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0. Introduction

In this paper, we develop a universal approach for estimating from above the eigenvalues
of the Laplace operator on the underlying spaces of different kinds: on compact or finite
volume Riemannian manifolds (a continuous space) and on finite graphs (a discrete space).

Let first M be a Riemannian manifold equipped with a measure µ = σ(x)µ0 where µ0

is a Riemannian measure, σ is a positive smooth density. Let us consider an operator

L = −σ−1div(σ∇) (0.1)

which is self-adjoint in L2(M,µ) (with a proper domain). Obviously, if σ = 1 then L = −∆
with ∆ being a Laplace operator of the Riemannian metric.

IfM is compact then L has a discrete spectrum in L2(M,µ). Let us denote its eigenvalues
by 0 = λ0 < λ1 ≤ λ2 ≤ ... . Our result says in this setting that for any k + 1 disjoint
measurable subsets X0, X1, ..., Xk ⊂M

λk ≤ 1
D2

1 + max
i�=j

log
(µM)2

µXiµXj

2

(0.2)

where D = mini�=j dist(Xi, Xj), and dist denotes the Riemannian distance.
In particular, we have for any disjoint sets X, Y

λ1 ≤ 1
dist2(X, Y )

1 + log
(µM)2

µXµY

2

(0.3)
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Now let G be a connected graph with a vertex set M and with an edge set E equipped
with a conductance c(ξ) > 0, ξ ∈ E. We define a weighted Laplace operator as

Lf(x) = f(x) −
∑
y∼x

f(y)
c(xy)
µ(x)

where µ(x) =
∑
y∼x c(xy) is a measure of the point x. The operator L is self-adjoint and

non-negative in L2(M,µ). Let us denote its eigenvalues by 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN
where N + 1 is the number of vertices in M.

Our results says that for any k + 1 ≤ N + 1 disjoint non-empty sets X0, X1, , , , Xk

min
i�=j

dist(Xi, Xj) ≤ max
i�=j

�
log µM√

µXiµXj

log λN+λk

λN−λk

�. (0.4)

This inequality contains implicitly an upper bound for λk - see Section 4 for details. For
the case k = 2, we rewrite (0.4) as follows

dist(X, Y ) ≤ �
log µM√

µXµY

log λN+λ1
λN−λ1

�. (0.5)

Particular cases of the inequality (0.2) for a Laplace-Beltrami operator on a Riemannian
manifold and of the inequality (0.5) for a combinatorial Laplace operator on a graph were
considered in a paper of the authors [9] . In the present paper, we introduce another
method of proving the above inequalities which

• yields numerically better results;
• is applicable to a wider class of operators;
• treats both continuous and discrete case in the same way.

The main idea of the method generalizes that of [6] and can be referred to as a finite
propagation speed of a Laplace operator on a graph. Indeed, if u is a function on a graph,
then ∆u has a support in 1-neighbourhood of suppu. Moreover, if P (z) is a polynomial of
the degree s then the support of P (−∆)u is located in the s−neighbourhood of suppu.

A similar property holds for the Laplace operator on a manifold: the support of the
function cos s

√−∆u lies in the s−neighbourhood of suppu. This property was used in [3]
to obtain estimates of certain functions of the Laplace operator and to reprove the heat
kernel upper bounds of [5] .

In the next two section we introduce the necessary notions and prove the basic facts
for an abstract setting. In section 3 we prove eigenvalue estimates for manifolds, and in
section 4 we treat the discrete case of graphs.

1. Preliminary definitions and facts

Since we are going to treat both continuous and discrete cases in the same way, we shall
introduce a general setting which covers both situations and, perhaps, many others. Let
M denote a metric space equipped with a Borel measure µ. Let we be given a self-adjoint
(unbounded) operator L in L2(M,µ) with a dense domain which will be a prototype of
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−∆. We assume that the following usual properties of Laplacian on compact spaces are
true:
1◦ the operator L is self-adjoint and non-negative i.e. specL ∈ [0,∞)
2◦ a constant is in DomL (in particular, 1 ∈ L2(M,µ) and the volume µM is finite) and

is an eigenfunction with an eigenvalue 0 i.e.

L1 = 0

In order to make L a real Laplace operator we have to postulate its properties which would
make connection to geometry of the space M, namely, to the distance function. Let us
introduce the following notation for a neighbourhood of a support of a function:

suppru = {x ∈M : dist(x, suppu) ≤ r}

where dist denotes the distance function in M.
We shall assume existence of a finite propagation speed function family Ps(λ), namely:

3◦ there exists a non-trivial family of bounded continuous functions Ps(λ) defined on the
spectrum specL where s runs over [0,+∞) so that for any function u ∈ L2(M,µ)

suppPs(L)u ⊂ suppsu.

Let us consider examples when the hypotheses 1◦-3◦ hold.
1. Let M be a complete Riemannian manifold and let L be the unique self-adjoint exten-

sion of the operator −∆ where ∆ is the Laplace operator associated with the Riemannian
metric and acting on the domain C∞

c (M) (see [11] , [19] ). As well known, the condition
1◦ is true always. The condition 2◦ is fulfilled whenever 1 ∈ L2(M,µ) that is, the volume
of M is finite (if this is the case then 1 ∈ DomL automatically).

As for 3◦, we can always take Ps(λ) = cos s
√
λ. The finite propagation speed of this

family is nothing other than the finite propagation speed of the wave equation (see [18] ).
2. Let M be a compact Riemannian manifold with a boundary or a compact region

on another manifold. Let L be a self-adjoint extension of −∆ subject to the Neumann
boundary condition. Then all our hypotheses 1◦-3◦ do hold with the same family Ps(λ) as
above.

3. Let M be a complete Riemannian manifold not necessarily with finite volume. Let us
denote by µ0 a Riemannian volume, take a smooth positive function σ ∈ L1(M,µ0), and
introduce another measure µ = σµ0 so that the new volume µM is finite. Let us take

L = −∆ −∇ log σ∇ = −σ−1div(σ∇)

initially with the domain C∞
c (M). This operator is symmetric against the measure µ and is

uniquely extended to a self-adjoint operator - see [10] for details. It is not difficult to show
that all our hypotheses 1◦-3◦ are true moreover, with the same family Ps as above. Let
us emphasize that the distance function under consideration is the Riemannian distance
regardless of what function σ is chosen.

4. Let M be a vertex set of a finite connected graph and let L be a (positively defined)
combinatorial Laplace operator acting on functions on M. In this case, it is a finite di-
mensional operator, and the hypotheses 1◦-2◦ are fulfilled automatically. The condition
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3◦ holds if Ps(λ) is any polynomial of the degree 	s
 (where 	s
 is the floor function i.e.
the the greatest integer which does not exceed s) which follows from the obvious fact that
supp∆u ∈ supp1u.

Before going any further let us show that the hypotheses 1◦-3◦ can be relaxed in the
following way. Suppose, that we have a Borel measure µ̂ on M and a self-adjoint operator
L̂ in L2(M, µ̂) satisfying instead of 1◦-3◦ the following hypotheses:
1̂◦ the spectrum of L̂ lies in the interval [λ0,+∞);
2̂◦ there is a positive L2−function ψ on M which lies in DomL̂ and which is eigenfunction

of L̂ to the eigenvalue λ0 i.e. L̂ψ = λ0ψ;
3̂◦ similar to 3◦: for any u ∈ L2(M, µ̂)

suppPs(L̂)u ⊂ suppsu

which coincide with 1◦-3◦ provided ψ = 1, λ0 = 0, and L̂ = L. Let us show that by an
appropriate change of the operator and the measure (but not touching the distance) the
general case 1̂◦-3̂◦ is reduced to the special case 1◦-3◦ as well. To that end, let us introduce
another measure µ = ψ2µ̂ and another operator L so that

L = ψ−1 ◦ L̂ ◦ ψ − λ0

and DomL = ψ−1DomL̂.
We claim that 1◦-3◦ hold for the operator L in the space L2(M,µ). Indeed, 1◦ follows

from the well-known general fact that the spectra of L̂ in L2(M, µ̂) and of ψ−1 ◦ L̂ ◦ ψ in
L2(M,ψ2µ̂) coincide. In particular, it yields also that

spec(L, L2(M,µ)) = spec(L̂, L2(M, µ̂)) − λ0

which enables us to transfer any information about the spectrum of L to that of L̂.
The condition 2◦ follows from ψ ∈ DomL̂ and L̂ψ = λ0ψ. The condition 3◦ follows from

suppλ0u ⊂ suppu and

suppPs(ψ−1 ◦ L̂ ◦ ψ)u = suppψ−1Ps(L̂)(ψu) ⊂ supps(ψu) ⊂ suppsu.

Let us consider an example when 1̂◦-3̂◦ do hold.
5. Let M be a Riemannian manifold (not necessarily complete) and let us denote

by µ̂ its Riemannian measure. Let L̂ be a minimal self-adjoint extension of −∆ which
can be associated to the Dirichlet boundary condition at the infinity of M (on a non-
complete manifold there may exist different self-adjoint versions of the Laplace operator).
For example, ifM is a bounded region in IRn or in any other complete Riemannian manifold
then L̂ is a self-adjoint operator of the Dirichlet boundary value problem in M.

Suppose that L̂ has a positive L2−eigenfunction ψ i.e.

L̂ψ = λ0ψ

for some number λ0. Then the conditions 2̂◦-3̂◦ are obviously true, so is 1̂◦ although the
latter is not altogether trivial and we refer to [16] for that.

A typical situation matching this description is a Dirichlet boundary value problem in
a bounded region where λ0 is its first eigenvalue and ψ is the corrsponding eigenfunction
which is automatically positive and in L2.



5

6. Let q(x) be a smooth function on a complete Riemannian manifold and let L̂ be
the minimal self-adjoint extension of the operator −∆ + q(x) acting on smooth compactly
supported functions. Let the equation L̂ψ = 0 has a positive L2−solution on M. This
situation fits 1̂◦-3̂◦ if q(x) is positive. But it can be reduced to 1◦-3◦ for a signed q(x)
as well. Indeed, if µ̂ is the Riemannian measure then we introduce the measure µ = ψ2µ̂
and the operator L = ψ−1 ◦ L̂ ◦ ψ which coincides with L = − 1√

ψ
div(

√
ψ∇) (which

follows from L̂ψ = 0) i.e. with the operator from the example 3. Since the spectra
spec(L̂, L2(M, µ̂)) = spec(L, L2(M,µ)) then any information about the spectrum of L is
carried over to that of L̂.

We conclude this section with a general inequality which will be used in the next sections
and which goes back to [3] . In what follows we assume that 1◦-3◦ do hold.

Let us put
p(s) = sup

λ∈specL
|Ps(λ)|

and assume that p(s) is a reasonably nice function of s, for example, locally integrable.
We shall consider a linear combination of the functions Ps with respect to the parameter

s. More precisely, let us put

Φ(λ) =
∫ ∞

0

ϕ(s)Ps(λ)ds

where ϕ(s) be a measurable function on (0,+∞) such that∫ ∞

0

|ϕ(s)| p(s)ds <∞.

In particular, Φ(λ) is a bounded function on specL, and we shall be able to apply the
operator Φ(L) to any function from L2(M,µ).

Lemma 1.1 If u ∈ L2(M,µ) then

‖Φ(L)u‖L2(M\supp
r
u) ≤ ‖u‖2

∫ ∞

r

|ϕ(s)| p(s)ds

where ‖u‖2 ≡ ‖u‖L2(M,µ) .

Proof of the lemma. Indeed, let us denote

w(x) = Φ(L)u(x) =
∫ ∞

0

ϕ(s)Ps(L)u(x)ds.

If the point x is off suppru then Ps(L)u(x) = 0 whenever s ≤ r. Therefore, for those points

w(x) =
∫ ∞

r

ϕ(s)Ps(L)u(x)ds

and

‖w‖L2(M\suppru) ≤
∥∥∥∥
∫ ∞

r

ϕ(s)Ps(L)u(x)ds
∥∥∥∥

2

≤
∫ ∞

r

‖ϕ(s)Ps(L)u(x)‖2 ds ≤
∫ ∞

r

|ϕ(s)| p(s) ‖u‖2 ds

which was to be proved. ��
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Corollary 1.1 If u, v ∈ L2(M,µ) and the distance between the supports of u and v is D
then ∣∣∣∣

∫
M

vΦ(L)udµ
∣∣∣∣ ≤ ‖u‖2 ‖v‖2

∫ ∞

D

|ϕ(s)| p(s)ds (1.1)

Indeed, the integral on the left hand side of (1.1) is reduced to one over the support of
v which in turn is majorized by the integral over the exterior of suppDu. The rest follows
by a straightforward application of the Cauchy-Schwarz inequality.

2. The abstract eigenvalue estimates

Throughout this section we assume that the hypotheses 1◦-3◦ are true.
Let us denote by spec1 the spectrum of L in the subspace of L2(M,µ) orthogonal to

constants and put λ1 = inf spec1. The purpose of this section is to develop a rather general
approach to estimate λ1 from above. The heart of the matter is the following statement
which reduces the question to playing with the functions of a single variable.

Given a function u ∈ L2(M,µ) we denote by u(1) its component orthogonal to a constant
function and by ū − its projection onto the space of constants. In other words,

ū =
1
µM

∫
M

udµ

u(1) = u− ū.

Proposition 2.1 Let u, v be two functions in L2(M,µ) with disjoint supports so that the
distance between their supports is equal to D. Then

sup
λ∈spec1

|Φ(λ)| ≥ Φ(0)
ūv̄µM

‖u(1)‖2‖v(1)‖2
− ‖u‖2‖v‖2

‖u(1)‖2‖v(1)‖2

∫ ∞

D

|ϕ(s)| p(s)ds (2.1)

provided ‖u(1)‖2 > 0, ‖v(1)‖2 > 0.

Remark. This inequality contains implicitly an upper bound for λ1. Indeed, let us sup-
pose that the function Φ(λ) is a decreasing one and Φ(0) = 1. Then the left hand side of
(2.1) is equal to |Φ(λ1)| , and (2.1) implies an upper bound for λ1. Of course, to make it
more explicit, one should have chosen all the functions u, v, Ps(λ), ϕ(s). We shall do that
in the next sections.
Proof. Indeed, we have

Φ(L)u = Φ(L)u(1) + Φ(L)ū

The last term here is equal to Φ(0)ū since the space of constants is an eigenspace of the
operator L with the eigenvalue 0. Taking the inner product with the function v = v(1) + v̄
and using the fact that the operator L and any function of it are invariant both in the
space of constants and in its orthogonal complement, we have∫

M

Φ(L)uvdµ =
∫
M

Φ(L)u(1)v(1)dµ+ Φ(0)ūv̄µM (2.2)

Since u(1), v(1) lie in the subspace of L2(M,µ) orthogonal to constants, we have
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∣∣∣∣
∫
M

Φ(L)u(1)v(1)dµ

∣∣∣∣ ≤ sup
λ∈spec1

|Φ(λ)| ‖u(1)‖2‖v(1)‖2 (2.3)

and get from (2.2)

∫
M

Φ(L)uvdµ ≥ Φ(0)ūv̄µM − sup
λ∈spec1

|Φ(λ)| ‖u(1)‖2‖v(1)‖2.

Combining with the upper bound (1.1) , we shall obtain (2.1) . ��
Corollary 2.1 Let X, Y be two disjoint subsets of M of a positive measure and let the
distance between them be equal to D > 0. Then

sup
λ∈spec1

|Φ(λ)| ≥ Φ(0)
√
µXµY√
µXµY

− µM√
µXµY

∫ ∞

D

|ϕ(s)| p(s)ds (2.4)

where X = M \X, Y = M \ Y.

Indeed, by taking u = 1X , v = 1Y and by noticing that

‖u‖2
2 = µX, ū =

µX

µM
, ‖u(1)‖2

2 = µX − ū2µM =
µXµX

µM

we obtain (2.4) from (2.1) .
Now we turn to the higher eigenvalues. To that end, we have to assume that the

spectrum of L consists of a discrete part λ0 = 0 ≤ λ1 ≤ λ2, ... ≤ λk−1 (where k > 1)
and of the rest which lies in the interval [λk−1,+∞). Let the corresponding eigenfunctions
be w0 = const, w1, w2, ...wk−1 so that they form an orthonormal set in L2(M,µ). Let us
denote by speck the spectrum of L in the subspace of L2(M,µ) which is orthogonal to all
w0, w1, ...wk−1 and put λk = inf speck. By the hypothesis above, λk ≥ λk−1.

Given a function u ∈ L2(M,µ) we denote by u(k) the orthogonal projection of u onto
the subspace of L2(M,µ) orthogonal to w0, w1, ...wk−1. We denote by Φ, ϕ, p the same
functions as above. For any two functions u, v ∈ L2(M,µ) and D > 0 we introduce the
notation

Γk,D(u, v) = Φ(0)
ūv̄µM

‖u(k)‖2‖v(k)‖2
− ‖u‖2‖v‖2

‖u(k)‖2‖v(k)‖2

∫ ∞

D

|ϕ(s)| p(s)ds

provided the norms ‖u(k)‖2, ‖v(k)‖2 are non-vanishing (otherwise, take Γk,D(u, v) = 0).
Proposition 2.1 can be stated in this notation as follows

sup
λ∈spec1

|Φ(λ)| ≥ Γ1,D(u, v)

whenever the distance between the supports of u, v is at least D.
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Proposition 2.2 Let k ≥ 2 and let u0, u1, ...uk be k + 1 functions in L2(M,µ) with
disjoint supports. Let us denote by D be the smallest distance between the pairs of their
supports. Suppose that the function Φ(λ) is non-negative at the points λ = λ1, λ2, ...λk−1.
Then we have

sup
λ∈spec

k

|Φ(λ)| ≥ inf
i�=j

Γk,D(ui, uj). (2.5)

Remark. The relation (2.5) contains implicitly an upper bound for λk in the same way
as (2.1) is an upper bound for λ1. Also, let us note that Γk,D can be replaced in (2.5) by
a more computable Γ1,D because ‖u(k)‖2 ≥ ‖u(1)‖2

Proof of Proposition 2.2. Let us pick any two functions out of {ui} and denote them by
u, v. We have the following expansions:

u = ū+ a1w1 + a2w2 + ...ak−1wk−1 + u(k) (2.6)

v = v̄ + b1w1 + b2w2 + ...bk−1wk−1 + v(k)

with some coefficients ai, bi. Let us apply the operator Φ(L) to the first expansion and
take the inner product with the second one:

∫
M

Φ(L)uvdµ = Φ(0)ūv̄µM +
k−1∑
i=1

aibiΦ(λi) +
∫
M

Φ(L)u(k)v(k)dµ.

The integral on the right hand side admits the estimate∣∣∣∣
∫
M

Φ(L)u(k)v(k)dµ

∣∣∣∣ ≤ sup
λ∈spec

k

|Φ(λ)| ‖u(k)‖2‖v(k)‖2

while the integral on the left hand side is estimated via (1.1) . We obtain thus

sup
λ∈spec

k

|Φ(λ)| ‖u(k)‖2‖v(k)‖2 ≥ Φ(0)ūv̄µM +
k−1∑
i=1

Φ(λi)aibi

− ‖u‖2‖v‖2

∫ ∞

D

|ϕ(s)| p(s)ds.
(2.7)

Now we want to kill the second term on the right hand side (2.7) . We shall be able to do
that by a proper choice of the functions u, v. Indeed, for any function u ∈ L2(M,µ) there
corresponds a vector �a = (a1, a2, ...ak−1) ∈ IRk−1 defined as in (2.6) . For any two vectors
�a,�b ∈ IRk−1 let us introduce their inner product in IRk−1 by the rule

(�a,�b) ≡
k−1∑
i=1

Φ(λi)aibi (2.8)

Strictly speaking, (2.8) may define a degenerated inner product if Φ(λi) vanishes at some
i = 1, 2, ...k− 1. If this is the case, we can disregard all i’s for which Φ(λi) = 0, and work
in a less dimensional space which is even better for the proof.
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Now we apply the following elementary geometric fact: out of any k + 1 vectors in
(k − 1)−dimensional Euclidean space, there are always two vectors with non-negative
inner product (see [9] for the proof). Therefore, we can choose two functions u, v out of
u0, u1, ...uk so that the corresponding sum

k−1∑
i=1

Φ(λi)aibi

is non-negative, and we obtain from (2.7) for those functions u, v

sup
λ∈speck

|Φ(λ)| ‖u(k)‖2‖v(k)‖2 ≥ Φ(0)ūv̄µM − ‖u‖2‖v‖2

∫ ∞

D

|ϕ(s)| p(s)ds.

whence (2.5) follows. ��
Corollary 2.2 Let we have k+1 disjoint measurable subsets X0, X1, ...Xk ⊂M of positive
measure and let the distance between any pair of them be at least D > 0. Then

sup
λ∈spec

k

|Φ(λ)| ≥ inf
i�=j


Φ(0)

√
µXiµXj√
µXiµXj

− µM√
µXiµXj

∫ ∞

D

|ϕ(s)| p(s)ds

 (2.9)

provided the function Φ(λ) is non-negative at the points λ1, λ2, ...λk−1.

Proof follows the same line as that of Corollary 2.1.
Let us now assume that instead of 1◦-3◦ we have 1̂◦-3̂◦. The following statement is a

straightforward translation of the previous result to that situation. We suppose that ϕ(s)
is a measurable function on (λ0,∞) such that

∫ ∞

λ0

|ϕ(s)| p(s)ds <∞

and
Φ(λ) ≡

∫ ∞

λ0

ϕ(s)Ps(λ)ds.

Also, along with the native Riemannian measure µ̂ let us consider another measure µ = ψ2µ̂
where ψ is the eigenfunction to the eigenvalue λ0 from the hypotheses 1̂◦-3̂◦.

Corollary 2.3 Let we have k+1 (k ≥ 1) disjoint measurable subsets X0, X1, ...Xk ⊂M
of positive measure and let the distance between any pair of them be at least D > 0. Then

sup
λ∈speck(L̂)

|Φ(λ)| ≥ inf
i�=j


Φ(λ0)

√
µXiµXj√
µX iµXj

− µM√
µX iµXj

∫ ∞

D

|ϕ(s)| p(s)ds

 (2.10)

provided the function Φ(λ) is non-negative at the points λ1, λ2, ...λk−1.

For a suitable choice of the function Φ(·) the inequality (2.10) can yield an upper bound
for the difference λk − λ0 or for the ratio λk/λ0.



10

3. Eigenvalues on a manifold

We apply the abstract results of the previous section to the specific situation of a Rie-
mannian manifold M. Let us recall that, by definition, the Laplace operator associated
with the Riemannian metric is represented in the local coordinates x1, x2, ... as follows

∆ =
1√
g

dimM∑
i,j=1

∂

∂xi

gij√g ∂

∂xj


where gij is the contravariant metric tensor, g = det ‖gij‖, and gij = ‖gij‖−1.

In fact, we shall consider a slightly more general operator

L = −σ−1div(σ∇)

where σ is a smooth positive function on M which looks in the coordinates as follows

L = − 1
σ
√
g

dimM∑
i,j=1

∂

∂xi

gijσ√g ∂

∂xj


This operator is symmetric against the measure µ = σµ0 where µ0 =

√
gdx is the

Riemannian volume so we always assume that M is equipped with the measure µ.
Our further assumptions about the manifold are completeness (so that the operator L

defined initially on C∞
c (M) has a unique self-adjoint extension which is in addition non-

negative) and finiteness of the measure µM which imply that 1 ∈ L2(M,µ) and that 1 is
the eigenfucntion of L to the eigenvalue 0.

Hence, the hypotheses 1◦-2◦ of Section 1 hold. Moreover, if we put

Ps(λ) = cos(
√
λs). (3.1)

then the function family (3.1) satisfies the finite propagation speed condition 3◦. We have
obviously p(s) = 1.

We shall use Corollaries 2.1 and 2.2 with the properly chosen function ϕ(s) assuming
that the subsets X, Y (or X0, ...Xk) are given so that the distance between them is at least
D > 0. The abstract inequalities (2.4) and (2.9) say that

sup
λ∈spec1

|Φ(λ)| ≥ Φ(0)
√
µXµY√
µXµY

− µM√
µXµY

∫ ∞

D

|ϕ(s)| p(s)ds (3.2)

or, if we have k + 1 subsets,

sup
λ∈speck

|Φ(λ)| ≥ inf
i�=j


Φ(0)

√
µXiµXj√
µXiµXj

− µM√
µXiµXj

∫ ∞

D

|ϕ(s)| p(s)ds

 (3.3)

Of course, for the latter case we have to make further assumptions about the spectrum of
the operator L in the spirit of Proposition 2.2. Namely, when speaking about speck, k > 1
we shall follow the convention that the whole spectrum of L consists of discrete points
λ0 = 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk−1 with the corresponding eigenfunctions v0, w1, ...wk−1 and
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the rest part which lies in [λk−1,+∞). Then we denote by speck the spectrum of L in the
subspace of L2(M,µ) orthogonal to all w0, w1, ...wk−1, and λk ≡ inf speck.

Of course, if the manifold M is compact then the whole spectrum is discrete, and we
have infinitely many eigenvalues λ0 = 0 < λ1 ≤ λ2 ≤ ....

Our task will be to convert the estimates (3.2) ,(3.3) into upper bounds of the eigenvalues
λ1, λ2, .... For any two sets X, Y ∈M, let us introduce the notation

Q(X, Y ) =
(µM)2

µXµY
. (3.4)

If X, Y do not intersect, then we have Q(x, y) ≥ 4 because µX + µY ≤ µM.

Theorem 3.1 For any pair of disjoint sets X, Y ⊂M we have

λ1 <
1
D2

1 + logQ(X, Y )
2

(3.5)

where D = dist(X, Y ).
For any family of k + 1 disjoint sets X0, X1, ...Xk ⊂M we have

λk ≤ 1
D2

1 + sup
i�=j

logQ(Xi, Xj)


2

(3.6)

where D = infi�=j dist(Xi, Xj).

Proof of Theorem 3.1. We want the function Φ(λ) to be equal to e−tλ, where t > 0 is a
parameter to be optimized upon at the end of the proof. Since Φ(λ) is defined from

Φ(λ) =
∫ ∞

0

ϕ(s) cos(
√
λs)ds

then we must take ϕ(s) as follows (in fact, the Fourier transform of Φ(ξ2) up to constant
multiples)

ϕ(s) =
1√
πt
e−

s2
4t

Introducing the notations

A =
√
µXµY√
µXµY

and
B =

µM√
µXµY

we have by (3.2) the following inequality

e−λ1t ≥ A−B

∫ ∞

D

1√
πt
e−

s2
4t ds (3.7)

We shall apply the following estimate∫ ∞

D

e−
s2
4t ds <

2t
D
e−

D2
4t
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to prove which let us set

I(D) =
∫ ∞

D

e−
s2
4t ds

F (D) =
2t
D
e−

D2
4t

and compare these functions in the following way. First of all, I(∞) = F (∞) = 0.
Comparison of their derivatives shows that

F ′(D) = −e−D2
4t − 2t

D2
e−

D2
4t < −e−D2

4t = I ′(D)

whence it follows F (D) > I(D), what was to be proved.
Hence, we obtain from (3.7)

e−λ1t ≥ A−B

√
4t
πD2

e−
D2
4t . (3.8)

The idea of further reduction is to take t small enough so that the right hand side of (3.8)
is equal to εA for some ε ∈ (0, 1) which would imply

λ1 ≤ 1
t

log
1
εA

. (3.9)

Let us introduce the notation

z =
D2

4t

and rewrite (3.9) as follows

λ1 ≤ 4
D2

z log
1
εA

≤ 4
D2

z log
B

εA
=

4
D2

z log
√
Q

ε

where we have used B ≥ 1 and the definition (3.4) of Q = Q(X, Y ) = (B/A)2. On the
other hand, we must have

A−B
1√
πz
e−z = εA

or √
zez =

B√
π(1 − ε)A

(3.10)

which defines a unique z for any ε ∈ (0, 1).
Now, we would like to find ε for which we would have in addition

z ≤ log
√
Q

ε
(3.11)

and, respectively,

λ1 ≤ 4
D2

log
√
Q

ε

2

.
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which can be rewritten as

λ1 ≤ 1
D2

logQ+ 2 log
1
ε

2

. (3.12)

Substituting (3.11) into (3.10) we obtain the inequality for ε

√
log

√
Q

ε

√
Q

ε
≥

√
Q√

π(1 − ε)

which is equivalent to √
Q ≥ ε exp

1
π

 ε

1 − ε

2

. (3.13)

Since we have always Q ≥ 4 then (3.13) holds whenever its right hand side is less than 2.
For example, it is true for ε = 0.65 (a slightly better value is 0.6523...) which enables us
to immediately obtain (3.5) from (3.12) because 2 log 1

0.65 < 1.
The proof of (3.6) is exactly the same: take first the pair Xi, Xj which minimizes the

right hand side of (3.3) , and repeat all the arguments above for this pair. Let us note that
the function Φ(λ) = e−tλ is positive which is essential for the proof in the case k > 1. ��
Remark. Another way to resolve (3.13) is to notice that it would be implied by

√
Q = exp

1
π

 ε

1 − ε

2

whence we find ε as follows
1
ε

= 1 +
√

2
π logQ

. (3.14)

Since log 1
ε <

√
2

π logQ we deduce from (3.12)

λ1 <
1
D2

logQ+
√

8
π logQ

2

<
1
D2

logQ+
1.6√
logQ

2

which is better than (3.5) whenever Q > 13.

Examples.
1. Let M be a compact manifold of of non-negative Ricci curvature and let σ = 1,L =

−∆. To apply (3.5) , let us take X, Y to be two balls of radius r centered at two the most
distant points of M. Since the whole manifold can be considered as a ball of the radius
D = diamM then by the property of positively curved manifolds, we have

µM

µX
≤
D

r

n

where n = dimM, and the same inequality holds for µY. Hence, (3.5) implies

λ1 <
1

(D − 2r)2

1 + 2n log(D/r)
2

=
1
D2

1
(1 − 2

ξ )
2

1 + 2n log ξ
2

(3.15)
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where ξ = D/r. By choosing an optimal ξ ∈ (2,∞) one can derive from (3.15)

λ1 <
29n(n+ 4)

D2
.

For comparison, let us recall the theorem of Cheng [4] which says that on a manifold in
question, there holds the following sharp inequality:

λ1 ≤ 2n(n+ 4)
D2

.

2. Let M be a complete non-compact manifold with finite volume (again σ = 1 and
L = −∆), and let us denote by V (R) the volume of the exterior of the ball of radius R
centered at the fixed point x0 ∈ M. Let X be the exterior of that ball and Y be a ball
of the smaller radius R0 centered at the same point x0. Theorem 3.1 implies that for any
R > R0

λ1 <
1

(R−R0)2

1 + log
(µM)2

µY
+ log

1
V (R)

2

. (3.16)

Letting R→ ∞ we obtain from (3.16)

λ1 ≤ µ2 (3.17)

where

µ = lim inf
R→∞

− logV (R)
R

.

Let us recall for comparison the theorem of Brooks [2] which says that the bottom of the
essential spectrum of the Laplace operator on a complete manifold of finite volume admits
the upper bound

λess ≤ µ̄2

4
(3.18)

where

µ̄ = lim sup
R→∞

− log V (R)
R

.

Virtually, (3.18) is sharper than (3.17) because λ1 ≤ λess and because of the coefficient
1
4 in (3.18) . But one can easily construct examples where µ̄ = ∞ whereas µ = 0 so the
estimate (3.17) does make sense.

Comparison of (3.17) and (3.18) shows also that the upper bound (3.5) is not far from
being sharp - it might be possible to improve it by a factor 1

4
but the way how the distance

and the volumes are involved seems to be correct. In particular, the logarithm of the
volumes enters the estimate to the correct power 2.

Let us note in this connection that it is trivial to obtain an estimate similar to (3.5) but
without log . More precisely, we mean the following inequality

λ1 ≤ 4
D2

µM

min(µX, µY )
. (3.19)

to prove which it suffices to construct two trial functions with disjoint supports so that
the Rayleigh’s ratio for each of them is bounded by the right hand side of (3.19) . One of
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this functions can be taken as a standard cut-off function around X which is equal to 1 on
X and vanishes off the D/2−neighbourhood of X ; the second is constructed in the same
way around Y.

The inequality (3.16) implies also the following upper bound for V (R)

V (R) ≤ (µM)2

µY
exp(1 −

√
λ1(R−R0))

which gives an exponential decay of V (R) as R → ∞ whenever λ1 > 0.
3. Let M be a complete manifold with finite volume, compact or non-compact, and

σ = 1, L = −∆. For any measurable set X ⊂ M, let us denote by Ur(X) an open r-
neighbourhood of X. Applying Theorem 3.1 to the sets X and Y = M \Ur(X), we obtain

µUr(X) ≥ 1 − (µX)−1 exp
(
1 − r

√
λ1(M)

)
(3.20)

where µ = (µM)−1µ is the normalized measure. The inequality (3.20) reflects a “concen-
tration phenomenon” - see [13] and [15] for details. Another inequality of this type was
proved in [15] (Theorem 6.9):

µUr(X) ≥ 1 − (1 − (
µX)2

)
exp

(
−r

√
λ1(M) log (1 + µX)

)
. (3.21)

Comparison of (3.20) and (3.21) shows that
• if r

√
λ1(M) < 3.11 then (3.21) is always better;

• for larger r
√
λ1(M), the inequality (3.21) is still better if µX is close to either 0 or 1;

otherwise (3.20) provides a sharper estimate.

4. Let L be a differential operator on IR :

Lu = −σ−1(σu′)′ = −u′′ − (log σ)′u′

where σ is a smooth, positive, summable function. Let us normalize it so that∫ ∞

−∞
σ(x)dx = 1.

Theorem 3.1 is applicable with the measure µ = σdx. Let us take X = (x0,+∞), Y =
(−∞, y0) where x0 > y0 are some numbers. Then D = dist(X, Y ) = x0 − y0 and we have
by Theorem 3.1

λ1 ≤ (x0 − y0)−2

1 + log
1∫ ∞

x0
σ(x)dx

∫ y0
−∞ σ(x)dx


2

. (3.22)

In particular, if σ is the Gaussian density σ(x) = 1√
2πα

exp(− x2

2α ) then (3.22) yields for
x0 = −y0 = 1.85

√
α (which is nearly optimal for (3.22) )

λ1 <
5.76
α

.

Let us recall that the exact value is λ1 = 1
α .

Of course, (3.22) is not sharp numerically but, in return, it handles easily a general
function σ which enters the upper bound (3.22) explicitly.

In conclusion of this section, let us observe, that Corollary 1.1 implies the following
statement.
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Proposition 3.1 If u, v ∈ L2(M,µ) and the distance between the supports of u and v is
equal to D then ∣∣∣∣

∫
M

ve−tLudµ
∣∣∣∣ ≤ ‖u‖2‖v‖2

∫ ∞

D

1√
πt
e−

s2
4t ds. (3.23)

Indeed, (3.23) follows directly from (1.1) if we substitute the chosen set of the functions
Ps(λ), p(s), Φ(λ), ϕ(s) as above.

Let us mention also, that a similar but weaker inequality

∣∣∣∣
∫
M

ve−tLudµ
∣∣∣∣ ≤ ‖u‖2‖v‖2e

−D2
4t

was proved in [10] . See also [14] and [12] for applications.

4. Eigenvalues and the diameter of a graph

Let G be a connected finite graph on the vertex set M and the edge set E. Let us
suppose that any edge ξ ∈ E is assigned a positive weight c(ξ). Then we can introduce a
self-adjoint operator and a measure on the graph in the following way.

By an elementary measure µ(x) of a vertex x ∈M we understand the sum of weights of
all edges ξ coming out from x. A measure µ of any set of vertices is a sum of the elementary
measures of all its vertices.

The operator L is defined as follows

Lf(x) = f(x) −
∑
y∼x

f(y)
c(xy)
µ(x)

where the sum is taken over all vertices y adjacent to x and xy denotes the edge between
x, y.

If all edges have the same weight then L is the combinatorial Laplace operator:

Lf(x) = f(x) − 1
dx

∑
y∼x

f(y)

where dx is the number of the edges coming out from x.
It is not difficult to see that our abstract hypotheses 1◦-2◦ from Section 1 are fulfilled,

in particular, L1 = 0.
Finally, the distance on M is defined as the combinatorial distance i.e. dist(x, y) is the

smallest number of edges in a connected path of edges between the points x, y.
It is worth mentioning that the space L2(M,µ) is one of finite dimension. Therefore, the

operator L is bounded and can be investigated by the linear algebra methods as well. In
particular, it can be represented by a finite dimensional symmetric matrix. Indeed, let us
consider the operator L̂ = µ(x)

1
2Lµ(x)−

1
2 in the L2−space with the measure µ̂ = µ(x)−1µ

(i.e. µ̂ is equal to 1 on any single point set). On one hand, the spectrum of L in L2(M,µ)
coincides with the spectrum of L̂ in L2(M, µ̂). On the other hand, since in the latter space
the volume of any vertex is equal to 1 the spectrum of L̂ is nothing other than the spectrum
of the matrix which represents the action of L̂ i.e.
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L̂xy =




1 if x = y

− 1√
µ(x)µ(y)

if x ∼ y

0 otherwise

The operator L (and this matrix) has a finite spectrum 0 = λ0 < λ1 ≤ λ2... ≤ λN where
N + 1 is the number of vertices in M. It is not difficult to see that the whole spectrum of
L lies always in [0, 2]. Moreover, we have λ1 ≤ 1 for any graph whose diameter is greater
than 1 and λN > 1 for any graph which follows simply from the fact that the trace of L is
equal to N + 1. Let us note also that λN > λ1 unless the graph is complete (which means
that any two vertices are connected by an edge and all edges have the equal weights).
More discussion on the eigenvalues λi can be found in [8] .

The main results in this Section will be stated as upper bounds of the distance between
subsets of the graph involving the eigenvalues of the operator L. They will be later
converted to upper bounds of the eigenvalues in the spirit of the preceding section.

For any two subsets X, Y ⊂M , let us denote

ν(X, Y ) =
log

√
µXµY
µX µY

log λN+λ1
λN−λ1

. (4.1)

If λ1 = λN then the natural meaning of the right hand side of (4.1) is 0.

Theorem 4.1 We have for any disjoint subsets X, Y ⊂M

dist(X, Y ) ≤ 1 + 	ν(X, Y )
. (4.2)

Moreover, if
ν(X, Y ) �= 0, ν(X, Y ) �= 1 (4.3)

then we have a slightly better inequality

dist(X, Y ) ≤ �ν(X, Y )�. (4.4)

Remarks. The restrictions ν �= 0 and ν �= 1 are essential. The case ν = 0 takes place,
for example, if Y is the complement of X. We have then dist(X, Y ) = 1 and ν(X, Y ) = 0
so that (4.2) is true but (4.4) is not.

To produce a counter-example for the case ν = 1, let us consider a linear graph G of 3
points {x1, x2, x3} having only two edges x1x2 and x2x3 both of the weight 1. Evidently,
ν(x1) = 1, ν(x2) = 2, ν(x3) = 1. The eigenvalues of the operator L on the graph in question
are equal to 0, 1, 2 with the eigenfunctions {1, 1, 1}, {1, 0,−1}, and {1,−1, 1}. Therefore,
we have

λN + λ1

λN − λ1
= 3.

Let X = {x1}, Y = {x3} then µX = µY = 1, µX = µY = 3, and we have

√
µXµY

µX µY
= 3
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We see that ν(X, Y ) = 1 whereas dist(X, Y ) = 2.
Proof of Theorem 4.1. If dist(X, Y ) = 1 then there is nothing to prove. Let us assume
that dist(X, Y ) > 1.

We shall apply Corollary 2.1 for the proper choice of the functions and sets involved.
First, we need to define the family of functions Ps(λ). Let us take that Ps(λ) is a polynomial
of λ of the degree 	s
. As it follows from the definition of the operator L

suppLu ⊂ supp1u

which implies that for any polynomial Q(λ) of the degree n

suppQ(L)u ⊂ suppnu.

In particular,
suppPs(L)u ⊂ supp
s�u ⊂ suppsu

so the hypothesis 3◦ from Section 1 holds, too.
Let us set D = dist(X, Y ) and define the function ϕ(s) to be equal to 1 on the interval

(D − 1, D) and 0 otherwise. Due to the choice of ϕ the integral on the right hand side of
(2.4) vanishes, and we have by Corollary 2.1 the inequality

sup
λ∈spec1

|Φ(λ)| ≥ Φ(0)

√
µXµY

µXµY
. (4.5)

Now, we shall specify further the polynomials Ps(λ). Let us take

Ps(λ) =
λ1 + λN

2
− λ


s�

Therefore,

Φ(λ) =
∫ ∞

0

ϕ(s)Ps(λ)ds =
∫ D

D−1

Ps(λ)ds = PD−1(λ).

The inequality (4.5) yields

sup
λ∈[λ1,λN ]

|PD−1(λ)| ≥
λ1 + λN

2

D−1
√
µXµY

µXµY
.

or, since the supremum on the left hand side is equal to (λN−λ1
2 )D−1 we obtain

λN − λ1

2

D−1

≥
λ1 + λN

2

D−1
√
µXµY

µXµY

which implies λN > λ1 and

D − 1 ≤
log

√
µXµY
µXµY

log λN+λ1
λN−λ1

(4.6)

whence (4.2) follows.
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Now, let us turn to (4.4) assuming that (4.3) holds. First of all, (4.4) is sharper than
(4.2) only for the integral values of ν(X, Y ). Since the values 0, 1 are excluded we may
suppose that ν(X, Y ) ≥ 2. If, in addition, dist(X, Y ) ≤ 2 then there is nothing to prove.
Therefore, we may suppose also, that dist(X, Y ) ≥ 3.

We want to show that, in fact, the equality in (4.6) never happens i.e.

D − 1 <
log

√
µXµY
µXµY

log λN+λ1
λN−λ1

.

which would imply (4.4) . To that end, let us return to the proof of Proposition 2.1, look
into the inequality (2.3) , and realize that, in fact, under the current hypotheses we have
a strong inequality there. Suppose, that we have equality in (2.3) . Let us notice that the
supremum of |Φ(λ)| over spec1 = {λ1, λ2, ...λN} is equal to

λN − λ1

2

D−1

and attains at exactly two points: λ = λ1 and λ = λN . Therefore, the equality in (2.3)
may happen only if at least one of the functions u(1), v(1) lies in the direct sum of the
eigenspaces of λ1 and λN . In other words, one of those functions must be a sum of two
eigenfunctions corresponding to the eigenvalues λ1 and λN respectively. Let it be u(1).
Let us recall that u = 1X , and u(1) = 1X − const. Hence, we must accept that there are
eigenfunctions w1 and wN of λ1 and λN respectively such that

w1 + wN = 1X − const. (4.7)

If we apply the operator L to (4.7) , then we get

λ1w1 + λNwN = L1X (4.8)

The relations (4.7) , (4.8) can be solved simultaneously as a linear system which implies
that wN (as well as w1) is a linear combination of 1X , L1X and 1

wN = a1X + bL1X + c (4.9)

with non-vanishing coefficients a, b, c.
Let y be a point in M such that dist(y,X) ≥ 3 (existence of y follows from the fact

that dist(X, Y ) ≥ 3.) Let us compare at this point the values of the functions wN and
LwN = λNwN . Since the supports of 1X and L1X lie in the 1−neighbourhood of X, the
function wN must according to (4.9) be equal to the constant c at any point at the distance
at least 2 from X. In particular, wN ≡ c in the 1−neighbourhood of the point y which
implies that LwN (y) = 0 what contradicts to the fact that LwN (y) = λNwN (y) �= 0. ��

Given subsets X, Y ⊂M and the integer k ≥ 1, we introduce the notation

νk(X, Y ) ≡
log

√
µXµY
µXµY

log λN+λk

λN−λk

if λN > λk and νk(X, Y ) = 0 otherwise.
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Theorem 4.2 Let us have k + 1 disjoint subsets X0, X1, ...Xk of M and let us denote
D = infi�=j dist(Xi, Xj). Then

D ≤ 1 + sup
i�=j

νk(Xi, Xj) (4.10)

Proof. Let us consider a function family Ps(λ)

Ps(λ) =
λk + λN

2
− λ


s�

and choose all other involved functions as above. Then Φ(λ) = PD−1(λ) and we have obvi-
ously that Φ(λ) ≥ 0 for λ ∈ (0, λk). In particular, Φ(λ) is non-negative on {λ1, λ2, ...λk−1}
which enables us to refer to Corollary 2.2 in order to finish the proof. ��

The choice of the functions Ps(λ) we have used in the proof of Theorem 4.1, is not
optimal. The following theorem is proved in the same way but by using the Chebychev
polynomials instead in the spirit of [7] .

For any two disjoint subsets X, Y ⊂M , let us denote

ν∗(X, Y ) =
cosh−1

√
µXµY
µX µY

cosh−1 λN+λ1
λN−λ1

(4.11)

and, more generally,

ν∗k(X, Y ) ≡
cosh−1

√
µXµY
µX µY

cosh−1 λN+λk

λN−λk

for k ≥ 1. In both definitions, the right hand sides are meant to equal to 0 if λN = λ1 or
λN = λk, respectively.

Theorem 4.3 For any two disjoint subsets X, Y ⊂M we have

dist(X, Y ) ≤ 1 + ν∗(X, Y ). (4.12)

In the same way, if we are given k + 1 disjoint sets X0, X1, ...Xk ⊂M then

inf
i�=j

dist(Xi, Xj) ≤ 1 + sup
i�=j

ν∗k(Xi, Xj)

Remark. The relationship between ν(X, Y ) and ν∗(X, Y ) is the following. They both
either greater than 1, or equal to 1, or less than 1; in the first case ν∗(X, Y ) is less than
ν(X, Y ), in the second case they coincide, and in the third case ν∗(X, Y ) is bigger than
ν(X, Y ) (and the same applies for νk and ν∗k).

Indeed, let us put

a = cosh−1

√
µXµY

µX µY
b = cosh−1 λN + λ1

λN − λ1
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then
ν∗ =

a

b

while
ν =

log cosh a
log cosh b

.

Comparison of the values of ν∗ and ν reduces to comparison of the fractions

log cosh b
b

,
log cosh a

a

which follows from the fact that the function y = log cosh x
x

is increasing for x > 0.
In particular, (4.12) implies the inequality (4.4) of Theorem 4.1 provided ν(X, Y ) > 1.

Indeed, if ν(X, Y ) > 1 then we have from (4.12)

dist(X, Y ) ≤ 1 + ν∗(X, Y ) < 1 + ν(X, Y )

which implies
dist(X, Y ) ≤ �ν(X, Y )�.

Proof of Theorem 4.3. Let us consider first the case of two subsets X, Y. If λN = λ1 then
by Theorem 4.1 dist(X, Y ) = 1 which implies (4.12) as well. Therefore, we can assume
λN > λ1.

Let us denote by Tn(z) the Chebychev polynomials which are defined either inductively
as

T0(z) = 1

T1(z) = z

Tn+1 = 2zTn(z) − Tn−1(z), n > 1,

or, equivalently, by using the explicit formula

Tn(z) =
{

cosh(n cosh−1 z) if |z| ≥ 1
cos(n cos−1 z) if |z| ≤ 1

.

Let us scale the Chebychev polynomial to the interval [λ1, λN ] by taking

Ps(λ) = T
s�
λN + λ1 − 2λ

λN − λ1

 .

The function ϕ(s) will as above be equal to 1 on (D − 1, D) and 0 otherwise, where
D = dist(X, Y ). Therefore, we have

Φ(λ) = PD−1(λ) = TD−1

λN + λ1 − 2λ
λN − λ1

 ,

and (2.4) yields

sup
λ∈[λ1,λN ]

∣∣∣∣TD−1

λN + λ1 − 2λ
λN − λ1

∣∣∣∣ ≥ TD−1

λN + λ1

λN − λ1


√
µXµY

µXµY
. (4.13)
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Since
sup

[−1,1]

|Tn(z)| = 1

then the left hand side of (4.13) is equal to 1, too, which implies

TD−1

λN + λ1

λN − λ1

 ≤
√
µXµY

µXµY
.

The argument of the Chebychev polynomial above is greater than 1 which enables us to
solve this inequality as follows

D − 1 ≤
cosh−1

√
µXµY
µXµY

cosh−1
λN+λ1
λN−λ1


which finishes the proof for the case k = 1.

The case k > 1 is treated in the same way by replacing everywhere λ1 by λk and by
utilizing the fact that the Chebychev polynomials are positive on [1,+∞). ��
Remark. We have not been able to slightly improve (4.12) in the same way as we have
done in Theorem 4.1 by tracing back the proof of (2.3) . The point is that in contrast to the
polynomial function used in the proof of Theorem 4.1, the Chebychev polynomial Tn(z)
attains its maximum within [−1, 1] at n+ 1 points which disables our previous arguments
based upon the analysis of the extremal points.

Now we shall discuss some consequences of Theorems 4.1-4.3.

Corollary 4.1 If the graph is not complete then we have for any two disjoint subsets
X, Y

dist(X, Y ) ≤ �
log µM√

µX µY

log 1
1−λ

� (4.14)

where λ = λ1 if λ1 + λN ≤ 2 and λ = 1 − (λN − λ1)/2 otherwise.

Indeed, since µX < µM then we have by (4.2)

dist(X, Y ) < 1 +
log µM√

µX µY

log λN+λ1
λN−λ

(4.15)

or

dist(X, Y ) ≤ �
log µM√

µX µY

log λN+λ1
λN−λ

�. (4.16)

Now we want to replace λN+λ1
λN−λ by 1

1−λ for appropriate choice of λ. We can do that when-
ever

λN − λ1

λN + λ
≤ 1 − λ. (4.17)

If λN + λ1 > 2 then (4.17) is true for 1 − λ = 1
2
(λN − λ1). If λN + λ1 ≤ 2 then (4.17) is

true for λ = λ1 because (4.17) is equivalent to

λ ≤ 2λ1

λN + λ1

��
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Corollary 4.2 If diamG is the diameter of the graph G and m = infx∈M µ(x) then

diamG ≤ 1 + 	
log

µM
m

− 1


log λN+λ1
λN−λ1


. (4.18)

Indeed, let us take two the most distant points on the graph, take each of the sets X, Y
to consist of one of those points, and apply Theorem 4.1. ��

By using Theorem 4.3, one can replace in (4.18) the function log by the function cosh−1

which gives a slightly sharper estimate.
If the weights of all edges are equal to 1 (which means that the measure of any vertex

is equal to the number of its neighbours) then (4.18) implies the inequality

diamG ≤ 1 + 	 log 2 |E|
log λN +λ1

λN−λ1


 (4.19)

where |E| is the number of edges.
If the graph G is homogeneous in the sense that the measure of any vertex is the same

then (4.18) implies

diamG ≤ 1 + 	 logN
log λN +λ1

λN−λ1




because in that case µM/m = N + 1.
Let us introduce the k−diameter of the graph G as follows

diamkG ≡ sup
{x0,x1,...xk}

inf
i�=j

dist(xi, xj)

where sup is spread over all subsets of M of k+ 1 points. In particular, diam1 is the plain
diameter of the graph.

Corollary 4.3 For any graph G and for any integer k ≥ 1

diamkG ≤ 1 + 	
log

µM
m − 1


log λN+λk

λN−λk




where m = infx∈M µ(x).

In particular, if λk = λN then among any k + 1 vertices, there are two vertices which are
connected by an edge.

Let us convert the inequalities of Theorems 4.1, 4.2 into upper bounds of λ1 and λk,
respectively. For any two disjoint sets X, Y ⊂M, let us introduce the notation

R(X, Y ) =
µXµY

µXµY
(4.20)

For any k + 1 disjoint sets X0, X1, ...Xk ⊂M, let us similarly define

R(X0, ...Xk) = sup
i�=j

µXiµXj

µXiµXj
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Corollary 4.4 We have for any two disjoint sets X, Y ⊂M

λ1

λN
≤ R(X, Y )

1
2(D−1) − 1

R(X, Y )
1

2(D−1) + 1
(4.21)

where D = dist(X, Y ) > 1. In the same way, for any k+1 disjoint sets X0, X1, ...Xk ⊂M

λk
λN

≤ R(X0, ...Xk)
1

2(D−1) − 1

R(X0, ...Xk)
1

2(D−1) + 1
(4.22)

where D = infi�=j dist(Xi, Xj) > 1. In particular,

λ1

λN
≤ (µM/m)

1
D−1 − 1

(µM/m)
1

D−1 + 1
(4.23)

and
λk
λN

≤ (µM/m)
1

Dk−1 − 1

(µM/m)
1

Dk−1 + 1
(4.24)

where m = infx∈M µ(x), D = diamG > 1 and Dk = diamkG > 1.

The inequalities (4.21) , (4.22) are straightforward consequences of inequalities (4.6) ,(4.10)
respectively, whereas (4.23) and (4.24) follow from (4.21) and (4.22) by choosing the subsets
in question to be the single vertex sets in the spirit of Corollary 4.2.

Let us note that all the inequalities (4.21) ,(4.22) ,(4.23) ,(4.24) can be considered as
upper bounds for λ1, λk since we always have λN ≤ 2.

We can easily derive isoperimetric inequalities by using (4.2) . These isoperimetric
inequalities are generalizations of the inequalities concerning vertex or edge ”expansion”
in Tanner [17] and in Alon and Milman [1] for regular graphs.

For a subset X ⊂M we define r−neighbourhood of X by

Ur(X) = {y ∈M : dist(y,X) ≤ r}.
Theorem 4.1 implies the following result which gives a lower bound for the expansion of
the neighbourhood.

Corollary 4.5 For any subset X ⊂M and for any integer r > 1 we have

µUr(X) ≥ µX

µX
µM

+
1 − µX

µM

λN−λ1
λN+λ1

2(r−1)
(4.25)

Indeed, let us take Y = M \ Ur(X) so that Ur(X) = Y . Then dist(X, Y ) = r, and the
estimate (4.25) follows from (4.6) by resolving it in µY /µY.
Addedremark: After this paper was written, Michel Ledoux told us (private communica-
tion) that the inequality (0.3) can be improved to

λ1 ≤ 1
dist2(X, Y )

log
(µM)2

µXµY

2

by using a different method. On the other hand, his method does not say anything about
the higher eigenvalues.
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