

[vllwre = allullyie < aC||Fl 2 < ClIE 2,

/vzdx < C/Ffdx.
Q Q

On the other hand, it follows from (3.93) that

whence

/ Fidx < C/ (14 |v|")de < C + C/ |v|*" d,
Q Q Q
where the value of the constant C' is changed at each occurrence. Hence, we obtain
/Ude < C+ c/ lv|*Y da. (3.97)
Q Q
By Young’s inequality, we have, for any € > 0,
1 1
0] = —ev? < = + (ev®)?
€ ep
where p, ¢ is a pair of Holder conjugate exponents. Choose ¢ = % and, hence, p = -

1—7?
so that

1
lv]*7 < —+ el?
£

/ | da < C’E+£q/ vida.
0 0

Substitution into (3.97) yields

/ vide < C. 4 Cet / vidz.
Q Q

L
2C"

and, hence,

we obtain

/ vidr < 2C.,
Q
that is, [|v]| ;. < R:=v2C..

By a fixed point Theorem of Leray-Schauder we conclude that 7" has a fixed point
and, hence, the Dirichlet problem (SD) has a solution.

(b) Let us show that if || is small enough then the mapping 7' is a contraction in
L?(2). This will imply by the Banach fixed point theorem that T has a unique fixed
point, that is, both uniqueness and existence. Let v; and vy be two functions from

L%(9), set

Choosing ¢ so small that €7 <

uy = T(v1) and ug = T'(vs).

We need to prove that, for some 6 < 1,

lur = us|| < O ffor — va].-
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The function u = u; — uy satisfies the equation
Lu = Luy — Luy = f(z,v1) — f(x,v9),

that is, for any ¢ € W&’Z(Q), we have

/Q Z a;j0;u 0jp dr = — /Q (f (x,v1) — f (z,v9)) pdx. (3.98)

2,7=1

By (3.90) we have
|f<l’,1}1) - f(xvv2)| < C'|Ul - U2’ :

Hence, setting in (3.98) ¢ = u and using the uniform ellipticity of (a;;), we obtain

A‘l/ \Vu|? dz < C/ vy — ] |ul da. (3.99)
Q Q
By the Faber-Krahn inequality, we have
/ \Vul? dz > ¢, |Q|_2/"/ e = ¢, |Q 7" [l .
Q Q
On the other hand, by the Cauchy-Schwarz inequality,

[ = wllulde < oy = val»
Substituting into (3.99), we obtain
Q7 ullZ2 < € llor = vallge flull 2
where C' depends on A, n and on the constant in (3.90). It follows that
lur = wzll 2 = flull 2 < C 1P ffor = vl

If |2 is small enough then 6 := C'|Q|*" < 1, that is, T is a contraction, which was to
be proved.
(¢) By Theorem 3.12, a solution of (SD) is Hélder continuous, provided F, € L%(f2)
with
q € (2,00 N (n/2,00]. (3.100)

We have by (3.89)

/ Fy0 de < c/(1 ul)ide < (J+O/ (" da.
Q Q Q

Since u € L*(), we see that [, |u]""dz < oo provided vq = 2. Set ¢ = 2/ and
verify that this ¢ satisfies (3.100). Indeed, we have ¢ > 2 because v < 1, and ¢ > n/2
because v < 4/n. Hence, ¢ satisfies (3.100), and we conclude that v € C?(Q) with
some = (3(n,\,v) >0. =
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Chapter 4

Boundary behavior of solutions

Consider again in a bounded domain {2 C R™ the weak Dirichlet problem

Lu = f,
u € Wo(9),
where .
ij=1

is a uniformly elliptic operator in 2 with measurable coefficients. We know by Theorem
3.12 that if f € LI(Q2) where

q € [2,+00] N (n/2, 0],

then v € C?(Q) with some 3 > 0, in particular, u is continuous in . We can ask if u
takes the boundary value in the classical sense, that is, if, for a given point xy € 00,
lim u(z) = 0.

veq)
The answer to this question depends in the properties of the boundary 02 near z.
The aim of this Chapter is to prove the following: if 92 is “good” enough in some

sense then, in fact, u € C(2) and v = 0 on 0N in the classical sense.

25.01.24 Lecture 27

Let Q be a bounded domain of R™ and let I be a subset of the boundary 0.

Definition. Let u € W*(Q). We say that “u = 0 weakly on I if there exists a
sequence {¢;} C C*(Q2) such that

1,2
O WY and Yplr = 0. (4.2)

As a motivation for this definition, let us prove the following statement.

Claim. If u € W'2(Q) then u = 0 weakly on 0Q < u € W,2(Q).

131
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Proof. Indeed, if there exists a sequence {¢,} asin (4.2) then ¢ |9q = 0, which implies

1,2 . . wh2(Q) . 1,2
that ¢, € W7 (Q) (Exercise 28). Since ¢, — ~ w it follows that also u € W,*(2).

Conversely, if u € W,?(€Q) then there exists a sequence {p,} C C&(Q) € CY(Q)

1,2
such that ¢, v u. Since all ¢, vanish on 0f2, we obtain that u = 0 weakly on 0f2.

In this Chapter we will prove results of the following type: if u € W'%(Q), Lu = f
weakly in 2 and v = 0 weakly on I' then, under certain assumptions about I' and f,
ue C(QNT) and ulr = 0.

4.1 Flat boundary

We use here the following subsets of R™: the upper and lower halfspaces
RY ={zeR":2,>0} and R" ={ze€R":z, <0},
both being open subsets of R"”. Their common boundary is the hyperplane
H={xeR":2,=0},

that is a subspace of R™ isomorphic to R*~!.

Consider an open set €0, C R” such that a part of the boundary 02, lies on the
hyperplane H. More precisely, assume that there is a non-empty open subset I' of H
(considering H as R"~') such that 02, N H =T.

Let L be a uniformly elliptic operator in €2, with measurable coefficients. Assume
that u satisfies the following conditions:

Lu = f weakly in Q|
ue Wh2(Qy), (4.3)
u =0 weakly on I,

where so far f € L? (€,). We will investigate the (Holder) continuity of u at T
Define a marror reflection in H as a mapping p : R® — R” such that

p(l'la -'-axn—laxn) = (:Ela vy Tn—1, _xn) .

Clearly, p is involution, that is, p~! = p, and any point of H is a fixed point of p.
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Set Q- = p(24) so that _ is an open subset of R™. Observe that the set I' is
contained in the both boundaries 0€2, and 0€2_. Consider the set

Q=0Q,UQ_UT

that is an open subset of R"™ invariant under the mapping p. Note that all points of I'
are interior points of 2.

Our plan is to extends wu, f, L from Q, to €2, so that the problem amounts to
investigation of the continuity of u at interior points of €2, which can be handled by
means of Theorem 3.12.

A function v : Q — R is called even if

v(p(x)) =v(z) for all z € Q,

and odd if
v(p(x)) = —v(x) for all x € Q.

Note that an odd function vanishes at I'.
Any function v : Q, — R admits even and odd extensions to the entire set 2.
Indeed, to extend v to € oddly, we set

v(p(x)) = —v(z) for all x € Q.
and v(x) = 0 for € T'; to extend v evenly, we set
v(p(z)) = v(z) for all z € Qy

whereas the values of v(z) for z € I' can be chosen arbitrarily.
Let us extend both functions u and f to €2 oddly. To extend the coefficients of L,
we use the following rules:

(i) aij extends to Q evenly if 4,j <nori=j=mn;
(ii) a;; extends to Qoddly ifi <mn, j=nori=mn, j<n;
(ili) for any x € I' set (a;j(x)) =1id.

In other words, a;; extends evenly if the number of values n in the pair (7, j) is even,
and oddly otherwise.

Note that a;; = 0 on I' for the values 4,j as in (ii); since in this case i # j, the
vanishing on a;; on I' is compatible with (a;;) = id as is required by (iii).

In order to formalize the above rules, let us use the following notation:

1, 1< n,
o = ‘
! -1, i=n.

It follows from (i)-(ii) that
a;; (p(x)) = 0,05a;;(z) for all = € Q. (4.4)

Hence, the operator L as well as the functions u and f are now defined on €.
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Theorem 4.1 (Extension of (4.3) under reflection) Let u satisfy (4.3) in Q.. Then
the extended L,u, [ satisfy the following conditions:

(a) the operator L is uniformly elliptic in Q);
(5) we WH(Q);
(¢) Lu = f weakly in €.

Proof. (a) In view of (4.4), in order to prove that L is uniformly elliptic, it suffices to
prove the following: if (a;;) is a symmetric matrix such that, for any £ € R,

ATHEP <> aggg; < AlEP (4.5)

ij=1
then the same holds for the matrix (¢;0;a;;) . We have

n n

Z (%%%‘)fifj = Z Qi57;755

4,j=1 1,j=1

where 7, = 0;¢;, that is, n = (&, ...,&,_1, —&,). By (4.5) we have

AP <) agmm, < Al (4.6)
ij=1
Since |n| = |£], we obtain

n

A<D (oiojai) &€ < MEP,

ij=1

which proves the uniform ellipticity of (c;0;a;;), with the same ellipticity constant .
(b) Since u = 0 weakly on T', there exists a sequence {p,} C C*(€;) such that

I,QQ
©Or 8 and Yplr = 0.

Let us extend ¢, to © oddly. Then the condition ¢,|r = 0 implies that ¢, € C*(Q).
Observe that the derivative 0;p, extends oddly to €2 if i < n, and evenly if i = n.
Since u also extends oddly, we have

O . (4.7)

Denote v; = 0,,u in 24 and extend v; oddly to € if ¢ < n, and evenly if ¢« = n. Since

2
az#?k; - (—Q>+) U;

we obtain that also ,

It follows from (4.7) and (4.8) that v; = d;u in 2, so that u € W12(Q).
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(c) Let us show that Lu = f weakly in €, that is, for any ¢ € D(),

n

ij=1

dx = 0. (4.9)

We will reduce here the domain of integration €2 to €2,. For that we split the integral
J,, into the sum fQ+ + J, , and in the integral [, ..dy we make change y = p()
where x € (), thus reducing it to an integral over (2.

Using the substitution rule, we obtain

) fw)e(y)dy = i f(p()) p (p()) |det J,| dx,

where J, = % is the Jacobi matrix of p. Since J, = diag(1,...,1,—1), we have

det J, = —1 and, hence,

: fy)ely)dy = i f(p(x)) ¢ (p(z)) dz. (4.10)

Consider the function
W(z) = v (p(x)) =@ (x1,...., Tn_1,—x,) forall z € Q, (4.11)

that is a reflection of ¢ in H. Clearly, ¥ € D (Q).

H:]Rn- 1

Using that

we obtain

It follows that

/ fodv= [ feder [ fedy= [ fodi— [ fode= [ f(p—w)de. (412)
Q o a_ o Oy

Q4
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Similarly, let us reduce |, > 0ij0judipdr to an integral over 1. As in (4.10) we
have

|3 @ttty = [ Y (@udiudie) (la)ds

_ Op =
Z7] 27-]
Let us compute all the derivatives in the right hand side using the chain rule. We
obtain

(0ip) (p(2)) = (05p) (21, s Tnor, —Tp) = 030; [ (1, ooy Tpm1, —)] = 0,052 (2)
and similarly
(Oju) (p(x)) = (Oju) (21, .., Tn—1, =) = 0;0; [ (21, ..., Tny, —n)] = —0;05u(x),
where we have used the fact that u is odd. Using also (4.4), we obtain
(ai;0;u 0ip) (p(x)) = —0i0jai;(x)o;0;u(x)oi0i(x) = — (a;0judi) (x),

as 0; = o7 = 1. Hence, we obtain

/Q (a4i0u0:0) (y)dy = — / (aij05u0st) ()i,

which implies
Z aijaju &gadx + / Z aijﬁju @gody

/Zamaju&@daﬁ:/
Q i Q4 ij Q_ i

= Z a;;0;u0; (¢ — ) du.

Qr g

Combining with (4.12), we obtain

/Q [Z a;j0judip + fo

Z‘?j

dx = /Q [Z ai0u0; (¢ — ) + f (¢ — w>] dr. (4.13)

Let us verify that
P -1 e W (Q).

Since ¢ — ¢ € C*° (§+) , we have
p— e WH(Qy).
We claim that ¢ — ¢ = 0 on 02, . Indeed, for x € I" we have by (4.11)

U(x) = ¢(p(x) = ¢(x),
that is, ¢ = ¢ in I', while
p=1v=0on 009, \T

because 0, \ I' € 9Q and ¢, 1) € C°(Q). Hence, ¢ — ¢ € W, () by Exercise! 28.
Since Lu = f weakly in {2, using ¢ — 1 as a test function, we obtain that the right
hand side of (4.13) vanishes, whence (4.9) follows. =

't follows from Exercise 28, that if g € W2 (Q) N C (Q) and g = 0 on 9N then g € Wy ().
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29.01.24 Lecture 28

Corollary 4.2 (Boundary regularity: flat boundary) Let L be the operator (4.1) in
Q. that is uniformly elliptic and with measurable coefficients. Let u satisfy (4.3),
where f € L1(2,) and q € [2,00] N (n/2,00]. Then u € CP(Q, UT) for some 3 =
B(n,\ q) >0, and ulr = 0.

The exact meaning of the statement is as follows: there exists a version u of u such
that u € C? (2, UT) and u|r = 0.
Proof. By Theorem 3.12, u has in {2, a continuous version so that from now on let u
denote this continuous version. Let us extend u, f, L to Q = Q, UQ_UTI as in Theorem
4.1. By construction, the function u is continuous in €2, and {2_, but not yet in €.

By Theorem 4.1 we have u € W2 () and Lu = f weakly in 2. Since f € L4(Q), we
conclude by Theorem 3.12 that the function u in Q has a continuous version u € C?(().
In particular, u € C” (Q, UT).

Let us verify that u|r = 0. Since both w and @ are continuous in 2, and Q_, they
coincide pointwise in {2, and €2_. Since u is odd, it follows that, for any = € 1.,

u(p(x)) = ulp(z)) = —u(z) = —u(z).

By the continuity of @ in 2, this identity extends to all z € T', whence u|r = 0. =

4.2 Boundary as a graph

Let V be an open subset of R*! and I be a non-empty open interval in R. Consider
the cylinder Q = V x I that is an open subset of R”. Given a function h : V — I,
consider its graph

Ip={(zt) € Q: t="h(z)}
its supergraph
Sp=A{(zt)eQ: t>h(2)},
and its subgraph
Sp={(zt) €Q: t<h(2)},
Here z € R" !, t € R, and we consider the pair (z,t) as the point (21, ..., 2,_1,t) € R™

A
t=x

T

Q=VxI
:S/L Q_ 8

A
R" Bd

v

I/’

Z:(CC/, o0 wxn—l)
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In this section we consider the domain 2 = S;, and a part of its boundary I' = T'},.
In particular, if A = 0 then Q C R, and I' = V C R""!, which fits into the setting of
the previous section.

Theorem 4.3 (Boundary regularity: a graph boundary) Let h € C*(V;I) and assume
that
sup |Vh| < 0.
%

Let L be a uniformly elliptic operator (4.1) in Q = S), with measurable coefficients. Let
u satisfy
Lu = f weakly in €,
u e Wh2(Q), (4.14)
u =0 weakly on T,

where T = Ty, f € L1(Q) and q € [2,00] N (n/2,00]. Then u € CP(QUT) where
B = B(n,\,7v,sup |Vh|) > 0, and u|r = 0.

Proof. Let us consider the following mapping ¥ : V xR — V x R:
U(x) = (21, 0oy Tpe1, Ty — B (T4, oy Tp1)) (4.15)
Clearly, ¥ has the inverse mapping

U Hy) = (Y1 Y1, Yo + A (Y1, oy Y1) (4.16)

and, hence, ¥ is a C'-diffeomorphism of V' x R into itself. Since
Fr={zeQ:z,=h(x1,....0,1)} and Q={zre€Q:x,>h(x1,....0, 1)}

we see that
v()=Vc R* ' = H and U(Q) C RY.

Set
. =U(Q)

so that €, satisfies the conditions for €, from the previous section, with 9Q, NH = V.

H=R»-!

The mapping V¥ is called straightening of I' as it straightens the piece I' of the
boundary 0f) into a flat piece V. We regard ¥ as a C'-diffeomorphism between €2 and



4.2. BOUNDARY AS A GRAPH 139

Q.. Denote points in €2 by x, points in €, by y, and write ¥ in the form y = U(z).
We will need the Jacobi matrices of ¥ and W', Using (4.15) and (4.16), we see that

1 0 0
Jy = (0yk> = 0 K :
0x; : 0
—O0h -+ =0,k 1
and
1 0 0
Jg-1 = = ,
! (3%) 0
o1h On_1h 1

which implies
det Jg = det Jg-1 = 1.

Set
K = max(1,sup |Vh|)

so that all the entries of the both matrices Jg and Jg-1 are bounded by K.
Given a function v : 2 — R, define its push-forward function u, : 2, — R as
follows:

us (V(x)) = u(x) for all z € Q,

which is equivalent to
u(y) =u (P '(y)) forallyeQ,.

Let us prove some properties of push-forward.

(a) If w € LP(Q2) then u, € L” (€2). Indeed, changing y = ¥(z) in the integral, we
obtain

[ty = / s (T ()P |det Jy| d = / u(z)P da.

It follows also that
lell oy = lusll ooy
that is, push-forward is an isometry of LP(€2) and LP (€.).
(b) If u € W12(Q) then u, € W2 (€,). Indeed, observe that, by the chain rule,

_ - _ 8902 - 8ZEZ
) = 0 [0 (9 ))] = 3 @) (97 0) O = 3 (0, (). (1.17)
i=1 i=1
Since 9,,u € L?(2), we obtain by (a) that (9,,u), € L* (Q.). Since all partial derivatives

% are bounded by K, we obtain that (0,,u), g;;’ belongs to L* (£2.), whence 9y, u. €

L?(£,). Hence, u, € WhH2(Q,).
It follows from (4.17) that

n n 1/2
|0l < KD 100l < K/ (Z 12, r) = KV [ Vull,»
=1 i=1
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and

- 2
IVul7e = Y 10y ule < n (KVR|Vulz)"

k=1

whence
[Vl < Kn||Vul ..

Consequently, we obtain
~1
(Kn) " Nullyrz) < llusllprzg,) < Enlullprzg, - (4.18)

(¢) If u = 0 weakly on I' then u, = 0 weakly on V. Since u = 0 weakly on I, there
is a sequence {p,} C C* () such that ¢;|r = 0 and

Ju— (pk”WL2(Q) — 0 as k — oc.

Since (), € C* () and (¢,), |v = 0. Besides by (4.18) we obtain
||u* - (¢k>*||w12(9) —0as k — o0,

whence we conclude that u, = 0 weakly on V.

(d) By Exercise 3 we have the following property of push-forward. Let
L= Z 61 (a,-jﬁj)
ij=1
be an operator in 2 and assume that Lu = f weakly in €2. Then
L.u, = f, weakly in ., (4.19)

where the operator L, is given by

L, = " (bkl\/ﬁa@

s
T

with the coefficients

ayk 3yl
bkl z:: zg al’, an

and D = (det Jg) 2. Since D = 1, we have

L,= Z ayk (bklayz) :

1,k=1

Let us show that the operator L, is uniformly elliptic in €2,. For any £ € R", we have

n

Oy, 0
> b= > Y a ity

k=1 k,l=1147=1

-3 (Saa) (Same)

i,j=1
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Set

dy

so that

Z b€y = Z @ign;y- (4.21)

k=1 ij=1

By the uniform ellipticity of (a;;), we have
AP <Y agming < Al (4.22)
ij=1

Since the coefficients % are bounded by K, we obtain from (4.20)

n 2 n
> < K? (Z |fk|> <K’ |67 = KPng?,
k=1 k=1

whence .
nl* => " Il < K*n? ¢
i=1
By inverting (4.20) we obtain
§k = o2
20
whence in the same way
€ < K2n? [l
Hence, we have
-1
(Kn?) gl < Inl” < K2 g
Combining with (4.21) and (4.22), we obtain

AHEP <) b < AP,

k=1

where A\, = AK?n?. Hence, L, is uniformly elliptic with the ellipticity constant \,.

Now let u satisfy (4.14) with f € L?(2). By the above properties of push-forward,
we obtain that u, satisfies the following conditions:

L,u, = f, weakly in €,
u, € WH(Q,),
u, = 0 weakly on V|

where f, € L?(£2,). Since 2, C R} and 0Q. N H = V, we conclude by Corollary 4.2
that u, € C? (Q, UV) for some

B=p8(n A, q) =B(nAqgK)>0,
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and that u.|y = 0. Since u = u* o ¥, it follows that also u € C” (QUT) and, for any
rzel,
u(r) = u*(¥(z)) =0,

because W(x) € V, which finishes the proof. m

Remark. The statement and proof of Theorem 4.3 (with necessary modifications)
remain valid if A is a Lipschitz function rather than C?.

01.02.24 Lecture 29

4.3 Domains with C'! boundary

Given two sets A C R"™! and B C R, define the product A x; B with respect to the
coordinate z; in R™ as follows:

Ax; B={(x1,....,z,) € R": (21, ...35...,x,) € A, x; € B},

where the notation z; means that z; is omitted, that is,

A

(.Z'l, xl,]}n) = (.Z'l, vy Lj—15 L1, ,fEn) .

A (open) cylinder in R™ with respect to the coordinate x; is any set @ of the form
Q =V x; I where V is an open subset of R"! and I is an open interval in R.

Definition. Let €2 be an open subset of R™. We say that the boundary of €2 belongs to
the class C! (or simply Q belongs to C') if the following two conditions are satisfied:

(i) any ball B.(x) with z € 9 and € > 0 has a non-empty intersection with Q°;

(74) for any point x € 02 there exist a connected cylinder () = V' x; I containing z
and a C'-function h : V — I such that 90N Q = T, (that is, 99 is locally a C*

graph).

A
Xi
s | 2
 C
P Q
oQ
I /I/ : , Z
RH : S 1 Q: VxI
Vv
(X1, oo Xty Xi 1 1 orn X)) ERP
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Without loss of generality, we can assume that V' (and, hence, @) is connected.

Claim. [t follows from (i) and (ii) that QN Q coincides either with the supergraph S,
or with the subgraph S}

Proof. Let us skip for simplicity the index h. We clearly have
Q=SuUS uUr.

Since S is an image of () under a continuous mappmg, it follows that S is connected.
Since S C (9Q)° and (99)° is a dlSJOlIlt union Q U Q" of open sets, it follows from the
connectedness that S € Q or S ¢ Q°. The same argument applies also to S’: either
S'cQor S cO

However, S and S’ cannot both be contained in the same of the two sets Q or Q.
Indeed, if S and S’ are both contained in €2 then any point x on I" has in a small enough
neighborhood no points from Q°, which contradicts (7). If S and S’ are contained in
Q°, and any point € I' has in a small enough neighborhood no points from €2, which
contradicts the definition of the boundary.

Hence, there remain only two possibilities:

e cither S C Qand &' c O
eorScQandScq.
In the first case we have Q N Q = S, and in the second case QN Q =5". =w

The next statement provides a large class of examples of domains with C'! boundary.
Recall that a bounded open set  is called a region if there exists a C! function F
defined in an open neighborhood €2’ of € such that

Q={reQ:F(x) <0},
N={xeQ: F(z)=0},

and

VFEF #0 on 0f.
For example, a ball Bg = {z € R": |z| < R} is a region with function

F(z) = |z|" — R%
Lemma 4.4 If Q is a region then Q has C* boundary.

Proof. Fix some point z € 992. By the hypothesis VF (z) # 0, the point z cannot be
a local maximum of F. Since F'(z) = 0, it follows that any neighborhood of z contains
points z with F(x) > 0, that is, the points from Q°.

Since VF' (z) # 0, there is an index i = 1,2...,n such that 0;,F (z) # 0. By the
theorem of implicit function, the equation

F(xy,29,...;2,) =0

can be resolved in a neighborhood of z with respect to x; as follows: there is a cylinder
Q =V x; I containing z and a C! function h : V — I such that, for all z € Q,

F (.73'1, ,iUn) =0«& T; = h (1'1, ii’lﬂfn) .

Consequently, we have 9Q N Q = I';, and, hence, Q is a domain with C*! boundary. m
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Theorem 4.5 (Boundary regularity: C' boundary) Let Q be a bounded domain with
C' boundary and L be a uniformly elliptic operator (4.1) with measurable coefficients in
Q. Let I' be an open subset of the boundary OS2, and assume that a function u satisfies
the following conditions:

Lu = f weakly in €,

u e Wh(Q), (4.23)

u =0 weakly on I,

where f € L1(Q) with q € [2,00] N (n/2,00]. Thenu e C(QUT) and u|r = 0.

In the special case when I' = 0f) we obtain that if u solves the weak Dirichlet
problem
Lu = f weakly in €,
{ et

then u € C(Q2) and ulsq = 0.
Proof. By Theorem 3.12, we can assume that v € C' (). It suffices to prove that, in
a neighborhood of any point = € ', u extends continuously to I" and u(x) = 0.

By definition of C! boundary, for any x € 9 there is a cylinder Q, =V, x; I, such
that T', := 0Q N Q, is the graph of a C! function h, : V, — I,. Besides, by the above
claim, the set €, := QN Q, is either supergraph or subgraph of A, in @Q,.

T,

By reducing V, we can assume that V,, is connected (for example, a ball) and |Vh,| is
bounded.

Let z € I'. Since I' is an open subset of 0f), again by reducing V,, we can assume
that I', C I'. Since u = 0 weakly on I', it follows that also u = 0 weakly on I',.. Hence,
we can apply Theorem 4.3 in €, which yields u € C'(Q, UT,) and u|r, = 0, which
was to be proved. m

Remark. The statement of Theorem 4.5 remains valid if the boundary 0f2 is Lipschitz
rather than C'. Besides, by slightly modifying the argument, one can prove that w is
locally Holder continuous on QQ UT.

4.4 Classical solutions

Now we can prove a result about existence of a classical solution.
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Theorem 4.6 Assume that Q is a bounded domain with C' boundary and let k be an
integer such that k > n/2. Consider in ) a uniformly elliptic operator

Lu= Z 01 (aijaju)

ij=1
with coefficients a;; € C**1(Q). Then, for all f € C*(Q) and g € C*(2), the classical

Dirichlet problem
Lu= f in Q
{ u =g on 0f) (4.24)

has exactly one solution u € C%(2) N C ().

Remark. The assumptions of this theorem about functions a,;, f, g are not quite
optimal. They are to illustrate the method of obtaining classical solutions by means of
weak solutions. Note that this theorem provides a new result even for L = A.

Proof. Consider first the weak Dirichlet problem

{ Lu = f weakly in €, (4.95)

u—g €W, ?Q).

By Exercise 7, if f € L*(Q) and g € W?(Q) (which is the case under the present
assumptions) then the problem (4.25) has a unique weak solution u € W2((2).

Since f € C*(Q), we have also f € W52(Q), that is, Lu € W*2(Q). Since a;; €
CH1(Q) and

k:>2+(g—2),

we obtain by Corollary 2.13 that u € C?(£2). Hence, u is a classical solution of Lu = f
in €.

In order to investigate the behavior of u on 052, let us rewrite (4.25) in terms of the
function v = u — ¢ as follows:

{Lv:f—LginQ, (4.26)

v e W,2(Q).
Since g € C%(Q2) and a;; € C*(Q), it follows that Lg € C(Q), whence
f—LgeC(Q)cC L™

(consequently, the problem (4.26) has a unique weak solution v, which provides an
alternative proof of the existence and uniqueness of solution u of (4.25)). By Theorem
4.5 we obtain v € C(Q) and v = 0 on 9. It follows that also u € C(Q) and u = g on
0€), that is, u satisfies the boundary condition in the classical sense.

Hence, u is a classical solution of (4.24). Finally, the uniqueness of the classical
solution of (4.24) in the class C%(2) N C(Q) follows from the maximum principle of

Exercise 1. m
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Recall from PDE the following result for the Laplace operator: let f € C? (Bg) be
bounded and let g € C'(0Bg). Then the Dirichlet problem

Au=f in Bg
{ u=g¢g ondBg (4.27)
has exactly one classical solution v € C* (Bg) N C (FR). Of course, the requirements
here are much milder than those in Theorem 4.6 because this is very special situation
of L = A and 2 = Bgi where one can expect better results than in general.

There is one more serious distinction between these two results. If u is the classical
solution of (4.27), it may not be a weak solution in any sense, because, as we have seen
on examples, the classical solution of (4.27) with arbitrary continuous function g on

0f) may have infinite energy:
/ |Vul® dz = oo,
Br

and, hence, may be not in W12 (Bg). Hence, for the methods based on weak solutions,
one need to impose additional restriction on g.



Chapter 5

* Harnack inequality

5.1 Statement of the Harnack inequality (Theorem
of Moser)

Consider again in a domain 2 C R™ a uniformly elliptic operator in divergence form

L= Z 81 (ai]@j)
3,7=1

with measurable coefficients. Recall that if u € W,?(Q) is a weak solution of Lu = 0

in € then by Theorem 3.7 u is Holder continuous in 2.

Definition. We say that a function u is L-harmonic in €2 if w is the continuous version
of a weak solution u € W,2*(Q) of Lu = 0 in Q.

loc

The main result of this Chapter is the following theorem.

Theorem 5.1 If u is a non-negative L-harmonic function in a ball Bog C §) then

supu < C'infu (5.1)
Br Bgr

where C'= C'(n, \).

The inequality (5.1) is called the Harnack inequality, analogously to the classical
Harnack inequality for harmonic functions that holds with the constant C' = 3™. This
inequality for uniformly elliptic operators in divergence form with measurable coeffi-
cients was first proved by Jiirgen Moser in 1961.

Recall the weak Harnack inequality of Theorem 3.4 that we now reformulate in the
following form!:

Weak Harnack inequality Let Bigp C Q and assume that u € W2 (Byg) is L-
harmonic in Byg. Choose some a > 0 and set

E ={x € Br:u(z) >a}.

If for some ¢ > 0
|E| > €[Brgl,

'Tn comparison with Theorem 3.4, we replace Bsr by Bsgr and supersolution by solution.

147
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then
infu > da, (5.2)

where 6 =6 (n, A\, e) > 0.

¢

The Harnack inequality (should it be already proved) implies the weak Harnack
inequality as follows: if the set £ has positive measure then we conclude that

a < supu,
Br

and then (5.2) follows from (5.1).
However, in the proof of Theorem 5.1 we will use the weak Harnack inequality.

Moreover, we will use only the following properties of L-harmonic functions (apart
from continuity):

(1) the weak Harnack inequality;

(79) if w is L-harmonic then also the function au + b is L-harmonic for arbitrary
a,beR.

If these two properties hold for any other operator L then also the Harnack inequal-
ity holds for L.

The method of derivation of the Harnack inequality from the weak Harnack inequal-
ity was invented by Eugene Landis in 1970s as an alternative to a more complicated
method of Moser that involved a difficult lemma of John-Nirenberg.

5.2 Lemmas of growth

For the proof of Theorem 5.1 we need some lemmas. The first lemma is an extension
of the weak Harnack inequality.
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Lemma 5.2 (Reiteration of the weak Harnack inequality) Let u be a non-negative
L-harmonic function in some ball Br(x). Consider a ball B,(y) where

2
y € Big(x) and r < §R.
If

{u>1} N B,(y)]
|B,(y)]

>0>0 (5.3)

then

Br(x)

Proof. Note that
B4r(y) C BR(:E)

because 1 8
|z —y| +4r < §R+§R:R.
Applying the weak Harnack inequality in B,.(y) and using (5.3), we obtain that

inf u>d;:=9(n,\0).

Br(y)

It follows that
{030 Bl 1B,
| Bar ()] ~ | By
If Bs.(y) C Bg(x) then applying the weak Harnack inequality in Bs,.(y), we obtain
that

inf u > 515 (?7/, )\, 27n) = 8(51,

BQT (y)

where

e:=06(n,A\2").
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It follows that
H{u > €01} N By (y)] > | By |

| Bar ()| ~ [Bal
Therefore, if Big,(y) C Br(z) then

=2""

infu > (0,6) e = £24;.

By

We continue by induction and obtain the following statement for any positive integer
k:
if Bors2,(y) C Br(x) then inf u > £%4;. (5.4)

2k

Let k be the maximal integer such that

Byira,(y) C Br(z).

//'//B’R(.X)
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Then
262 1z —y| <R

while
283y |z — y| > R,
It follows that

R— |z —y|

2kp >
" 8

> |z —y|
where we have used that R > 9|z — y|. Hence, for this value of k, we have
S B2kr(y)

Then by (5.4)
u(x) > 6.

On the other hand, we have
2k < 262 4z —y| < R

whence

k < log, E
r

It follows that
R log, s
U(ZC) Z 810g2 %51 = 51210g2€10g2 % = 51 <?> = 51 (L)

with s = log, % > (0, which finishes the proof. m

Lemma 5.3 (Alternative form of the weak Harnack inequality) Let u be an L-harmonic
function in some ball Bygr(x). If

[{u < 0} N Bg(z)|
| Bgl

>0 >0,

then

sup u > (1+0)u(x), (5.5)
Byg(z)

where § =6 (n, A\, ) > 0 is the same as in the weak Harnack inequality.
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ol

Proof. If u(z) < 0then (5.5) is trivially satisfied. Assume that u(xz) > 0. By rescaling,

we can assume also that

sup u = 1.
Bar()

Consider the function v = 1 —u that is a non-negative L-harmonic function in Byg(z).

Observe also, that
u<0&sv2>1.

Hence, we obtain that
{v= 10 Bato) _,
| Br|

By the weak Harnack inequality, we conclude that

inf v>9,
Br(z)

where 6 = § (n, A, 0) > 0. It follows that v(z) > ¢ and, hence

1 1
wr)<l—-0< ——= sup u,
(7)< 146 1—1—5345

which is equivalent to (5.5). =

Lemma 5.4 (Lemma of growth in a thin domain) There exists € = € (n,\) > 0 such
that the following is true: if u is an L-harmonic function in a ball Bg(x) and if

[{u> 0} N By

then
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Corollary 5.5 Under the same assumptions, choose some a € R and assume that

{u > a} N Bg| <
| Br|

Then

supu > a+ 4 (u(x) —a).
Br

Proof. Indeed, just apply Lemma 5.4 to the L-harmonic function v =4 —a. =

Proof of Lemma 5.4. The value of € will be determined later. So far consider ¢ as
given. Consider any ball B,(y) C Bg(x) such that

1Br| _
| Br|

2¢e,

which is equivalent to (}%)n = 2¢ and, hence, to
r=(2)""R.

Then

0> 0} B _ [{u> 0} 0 Be(e)] [Bel _ 1 1
| B, | o | Bg] |IB.| = 2= 2

It follows that
[{u <0} N B.(y)]

|B|

1
> —.
-2

Bu)

If By (y) C Bgr(z) then we can apply Lemma 5.3 and obtain that

sup u > (1+9)u(y),
B4T(y)

where § = ¢ (n, A, %) > (. By slightly reducing ¢, we obtain the following claim.
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Claim. If By, (y) C Br(z) and r = (2¢)™ R then there exists y' € By, (y) such that
u(y) = (1+6)uly),

where 6 > 0 depends on n, \.

Let us apply the Claim first for y = x. Assuming that ¢ is small enough, we obtain
4r < R and, hence, By.(z) C Bgr(x). Hence, we obtain by Claim a point x1 € By, ()
such that

u(xy) > (14 0) u(z).

If By, (z1) C Bgr(x) then we apply Claim again and obtain that there is xy € By, (z1)
such that
u(wy) > (1+0)u(z).

We continue construction of the sequence {x;} by induction: as long as By, (xx) C
Br(x), we obtain xy11 € By, (x)) such that

u(@pr1) 2 (1+6) u(wy).

If, for some k, By, (xy) is not contained in Bg(z) then we stop the construction.

X X> Xk

Br(x)/

By construction, if z;, exists then x; € Bgr(z) and
w(zg) > (14 6) u(x). (5.6)

Besides, we have
|z — 2| < 4r foralll <k -1,

which implies that
|z, — x| < 4kr. (5.7)

Let us prove by induction in k the following claim:
if 4kr < R then x;, exists.
We know already that x; exists. Let us prove the induction step, that is,

if 4(k+1)r < R then xy,; exists.
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Indeed, if 4 (k4 1)r < R then also 4kr < R and we obtain the inductive hypothesis
that xj, exists. It follows from (5.7) that

By (1) C Bagigryr ().

Since 4 (k+1)r < R, we see that By, (r;) C Bg(z), and this construction can be
continued so that xj,; exists, which finishes the inductive proof.
Let us choose the maximal integer k& with 4kr < R. Then we have

4(k+1)r>R
and, hence,
R 1
E>——1= - 1
4r 4(2¢)"

It follows from (5.6) that

u(zy) > (1+ 5)4<2€>1/"—1 u(x).

Finally, choosing € small enough (depending only on ¢ and n, that is, on A and n), we
obtain

sup u > u(xg) > 4u(zx),
Br(z)

which was to be proved. m

5.3 Proof of the Harnack inequality

Here we prove Theorem 5.1. Observe first that it suffices to prove the following version
of the Harnack inequality: there exists a constant C', depending on n, A and such that
if u is a non-negative L-harmonic function on a ball Big(x) (where K = 18) then

sup u < Cu(z).
Br(z)

Without loss of generality, we can assume that

sup u = 2, (5.8)
Br(z)
and we need to prove that
u(z) > ¢ (5.9)

for some positive constant ¢ = ¢ (n,A). Let us construct a sequence {x},, of points
such that
Ty € Bop(z) and  wu(zy) = 2% (5.10)

A point x; with u (z,) = 2 exists in Bg(z) by assumption (5.8). Assume that z;
satisfying (5.10) is already constructed. Then, for small enough r > 0, we have

sup u < oF+1
By (zy)
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Set
r) = sup {7" € (0,R]: sup u < 2’““} .

Br(wk)
If r = R then we stop the process without constructing xx,1. If » < R then we
necessarily have
sup u = 2k*1
By (zk)
(note that B, (rx) C Bgr(zr) C Bagr(z) so that u is defined in B, (xy)). Therefore,
there exists w41 € By, (z1) such that u (vy41) = 251
If 2411 € Bag(z) then we keep 511 and go to the next step. If xx1 ¢ Bog(z) then
we disregard xyy; and stop the process.
Hence, we obtain a sequence of balls {B,, (x))} such that

e <R, xp € Bog(x), u(wg)=2"

and
sup u < 2F (5.11)
B'rk(xk)
Moreover, we have also
[ Tpp1 — x| < 7

The sequence {x;} cannot be infinite because u (ry) — 0o whereas u is bounded in
Bsr(x) as a continuous function. Let N be the largest value of k in this sequence. Then
we have either ry = R or ry < R and xn11 ¢ Bog(x) (where xy,q is the disregarded
point).

X2
75 XN-1
X1 Xy XN+1
B R(X)
BZR(X),,"/

In the both cases we clearly have r; + ... + ry > R.
In any ball B,, (z;) we have by (5.11)

sup u < 28l <9kl iy (2’€ — 2’“’1)
Brk(wk)

= a+4(u(xy) —a),
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where a = 28!, By Corollary 5.5, we conclude that

{u>a} 0 By, (1)
| Br|

> ¢,

that is,
[{u>2"""} N B, (z)]
| By, | B

E.

Now let us apply Lemma 5.2 with B,.(y) = B,, (zx). Since u is non-negative and
L-harmonic in Big(z), the following conditions need to be satisfied:

2 1
e < §KR and |zp — x| < §KR.

Since r; < R and |zx — x| < 2R, the both conditions are satisfied if K = 18. By

Lemma 5.2, we obtain that
Tk

() > (EY P (5.12)

where 6 = (n,\,e) >0 and s = s(n,\) > 0.

The question remains how to estimate (%’“)S 2=1 from below, given the fact that
we do not know much about the sequence {ry}: the only available information is (?77?).
The following trick was invented by Landis. The condition (??) implies that there
exists k£ < N such that

R
> 5.13
e kD (5.13)
Indeed, if for all £ < N we have
e T
" k(k+1)
then it follows that
N 0 }%
EE:T% <:j£:'———————— =R
p p k(k+1)

which contradicts (?7). Hence, choose k that satisfies (5.13). For this & we obtain from
(5.12) that

r s 1 2k—1
u(z) >4 <Ef> ok=1 > 5m.

The next observation is that although we do not know the value of k, nevertheless we
can obtain a lower bound of u(z) independent of k because

Qkfl
—inf— >0
m=m ey y Y

Hence, we conclude that
u(z) > om =: ¢,

which finishes the proof of (5.9).
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Finally, let us prove that if u is non-negative and L-harmonic function in a ball Byg
then

supu < C'inf u.
Br Br

Assume without loss of generality that the center of the ball Bg is 0. Let a be a point
in Br where u takes the maximal value and b be the point in B where u takes the
minimal value. We need to prove that

u(a) < Cu(b)
for some C' = C'(n, A). It suffices to prove that
u(a) < Cu(0) and u(0) < Cu(b).

Set r = R/K (where K = 18 as above) and connect 0 and a by a sequence {z; }ﬁio of
points such that
r9=0, g =a, |z;—xj|<r

For that, it suffices to choose all xj on the interval [0, ] dividing this interval into K
equal parts.

Since x; € Bp, the ball By, (z;) = Bg (x;) is contained in Byg (0). By the form of
the Harnack inequality that we proved above, we conclude that

sup u < Cu(x;).
Br(z;)

Since x;,1 € B, (z;), it follows that

u (i) < Cu(zy)
and, hence,

u(a) < CFu(0).

The inequality for u (b) is proved in the same way.

5.4 Convergence theorems

Theorem 5.6 Let {u;},., be a sequence of L-harmonic functions in a domain Q C
R™. If
Lie ()
U, —— u ask — oo
then the function u is also L-harmonic in Q). Moreover, the sequence {uy} converges
to u locally uniformly.

Proof. Let us show that the sequence {u;} converges also in W,?(Q). For that it
suffices to show that the sequence of {Vuy} is Cauchy in L2 (BR/Q) in any ball B/,
such that Bp C Q. For that we use the inequality (3.11) from the proof of Theorem
3.2:

/ \Vo|* nda §4)\4/ V| v2dz, (5.14)
Br Br
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where v is any L-harmonic function? in € and 7 is any Lipschitz function with compact
support in Bpg; in particular, choose 7 to be the following bump function:

1, lz| <7,
n(z) = pp__‘f‘, r<lz| <p, (5.15)
0, lz| > p.

where 0 < 7 < p < R. Take r = R and p = 2R. Then it follows from (5.14) that

C
/ Vol de < — vidr. (5.16)
R?
Bry2 Br

Let us apply this inequality to v = u — u;. Since
|ur, — ulHLz(BR) — 0 as k,l — o0,
it follows from (5.16) that

HVuk—VulHLQ( — 0 as k,l — 0.

BR/Z)

Hence, Vuy, converges in L7, (), which implies that u € W22 and ug — u in W,2%(Q).

Since each wuy, satisfies the identity
n
/ Z aijajUkaiQO =0
Q=1

for all ¢ € D(Q), passing to the limit as k& — oo, we obtain the same identity for w,
whence Lu = 0 follows. o
The last claim follows from Theorem 3.2 that implies that, for any ball B C €,

_ < My — )
;1;}32 [u —ug| < Rn/2 Ju uk||L2(BR)

Since |[u — ug|25,) — 0 as k — oo, it follows that also

sup |u — ug| — 0,
R/2

which means that up — wu locally uniformly. m

Theorem 5.7 Let {uy},., be a sequence of L-harmonic functions in a connected do-
main 2 C R". Assume that this sequence is monotone increasing, that is, ugii(x) >
ug(z) for all k > 1,2 € Q. Then the function

wu(zx) := lim wuy(x)

k—o0

is either identically equal to oo in 2, or it is an L-harmonic function in ). Moreover,
in the latter case the sequence {uy} converges to u locally uniformly.

2In fact, (5.14) was proved for v = u, where u is L-harmonic function. Applying (5.14) also to
v = u_, we obtain the same inequality with v = w.
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Proof. By replacing u; with up — u;, we can assume that all functions wu; are non-
negative. Consider the sets

F={zxeQ:ux) <o}

and
I'={xeQ:u(r)=o00}

so that €2 = F U I. Let us prove that both F' and I are open sets.
Indeed, take a point € F and show that also B.(z) € F for some ¢ > 0. Choose
e so that By (z) C Q. By the Harnack inequality, we have

sup ug, < C inf g, < Cuy(z).
Bc(z) Be(x

By passing to the limit as £ — 0o, we obtain

sup u < Cu(z).
B.(z)

Since u(x) < oo, we obtain that also supp_(,)u < oo and, hence, B.(r) C F. Hence, I’
is open.
In the same way one proves that

inf u>C u(x),
B (z)

which implies that I is open.

Since €2 is connected and €2 = F U I, it follows that either I = Q or FF = Q. In
the former case we have u = oo in €2, in the latter case: u(x) < oo for all x € €.
Let us prove that in the latter case u is L-harmonic. For that, we first show that the
convergence uy — u is locally uniform, that is, for any x € §2 there is € > 0 such that

up = uin Be(z) as k — oc.

Then the L-harmonicity of u will follow by Theorem 5.6.
Choose again € > 0 so that Bo.(z) C €. For any two indices k > [, apply the
Harnack inequality to the non-negative L-harmonic function uy — u;:

sup (ux —up) < C (u — wy) ().
B:(z)

Since (ux —u) () — 0 as k,l — oo, it follows that
up —u; = 0 in B.(x) as k,l — oo.

Hence, the sequence {uy} converges uniformly in B.(z). Since {uy} convergence point-
wise to u, it follows that
up = win B.(z) as k — oo,

which finishes the proof. m
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Theorem 5.8 If {uy} is a sequence of L-harmonic functions in Q that is bounded
in L*(Q), then there is a subsequence {uy,} that converges to an L-harmonic function
locally uniformly.

Proof. Consider any ball Br C . Let us apply the inequality (3.12) from the proof
of Theorem 3.2 that says the following: v is L-harmonic in {2 then

[ vk s = [
Br (IO_T> By

where we take 0 < r < p < R and function 7 is defined by (5.15). Taking r = %R and
p= %R, and applying this to v = wuy,

/ IV (un)|? da < % uidz.

Br Br

Since the right hand side is uniformly bounded for all k, so is the left hand side.
Therefore, the sequence {uxn}e, is bounded in W2 (Bg). Since uzn € W, (Bg),
we obtain by the compact embedding theorem that this sequence has a convergent
subsequence in L? (Bg). Since n = 1 on Bpys, it follows that {u;} has a convergence
subsequence in L* (Bgys).

Covering 2 by a countable family of the balls and using the diagonal process, we
conclude that {u;} has a subsequence that converges in L? () to some function u. By
Theorem 5.6 we conclude that u is L-harmonic and the convergence is locally uniform.
|

5.5 Liouville theorem

Theorem 5.9 If u is a non-negative L-harmonic function in R™ then u = const .

Proof. By subtracting from u the constant infg» u, we can assume without loss of
generality that infge v = 0. We can apply the Harnack inequality to w in any ball Bg
because u is L-harmonic and non-negative in Byg for any R > 0. Hence, we obtain

supu < C'inf u,
Br Br

where C' does not depend on R. Letting R — oo, we see that the right hand side goes
to 0. Hence, the left hand side also goes to 0, and we conclude that © =0. m

5.6 Green function

We state the next theorem without proof.

Theorem 5.10 Let Q be a bounded domain in R™. Then there exists a function
G (z,y) on Q x Q with the following properties:
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1. G (x,y) is jointly continuous in (x,y) € Q x Q\ diag .
G (z,y) > 0.

G(z,y) =G (yx).

For any function f € L*(R"), the following function

e

ua) = [ Glaw) )iy
s a weak solution of the Dirichlet problem

Lu= —f in €,
u € Wy (Q).

5. Assume n > 2. Then, for any compact set K C €1, there are positive constants
c1,co > 0 such that

cle—yP <G (wy) <erlr -y (5.17)
forall z,y € K.

This theorem was proved by Walter Littman, Guido Stampacchia, and Hans Wein-
berger in 1963. The Harnack inequality of Theorem 5.1 was used to prove the estimate
(5.17).

5.7 Boundary regularity

Let 2 be a bounded domain in R™ and consider the following Dirichlet problem in £2:

{Lu:Oan (5.18)

u—ge W, (Q)

where g € C'(Q) is a given function.

Definition. We say that a point z € 9Q is regular for (5.18) if, for any g € C1(€), the
(continuous version of the) solution u of (5.18) satisfies

91311% u(z) =g (2). (5.19)

Fix a point z on the boundary 02 and, for any integer k£ > 1, consider the following
sets:
Ey (2) = By-v (2) N Q°.

Theorem 5.11 Assume n > 2. Then a point z € 092 is reqular for (5.18) if and only
of
D 280 cap (B (2)) = 0. (5.20)

k=1
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This theorem was proved by W.Littman, G.Stampacchia, and H.F.Weinberger in
1963 using their estimate (5.17) of the Green function. For the case L = A, Theorem
5.11 was first proved by Norbert Wiener in 1924. The condition (5.20) for regularity
is called Wiener’s criterion.

One of the consequences of Theorem 5.11 is that the notion of regularity of z € 052
does not depend on the choice of the operator L as long as it in the divergence form
and uniformly elliptic.
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Chapter 6

* Equations in non-divergence form

6.1 Strong and classical solutions

Consider in a domain 2 C R™ a non-divergence form operator

n

Lu= Z aij(x)(?iju

ij=1

with measurable coefficients a;; € C*(2). Assume that L is uniformly elliptic with
the ellipticity constant A. Given a function f € L7 (), where p > 1, we say that u is
a strong solution of Lu = f in Q if u € W2?(Q) and the equation

Z aij(x)0u(x) = f(z) (6.1)

i,7=1

is satisfied for almost all z € Q. Here 0;;u is the weak derivative of u that obviously
belongs to L? (). Here we consider only strong solutions of the class W2", that is,
p = n. By the Sobolev embedding theorem, we have

W2 (@)= C(9),
so that all strong solutions are continuous functions.

Assume now that the coefficients a;; are continuous in €. Given a function f €
C(2), we say that u is a classical solution of Lu = f in Q if u € C*(Q2) and the equation
(6.1) is satisfied for all z € Q. Of course, any classical solution is also strong.

If u is a solution of Lu = 0 (either strong or classical) then we refer to u as an
L-harmonic function.

6.2 Theorem of Krylov-Safonov

The main results of this Chapter are stated in the next two theorems that were proved
by Nikolai Krylov and Michail Safonov in 1980 based on the previous work of Eugene
Landis.

165
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Theorem 6.1 (Estimate of the Holder norm) If w is an L-harmonic function in §)
then w € C*(Q) with some a = a (n, \) > 0. Moreover, for any compact set K C €,

[ull gy < Cllulle » (6.2)

where C'= C'(n, A\, dist (K,09)) .

Of course, if u is a classical solution then u € C?(Q) and, hence, u € C*(Q) with
any o < 1. However, even in this case the estimate (6.2) of the Holder norm is highly
non-trivial, because a and C' do not depend on a particular solution wu.

Theorem 6.2 (The Harnack inequality) If u is a non-negative L-harmonic function
m a ball Bop C ) then

supu < C'infu

Br Br

where C'= C'(n, \).

In this Chapter we will prove restricted versions of Theorems 6.1 and 6.2 assuming
that a;; € C°°(€2) and that the L-harmonic functions are classical solutions of Lu = 0.
Passage from C* coefficients to the general case can be done by using approximation
techniques that we do not consider here.

6.3 Weak Harnack inequality

From now on we assume that a;; € C*°(Q2) and that any L-harmonic function u is
classical, that is, belongs to C?(€2). In fact, by Corollary 2.13, we have u € C*°().

As in the case of the divergence form operator, we will concentrate on the proof of
the weak Harnack inequality for L-harmonic functions. Then both Theorems 6.1 and
6.2 follow in the same way as for the divergence form case. Hence, our main goal is
the following theorem.

Theorem 6.3 (Weak Harnack inequality for non-divergence form operator) Let u be a
non-negative L-harmonic function in a ball Bygr C ). Choose any a > 0 and consider
the set

E = {u>a} N Bg.

If, for some 6 > 0,
|E| > 0|Bg|,

then
inf u > da,

Br

where 6 =6 (n, A,0) > 0.

We present here the proof devised by E.Landis shortly after Krylov and Safonov
announced the proofs of Theorems 6.1 and 6.2. This proof has advantage that it is in
many ways similar to the proof in the divergence form case.
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6.4 Classical solution of the Dirichlet problem

In the present setting of a non-divergence form operator, the proof of the Harnack
inequality uses a highly non-trivial theorem of Alexandrov-Pucci that we state below
and that provides an estimate of solution of the corresponding Dirichlet problem. We
precede it by the statement of the existence result that we also need.

Theorem 6.4 Let B C ) and f € C* (ER). Then the classical Dirichlet problem

Lu = f in Bgr
{ u=0 on 0B (6.3)

has a solution u € C* (Bg) N C (Bg) .

Approach to the proof. Rewrite the operator L in the form

Lu = i & (aij(()ju) - i (i &-aij) 8ju
1 i=1

i,j=1 J=

= Z 82 (Cl,‘jajU) + Z bjaju7
j=1

1,j=1

where
n
bj == E az-aij.
=1

Then we need the classical solvability of the Dirichlet problem for the divergence form
operator with lower order terms and with smooth coefficients.
Since L has now a divergence form, we can consider first the weak Dirichlet problem

Lu = f weakly in Bpg,
u € VVOL2 (BR) .

By Theorem 2.14, this problem has a solution u € C'* (Bg), that is hence a classical
solution of Lu = f.

We need still to ensure the boundary condition v = 0 in the classical sense. For
the operators without lower order terms b; the corresponding result is contained in
Theorem 4.6. With the terms b; one basically has to repeat all the theory of Holder
regularity (both interior and up to the boundary) and then to arrive to a version of
Theorem 4.6 for the operator with lower order terms. We skip this part. =

Theorem 6.5 (Theorem of Alexandrov-Pucci) Ifu is a classical solution of the Dirich-
let problem (6.3) with f € C(S2) then the following estimate is true:

sup [u| < CR||f L"(BR) >
Br

where C'= C'(n, \).

We present this theorem without proof.
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6.5 Three lemmas

In this section we prove three lemmas needed for the proof of the weak Harnack in-
equality.

Lemma 6.6 Let u be an L-harmonic function in 2 and assume that uw > 0 in a ball
Byr (2) C Q. Choose any a > 0 and consider the set

E={u>a}NBgr(2).
If the set E contains a ball B,(y) then
inf u>c (L)Sa,
Br(2) R
where s = s (n,A) >0 and ¢ = c¢(n,\) > 0.
Proof. Without loss of generality, we can take a = 1, so that
E={u>1}NBgr(z).
Assume also for simplicity that y is the origin of R™. Consider the set

Bir(2)

Fix some s > 0 to be chosen later, and consider the following function

(2) ( 1 1 ) 5
wz)=(—5— === |r

" (3R)
Since the origin is at y, outside the ball B,(y) we have |z| > r, whence

w(z) <1 outside B,(y).
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Since by hypotheses B,(y) C E and hence B,.(y) NG = 0, it follows that
w(r) <1lonG.
Since on 0By (2) we have |z| > 3R, it follows that
w(z) <0 on dByr(2).
Recall that by Exercise 5 (b) we have in R™\ {0}
Llz|™ >0

provided s > nA? — 2. Choose one of such values of s, for example, s = n\*. Since
G C R™\ {0}, we obtain
Lw > 01in G.

As we have seen above, the values of w on 0G are as follows:

1 on OGN Byg (2)
0 on OGN 6B4R (Z) .

w <
<

w

Let us compare w with u in G. The function u satisfies
Lu=0 in G

and the boundary conditions:

1 on OGN Byr (2),

>
> 0on dGNIBy, (2).

Using the comparison principle of Exercise 2, we conclude that

w>w in G.
It follows that
inf u= inf w> inf w> inf w.
BR(,Z) BR(Z)OG Br(z)NG Br(z)

Since in By (z) we have |z| < 2R, it follows that in Bg (2)

1 1 T\$
> - s—c=
wiz) 2 ((23)3 (3R)S) Pee (R) !
where ¢ = 27° — 37° > 0. We conclude that

inf ch(%)s,

Br(#)

which was to be proved. m
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Lemma 6.7 (Lemma of growth in a thin domain) Let u be a non-negative L-harmonic
function in a ball B C Q). There exists € = £ (n, \) > 0 with the following property: if

for some a > 0
{u < a} N Bg|

<e
| Br| ’

then

inf u >

1
—a.
Bprya 2

Restating this lemma in terms of the function v = a — u with a = supp,_ u yields
the following: if v is L-harmonic in Br and

[{v > 0} N Bpg] <e
| Br|

then

sup u > 2 sup u.
Br Br/4

This formulation matches that of Lemma 5.4 for the divergence form operators (except
for the value 2 instead of 4, which is unimportant).

Proof. Assume that the ball By is centered at the origin. Without loss of generality
set a = 1, and consider the set

G = {u < 1} N Bg.
Since |G| < € |Bg|, there exists an open set G’ in By such that
GQBR cq@

and

G| < 2¢ | Bp (6.4)
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Choose a function f € C*° (FR) such that
0<f<1, f=1lonG, f=0outsideG.
By Theorem 6.4, the following Dirichlet problem

Lv=—f in Bp
v=0on 0B

has a classical solution v € C? (Bg)NC (Bg). Since Lv < 0, it follows by the minimum
principle that v > 0 in Bg. By Theorem 6.5 of Alexandrov and Pucci,

$upv < OR |f sy < CRIG" < CTREN™, (6.5)
R

where we have also used (6.4). Consider now the function
w(z) = ¢ — e |z’ — esv(x)

where ¢y, co, c3 are positive constant to be chosen. We would like w to satisfy the same
conditions as in the previous proof:

(1) Lw>0in G
(i) w<1lin G

(74i) w < 0 on 0Bg

We have in GG
Lw = —cLlz)* —eslv
= —262 Z CLM<£L'> + Cgf
i=1

> —262)\7L + Cgf
> —2cAn + c3,

where we have used that f = 1 on G. Hence, in order to satisfy (i), the constants cy
and c3 should satisfy
c3 > 2c9An.

In G we have w(x) < ¢p; hence, (i) is satisfied if
c <1.
Finally, on 0Bg we have |z| = R and, hence,
w(z) < e1 — coR%
Hence, to satisfy (iiz) we should have

C1 S CQRZ.
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Therefore, we choose ¢y, ¢o, c3 as follows:

cT = 1
Cy = R_2

2A\n
3 = 2cAn = Tz

Comparing w with u as in the previous proof, we obtain again that « > w in GG. Hence,
we have

inf u= inf w> inf w> inf w.
Brya Bpr/ NG Bpr/sNG Br/a

In Bg/s we have, using (6.5),
¢ — o (R/4)* — ezsupw

C1 — Co (R/4)2 — 030/R281/n

1
= 1—— —2 (e,
16 nC'e

w(x)

(AVARAY

Choosing ¢ small enough depending on A and n, we obtain

inf w > —,
Brya

which finishes the proof. m

Lemma 6.8 Under conditions of Lemma 6.7, if
<ajNB

{u<a} 0 Bru| _
| Brya|

then

inf u > va,
Brya

where vy =y (n,\) > 0.

Proof. Let a = 1 and let € be from Lemma 6.7. Applying Lemma 6.7 to the ball Br/4

instead of Bpr, we obtain that

1
inf u>

Brj16 2
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Hence, the set {u > %} N Brys contains the ball Br/is. Applying Lemma 6.6, we

obtain )
R/16\"° 3 1
1 f > _— —_ = 4_8— e
ég/4u_C(R/4> 17 2T

which finishes the proof. m

6.6 Proof of the weak Harnack inequality

Set without loss of generality a = 1. Let u be a non-negative L-harmonic function in a
ball B4r C (2. Assuming that the set

E:{’LLZl}ﬂBR

satisfies the condition

where 6 > 0, we need to prove that

infu > 9,
Br

where § = § (n, \,6) > 0.
Consider for any non-negative integer k the set

By = {u>~"} N B,

where v € (0,1) is the constant from Lemma 6.8.

The main part of the proof is contained in the following claim.

Claim. There exist 3 = [ (n,\) > 0 and a positive integer | =1 (n, \,0) such that, for
any k > 0 the following dichotomy holds:



174 CHAPTER 6. * EQUATIONS IN NON-DIVERGENCE FORM

(1) either
|Eki1] = (1+ 3) ||
(i3) or
Eyy1 = Bg.

Let us first show how this Claim allows to finish the proof. Since the function w in
Bp, is bounded, the case (1) cannot holds for all k. Let N be the minimal value of k
such that (i) does not holds for £k = N. In other words, (i) holds for £k =0,..., N — 1
but does not holds for k = N. Hence, (ii) holds for k = N.

It follows that

|En| > (14 8)|Ex—a] > ... > (14 )" | By

Since |En| < |Bg| and |Ey| = |E| > 6 |Bg|, it follows that

whence

On the other hand, applying (ii) for kK = N, we obtain
Enyi1= Br

that is,

Inl
. . 0 1
infu= inf u >~V >mant = §

)
Br En4i

which finished the proof of the weak Harnack inequality.
Now let us prove the above Claim. It suffices to prove it for the special case k = 0,
that is,

(1) either |Eq| > (14 5) | Eol
(Z’L) or El = BR.

Indeed, if it is proved for k = 0, then for a general k consider the function v = u/~*.
Consider the sets B '
E;={v>+"} N Bg

where j is a non-negative integer. Clearly, we have

Epy; = {u27k+j}ﬂBR= {UZWj}ﬂBR:Ej‘

In particular, Ej = Ey and Ep = E. Hence, applying the special case of the Claim
to function v, we obtain the general case of the Claim for function wu.

Hence, let us prove the above special case & = 0. Let us reformulate it in the
following equivalent way:
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(1) either |Ey| > (14 5) | Eol
(#7) or infp,u > d, where § = (n, A, 0) > 0.

Indeed, if the latter condition holds then we find [ such that 7' < §, and obtain
E, = Bg.
Choose r < R such that |
|EN Br—| = 3 |E] (6.6)

and set

F = EHBR_T = {'LL Z 1}ﬂBR—r'

Consider two cases.
Case 1. Assume that there exists x € F such that
[{u <1} N B,(z)| .
| B, | -

where € = € (n,\) > 0 is the constant from Lemma 6.7.
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Then by Lemma 6.7 we have

, 1
inf u>-.
B7./4($) 2

Note that B,s(z) C Bg. Hence, in By there is a ball B, 4(z) where u > 5. Applying
Lemma 6.6, we conclude that

4\° 1
= (%) >
From (6.6) we have

1 1
|Br| = |Br—+| = |Br \ Br—r| > |E\ Bp—,| = 3 |E] > §9|BR|

which implies after division by Bp that

R—r\"_ 1
1— > —4.
(%) =3

It follows that

Hence, we obtain

c 1 1/n\ *
infu>-47°1—(1—=40 =:0>0
Br T2 ( 2) ’
which means that the alternative (i) takes places.

Case 2 (main). Assume that, for any = € F, we have

{u <1} N B ()]
| By | -

€.

For any « € F' and p > 0 consider the quotient:

{u <1} N B,(2)]
Byl

As p — 0, this quotient goes to 0 for almost all z € F' because in F' we have u > 1.
On the other hand, for p = r, this quotient is > €. Hence, for almost all x € F', there
exists p(z) € (0,r) such that

[ < 1} By )]
| Boa)|

=e. (6.7)
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Denote this set of points x by F’, so that F' C F and |F’'| = |F|. By the property
of the Lebesgue measure, there is a compact set K C F’ such that

1 1 1
K| 2 5|F| =5 |F| = ;1B

The family of ball { B, (z)} . forms an open covering of K. Choose a finite subcover

{B,, (x;)} where p; = p (z;). By the standard ball covering argument, we can pass to a
subsequence and, hence, assume that the balls { B, (z;)} are disjoint while { B3, (z;)}
cover K.

Observe that x; € Bg_,, whence

lzs| +4p; < R—1r+4p; < R+3r < R+ 3R =4R.
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Therefore, By, (v;) C Bar. We can apply in By, (z;) Lemma 6.8 because by (6.7)

[{u <1} N B, (z;)|

=g, 6.8

which yields
inf u>n~. 6.9
RN (6.9)

By construction, all balls B, (z;) are contained Bg, which implies by (6.9) that
(E1\ E)N Bpi(wi) ={y<u<l1}n By (z) = {u<1}n B, (x;) .

Combining with (6.8), we obtain

Adding up in 4 and using that all balls B, (z;) are disjoint, we obtain

IEx\E| > ) £|B,, (z:)]

> 37 |K| > 3*"2 B,

whence .
Bl = (1+ 3*’11) B,

thus proving the alternative (i) with 3 = 37"%.
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