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Chapter 0

Introduction

12.04.16

0.1 Elliptic operators in divergence and non-divergence
form

In this course we are concerned with partial di¤erential equations in Rn of the form
Lu = f where f is a given function, u is an unknown function, and L is a second order
elliptic di¤erential operator of one of the two forms:

1. Lu =
nX

i;j=1

@i (aij (x) @ju) (a divergence form operator)

2. Lu =
nX

i;j=1

aij (x) @iju (a non-divergence form operator).

In the both cases, the matrix (aij) depends on x, is symmetric, that is, aij = aji,
and uniformly elliptic. The latter means that there is a constant � such that, for all x
from the domain of (aij) and for all � 2 Rn,

��1 j�j2 �
nX

i;j=1

aij (x) �i�j � � j�j2 (0.1)

where j�j =
p
�21 + :::+ �2n. In other words, all the eigenvalues of the matrix (aij (x))

(that are real because the matrix is symmetric) are located in the interval
�
��1; �

�
.

The constant � is called the ellipticity constant of (aij) or of L.
Of course, the Laplace operator

� =

nX
i=1

@iiu

is both divergence and non-divergence form operator with the matrix (aij) = id. It is
uniformly elliptic with � = 1.
If (aij) is a constant matrix, that is, independent of x, and (aij) is symmetric and

positive de�nite, then the divergence and non-divergence form operators coincide and

1



2 CHAPTER 0. INTRODUCTION

are uniformly elliptic. Indeed, we have for all � 2 Rn

�min j�j2 �
nX

i;j=1

aij�i�j � �max j�j2 ;

where �min is the minimal eigenvalue of (aij) and �max � the maximal eigenvalues.
Hence, (0.1) holds with � = max

�
�max; �

�1
min

�
.

Note that the divergence form operator can be represented in the form

Lu =
nX

i;j=1

@i (aij (x) @ju) =

nX
i;j=1

aij (x) @iju+ (@iaij) @ju;

that is the sum of the non-divergence form operator and lower order terms. However,
this works only for di¤erentiable coe¢ cients aij. In fact, the most interesting applica-
tions in mathematics requires operators with discontinuous coe¢ cients aij. Of course,
in this case the divergence form operator cannot be understood in the the sense of
classical derivatives, and we will de�ne the meaning of Lu in the weak sense.

0.2 Origin of divergence form operators

One of the origins of divergence form operators is heat di¤usion. Let u (x; t) denote
the temperature in some medium at a point x 2 R3 at time t. Fix a region 
 � R3.
By the Fourier law of thermoconductance, the amount dQ of the heat energy that has
�own into 
 through a piece d� of its boundary @
 between the time moments t and
t+ dt is equal to

dQ =
3X

i;j=1

aij (x) �i@ju d�dt

where � is the outer unit normal vector �eld to @
 at a point x 2 d� and aij (x) is the
tensor of the thermal conductance of the material of the body (the dependence of aij of
x means that the conductance may be di¤erent at di¤erent points, and the dependence
on the indices i; j re�ects the fact that the conductance may be di¤erent in di¤erent
directions).

I

ν
dσ

dx 4u

The expression
3X

i;j=1

aij (x) �i@ju
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can be regarded as an inner product of the vectors � and ru with the coe¢ cients
aij (x) (symmetry and positive de�niteness of this matrix are needed for that). Hence,
the total energy Q that has �own into 
 through its entire boundary between time
moments t and t+ h is

Q =

Z t+h

t

Z
@


3X
i;j=1

aij (x) �i@ju d�dt;

On the other hand, the amount of heat energy dQ0 acquired by a piece dx of 
 from
time t to time t+ h is equal to

dQ0 = (u (x; t+ h)� u (x; t)) c�dx

where � is the density of the material of the body and c is its heat capacity (both c and
� are functions of x). Indeed, the volume element dx has the mass �dx, and increase
of its temperature by one degree requires c�dx of heat energy. Hence, increase of the
temperature from u (x; t) to u (x; t+ dt) requires (u (x; t+ h)� u (x; t)) c�dx of heat
energy. The total amount Q0 of energy absorbed by the entire body 
 from time t to
time t+ h is equal to

Q0 =

Z



(u (x; t+ h)� u (x; t)) c�dx:

By the law of conservation of energy, in absence of heat sources we have Q = Q0;
that is, Z t+h

t

 Z
@


3X
i;j=1

aij�i@ju d�

!
dt =

Z



(u (x; t+ h)� u (x; t)) c�dx:

Dividing by h and passing to the limit as h! 0, we obtainZ
@


3X
i;j=1

aij�i@ju d� =

Z



(@tu) c�dx:

Applying the divergence theorem to the vector �eld
�!
F with components

Fi =
3X
j=1

aij@ju

we obtainZ
@


3X
i;j=1

aij�i@ju d� =

Z
@


�!
F �� d� =

Z



div
�!
F dx =

Z



3X
i=1

(@iFi) dx =

Z



3X
i;j=1

@i (aij@ju) dx;

which implies Z



c� @tu dx =

Z



Ludx;
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where

L =
3X

i;j=1

@i (aij@ju)

is the divergence form operator. Since this identity holds for any region 
, it follows
that the function u satis�es the following heat equation

c� @tu = Lu:

In particular, if u is stationary, that is, does not depend on t, then u satis�es Lu = 0.
We have seen that in the above derivation the operator L comes out exactly in the

divergence form because of an application of the divergence theorem.

0.3 Origin of non-divergence form operators

The operators in non-divergence form originate from di¤erent sources, in particular,
from stochastic di¤usion processes. A stochastic di¤usion process inRn is mathematical
model of Brownian motion in inhomogeneous media. It is described by the family
fPxgx2Rn of probability measures, where Px is the probability measure on the set 
x
of all continuous paths ! : [0;1)! Rn such that is ! (0) = x.
De�ne for any t � 0 a random variable X (t) on 
x by X (t) (!) = ! (t). The

random path t 7! X (t) can be viewed as a stochastic movement of a microscopic
particle. The di¤usion process is described by its in�nitesimal means

Ex (Xi (t+ dt)�Xi (t)) = bidt+ o (dt) as dt! 0;

its in�nitesimal covariances

Ex ((Xi (t+ dt)�Xi (t)) (Xj (t+ dt)�Xj (t))) = aijdt+ o (dt) as dt! 0;

where bi and aij are some functions that in general depend in x and t, but we assume
for simplicity that they depend only on x.
By construction, the matrix (aij) is symmetric and positive de�nite, as any covari-

ance matrix. The functions aij and bi determine the non-divergence form operator with
lower order terms:

Lu =
nX

i;j=1

aij@iju+
nX
i=1

bi@iu;

that has the following relation to the process: for any bounded continuous function f
on Rn, the function

u (x; t) = Ex (f (X (t)))

satis�es the heat equation
@tu = Lu

with the above operator L. This equation is called the Kolmogorov backward equation.
This operator L is called the generator of the di¤usion process because it contains all
the information about this stochastic process.



Chapter 1

Weak Dirichlet problem for
divergence form operators

In this Chapter we deal with the divergence form operator

Lu =
nX

i;j=1

@i (aij (x) @ju)

de�ned in an open set 
 � Rn. We always assume that the coe¢ cients aij (x) are
measurable functions of x (not necessarily continuous), the matrix (aij) is symmetric,
that is, aij = aji, and positive de�nite at any x 2 
. Then the operator L is called
elliptic. Should the condition (0.1) be satis�ed then L is called uniformly elliptic.
Since the coe¢ cients aij may be not di¤erentiable, we have to specify exactly how

the equation Lu = f is understood.

1.1 Distributions

Let 
 be an open subset of Rn. Denote by D (
) the linear topological space that as
a set coincides with C10 (
), the linear structure in D (
) is de�ned with respect to
addition of functions and multiplication by scalars from R, and the topology in D (
)
is de�ned by means of the following convergence: a sequence f'kg of functions from
D (
) converges to ' 2 D (
) in the space D (
) if the following two conditions are
satis�ed:
1. 'k � ' in 
 and D�'k � D�' for any multiindex � of any order;
2. there is a compact set K � 
 such that supp'k � K for all k.
It is possible to show that this convergence is indeed topological, that is, given by

a certain topology.
Any linear topological space V has a dual space V 0 that consists of continuous linear

functionals on V.
De�nition. Any linear continuos functional f : D (
) ! R is called a distribution in

 (or generalized functions). The set of all distributions in 
 is denoted by D0 (
). If
f 2 D0 (
) then the value of f on a test function ' 2 D (
) is denoted by (f; ').

Any locally integrable function f : 
 ! R can be regarded as a distribution as

5



6 CHAPTER 1. WEAK DIRICHLET PROBLEM

follows: it acts on any test function ' 2 D (
) by the rule

(f; ') :=

Z



f' dx: (1.1)

Note that two locally integrable functions f; g correspond to the same distribution if
and only if f = g almost everywhere, that is, if the set

fx 2 
 : f (x) 6= g (x)g

has measure zero. We write shortly in this case

f = g a:e: (1.2)

Clearly, the relation (1.2) is an equivalence relation, that gives rise to equivalence classes
of locally integrable functions. The set of all equivalence classes of locally integrable
functions is denoted1 by L1loc (
). The identity (1.1) establishes the injective mapping
L1loc (
)! D0 (
) so that L1loc (
) can be regarded as a subspace of D0 (
).
There are distributions that are not represented by any L1loc function, that is, the

di¤erence D0 (
) nL1loc (
) is not empty. For example, de�ne the delta-function �x0 for
any x0 2 
 as follows:

(�x0 ; ') = ' (x0) :

Although historically �x0 is called delta-function, it is a distribution that does not
correspond to any function.

De�nition. Let f 2 D0 (
). Fix a multiindex �. A distributional partial derivative
D�f is a distribution that acts on test functions ' 2 D (
) as follows:

(D�f; ') = (�1)j�j (f;D�') 8' 2 D (
) ; (1.3)

where D�' is the classical (usual) derivative of '.

Note that the right hand side of (1.3) makes sense because D�' 2 D (
). Moreover,
the right hand side of (1.3) is obviously a linear continuous functions in ' 2 D (
),
which means that D�f exists always as a distribution.
If there is a function g 2 L1loc (
) such that

(g; ') = (�1)j�j (f;D�') 8' 2 D (
) ;

then g is called a weak D� derivative of f . In this case the distributional derivative
D�f is represented by the function g.
If f 2 Ck (
) then its classical derivative D�f with j�j � k coincides with the weak

and, hence, distributional derivative.

1Sometimes L1loc (
) is loosely used to denote the set of all locally integrable functions in 
. How-
ever, in a strict sense, the elements of L1loc (
) are not functions but equivalence classes of functions.



1.2. SOBOLEV SPACES 7

1.2 Sobolev spaces

As before, let 
 be an open subset of Rn. Fix p 2 [1;1). A Lebesgue measurable
function f : 
! R is called p-integrable ifZ




jf jp dx <1:

Two measurable functions in 
 (in particular, p-integrable functions) are called equiv-
alent if

f = g a:s:

This is an equivalence relation, and the set of all equivalence classes of p-integrable
functions in 
 is denoted by Lp (
). It follows from the Hölder inequality, that Lp (
) �
L1loc (
). In particular, all the elements of L

p (
) can be regarded as distributions.
The set Lp (
) is a linear space over R. Moreover, it is a Banach space (=complete

normed space) with respect to the norm

kfkLp :=
�Z




jf jp dx
�1=p

:

The Banach spaces Lp (
) are called Lebesgue spaces.
The case p = 2 is of special importance because the space L2 (
) has inner product

(f; g) =

Z



fg dx;

whose norm coincides with kfk2 as

kfkL2 =
�Z




f 2dx

�1=2
=
p
(f; f):

Hence, L2 (
) is a Hilbert space.
De�nition. De�ne the Sobolev space W k;p for arbitrary non-negative integer k and
p 2 [1;1)

W k;p (
) = ff 2 Lp (
) : D�f 2 Lp (
) for all � with j�j � kg ; (1.4)

where D�f is distributional derivative.

In words,W k;p (
) is a subspace of Lp (
) that consists of functions having in Lp (
)
all weak partial derivatives of the order � k: In particular, W 0;p = Lp: It is easy to see
that C10 (
) � W k;p (
) for any k and p.
Let us introduce the W k;p (
) the following norm:

kfkp
Wk;p =

X
�:j�j�k

Z



jD�f jp dx:

It is possible to show that k�kWk;p is indeed a norm, and W k;p is a Banach space with
this norm. In the case p = 2 this norm is given by the inner product:

(f; g)Wk;2 =
X
�:j�j�k

Z



D�f D�g dx;
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so that W k;2 is a Hilbert space.
Similarly, de�ne the space

W k;p
loc (
) = ff 2 L

p
loc (
) : D

�f 2 Lploc (
) for all � with j�j � kg : (1.5)

It is easy to see that C1 (
) � W k;p
loc (
) for any k and p.

1.3 The weak Dirichlet problem

As above, let (aij (x)) be an x-dependant matrix in 
 with the following properties:
functions aij (x) are measurable in x, the matrix is symmetric, that is, aij = aji, and
uniformly elliptic, that is, for all x 2 
 and � 2 Rn

��1 j�j2 �
nX

i;j=1

aij (x) �i�j � � j�j2 (1.6)

for some constant �. We are going to de�ne how to understand the divergence form
operator

Lu =
nX

i;j=1

@i (aij@ju) (1.7)

in this case.

De�nition. Let u 2 W 1;2
loc and f 2 L2loc (
). We say that the equation Lu = f is

satis�ed in a weak sense or weakly if, for any ' 2 D (
),Z



nX
i;j=1

aij@ju@i'dx = �
Z



f' dx: (1.8)

Note that the integral on the right hand side of (1.8) makes sense because the
integration can be reduced to a compact set supp', where ' is bounded and f is
integrable. The left hand side makes sense similarly because @ju 2 L2loc and hence is
integrable on supp', while @i' and aij are bounded (the latter follows from (1.6)).
Motivation for this de�nition is as follows. Assume that aij 2 C1 and u 2 C2.

Then the equation Lu = f can be understood in the classical sense. Multiplying it by
' 2 D (
) and integrating in 
 using integration by parts, we obtainZ

f' dx =

nX
i;j=1

Z
@i (aij@ju)'dx = �

nX
i;j=1

Z
aij@ju@i'dx;

that is the identity (1.8). Hence, the weak meaning of the equation Lu = f is consistent
with the classical one.
De�ne W 1;2

0 (
) as the subspace of W 1;2 (
) that is obtained by taking the closure
of C10 (
) in W

1;2 (
) :

Lemma 1.1 Let u 2 W 1;2 (
) and f 2 L2 (
). Then Lu = f holds in a weak sense if
and only if (1.8) holds for all ' 2 W 1;2

0 (
) :
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Proof. If (1.8) holds for all ' 2 W 1;2

0 (
) then, of course, it holds also for all ' 2
C10 (
). Let us prove the converse statement. For any ' 2 W

1;2
0 (
) there is a sequence

f'kg of functions from C10 (
) such that 'k ! ' in the norm of W 1;2 (
). Any 'k
satis�es (1.8), and we would like to pass to the limit as k !1: For that, it su¢ ces to
verify that the both sides of (1.8) are continuous functions of ' 2 W 1;2 (
).
Clearly, the functional ' 7!

R


f'dx is continuous in L2 (
) and, hence, inW 1;2 (
).

Let us show that the functional

' 7! A (') :=

Z



nX
i;j=1

aij@ju@i'dx

is continuous in W 1;2 (
) : It is linear, so that its continuity is equivalent to the bound-
edness. Hence, it su¢ ces to prove that

jA (')j � C k'kW 1;2 (1.9)

for some constant C and all ' 2 W 1;2 (
). Fix x 2 
 and consider in Rn the inner
product

(�; �)a :=
nX

i;j=1

aij (x) �i�j:

Indeed, it is bilinear, symmetric and positive de�nite by the ellipticity. By the Cauchy-
Schwarz inequality and the uniform ellipticity condition, we obtain

j(�; �)aj �
q
(�; �)a

q
(�; �)a � � j�j j�j

It follows that

jA (')j �
Z



�����
nX

i;j=1

aij@ju@i'

����� dx �
Z



� jruj jr'j dx

� �

�Z



jruj2 dx
�1=2�Z




jr'j2 dx
�1=2

;

whence
jA (')j � � kukW 1;2 k'kW 1;2 ; (1.10)

which proves (1.9).

De�nition. Given a divergence form operator L in an open set 
 as above, consider
the Dirichlet problem �

Lu = f in 

u = 0 on @


that is understood in the weak sense as follows:�
Lu = f weakly in 
;
u 2 W 1;2

0 (
) :
(1.11)

In other words, the weak meaning of the boundary condition u = 0 on @
 is u 2
W 1;2
0 (
) :
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Theorem 1.2 Let 
 be a bounded domain. Then the weak Dirichlet problem (1.11)
with the operator (1.7) has exactly one solution for any f 2 L2 (
).

Proof. Consider in W 1;2
0 the following bilinear symmetric form

[u; v]a :=

Z



aij (x) @iu (x) @jv (x) dx

(the integral converges because aij are bounded and @iu; @iv 2 L2 (
)). By the uniform
ellipticity we have

[u; u]a =

Z



aij (x) @iu (x) @ju (x) dx � �

Z



jruj2 dx � � kuk2W 1;2 ;

and

[u; u]a � ��1
Z



jruj2 dx:

On the other hand, by the Friedrichs inequality we have, for any u 2 W 1;2
0 (
) thatZ




jruj2 dx � c

Z



u2dx;

with some positive constant c = c (
). Assuming without loss of generality that c < 1,
we obtain Z




jruj2 dx � c

2

Z



�
u2 + jruj2

�
dx =

c

2
kuk2W 1;2 ;

whence it follows that

c

2�
kuk2W 1;2 � [u; u]a � � kuk2W 1;2 :

In particular, [u; v]a is positive de�nite and, hence, is an inner product in W
1;2
0 . Since

the norm [u; u]1=2a is equivalent to kukW 1;2, we see that W
1;2
0 with the inner product

[�; �]a is a Hilbert space.
The weak equation Lu = f can be rewritten in the form

[u; ']a = �
Z



f' dx 8' 2 W 1;2
0 :

The right hand side
R


f' dx is obviously a bounded linear functional of ' 2 W 1;2

0 .
Therefore, the existence of u 2 W 1;2

0 that solves this equation, follows from the Riesz
representation theorem. Indeed, the latter says that in any Hilbert space H with inner
product [�; �], the equation

[u; '] = l (') 8' 2 H

has a unique solution u 2 H provided l (') is a bounded linear functional.
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1.4 Weak Dirichlet problem with lower order terms

Here we consider a more general operator

Lu =

nX
i;j=1

@i (aij@iu) +

nX
i=1

bi (x) @iu (1.12)

in an open set 
 � Rn. We assume that the coe¢ cients aij; bi are measurable functions,
the second order part

Pn
i;j=1 @i (aij@iu) is uniformly elliptic divergence form operator,

and that all functions bi are bounded, that is, there is a constant b, such that

mX
i=1

jbij � b a:e: in 
:

Assuming that u 2 W 1;2 (
) and f 2 L2 (
), the equation Lu = f is understood
weakly as follows: for any ' 2 W 1;2

0 (
)Z



 
nX

i;j=1

aij@ju@i'�
nX
i=1

bi (@iu)'

!
dx = �

Z



f': (1.13)

1.4.1 Uniqueness

Theorem 1.3 (Uniqueness) Let 
 be a bounded domain and L be the operator (1.12).
Then the weak Dirichlet problem�

Lu = f weakly in 

u 2 W 1;2

0 (
)

has at most one solution.

For the proof we need some facts about weak derivatives that will be proved later
on.

Lemma 1.4 If u 2 W 1;2
0 (
) then, for any � � 0, also (u� �)+ 2 W

1;2
0 (
) and

r (u� �)+ =

�
ru a:e:on the set fu > �g
0 a:e:on the set fu � �g (1.14)

Lemma 1.5 If u 2 W 1;2
0 (
) then, for any � 2 R,

ru = 0 a:e: on the set fu = �g :

Besides we are going to use the following inequality that also will be proved later
(see Corollary 1.9).

Sobolev inequality. If n > 2 then, for any ' 2 W 1;2
0 (
),Z




jr'j2 dx � cn

�Z



j'j
2n
n�2 dx

�n�2
n

;
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where cn is a positive constant depending only on n.
If n = 2 and 
 is bounded then, for any q � 1 and for any ' 2 W 1;2

0 (
),Z



jr'j2 dx � c

�Z



j'j2q dx
�1=q

;

where c is a positive constant depending on q and 
.

Proof of Theorem 1.3. We need to prove that if u 2 W 1;2
0 (
) and Lu = 0 then

u = 0 a:e: in 
. It su¢ ces to prove that u � 0 a:e: in 
 since u � 0 a:e: follows by the
same argument applied to �u.
We use the notion of the essential supremum that is de�ned by

esssup



u = inf fk 2 R : u � k a:e:g :

Then u � 0 a:e: is equivalent to esssupu � 0. Let us assume from the contrary that

�0 := esssup



u > 0

and bring this to contradiction (note that �0 = 1 is allowed). The weak equation
Lu = 0 implies that, for any ' 2 W 1;2

0 (
),Z



nX
i;j=1

aij@ju@i'dx =

Z



nX
i=1

bi@iu' dx: (1.15)

The right hand side of (1.15) admits a simple estimateZ



nX
i=1

bi (@iu)'dx � b

Z



jruj j'j dx: (1.16)

Now we specify function ' as follows: choose � from the interval

0 � � < �0

and set
' = (u� �)+ :

By Lemma 1.4, ' 2 W 1;2
0 (
) so that we can use this ' in (1.15). Consider the set

S� := fx 2 
 : � < u (x) < �0g

and let us verify that

r' =
�
ru a:e: in S�;
0 a:e: in Sc�;

(1.17)

where Sc� = 
 n S�. Indeed, S� � fu > �g, so that the �rst line in (1.17) follows from
that in (1.14). Note that

Sc� = fu � �g [ fu � �0g :
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On the set fu � �g we have by (1.14) r' = 0. Since the set fu > �0g has measure 0
by de�nition of �0, we see that

u = �0 a:e: on fu � �0g :

By Lemmas 1.4 and 1.5 we conclude that r' = ru = 0 a:e: on fu � �0g, which
�nishes the proof of (1.17).
Let us now prove that

jruj' =
�
jr'j' a:e: in S�;
0; a:e: in Sc�:

(1.18)

Indeed, on the �rst line in (1.18) follows from that of (1.17). On the set fu � �g we
have ' = 0, while on fu � �0g we have as above ru = 0, which proves the second line
in (1.18). It follows thatZ




jruj'dx =
Z
S�

jr'j'dx �
�Z

S�

'2dx

�1=2�Z
S�

jr'j2 dx
�1=2

:

For the left hand side of (1.15) we have by (1.17) and the uniform ellipticityZ



nX
i;j=1

aij@ju@i'dx =

Z
S�

nX
i;j=1

aij@j'@i'dx � ��1
Z
S�

jr'j2 dx:

Combining the above two calculations with (1.15), we obtain

��1
Z
S�

jr'j2 dx � b

�Z
S�

'2dx

�1=2�Z
S�

jr'j2 dx
�1=2

: (1.19)

It follows that Z
S�

'2dx � c

Z
S�

jr'j2 dx

where c = (�b)�2 > 0.
Assume n > 2. By the Sobolev inequality we haveZ

S�

jr'j2 dx =
Z



jr'j2 dx � c0
�Z




'
2n
n�2dx

�n�2
n

;

where c0 = c0 (n) > 0. On the other hand, by the Hölder inequality,Z
S�

'2dx =

Z
S�

1 � '2dx �
�Z

S�

dx

� 2
n
�Z




�
'2
� n
n�2

�n�2
n

= jS�j2=n
�Z




'
2n
n�2

�n�2
n

;

where jS�j is the Lebesgue measure of the set S�. Combining the above inequalities,
we obtain

jS�j2=n
�Z




'
2n
n�2

�n�2
n

� cc0
�Z




'
2n
n�2dx

�n�2
n
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and, hence,
jS�j � c00; (1.20)

for some positive constant c00 that is independent of �.
In the case n = 2 the same argument works where the exponent n

n�2 should be
replaced by any q > 1.19.04.16

Now let us bring (1.20) to contradiction. Consider an increasing sequence f�kg1k=1
that converges to �0 as k !1. Then the sequence of sets S�k is decreasing and

1T
k=1

S�k = fx 2 
 : 8k �k < u (x) < �0g = ;:

Hence, by the continuity property of the Lebesgue measure,

lim
k!1

jS�k j = j
T1
k=1 S�k j = 0;

which contradicts (1.20), thus �nishing the proof.

1.4.2 Some properties of weak derivatives

Here 
 is an open subset of Rn.

Lemma 1.6 (Chain rule in W 1;2
0 ) Let  be a C1-function on R such that

 (0) = 0 and sup
t2R

j 0 (t)j <1: (1.21)

Then u 2 W 1;2
0 (
) implies  (u) 2 W 1;2

0 (
) and

r (u) =  0 (u)ru: (1.22)

Proof. If u 2 C10 then obviously  (u) is also in C10 and hence in W 1;2
0 , and the chain

rule (1.22) is trivial.
An arbitrary function u 2 W 1;2

0 can be approximated by a sequence fukg of C10 -
functions, which converges to u in W 1;2-norm, that is,

uk
L2�! u and ruk

L2�! ru:

By selecting a subsequence, we can assume that also uk (x) ! u (x) for almost all
x 2 
.
By (1.21) we have j (u)j � C juj where C = sup j 0j, whence it follows that

 (u) 2 L2. The boundedness of  0 implies also that  0 (u)ru 2 ~L2. Let us show that

 (uk)
L2�!  (u) and r (uk)

L2�!  0 (u)ru; (1.23)

which will imply that the distributional gradient of  (u) is equal to  0 (u)ru. The
latter, in turn, yields that  (u) is in W 1;2

0 and, moreover, in W 1;2
0 .

The convergence  (uk)
L2!  (u) trivially follows from uk

L2! u and

j (uk)�  (u)j � C juk � uj :
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To prove the second convergence in (1.23) observe that

jr (uk)�  0 (u)ruj = j 0 (uk)ruk �  0 (u)ruj
� j 0 (uk) (ruk �ru)j+ j( 0 (uk)�  0 (u))ruj ;

whence

kr (uk)�  0 (u)rukL2 � Ckruk �rukL2 + k ( 0 (uk)�  0 (u))rukL2 : (1.24)

The �rst term on the right hand side of (1.24) goes to 0 because ruk
L2�! ru. By

construction, we have also uk (x)! u (x) a:e: , whence

 0 (uk)�  0 (u) �! 0 a:e:

Since
j 0 (uk)�  0 (u)j2 jruj2 � 4C2 jruj2

and the function jruj2 is integrable on 
, we conclude by the dominated convergence
theorem that Z




j 0 (uk)�  0 (u)j2 jruj2 d� �! 0;

which �nishes the proof.

Lemma 1.7 Let f k (t)g be a sequence of C1-smooth functions on R such that

 k (0) = 0 and sup
k
sup
t2R

j 0k (t)j <1: (1.25)

Assume that, for some functions  (t) and ' (t) on R,

 k (t)!  (t) and  0k (t)! ' (t) for all t 2 R: (1.26)

Then, for any u 2 W 1;2
0 (
), the function  (u) is also in W 1;2

0 (
) and

r (u) = ' (u)ru:

Proof. The function  (u) is the pointwise limit of measurable functions  k (u) and,
hence, is measurable; by the same argument, ' (u) is also measurable. By (1.25), there
is a constant C such that

j k (t)j � C jtj ; (1.27)

for all k and t 2 R, and the same holds for function  . Therefore, j (u)j � C juj, which
implies  (u) 2 L2 (
). By (1.25), we have also j' (t)j � C, whence ' (u)ru 2 ~L2.
Since each function  k is smooth and satis�es (1.21), Lemma 1.6 yields that

 k (u) 2 W
1;2
0 (
) and r k (u) =  0k (u)ru:

Let us show that

 k (u)
L2�!  (u) and r k (u)

L2�! ' (u)ru; (1.28)
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which will settle the claim. The dominated convergence theorem implies thatZ



j k (u)�  (u)j2 d� �! 0;

because the integrand functions tend pointwise to 0 as k !1 and, by (1.27),

j k (u)�  (u)j2 � 4C2u2;

whereas u2 is integrable on 
. Similarly, we haveZ



jr k (u)� ' (u)ruj2 d� =
Z



j 0k (u)� ' (u)j2 jruj2 d� �! 0;

because the sequence of functions j 0k (u)� ' (u)j2 jruj2 tends pointwise to 0 as k !1
and is uniformly bounded by the integrable function 4C2 jruj2.

Proof of Lemma 1.4. Consider the functions

 (t) = (t� �)+ and ' (t) =

�
1; t > �;
0; t � �;

that can be approximated as in (1.26) as follows. Fix any smooth function � (t) on R
such that

� (t) =

�
t� 1; t � 2;
0; t � 0

Such function � (t) can be obtained by twice integrating a suitable function from
C10 (0; 2).

0 t

ψ(t)=(t­J)+

ψ1(t)

t

j(t)

ψ1(t)8

0 JJ

De�ne  k for any k 2 N by

 k (t) =
1

k
� (k (t� �)) :

If t � � then  k (t) = 0. If t > � then, for large enough k, we have k (t� �) > 2
whence

 k (t) =
1

k
(k (t� �)� 1) = t� �� 1

k
! t� � as k !1:

Hence,  k (t)!  (t) for all t 2 R.
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Similarly, if t � � then  0k (t) = 0, and, for t > �,

 0k (t) = �0 (k (t� �))! 1 as k !1:

Hence,  0k (t)! ' (t) for all t 2 R.
By Lemma 1.7, we conclude that (u� �)+ 2 W

1;2
0 and

r (u� �)+ = ' (u)ru =
�
ru; u > �;
0; u � �;

which �nishes the proof.

Proof of Lemma 1.5. By Lemma 1.4 with � = 0, we have u+ 2 W 1;2
0 and

ru+ =
�
ru; u > 0;
0; u � 0: (1.29)

Applying this to function (�u), we obtain that u� 2 W 1;2
0 and

ru� =
�
0; u � 0;
�ru; u < 0:

(1.30)

Consequently, since ru+ = ru� = 0 on the set fu = 0g, we obtain

ru = 0 a:e: on fu = 0g : (1.31)

In particular, (1.31) implies the following: if u; v are two functions from W 1;2
0 (
) and

S is a subset of 
 then

u = v a:e: on S ) ru = rv a:e: on S:

Let us now prove that, for any � 2 R,

ru = 0 a:e: on fu = �g : (1.32)

If the constant function v � � were in W 1;2
0 then by

u = v on fu = �g

we could obtain
ru = rv = 0 a:e:on fu = �g

thus proving (1.32). However, the constant function is not in W 1;2
0 and we argue as

follows. Choose a compact set K � 
 and a function v 2 C10 (
) such that v = � in
a neighborhood of K. Then

u = v on K \ fu = �g

which implies that
ru = rv = 0 a:e: on K \ fu = �g :

Covering 
 by a countable family of compact sets K, we obtain (1.32).
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1.4.3 Sobolev inequality

Theorem 1.8 Assume 1 � p < n. Then there is a constant C = C (p; n) such that,
for all u 2 W 1;p

0 (Rn), �Z
Rn
juj

pn
n�p dx

�n�p
n

� C

Z
Rn
jrujp dx: (1.33)

In the proof we will use the following extended Hölder inequality for non-negative
functions on R: Z

R

mY
i=1

f
1
m
i dt �

mY
i=1

�Z
R
fidt

�1=m
: (1.34)

Indeed, for m = 1 this is trivial, and in the case m = 2 this is a Cauchy-Schwarz
inequality. For a general m, let us make the inductive step from m� 1 to m as follows:Z

R
f

1
m
1 :::f

1
m
m dt �

�Z
R

�
f

1
m
1 :::f

1
m
m�1

� m
m�1

dt

�m�1
m
�Z

R

�
f

1
m
m

�m
dt

� 1
m

=

�Z
R
f

1
m�1
1 :::f

1
m�1
m�1dt

�m�1
m
�Z

R
fmdt

� 1
m

�
 �Z

R
f1dt

� 1
m�1

:::

�Z
R
fm�1dt

� 1
m�1
!m�1

m �Z
R
fmdt

� 1
m

=

�Z
R
f1dt

� 1
m

:::

�Z
R
fmdt

� 1
m

which is equivalent to (1.34). 21.04.16

Proof of Theorem 1.8. Step 0. Let us �rst show that it su¢ ces to prove (1.33)
for u 2 C10 (Rn). Indeed, if (1.33) is known to be true for u 2 C10 (Rn) then choose
for any u 2 W 1;p

0 (Rn) a sequence fukg from C10 (Rn) such that uk ! u in the norm of
W 1;p. It follows that Z

Rn
jrukjp dx!

Z
Rn
jrujp dx as k !1:

In particular, for 8" > 0 and for all large enough kZ
Rn
jrukjp dx �

Z
Rn
jrujp dx+ ":

Since (1.33) holds for each function uk, we have�Z
Rn
jukj

pn
n�p dx

�n�p
n

� C

Z
Rn
jrukjp dx � C

�Z
Rn
jrujp dx+ "

�
:

Since uk ! u in Lp, choosing a subsequence we can assume that uk ! u a:e:. Hence,
by Fatou�s lemma, we conclude that�Z

Rn
juj

pn
n�p dx

�n�p
n

� C

�Z
Rn
jrujp dx+ "

�
:
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Since " > 0 is arbitrary, we obtain that (1.33) holds for arbitrary u 2 W 1;p
0 (Rn).

Step 1. Let us prove (1.33) in the case p = 1 for any u 2 C10 (Rn). For p = 1 (1.33)
becomes �Z

Rn
juj

n
n�1 dx

�n�1
n

� C

Z
Rn
jruj dx; (1.35)

assuming that n > 1. Since u has a compact support, we have, for any index i = 1; :::; n,

u (x) =

Z x

�1
@iu (x1; ::; xi�1; yi; xi+1; :::; xn) dyi;

which implies

ju (x)j �
Z 1

�1
jruj (x1; ::; xi�1; yi; xi+1; :::; xn) dyi: (1.36)

Consider function F = jruj and let us use the following notation: for any sequence
i1; :::; ik of distinct indices, set

Fi1:::ik =

Z
R
:::

Z
R
F (x) dxi1dxi2 :::dxik :

We consider Fi1:::ik as a function of x that does not depend on xi1 ; :::; xik but depends
on all other components xj.
Inequality (1.36) can be written in a short form

ju (x)j � Fi (x) :

Multiplying these inequalities for i = 1; :::; n and taking to the power 1
n�1 , we obtain

ju (x)j
n

n�1 �
nY
i=1

F
1

n�1
i :

Let us integrate this inequality in x1. Since F1 does not depend on x1, we obtain, using
(1.34) with m = n� 1, thatZ

R
ju (x)j

n
n�1 dx1 � F

1
n�1
1

Z
R

 
nY
i=2

F
1

n�1
i

!
dx1

� F
1

n�1
1

nY
i=2

�Z
R
Fidx1

� 1
n�1

= F
1

n�1
1

nY
i=2

F
1

n�1
1i :

Now let us integrate the last inequality in x2, noticing that F12 does not depend on x2
and using (1.34):Z

R2
ju (x)j

n
n�1 dx1dx2 � F

1
n�1
12

Z
R

 
F

1
n�1
1

nY
i=3

F
1

n�1
1i

!
dx2

� F
1

n�1
12

�Z
R
F1dx2

� 1
n�1 nY

i=3

�Z
R
F1idx2

� 1
n�1

= F
2

n�1
12

nY
i=3

F
1

n�1
12i :
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Integrating the last inequality in x3, noticing that F123 does not depend on x3 and
using (1.34), we obtainZ

R3
ju (x)j

n
n�1 dx1dx2dx3 � F

1
n�1
123

Z
R

 
F

1
n�1
12 F

1
n�1
12

nY
i=4

F
1

n�1
12i

!
dx3

� F
1

n�1
123

�Z
R
F12dx3

� 1
n�1
�Z

R
F12dx3

� 1
n�1

�
nY
i=4

�Z
R
F12idx3

� 1
n�1

= F
3

n�1
123

nY
i=4

F
1

n�1
123i :

Continuing further by induction, we obtain, for any 1 � k � n, thatZ
Rk
ju (x)j

n
n�1 dx1:::dxk � F

k
n�1
1:::k

nY
i=k+1

F
1

n�1
1:::ki:

In particular, for k = n we obtainZ
Rn
ju (x)j

n
n�1 dx � F

n
n�1
12:::n =

�Z
Rn
jruj dx

� n
n�1

;

which proves the Sobolev inequality (1.35) in the case p = 1: Note that in this case
C = 1.
Step 2. Let us prove now (1.35) in the case p > 1, also for any u 2 C10 (Rn). We

claim that, for any � > 1, the function juj� belongs to C10 (Rn) and

@i juj� = � juj��1 sgnu @iu: (1.37)

Indeed, the the identity (1.37) is easily veri�ed in each of the open sets fu > 0g,
fu < 0g ; fu = 0go. Since the right hand side of (1.37) is continuous in the closure of
each of these open sets and vanishes at their boundaries, we see that the right hand
side is continuous in Rn, which implies that the identity (1.37) holds in the whole Rn.
Consequently, juj� 2 C10 (Rn).
Applying (1.35) to the function juj� and using

r juj� = � juj��1 sgnuru;

we obtain �Z
Rn
juj

�n
n�1 dx

�n�1
n

�
Z
Rn
jr juj�j dx = �

Z
Rn
juj��1 jruj dx:

By the Hölder inequality, we haveZ
Rn
juj��1 jruj dx �

�Z
Rn
juj(��1)

p
p�1 dx

� p�1
p
�Z

Rn
jrujp dx

� 1
p

:
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Choose � so that
(�� 1) p

p� 1 =
pn

n� p
=: q

that is,

� = 1 +
n

n� p
(p� 1) = n� 1

n� p
p:

Then also
�n

n� 1 =
pn

n� p
= q;

and we obtain�Z
Rn
jujq dx

�n�1
n

� �

�Z
Rn
jujq dx

� p�1
p
�Z

Rn
jrujp dx

� 1
p

:

It follows that �Z
Rn
jujq dx

�n�1
n
� p�1

p

� �

�Z
Rn
jrujp dx

� 1
p

;

�Z
Rn
jujq dx

�n�p
np

� �

�Z
Rn
jrujp dx

� 1
p

;

which is equivalent to (1.33) with

C = �p =

�
n� 1
n� p

p

�p
:

Now let us prove the Sobolev inequality in the form that was used in the proof of
Theorem 1.3.

Corollary 1.9 Let 
 be an open subset of Rn. If n > 2 then, for any u 2 W 1;2
0 (
),Z




jruj2 dx � c

�Z



juj
2n
n�2 dx

�n�2
n

(1.38)

where c = c (n) > 0. If n = 2 and 
 is bounded then, for any q � 1 and any
u 2 W 1;2

0 (
) Z



jruj2 dx � c

�Z



juj2q dx
�1=q

; (1.39)

where c = c0 j
j�1=q and c0 = c0 (q) > 0.

Proof. Since C10 (
) � C10 (Rn), it follows thatW
1;2
0 (
) � W 1;2

0 (Rn) (more precisely,
any function from W 1;2

0 (
) that is extended by 0 outside 
, belongs to W 1;2
0 (Rn)).

Therefore, (1.38) is a particular case of (1.33) with p = 2:
Assume n = 2. Then by (1.33) we have, for any 1 � p < 2,�Z




juj
2p
2�p dx

� 2�p
2

� C

Z



jrujp dx:
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Using the Hölder inequality, we obtainZ



jrujp dx =

Z



1 � jrujp dx �
�Z




dx

�1� p
2
�Z




jrujp
2
p dx

� p
2

= j
j1�p=2
�Z




jruj2 dx
� p

2

:

Hence, we obtain �Z



juj
2p
2�p dx

� 2�p
2

� C j
j1�p=2
�Z




jruj2 dx
� p

2

or �Z



juj
2p
2�p dx

� 2�p
p

� C j
j
2
p
�1
Z



jruj2 dx:

It remains to set q = p
2�p and observe that q can be any number from [1;1) as p is

any number from [1; 2): Then 2
p
� 1 = 1

q
, and we obtainZ




jruj2 dx � C�1 j
j�1=q
�Z




juj2q dx
�1=q

;

which was to be proved.

1.4.4 Theorem of Lax-Milgram

Theorem 1.10 Let B (u; v) be a bilinear form in a Hilbert space H. Assume that

1. B is bounded, that is, jB (u; v)j � C kuk kvk for all u; v 2 H and some constant
C.

2. B is coercive, that is, B (u; u) � c kuk2 for all u 2 H, where c is a positive
constant.

Then, for any bounded linear functional l on H, the equation

B (u; v) = l (v) 8v 2 H (1.40)

has a unique solution u 2 H. Moreover, for this solution we have

kuk � 1

c
klk : (1.41)

If the bilinear form B (u; v) is symmetric then this theorem coincides with the Riesz
representation theorem. The strength of Theorem 1.10 is that it allows non-symmetric
B. 26.04.16

Proof. For any u 2 H, the function v 7! B (u; v) is a bounded linear functional on H.
Hence, by the Riesz representation theorem, the equation

(w; v) = B (u; v) 8v 2 H
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has a unique solution w 2 H. Since w depends on u, we obtain a mapping A : H ! H,
de�ned by Au = w. In other words, A is de�ned by the identity

(Au; v) = B (u; v) 8v 2 H: (1.42)

Operator A is called the generator of the bilinear form B. Clearly, the equation (1.40)
is equivalent to

(Au; v) = l (v) 8v 2 H: (1.43)

Again by Riesz representation theorem, there is w 2 H such that

(w; v) = l (v) 8v 2 H:

Therefore, in order to solve (1.43) it su¢ ces to �nd u so that Au = w:
Hence, the question of solving of (1.40) amounts to verifying that A is bijective, so

that the equation Au = w has a solution u = A�1w.
Let us prove that A is bijective in the following few steps.
Step 1. Operator A is linear. Indeed, for any u1; u2 2 H and for all v 2 H we have

by (1.42)

(A (u1 + u2) ; v) = B (u1 + u2; v) = B (u1; v) +B (u2; v) = A (u1; v) + A (u2; v) ;

which implies Au1 + Au2 = A (u1 + u2) : The same argument shows that A (�u) =
�A (u) for any � 2 R.
Step 2. Operator A is bounded. Indeed, it follows from (1.42) that

j(Au; v)j � C kuk kvk :

Setting here v = Au, we obtain

kAuk2 � C kuk kAuk

whence kAuk � C kuk, which proves the claim.
Step 3. Operator A is injective. Indeed, setting v = u in (1.42), we obtain

(Au; u) = B (u; u) � c kuk2 : (1.44)

In particular, Au = 0 implies u = 0, that is, A is injective. Applying Cauchy-Schwarz
inequality to the left hand side of (1.44), we obtain

kAuk kuk � c kuk2

and, hence,
kAuk � c kuk 8u 2 H: (1.45)

Step 4. The image ImA is dense in H. Indeed, if ImA 6= H then there is a non-zero
vector u in H that is orthogonal to ImA. In particular, (Au; u) = 0, which by (1.44)
is not possible.
Step 5. Operator A is surjective, that is, ImA = H. In the view of Step4, it su¢ ces

to verify that ImA is a closed set. Indeed, let fwkg be a sequence of elements from
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ImA that converges to w 2 H. Let us show that w 2 ImA. We have wk = Auk for
some uk 2 H. It follows from (1.45) that

kwk � wlk � c kuk � ulk ;

which implies that the sequence fukg is Cauchy. Hence, there exists the limit u :=
limk!1 uk. By the boundedness of A we obtain

Au = lim
k!1

Auk = lim
k!1

wk = w

and, hence, w 2 ImA.
Step 6. Finally, let us prove (1.41). Setting in (1.40) v = u and using the coercive

property of B, we obtain

c kuk2 � B (u; u) = l (u) � klk kuk ;

whence kuk � c�1 klk follows.

1.4.5 Fredholm�s alternative

Theorem 1.11 Let K be a compact linear operator in a Hilbert space H. If the oper-
ator I +K is injective then I +K is surjective.

Here I is the identity operator inH. In other words, either the equation (I +K)x =
0 has non-zero solution or the equation (I +K)x = h has a solution x 2 H for any
h 2 H.
Note that in a �nite dimensional Euclidean spaceH, any linear operator A : H ! H

has this property: if A is injective then A is surjective, because each of this properties is
equivalent to detA 6= 0. In in�nite dimensional spaces this is not the case for arbitrary
operators.
Proof. Denote A = I +K. Assuming that kerA = 0, we will prove that ImA = H.
The proof consists of a few steps.
Step 1. Let us show that if fxig is a bounded sequence of elements ofH and if fAxig

converges then fxig has a convergent subsequence. Indeed, by the compactness of K,
the sequence fKxig has a convergent subsequence fKxikg. Since xik + Kxik = Axik
converges, then also fxikg converges, which proves the claim.
Step 2. Let us prove that ImA is a closed subspace of H. The image of any linear

operator is always a subspace, so we need to prove that ImA is closed. Let fyig be a
sequence of elements in ImA that converges to y 2 H. Then yi = Axi for some xi 2 H.
Let us prove that fxig is bounded. Indeed, if it is not the case then we can assume

passing to a subsequence that kxik ! 1. Setting exi = xi
kxik , we have

Aexi = Axi
kxik

=
yi
kxik

! 0 as i!1:

Since the sequence fexig is bounded and Aexi converges, we conclude by Step 1, that
fexig has a convergent subsequence. Passing to this subsequence, we can assume that
fexig converges, say, to z 2 H. Clearly,

kzk = lim
i!1

kexik = 1
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and

Az = lim
i!1

Aexi = 0
that is, z 2 kerA. Since kerA = 0, we obtain z = 0 which contradicts kzk = 1.
Hence, the sequence fxig is bounded. Since Axi converges, we conclude by Step

1, that the sequence fxig contains a convergent subsequence. Denote it again by fxig
and set x = lim xi. Then we have

y = lim yi = limAxi = Ax 2 ImA,

which �nishes the proof.
Step 3. Consider the sequence fVkg1k=0 of subspaces Vk := ImAk, that is, Vk+1 =

A (Vk). In particular, V0 = H and V1 = ImA. Clearly, we have Vk+1 � Vk. By Step
2, V1 is a closed subspace of V0. In particular, V1 is a Hilbert space. Since A can be
considered as an operator in V1, we conclude by Step 2 that V2 = A (V1) is a closed
subspace of V1. Continuing by induction, we obtain that each Vk+1 is a closed subspace
of Vk.
Let us prove that Vk+1 = Vk for some k. Assume from the contrary that this is not

the case, that is, Vk+1 & Vk for all k � 0. For any k, choose xk from the orthogonal
complement V ?

k+1 of Vk+1 in Vk and so that kxkk = 1. For all i > j we have

Kxi �Kxj = � (xi � xj) + A (xi � xj) = xj + (�xi + Axi � Axj) :

Since i � j + 1, we have

�xi + Axi � Axj 2 Vj+1;

which implies, by the choice of xj 2 V ?
j+1 that

xj? (�xi + Axi � Axj) :

Hence, by Pythagoras�Theorem,

kKxi �Kxjk2 = kxjk2 + k(�xi + Axi � Axj)k2 � 1:

Consequently, no subsequence of fKxig is a Cauchy sequence. On the other hand,
the compactness of K implies that fKxig contains a convergent subsequence. This
contradiction proves the claim.
Step 4. Finally, let us prove that if A is injective then ImA = H. Let k be the

minimal non-negative integer such that Vk+1 = Vk. We need to prove that k = 0,
which is equivalent to ImA = H. Assume that k � 1 and consider the mapping
A : Vk�1 ! Vk. Note that Vk�1 = Vk � V ?

k and the space V ?
k is non-trivial by the

assumption that Vk�1 6= Vk. The image of A on Vk coincides with Vk, by the assumption
A (Vk) = Vk+1 = Vk. However, A

�
V ?
k

�
lies also in Vk, which implies that the operator

A : Vk�1 ! Vk cannot be injective. This contradiction shows that k = 0, which �nishes
the proof.

28.04.16



26 CHAPTER 1. WEAK DIRICHLET PROBLEM

1.4.6 Existence

Consider again an operator

Lu =

nX
i;j=1

@i (aij@iu) +

nX
i=1

bi (x) @iu (1.46)

in an open set 
 � Rn. As before, we assume that the coe¢ cients aij; bi are measurable
functions, the second order part

Pn
i;j=1 @i (aij@iu) is uniformly elliptic divergence form

operator, and that all functions bi are bounded, that is, there is a constant b such that

nX
i=1

jbij � b a:e: in 
:

Theorem 1.12 If 
 is bounded and L is the operator (1.46) in 
 then the weak Dirich-
let problem �

Lu = f in 

u 2 W 1;2

0 (
)
(1.47)

has a solution u for any f 2 L2 (
).

Recall that by Theorem 1.3 the Dirichlet problem (1.47) has at most one solution,
which together with Theorem 1.12 implies that (1.47) has exactly one solution.

Proof. Consider the following bilinear form on W 1;2
0 (
):

[u; '] =

Z



nX
i;j=1

aij@ju@i'dx�
Z



nX
i=1

bi@iu' dx:

As we know, the weak equation Lu = f means that

[u; '] = �
Z



f'dx 8' 2 W 1;2
0 (
) : (1.48)

The bilinear form [u; '] is bounded as

j[u; ']j � (�+ b) kukW 1;2 k'kW 1;2 (1.49)

(cf. equation (1.10) in the proof of Lemma 1.1). If this form were coercive, that is, if
for all u 2 W 1;2

0

[u; u] � c kuk2W 1;2 (1.50)

with some positive constant c, then we could conclude by the Lax-Milgram theorem
that the equation (1.48) has a solution u 2 W 1;2

0 (
) that is, hence, is a solution of
(1.47). However, the form [u; '] is not necessarily coercive. However, it still satis�es
the following inequality:

[u; u] =

Z



nX
i;j=1

aij@ju@iu dx�
Z



nX
i=1

bi@iuudx

� ��1
Z



jruj2 dx� b

Z



jruj juj dx:
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Note that, for any " > 0,

jruj juj � " jruj2 + 1
"
u2;

so that

[u; u] � ��1
Z



jruj2 dx� "b

Z



jruj2 dx� b

"

Z



u2dx

= c

Z



jruj2 dx� b

"

Z



u2dx;

where c = ��1 � b":Choosing " small enough, say " = 1
2
b�1��1, we can ensure that

c > 0. It follows that

[u; u] � c

�Z



jruj2 dx+
Z



u2dx

�
�
�
b

"
+ c

�Z



u2dx

� c kuk2W 1:2 � C kuk2L2 ;

where C = b
"
+ c: Rewrite this inequality as follows:

[u; u] + C kuk2L2 � c kuk2W 1;2 ; (1.51)

which is of course weaker than (1.50). So, in general the form [u; '] is not coercive.
However, a di¤erent bilinear form

[u; '] + C (u; ')

is bounded by (1.49) and is coercive by (1.51) (here (�; �) is the inner product in L2).
Let us consider instead of (1.48) an auxiliary problem:

[u; '] + C (u; ') = �
Z



f'dx 8' 2 W 1;2
0 (
) : (1.52)

By the Lax-Milgram theorem, the equation (1.52) has a unique solution u 2 W 1;2
0 (
).

Moreover, for this solution we have

kukW 1;2 � c�1 kfkL2 ; (1.53)

because the norm of the functional ' 7!
R


f' in W 1;2

0 (
) is bounded by kfkL2.
Denote by R the resolvent operator of (1.52), that is, the operator

L2 (
) ! W 1;2
0 (
)

f 7! u:

In other words, for any f 2 L2 (
), we have Rf = u where u is the unique solution of
(1.52). Obviously, R is a linear operator. Moreover, R is a bounded operator because
by (1.53)

kRfkW 1:2 � c�1 kfkL2 :
Now let us come back to the equation (1.48) and rewrite it in the equivalent form

[u; '] + C (u; ') = �
Z



(f � Cu)'dx 8' 2 W 1;2
0 (
) : (1.54)
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By the de�nition of the resolvent R, this equation is equivalent to

u = R (f � Cu)

that is, to
u+ CRu = Rf: (1.55)

De�ne the operator K : L2 ! L2 as composition of the following operators

L2 (
)
CR! W 1;2

0 (
)
i
,! L2 (
)

where i is the identical inclusion; that is,

K = i � (CR) :

By the Compact Embedding Theorem, the operator i is compact. Since CR is bounded,
we obtain that K is a compact operator. Setting Rf = g, let us rewrite (1.55) in the
form

(I +K)u = g: (1.56)

We consider this equation in the Hilbert space L2 (
), that is, both g and u are assumed
to be in L2 (
). We claim that solving (1.56) for u 2 L2 (
) is equivalent to solving
(1.55) for u 2 W 1;2

0 (
) : Indeed, the direction (1.55))(1.56) is trivial because if u 2
W 1;2
0 (
) then u 2 L2 (
). For the opposite direction observe that if u 2 L2 (
) solves

(1.56) with g = Rf then

u = g �Ku = Rf � CRu 2 W 1;2
0 (
)

by de�nition of the operator R.
Hence, it su¢ ces to prove that the equation (1.56) has a solution u 2 L2 (
) for

any g 2 L2 (
). By Fredholm�s alternative, it su¢ ces to prove that the operator I +K
is injective, that is, the equation

(I +K)u = 0

has the only solution u = 0. If u 2 L2 (
) satis�es this equation then u satis�es (1.54)
with f = 0, that is equivalent to

[u; '] = 0 8' 2 W 1;2
0 (
) :

By Theorem 1.3 we know that u = 0. Hence, ker (I +K) = 0 and, by Fredholm�s
alternative we conclude that

Im (I +K) = L2 (
) :

Therefore, the equation (I +K)u = g has a solution u 2 L2 (
) for any g 2 L2 (
),
which �nishes the proof.
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1.5 Estimate of L1-norm of a solution

In this section we use the 1-norm of a measurable function f in an open subset 
 of
Rn:

kfkL1 := esssup



jf j :

The space L1 (
) consists of all measurable functions f on 
 with kfkL1 < 1. It is
possible to prove that L1 is a linear space, k�kL1 is a norm in L1 (
), and L1 (
) is
a Banach space. The following extension of the Hölder inequality is obviously true:Z




jfgj dx � kfkL1 kgkL1 :

The Sobolev spaces W k;p (
) are now de�ned by (1.4) also for p = 1; as well as the
spaces W k;p

loc (
) (cf. (1.5)).

1.5.1 Operator without lower order terms

Theorem 1.13 Let 
 be a bounded domain in Rn and let

Lu =
nX

i;j=1

@i (aij@ju)

be a divergence form uniformly elliptic operator in 
 with measurable coe¢ cients. If u
solves the Dirichlet problem �

Lu = �f weakly in 

u 2 W 1;2

0 (
)
(1.57)

where f 2 L2 (
), then
kukL1 � C j
j2=n kfkL1 ; (1.58)

where C = C (n; �) and � is the ellipticity constant of L.

In the proof we use the following Faber-Krahn inequality: if u 2 W 1;2
0 (
) and

U = fx 2 
 : u (x) 6= 0g

then Z



jruj2 dx � c jU j�2=n
Z



u2 dx; (1.59)

where c = c (n) > 0: This inequality is proved in Exercise 10 in the case n � 2, but it is
also valid in the case n = 1. Indeed, in this case any function from W 1;2

0 is continuous,
the set U is open and, hence, consists of disjoint union of open intervals, say U = tjIj.
In each interval Ij, the function u vanishes at the endpoints, which implies then by
Friedrichs�inequality thatZ

Ij

jruj2 dx � jIjj�2
Z
Ij

u2 dx � jU j�2
Z
Ij

u2 dx:
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Summing up in all j, we obtain (1.59) with n = 1 and c = 1:
Denote by �1 (
) the �rst (smallest) eigenvalue of the weak eigenvalue problem in


: �
�v + �v = 0 in 

v 2 W 1;2

0 (
)

By the Rayleigh principle, we have

�1 (
) = inf
u2W 1;2

0 (
)nf0g

R


jruj2 dxR


u2dx

:

Since jU j � j
j, it follows from (1.59) that

�1 (
) � c j
j�2=n : (1.60)

This inequality is related to the following Faber-Krahn theorem: if 
� denotes a ball
of the same volume as 
 then

�1 (
) � �1 (

�) : (1.61)

In other words, among all domains with the same volume, the minimal value of �1 is
achieved on balls. This is related to isoperimetric property of balls: among all domains
with the same volume, the minimal boundary area is achieved on balls.
Observe that if 
� = BR then

�1 (

�) = �1 (BR) =

c0

R2

where c0 = c0 (n) > 0: Since jBRj = c00Rn, we obtain

�1 (

�) = c j
�j�2=n ;

which implies by (1.61) and j
�j = j
j that

�1 (
) � c j
j�2=n : (1.62)

Of course, this looks the same as (1.60), except for the constant c in (1.62) is sharp
and is achieved on balls, whereas the constant c in (1.60) was some positive constant.
However, for our applications we do not need sharp constant c.

Proof of Theorem 1.13. If kfkL1 = 1 then (1.58) is trivially satis�ed. If
kfkL1 = 0 then by Theorem 1.2 we have u = 0 and (1.58) holds. Let 0 < kfkL1 <1.
Dividing u and f by kfkL1 , we can assume without loss of generality that kfkL1 = 1. 03.05.16

Fix � > 0 and consider a function v = (u� �)+ 2 W 1;2
0 (
). By hypothesis that

Lu = �f weakly, we have the identityZ



nX
i;j=1

aij@ju@iv dx =

Z



fv dx:

Note that
@ju@iv = @jv@iv a:e: (1.63)
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because, by Lemma 1.4, on the set fv = 0g = fu � �g we have @iv = 0 a:e:, while
on the set fv > 0g = fu > �g we have @jv = @ju a:e:. By (1.63) and the uniform
ellipticity we obtainZ




nX
i;j=1

aij@ju@iv dx =

Z



nX
i;j=1

aij@jv@iv dx � ��1
Z



jrvj2 dx: (1.64)

Consider the set
U� := fu > �g = fv > 0g

and observe that, by the Faber-Krahn inequality,Z



jrvj2 dx � c jU�j�2=n
Z



v2 dx; (1.65)

where c = c (n) > 0. By kfkL1 = 1 and Cauchy-Schwarz inequality, we haveZ



fv dx �
Z



vdx =

Z
U�

1 � v dx � jU�j1=2
�Z




v2dx

�1=2
:

Combining all the above inequalities, we obtain

c��1 jU�j�2=n
Z



v2 dx � jU�j1=2
�Z




v2dx

�1=2
;

whence �Z



v2dx

�1=2
� c�1� jU�j1=2+2=n :

Let us rewrite this inequality in the formZ



(u� �)2+ dx � K jU�jp : (1.66)

where K = (c�1�)
2 and p = 1 + 4=n:

Claim. Assume that a measurable function u in 
 satis�es for any � > 0 the inequality
(1.66) with some K and p > 1. Then

esssup



u � C j
j
p�1
2 , (1.67)

where C = C (K; p) :

In particular, if as above u is a solution of (1.57) with kfkL1 = 1 then (1.66) holds
with p = 1 + 4=n. Since p�1

2
= 2

n
, we obtain by (1.67)

esssup



u � C j
j
2
n :

Applying the same argument to �u, we obtain the same estimate for esssup (�u),
whence

kukL1 � C j
j2=n ;
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which coincides with (1.58) when kfkL1 = 1.
Hence, it remains to prove the above Claim. Choose some � > � and consider the

set U� = fu > �g. Then we haveZ



(u� �)2+ dx �
Z
U�

(u� �)2+ dx � (� � �)2 jU�j ;

which together with (1.66) implies

(� � �)2 jU�j � K jU�jp ;

and, hence,

jU�j �
K

(� � �)2
jU�jp : (1.68)

Fix � > 0 to be chosen below, and consider a sequence f�kg1k=0 where �k = �
�
2� 2�k

�
.

This sequence is increasing, �0 = � and �k ! 2� as k !1. Set

Vk = jfu > �kgj

and observe that by (1.68)

Vk �
K

(�k � �k�1)
2V

p
k�1:

Since �k � �k�1 = �2�k, it follows that

Vk � K��24kV p
k�1 = 4

kMV p
k�1 (1.69)

where M = K��2. Iterating this inequality, we obtain

Vk � 4kMV p
k�1 � 4kM

�
4k�1MV p

k�2
�p
= 4k+p(k�1)M1+pV p2

k�2

� 4k+p(k�1)M1+p
�
4k�2MV p

k�3
�p2
= 4k+p(k�1)+p

2(k�2)M1+p+p2V p3

k�3

� ::: � 4k+p(k�1)+:::+pk�1M1+p+p2+:::+pk�1V pk

0 :

Let us use the identities

1 + p+ p2 + :::+ pk�1 =
pk � 1
p� 1

and

k + p (k � 1) + p2 (k � 2) + :::+ pk�1 =
pk+1 � (k + 1) p+ k

(p� 1)2

that are easily proved by induction. Then we have

Vk � 4
pk+1�(k+1)p+k

(p�1)2 M
pk�1
p�1 V pk

0

=
h
4

p

(p�1)2M
1

p�1V0

ipk
4
�(k+1)p+k
(p�1)2 M� 1

p�1 : (1.70)
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We would like to make sure that Vk ! 0 as k !1. Since V0 � j
j, it su¢ ces to have
for that

4
p

(p�1)2M
1

p�1 j
j < 1;
that is,

4
p

(p�1)2K
1

p�1��
2

p�1 j
j < 1:
For example, we can make the left hand side equal to 1

2
by choosing � from the equation

4
p

(p�1)2K
1

p�1��
2

p�1 j
j = 1

2

that is,

� =
�
2 � 4

p

(p�1)2K
1

p�1 j
j
� p�1

2
= C1 j
j

p�1
2 :

With this choice of � we have

jfu > �kgj ! 0 as k !1;

which implies that
jfu � 2�gj = 0

and, hence,
esssupu � 2� = 2C1 j
j

p�1
2 , (1.71)

which �nishes the proof of (1.67) with C = 2C1.

Theorem 1.13 provides a non-trivial estimate even in the case L = �. Consider the
following weak Dirichlet problem:�

�u = �1 in 

u = 0 on @
:

(1.72)

We know that the solution u (x) is a smooth function. In fact, it has the following
probabilistic meaning: if x 2 
 is the starting point of Brownian motion fXtg in Rn
then u (x) is the mean exit time from 
. In other words, if we de�ne the �rst exist
time �
 from 
 by

�
 = inf ft > 0 : Xt =2 
g ;
then

u (x) = Ex�
: (1.73)

More generally, the Dirichlet problem�
�u = �f in 

u = 0 on @


has solution

u (x) = Ex
Z �


0

f (Xt) dt;

which implies (1.73) for f = 1.
Let u be the solution of (1.72). Then by Theorem 1.13 we have

sup


u � C j
j2=n ;
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that is, the mean exit time from 
 is bounded from above by C j
j2=n. In particular,
if 
 = BR then j
j = cnR

n and we obtain the estimate

sup
BR

u � C 0R2: (1.74)

Note that the classical Dirichlet problem�
�u = �1 in BR
u = 0 on @BR

has an obvious solution

u (x) =
R2 � jxj2

2n
:

In particular, we see that

sup
BR

u = u (0) =
R2

2n
;

which shows that the estimate (1.74) is optimal up to the value of the constant. Let
us emphasize the following probabilistic meaning of the latter identity: the mean exit
time from the center of the ball is equal to R2

2n
. In particular, it is proportional not to

R as it would be in the case of a constant outward speed, but to R2, which for large
R means a signi�cant slowdown in comparison with a constant speed movement. This
happens because Brownian particle does not go away in radial direction but spends a
lot of time for moving also in angular directions. For example, an observer staying at
the origin and watching in the direction of the particle, will have to turn around all
the times in order to keep the particle in the view.

1.5.2 Operator with lower order terms

Now we state and prove a more general version of Theorem 1.13. Consider in 
 a more
general operator

Lu =
nX

i;j=1

@i (aij@ju) +
nX
i=1

bi@iu (1.75)

where the coe¢ cients aij and bi are measurable functions, the matrix (aij) is uniformly
elliptic with the ellipticity constant �, and all bi are bounded, that is, there is a constant
b such that

nX
i=1

jbij � b a:e: in 
: (1.76)

We say that a function u 2 W 1;2
loc (
) satis�es weakly in 
 the inequality Lu � g where

g 2 L2loc (
) if, for any non-negative function ' 2 D (
),

�
Z



nX
i;j=1

aij@ju@i'dx+

Z



nX
i=1

bi@iu' dx �
Z



g' dx: (1.77)

Similarly one de�nes the meaning of Lu � g. If u 2 W 1;2 (
) and g 2 L2 (
) then, as
in the proof of Lemma 1.1, the test function ' in (1.77) can be taken from W 1;2

0 (
).
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Theorem 1.14 Let 
 be a bounded domain in Rn and let L be the operator (1.75).
Assume

j
j < �; (1.78)

where � = cn�
�nb�n with some cn > 0. If u 2 W 1;2 (
) and f 2 L2 (
) satisfy�

Lu � �f weakly in 
;
u+ 2 W 1;2

0 (
) ;
(1.79)

then, for any q 2 [2;1] \ (n=2;1], the following estimate holds:

esssup



u � C j
j
2
n
� 1
q kf+kLq (1.80)

with a constant C = C (n; �; q) :

Theorem 1.14 extends Theorem 1.13 in three ways:

1. We allow in the operator L lower order terms.

2. We allow inequality Lu � �f instead of equality.

3. We allows u+ 2 W 1;2
0 (
) instead of u 2 W 1;2

0 (
)

4. The main estimate in given in terms of kf+kLq instead of kfkL1, where q in
particular can be 1.

Let us explain why Theorem 1.14 contains Theorem 1.13. Indeed, if all bi = 0 and,
hence, b = 0 then � = 1 and the restriction (1.78) on j
j is void. Assuming that
Lu = f , u 2 W 1;2

0 (
) and applying (1.80) with q =1, we obtain

esssup



u � C j
j
2
n kf+kL1 = C j
j

2
n esssup f+: (1.81)

Applying this inequality to function �u, we obtain

essinf



(�u) � C j
j2=n esssup f�;

whence it follows that
esssup



juj � C j
j2=n esssup jf j ;

which is equivalent to (1.58).10.05.16

Applying Theorem 1.14 with f = 0, we obtain the following the maximum principle:
if u+ 2 W 1;2

0 (
) and Lu � 0 weakly then u � 0 a:e: in 
. The condition u+ 2 W 1;2
0 (
)

means that in some sense �u+ = 0 on @
�, that is, �u � 0 on @
�.
Proof. Since f can be replaced in (1.79) by f+, we can assume without loss of generality
that f � 0. If kfkLq = 1 then there is nothing to prove. If 0 < kfkLq < 1 then
dividing f and u by kfkLq , we can assume that kfkLq = 1. Finally, the case kfkLq = 0
amounts to the previous case as follows. Indeed, if Lu � 0 then also Lu � �" for any
" > 0. Applying (1.80) with f = ", we obtain

esssup



u � C j
j
2
n
� 1
q k"kLq :
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Letting "! 0 we obtain (1.80) with f = 0.
Hence, we assume in what follows that f � 0 and kfkLq = 1. As in the proof of

Theorem 1.13, �x � > 0 and consider a function

v := (u� �)+ = (u+ � �)+ :

This function belongs toW 1;2
0 (
) and is non-negative. By the hypothesis that Lu � �f

weakly, we have the inequality

�
Z



nX
i;j=1

aij@ju@iv dx+

Z



nX
i=1

bi@iu v dx � �
Z



fv dx;

that is, Z



nX
i;j=1

aij@ju@iv dx �
Z



nX
i=1

bi@iu v dx+

Z



fv dx: (1.82)

We estimate the left hand side similarly to (1.64). Observe that

@ju@iv = @jv@iv a:e: in 


because on the set fv = 0g we have @iv = 0 a:e: (by Lemma 1.5), whereas on the set
fv > 0g we have

@iu = @iu+ = @iv;

by Exercise 14 and by Lemma 1.4. Hence, we haveZ



nX
i;j=1

aij@ju@iv dx =

Z



nX
i;j=1

aij@jv@iv dx � ��1
Z



jrvj2 dx:

Now let us estimate the terms in the right hand side of (1.82). Using

@iu v = @iv v a:e: in 


and (1.76), we obtain, for any " > 0,Z



nX
i=1

bi@iu v dx � b

Z



jrvj jvj dx � b

2

Z



�
" jrvj2 + 1

"
v2
�
dx;

where we have use the inequality

XY � 1

2

�
"X2 +

1

"
Y 2

�
:

It follows that

��1
Z



jrvj2 dx � b"

2

Z



jrvj2 dx+ b

2"

Z



v2dx+

Z



fvdx:

Let us choose " to satisfy the condition b" = ��1, that is,

" =
1

�b
:
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Then we obtain

��1
Z



jrvj2 dx � 1

2
��1

Z



jrvj2 dx+ �b2

2

Z



v2dx+

Z



fvdx;

whence Z



jrvj2 dx � �2b2
Z



v2dx+ 2�

Z



fvdx: (1.83)

Using the Faber-Krahn inequality (1.65), we obtain from (1.83) that

c jU�j�2=n
Z



v2 dx � �2b2
Z



v2dx+ 2�

Z



fvdx; (1.84)

where
U� = fu > �g = fv > 0g :

We would like to have
c jU�j�2=n > 2�2b2: (1.85)

Since jU�j � j
j, it su¢ ces to have

c j
j�2=n > 2�2b2;

which is equivalent to

j
j <
� c
2

�n=2
��nb�n;

which is equivalent to (1.78) with

� =
� c
2

�n=2
��nb�n: (1.86)

Hence, (1.85) is satis�ed, and (1.84) yields

1

2
c jU�j�2=n

Z



v2 dx � 2�
Z



fvdx: (1.87)

Applying the Hölder inequality with the Hölder exponents q and q0 = q
q�1 and usingkfkLq =

1, we obtain Z



fvdx � kfkLq kvkLq0 =
�Z

U�

vq
0
dx

�1=q0
(note that if q =1 then q0 = 1). Since q � 2 and, hence, q0 � 2, applying the Hölder
inequality with one of the Hölder exponents 2

q0 , we obtainZ
U�

vq
0
dx �

�Z
U�

1dx

�1� q0
2
�Z

U�

�
vq

0
� 2
q0
dx

� q0
2

= jU�j1�
q0
2

�Z



v2dx

� q0
2

;

whence Z



fvdx � jU�j
1
q0�

1
2

�Z



v2dx

� 1
2

:
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Combining with (1.87), we obtain

1

2
c jU�j�2=n

Z



v2 dx � 2� jU�j
1
q0�

1
2

�Z
U�

v2dx

� 1
2

;

whence �Z



v2dx

� 1
2

� 4c�1� jU�j
1
q0�

1
2
+ 2
n ;

and Z



v2dx � K jU�j
2
q0�1+

4
n ;

where K = (4c�1�)
2. Set

p =
2

q0
� 1 + 4

n

and observe that

p = 2

�
1� 1

q

�
� 1 + 4

n
= 1� 2

q
+
4

n
> 1

because q > n
2
. Hence, we haveZ




(u� �)2+ dx � K jU�jp

with p > 1. This inequality coincides with the inequality (1.66) from the proof of
Theorem 1.13. Using the Claim from the proof of Theorem 1.13, we arrive at (1.71),
that is,

esssup



u � C j
j
p�1
2 = C j
j

2
n
� 1
q ;

which �nishes the proof of (1.80).

Let us discuss the restriction j
j < � that appears in the statement of Theorem
1.14. Consider the operator

L = �+

nX
i=1

bi@iu

in a bounded domain 
 � Rn and the Dirichlet problem�
Lu = �1 in 

u 2 W 1;2

0 (
) :
(1.88)

The estimate (1.80) of Theorem 1.14 yields, for q =1, that

u (x) � C j
j2=n in 
: (1.89)

The function u (x) has the following physical/probabilistic meaning. Operator L is the
generator of a di¤usion process with a drift

�!
b = (b1; :::; bn). In the case

�!
b � 0 this is

Brownian motion, but in the case of non-zero
�!
b one can think of this di¤usion process

as Brownian motion in a media that moves at any point x with the velocity
�!
b (x) (in

other words, media with convection). The function u (x) that solves (1.88) gives the
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mean exit time of this di¤usion from 
 assuming that the starting point is x. The
estimate (1.89) provides an upper bound for the mean exit time, saying that exit on
average occurs before time C j
j2=n.
However, if the drift

�!
b (x) is directed inwards the domain 
, then one can imagine

that the drift prevents the particle to escape from the domain, which may result in
a longer exit time. As Theorem 1.14 says, this cannot happen if j
j is small enough,
but as we will see in example below, this can happen if j
j is large enough (for large
domains the e¤ect of convection becomes dominating over di¤usion).

Example. Consider one-dimensional example with 
 = (�R;R) and

Lu = u00 + bu0

where

b (x) = � sgnx =

8<:
1; x < 0;
0; x = 0;
�1; x > 0:

Let us solve explicitly the Dirichlet problem�
Lu = �1 in (�R;R)
u (�R) = u (R) = 0:

It su¢ ces to solve the problem �
Lu = �1 in (0; R)
u0 (0) = u (R) = 0

(1.90)

and then extend u evenly to (�R; 0), that is, by setting u (�x) = u (x). Since u satis�es
in (0; R) the equation

u00 � u0 = �1; (1.91)

in (�R; 0) it will satisfy
u00 + u0 = �1:

Due to the the boundary condition u0 (0) = 0, the function u is a weak solution of
Lu = �1 on (�R;R).
The ODE (1.91) has the general solution

u (x) = c1 + c2e
x + x:

The boundary conditions u0 (0) = u (R) = 0 give the following equations for c1 and c2:

c2 + 1 = 0

c1 + c2e
R +R = 0

whence c2 = �1 and c1 = eR �R. Hence, (1.90) has solution

u (x) =
�
eR �R

�
� ex + x:

In particular,
u (0) = eR �R� 1:
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We see that for small R

u (0) � R2

2
; (1.92)

while for large R
u (0) � eR: (1.93)

Note that the estimate (1.80) with q =1 gives in this case

kukL1 � CR2; (1.94)

provided R is small enough, where the latter requirement is a consequence of (1.78).
The estimate (1.94) agrees with (1.92), but (1.93) shows that (1.94) fails for large R,
so that in general the restriction (1.78) cannot be dropped.



Chapter 2

Higher order derivatives of weak
solutions

Recall the following property of the distributional Laplace operator in a domain of Rn:
if u 2 W 1;2

loc and �u 2 L2loc then u 2 W
2;2
loc . Moreover, if �u 2 W

k;2
loc then u 2 W

k+2;2
loc . In

this Chapter we prove the same property for divergence form elliptic operators. The
technique of Fourier series that worked for the Laplace operator, does not work for
the operator with variable coe¢ cients, so we use entirely di¤erent techniques based on
di¤erence operators.12.05.16

2.1 Existence of 2nd order weak derivatives

Consider the operator

Lu =
nX

i;j=1

@i (aij@ju) (2.1)

in a domain 
 � Rn. As before, we assume that this operator is uniformly elliptic and
the coe¢ cients aij are measurable. Recall that if u 2 W 1;2

loc (
) and f 2 L2loc (
) then
the equation Lu = f holds in a weak sense if, for any ' 2 D (
),

�
Z



nX
i;j=1

aij@ju@i'dx =

Z



f' dx: (2.2)

Recall also that if u 2 W 1;2 (
) and f 2 L2 (
) then the identity (2.2) can be extended
to all ' 2 W 1;2

0 (
) (cf. Lemma 1.1).

Claim. If u 2 W 1;2
loc (
), f 2 L2loc (
), and the identity (2.2) holds for all ' 2 D (
)

then it also holds for all ' 2 W 1;2
c (
).

Proof. Fix a function ' 2 W 1;2
c (
) and let U be a precompact open set such that

supp' � U and U � 
. Clearly, the integration in (2.2) can be restricted to U . Since
u 2 W 1;2 (U), f 2 L2 (U), ' 2 W 1;2

0 (U), we conclude that (2.2) holds by Lemma 1.1.

Claim. For any u 2 W 1;2
loc (
) (and even for u 2 W

1;1
loc (
)) the expression Lu in (2.1)

is well-de�ned in the distributional sense. The identity (2.2) is equivalent to the fact
that Lu = f holds in the distributional sense.

41
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Note that, for a general distribution u 2 D0 (
) the expression Lu is not well-de�ned
because the product aij@ju of a measurable function aij and a distribution @ju does
not makes sense in general1.

Proof. The function @ju belongs to L2loc (
) and, since aij are bounded, the function
aij@ju belongs also to L2loc (
), in particular, to D0 (
). Hence, @i (aij@ju) is de�ned as
an element of D0 (
), where @i is understood in distributional sense. Consequently, Lu
is de�ned as an element of D0 (
).
By de�nition of distributional derivative, we have, for any ' 2 D (
),

(Lu; ') =

nX
i;j=1

(@i (aij@ju) ; ') = �
nX

i;j=1

(aij@ju; @i')

= �
nX

i;j=1

Z



aij@ju@i'dx:

Hence, the identity (2.2) becomes

(Lu; ') = (f; ') 8' 2 D (
) ;

which is equivalent to Lu = f .
For u 2 W 1;1

loc (
) the proof is the same because L
2
loc can be replaced everywhere by

L1loc.

Hence, from now on the expression Lu is well-de�ned as an element of D0 (
) for
any u 2 W 1;2

loc . Now we can state one of the main results of this Chapter.

Theorem 2.1 Let L be the operator (2.1) and assume that all the coe¢ cients aij of L
are locally Lipschitz in 
. If u 2 W 1;2

loc (
) and Lu 2 L2loc (
) then u 2 W
2;2
loc (
).

2.1.1 Lipschitz functions

A function f on a set S � Rn is called Lipschitz (or Lipschitz continuous) if there is a
constant L such that

jf (x)� f (y)j � L jx� yj 8x; y 2 S:

The constant L is called a Lipschitz constant of f on S.
Let 
 be an open subset of Rn. We say that a function f : 
! R is locally Lipschitz

if for any point x 2 
 there is " > 0 such that B" (x) � 
 and f is Lipschitz in B" (x).
Let us list some simple properties of locally Lipschitz functions.

1. Any locally Lipschitz function is continuous.

1A product av of a distribution v 2 D0 (
) and a function a on 
 makes sense only if a 2 C1 (
).
In this case av is de�ned as an element of D0 (
) as follows:

(av; ') = (v; a') 8' 2 D (
) ;

which makes sense because a' 2 D (
).
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2. If f; g are locally Lipschitz functions then f + g and fg are locally Lipschitz.
In particular, the set Liploc (
) of all locally Lipschitz functions in 
 is a vector
space and even an algebra.

3. Any functions from C1 (
) is locally Lipschitz in 
. Consequently, we have2

C1 (
) � Liploc (
) � C (
) : (2.3)

In particular, Theorem 2.1 holds if all the coe¢ cients aij belong to C1 (
).

4. If f is locally Lipschitz in 
 then f is Lipschitz on any compact subset of 
.

Proof of the property 4.. Let K be a compact subset of 
. We need to prove that
there is a constant C such that, for any two points x; y 2 K,

jf (x)� f (y)j � C jx� yj : (2.4)

For any x 2 K there exists " = "x > 0 such that the ball B"x (x) is contained in 


and f is Lipschitz in B"x (x) with the Lipschitz constant Lx. The balls
n
B 1

2
"x
(x)
o
x2K

form an open covering of K, so choose a �nite subcover
n
B 1

2
"xi
(xi)

oN
i=1

and set

" := min
i
"xi > 0; L := max

i
Lxi <1:

Let us now prove (2.4) if x; y 2 K are such that

jx� yj < 1

2
":

Indeed, the point x belongs to one of the balls B 1
2
"xi
(xi). Since

jxi � yj � jxi � xj+ jx� yj < 1

2
"xi +

1

2
" < "xi ;

we see that y 2 B"xi (xi). Hence, both x; y are contained in the same ball B"xi (xi),
whence we obtain that

jf (x)� f (y)j � Li jx� yj � L jx� yj :

Hence, (2.4) holds with C = L. Consider now the case

jx� yj � 1

2
":

Setting M = supK jf j, we obtain

jf (x)� f (y)j
jx� yj � 2M

1
2
"

so that (2.4) holds with C = 4"�1M . Hence, (2.4) holds for all x; y 2 K with C =
max (L; 4"�1M) :

2Both inclusions in (2.3) are strict. For example, function jxj in R is Lipschitz but not C1, whereas
function jxj1=2 is continuous but not locally Lipschitz.



44 CHAPTER 2. HIGHER ORDER DERIVATIVES OF WEAK SOLUTIONS

2.1.2 Di¤erence operators

For the proof of Theorem 2.1 we need the notion and properties of di¤erence operators.
Fix a unit vector e 2 Rn, a non-zero real number h and denote by @he an operator that
acts on any function f : Rn ! R by

@he f (x) =
f (x+ he)� f (x)

h
:

Obliviously, if f is di¤erentiable then, for any x 2 Rn

@he f (x)! @ef (x) as h! 0:

Unlike the di¤erential operators, the di¤erence operator @he is de�ned on any func-
tion f . Moreover, if f belongs to a function space F that is translation invariant, then
also @he f 2 F . Note that all function spaces over Rn that we use: Lp, L

p
loc, W

k;p, W k;p
loc ;

W k;p
0 etc., are translation invariant.
In the next lemma we state and prove some simple properties of di¤erence operators.

Lemma 2.2 (a) (Product rule) For arbitrary functions f; g on Rn we have

@he (fg) = f (�+ he) @he g +
�
@he f

�
g: (2.5)

(b) ( Integration by parts) If f; g 2 L2 (Rn) thenZ
Rn

�
@he f

�
g dx = �

Z
Rn
f
�
@�he g

�
dx: (2.6)

(c) (Interchangeability with @i) If f 2 L1loc (Rn) and the distributional derivative @if
belongs to L1oc (Rn) then

@he (@if) = @i
�
@he f

�
:

Proof. (a) We have

@he (fg) (x) =
1

h
(f (x+ he) g (x+ he)� f (x) g (x))

=
1

h
f (x+ he) (g (x+ he)� g (x))

+
1

h
(f (x+ he)� f (x)) g (x)

= f (x+ he) @he g (x) + @he f (x) g (x) ;

which is equivalent to (2.5).
(b) Since all functions f; @he f; g; @

�h
e g are in L2, the both integrals in (2.6) are

convergent. We haveZ
Rn

�
@he f

�
g dx =

1

h

Z
Rn
(f (x+ he)� f (x)) g (x) dx

=
1

h

Z
Rn
f (x+ he) g (x) dx� 1

h

Z
Rn
f (x) g (x) dx

=
1

h

Z
Rn
f (x) g (x� he) dx� 1

h

Z
Rn
f (x) g (x) dx

= �
Z
Rn
f (x) @�he g (x) dx:
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(c) We have

@i
�
@he f

�
= @i

f (x+ he)� f (x)

h

=
1

h
(@if (x+ he)� @if (x))

= @he (@if) :

Next Lemma provides an important tool for proving the existence of a partial
derivative @ef in L2.

Lemma 2.3 If f 2 L2 (Rn) and there is a constant K such that, for all small enough
jhj, 

@he f

L2 � K;

then the distributional derivative @ef belongs to L2 (Rn) and

k@efkL2 � K:

Proof. Take any sequence hk ! 0. The sequence
�
@hke f

	
is bounded in L2 by

hypothesis. We use the fact that any bounded sequence in a Hilbert space contains a
weakly convergent subsequence3. Hence, passing to a subsequence, we can assume that
the sequence

�
@hke f

	
converges weakly in L2 to some function g 2 L2, that is,

@hke f * g as k !1: (2.7)
17.05.16

Let us show that @ef = g. By the weak convergence, we have, for any ' 2 L2 (Rn)�
@hke f; '

�
! (g; ') as k !1; (2.8)

where (�; �) is the inner product in L2 (Rn). For any ' 2 D (Rn), we have by (2.6)�
@hke f; '

�
= �

�
f; @�hke '

�
! � (f; @e') as k !1; (2.9)

because
@�hke '� @e' as k !1

and the integration in �
f; @�hke '

�
=

Z
Rn
f @�hke 'dx

can be reduced to a small neighborhood of supp'. The comparison of (2.8) and (2.9)
yields

� (f; @e') = (g; ') 8' 2 D (Rn:)
3Recall that a sequence fukg of elements of a Hilbert space H converges weakly to u 2 H if

(uk; ')! (u; ') 8' 2 H:

The weak convergence is denoted by uk * u; and it is generally weaker that the strong (norm)
convergence uk ! u.
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Considering now (�; �) as pairing between distributions and test functions and recalling
that the distributional derivative @ef is de�ned by

(@ef; ') = � (f; @e') 8' 2 D (Rn) ;

we conclude that @ef = g. Consequently, we have @ef 2 L2 (Rn) and, by (2.7),

@hke f * @ef as k !1: (2.10)

Since


@hke f

L2 � K, we obtain that, for any ' 2 L2 (Rn),���@hke f; '��� � K k'kL2

which implies by (2.10) that

j(@ef; ')j � K k'kL2 :

It follows that

k@efkL2 = sup
'2L2(Rn)nf0g

j(@ef; ')j
k'kL2

� K;

which �nishes the proof.

Corollary 2.4 (a) If f is a Lipschitz function in Rn with compact support then f 2
W 1;2 (Rn). Moreover, f 2 W 1;1 (Rn) :
(b) If f is a locally Lipschitz function in 
 then f 2 W 1;2

loc (
). Moreover, f 2
W 1;1
loc (M).

Proof. (a) Indeed, if L is the Lipschitz constant of f then for all x and all h we have��@he f (x)�� � L. Since @he f also has compact support, it follows that, for all jhj < 1,

@he f

L2 is uniformly bounded, which implies by Lemma 2.3 that @ef 2 L2 and, hence,
f 2 W 1;2 (Rn).
Since f is continuous and has compact support, we see that f is bounded, that is,

f 2 L1 (Rn). Since
��@he f (x)�� � L pointwise, we have, for any ' 2 D (Rn),���@he f; '��� � L k'kL1 :

By (2.10) we have the same property for @ef , that is,

j(@ef; ')j � L k'kL1 ;

which implies that

k@efkL1 = sup
'2D(Rn)nf0g

j(@ef; ')j
k'kL1

� L:

Hence, @ef 2 L1 (Rn) and f 2 W 1;1 (Rn).
(b) Let U be a precompact open set such that U � 
 and let ' be a cuto¤ function

of U in 
. Since ' is Lipschitz, it follows that f' is locally Lipschitz. Since f' has
compact support, we conclude that f' is Lipschitz in a neighborhood of supp (f')
and, hence, in Rn. It follows by (a) that f' 2 W 1;2 (Rn). Since ' = 1 in U , it follows
that f 2 W 1;2 (U) and, hence, f 2 W 1;2

loc (
). Since also f 2 W 1;1 (U), it follows that
f 2 W 1;1

loc (
).
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Lemma 2.5 If f 2 W 1;2
0 (Rn) then

@he f

L2 � k@efkL2 : (2.11)

Proof. It su¢ ces to prove this for f 2 D (Rn) ; since the both sides of the inequality
(2.11) are continuous functionals in W 1;2 (Rn). We have

@he f (x) =
1

h
(f (x+ he)� f (x))

=
1

h

Z h

0

d

dt
[f (x+ te)] dt

=
1

h

Z h

0

@ef (x+ te) dt

where we have used that

d

dt
[f (x+ te)] =

nX
i=1

@xif (x+ te) ei = @ef (x+ te) :

It follows that

��@he f (x)��2 =

�
1

h

Z h

0

@ef (x+ te) dt

�2
� 1

h

Z h

0

j@ef (x+ te)j2 dt

and, using Fubini�s formula,



@he f

2L2 � 1

h

Z
Rn

�Z h

0

j@ef (x+ te)j2 dt
�
dx

=
1

h

Z h

0

�Z
Rn
j@ef (x+ te)j2 dx

�
dt

=
1

h

Z h

0

�Z
Rn
j@ef (y)j2 dy

�
dt

=
1

h

Z h

0

k@efk2L2 dt = k@efk
2
L2 :

2.1.3 Proof of Theorem 2.1

We precede the proof by one more lemma. Consider in an open domain 
 � Rn an
operator

Lu =

nX
i;j=1

@i (aij@ju) ;

where the coe¢ cients aij are measurable and L is uniformly elliptic.
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Lemma 2.6 (Product rule for L) If u; v 2 W 1;2
loc (
) and Lu;Lv 2 L2loc (
) then

L (uv) = (Lu) v + 2
nX

i;j=1

aij@ju@iv + uLv: (2.12)

We will use in the proof the following product rule from Exercise 19: if u; v 2
W 1;2
loc (
) then uv 2 W

1;1
loc (
) and

@j (uv) = (@ju) v + u (@jv) : (2.13)

In particular, since uv 2 W 1;1
loc (
), the expression L (uv) in (2.12) is well-de�ned as a

distribution.
A simpli�ed version of Lemma 2.6 Before the proof in full generality, let us prove the formula

(2.12) in a simpler setting. Namely, let us �rst prove (2.12) assuming that aij 2 C1 (
) and u; v 2
W 2;2
loc (
) : Then aij@ju 2W

1;2
loc (
) and, hence, @i (aij@ju) 2 L2loc (
). In particular, Lu and Lv belong

to L2loc (
). Using (2.13) we obtain

@i (aij@j (uv)) = @i (aij (@ju) v) + @i (aiju@jv) :

Since aij@ju and v belong to W
1;2
loc (
), we obtain by the product rule (2.13) that

@i (aij (@ju) v) = @i (aij@ju) v + aij@ju@iv:

Similarly, we have
@i (aiju@jv) = @i (aij@jv)u+ aij@iu@jv:

Adding up in all i; j and using the symmetry of aij , we obtain that

L (uv) = (Lu) v + (Lv)u+ 2
nX

i;j=1

aij@ju@iv;

that is (2.13).
Note that under the weaker assumptions u; v 2W 1;2

loc (
) the above argument does not work since
aij@ju can be claimed only to belong to L2loc (
). Hence, the term @i (aij@ju) v is meaningless as a
product of a distribution @i (aij@ju) with a W

1;2
loc function v.

Lemma 2.6 will be used in the proof of Theorem 2.1 where function u will be assumed in W 1;2
loc (
)

and the fact that u 2 W 2;2
loc (
) will have to be proved. Therefore, we need a full version of Lemma

2.6.

Proof of Lemma 2.6. Using the distributional de�nition of L and the product rule
(2.13), we obtain, for any ' 2 D (
),

(L (uv) ; ') =
nX

i:j=1

(@i (aij@j (uv)) ; ')

= �
nX

i:j=1

(aij@j (uv) ; @i')

= �
nX

i:j=1

(aij (@ju) v; @i')�
nX

i:j=1

(aiju@jv; @i') (2.14)

Using again the product rule

v@i' = @i (v')� (@iv)';
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we obtain

�
nX

i:j=1

(aij (@ju) v; @i') = �
Z



nX
i:j=1

aij (@ju) v@i'dx

=

Z



nX
i:j=1

aij@ju @iv ' dx�
Z



nX
i:j=1

aij@ju @i (v') dx:

Next, recall that Lu satis�es the following identity:

�
Z



nX
i;j=1

aij@ju@i dx =

Z



(Lu) dx

for any  2 W 1;2
c (
). Since v' 2 W 1;2

c (
), setting here  = v', we obtain

�
Z



nX
i:j=1

aij@ju @i (v') dx =

Z



(Lu) v' dx = (vLu; ') ;

whence

�
nX

i:j=1

(aij (@ju) v; @i') =

 
nX

i:j=1

aij@ju @iv ; '

!
+ (vLu; ') : (2.15)

Similarly, we have

�
nX

i:j=1

(aiju@jv; @i') =

 
nX

i:j=1

aij@jv @iu ; '

!
+ (uLv; ') : (2.16)

Adding up (2.15) and (2.16), using aij = aji and (2.14), we obtain

(L (uv) ; ') = 2

 
nX

i:j=1

aij@ju @iv ; '

!
+ (vLu; ') + (uLv; ') ;

which is equivalent to (2.12).
19.05.16

Proof of Theorem 2.1. Set f = Lu. Consider �rst a special case when u 2 W 1;2
c (
)

and f 2 L2 (
), and prove that in this case u 2 W 2;2 (
). It su¢ ces to prove that all
distributional derivatives @j (@iu) belong to L2 (
).
Let us extend u to a function on Rn by setting u = 0 in 
c. Then we have

u 2 W 1;2
c (Rn). We will prove that all second order derivatives @k (@iu) are in L2 (Rn).

Since @iu 2 L2 (Rn), by Lemma 2.3 it su¢ ces to verify that, for any unit vector e, the
norms



@he (@iu)

L2 are uniformly bounded for all small enough jhj. Since
@he (@iu) = @i

�
@he u
�
;

it su¢ ces to prove that, for some K and all small enough jhj,

@i �@he u�

L2 � K: (2.17)

We are going to show that (2.17) holds with K = � (kfkL2 + C krukL2) where C
depends on n and on the Lipschitz constant of the coe¢ cients aij on suppu.



50 CHAPTER 2. HIGHER ORDER DERIVATIVES OF WEAK SOLUTIONS

Motivation. Before we start the proof of (2.17), let us explain an idea in a simpler situation.
Assume that u 2W 3;2

c (
) and that aij 2 C1 (
), and obtain an upper bound for the L2-norm of the
second derivatives of u. Set v = @ku for a �xed index k and obtain an upper bound for krvkL2 that
would be analogous to (2.17).

By Lu = f we have the identity

�
Z



nX
i;j=1

aij@ju@i'dx =

Z



f' dx

that holds for all ' 2 W 1;2
0 (
). By the assumption u 2 W 3;2

c (
), we have @kku 2 W 1;2
c (
). Hence,

we can use in the above identity the function ' := @kku = @kv.
Since both functions aij@ju and @iv belong to W

1;2
0 (
), we can use the integration by parts

formula of Exercise 18 and obtain

�
Z



nX
i;j=1

aij@ju@i'dx = �
Z



nX
i;j=1

aij@ju@k (@iv) dx

=

Z



nX
i;j=1

@k (aij@ju) @iv dx

=

Z



nX
i;j=1

(@kaij) @ju@iv dx+

Z



nX
i;j=1

aij@jv@iv dx:

Hence, we have the identityZ



nX
i;j=1

aij@jv@iv dx =

Z



f@kv dx�
Z



nX
i;j=1

(@kaij) @ju@iv dx:

Since all @kaij are bounded on suppu, we obtain������
Z



nX
i;j=1

(@kaij) @ju@iv dx

������ �
Z



nX
i;j=1

j@kaij j jruj jrvj dx

� C krukL2 krvkL2 ;

where C = supsuppu
Pn

i;j=1 j@kaij j. Also, we haveZ



f@kv dx � kfkL2 krvkL2

and, by the uniform ellipticity condition,Z



nX
i;j=1

aij@jv@iv � ��1 krvk2L2 :

It follows that
��1 krvk2L2 � kfkL2 krvkL2 + C krukL2 krvkL2

and
krvkL2 � � (kfkL2 + C krukL2) ;

which is an analogous of (2.17).

Set v = @he u. For simplicity of notations, we write @
h � @he . We always assume that

jhj is small enough, in particular, jhj is much smaller that the distance from suppu to
the boundary of 
. Clearly, we have then v 2 W 1;2

c (
) and @�hv 2 W 1;2
c (
). Since

Lu = f , we have, for any ' 2 W 1;2
0 (
),

�
Z



nX
i;j=1

aij@ju@i'dx =

Z



f' dx:
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Setting here ' = @�hv = @�h
�
@hu
�
, we obtain

�
Z



nX
i;j=1

aij@ju @i
�
@�hv

�
dx =

Z



f
�
@�hv

�
dx:

On the left hand side, we apply the integration by parts formula4 and the product rule
for di¤erence operators from Lemma 2.2:

�
Z



nX
i;j=1

aij@ju @i
�
@�hv

�
dx = �

Z



nX
i;j=1

aij@ju @
�h (@iv) dx

=

Z



nX
i;j=1

@h (aij@ju) @iv dx

=

Z



nX
i;j=1

aij (x+ eh) @h (@ju) @iv dx

+

Z



nX
i;j=1

�
@haij

�
@ju@iv dx

=

Z



nX
i;j=1

aij (x+ eh) @jv@iv dx

+

Z



nX
i;j=1

�
@haij

�
@ju@iv dx:

Hence, we obtain the identityZ



nX
i;j=1

aij (x+ eh) @jv@iv dx =

Z



f
�
@�hv

�
dx�

Z



nX
i;j=1

�
@haij

�
@ju@iv dx:

Using the Cauchy-Schwarz inequality inequality and Lemma 2.5, we obtain����Z



f
�
@�hv

�
dx

���� � kfkL2 

@�hv

L2 � kfkL2 krvkL2 :
Also we have�����

Z



nX
i;j=1

�
@haij

�
@ju@iv dx

����� �
Z
suppu

nX
i;j=1

��@haij�� jruj jrvj dx
� C krukL2 krvkL2

where

C := sup
suppu

nX
i;j=1

��@haij��
4The integration by parts formula (2.6) of Lemma 2.2 was proved for functions u; v 2 L2 (Rn).

However, if both functions have compact supports in 
 then, for su¢ ciently small h, the integration
in the both sides of (2.6) can be reduced to 
.
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is �nite because aij are locally Lipschitz and suppu is compact. Hence, we obtainZ



nX
i;j=1

aij (x+ eh) @jv@iv dx � (kfkL2 + C krukL2) krvkL2 :

On the other hand, by the uniform ellipticity we haveZ



nX
i;j=1

aij (x+ eh) @jv@iv dx � ��1 krvk2L2

whence
��1 krvk2L2 � (kfkL2 + C krukL2) krvkL2

and
krvkL2 � � (kfkL2 + C krukL2) :

Since v = @he u, we obtain (2.17) with K = � (kfkL2 + C krukL2) :
Consider now a general case u 2 W 1;2

loc (
) and f 2 L2loc (
) : In order to prove that
u 2 W 2;2

loc (
) it su¢ ces to prove that u 2 W 2;2 (U) for any precompact domain U such
that U � 
. Fix U and choose a cuto¤ function � of U in 
. Consider function w = u�
that belongs to W 1;2

c (
). By Lemma 2.6 we have

Lw = (Lu) � + 2
nX

i;j=1

aij@ju@i� + u (L�) :

A simple inspection shows that all the terms in the right hand side belong to L2 (
),
which implies that Lw 2 L2 (
). By the above special case, we conclude that w 2
W 2;2 (
), in particular, w 2 W 2;2 (U). Since u = w on U , it follows u 2 W 2;2 (U),
which �nishes the proof.

Corollary 2.7 Under the hypothesis of Theorem 2.1, in the expression

Lu =
nX

i;j=1

@i (aij@ju)

each derivative @j and @i can be understood in W
1;2
loc (
).

If the both derivatives @i and @j in L are understood inW
1;2
loc (
) then one says that

the operator L is understood in the strong sense. Recall that if u 2 W 1;2
loc (
) then @j

acts in W 1;2
loc (
), whereas @i acts in D0 (
); in this case we say that L is understood in

the weak sense.5

Proof. By Theorem 2.1 we have u 2 W 2;2
loc (
) and, hence, @ju 2 W 1;2

loc (
). Since
aij are locally Lipschitz, we have also aij 2 W 1;2

loc . Hence, by Exercise 19, we have
aij@ju 2 W 1;1

loc (
) and

@i (aij@ju) = (@iaij) @ju+ aij@iju:

5Recall for comparison that L is understood in the classical sense if the both operators @i; @j apply
to C1-functions, which is the case when u 2 C2 and aij 2 C1. If aij 2 C1 then operator L can be
understood in the distributional sense for any u 2 D0 (
).
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Since aij is bounded, it follows that aij@ju 2 L2loc (
). Since @iaij is locally bounded
(because aij 2 W 1;1

loc ), the above identity implies that @i (aij@ju) 2 L2loc (
), whence
aij@ju 2 W 1;2

loc (
) : Hence, the operator @i acts on a function from W 1;2
loc (
), which was

to be proved.

Remark. In the course of the proof we have proved the following fact: the product of
a function fromW 1;2

loc with a locally Lipschitz function belongs again toW
1;2
loc . Similarly

one proves that the product of a function from W 1;2 with a Lipschitz function belongs
to W 1;2:

2.2 Existence of higher order weak derivatives

As above, consider in a domain 
 � Rn a uniformly elliptic operator

Lu =
nX

i;j=1

@i (aij@ju) : (2.18)

Theorem 2.8 Let u 2 W 1;2
loc (
). If, for a non-negative integer k, we have aij 2

Ck+1 (
) and Lu 2 W k;2
loc (
) then u 2 W

k+2;2
loc (
) :

For the proof we need the following lemma.

Lemma 2.9 If u 2 W k;2
loc (
) and v 2 W

k;1
loc (
) then uv 2 W k;2

loc (
).

Proof. Induction in k. For k = 0 the claim is obvious: if u 2 L2loc (
) and v 2 L1loc (
)
then uv 2 L2loc (
). Assuming k � 1, let us make the inductive step from k � 1 to k.
SinceW k;1

loc � W k;2
loc and k � 1, the both functions u; v belong toW

1;2
loc (
). By Exercise

19, we conclude that uv 2 W 1;1
loc (
) and

@i (uv) = (@iu) v + u@iv:

Since @iu 2 W k�1;2
loc (
) and v 2 W k�1;1

loc (
), we conclude by the inductive hypothesis
that (@iu) v 2 W k�1;2

loc (
). In the same way we obtain that u@iv 2 W k�1;2
loc (
), whence

it follows that @i (uv) 2 W k�1;2
loc (
). Hence, uv 2 W k;2

loc (
), which was to be proved.

Proof of Theorem 2.8. Induction in k. The case k = 0 is covered by Theorem 2.1.24.05.16

Assuming k � 1, let us make inductive step from k � 1 to k. Let

aij 2 Ck+1 (
) and Lu 2 W k;2
loc (
) :

Then also aij 2 Ck (
) and Lu 2 W k�1;2
loc (
), and the inductive hypothesis yields that

u 2 W k+1;2
loc (
) :

We need to prove that u 2 W k+2;2
loc (
), and for that it su¢ ces to verify that any partial

derivative @lu belongs to W
k+1;2
loc (
). We will show that

L (@iu) 2 W k�1;2
loc (
) :
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Since @lu 2 W k;2
loc (
) � W 1;2

loc (
), applying the inductive hypothesis to @lu, we will
conclude that @lu 2 W k+1;2

loc (
) thus �nishing the proof.
Hence, let us compute L (@lu). We have

L (@lu) =
nX

i;j=1

@i (aij@j@lu) =

nX
i;j=1

@i (aij@l@ju) :

Since both @ju and aij belong to W
1;2
loc (
), we have by the product rule in W

1;2
loc (
)

@l (aij@ju) = aij@l@ju+ (@laij) @ju;

whence

L (@lu) =

nX
i;j=1

@i (@l (aij@ju)� (@laij) @ju)

= @l (Lu)�
nX

i;j=1

@i (@laij@ju) :

Note that @l (Lu) 2 W k�1;2
loc (
). Since @ju 2 W k;2

loc (
) and @laij 2 Ck (
) � W k;1
loc (
),

it follows by Lemma 2.9 that the product (@laij) @ju belongs to W k;2
loc (
) whence

@i (@laij@ju) 2 W k�1;2
loc (
). Hence, L (@lu) 2 W k�1;2

loc (
), which �nishes the proof.

2.3 Operators with lower order terms

Here we extend the results of Theorems 2.1 and 2.8 to the operator with lower order
terms. Consider in a domain 
 � Rn the operator

Lu =
nX

i;j=1

@i (aij@ju) +
nX
i=1

bj@ju+ cu; (2.19)

where the coe¢ cients aij; bj; c are measurable functions in 
. For any u 2 W 1;2
loc (
)

the expression Lu is understood weakly, that is, the terms aij@ju, bj@ju and cu are
elements of L2loc (
), while the terms @i (aij@ju) are elements of D0 (
).

Theorem 2.10 Let L be the operator (2.19). Assume that (aij) is uniformly elliptic
and that the coe¢ cients bj; c are bounded in 
. Let u 2 W 1;2

loc (
).
(a) Assume that aij are locally Lipschitz. If Lu 2 L2loc (
) then u 2 W

2;2
loc (
).

(b) Let k be a non-negative integer. If aij 2 Ck+1 (
) ; bj; c 2 Ck (
) and Lu 2
W k;2
loc (
) then u 2 W

k+2;2
loc (
) :

Proof. Consider the operator L0 de�ned by

L0u :=

nX
i;j=1

@i (aij@ju) = Lu�
 

nX
j=1

bj@ju+ cu

!
:
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(a) If u 2 W 1;2
loc (
) then

nX
j=1

bj@ju+ cu 2 L2loc (
) ;

which implies that L0u 2 L2loc (
). By Theorem 2.1 we conclude that u 2 W 2;2
loc (
).

(b) Induction in k. The inductive basis k = 0 is covered by part (a). Inductive step
from k� 1 to k. By the inductive hypothesis we already know that u 2 W k+1;2

loc (
). It
follows from Lemma 2.9 that

nX
j=1

bj@ju+ cu 2 W k;2
loc (
) ;

and, hence, L0u 2 W k;2
loc (
). By Theorem 2.8 we conclude that u 2 W k+2;2

loc (
).

2.4 Existence of classical derivatives

Let us recall the following theorem.

Sobolev Embedding Theorem. Let 
 be a domain in Rn. If k;m are non-negative
integers such that k > m+ n

2
then W k;2

loc (
) ,! Cm (
) :

Combining Theorem 2.10 with Sobolev embedding theorem, we obtain the following.

Corollary 2.11 Under the hypotheses of Theorem 2.10(b), if

k > m+
n

2
� 2;

where m is a non-negative integer, then u 2 Cm (
) : In particular, if aij; bj; c 2 C1 (
)
and Lu 2 C1 (
) then u 2 C1 (
) :

Proof. Indeed, by Theorem 2.10 we have u 2 W k+2;2
loc (
), and Sobolev Embedding

Theorem yields u 2 Cm (
) : The second statement follows from the �rst one applied
to any m.

2.5 Non-divergence form operator

Recall that for a divergence form uniformly elliptic operator

Lu =

nX
i;j=1

@i (aij@ju) +

nX
j=1

bj@ju

in a domain 
 � Rn, the equation Lu = f is understood in the weak sense if u 2
W 1;2
loc (
) (and, hence, @j acts on W

1;2
loc while @i acts on L

2
loc) and Lu = f is understood

in the strong sense if u 2 W 2;2
loc (
) (and both @j and @i act in W

1;2
loc ).
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Consider now a non-divergence form elliptic operator

Lu =
nX

i;j=1

aij@iju+

nX
j=1

bj@ju (2.20)

in a domain 
 � Rn. In this case the notion of a weak solution is not de�ned, while
the notion of a strong solution makes sense as follows.

De�nition. We say that the equation Lu = f is satis�ed in 
 in the strong sense if
u 2 W 2;2

loc (
) (so that @iju and @ju belong to L
2
loc (
)) and if Lu (x) = f (x) holds for

almost all x 2 
.
We say that the equation Lu = f is satis�ed in 
 in the classical sense if u 2 C2 (
)

and if Lu (x) = f (x) holds for all x 2 
.

Example. Consider in R the function u (x) = jxj. Obviously, we have u00 (x) = 0 for
all x 6= 0, in particular, for almost all x 2 R. However, this function is not a strong
solution of u00 = 0 because u =2 W 2;2

loc (
). Indeed, for distributional derivatives we have
u0 = sgn x 2 L2loc and u00 = 2� =2 L2loc.
In fact, every strong solution of �u = 0 in Rn is also a weak solution, and we obtain

by Corollary 2.11 that u 2 C1 (Rn).

Consider the Dirichlet problem�
Lu = f in 
;
u 2 W 1;2

0 (
) ;
(2.21)

where L is the operator (2.20) and the equation Lu = f is understood in the strong or
classical sense.

Theorem 2.12 Let L be the operator (2.20) in a bounded domain 
 � Rn. Assume
that (aij) is uniformly elliptic in 
, aij are Lipschitz in 
, bj are bounded and mea-
surable. Then, for any f 2 L2 (
), the Dirichlet problem (2.21) has a unique strong
solution.
If in addition all the functions aij, bj, f belong to C1 (
), then the solution u of

(2.21) belongs to C1 (
), and the equation Lu = f is satis�ed in the classical sense.

Proof. By Corollary 2.4 we have aij 2 W 1;2
loc . If u 2 W

2;2
loc (
) then @ju 2 W

1;2
loc and, by

the product rule,
@i (aij@ju) = (@iaij) @ju+ aij@iju:

Therefore, for u 2 W 2;2
loc (
), we have

Lu =
nX

i;j=1

aij@iju+
nX
j=1

bj@ju

=

nX
i;j=1

@i (aij@ju)�
nX

i;j=1

(@iaij) @ju+

nX
j=1

bj@ju

= eLu;
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where eL is a divergence form operator de�ned by

eLu = nX
i;j=1

@i (aij@ju) +

nX
j=1

ebj@ju
with ebj = bj �

nX
i=1

@iaij:

Since functions aij are Lipschitz in 
, the weak derivatives @iaij are bounded in 
 (see
Corollary 2.4(a) and Exercises). Since also bj are bounded in 
, we obtain that the
coe¢ cients ebj are bounded in 
.
The above computation shows that Lu = eLu for u 2 W 2;2

loc (
). In particular, the
strong Dirichlet problem (2.21) is equivalent to the strong Dirichlet problem� eLu = f in 
;

u 2 W 1;2
0 (
) ;

(2.22)

whose solution u is sought in the class W 2;2
loc (
). However, unlike the operator L, the

divergence form operator eL can be regarded also in a weak sense, that is, on functions
from W 1;2

loc (
).
Hence, consider (2.22) �rst in the weak sense. By Theorem 1.12, the weak Dirichlet

problem (2.22) has a solution u. Since aij are locally Lipschitz, we obtain by Theorem
2.10 that u 2 W 2;2

loc (
) and by Corollary 2.7 that eLu = f holds in the strong sense.
Hence, the same function u is a strong solution of the Dirichlet problem (2.21), which
proves the existence of solution of (2.21).
Since any strong solution u of (2.21) is a strong and, hence, a weak solution of

(2.22), we obtain by Theorem 1.3 the uniqueness of u.31.05.16

If aij; bj; f 2 C1 (
) then by Corollary 2.11 the solution u of (2.22) belongs to C1
and, hence, Lu = f is satis�ed in the classical sense.

Remark. Theorem 1.14 yields the following estimate of the solution u of (2.22):

kukL1 � C j
j
2
n
� 1
q kfkLq (2.23)

with any q 2 [2;1] \ (n=2;1], provided

j
j < �;

where � = cn�
�neb�n depends on the ellipticity constant � of (aij) and on the constant
eb := sup




nX
j=1

���ebj��� � sup



 
nX
j=1

jbjj+
nX

i;j=1

j@iaijj
!
� b+ n2K;

where b = sup

Pn

j=1 jbjj and K is a common Lipschitz constant of all aij. Hence, the

same estimate holds for the solution u of (2.21). Note that eb may be non-zero even if
b = 0 because of K 6= 0.
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Example. Let us give an example to show that the uniqueness statement of Theorem
2.12 fails if the coe¢ cients aij are not Lipschitz. This implies that any the estimate of
the type (2.23) cannot hold as it would imply the uniqueness.
Consider the operator L =

Pn
i;j=1 aij@ij in Rn with the coe¢ cients

aij (x) =

�
�ij + c

xixj

jxj2 ; x 6= 0;
�ij; x = 0;

where c is a positive constant. It is easy to verify that L is uniformly elliptic. Consider
the following Dirichlet problem in a ball Br:�

Lu = 0 in Br
u 2 W 1;2

0 (Br)
(2.24)

where L is understood in the strong sense, that is, u has to be in W 2;2
loc (Br). If the

coe¢ cients aij were Lipschitz as in the statement of Theorem 2.12 then this problem
would have a unique strong solution u = 0.
However, the coe¢ cients aij are not Lipschitz near 0 (not even continuous), and

the problem (2.24) can have a non-zero solution. Indeed, it is possible to prove that if
s 2 (0; 1), n > 2 (2� s) and c = n�2+s

1�s then the function u (x) = jxjs � rs belongs to
W 2;2 (Br) \W 1;2

0 (Br) and solves in Br the equation Lu = 0 in the strong sense (see
Exercise 31 for details). Hence, the uniqueness in the strong Dirichlet problem (2.24)
fails. Consequently, the estimate (2.23) fails in this case, too.



Chapter 3

Holder continuity for equations in
divergence form

In this Chapter we will consider again a divergence form uniformly elliptic operator

Lu =
nX

i;j=1

@i (aij@ju) (3.1)

with measurable coe¢ cients and will prove that any weak solution u of Lu = 0 is, in
fact, a continuous function! Moreover, we will prove that weak solutions are Hölder
continuous.

De�nition. A function f on a set S � Rn is called Hölder continuous with the Hölder
exponent � > 0 if there is a constant C such that

jf (x)� f (y)j � C jx� yj�

for all x; y 2 S.
For example, f is Lipschitz if and only if f is Hölder continuous with � = 1.

De�nition. Let S be a subset of Rn. We say that a function f on S is locally Hölder
continuous in S with the Hölder exponent � > 0 if, for any point x 2 S, there exists
" > 0 such that f is Hölder continuous in B" (x) \ S with the exponent �.
It is easy to prove that if f is locally Hölder continuous in S then f is Hölder

continuous on any compact subset of S with the same Hölder exponent (the proof is
the same as that in the case of Lipschitz functions). In particular, if S is compact then
any locally Hölder continuous function on S is Hölder continuous.
The set of all locally Hölder continuous functions on S with the Hölder exponent

� 2 (0; 1) will be denoted by C� (S).

Theorem 3.1 (Theorem of de Giorgi) If u 2 W 1;2
loc (
) is a weak solution of Lu = 0 in


 then u 2 C� (
) where � = � (n; �) > 0 (where � is the constant of ellipticity of L).

In particular, weak solutions are always continuous functions. For comparison, let
us observe that in order to obtain the continuity of a weak solution u by Corollary 2.11,
we have to assume that aij 2 Ck with k > n

2
� 2: Theorem 3.1 ensures the continuity

of u without any assumption about aij except for uniform ellipticity and measurability.

59
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Theorem 3.1 was proved by Ennio de Giorgi in 1957, which opened a new era in
the theory of elliptic PDEs. A year later John Nash proved the Hölder continuity for
solutions of parabolic equation @tu = Lu, which contains the theorem of de Giorgi as
a particular case for time-independent solutions.
We will prove Theorem 3.1 after a long preparatory work.

3.1 Mean value inequality for subsolutions

Let L be the operator (3.1) de�ned in a domain 
 of Rn. We always assume that
L is uniformly elliptic with the ellipticity constant � and that the coe¢ cients are
measurable. Recall that if u 2 W 1;2 (
) then inequality Lu � 0 is satis�ed in the weak
sense in 
 if

nX
i;j=1

Z



aij@ju@i'dx � 0 (3.2)

for any non-negative function ' 2 W 1;2
0 (
) (Exercise 23). In this case we say that u is

a subsolution of the equation Lu = 0. Similarly, if u satis�es Lu � 0, then u is called
a supersolution.

Theorem 3.2 (The mean-value inequality for subsolutions) Let BR � 
 and let u 2
W 1;2 (BR) satisfy Lu � 0 in BR in the weak sense. Then

esssup
BR=2

u � C

Rn=2

�Z
BR

u2+dx

�1=2
; (3.3)

where C = C (n; �).

An equivalent form of (3.3) is

esssup
BR=2

u � C

�
�
Z
BR

u2+dx

�1=2
; (3.4)

where the constants C in (3.3) and (3.4) may be di¤erent (but both depend only on n
and �). The value �

�
Z
BR

u2+dx

�1=2
is called the quadratic mean of u+ in BR. Hence, esssupBR=2 u is bounded by the
quadratic mean of u+ in BR.
Recall that, for a harmonic function u in BR, we have the mean value property

u (0) = �
Z
BR

udx:

Using the Cauchy-Schwarz inequality, we obtain

u (0) � �
Z
BR

u+dx �
�
�
Z
BR

u2+dx

�1=2
=

1

jBRj1=2

�Z
BR

u2+dx

�1=2
: (3.5)
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Fix a point z 2 BR=2. Applying (3.5) to the ball BR=2 (z) instead of BR (0) and noticing
that BR=2 (z) � BR (0), we obtain

u (z) � 1��BR=2��1=2
 Z

BR=2(z)

u2+dx

!1=2
� C

Rn=2

�Z
BR

u2+dx

�1=2
;

which proved (3.3) for harmonic functions.
The proof of (3.3) for a general operator L is much more complicated because we

do not have the mean value property in general. It is in some sense similar to the proof
of Theorem 1.13.
Proof. Fix two values 0 < � < � as well as 0 < r < � < R and set

a =

Z
B�

(u� �)2+ dx and b =

Z
Br

(u� �)2+ dx: (3.6)

Clearly, b � a. The purpose of the �rst part of the proof to obtain a stronger inequality
showing that b is essentially smaller than a. In the second part of the proof we will use
an iteration procedure similar to that in the proof of Theorem 1.13.
Consider the function

v = (u� �)+

that belongs to W 1;2 (BR) (see Exercise 15). Consider also the function

� (x) =

8<:
1; jxj � r;
��jxj
��r ; r < jxj < �;

0; jxj � �:

Clearly, � is continuous. Since jxj is a Lipschitz function with Lipschitz constant 1, it
follows that � is a Lipschitz function with the Lipschitz constant 1

��r .
Since � is bounded, it follows that �2 is also a Lipschitz functions. Let us show that

the function ' = v�2 can be used as a test function in (3.2).
Claim. If U is a bounded domain and if f 2 W 1;2 (U) and g 2 W 1;1 (U) then fg 2
W 1;2 (U).

Indeed, since f 2 L2 and g 2 L1, we see that fg 2 L2. Since W 1;1 � W 1;2, the
function g also belongs to W 1;2, and we obtain by the product rule that

@i (fg) = (@if) g + f@ig:

The right hand side belongs to L2 because f and @if belong to L2 while g and @ig
belong to L1. Hence, @i (fg) 2 L2 and fg 2 W 1;2 as claimed. Note that a similar
argument was used in the proof of Corollary 2.7.
Since Lipschitz functions belong toW 1;1, it follows from this Claim that v�2 belongs

to W 1;2 (BR). By construction of �, the function v�2 is compactly supported in BR,
whence we obtain v�2 2 W 1;2

0 (BR). Finally, v�2 � 0 so that ' = v�2 can be used in
(3.2).
Substituting ' = v�2 unto (3.2) yields

nX
i;j=1

Z
BR

aij@ju @i
�
v�2
�
dx � 0: (3.7)
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By the product rule, we have

@i
�
v�2
�
= (@iv) �

2 + v
�
@i�

2
�
= (@iv) �

2 + 2v�@i�: (3.8)

Substituting (3.8) into (3.7), we obtain

nX
i;j=1

Z
BR

aij@ju @iv �
2dx � �2

nX
i;j=1

Z
BR

aij@ju v� @i� dx: (3.9)

02.06.16

Recall that @ju@iv = @jv@iv because on the set fu � �g we have v = 0 and, hence,
@iv = 0, while on the set fu > �g we have @ju = @jv. Hence, the left hand side of (3.9)
is equal to

nX
i;j=1

Z
BR

aij@jv @iv �
2dx � ��1

Z
BR

jrvj2 �2dx:

Since @ju v = @jv v, the right hand side of (3.9) is equal to

�2
nX

i;j=1

Z
BR

aij@jv @i� v� dx � 2�

Z
BR

jrvj jr�j v� dx

� 2�

�Z
BR

jrvj2 �2dx
�1=2�Z

BR

jr�j2 v2dx
�1=2

:

Hence, (3.9) implies

��1
Z
BR

jrvj2 �2dx � 2�
�Z

BR

jrvj2 �2dx
�1=2�Z

BR

jr�j2 v2dx
�1=2

;

whence Z
BR

jrvj2 �2dx � 4�4
Z
BR

jr�j2 v2dx: (3.10)

Applying again the product, we obtain

r (v�) = �rv + vr�

whence
jr (v�)j2 � (j�rvj+ jvr�j)2 � 2 jrvj2 �2 + 2 jr�j2 v2:

Combining with (3.10) yieldsZ
BR

jr (v�)j2 dx �
�
8�4 + 2

� Z
BR

jr�j2 v2dx:

Since jr�j = 0 outside B� and jr�j � 1
��r in B�, it follows thatZ

BR

jr (v�)j2 dx � C

(�� r)2

Z
B�

v2dx (3.11)

where C = 8�4 + 2:
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By the above Claim, the function v� belongs to W 1;2 (BR). Since supp (v�) � B�,
it follows that v� 2 W 1;2

0 (B�0) for any �0 > �. Applying the Faber-Krahn inequality
1.59, we obtain Z

B�0

jr (v�)j2 dx � c jF j�2=n
Z
B�0

(v�)2 dx; (3.12)

where c = c (n) > 0 and

F := fx 2 B�0 : (v�) (x) > 0g :

Since � = 0 outside B� and � > 0 in B�, we see that

F = fx 2 B� : v (x) > 0g = fx 2 B� : u (x) > �g :

For the same reason the integration over B�0 can be replaced by that over B�, so thatZ
B�

jr (v�)j2 dx � c jF j�2=n
Z
B�

(v�)2 dx: (3.13)

Combining with (3.11) and using that � = 1 on Br, we obtain

jF j�2=n
Z
B�

(v�)2 dx � C

(�� r)2

Z
B�

v2dx;

where we have absorbed c and C into a single constant C.
Since � = 1 on Br, it follows thatZ

Br

v2dx � Cc

(�� r)2
jF j2=n

Z
B�

v2dx:

Finally, since v = (u� �)+ � (u� �)+, we obtainZ
Br

(u� �)2+ dx �
C

(�� r)2
jF j2=n

Z
B�

(u� �)2+ dx: (3.14)

Let us estimate jF j from above as follows. Since u > � on F , we haveZ
B�

(u� �)2+ dx �
Z
F

(u� �)2+ dx �
Z
F

(� � �)2 dx = (� � �)2 jF j :

Recalling the notations a and b from (3.6), we rewrite this as

jF j � a

(� � �)2
;

and substitution into (3.14) inequality yields

b � C

(�� r)2
jF j2=n a � C

(�� r)2 (� � �)4=n
a1+2=n: (3.15)

Consider now a sequence fRkg1k=0 of radii where

Rk =
1

2

�
1 +

1

2k

�
R:
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Clearly, the sequence fRkg is monotone decreasing, R0 = R and Rk ! R
2
as k !1.

Also, �x some � > 0 and consider a sequence f�kg1k=0 such that

�k =

�
2� 1

2k

�
�:

Clearly, the sequence f�kg is monotone increasing, �0 = � and �k ! 2� as k ! 1.
Set

ak =

Z
BRk

(u� �k)
2
+ dx:

Since the sequence fBRkg of balls is shrinking and the sequence
�
(u� �k)+

	
of function

is monotone decreasing, we see that the sequence fakg is monotone decreasing.
Our aim is to choose � so that ak ! 0 as k !1. Since

lim ak =

Z
BR=2

(u� 2�)2+ dx;

in this case we will obtain that
esssup
BR=2

u � 2�; (3.16)

which will lead us to the desired estimate (3.3). Applying (3.15) to the pair ak�1; ak
instead of a; b, we obtain

ak �
C

(Rk�1 �Rk)
2 (�k � �k�1)

4=n
a
1+2=n
k�1 :

Since Rk�1 �Rk =
1
2

�
2�kR

�
and �k � �k�1 = 2

�k�, it follows that

ak �
C4(1+2=n)k

R2�4=n
a
1+2=n
k�1 :

Setting

p = 1 +
2

n
and M =

C

R2�4=n
; (3.17)

rewrite this inequality in the form

ak � 4pkMapk�1: (3.18)

This inequality is similar to the inequality (1.69) obtained in the proof of Theorem
1.13:

Vk � 4kMV p
k�1: (3.19)

The di¤erence between (3.19) and (3.18) is only that (3.18) uses 4p instead of 4, which
does not make any di¤erence for the next argument. Indeed, iterating (3.19), we
obtained in the proof of Theorem 1.13 the estimate (1.70), that is,

Vk �
h
4

p

(p�1)2M
1

p�1V0

ipk
4
�(k+1)p+k
(p�1)2 M� 1

p�1 :

Hence, iterating in the same way (3.18) and replacing everywhere 4 by 4p, we obtain
that

ak �
h
4
p p

(p�1)2M
1

p�1a0

ipk
4
p
�(k+1)p+k
(p�1)2 M� 1

p�1 : (3.20)
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We would like to derive from (3.20) that ak ! 0 as k ! 1. This will be the case
whence the term in the square brackets is smaller than 1. Since

a0 =

Z
BR

(u� �)2+ dx �
Z
BR

u2+dx;

it su¢ ces to have the following inequality

4
p2

(p�1)2M
1

p�1

Z
BR

u2+dx < 1:

Substituting M and p from (3.17), replace this inequality by the equality

4
p2

(p�1)2

�
C

R2�4=n

�n=2 Z
BR

u2+dx =
1

2
;

which allows us to determine the desired value of � as follows:

�2 =
C 0

Rn

Z
BR

u2+dx:

Substituting into (3.16), we obtain

esssup
BR=2

u � C 00

Rn=2

�Z
BR

u2+dx

�1=2
;

which �nishes the proof.

Corollary 3.3 If u 2 W 1;2
loc (
) solves Lu = 0 in 
 then u 2 L1loc (
) :

Proof. Indeed, in any ball BR such that BR � 
 we have u 2 L2 (BR) and by Theorem
3.2

esssup
BR=2

u � C

Rn=2
kukL2(BR) :

Applying the same inequality to �u, we conclude that

kukL1(BB=2) �
C

Rn=2
kukL2(BR) <1:

Hence, u 2 L1
�
BR=2

�
and u 2 L1loc (
).

3.2 Weak Harnack inequality for positive superso-
lutions

Theorem 3.4 Let B3R � 
 and assume that u 2 W 1;2 (B3R) is a non-negative weak
supersolution of L in B3R, that is, Lu � 0 in B3R. Choose some a > 0 and set

E = fx 2 BR : u (x) � ag :
For any " > 0 there exists � = � (n; �; ") > 0 such that if

jEj � " jBRj (3.21)

then
essinf
BR

u � �a: (3.22)
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B3R

BR

{u > a}
E

Recall that any positive harmonic function u in a ball B3R satis�es the Harnack
inequality

sup
BR

u � C inf
BR

u;

where C = C (n). In particular, for any a � supBR u, we have

inf
BR

u � �a;

where � = C�1, which looks similarly to (3.22). However, for the Harnack inequality
we do not need to know that the measure of the set E = fu � ag \BR is positive �in
fact, it su¢ ces to know that this set is non-empty as the latter will imply a � supBR u.
This is the reason why Theorem 3.4 is called a weak Harnack inequality. The word
�weak�refers here not to �weak solution�, but simply to a logically weaker statement. 07.06.16

Before the proof, let us derive from Theorem 3.4 the following mean value inequality
for superharmonic functions.

Corollary 3.5 (Mean-value inequality for supersolutions) Let B3R � 
 and assume
that u 2 W 1;2 (B3R) is a non-negative weak supersolution of L in B3R. Then

essinf
BR

u � c

�
�
Z
BR

u�1dx

��1
; (3.23)

where c = c (n; �) > 0:

The value �
�
Z



updx

�1=p
is called the p-mean of function u in 
. If p = 1 then this is the arithmetic mean, if
p = 2 �the quadratic mean. For example, the quadratic mean was used in the mean-
value inequality for subharmonic functions. If p = �1 as in (3.23) then the p-mean
is called the harmonic mean. Hence, for a non-negative supersolution, essinfBR u is
bounded from below by the harmonic mean of u in BR.

Proof. If �
R
BR
u�1dx = 1 then (3.23) holds trivially. Assume that this integral is

�nite. For any a > 0, we have

jfu < ag \BRj =
�����1u > 1

a

�
\BR

���� � a

Z
BR

1

u
dx = a� (B)�

Z
BR

1

u
dx:
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Choosing

a =
1

2

�
�
Z
BR

1

u
dx

��1
;

we obtain
jfu < ag \BRj �

1

2
� (B)

and, hence,

jfu � ag \BRj �
1

2
� (B) :

Applying Theorem 3.4 with " = 1=2, we obtain

essinf
BR

u � �a =
�

2

�
�
Z
BR

1

u
dx

��1
;

which was to be proved.

Proof of Theorem 3.4. Let us �rst observe that if the claim of Theorem 3.4 is
proved under an additional assumption essinfB3R u > 0, then it remains true also if
essinfB3R u = 0. Indeed, if the latter is the case, then consider the function u +m for
a positive m. Clearly, L (u+m) = 0. Observing that

u � a, u+m � a+m;

we can apply (3.22) to the function u+m instead of u with the constant a+m instead
of a and obtain

essinf
BR

(u+m) � � (a+m) :

Letting m ! 0, we obtain (3.22). Hence, in what follows we can assume without loss
of generality that essinfB3R u > 0.
Also, by replacing u by u=a, we can assume that a = 1. In this case we have

E = fu � 1g \BR

and, assuming (3.21), we need to prove that

essinf
BR

u � �;

where � = � (n; �; ") > 0.
The main idea of the proof is to consider the function

v = ln
1

u
:

In terms of this function, we have

E = fv � 0g \BR; jEj � " jBRj ;

and we need to prove that

esssup
BR

v � C = C (n; �; ") : (3.24)
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The plan of the proof is as follows. We will �rst verify that v is a subsolution of L,
which will imply by Theorem 3.2 that

esssup
BR

v � :::

Z
B2R

v2+dx:

Then, using a certain Poincaré inequality (similar to Friedrichs-Poincaré), we will de-
duce that Z

B2R

v2+dx � :::

Z
B2R

jrvj2 :

Finally, using again speci�c properties of Lv, we will obtain an upper bound forZ
B2R

jrvj2 ;

which together with the previous estimates will yield (3.24).
Now let us prove that v is a weak subsolution of L in B3R. Firstly, let us verify that

v 2 W 1;2 (B3R). On the set fu � 1g function v is non-negative. Since u is separated
from 0, we see that in this case

0 � v < const :

On the set fu > 1g function v is negative and

jvj = lnu � u:

Hence, in the both cases
jvj � const+u;

which implies v 2 L2 (B3R). Since
�
ln 1

t

�0
= �1

t
is a bounded function outside a

neighborhood of 0, that is, in the range of u, we obtain by the chain rule of Exercise
16, that

@jv = @j ln
1

u
= �@ju

u
2 L2 (B3R) :

Hence, v 2 W 1;2 (B3R). In the same way also the function 1
u
belongs to W 1;2 (BR),

which will be used below. Indeed, 1
u
is essentially bounded and, hence, is in L2 (B3R),

and by the same chain rule

@j

�
1

u

�
= �@ju

u2
2 L2 (B3R) :

Now let us verify that v is a subsolution of L, that is, Lv � 0 in B3R. This is shown
in Exercise 32 using the chain rule for L. Let us give a direct independent proof for
that.

The motivation for Lv � 0 comes from the following observation: in the simplest case n = 1 and
L = d2

dx2 , if u 2 C
2, u > 0 and u00 � 0 then we have

v00 =

�
ln
1

u

�00
=

�
�u

0

u

�0
=
(u0)

2 � u00u
u2

� (u0)
2

u2
� 0:
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If n > 1, L = �; u 2 C2, u > 0 and �u � 0 then similarly

�v =
nX
i=1

@ii ln
1

u
=

nX
i=1

(@iu)
2 � (@iiu)u
u2

=
jruj2 � (�u)u

u2
� jruj2

u2
� 0:

Noticing that jrvj =
��ru
u

��, we obtain from the above computation

�v � jrvj2 : (3.25)

In fact, the above computation shows that (3.25) is equivalent to �u � 0.

In the present general case, we have to verify that, for any non-negative test function
' 2 D (B3R)

�
Z
B3R

nX
i;j=1

aij@jv @i'dx � 0:

Since part of the following computation will also be used below for di¤erent purpose,
we need to do it for a slightly more general class of ', namely, assuming that ' is a
non-negative Lipschitz function with compact support in B3R. Since @jv = �@ju

u
, we

have

�
Z
B3R

nX
i;j=1

aij@jv @i'dx =

Z
B3R

nX
i;j=1

aij
@ju

u
@i'dx =

Z
B3R

nX
i;j=1

aij@ju
@i'

u
dx: (3.26)

Since ' 2 W 1;1 and 1=u 2 W 1;2, the function '=u belongs to W 1;2 (see Claim in the
proof of Theorem 3.2) and by the product rule

@i

�'
u

�
= @i

�
'
1

u

�
=
@i'

u
� '

@iu

u2
:

Hence, substituting
@i'

u
= @i

�'
u

�
+ '

@iu

u2

into (3.26), we obtain

�
Z
B3R

nX
i;j=1

aij@jv @i'dx =

Z
B3R

nX
i;j=1

aij@ju

�
@i

�'
u

�
+
@iu

u2
'

�
dx:

Since function ' has compact support in B3R, we see that '=u 2 W 1;2
c (B3R). Since also

'=u � 0, this function can be used as a test function in the weak inequality Lu � 0,
which leads to Z

B3R

nX
i;j=1

aij@ju @i

�'
u

�
dx � 0:

It follows that

�
Z
B3R

nX
i;j=1

aij@jv @i'dx �
Z
B3R

nX
i;j=1

aij@ju
@iu

u2
'dx

=

Z
B3R

nX
i;j=1

aij@jv @iv ' dx (3.27)

� 0;
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where we have used that @ju=u = �@jv and the ellipticity of L. Hence, we have proved
that Lv � 0.
Note that, in fact, we proved a stronger inequality (3.27) that is analogous of

(3.25). Indeed, observing that the left hand side of (3.27) is equal to (Lv; ') where Lv
is regarded as distribution, we can rewrite (3.27) as follows:

Lv �
nX

i;j=1

aij@jv @iv:

The inequality (3.27) will also be used below.
Applying the mean value inequality of Theorem 3.2 to a subsolution v, we obtain

esssup
BR

v � C

Rn=2

�Z
B2R

v2+dx

�1=2
; (3.28)

which completes the �rst step towards the proof of the bound (3.24).
In order to estimate further the integral in (3.28), we need the following fact.

Poincaré inequality Let v 2 W 1;2 (Br) and consider the set

H = fx 2 Br : v (x) � 0g :

Then Z
Br

v2+dx � C
r2 jBrj
jHj

Z
Br

jrv+j2 dx (3.29)

where C = C (n).

Recall that the Friedrichs-Poincaré inequality says that if v 2W 1;2
0 (Br) thenZ

Br

v2dx � Cr2
Z
Br

jrvj2 dx: (3.30)

For an arbitrary function v 2 W 1;2 (Br) this type of inequality cannot be true because by adding a
large constant to v we can make

R
Br
v2dx arbitrarily large, whereas

R
Br
jrvj2 dx does not change.

Assume for simplicity that v � 0. Then (3.29) amounts toZ
Br

v2dx � C r
2 jBrj
jHj

Z
Br

jrvj2 dx;

where H = fv = 0g. Hence, if v vanishes on a large enough set (in the sense that jHj � c jBrj), then
we obtain again (3.30). As we see, the validity of (3.30) or similar inequalities depends on the property

of v to vanish on certain sets.

The proof of (3.29) is non-trivial and will be given below (see Theorem 3.9 and
Corollary 3.10).
Now let us apply (3.29) for the function v = ln 1

u
in the ball B2R, that is, for r = 2R.

Since
E = fv � 1g \BR � fv � 0g \B2R = H;

we have
jHj � jEj � " jBRj = "2�n jB2Rj :
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Then (3.29) yieldsZ
B2R

v2+dx � C
R2

"

Z
B2R

jrv+j2 dx � C
R2

"

Z
B2R

jrvj2 dx

Combining with (3.28), we obtain

esssup
BR

v � C

Rn=2

�
R2

"

Z
B2R

jrvj2 dx
�1=2

: (3.31)

09.06.16

The next step consists of estimating the integral
R
B2R

jrvj2 dx. Consider the func-
tion

� (x) =

8<:
1; jxj � r;
��jxj
��r ; r < jxj < �;

0; jxj � �;

where r = 2R and 2R < � < 3R, for example, we can take � = 5
2
R. Since ' := �2 is a

Lipschitz function with compact support in B3R, we can use it in (3.27), which yieldsZ
B3R

nX
i;j=1

aij@jv @iv �
2 dx � �

Z
B3R

nX
i;j=1

aij@jv @i
�
�2
�
dx: (3.32)

Let us motivate the argument below �rst in the case L = �. Recall that if u > 0 and �u � 0
then by (3.25) the function v = ln 1

u satis�es the inequality

�v � jrvj2 :

It holds in the classical sense, which implies that in the weak sense, that is, for any non-negative
function ' 2W 1;2

c (B3R), Z
jrvj2 'dx � �

Z
rv � r'dx;

which is analogous of (3.27). Setting here ' = �2 as above, rewrite it in the formZ
jrvj2 �2 dx � �

Z
rv � r� � dx �

�Z
(jrvj �)2 dx

�1=:2�Z
jr�j2 dx

�1=2
which implies Z

jrvj2 �2dx �
Z
jr�j2 dx:

Since � = 1 on B2R, � = 0 in Bc2R, and jr�j � 1
��r , it follows thatZ

B2R

jrvj2 dx � jB3Rj
(�� r)2

= CRn�2:

Using the uniform ellipticity of (aij), we estimate the left hand side of (3.32) as
follows: Z

B3R

nX
i;j=1

aij@jv @iv �
2 dx � ��1

Z
B3R

jrvj2 �2dx;
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while the right hand side of (3.32) is estimated as follows:

�
Z
B3R

nX
i;j=1

aij@jv @i
�
�2
�
dx � �

Z
B3R

jrvj
��r�2��

= 2�

Z
B3R

jrvj jr�j �:

Hence, we obtainZ
B3R

jrvj2 �2dx � 2�2
Z
B3R

jrvj jr�j �

� 2�2
�Z

B3R

(jrvj �)2 dx
�1=2�Z

B3R

jr�j2 dx
�1=2

;

whence Z
B3R

jrvj2 �2dx � 4�4
Z
B3R

jr�j2 dx:

Since � = 1 on B2R and jr�j � 1
��r , where �� r = R=2, we obtainZ

B2R

jrvj2 dx � 4�2 jB3Rj
(�� r)2

= CRn�2;

where C = C (n; �). Finally, substituting this estimate into (3.31), we obtain

esssup
BR

v � C

Rn=2
�
R2"�1CRn�2

�1=2
= C (n; �; ") ;

which �nishes the proof of (3.24).

3.3 Oscillation inequality and Theorem of de Giorgi

De�ne the oscillation of a function u in a domain D by

osc
D
u = essup

D
u� essinf

D
u:

Observe that, for all real a; b,

osc
D
(au+ b) = jaj osc

D
u:

Theorem 3.6 (Oscillation inequality) Let B3R � 
 and assume that u 2 W 1;2 (B3R)
is a weak solution of Lu = 0 in B3R. Then

osc
BR

u � 
 osc
B3R

u; (3.33)

where 
 = 
 (n; �) < 1:
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Proof. If oscB3R u = 0 or 1 then there is nothing to prove. If 0 < oscB3R u < 1,
then, by adding a constant to u and rescaling u, we can assume that

essinf
B3R

u = 0 and esssup
B3R

u = 2:

Consider the two sets

fu � 1g \BR and fu � 1g \BR: (3.34)

One of these sets has measure � 1
2
jBRj. Assume that this is the �rst set. Then by

Theorem 3.4 with a = 1 and " = 1
2
we obtain that

essinf
BR

u � � = �

�
n; �;

1

2

�
:

Hence,

osc
BR

u � 2� � =
2� �

2
osc
B3R

u;

which proves (3.33) with 
 = 2��
2
< 1.

Assume now that the second set in (3.34) has measure at most 1
2
jBRj. Consider

the function v = 2� u. For this function the oscillation in any domain is equal to that
of u. Also we have Lv = 0 in B3R and

u � 1, v � 1:

Hence, the set fv � 1g \ BR has measure � 1
2
jBRj. Applying the same argument as

above, we obtain that
osc
BR

v � 
 osc
B3R

v;

which �nishes the proof.

Theorem 3.7 (Theorem of De Giorgi) If u 2 W 1;2 (
) and Lu = 0 weakly in 
 then
u 2 C� (
) where � = � (n; �) > 0. Moreover, for any compact subset K of 
, we have

kukC�(K) � C kukL2(
)

where

kukC�(K) := sup
K
juj+ sup

x;y2K
x 6=y

ju (x)� u (y)j
jx� yj� (3.35)

and C = C (n; �; �), � = dist (K; @
).

Remark. Since K is compact, C� (K) is the set of all Hölder continuous functions
on K with the Hölder exponent �. Then the expression kukC�(K), de�ned by (3.35),
is �nite for any u 2 C� (K), and is a norm in C� (K). Moreover, one can show that
C� (K) with this norm is a Banach space. The expression

sup
x;y2K
x 6=y

ju (x)� u (y)j
jx� yj�
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is called a Hölder seminorm and, indeed, it is a seminorm in C� (K).

Proof. Step 1. Let � be the distance from K to @
, so that for any x 2 K the ball
B� (x) is contained in 
. Fix a point z 2 K and set

�k = 3
�k�:

By Theorem 3.6 we have
osc
B�k (z)

u � 
 osc
B�k�1 (z)

u; (3.36)

which implies by induction that

osc
B�k (z)

u � 
k�1 osc
B�1 (z)

u � 2
k�1 esssup
B�1 (z)

juj :

Applying Theorem 3.2 to u and �u, we obtain that

esssup
B�1 (z)

juj � esssup
B�=2(z)

juj � C kukL2(B�(z)) � C kukL2(
) ;

where C = C (n; �; �). Combining the above inequalities, we obtain

osc
B�k (z)

u � C
k kukL2(
) : (3.37)

Note that without application of Theorem 3.2 we obtain

osc
B�k (z)

u � 
k osc
B�(z)

u � 2
k kukL1(
) : (3.38)

Step 2. Let us prove that, for almost all1 x; y 2 K with

0 < jx� yj � �=2; (3.39)

the following inequality holds

ju (x)� u (y)j � C jx� yj� kukL2(
) (3.40)

where

� = log3
1




and C = C (n; �; �). For any couple x; y with 0 < jx� yj � �=2 there is a non-negative
integer k such that

1

2
�k+1 < jx� yj � 1

2
�k: (3.41)

Hence, let us �x k and prove (3.40) for almost all x; y satisfying (3.41).2

1The expression �for almost all x; y 2 K" has the following rigorous meaning: for almost all points
(x; y) 2 K �K. Hence, here we use the Lebesgue measure in Rn � Rn = R2n.

2Indeed, if we know already that the set Sk of points (x; y) 2 K � K satisfying (3.41) and not
satisfying (3.40) has measure 0 in R2n, then the set of points (x; y) 2 K �K satisfying (3.39) and not
satisfying (3.40) is

S1
k=0 Sk; which also has measure zero.
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The compact set K can be covered by a �nite number of balls B 1
2
�k
(zi) where

zi 2 K. For any x 2 K there is zi such that x 2 B 1
2
�k
(zi); then by (3.41) we have

y 2 B�k (zi). Hence, for any couple x; y 2 K satisfying (3.41) there is zi such that
x; y 2 B�k (zi). Therefore, it su¢ ces to prove (3.40) for almost all x; y 2 B�k (z) where
z = zi is a �xed point on K.
By (3.37), we obtain that, for almost all x; y 2 B�k (z),

ju (x)� u (y)j � osc
B�k (z)

u � C
k kukL2 : (3.42)

14.06.16

Let us express 
k via �k = �3�k. Setting

� = log3
1



> 0;

we obtain 
 = 3�� and


k = 3��k =

�
�k
�

��
: (3.43)

It follows from (3.42) that

ju (x)� u (y)j � C��k kukL2 :

This implies (3.40) because by (3.41)

�k = 3�k+1 < 6 jx� yj :

Alternatively, if we use (3.38) instead of (3.37) and (3.42), then we obtain, for almost
all x; y 2 K with (3.39) that

ju (x)� u (y)j � C

�
jx� yj
�

��
kukL1(
) (3.44)

where C = C (n; �) does not depend on �.
Step 3. Now let us show that u has a C�-version. It su¢ ces to prove this for ujK

where K is any compact subset of 
. As above let � be the distance between K and
@
.
Choose a molli�er ', that is, a function ' 2 C10 (Rn) such that

' � 0; supp' � B1 and
Z
Rn
'dx = 1:

Set for any positive integer k
'k (x) = kn' (kx) ; (3.45)

so that

supp'k � B1=k and
Z
Rn
'kdx = 1: (3.46)

For any u 2 L2 (Rn), consider its molli�cation, that is, the sequence of functions
fukg1k=1 de�ned by

uk (x) = u � 'k (x) =
Z
Rn
u (x� y)'k (y) dy:
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It is known (cf. Exercise 4) that

u � 'k
L2�! u as k !1: (3.47)

Let u 2 W 1;2 (
) be as above a solution of Lu = 0 in 
. Extending u to Rn by setting
u = 0 outside 
, we obtain u 2 L2 (Rn) and, hence, can de�ne the molli�cation uk as
above. The idea of what follows is to show that the limit

eu (x) := lim
k!1

uk (x) (3.48)

exists for all x 2 K and that eu 2 C� (K). Since K is arbitrary, this will imply that
the limit (3.48) exists for all x 2 K and that eu 2 C� (
). Since by (3.47) there is a
subsequence fukig such that

uki ! u a:e:;

we will conclude that eu = u a:e:, which means that eu is a C�-version of u.
In order to prove the existence of limk!1 uk (x) it su¢ ces to prove that, for any

x 2 K, the sequence fuk (x)g is Cauchy. Since supp'k � B1=k, let us rewrite the
de�nition of uk in the form

uk (x) =

Z
B1=k(0)

u (x� y)'k (y) dy =

Z
B1=k(x)

u (z)'k (x� z) dz: (3.49)

Let x 2 K. If k > ��1 then B1=k (x) � 
 so that the integration above is performed
inside 
.
For all k;m > ��1 we have, using (3.49) and (3.46),

uk (x) =

Z
B1=k(x)

u (z)'k (x� z) dz =

Z
B1=m(x)

Z
B1=k(x)

u (z)'k (x� z) dy 'm (x� t) dt;

where z 2 B1=k, t 2 B1=m. Similarly, we have

um (x) =

Z
B1=m

u (t)'m (x� t) dt =

Z
B1=k(x)

Z
B1=m(x)

u (z)'m (x� z) dz 'k (x� t) dt:

Using Fubini�s theorem we obtain

uk (x)� um (x) =

ZZ
B1=k(x)�B1=m(x)

(u (z)� u (t))'k (x� z)'m (x� t) dzdt: (3.50)

Assume that k;m > 2��1 so that 1
k
and 1

m
are smaller than �=2. Then both balls

B1=k (x) and B1=m (x) lie in the �=2-neighborhood of K. Denote the closed �=2-
neighborhood of K by K 0. Since K 0 is also a compact subset of 
, we can apply
the result of Step 2 to u on K 0, that is, for almost all z; t 2 K 0 such that

jz � tj < �=4;

we have
ju (z)� u (t)j � C jz � tj� kukL2(
) :
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If z 2 B1=k (x) and t 2 B1=m (x) then

jz � tj � 1

k
+
1

m
:

In particular, if k;m are large enough then this is smaller than �=4, and we obtain
that, for almost all (z; t) 2 B1=k (x)�B1=m (x)

ju (z)� u (t)j � C

����1k + 1

m

����� kukL2(
) :
Substituting into (3.50) and using (3.46), we obtain

juk (x)� um (x)j � C

�
1

k
+
1

m

��
kukL2(
) ! 0 as k;m!1:

Therefore, the sequence fuk (x)g is Cauchy for any x 2 K and, hence, has the limit

eu (x) := lim
k!1

uk (x) :

Let us now show that eu 2 C� (K). For that let us estimate �rst juk (x)� uk (y)j for
x; y 2 K assuming that

jx� yj < �=4:

Observe that

uk (x) =

Z
B1=k(x)

u (z)'k (x� z) dz =

Z
B1=k(y)

Z
B1=k(x)

u (z)'k (x� z) dz 'k (y � t) dt

and

uk (y) =

Z
B1=k(y)

u (t)'k (y � t) dt =

Z
B1=k(x)

Z
B1=k(y)

u (t)'k (y � t) dt 'k (x� z) dz:

Hence, using Fubini�s theorem, we obtain

uk (x)� uk (y) =

ZZ
B1=k(x)�B1=k(y)

(u (z)� u (t))'k (x� z)'k (y � t) dz dt: (3.51)

If k is large enough both balls B1=k (x) and B1=k (y) lie in K 0. For all z 2 B1=k (x) and
t 2 B1=k (y) we have by the triangle inequality

jz � tj < jx� yj+ 2
k
< �=4;

provided k is large enough. Hence, by the result of Step 2 for K 0, we obtain, for almost
all (z; t) 2 B1=k (x)�B1=k (y) that

ju (z)� u (t)j � C

�
jx� yj+ 2

k

��
kukL2(
) ;

whence by (3.51)

juk (x)� uk (y)j � C

�
jx� yj+ 2

k

��
kukL2(
) :



78CHAPTER 3. HOLDERCONTINUITY FOREQUATIONS INDIVERGENCE FORM

Letting k !1 we obtain

jeu (x)� eu (y)j � C jx� yj� kukL2(
) ;
for all x; y 2 K such that jx� yj < �=4. The latter implies that eu is Hölder continuous
onK with the Hölder exponent �. Since u = eu a:e:; this means that u has a C�-version,
which was to be proved.
Step 4. It remains still to prove the estimate (3.35). Let us rename eu back to u so

that u is a continuous in 
. By Theorem 3.2 we have, for any x 2 K,
u (x) � sup

B�=2(x)

u � C kukL2(B�(x)) � C kukL2(
) .

Applying the same estimate to �u, we obtain
ju (x)j � C kukL2(
) ;

that is,
sup
K
juj � C kukL2(
) ;

where C = C (n; �; �). By inequality (3.40) of Step 2 we have, for all x; y 2 K with

0 < jx� yj � �=2;

the following inequality

ju (x)� u (y)j � C jx� yj� kukL2(
)
(it was proved above for almost all x; y but now, due to the continuity of u, we obtain
that it holds for all x; y). Hence, we obtain

sup
x;y2K;

0<jx�yj��=2

ju (x)� u (y)j
jx� yj� � C kukL2(
) :

Observe that

sup
x;y2K;

jx�yj>�=2

ju (x)� u (y)j
jx� yj� � 2

�
2

�

��
sup
K
juj � C kukL2(
) :

Finally, combining all these estimates, we obtain

kukC�(K) = sup
K
juj+ sup

x;y2K;
x 6=y

ju (x)� u (y)j
jx� yj� � C kukL2(
) ;

which �nishes the proof of (3.35).

Corollary 3.8 Under the hypotheses of Theorem 3.7, it is also true that, for any
compact set K � 
 and for all x; y 2 K such that jx� yj � �=2,

ju (x)� u (y)j � C

�
jx� yj
�

��
kukL1(
) ; (3.52)

where � = dist (K; @
) and the constant C depends only on n; � (and does not depend
on �).

Proof. Indeed, (3.52) was proved at the end of Step 2 for almost all x; y satisfying the
above restrictions (see (3.44)). Since u is now continuous, the inequality (3.52) holds
for all x; y.
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3.4 Poincaré inequality

Theorem 3.9 For any ball BR in Rn and any f 2 W 1;2 (BR), the following inequality
is true: Z

BR

Z
BR

(f (x)� f (y))2 dxdy � CRn+2
Z
BR

jrf j2 dx; (3.53)

where C = C (n).

Dividing the both sides of (3.53) by jBRj2 and recalling that jBRj = cnR
n, we can

rewrite it in the following form:

�
Z
BR

�
Z
BR

(f (x)� f (y))2 dxdy � CR2�
Z
BR

jrf j2 dx:

16.06.16

Proof. Let us �rst prove (3.53) for f 2 C1 (BR). For all x; y 2 BR we have

f (y)� f (x) =

Z 1

0

@t [f (x+ t (y � x))] dt

=

Z 1

0

rf (x+ t (y � x)) � (y � x) dt

�
Z 1

0

jrf j (x+ t (y � x)) jy � xj dt

� 2R

Z 1

0

jrf j (x+ t (y � x)) dt;

whence by the Cauchy-Schwarz inequality

(f (y)� f (x))2 � 4R2
Z 1

0

jrf j2 (x+ t (y � x)) dt:

It follows thatZ
BR

Z
BR

(f (x)� f (y))2 dxdy � 4R2
Z
BR

Z
BR

Z 1

0

jrf j2 (x+ t (y � x)) dt dx dy (3.54)

Set F = jrf j2 and extend F to the entire Rn by setting F = 0 outside BR. In the
view of (3.54), in order to prove (3.53) it remains to show thatZ

BR

Z
BR

Z 1

0

F (x+ t (y � x)) dt dx dy � CRn
Z
Rn
Fdx: (3.55)

By Fubini�s theorem, the integrations in the left hand side are all interchangeable. In
the integral Z

BR

F (x+ t (y � x)) dy

let us make change z = y � x, so thatZ
BR

F (x+ t (y � x)) dy =

Z
BR(�x)

F (x+ tz) dz �
Z
B2R

F (x+ tz) dz
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and Z
BR

Z
BR

Z 1

0

F (x+ t (y � x)) dt dx dy �
Z
B2R

Z
BR

Z 1

0

F (x+ tz) dt dx dz:

Then in the integral Z
BR

F (x+ tz) dx

let us make change x0 = x+ tz so thatZ
BR

F (x+ tz) dx =

Z
BR(tz)

F (x0) dx0 �
Z
Rn
F (x0) dx0 =

Z
BR

F (x0) dx0:

It follows thatZ
BR

Z
BR

Z 1

0

F (x+ t (y � x)) dxdydt �
Z
B2R

Z
BR

Z 1

0

F (x0) dt dx0dz

= 1 � jB2Rj
Z
BR

F (x0) dx0

= CRn
Z
BR

F (x) dx;

which �nishes the proof of (3.55) for f 2 C1 (BR) :
Let now f 2 W 1;2 (BR). It su¢ ces to prove that, for any r < R,Z

Br

Z
Br

(f (x)� f (y))2 dxdy � Crn+2
Z
Br

jrf j2 dx; (3.56)

and then let r ! R. Let  be a smooth cuto¤ function of Br in BR. Then f 2
W 1;2
0 (BR) and, by setting f = 0 outside BR, we obtain that f 2 W 1;2

0 (Rn). Since
f = f in Br, the function f in (3.56) can be replaced by f . Hence, renaming f 
back into f , we can assume that f 2 W 1;2

0 (Rn).
Consider molli�cations fk = f � 'k where f'kg is a sequence of molli�ers de�ned

by (3.45). Then fk 2 C1 (Rn) and, hence, by the �rst part of the proof we haveZ
Br

Z
Br

(fk (x)� fk (y))
2 dxdy � Crn+2

Z
Br

jrfkj2 dx: (3.57)

Since by Exercise 4

fk
W 1;2

! f;

passing to the limit in (3.57) as k !1, we obtain (3.56).
Now we can prove a version of the Poincaré inequality used in the proof of Theorem

3.4.

Corollary 3.10 Let v 2 W 1;2 (BR) and consider the set

H = fx 2 BR : v (x) � 0g :

Then Z
BR

v2+dx � C
R2 jBRj
jHj

Z
BR

jrv+j2 dx

where C = C (n).
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Proof. Note that v+ 2 W 1;2 (BR). Renaming v+ into v, we can assume that v � 0
and must prove that Z

BR

v2dx � C
R2 jBRj
jHj

Z
BR

jrvj2 dx;

where H = fv = 0g. By (3.53) we haveZ
BR

Z
BR

(v (x)� v (y))2 dx dy � CRn+2
Z
BR

jrvj2 dx:

Restricting the integration in the left hand side to y 2 H and noticing that v (y) = 0,
we obtain Z

H

Z
BR

v (x)2 dx dy � CRn+2
Z
BR

jrvj2 dx

whence

jHj
Z
BR

v (x)2 dx � CRn+2
Z
BR

jrvj2 dx:

Finally, it remains to observe that Rn+2 = cR2 jBRj.

Remark. There is yet another form of the Poincaré inequality: for any ball BR in Rn
and for any f 2 W 1;2 (BR),Z

BR

�
f � f

�2
dx � CR2

Z
BR

jrf j2 dx; (3.58)

where C = C (n) and

f := �
Z
BR

f (x) dx

(see Exercise 38). In particular, if Z
BR

fdx = 0

then (3.58) becomes Z
BR

f 2dx � CR2
Z
BR

jrf j2 dx;

which has the same shape as the Friedrichs-Poincaré inequality.

3.5 Hölder continuity for inhomogeneous equation

As above, consider in a domain 
 � Rn a divergence form uniformly elliptic operator

Lu =

nX
i;j=1

@i (aij@ju)

with measurable coe¢ cients.

Theorem 3.11 Let u 2 W 1;2 (
) be a weak solution of Lu = f , where f 2 Lq (
) with
q 2 [2;1] \ (n=2;1]: Then u 2 C� (
) where � = � (n; �; q) > 0:
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Remark. If 
 is bounded then f 2 Lq (
) implies f 2 L2 (
). By Theorem 1.14, if u
is a solution of the Dirichlet problem�

Lu = f weakly in 
;
u 2 W 1;2

0 (
)

with f 2 Lq (
) then u 2 L1 (
). Theorem 3.11 says that also u 2 C� (
).

Remark. Note that if f 2 Lq with q < n=2 then there may exist a solution u 2 W 1;2

of Lu = f that does not admit a continuous version (see Exercises).

Proof. Fix some compact set K � 
 and a point z 2 K. It su¢ ces to prove that, for
small enough r > 0,

osc
Br(z)

u � const r�; (3.59)

where � 2 (0; 1) and const may depends on n; �;
; K ; f; u but does not depend on
z; r. This inequality is an analogous to the inequality (3.37) from Step 1 of the proof
of Theorem 3.7. Arguing further as in the proof of Theorem 3.7, we will conclude that
u 2 C� (
).
First we choose some positive R < dist (K; @
) so that BR := BR (z) � 
. Let v

be the solution of the Dirichlet problem in BR:�
Lv = f weakly in BR
v 2 W 1;2 (BR)

that exists by Theorem 1.2. Consider the di¤erence w = u � v that satis�es Lw = 0
in BR. By Theorem 3.7, w 2 C� (BR) where � = � (n; �) > 0. Moreover, by Corollary
3.8, for any compact set F � BR and for all x; y 2 F such that jx� yj < �=2, we have

jw (x)� w (y)j � C

�
jx� yj
�

��
kwkL1(BR) ; (3.60)

where � = dist (F; @BR) and �;C depend only on n; �. Take F = BR=5 so that � = 4
5
R.

Then, for all x; y 2 BR=5, we have

jx� yj < 2

5
R =

1

2
�:

Hence, (3.60) holds for all x; y 2 BR=5. 21.06.16

Fix some r such that 0 < r � R=5. Then (3.60) holds for all x; y 2 Br. Using that
� = 4

5
R and jx� yj � 2r, we obtain from (3.60) that

osc
Br
w � C

� r
R

��
kwkL1(BR) :

Applying the same argument to R=2 instead of R, we obtain the following: if 0 < r �
R=10 then

osc
Br
w � C

� r
R

��
kwkL1(BR=2) :

By the mean value inequality of Theorem 3.2, we have

kwkL1(BR=2) �
C

Rn=2
kwkL2(BR) :
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Using also that

kwkL2(BR) � kukL2(
) + kvkL2(BR)
� kukL2(
) + CRn=2 kvkL1(BR) ;

we obtain

kwkL1(BR=2) �
C

Rn=2
kukL2(
) + C kvkL1(BR) :

Hence,

osc
Br
u � osc

Br
v + osc

Br
w

� 2 kvkL1(BR) + C
� r
R

��� C

Rn=2
kukL2(
) + kvkL1(BR)

�
� C kvkL1(BR) + C

� r
R

�� 1

Rn=2
kukL2(
) : (3.61)

Since f 2 Lq (BR), we obtain Theorem 1.14, that

kvkL1(BR) � C jBRj
2
n
� 1
q kfkLq(BR) ;

which is equivalent to
kvkL1(BR) � CR2�

n
q kfkLq(
) : (3.62)

Substituting into (3.61), we obtain

osc
Br
u � CR2�

n
q kfkLq(
) + C

� r
R

�� 1

Rn=2
kukL2(
) : (3.63)

So far r and R are arbitrary numbers such that

R < dist (K; @
) and 0 < r � R=10: (3.64)

Now, for any r > 0, we choose R = R (r) so that

R2�n=q =
� r
R

�� 1

Rn=2
;

that is,
R = r

�
2�n=q+�+n=2 :

Observe that
0 <

�

2� n=q + �+ n=2
< 1:

Therefore, if r ! 0 then R ! 0 and R=r ! 1. Hence, if r is small enough (that
is, r � r0 where r0 depends only on dist (K; @
) and �

2�n=q+�+n=2), then the both
conditions (3.64) are satis�ed. For these values of r and R, we obtain from (3.63) that,
for any z 2 K,

osc
Br(z)

u � Cr�
�
kfkLq(
) + kukL2(
)

�
; (3.65)

where

� =
(2� n=q)�

2� n=q + �+ n=2
> 0;

thus proving (3.59) with � = � (n; �; q) > 0.



84CHAPTER 3. HOLDERCONTINUITY FOREQUATIONS INDIVERGENCE FORM

3.6 Applications to semi-linear equations

Consider a divergence form uniformly elliptic operator

Lu =
nX

i;j=1

@i (aij@ju)

is a bounded domain 
 assuming that the coe¢ cients are measurable. Given a function
f (x; v) on 
� R, consider the following semi-linear Dirichlet problem�

Lu = f (x; u) in 

u 2 W 1;2

0 (
) ;
(3.66)

where the operator Lu is understood weakly as before. We assume that function f is
such that the composition f (x; u (x)) belongs to L2 (
) whenever u 2 L2 (
). Our goal
is to investigate the solvability of the problem (3.66).
Fix �rst a function v 2 L2 (
) and consider the following linear Dirichlet problem�

Lu = f (x; v) in 

u 2 W 1;2

0 (
) ;
(3.67)

By Theorem 1.2, it has a unique solution u. Hence, we obtain the mapping

T : L2 (
)! L2 (
)

Tv = u:

The problem (3.66) amounts then to solving of the equation Tu = u. Hence, we face
the problem of �nding a �xed point of the mapping T:

3.6.1 Fixed point theorems

Let us discuss some �xed point theorems, that is, the statements that ensure the
existence of a �xed point under certain hypotheses.

Theorem 3.12 (Fixed point theorem of Schauder) Let K be a compact convex subset
of a Banach space X. If T : K ! K is a continuous mapping then T has a �xed point,
that is, there exists a point x 2 K such that Tx = x.

If X = Rn then thenK can be any bounded closed convex subset of Rn. In this case
Theorem 3.12 is referred to as the �xed point theorem of Brouwer. In fact, theorem of
Schauder is normally proved by using theorem of Brouwer.

Corollary 3.13 Let K be a closed convex subset of a Banach space X and T : K ! K
is a continuous mapping such that the image T (K) is precompact. Then T has a �xed
point.

Proof. Let C be the closed convex hull of T (K). Then C � K and C is compact.
Clearly, T can be regarded as an operator from C to C, which implies by Theorem
3.12 that T has a �xed point.

23.06.16
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De�nition. A mapping T : X ! X is called compact if, for any bounded set E � X,
the image T (E) is precompact.

Note that if T is linear and compact then T is also bounded and, hence, continuous.
However, in general a compact mapping T does not have to be continuous.

Theorem 3.14 (Fixed point theorem of Leray-Schauder) Let T : X ! X be a com-
pact, continuous mapping. Assume that

the set fx 2 X : x = �Tx for some 0 < � < 1g is bounded. (3.68)

Then T has a �xed point.

Remark. The Leray-Schauder condition (3.68) can be regarded as a replacement of
the contraction condition in the Banach �xed point theorem.

Example. Consider an a¢ ne mapping Tx = x + a with some a 2 X. The equation
x = �Tx is equivalent to x = � (x+ a), that is, to

x =
�a

1� �
:

This can be satis�ed with any � 2 (0; 1), and the norm of x is clearly unbounded.
Hence, condition (3.68) fails. Obviously, T does not have a �xed point.

Example. Let T (x) be a continuous function on X = R. If the condition (3.68) holds
then there is R > 0 such that any x 2 R satisfying x = �T (x) with � 2 (0; 1) admits
the estimate jxj < R. We claim that in this case

T (R) � R and T (�R) � �R: (3.69)

Indeed, if T (R) > R then we have R = �T (R) with some � 2 (0; 1) and, hence, we
should have jRj < R, which is wrong. In the same way, if T (�R) < �R then we
have (�R) = �T (�R) with some � 2 (0; 1) and, hence, j�Rj < R. This contradiction
shows that (3.69) holds. Then the existence of the �xed point x = T (x) follows from
the intermediate point theorem, because the function f (x) = x�T (x) is non-negative
at x = R, non-positive at x = �R and, hence, vanishes at some point x 2 [�R;R].

Proof. The condition (3.68) means that there R > 0 such that any x from the set
(3.68) admits the estimate kxk < R. By dividing the norm in X by R, we can assume
without loss of generality that R = 1. In other words, we assume that

if x = �Tx for some 0 < � < 1 then kxk < 1: (3.70)

Consider a mapping S : X ! X de�ned by

Sx =

�
Tx; if kTxk � 1
Tx
kTxk ; if kTxk > 1: (3.71)

We claim that S is continuous and compact. To see that, let use represent S in the
form of composition

S = � � T;
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where � : X ! X is de�ned by

�y =

�
y; if kyk � 1
y
kyk ; if kyk > 1:

Then � is continuous because it can be represented in the form

�y = ' (kyk) y

with the following function ' de�ned on [0;1):

' (t) =

�
1 t � 1;
1
t
; t > 1:

Since ' is obviously continuous, we see that � is continuous, which implies that also
S is continuous.
Since T is compact, for any bounded set E � X, the image T (E) is precompact,

that is, T (E) is compact. Since � is continuous, the set �
�
T (E)

�
is compact, which

implies that S (E) = � (T (E)) is precompact. Hence, the mapping S is compact.
By construction, we have kSxk � 1 for all x 2 X. Denote by B the closed unit

ball of radius 1 in X. Then S (X) � B and, in particular, S (B) � B. Hence, S
can be regarded as a mapping from B to B. Since S (B) is precompact, we obtain by
Corollary 3.13 that S has a �xed point x 2 B.
Let us verify that x is also a �xed point of T . Indeed, if Tx 2 B then Tx = Sx and,

hence, Tx = x. Assume now that Tx =2 B, that is, kTxk > 1. In this case we obtain
from (3.71) kSxk = 1 and, hence, kxk = 1. On the other hand, (3.71) yields also

Tx = kTxkSx = kTxkx

and x = �Tx where � = 1
kTxk < 1. By (3.70) we must have kxk < 1, which contradicts

kxk = 1. This contradiction shows that the second case is impossible, which �nishes
the proof.

3.6.2 A semi-linear Dirichlet problem

Consider a divergence form uniformly elliptic operator

Lu =

nX
i;j=1

@i (aij@ju)

is a bounded domain 
 assuming that the coe¢ cients are measurable, and the following
semi-linear Dirichlet problem �

Lu = f (x; u) in 

u 2 W 1;2

0 (
) ;
(3.72)

where the operator Lu is understood weakly as before. Function f = f (x; u) is de�ned
in 
�R, and we assume that it is Borel measurable. Then, for any measurable function
u on 
, the composite function f (x; u (x)) is also measurable.
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We assume in addition that f satis�es the following two conditions:

jf (x; v)j � C1 (1 + jvj
) ; (3.73)

for all v 2 R and almost all x 2 
, and

jf (x; v1)� f (x; v2)j � C2 jv1 � v2j (3.74)

for all v1; v2 2 R and almost all x 2 
, where 
; C1; C2 are positive constants.

Theorem 3.15 Assume that the above hypotheses (3.73) and (3.74) hold with 
 < 1.
Then the following is true.
(a) The problem (3.72) has a solution u.
(b) If in addition j
j is small enough then the solution u is unique.
(c) If in addition 
 < 4

n
then u 2 C� (
) for some � = � (n; �; 
) > 0..

Remark. In part (b), without restriction on j
j there is no uniqueness for the problem
(3.72). Indeed, even in the one dimensional case, the Dirichlet problem�

u00 = �u
u (0) = u (�) = 0

has two solutions u � 0 and u (x) = sin x. Although the function f (x; u) = �u does
not satisfy (3.73), it is easy to modify it to satisfy (3.73) with any 
 > 0:

f (x; u) := �min (juj ; 1) :

Then the problem �
u00 = f (x; u)
u (0) = u (�) = 0

still has two solutions u � 0 and u (x) = sinx because both solutions take values
between 0 and 1, and for u 2 [0; 1] we have f (x; u) = �u.
Similarly, if 
 is a bounded domain in Rn and u is an eigenfunction of the Laplace

operator in 
, that is, �
�u = ��u in 
;
u 2 W 1;2

0 (
) ;
(3.75)

then we obtain again an example of non-uniqueness because u 6� 0 and the problem
(3.75) has also a solution u � 0:
Remark. In part (c), the restriction 
 < 4=n is not optimal. In fact, if (3.73) holds
with 
 � 1 then any solution u of (3.72) is Hölder continuous (see Exercise 53). In
particular, all the eigenfunctions of L are Hölder continuous (see Exercise 49). On the
other hand, if 
 > n

n�4 then solution u does not have to be continuous (see Exercise
46).

Proof of Theorem 3.15. For any v 2 L2 (
), the function

Fv (x) := f (x; v (x)) (3.76)
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belongs to L2 (
), because by (3.73) and 
 < 1

jFv (x)j � C (1 + jvj
) � C (2 + jvj) 2 L2 (
) : (3.77)

(a) For any v 2 L2 (
), consider the following linear Dirichlet problem�
Lu = Fv in 

u 2 W 1;2

0 (
)
(3.78)

that has a unique solution u by Theorem 1.2. De�ne the mapping T : L2 (
)! L2 (
)
by Tv = u; that is, for any v 2 L2 (
), the function Tv is de�ned as the solution u of
(3.78) considered as an element of L2 (
). Clearly, if u solves (3.72) then

Tu = u:

Conversely, if u 2 L2 (
) is a �xed point of T , then necessarily u 2 W 1;2
0 (
) because

the range of T lies in W 1;2
0 (
), and u solves the equation Lu = Fu, which is equivalent

to (3.72).
Hence, the existence of solution of (3.72) is equivalent to the existence of a �xed

point of the mapping T : L2 (
)! L2 (
). Let us �rst prove that T is continuous and
compact. Clearly, T is the composition of the following mappings:

L2 (
) ! L2 (
)! W 1;2
0 (
)! L2 (
)

v 7! Fv Fv 7! u u 7! u

where u is the solution of the Dirichlet problem (3.78). We know from the properties
of the linear Dirichlet problem (3.78) that the mapping Fv 7! u is linear and bounded:

kukW 1;2(
) � C kFvkL2 ;

(cf. Exercise 20) and, hence, continuous. The mapping v 7! Fv, given by (3.76), is also
continuous because by (3.74)

kFv1 � Fv2kL2 � C kv1 � v2kL2 : (3.79)

Moreover, the mapping v 7! Fv is bounded in the sense that image of any bounded set
is bounded, because by (3.77)

kFvkL2 � C (1 + kvkL2) :

Finally, the identical mapping u 7! u from W 1;2
0 (
) to L2 is continuous and compact,

the latter by the compact embedding theorem. Hence, we conclude that T is continuous
and compact.
In order to apply Leray-Schauder theorem for existence of a �xed point of T , we

need to prove that if v = �Tv for some 0 < � < 1 then v is bounded. This equation
implies that v 2 W 1;2

0 (
) and

Lv = �L (Tv) = �Fv;

that is, v solves the Dirichlet problem�
Lv = �Fv in 
:
v 2 W 1;2

0 (
)
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Therefore, we have

kvkL2 � kvkW 1;2 � C k�FvkL2 � C kFvkL2

(cf. Exercise 20), that is, Z



v2dx � C

Z



F 2v dx:

On the other hand, it follows from (3.77) thatZ



F 2v dx � C

Z



(1 + jvj
)2 dx � C + C

Z



jvj2
 dx;

where the value of the constant C is changed at each occurrence. Hence, we obtainZ



v2dx � C + C

Z



jvj2
 dx: (3.80)

By Young�s inequality, we have, for any " > 0,

jvj2
 = 1

"
"v2
 � 1

"p
+
�
"v2


�q
where p; q is a pair of Hölder conjugate exponents. Choose q = 1



and, hence, p = 1

1�
 ,
so that

jvj2
 � 1

"p
+ "qv2

and Z



jvj2
 dx � C" + "q
Z



v2dx:

Substitution into (3.80) yieldsZ



v2dx � C" + C"q
Z



v2dx:

Choosing " so small that "q � 1
2C
, we obtainZ




v2dx � 2C";

that is, kvkL2 is bounded. By Theorem of Leray-Schauder we conclude that T has a
�xed point and, hence, the Dirichlet problem (3.72) has a solution.
(b) Let us show that if j
j is small enough then the mapping T is a contraction in

L2 (
). This will imply by the Banach �xed point theorem that T has a unique �xed
point, that is, both uniqueness and existence. Let v1 and v2 be two functions from
L2 (
), set u1 = Tv1 and u2 = Tv2. We need to prove that

ku1 � u2k � � kv1 � v2k

for some � < 1. Setting u = u1 � u2, we obtain

Lu = Lu1 � Lu2 = f (x; v1)� f (x; v2) :
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That is, for any ' 2 W 1;2
0 (
), we haveZ




nX
i;j=1

aij@ju @i'dx = �
Z



(f (x; v1)� f (x; v2))'dx: (3.81)

By (3.74) we have
jf (x; v1)� f (x; v2)j � C2 jv1 � v2j :

Hence, setting in (3.81) ' = u and using the uniform ellipticity of (aij), we obtain

��1
Z



jruj2 dx � C2

Z



jv1 � v2j juj dx:

On the other hand, by the Faber-Krahn inequality, we haveZ



jruj2 dx � cn j
j�2=n
Z



u2dx:

Combining the two inequalities and using the Cauchy-Schwarz inequality, we obtainZ



u2dx � C j
j2=n
Z



jv1 � v2j juj dx

� C j
j2=n
�Z




(v1 � v2)
2 dx

�1=2�Z



u2dx

�1=2
;

whence
ku1 � u2kL2 � C j
j2=n kv1 � v2kL2 :

If j
j is small enough then C j
j2=n < 1, that is, T is a contraction, which was to be
proved.
(c) By Theorem 3.11, a solution of (3.72) is Hölder continuous, provided Fu 2 Lq (
)

with
q 2 [2;1] \ (n=2;1]: (3.82)

We have
kFukLq � C k1 + juj
kLq � C 0 (1 + kjuj
kLq) :

Since u 2 L2 (
) and

kjuj
kLq =
�Z




juj
q dx
�1=q

;

we see that kjuj
kLq <1 provided 
q = 2. Let us verify that q := 2=
 satis�es (3.82).
Indeed, we have q > 2 because 
 < 1, and q > n=2 because 
 < 4=n. Hence, q satis�es
(3.82), and we obtain that u 2 C� (
) with � = � (n; �; 
) > 0:



Chapter 4

Boundary behavior of solutions

Consider again in a bounded domain 
 � Rn the weak linear Dirichlet problem�
Lu = f;

u 2 W 1;2
0 (
) :

We know that if f 2 Lq (
) where

q 2 [2;+1] \ (n=2;1];

then u 2 C� (
) with � > 0, in particular, u is continuous in 
. We can ask if u takes
the boundary value in the classical sense, that is, if for a given point x0 2 @
,

lim
x!x0
x2


u (x) = 0:

The answer to this question depends in the properties of the boundary @
 near x0.
The aim of this Chapter is to prove the following: if @
 is �good�enough in some

sense then, in fact, u 2 C
�


�
and u = 0 on @
 in the classical sense.

There are many di¤erent methods for investigation of the boundary behavior of
solutions. We will use the method of continuation through the boundary, so that
a boundary point x0 2 @
 becomes an interior point in a larger domain, so that
the previous results about Hölder continuity in interior points can be used. We �rst
consider a model case of a �at boundary.

4.1 Flat boundary

Consider an open set 
+ � Rn+ such that a part of the boundary of 
+ lies on the
hyperplane H = fxn = 0g. Regarding H as Rn�1, denote by � the interior of @
+ \H
considered as a subset of Rn�1.
Let

L =
nX

i;j=1

@i (aij@ju) (4.1)

be a uniformly elliptic operator in 
+ with measurable coe¢ cients. Let u be a solution
of the following Dirichlet problem in 
+:�

Lu = f

u 2 W 1;2
0 (
+)

91
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where so far f 2 L2 (
+). We would like to investigate the Hölder continuity of u up
to �.
De�ne a mirror re�ection in H as a mapping � : Rn ! Rn such that

� (x1; :::; xn�1; xn) = (x1; :::; xn�1;�xn) :

Clearly, � is involution, that is, ��1 = �.
Let 
� = �(
+) so that 
� � Rn�. Observe that the set � belongs to the both

boundaries @
+ and @
�. Consider the set


 = 
+ [ 
� [ �

that is an open subset of Rn that is invariant for the mapping �. Note that all points
of � are interior points of 
. We are going to extends u; f; L from 
+ to 
.

I+

I-

xn

Η=Rn­1@

x

Φ(x)

A function v : 
! R is called even if

v (� (x)) = v (x) ; (4.2)

and odd if
v (� (x)) = �v (x) : (4.3)

Any function v : 
+ ! R allows obviously even and odd extensions to 
, just by using
(4.2) or (4.3), respectively (on � we set for simplicity v = 0).
Let us extend both functions u and f to 
 in the odd way, that is, by

u (� (x)) = �u (x) and f (� (x)) = �f (x)

for all x 2 
+. 30.06.16

To extend the coe¢ cients of L, we use the following notation:

�i =

�
1; i < n;
�1; i = n:

Then set, for all x 2 
+,
aij (� (x)) = �i�jaij (x) : (4.4)

In other words,
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� aij extends in the even way if i; j < n or i = j = n;

� aij extends in the odd way if i < n, j = n or i = n, j < n.

For x 2 � set L = �. Hence, we obtain the extended operator L in 
 and the
extended functions u and f in 
.

Theorem 4.1 Under the above conditions, the operator L is uniformly elliptic in 
,
u 2 W 1;2

0 (
) and Lu = f in 
.

Proof. To prove that L is uniformly elliptic, it su¢ ces to prove the following: if (aij)
is a symmetric matrix such that, for any � 2 Rn,

��1 j�j2 �
nX

i;j=1

aij�i�j � � j�j2 (4.5)

then the same holds for the matrix (�i�jaij) : We have

nX
i;j=1

(�i�jaij) �i�j =

nX
i;j=1

aij�i�j;

where �i = �i�i, that is, � =
�
�1; :::; �n�1;��n

�
. By (4.5) we have

��1 j�j2 �
nX

i;j=1

aij�i�j � � j�j2 : (4.6)

Since j�j = j�j, we obtain

��1 j�j �
nX

i;j=1

(�i�jaij) �i�j � � j�j2 ;

which proves the uniform ellipticity of (�i�jaij).
Since u 2 W 1;2

0 (
+), we obtain that also u�� 2 W 1;2
0 (
�) and, hence, the extended

u belongs toW 1;2
0 (
+ [ 
�). Since 
 � 
+[
�, we obtain that also u 2 W 1;2

0 (
) (we
use a general fact that if 
0 � 
00 thenW 1;2

0 (
0) � W 1;2
0 (
00) because D (
0) � D (
00)).

Let us show that Lu = f in 
, that is, for any ' 2 D (
),Z



"
nX

i;j=1

aij@ju @i'+ f'

#
dx = 0: (4.7)

For that we split the integral
R


in the sum

R

+
+
R

�
, and in the integral

R

�
:::dx we

make change x = �(y) thus reducing it to an integral over 
+. In particular, we haveZ

�

f (x)' (x) dx =

Z

+

f (� (y))' (� (y)) jdet J�j dy;

where J� is the Jacobi matrix of �. Obviously, det J� = �1, whenceZ

�

f (x)' (x) dx =

Z

+

f (� (y))' (� (y)) dy:
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Denoting
 (y) := ' (� (y)) = ' (y1; :::; yn�1;�yn)

and recalling that
f (� (y)) = �f (y) ;

we obtain Z

�

f (x)' (x) dx = �
Z

+

f (y) (y) dy:

It follows that Z



f'dx =

Z

+

f'dx�
Z

+

f dx =

Z

+

f ('�  ) dx:

Let us handle the term aij@ju @i'. We have

(@i') (� (y)) = (@i') (y1; :::; yn�1;�yn) = �i@i [' (y1; :::; yn�1;�yn)] = @i (y)

and similarly

(@ju) (� (y)) = (@ju) (y1; :::; yn�1;�yn) = �j@j [u (y1; :::; yn�1;�yn)] = ��j@ju (y) ;

where we have used the fact that u is odd. Using also (4.4), we obtain

(aij@ju @i') (� (y)) = ��i�jaij (y)�j@ju (y)�i@i (y) = � (aij@ju@i ) (y) ;

as �2i = �2j = 1. Hence, we obtainZ

�

(aij@ju @i') (x) dx = �
Z

+

(aij@ju@i ) (y) dy;

which implies Z



nX
i;j=1

aij@ju @i'dx =

Z

+

nX
i;j=1

aij@ju @i ('�  ) dx:

It follows thatZ



"
nX

i;j=1

aij@ju @i'+ f'

#
dx =

Z

+

"
nX

i;j=1

aij@ju @i ('�  ) + f ('�  )

#
dx: (4.8)

Observe that the function ' �  belongs to W 1;2
0 (
+) by Exercise1 30. Indeed, ' �

 belongs to C1
�

+
�
and, hence, it is in W 1;2 (
+) and it is continuous on @
+;

moreover, '� vanishes on @
+, because '� = 0 on � by construction of  , while
'�  = 0 on the rest of @
+ because ' and  vanish on @
.
Since u solves Lu = f in 
+, using ' �  as a test function, we obtain that the

right hand side of (4.8) vanishes, whence (4.7) follows.

1By Exercise 30, if g is a function on 
 such that g 2W 1;2 (
), g is continuous at any point of @
,
and g = 0 on @
, then g 2W 1;2

0 (
) :
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Corollary 4.2 Let L be an operator in 
+ as above. Let u solves in 
+ the Dirichlet
problem �

Lu = f in 
+
u 2 W 1;2

0 (
+)

where f 2 Lq (
+) with
q 2 [2;1] \ (n=2;1]: (4.9)

Then u 2 C� (
+ [ �) for some � = � (n; �; q) > 0. In particular, u is continuous at
any point of � and uj� = 0.

Proof. Indeed, let us extend L; u; f to 
 = 
+ [ 
� [ � as in Theorem 4.1. By
Theorem 4.1 we have u 2 W 1;2

0 (
) and Lu = f in 
. Since f 2 Lq (
), we conclude by
Theorem 3.11 that u 2 C� (
). In particular, u 2 C� (
+ [ �). Since u is continuous
on � and u is odd with respect to the mirror re�ection in �, we conclude that uj� = 0.

4.2 Boundary as a graph

Let U be an open set in Rn�1. Given a function h : U ! R, consider its graph

�h = f(z; t) 2 Rn : z 2 U; t = h (z)g

and its supergraph:
Sh = f(z; t) 2 Rn : z 2 U; t > h (z)g :

Here z 2 Rn�1, t 2 R, and we consider the pair (z; t) as the point (z1; :::; zn�1; t) of Rn.
A cylinder over U is any set Q � Rn of the form U � I where I is a non-empty

open interval in R.
Let 
 be a bounded open subset of Rn with the following property: there is a

cylinder Q over U such that


 \Q = Sh \Q and @
 \Q = �h:

Rn Q

z=(x1,…,xn­1)
Rn­1 U

t=xn

@h

Sh

I

/I
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Note that the set 
+ from the previous section with a piece � of a �at boundary is
a particular case of the present construction with h (z) � 0 and U = �: The following
theorem generalizes Corollary 4.2.

Theorem 4.3 Under the above conditions, assume that the function h belongs to
C1 (U). Consider a weak Dirichlet problem�

Lu = f in 
;
u 2 W 1;2

0 (
) ;
(4.10)

where L is the uniformly elliptic operator (4.1) in 
 with measurable coe¢ cients. If
f 2 Lq (
) with q as in (4.9), then u 2 C (
 [ �h) and uj�h = 0.

5.07.16
Proof. Choose an open subset V of U such that V is compact and V � U . Let � be
the graph of h restricted to V . It su¢ ces to prove that u 2 C� (
 [ �) for some � > 0.
We will see that the Hölder exponent � depends not only on �; n; q but also on the sets

, U; V and on the function h.
Let us �rst extend the function h from U to Rn�1 as follows. Choose �rst a constant

c such that

 � fx 2 Rn : xn > cg

and set h = c in U c. Then 
 is contained in the supergraph Sh of the extended function
h. However, the so extended function h is not continuous on @U . On U n V let us
rede�ne h to make is smaller and to have h 2 C1 (Rn�1).
Then we have supRn�1 jrhj <1,


 � Sh and @
 � �;

where, as above, � is the graph of hjV (see the picture below).

I
xn

H=Rn­1

@h

V

Sh

@

c

U

Let us consider the following mapping 	 : Rn ! Rn:

	(x) = (x1; :::; xn�1; xn � h (x1; :::; xn�1)) : (4.11)

Clearly, 	 is a C1-di¤eomorphism of Rn, and the inverse mapping is given by

	�1 (y) = (y1:::; yn�1; yn + h (y1; :::; yn�1)) : (4.12)
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Since
Sh = fx 2 Rn : xn > h (x1; :::; xn�1)g

and
�h = fx 2 Rn : xn = h (x1; :::; xn�1)g ;

we obtain that
	(Sh) = Rn+ and 	(�h) = H := Rn�1,

as well as
	(
) � Rn+ and 	(@
) � 	(�) = V:

The mapping 	 is called straightening as it straightens the piece � of the boundary
@
 into a �at piece V . Denote


� = 	(
) ;

so that

� � Rn+ and @
� � V

(see the picture).

I*

xn

H=Rn­1

V

We can regard	 as a C1-di¤eomorphism between 
 and 
�. We denote an arbitrary
point in 
 by x while that in 
� �by y, and write the mapping 	 in the form y = 	(x).
We will need the Jacobi matrices of 	 and 	�1. Using (4.11) and (4.12), we �nd that

J	 =

�
@yk
@xi

�
=

0BBB@
1 0 � � � 0

0
. . .

...
...

. . . 0
�@1h � � � �@n�1h 1

1CCCA
and

J	�1 =

�
@xi
@yk

�
=

0BBB@
1 0 � � � 0

0
. . .

...
...

. . . 0
@1h � � � @n�1h 1

1CCCA :

It is easy to verify that the matrices J	 and J	�1 are mutually inverse as they should
be, and that

det J	 = det J	�1 = 1:
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Set

K = max

�
1; sup
Rn�1

jrhj
�
:

Then all the entries of the both matrices J	 and J	�1 are bounded by K.
Any function v on 
 can be pushed forward to a function v� on 
� that is de�ned

as follows:
v� (	 (x)) = v (x) for all x 2 
;

which is equivalent to

v� (y) = v
�
	�1 (y)

�
for all y 2 
�:

Let us prove some properties of push-forward.
(a) If u 2 Lp (
) then u� 2 Lp (
�). Indeed, changing y = 	(x) in the integral, we

obtain Z

�

ju� (y)jp dy =
Z



ju� (	 (x))jp jJ	j dx =
Z



ju (x)jp dx:

It follows also that
kukLp(
) = ku�kLp(
�) ;

that is, push-forward is an isometry of Lp (
) and Lp (
�).
(b) If u 2 W 1;2 (
) then u� 2 W 1;2 (
�). Indeed, observe that, by the chain rule,

@yku� (y) = @yk
�
u
�
	�1 (y)

��
=

nX
i=1

(@xiu)�
@xi
@yk

:

Since @xiu 2 L2 (
), we obtain by (a) that (@xiu)� 2 L2 (
�). Since all partial deriv-
atives @xi

@yk
are bounded by K, we obtain that (@xiu)�

@xi
@yk

belongs to L2 (
�), whence
@yku� 2 L2 (
�). Hence, u� 2 W 1;2 (
�). It follows from this argument that

k@yku�kL2 � K
nX
i=1

k@xiukL2 � Kn krukL2 ;

kru�kL2 �
nX
k=1

k@yku�kL2 � Kn2 krukL2 ;

whence �
Kn2

��1 kukW 1;2(
) � ku�kW 1;2(
�)
� Kn2 kukW 1;2(
) : (4.13)

(c) If u 2 W 1;2
0 (
) then u� 2 W 1;2

0 (
�). Observe that if ' 2 C10 (
) then '� 2
C10 (
�). If u 2 W 1;2

0 (
) then u is the limit in W 1;2 (
) of a sequence f'kg of C10
functions in 
. By (4.13) we conclude that u� is the limit in W 1;2 (
�) of the sequence
f('k)�g. Since ('k)� 2 C10 (
�), it follows that u� 2 W

1;2
0 (
�).

(d) By Exercise 3 we have the following property of push-forward. Let

L =
nX

i;j=1

@i (aij@j)
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be an operator in 
 and let Lu = f hold weakly in 
. Then

L�u� = f� weakly in 
; (4.14)

where the operator L� is given by

L� =
1p
D

nX
i;k=1

@yk

�
bkl
p
D@yl

�
with

bkl (y) =
nX

i;j=1

aij (x)
@yk
@xi

@yl
@xj

:

and
D = (det J	)

�2 :

Since D = 1, we have

L� =
nX

i;k=1

@yk (bkl@yl) :

Let us show that the operator L� is uniformly elliptic in 
�. For any � 2 Rn, we have
nX

k;l=1

bkl�k�l =
nX

k;l=1

nX
i;j=1

aij
@yk
@xi

@yl
@xj

�k�l

=
nX

i;j=1

aij

 
nX
k=1

@yk
@xi

�k

! 
nX
l=1

@yl
@xj

�l

!
:

Set

�i =
nX
k=1

@yk
@xi

�k (4.15)

so that
nX

k;l=1

bkl�k�l =
nX

i;j=1

aij�i�j: (4.16)

By the uniform ellipticity of (aij), we have

��1 j�j2 �
nX

i;j=1

aij�i�j � � j�j2 : (4.17)

Since the coe¢ cients @yk
@xi

are bounded by K, we obtain from (4.15)

j�ij � Kn j�j

and, hence,
j�j � Kn2 j�j :

Since

�k =
nX
i=1

@xi
@yk

�i;
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and all the coe¢ cients @xi
@yk

are also bounded by K, it follows that

j�j � Kn2 j�j ;

whence �
Kn2

��1 j�j � j�j � Kn2 j�j :
Combining with (4.16) and (4.17), we obtain

��1� j�j2 �
nX

k;l=1

bkl�k�l � �� j�j2 ;

where �� = � (Kn2)
2
: Hence, L� is uniformly elliptic with the ellipticity constant ��:

Now let u solve the Dirichlet problem (4.10) with f 2 Lq (
). By the above prop-
erties of push-forward, we obtain that u� solves the Dirichlet problem�

L�u� = f� weakly in 
�
u� 2 W 1;2

0 (
�)

and f� 2 Lq (
�). Since 
� � Rn+ and the set V lies on @
� \ H, we conclude by
Corollary 4.2 that u� 2 C� (
� [ V ) for some � = � (n; ��; q) > 0, and that u� = 0 on
V . It follows that also u 2 C� (
 [ �), in particular, u 2 C (
 [ �), and u = 0 on �,
which �nishes the proof.

Remark. Note that the exponent � depends via �� also on the constantK that bounds
jrhj. SinceK depends on the extension of function h outside V , the value of � depends
on V . Hence, we cannot claim that u is Hölder continuous on the full boundary @

inside Q.

Remark. The statement and proof of Theorem 4.3 (with necessary modi�cations)
remain valid if h is a Lipschitz function rather than C1.

7.07.16

4.3 Domains with C1 boundary

Given two sets A � Rn�1 and B � R, de�ne the product A �i B with respect to the
coordinate xi in Rn as follows:

A�i B = f(x1; :::; xn) 2 Rn : (x1; :::x̂i:::; xn) 2 A; xi 2 Bg ;

where the notation x̂i means that xi is omitted, that is,

(x1; :::x̂i:::; xn) = (x1; :::; xi�1; xi+1; :::; xn) :

A (open) cylinder in Rn with respect to the coordinate xi is any set Q of the form
Q = U �i I where U is an open subset of Rn�1 and I is an open interval in R.
De�nition. Let 
 be an open subset of Rn. We say that the boundary of 
 belongs to
the class C1 (or simply 
 belongs to C1) if the following two conditions are satis�ed:

(i) any open neighborhood of any point x 2 @
 has a non-empty intersection with


c
;
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(ii) for any point x 2 @
 there exist a cylinder Q = U �i I containing x and a
C1-function h : U ! I such that @
 \ Q = �h (in other words, @
 is locally a
C1 graph).

Rn
Q

Rn­1

U

xi

@h

I

/I
x

(x1,…,xi­1,xi+1,…xn)5

Without loss of generality, we can assume that U (and, hence, Q) is connected.

Claim. It follows from (i) and (ii) that 
 \Q coincides either with the supergraph of
h in Q or with the subgraph of h in Q.

Proof. Let S be the supergraph of h in Q and S 0 be the subgraph. Then

Q = S t S 0 t �h:

Since S is an image of Q under a continuous mapping, it follows that S is connected.
Since S is covered by the disjoint union 
 t 
c of open sets, it follows that S � 
 or
S � 
c. The same argument applies also to S 0: either S 0 � 
 or S 0 � 
c:
However, S and S 0 cannot both be contained in the same of the two sets 
 or 


c
.

Indeed, if S and S 0 are both contained in 
 then any point x on �h has in small enough
neighborhoods no points from 


c
, which contradicts (i). If S and S 0 are contained in



c
, and any point x 2 �h has in small enough neighborhoods no points from 
, which

contradicts the de�nition of the boundary.
Hence, there remain only two possibilities:

� either S � 
 and S 0 � 
c

� or S 0 � 
 and S � 
c:

In the �rst case we have 
 \Q = S, and in the second case 
 \Q = S 0.

The next statement provides a large class of examples of domains with C1 boundary.
Recall that a bounded open set 
 is called a region if there exists a C1 function F
de�ned in an open neighborhood 
0 of 
 such that


 = fx 2 
0 : F (x) < 0g ;
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@
 = fx 2 
 : F (x) = 0g ;
and

rF 6= 0 on @
:

For example, a ball BR = fx 2 Rn : jxj < Rg is a region with function

F (x) = jxj2 �R2:

Lemma 4.4 If 
 is a region then 
 has C1 boundary.

Proof. Fix some point z 2 @
. By the hypothesis rF (z) 6= 0, the point z cannot be
a local maximum of F . Since F (z) = 0, it follows that any neighborhood of z contains
points x with F (x) > 0, that is, the points from 


c
.

Since rF (z) 6= 0, there is an index i = 1; 2:::; n such that @iF (z) 6= 0. By the
theorem of implicit function, the equation

F (x1; x2; :::; xn) = 0

can be resolved in a neighborhood of z with respect to xi as follows: there is a cylinder
Q = U �i I containing z and a C1 function f : U ! I such that, for all x 2 Q,

F (x1; :::; xn) = 0, xi = f (x1; :::x̂i:::xn) :

Consequently, we have
@
 \Q = �f ;

and, hence, 
 is a domain with C1 boundary.

Theorem 4.5 Assume that 
 is a bounded domain with C1 boundary. Let L be a
uniformly elliptic operator with measurable coe¢ cients in 
 and let u solve the weak
Dirichlet problem �

Lu = f in 

u 2 W 1;2

0 (
)
(4.18)

where f 2 Lq (
) with q 2 [2;1] \ (n=2;1]. Then u 2 C�
�


�
with some � > 0 and

uj@
 = 0. Here � depends on n; �; q and 
.

Proof. By de�nition of C1 boundary, for any point x 2 @
 there is a cylinder Qx =
Ux �ix Ix such that @
 \ Qx is the graph of a C1 function hx : Ux ! Ix. Besides, by
the above claim, 
 \Qx is either supergraph or subgraph of hx in Qx.
As in the proof of Theorem 4.3, choose an open subset Vx � Ux such that x 2 Vx

and V x is a compact subset of Ux. Let �x be the graph of hxjVx. By the proof of
Theorem 4.3 we have u 2 C�x (
 [ �x) where �x > 0, and u = 0 on �x.
The family Q0x = Vx�ix Ix of all cylinders Q0x with x 2 @
 provides an open covering

of @
. Choose a �nite subcover
�
Q0xk

	
, k = 1; :::; N , and set

� := min (�x1 ; :::; �xN ) > 0:

Then we have u 2 C� (
 [ �xk) for any k. Since the union of all sets �xk over all k is
@
, we obtain that u 2 C� (
 [ @
) and u = 0 on @
, which was to be proved.

Remark. The statement and the proof of Theorem 4.5 remain valid if the boundary
@
 is Lipschitz rather than C1.



4.4. CLASSICAL SOLUTIONS 103

4.4 Classical solutions

Now we can prove a result about existence of a classical solution.

Theorem 4.6 Assume that 
 is a bounded domain with C1 boundary and let k be
an integer such that k > n=2. Consider in 
 a uniformly elliptic operator L =Pn

i;j=1 @i (aij@j) with coe¢ cients aij 2 Ck+1
�


�
. Then, for all f 2 Ck

�


�
and

g 2 C2
�


�
, the classical Dirichlet problem�

Lu = f in 

u = g on @


(4.19)

has exactly one solution u 2 C2 (
) \ C
�


�
.

Remark. The assumptions of this theorem about functions aij, f , g are not quite
optimal. They are to illustrate the method of obtaining classical solutions by means of
weak solutions.

Proof. Consider �rst the weak Dirichlet problem�
Lu = f weakly in 

u� g 2 W 1;2

0 (
) :
(4.20)

By Exercises 7 and 27, if f 2 L2 (
) and g 2 W 1;2 (
) (which is the case under the
present assumptions) then the problem (4.20) has a unique weak solution u 2 W 1;2 (
) :
Since f 2 Ck

�


�
, we have also f 2 W k;2 (
). Since aij 2 Ck+1 (
), we obtain by

Theorem 2.10(b) that
u 2 W k+2;2

loc (
) :

Since
k + 2 >

n

2
+ 2;

the Sobolev embedding theorem implies that u 2 C2 (
). Hence, u is a classical solution
of Lu = f in 
.12.07.16

In order to investigate the behavior of u on @
, let us rewrite (4.20) in terms of the
function v = u� g as follows:�

Lv = f � Lg weakly in 

v 2 W 1;2

0 (
) :
(4.21)

Since g 2 C2
�


�
and aij 2 C1

�


�
, it follows that Lg 2 C

�


�
, whence

f � Lg 2 C
�


�
� L1 (
) :

In particular, the problem (4.21) has a unique weak solution v (this is an alternative
proof of the existence and uniqueness of solution u of (4.20)). By Theorem 4.5 we
obtain v 2 C�

�


�
with some � > 0, and v = 0 on @
. It follows that also u 2 C�

�


�

and u = g on @
, so that u satis�es the boundary value in the classical sense.
Hence, u is a classical solution of (4.19). Finally, the uniqueness of the classical

solution of (4.19) in the class C2 (
) \ C
�


�
follows from the maximum principle of

Exercise 1.
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Recall from PDE the following result for the Laplace operator: let f 2 C2 (BR) be
bounded and let g 2 C (@BR). Then the Dirichlet problem�

�u = f in BR
u = g on @BR

(4.22)

has exactly one classical solution u 2 C2 (BR) \ C
�
BR

�
. Of course, the requirements

here are much milder than those in Theorem 4.6. Of course, this is very special situation
of L = � and 
 = BR where one can expect better results than in general.
There is one more serious distinction between these two results. If u is the classical

solution of (4.22), it may not be a weak solution in any sense, because, as we have seen
on examples, the classical solution of (4.22) with arbitrary continuous function g on
@
 may have in�nite energy: Z

BR

jruj2 dx =1;

and, hence, may be not inW 1;2 (BR). Hence, for the methods based on weak solutions,
one need to impose additional restriction on g.



Chapter 5

Harnack inequality

5.1 Statement of the Harnack inequality (Theorem
of Moser)

Consider again in a domain 
 � Rn a uniformly elliptic operator in divergence form

L =
nX

i;j=1

@i (aij@j)

with measurable coe¢ cients. Recall that if u 2 W 1;2
loc (
) is a weak solution of Lu = 0

in 
 then by Theorem 3.7 u is Hölder continuous in 
.
De�nition.We say that a function u is L-harmonic in 
 if u is the continuous version
of a weak solution u 2 W 1;2

loc (
) of Lu = 0 in 
.

The main result of this Chapter is the following theorem.

Theorem 5.1 If u is a non-negative L-harmonic function in a ball B2R � 
 then

sup
BR

u � C inf
BR

u (5.1)

where C = C (n; �).

The inequality (5.1) is called the Harnack inequality, analogously to the classical
Harnack inequality for harmonic functions that holds with the constant C = 3n. This
inequality for uniformly elliptic operators in divergence form with measurable coe¢ -
cients was �rst proved by Jürgen Moser in 1961.
Recall the weak Harnack inequality of Theorem 3.4 that we now reformulate in the

following form1:
Weak Harnack inequality Let B4R � 
 and assume that u 2 W 1;2 (B4R) is L-
harmonic in B4R. Choose some a > 0 and set

E = fx 2 BR : u (x) � ag :

If for some " > 0
jEj � " jBRj ;

1In comparison with Theorem 3.4, we replace B3R by B4R and supersolution by solution.

105
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then
inf
BR

u � �a; (5.2)

where � = � (n; �; ") > 0:

B4R

BR

{u > a}
E

The Harnack inequality (should it be already proved) implies the weak Harnack
inequality as follows: if the set E has positive measure then we conclude that

a � sup
BR

u;

and then (5.2) follows from (5.1).
However, in the proof of Theorem 5.1 we will use the weak Harnack inequality.

Moreover, we will use only the following properties of L-harmonic functions (apart
from continuity):

(i) the weak Harnack inequality;

(ii) if u is L-harmonic then also the function au + b is L-harmonic for arbitrary
a; b 2 R.

If these two properties hold for any other operator L then also the Harnack inequal-
ity holds for L.
The method of derivation of the Harnack inequality from the weak Harnack inequal-

ity was invented by Eugene Landis in 1970s as an alternative to a more complicated
method of Moser that involved a di¢ cult lemma of John-Nirenberg.

5.2 Lemmas of growth

For the proof of Theorem 5.1 we need some lemmas. The �rst lemma is an extension
of the weak Harnack inequality.
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Lemma 5.2 (Reiteration of the weak Harnack inequality) Let u be a non-negative
L-harmonic function in some ball BR (x). Consider a ball Br (y) where

y 2 B 1
9
R (x) and r � 2

9
R:

If
jfu � 1g \Br (y)j

jBr (y)j
� � > 0 (5.3)

then
u (x) �

� r
R

�s
�;

where � = � (n; �; �) > 0 and s = s (n; �) > 0.

B4r(y)

Br(y)

y

{u > 1}

x

BR(x)

Proof. Note that
B4r (y) � BR (x)

because
jx� yj+ 4r < 1

9
R +

8

9
R = R:

Applying the weak Harnack inequality in Br (y) and using (5.3), we obtain that

inf
Br(y)

u � �1 := � (n; �; �) :

It follows that
jfu � �1g \B2r (y)j

jB2r (y)j
� jBrj
jB2rj

= 2�n:

If B8r (y) � BR (x) then applying the weak Harnack inequality in B2r (y), we obtain
that

inf
B2r(y)

u � �1�
�
n; �; 2�n

�
= "�1;

where
" := �

�
n; �; 2�n

�
:
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{u > δ1}

Br(y)

B2r(y)

y

It follows that
jfu � "�1g \B4r (y)j

jB4r (y)j
� jB2rj
jB4rj

= 2�n:

Therefore, if B16r (y) � BR (x) then

inf
B4r

u � (�1") " = "2�1:

We continue by induction and obtain the following statement for any positive integer
k:

if B2k+2r (y) � BR (x) then inf
B
2kr

u � "k�1: (5.4)

Let k be the maximal integer such that

B2k+2r (y) � BR (x) :

BR(x)

yx

B (y)2k+2r

Then
2k+2r + jx� yj � R

while
2k+3r + jx� yj > R:
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It follows that

2kr >
R� jx� yj

8
� jx� yj

where we have used that R > 9 jx� yj : Hence, for this value of k, we have

x 2 B2kr (y) :

Then by (5.4)
u (x) � "k�1:

On the other hand, we have

2kr < 2k+2r + jx� yj � R

whence

k � log2
R

r
:

It follows that

u (x) � "log2
R
r �1 = �12

log2 " log2
R
r = �1

�
R

r

�log2 "
= �1

� r
R

�s
with s = log2

1
"
> 0, which �nishes the proof.

Lemma 5.3 (Alternative form of the weak Harnack inequality) Let u be an L-harmonic
function in some ball B4R (x). If

jfu � 0g \BR (x)j
jBRj

� � > 0;

then
sup
B4R(x)

u � (1 + �)u (x) ; (5.5)

where � = � (n; �; �) > 0 is the same as in the weak Harnack inequality.

B4R

BR {u< 0}

x
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Proof. If u (x) � 0 then (5.5) is trivially satis�ed. Assume that u (x) > 0. By
rescaling, we can assume also that

sup
B4R(x)

u = 1:

Consider the function v = 1�u that is a non-negative L-harmonic function in B4R (x).
Observe also, that

u � 0, v � 1:

Hence, we obtain that
jfv � 1g \BR (x)j

jBRj
� �:

By the weak Harnack inequality, we conclude that

inf
BR(x)

v � �;

where � = � (n; �; �) > 0. It follows that v (x) � � and, hence

u (x) � 1� � <
1

1 + �
=

1

1 + �
sup
B4R

u;

which is equivalent to (5.5).
14.07.16

Lemma 5.4 (Lemma of growth in a thin domain) There exists " = " (n; �) > 0 such
that the following is true: if u is an L-harmonic function in a ball BR (x) and if

jfu > 0g \BRj
jBRj

� "

then
sup
BR

u � 4u (x) :

Corollary 5.5 Under the same assumptions, choose some a 2 R and assume that

jfu > ag \BRj
jBRj

� ":

Then
sup
BR

u � a+ 4 (u (x)� a) :

Proof. Indeed, just apply Lemma 5.4 to the L-harmonic function v = u� a.

Proof of Lemma 5.4. The value of " will be determined later. So far consider " as
given. Consider any ball Br (y) � BR (x) such that

jBrj
jBRj

= 2";
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which is equivalent to
�
r
R

�n
= 2" and, hence, to

r = (2")1=nR:

Then
jfu > 0g \Br (y)j

jBrj
� jfu > 0g \BR (x)j

jBRj
jBRj
jBrj

� "
1

2"
=
1

2
:

It follows that
jfu � 0g \Br (y)j

jBrj
� 1

2
:

B4r(y)

Br(y)
y

{u < 0}

BR(x)

x

{u >0}

If B4r (y) � BR (x) then we can apply Lemma 5.3 and obtain that

sup
B4r(y)

u � (1 + �)u (y) ;

where � = �
�
n; �; 1

2

�
> 0: By slightly reducing �, we obtain the following claim.

Claim. If B4r (y) � BR (x) and r = (2")
1=nR then there exists y0 2 B4r (y) such that

u (y0) � (1 + �)u (y) ;

where � > 0 depends on n; �.

Let us apply the Claim �rst for y = x. Assuming that " is small enough, we obtain
4r < R and, hence, B4r (x) � BR (x). Hence, we obtain by Claim a point x1 2 B4r (x)
such that

u (x1) � (1 + �)u (x) :
If B4r (x1) � BR (x) then we apply Claim again and obtain that there is x2 2 B4r (x1)
such that

u (x2) � (1 + �)u (x1) :
We continue construction of the sequence fxkg by induction: as long as B4r (xk) �
BR (x), we obtain xk+1 2 B4r (xk) such that

u (xk+1) � (1 + �)u (xk) :

If, for some k, B4r (xk) is not contained in BR (x) then we stop the construction.
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x
x1

x2 xk

xk­1

BR(x)

…

By construction, if xk exists then xk 2 BR (x) and

u (xk) � (1 + �)k u (xk) : (5.6)

Besides, we have
jxl+1 � xlj < 4r for all l � k � 1;

which implies that
jxk � xj < 4kr: (5.7)

Let us prove by induction in k the following claim:

if 4kr < R then xk exists.

We know already that x1 exists. Let us prove the induction step, that is,

if 4 (k + 1) r < R then xk+1 exists.

Indeed, if 4 (k + 1) r < R then also 4kr < R and we obtain the inductive hypothesis
that xk exists. It follows from (5.7) that

B4r (xk) � B4(k+1)r (x) :

Since 4 (k + 1) r < R, we see that B4r (xk) � BR (x), and this construction can be
continued so that xk+1 exists, which �nishes the inductive proof.
Let us choose the maximal integer k with 4kr < R: Then we have

4 (k + 1) r � R

and, hence,

k � R

4r
� 1 = 1

4 (2")1=n
� 1:

It follows from (5.6) that

u (xk) � (1 + �)
1

4(2")1=n
�1
u (x) :

Finally, choosing " small enough (depending only on � and n, that is, on � and n), we
obtain

sup
BR(x)

u � u (xk) � 4u (x) ;

which was to be proved.
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5.3 Proof of the Harnack inequality

Here we prove Theorem 5.1. Observe �rst that it su¢ ces to prove the following version
of the Harnack inequality: there exists a constant C, depending on n; � and such that
if u is a non-negative L-harmonic function on a ball BKR (x) (where K = 18) then

sup
BR(x)

u � Cu (x) :

Without loss of generality, we can assume that

sup
BR(x)

u = 2; (5.8)

and we need to prove that
u (x) � c (5.9)

for some positive constant c = c (n; �). Let us construct a sequence fxkgk�1 of points
such that

xk 2 B2R (x) and u (xk) = 2
k: (5.10)

A point x1 with u (x1) = 2 exists in BR (x) by assumption (5.8). Assume that xk
satisfying (5.10) is already constructed. Then, for small enough r > 0, we have

sup
Br(xk)

u � 2k+1:

Set

rk = sup

(
r 2 (0; R] : sup

Br(xk)

u � 2k+1
)
:

If rk = R then we stop the process without constructing xk+1. If r < R then we
necessarily have

sup
Br(xk)

u = 2k+1

(note that Br (xk) � BR (xk) � B4R (x) so that u is de�ned in Br (xk)). Therefore,
there exists xk+1 2 Brk+1 (xk) such that u (xk+1) = 2

k+1:
If xk+1 2 B2R (x) then we keep xk+1 and go to the next step. If xk+1 =2 B2R (x) then

we disregard xk+1 and stop the process.
Hence, we obtain a sequence of balls fBrk (xk)g such that

rk � R; xk 2 B2R (x) ; u (xk) = 2
k

and
sup

Brk (xk)

u � 2k+1: (5.11)

Moreover, we have also
jxk+1 � xkj � rk:

The sequence fxkg cannot be in�nite because u (xk) ! 1 whereas u is bounded in
B2R (x) as a continuous function. Let N be the largest value of k in this sequence.
Then we have either rN = R or rN < R and xN+1 =2 B2R (x) (where xN+1 is the
disregarded point).
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xN+1x1 xN

xN­1

B2R(x)

…

BR(x)

x2

r1 rN

r2

In the both cases we clearly have

r1 + :::+ rN � R: (5.12)

19.07.16

In any ball Brk (xk) we have by (5.11)

sup
Brk (xk)

u � 2k+1 < 2k�1 + 4
�
2k � 2k�1

�
= a+ 4 (u (xk)� a) ;

where a = 2k�1. By Corollary 5.5, we conclude that

jfu > ag \Brk (xk)j
jBrk j

> ";

that is, ���u � 2k�1	 \Brk (xk)��
jBrk j

� ":

Now let us apply Lemma 5.2 with Br (y) = Brk (xk). Since u is non-negative and
L-harmonic in BKR (x), the following conditions need to be satis�ed:

rk �
2

9
KR and jxk � xj � 1

9
KR:

Since rk � R and jxk � xj � 2R, the both conditions are satis�ed if K = 18. By
Lemma 5.2, we obtain that

u (x) �
�rk
R

�s
�2k�1; (5.13)

where � = � (n; �; ") > 0 and s = s (n; �) > 0.
The question remains how to estimate

�
rk
R

�s
2k�1 from below, given the fact that we

do not know much about the sequence frkg: the only available information is (5.12).
The following trick was invented by Landis. The condition (5.12) implies that there
exists k � N such that

rk �
R

k (k + 1)
: (5.14)
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Indeed, if for all k � N we have

rk <
R

k (k + 1)
;

then it follows that
NX
k=1

rk <
1X
k=1

R

k (k + 1)
= R;

which contradicts (5.12). Hence, choose k that satis�es (5.14). For this k we obtain
from (5.13) that

u (x) � �
�rk
R

�s
2k�1 � �

2k�1

(k (k + 1))s
:

The next observation is that although we do not know the value of k, nevertheless we
can obtain a lower bound of u (x) independent of k because

m := inf
k�1

2k�1

(k (k + 1))s
> 0:

Hence, we conclude that
u (x) � �m =: c;

which �nishes the proof of (5.9).
Finally, let us prove that if u is non-negative and L-harmonic function in a ball B2R

then
sup
BR

u � C inf
BR

u:

Assume without loss of generality that the center of the ball BR is 0. Let a be a point
in BR where u takes the maximal value and b be the point in BR where u takes the
minimal value. We need to prove that

u (a) � Cu (b)

for some C = C (n; �). It su¢ ces to prove that

u (a) � Cu (0) and u (0) � Cu (b) :

Set r = R=K (where K = 18 as above) and connect 0 and a by a sequence fxjgKj=0 of
points such that

x0 = 0; xK = a; jxj � xj+1j � r:

For that, it su¢ ces to choose all xk on the interval [0; a] dividing this interval into K
equal parts.
Since xj 2 BR, the ball BKr (xj) = BR (xj) is contained in B2R (0). By the form of

the Harnack inequality that we proved above, we conclude that

sup
Br(xj)

u � Cu (xj) :

Since xj+1 2 Br (xj), it follows that

u (xj+1) � Cu (xj)

and, hence,
u (a) � CKu (0) :

The inequality for u (b) is proved in the same way.
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5.4 � Some applications of the Harnack inequality

5.4.1 Convergence theorems

Theorem 5.6 Let fukg1k=1 be a sequence of L-harmonic functions in a domain 
 �
Rn. If

uk
L2loc(
)�! u as k !1

then the function u is also L-harmonic in 
. Moreover, the sequence fukg converges
to u locally uniformly.

Proof. Let us show that the sequence fukg converges also in W 1;2
loc (
). For that it

su¢ ces to show that the sequence of frukg is Cauchy in L2
�
BR=2

�
in any ball BR=2

such that BR � 
. For that we use the inequality (3.10) from the proof of Theorem
3.2: Z

BR

jrvj2 �2dx � 4�4
Z
BR

jr�j2 v2dx; (5.15)

where v is any L-harmonic function2 in 
 and � is any Lipschitz function with compact
support in BR; in particular, choose � to be the following bump function:

� (x) =

8<:
1; jxj � r;
��jxj
��r ; r < jxj < �;

0; jxj � �:

(5.16)

where 0 < r < � < R. Take r = 1
2
R and � = 3

4
R: Then it follows from (5.15) thatZ

BR=2

jrvj2 dx � C

R2

Z
BR

v2dx: (5.17)

Let us apply this inequality to v = uk � ul. Since

kuk � ulkL2(BR) ! 0 as k; l!1;

it follows from (5.17) that

kruk �rulkL2(BR=2) ! 0 as k; l!1:

Hence, ruk converges in L2loc (
), which implies that u 2 W
1;2
loc and uk ! u inW 1;2

loc (
).
Since each uk satis�es the identityZ




nX
i;j=1

aij@juk@i' = 0

for all ' 2 D (
), passing to the limit as k ! 1, we obtain the same identity for u,
whence Lu = 0 follows.

2In fact, (5.15) was proved for v = u+ where u is L-harmonic function. Applying (5.15) also to
v = u�, we obtain the same inequality with v = u.
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The last claim follows from Theorem 3.2 that implies that, for any ball BR � 
,

sup
BR=2

ju� ukj �
C

Rn=2
ku� ukkL2(BR) :

Since ku� ukkL2(BR) ! 0 as k !1, it follows that also

sup
BR=2

ju� ukj ! 0;

which means that uk ! u locally uniformly.

Theorem 5.7 Let fukg1k=1 be a sequence of L-harmonic functions in a connected do-
main 
 � Rn. Assume that this sequence is monotone increasing, that is, uk+1 (x) �
uk (x) for all k � 1 ; x 2 
. Then the function

u (x) := lim
k!1

uk (x)

is either identically equal to 1 in 
, or it is an L-harmonic function in 
. Moreover,
in the latter case the sequence fukg converges to u locally uniformly.

Proof. By replacing uk with uk � u1, we can assume that all functions uk are non-
negative. Consider the sets

F = fx 2 
 : u (x) <1g

and
I = fx 2 
 : u (x) =1g

so that 
 = F t I: Let us prove that both F and I are open sets.
Indeed, take a point x 2 F and show that also B" (x) 2 F for some " > 0. Choose

" so that B2" (x) � 
: By the Harnack inequality, we have

sup
B"(x)

uk � C inf
B"(x)

uk � Cuk (x) :

By passing to the limit as k !1, we obtain

sup
B"(x)

u � Cu (x) :

Since u (x) < 1, we obtain that also supB"(x) u < 1 and, hence, B" (x) � F . Hence,
F is open.
In the same way one proves that

inf
B"(x)

u � C�1u (x) ;

which implies that I is open.
Since 
 is connected and 
 = F t I, it follows that either I = 
 or F = 
. In

the former case we have u � 1 in 
, in the latter case: u (x) < 1 for all x 2 
.
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Let us prove that in the latter case u is L-harmonic. For that, we �rst show that the
convergence uk ! u is locally uniform, that is, for any x 2 
 there is " > 0 such that

uk � u in B" (x) as k !1:

Then the L-harmonicity of u will follow by Theorem 5.6.
Choose again " > 0 so that B2" (x) � 
. For any two indices k > l, apply the

Harnack inequality to the non-negative L-harmonic function uk � ul:

sup
B"(x)

(uk � ul) � C (uk � ul) (x) :

Since (uk � ul) (x)! 0 as k; l!1, it follows that

uk � ul � 0 in B" (x) as k; l!1:

Hence, the sequence fukg converges uniformly in B" (x). Since fukg convergence point-
wise to u, it follows that

uk � u in B" (x) as k !1;

which �nishes the proof.

Theorem 5.8 If fukg is a sequence of L-harmonic functions in 
 that is bounded in
L2 (
), then there is a subsequence fukig that converges to an L-harmonic function
locally uniformly.

Proof. Consider any ball BR � 
. Let us apply the inequality (3.11) from the proof
of Theorem 3.2 that says the following: v is L-harmonic in 
 thenZ

BR

jr (v�)j2 dx � C

(�� r)2

Z
B�

v2dx

where we take 0 < r < � < R and function � is de�ned by (5.16). Taking r = 1
2
R and

� = 3
4
R, and applying this to v = uk,Z

BR

jr (uk�)j2 dx �
C

R2

Z
BR

u2kdx:

Since the right hand side is uniformly bounded for all k, so is the left hand side.
Therefore, the sequence fuk�g1k=1 is bounded in W 1;2 (BR). Since uk� 2 W 1;2

0 (BR),
we obtain by the compact embedding theorem that this sequence has a convergent
subsequence in L2 (BR). Since � = 1 on BR=2, it follows that fukg has a convergence
subsequence in L2

�
BR=2

�
.

Covering 
 by a countable family of the balls and using the diagonal process, we
conclude that fukg has a subsequence that converges in L2loc (
) to some function u. By
Theorem 5.6 we conclude that u is L-harmonic and the convergence is locally uniform.
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5.4.2 Liouville theorem

Theorem 5.9 If u is a non-negative L-harmonic function in Rn then u � const :

Proof. By subtracting from u the constant infRn u, we can assume without loss of
generality that infRn u = 0: We can apply the Harnack inequality to u in any ball BR
because u is L-harmonic and non-negative in B2R for any R > 0. Hence, we obtain

sup
BR

u � C inf
BR

u;

where C does not depend on R. Letting R!1, we see that the right hand side goes
to 0. Hence, the left hand side also goes to 0, and we conclude that u � 0:

5.4.3 Green function

We state the next theorem without proof.

Theorem 5.10 Let 
 be a bounded domain in Rn. Then there exists a function
G (x; y) on 
� 
 with the following properties:

1. G (x; y) is jointly continuous in (x; y) 2 
� 
 n diag :

2. G (x; y) � 0:

3. G (x; y) = G (y; x) :

4. For any function f 2 L2 (Rn), the following function

u (x) =

Z



G (x; y) f (y) dy

is a weak solution of the Dirichlet problem�
Lu = �f in 
;
u 2 W 1;2

0 (
) :

5. Assume n > 2. Then, for any compact set K � 
, there are positive constants
c1; c2 > 0 such that

c1 jx� yj2�n � G (x; y) � c2 jx� yj2�n (5.18)

for all x; y 2 K.

This theorem was proved by Walter Littman, Guido Stampacchia, and Hans Wein-
berger in 1963. The Harnack inequality of Theorem 5.1 was used to prove the estimate
(5.18).
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5.4.4 Boundary regularity

Let 
 be a bounded domain in Rn and consider the following Dirichlet problem in 
:�
Lu = 0 in 

u� g 2 W 1;2

0 (
)
(5.19)

where g 2 C1
�


�
is a given function.

De�nition. We say that a point z 2 @
 is regular for (5.19) if, for any g 2 C1
�


�
,

the (continuous version of the) solution u of (5.19) satis�es

lim
x!z
x2


u (x) = g (z) : (5.20)

Fix a point z on the boundary @
 and, for any integer k � 1, consider the following
sets:

Ek (z) = B2�k (z) \ 
c:

Theorem 5.11 Assume n > 2. Then a point z 2 @
 is regular for (5.19) if and only
if

1X
k=1

2k(n�2) cap(Ek (z)) =1: (5.21)

This theorem was proved by W.Littman, G.Stampacchia, and H.F.Weinberger in
1963 using their estimate (5.18) of the Green function. For the case L = �, Theorem
5.11 was �rst proved by Norbert Wiener in 1924. The condition (5.21) for regularity
is called Wiener�s criterion.
One of the consequences of Theorem 5.11 is that the notion of regularity of z 2 @


does not depend on the choice of the operator L as long as it in the divergence form
and uniformly elliptic.



Chapter 6

� Equations in non-divergence form

6.1 Strong and classical solutions

Consider in a domain 
 � Rn a non-divergence form operator

Lu =
nX

i;j=1

aij (x) @iju

with measurable coe¢ cients aij 2 C1 (
). Assume that L is uniformly elliptic with
the ellipticity constant �. Given a function f 2 Lploc (
), where p � 1, we say that u is
a strong solution of Lu = f in 
 if u 2 W 2;p

loc (
) and the equation

nX
i;j=1

aij (x) @iju (x) = f (x) (6.1)

is satis�ed for almost all x 2 
. Here @iju is the weak derivative of u that obviously
belongs to Lploc (
). Here we consider only strong solutions of the class W

2;n
loc , that is,

p = n. By the Sobolev embedding theorem, we have

W 2;n
loc (
) ,! C (
) ;

so that all strong solutions are continuous functions.
Assume now that the coe¢ cients aij are continuous in 
. Given a function f 2

C (
), we say that u is a classical solution of Lu = f in 
 if u 2 C2 (
) and the
equation (6.1) is satis�ed for all x 2 
. Of course, any classical solution is also strong.
If u is a solution of Lu = 0 (either strong or classical) then we refer to u as an

L-harmonic function.

6.2 Theorem of Krylov-Safonov

The main results of this Chapter are stated in the next two theorems that were proved
by Nikolai Krylov and Michail Safonov in 1980 based on the previous work of Eugene
Landis.

121
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Theorem 6.1 (Estimate of the Hölder norm) If u is an L-harmonic function in 

then u 2 C� (
) with some � = � (n; �) > 0. Moreover, for any compact set K � 
,

kukC�(K) � C kukC(
) ; (6.2)

where C = C (n; �; dist (K; @
)) :

Of course, if u is a classical solution then u 2 C2 (
) and, hence, u 2 C� (
) with
any � < 1. However, even in this case the estimate (6.2) of the Hölder norm is highly
non-trivial, because � and C do not depend on a particular solution u.

Theorem 6.2 (The Harnack inequality) If u is a non-negative L-harmonic function
in a ball B2R � 
 then

sup
BR

u � C inf
BR

u

where C = C (n; �).

In this Chapter we will prove restricted versions of Theorems 6.1 and 6.2 assuming
that aij 2 C1 (
) and that the L-harmonic functions are classical solutions of Lu = 0.
Passage from C1 coe¢ cients to the general case can be done by using approximation
techniques that we do not consider here.

6.3 Weak Harnack inequality

From now on we assume that aij 2 C1 (
) and that any L-harmonic function u is
classical, that is, belongs to C2 (
). In fact, by Corollary 2.11, we have u 2 C1 (
).
As in the case of the divergence form operator, we will concentrate on the proof of

the weak Harnack inequality for L-harmonic functions. Then both Theorems 6.1 and
6.2 follow in the same way as for the divergence form case. Hence, our main goal is
the following theorem.

Theorem 6.3 (Weak Harnack inequality for non-divergence form operator) Let u be a
non-negative L-harmonic function in a ball B4R � 
. Choose any a > 0 and consider
the set

E = fu � ag \BR.
If, for some � > 0,

jEj � � jBRj ;
then

inf
BR

u � �a;

where � = � (n; �; �) > 0:

We present here the proof devised by E.Landis shortly after Krylov and Safonov
announced the proofs of Theorems 6.1 and 6.2. This proof has advantage that it is in
many ways similar to the proof in the divergence form case.
However, there is a crucial distinction between the two cases. In the present case

of a non-divergence form operator, the proof uses a highly non-trivial theorem of
Alexandrov-Pucci that we state below and that provides an estimate of solution of
the corresponding Dirichlet problem. We precede it by the statement of the existence
result that we also need.
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Theorem 6.4 Let BR � 
 and f 2 C1
�
BR

�
. Then the classical Dirichlet problem�

Lu = f in BR
u = 0 on @BR

(6.3)

has a solution u 2 C2 (BR) \ C
�
BR

�
:

Approach to the proof. Rewrite the operator L in the form

Lu =
nX

i;j=1

@i (aij@ju)�
nX
j=1

 
nX
i=1

@iaij

!
@ju

=

nX
i;j=1

@i (aij@ju) +

nX
j=1

bj@ju;

where

bj =
nX
i=1

@iaij:

Then we need the classical solvability of the Dirichlet problem for the divergence form
operator with lower order terms and with smooth coe¢ cients.
Since L has now a divergence form, we can consider �rst the weak Dirichlet problem�

Lu = f weakly in BR;
u 2 W 1;2

0 (BR) :

By Theorem 2.12, this problem has a solution u 2 C1 (BR), that is hence a classical
solution of Lu = f .
We need still to ensure the boundary condition u = 0 in the classical sense. For

the operators without lower order terms bj the corresponding result is contained in
Theorem 4.6. With the terms bj one basically has to repeat all the theory of Hölder
regularity (both interior and up to the boundary) and then to arrive to a version of
Theorem 4.6 for the operator with lower order terms. We skip this part.

Theorem 6.5 (Theorem of Alexandrov � Pucci) If u is a classical solution of the
Dirichlet problem (6.3) with f 2 C

�


�
then the following estimate is true:

sup
BR

juj � CR kfkLn(BR) ;

where C = C (n; �) :

The proof of this theorem will be given later. In the next section we prove three
lemmas needed for the proof of the weak Harnack inequality.
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6.4 Some lemmas

Lemma 6.6 Let u be an L-harmonic function in 
 and assume that u � 0 in a ball
B4R (z) � 
. Choose any a > 0 and consider the set

E = fu � ag \BR (z) .

If the set E contains a ball Br (y) then

inf
BR(z)

u � c
� r
R

�s
a;

where s = s (n; �) > 0 and c = c (n; �) > 0.

Proof. Without loss of generality, we can take a = 1, so that

E = fu � 1g \BR (z) :

Assume also for simplicity that y is the origin of Rn. Consider the set

G = fu < 1g \B4R (z) :

B4R(z)

z

G={u <1}

BR(z)

Br(y)

E

{u > 1}

Fix some s > 0 to be chosen later, and consider the following function

w (x) =

�
1

jxjs �
1

(3R)s

�
rs

Since the origin is at y, outside the ball Br (y) we have jxj � r, whence

w (x) � 1 outside Br (y) :

Since by hypotheses Br (y) � E and hence Br (y) \G = ;, it follows that

w (x) � 1 on G:
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Since on @B4R (z) we have jxj � 3R, it follows that

w (x) � 0 on @B4R (z) :

Recall that by Exercise 5 we have in Rn n f0g

L jxj�s > 0

provided s > n�2 � 2. Choose one of such values of s, for example, s = n�2. Since
G � Rn n f0g, we obtain

Lw > 0 in G:

As we have seen above, the values of w on @G are as follows:

w � 1 on @G \B4R (z)
w � 0 on @G \ @B4R (z) :

Let us compare w with u in G. The function u satis�es

Lu = 0 in G

and the boundary conditions:

u � 1 on @G \B4R (z) ;
u � 0 on @G \ @B4r (z) :

Using the comparison principle of Exercise 2, we conclude that

u � w in G.

It follows that
inf
BR(z)

u = inf
BR(z)\G

u � inf
BR(z)\G

w � inf
BR(z)

w:

Since in BR (z) we have jxj � 2R, it follows that in BR (z)

w (x) �
�

1

(2R)s
� 1

(3R)s

�
rs = c

� r
R

�s
;

where c = 2�s � 3�s > 0. We conclude that

inf
BR(z)

u � c
� r
R

�s
;

which was to be proved.

Lemma 6.7 (Lemma of growth in a thin domain) Let u be a non-negative L-harmonic
function in a ball BR � 
. There exists " = " (n; �) > 0 with the following property: if
for some a > 0

jfu < ag \BRj
jBRj

� ";

then
inf
BR=4

u � 1

2
a:
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Restating this lemma in terms of the function v = a � u with a = supBR u yields
the following: if v is L-harmonic in BR and

jfv > 0g \BRj
jBRj

� "

then
sup
BR

u � 2 sup
BR=4

u:

This formulation matches that of Lemma 5.4 for the divergence form operators (except
for the value 2 instead of 4, which is unimportant).
Proof. Assume that the ball BR is centered at the origin. Without loss of generality
set a = 1, and consider the set

G = fu < 1g \BR:

Since jGj < " jBRj, there exists an open set G0 in BR such that

G \BR � G0

and
jG0j < 2" jBRj (6.4)

BR

0

BR/4

G={u <1}

G8

Choose a function f 2 C1
�
BR

�
such that

0 � f � 1; f = 1 on G; f = 0 outside G0:

By Theorem 6.4, the following Dirichlet problem�
Lv = �f in BR
v = 0 on @BR

has a classical solution v 2 C2 (BR)\C
�
BR

�
. Since Lv � 0, it follows by the minimum

principle that v � 0 in BR. By Theorem 6.5 of Alexandrov and Pucci,

sup
BR

v � CR kfkLn(BR) � CR jG0j1=n � C 0R2"1=n; (6.5)
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where we have also used (6.4). Consider now the function

w (x) = c1 � c2 jxj2 � c3v (x)

where c1; c2; c3 are positive constant to be chosen. We would like w to satisfy the same
conditions as in the previous proof:

(i) Lw � 0 in G

(ii) w � 1 in G

(iii) w � 0 on @BR

We have in G

Lw = �c2L jxj2 � c3Lv

= �2c2
nX
i=1

aii (x) + c3f

� �2c2�n+ c3f

� �2c2�n+ c3;

where we have used that f = 1 on G. Hence, in order to satisfy (i), the constants c2
and c3 should satisfy

c3 � 2c2�n:
In G we have w (x) � c1; hence, (ii) is satis�ed if

c1 � 1:

Finally, on @BR we have jxj = R and, hence,

w (x) � c1 � c2R
2:

Hence, to satisfy (iii) we should have

c1 � c2R
2:

Therefore, we choose c1; c2; c3 as follows:

c1 = 1

c2 = R�2

c3 = 2c2�n =
2�n

R2
:

Comparing w with u as in the previous proof, we obtain again that u � w in G. Hence,
we have

inf
BR=4

u = inf
BR=4\G

u � inf
BR=4\G

w � inf
BR=4

w:

In BR=4 we have, using (6.5),

w (x) � c1 � c2 (R=4)
2 � c3 sup v

� c1 � c2 (R=4)
2 � c3C

0R2"1=n

= 1� 1

16
� 2�nC 0"1=n:
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Choosing " small enough depending on � and n, we obtain

inf
BR=4

w � 1

2
;

which �nishes the proof.

Lemma 6.8 Under conditions of Lemma 6.7, if��fu < ag \BR=4
����BR=4�� � "

then

inf
BR=4

u � 
a;

where 
 = 
 (n; �) > 0:

Proof. Let a = 1 and let " be from Lemma 6.7. Applying Lemma 6.7 to the ball BR=4
instead of BR, we obtain that

inf
BR=16

u � 1

2
:

BR

BR/4

G={u <1}

0
BR/16

{u <1/2}

Hence, the set
�
u � 1

2

	
\ BR=4 contains the ball BR=16. Applying Lemma 6.6, we

obtain

inf
BR=4

u � c

�
R=16

R=4

�s
3

4
= c4�s

1

2
=: 
;

which �nishes the proof.
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6.5 Proof of the weak Harnack inequality

Set without loss of generality a = 1: Let u be a non-negative L-harmonic function in a
ball B4R � 
. Assuming that the set

E = fu � 1g \BR

satis�es the condition
jEj � � jBRj ;

where � > 0, we need to prove that

inf
BR

u � �;

where � = � (n; �; �) > 0:
Consider for any non-negative integer k the set

Ek =
�
u � 
k

	
\BR;

where 
 2 (0; 1) is the constant from Lemma 6.8.

0

BR E={u >1}

Ek={u >γk}

The main part of the proof is contained in the following claim.

Claim. There exist � = � (n; �) > 0 and a positive integer l = l (n; �; �) such that, for
any k � 0 the following dichotomy holds:

(i) either
jEk+1j � (1 + �) jEkj

(ii) or
Ek+l = BR:

Let us �rst show how this Claim allows to �nish the proof. Since the function u in
BR is bounded, the case (1) cannot holds for all k. Let N be the minimal value of k
such that (i) does not holds for k = N . In other words, (i) holds for k = 0; :::; N � 1
but does not holds for k = N: Hence, (ii) holds for k = N .
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It follows that

jEN j � (1 + �) jEN�1j � ::: � (1 + �)N jE0j :

Since jEN j � jBRj and jE0j = jEj � � jBRj, it follows that

(1 + �)N � 1

�

whence

N �
ln 1

�

ln (1 + �)
:

On the other hand, applying (ii) for k = N , we obtain

EN+l = BR

that is,

inf
BR

u = inf
EN+l

u � 
N+l � 

ln 1
�

ln(1+�)
+l =: �;

which �nished the proof of the weak Harnack inequality.
Now let us prove the above Claim. It su¢ ces to prove it for the special case k = 0,

that is,

(i) either jE1j � (1 + �) jE0j

(ii) or El = BR:

Indeed, if it is proved for k = 0, then for a general k consider the function v = u=
k.
Consider the sets eEj = �v � 
j

	
\BR

where j is a non-negative integer. Clearly, we have

Ek+j =
�
u � 
k+j

	
\BR =

�
v � 
j

	
\BR = eEj:

In particular, Ek = eE0 and Ek+1 = eE1. Hence, applying the special case of the Claim
to function v, we obtain the general case of the Claim for function u:
Hence, let us prove the above special case k = 0. Let us reformulate it in the

following equivalent way:

(i) either jE1j � (1 + �) jE0j

(ii) or infBR u � �; where � = � (n; �; �) > 0:

Indeed, if the latter condition holds then we �nd l such that 
l � �, and obtain
El = BR.
Choose r < R such that

jE \BR�rj =
1

2
jEj (6.6)

and set
F := E \BR�r = fu � 1g \BR�r:
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0

BR

E

BR­r

F

Consider two cases.
Case 1. Assume that there exists x 2 F such that

jfu < 1g \Br (x)j
jBrj

� ";

where " = " (n; �) > 0 is the constant from Lemma 6.7.

0

BR

BR­r

E={u>1}

Br(x)

F

u<1
Br/4(x)

Then by Lemma 6.7 we have

inf
Br=4(x)

u � 1

2
:

Note that Br=4 (x) � BR. Hence, in BR there is a ball Br=4 (x) where u � 1
2
. Applying

Lemma 6.6, we conclude that

inf
BR

u � c

�
r=4

R

�s
1

2
:

From (6.6) we have

jBRj � jBR�rj = jBR nBR�rj � jE nBR�rj =
1

2
jEj � 1

2
� jBRj
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which implies after division by BR that

1�
�
R� r

R

�n
� 1

2
�:

It follows that
r

R
� 1�

�
1� 1

2
�

�1=n
:

Hence, we obtain

inf
BR

u � c

2
4�s

 
1�

�
1� 1

2
�

�1=n!s
=: � > 0;

which means that the alternative (ii) takes places.
Case 2 (main). Assume that, for any x 2 F , we have

jfu < 1g \Br (x)j
jBrj

� ":

For any x 2 F and � > 0 consider the quotient:

jfu < 1g \B� (x)j
jB�j

:

As � ! 0, this quotient goes to 0 for almost all x 2 F because in F we have u � 1.
On the other hand, for � = r, this quotient is � ". Hence, for almost all x 2 F , there
exists � (x) 2 (0; r) such that ��fu < 1g \B�(x) (x)����B�(x)�� = ": (6.7)

0

BR

BR­r

E={u>1}

Bρ(x)(x)

F

u<1

Denote this set of points x by F 0, so that F 0 � F and jF 0j = jF j. By the property
of the Lebesgue measure, there is a compact set K � F 0 such that

jKj � 1

2
jF 0j = 1

2
jF j = 1

4
jEj :
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The family of ball
�
B�(x) (x)

	
x2K forms an open covering ofK. Choose a �nite subcover�

B�i (xi)
	
where �i = � (xi). By the standard ball covering argument, we can pass to a

subsequence and, hence, assume that the balls
�
B�i (xi)

	
are disjoint while

�
B3�i (xi)

	
cover K.

0

BR

BR­r
K

Bρ (xi)i

Observe that xi 2 BR�r, whence

jxij+ 4�i � R� r + 4�i � R + 3r � R + 3R = 4R:

Therefore, B4�i (xi) � B4R. We can apply in B4�i (xi) Lemma 6.8 because by (6.7)��fu < 1g \B�i (xi)����B�i�� = "; (6.8)

which yields
inf

B�i (xi)
u � 
: (6.9)

By construction, all balls B�i (xi) are contained BR, which implies by (6.9) that

(E1 n E) \B�i(xi) = f
 � u < 1g \B�i(xi) = fu < 1g \B�i (xi) :

Combining with (6.8), we obtain��(E1 n E) \B�i(xi)�� = "
��B�i (xi)�� :

BR

E1={u >γ}

E={u>1}

{u<1}

Bρ (xi)i
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Adding up in i and using that all balls B�i (xi) are disjoint, we obtain

jE1 n Ej �
X
i

"
��B�i (xi)��

= 3�n
X
i

"
��B3�i (xi)��

� 3�n" jKj � 3�n "
4
jEj ;

whence
jE1j �

�
1 + 3�n

"

4

�
jEj ;

thus proving the alternative (i) with � = 3�n "
4
:
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