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Chapter 0O

Introduction

12.04.16
0.1 Elliptic operators in divergence and non-divergence
form

In this course we are concerned with partial differential equations in R™ of the form
Lu = f where f is a given function, v is an unknown function, and L is a second order
elliptic differential operator of one of the two forms:

1. Lu= Z 0; (a;j (z) O;u) (a divergence form operator)
ij=1

2. Lu= Z a;; (z) 0;ju (a non-divergence form operator).
ij=1

In the both cases, the matrix (a;;) depends on z, is symmetric, that is, a;; = a;i,
and uniformly elliptic. The latter means that there is a constant A such that, for all =
from the domain of (a;;) and for all £ € R”,

ATHEP <Y ay (@) €€ < AP (0.1)

ij=1

where [£] = /€] + ... + &, In other words, all the eigenvalues of the matrix (a; ()
(that are real because the matrix is symmetric) are located in the interval [)\71, )\].
The constant A is called the ellipticity constant of (a;;) or of L.

Of course, the Laplace operator

=1

is both divergence and non-divergence form operator with the matrix (a;;) = id. It is
uniformly elliptic with A = 1.

If (a;;) is a constant matrix, that is, independent of x, and (a;;) is symmetric and
positive definite, then the divergence and non-divergence form operators coincide and
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2 CHAPTER 0. INTRODUCTION

are uniformly elliptic. Indeed, we have for all £ € R™

)\min |€|2 S Z aijgigj S /\max |€|27

i,j=1

where A, is the minimal eigenvalue of (a;;) and Apax — the maximal eigenvalues.
Hence, (0.1) holds with A = max (Amax, Amin) -
Note that the divergence form operator can be represented in the form

Lu= Z 81 (aij (x) Gju) = Z Q5 (J?) &ju + (@a”) 8ju,

ij=1 ij=1

that is the sum of the non-divergence form operator and lower order terms. However,
this works only for differentiable coefficients a;;. In fact, the most interesting applica-
tions in mathematics requires operators with discontinuous coefficients a,;. Of course,
in this case the divergence form operator cannot be understood in the the sense of
classical derivatives, and we will define the meaning of Lu in the weak sense.

0.2 Origin of divergence form operators

One of the origins of divergence form operators is heat diffusion. Let u(x,t) denote
the temperature in some medium at a point z € R3 at time ¢. Fix a region Q C R3.
By the Fourier law of thermoconductance, the amount d() of the heat energy that has
flown into 2 through a piece do of its boundary 0f) between the time moments ¢ and

t 4+ dt is equal to
3

dQ = Z a;j (z) v;0ju dodt
ij=1
where v is the outer unit normal vector field to 0 at a point « € do and a;; () is the
tensor of the thermal conductance of the material of the body (the dependence of a;; of
x means that the conductance may be different at different points, and the dependence
on the indices 1, j reflects the fact that the conductance may be different in different
directions).

The expression
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can be regarded as an inner product of the vectors v and Vu with the coefficients
a;; (x) (symmetry and positive definiteness of this matrix are needed for that). Hence,
the total energy () that has flown into ) through its entire boundary between time
moments ¢ and t + h is

t+h 3
Q= / / Z a;; (z) v;0ju dodt,
t o9

,j=1

On the other hand, the amount of heat energy d@’ acquired by a piece dz of §2 from
time ¢ to time ¢ + A is equal to

dQ" = (u(z,t +h) —u(z,t)) cpdx

where p is the density of the material of the body and ¢ is its heat capacity (both ¢ and
p are functions of z). Indeed, the volume element dz has the mass pdzr, and increase
of its temperature by one degree requires cpdx of heat energy. Hence, increase of the
temperature from wu (z,t) to u(z,t+ dt) requires (u(x,t+ h) —u(x,t)) cpdx of heat
energy. The total amount @)’ of energy absorbed by the entire body €2 from time t to
time t + h is equal to

Q' = /Q (u(z,t+h) —u(z,t))cpd.

By the law of conservation of energy, in absence of heat sources we have QQ = @',

that is,
t+h 3
/ (/ Z a;;v;05u da) dt = / (u(z,t+h) —u(z,t))cpde.
t o9 ; Q

2,7=1

Dividing by h and passing to the limit as h — 0, we obtain

3
/ Z a;;vi0ju do = / (Oyu) epdz.
0 Q

3,j=1

H
Applying the divergence theorem to the vector field F' with components

3
E: E aijf)ju
=1

we obtain

3 3
— —
ai-uia-udaz/ F-Vda:/div Fdx:/ O; F; da::/ 0; (a;;0;u) dx,
| S amidpuin= [ [ [ @mar= [ 30600

3,7=1
/cp@tudx:/Ludx,
Q Q

which implies
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where

3
L= Z 01 (a,-jaju)
ij=1
is the divergence form operator. Since this identity holds for any region €2, it follows
that the function u satisfies the following heat equation

cp Oyu = Lu.

In particular, if u is stationary, that is, does not depend on ¢, then u satisfies Lu = 0.
We have seen that in the above derivation the operator L comes out exactly in the
divergence form because of an application of the divergence theorem.

0.3 Origin of non-divergence form operators

The operators in non-divergence form originate from different sources, in particular,
from stochastic diffusion processes. A stochastic diffusion process in R" is mathematical
model of Brownian motion in inhomogeneous media. It is described by the family
{P,},crn of probability measures, where P, is the probability measure on the set €,
of all continuous paths w : [0, 00) — R™ such that is w (0) = =.

Define for any ¢ > 0 a random variable X (t) on Q, by X (¢) (w) = w(t). The
random path t — X (t) can be viewed as a stochastic movement of a microscopic
particle. The diffusion process is described by its infinitesimal means

its infinitesimal covariances
E, (X; (t+dt) — X; (1) (X (t +dt) — X; (1)) = aijdt + o(dt) as dt — 0,

where b; and a;; are some functions that in general depend in x and ¢, but we assume
for simplicity that they depend only on x.

By construction, the matrix (a;;) is symmetric and positive definite, as any covari-
ance matrix. The functions a;; and b; determine the non-divergence form operator with

lower order terms: . .
Lu = Z aij&-ju -+ Z b,@,u,
ij=1 i=1
that has the following relation to the process: for any bounded continuous function f
on R", the function

u(z,t) =B, (f (X (1))

satisfies the heat equation
owu = Lu

with the above operator L. This equation is called the Kolmogorov backward equation.
This operator L is called the generator of the diffusion process because it contains all
the information about this stochastic process.



Chapter 1

Weak Dirichlet problem for
divergence form operators

In this Chapter we deal with the divergence form operator

Lu = Z i (aij (z) Oju)

4,j=1

defined in an open set Q@ C R". We always assume that the coefficients a;; (z) are
measurable functions of  (not necessarily continuous), the matrix (a;;) is symmetric,
that is, a;; = aj;, and positive definite at any = € €2. Then the operator L is called
elliptic. Should the condition be satisfied then L is called uniformly elliptic.

Since the coefficients a;; may be not differentiable, we have to specify exactly how
the equation Lu = f is understood.

1.1 Distributions

Let €2 be an open subset of R™. Denote by D (2) the linear topological space that as
a set coincides with C§° (£2), the linear structure in D (Q2) is defined with respect to
addition of functions and multiplication by scalars from R, and the topology in D ()
is defined by means of the following convergence: a sequence {p,} of functions from
D (§2) converges to ¢ € D(Q) in the space D () if the following two conditions are
satisfied:

1. ¢, = ¢ in Q and D%p, = D%p for any multiindex « of any order;

2. there is a compact set K C €2 such that supp ¢, C K for all £.

It is possible to show that this convergence is indeed topological, that is, given by
a certain topology.

Any linear topological space V has a dual space V' that consists of continuous linear
functionals on V.

Definition. Any linear continuos functional f : D (£2) — R is called a distribution in
Q) (or generalized functions). The set of all distributions in 2 is denoted by D’ (Q2). If
f € D' (Q) then the value of f on a test function ¢ € D (2) is denoted by (f, ).

Any locally integrable function f : €2 — R can be regarded as a distribution as

5



6 CHAPTER 1. WEAK DIRICHLET PROBLEM

follows: it acts on any test function ¢ € D (£2) by the rule

(f.p) = / fod. (1.1)

Note that two locally integrable functions f, g correspond to the same distribution if
and only if f = g almost everywhere, that is, if the set

{reQ: f(r)#g()}

has measure zero. We write shortly in this case

f=gae. (1.2)

Clearly, the relation is an equivalence relation, that gives rise to equivalence classes
of locally integrable functions. The set of all equivalence classes of locally integrable
functions is denoted!| by Lj,. (©2). The identity establishes the injective mapping
Li,. () — D' (Q) so that L}, (Q) can be regarded as a subspace of D’ (Q).

There are distributions that are not represented by any L; . function, that is, the
difference D' () \ L}, (Q) is not empty. For example, define the delta-function d,, for
any xo € €2 as follows:

(0205 ) = @ (20) -

Although historically 4., is called delta-function, it is a distribution that does not
correspond to any function.

Definition. Let f € D' (€2). Fix a multiindex a. A distributional partial derivative
D f is a distribution that acts on test functions ¢ € D () as follows:

(D*f,0) = (1) (£, D%¢) Vo €D (D), (1.3)

where Dy is the classical (usual) derivative of .

Note that the right hand side of makes sense because D*p € D (§2). Moreover,
the right hand side of is obviously a linear continuous functions in ¢ € D (),
which means that D f exists always as a distribution.

If there is a function g € L} () such that

loc

(9,9) = (=1 (,D*p) Yo €D (D),

then g is called a weak D® derivative of f. In this case the distributional derivative
D f is represented by the function g.

If f € C*(Q) then its classical derivative D f with |a| < k coincides with the weak
and, hence, distributional derivative.

'Sometimes L} . (£2) is loosely used to denote the set of all locally integrable functions in €. How-

ever, in a strict sense, the elements of Lj,, (€2) are not functions but equivalence classes of functions.



1.2. SOBOLEV SPACES 7

1.2 Sobolev spaces

As before, let Q2 be an open subset of R". Fix p € [1,00). A Lebesgue measurable
function f : 2 — R is called p-integrable if

/|f]pdx<oo.
0

Two measurable functions in €2 (in particular, p-integrable functions) are called equiv-
alent if

f=gas.
This is an equivalence relation, and the set of all equivalence classes of p-integrable

functions in € is denoted by L? (2). It follows from the Holder inequality, that LP (2) C
L. (9). In particular, all the elements of L? () can be regarded as distributions.

loc
The set LP () is a linear space over R. Moreover, it is a Banach space (=complete

normed space) with respect to the norm

1/p
Hﬂm~—<ﬁﬂﬂﬂm)

The Banach spaces L? (Q2) are called Lebesgue spaces.
The case p = 2 is of special importance because the space L? (2) has inner product

:/mm
Q
whose norm coincides with || f||, as

|mm=(Aﬁmfﬂ=¢aﬂ.

Hence, L? (2) is a Hilbert space.
Definition. Define the Sobolev space W*P for arbitrary non-negative integer k& and
p € [1,00)

WkP(Q) ={f € LP(Q): D*f € L (Q) for all a with |a| < k}, (1.4)

where D f is distributional derivative.

In words, W#P (2) is a subspace of L? (Q) that consists of functions having in L? ()
all weak partial derivatives of the order < k. In particular, W% = LP. It is easy to see
that Cg° (Q) C WP (Q) for any k and p.

Let us introduce the W*? (Q) the following norm:

s = > [ [DfIP de
v |a|<k;/

It is possible to show that |||+, is indeed a norm, and W*? is a Banach space with
this norm. In the case p = 2 this norm is given by the inner product:

(f. s = / D°f D*gd,

a:|al<k
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so that W*?2 is a Hilbert space.
Similarly, define the space
WEP(Q)={fe L’ (Q):D*feLl (Q) forall o with |a| < k}. (1.5)

loc loc loc

It is easy to see that C™ (Q) € W,” (Q) for any k and p.

loc

1.3 The weak Dirichlet problem

As above, let (a;; (z)) be an z-dependant matrix in © with the following properties:
functions a;; (z) are measurable in x, the matrix is symmetric, that is, a;; = aj;, and
uniformly elliptic, that is, for all z € 2 and £ € R”

AP <D ay (2) €5 < Mg (1.6)

ij=1

for some constant \. We are going to define how to understand the divergence form
operator

Lu = 2”: 0; (a;j05u) (1.7)

ij=1
in this case.
Definition. Let u € W2 and f € L? (©2). We say that the equation Lu = f is

loc loc
satisfied in a weak sense or weakly if, for any ¢ € D (1),

/ Z a;j0;ud;p dr = —/f(pdx. (1.8)
Q; Q

ij=1

Note that the integral on the right hand side of makes sense because the
integration can be reduced to a compact set supp, where ¢ is bounded and f is
integrable. The left hand side makes sense similarly because d;u € L2, and hence is
integrable on supp ¢, while 9;p and a;; are bounded (the latter follows from (|1.6])).

Motivation for this definition is as follows. Assume that a;; € C' and u € C°.
Then the equation Lu = f can be understood in the classical sense. Multiplying it by

¢ € D () and integrating in (2 using integration by parts, we obtain

/fgp dr = Z /@ (a;j0;u) pdr = — Z /aijﬁjuaigo dx,

i,j=1 i,j=1

that is the identity . Hence, the weak meaning of the equation Lu = f is consistent
with the classical one.

Define Wy (Q) as the subspace of W2 (Q) that is obtained by taking the closure
of C§° () in W12 (Q).

Lemma 1.1 Let u € W'2(Q) and f € L?(Q). Then Lu = f holds in a weak sense if
and only if (1.8) holds for all p € Wy* ().
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Proof. If holds for all ¢ € W, () then, of course, it holds also for all ¢ €
C$° (). Let us prove the converse statement. For any ¢ € W, (Q) there is a sequence
{¢,} of functions from C§° (2) such that ¢, — ¢ in the norm of W2 (Q). Any ¢,
satisfies , and we would like to pass to the limit as £ — oo. For that, it suffices to
verify that the both sides of are continuous functions of p € W12 ().

Clearly, the functional ¢ — [, fedx is continuous in L? (Q2) and, hence, in W2 (Q).
Let us show that the functional

Q=1

is continuous in W12 (Q) . Tt is linear, so that its continuity is equivalent to the bound-
edness. Hence, it suffices to prove that

1A (o)l < Cllellye (1.9)

for some constant C' and all ¢ € W2 (Q). Fix x € Q and consider in R™ the inner
product

&mn), = Z aij (x) &n;-

ij=1
Indeed, it is bilinear, symmetric and positive definite by the ellipticity. By the Cauchy-
Schwarz inequality and the uniform ellipticity condition, we obtain

(€ m)l < /(€ 8/ (nm), < Alel I
Z aij(?ju&-go

/Q i,j=1

1/2 1/2

A(/ |Vu]2dx> </ |Vg0|2dx) ,
Q Q

(AP < AMlullyz [l (1.10)

It follows that

n

A (¢)]

IN

dr < / A | Vu| V| dx
Q

IN

whence

which proves (1.9). m

Definition. Given a divergence form operator L in an open set {2 as above, consider
the Dirichlet problem
{ Lu=f in(Q

u =0 on 0f
that is understood in the weak sense as follows:

{ Lu = f weakly in Q,

ue Wy (Q). (1.11)

In other words, the weak meaning of the boundary condition v = 0 on 0f) is u €
Wy ().

14.04.16
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Theorem 1.2 Let Q be a bounded domain. Then the weak Dirichlet problem ((1.11))
with the operator (1.7) has exactly one solution for any f € L? ().

Proof. Consider in VVO1 2 the following bilinear symmetric form

[u,v], := /Qaij (x) Oju () Ojv (x) dx

(the integral converges because a;; are bounded and d;u, d;v € L* (). By the uniform
ellipticity we have

fuu], = / 4y () Byu () Oyu () dr < A / IVl dz < Alluls
Q Q

and
[w, ul, > )\1/ \Vu|? dz.
Q

On the other hand, by the Friedrichs inequality we have, for any u € VVO1 2 (Q) that

/|Vu|2 dx > c/u2dm,
Q Q

with some positive constant ¢ = ¢ (£2). Assuming without loss of generality that ¢ < 1,

we obtain
c

[1vuf s =5 [ (@4 1Val) do = 5l
Q Q

whence it follows that

Cc

2 2
el < o ul, < Al

In particular, [u,v], is positive definite and, hence, is an inner product in VVO1 2. Since
the norm |u, u]i/ ? is equivalent to |w||jy12, We see that I/VO1 2 with the inner product
-, -], is a Hilbert space.

The weak equation Lu = f can be rewritten in the form
[wﬂaz—/fww Vo € Wy,
Q

The right hand side fQ fedx is obviously a bounded linear functional of ¢ € VVO1 2,

Therefore, the existence of u € I/VO1 2 that solves this equation, follows from the Riesz
representation theorem. Indeed, the latter says that in any Hilbert space H with inner
product [+, -], the equation

[u, 0] =1(p) VYoe H

has a unique solution u € H provided [ (¢) is a bounded linear functional. m
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1.4 Weak Dirichlet problem with lower order terms

Here we consider a more general operator

=1

1,j=1

in an open set {2 C R". We assume that the coefficients a;;, b; are measurable functions,

the second order part Z’; i=10i (a;;0;u) is uniformly elliptic divergence form operator,

and that all functions b; are bounded, that is, there is a constant b, such that
m
Z |b;| < b a.e. in .
i=1

Assuming that u € W2 (Q) and f € L? (), the equation Lu = f is understood
weakly as follows: for any ¢ € Wy (Q)

/Q (Z a;;0;ud;p — Z b; (O;u) go) dr = — /Q fe. (1.13)

1,j=1

1.4.1 Uniqueness

Theorem 1.3 (Uniqueness) Let €2 be a bounded domain and L be the operator (1.12)).
Then the weak Dirichlet problem

Lu = f weakly in Q)
ue Wy (Q)

has at most one solution.

For the proof we need some facts about weak derivatives that will be proved later
on.

Lemma 1.4 If u € Wy (Q) then, for any a >0, also (u — a), € Wy?(Q) and

Vu a.e.on the set {u> a}

Viu-—a), = { 0 a.e.on the set {u<a} (1.14)

Lemma 1.5 If u € W,* (Q) then, for any o € R,
Vu =0 a.e. on the set {u=a}.

Besides we are going to use the following inequality that also will be proved later

(see Corollary [1.9).

Sobolev inequality. If n > 2 then, for any o € Wy (Q),

n—2

[19ekar=e, (/ Widx) "
Q Q
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where ¢, 1S a positive constant depending only on n.
If n =2 and Q is bounded then, for any q > 1 and for any ¢ € Wy* (Q),

1/q
/ |W|2dxzc( / IWIquw) |
Q Q

where ¢ is a positive constant depending on q and §2.

Proof of Theorem We need to prove that if u € W, () and Lu = 0 then
u =0 a.e. in Q. It suffices to prove that u < 0 a.e. in 2 since u > 0 a.e. follows by the
same argument applied to —u.

We use the notion of the essential supremum that is defined by

esssupu = inf{k e R:u <k ae.}.
Q

Then v < 0 a.e. is equivalent to esssupu < 0. Let us assume from the contrary that

g = esssupu > 0
Q

and bring this to contradiction (note that oy = oo is allowed). The weak equation
Lu = 0 implies that, for any ¢ € W, (Q),

/ Z a;;0;ud;p dx = / Zbi&-ugpdm. (1.15)
Q=1 2 5=1

The right hand side of ((1.15)) admits a simple estimate

/Zbi () g da < b/ Yl | da. (1.16)
0 Q

Now we specify function ¢ as follows: choose « from the interval
0<a<ag
and set
p=(u—a,.
By Lemma ¢ € W) (Q) so that we can use this ¢ in (1.15). Consider the set

Se ={r€:a<u(x) <}

and let us verify that

Vu a.e.in S,,
V= { 0 a.e. in S, (1.17)

where S¢ = Q\ S,. Indeed, S, C {u > a}, so that the first line in ((1.17)) follows from
that in (1.14]). Note that

St ={u<alU{u>ap}.
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On the set {u < a} we have by (1.14) V¢ = 0. Since the set {u > ap} has measure 0
by definition of oy, we see that

u=qpa.e on {u>a}t.

By Lemmas and we conclude that Vo = Vu = 0 a.e. on {u > ap}, which
finishes the proof of (|1.17]).

Let us now prove that

V| e ae. in S,,

0, a.e.in S5. (1.18)

|WI90={

Indeed, on the first line in ((1.18)) follows from that of (1.17). On the set {u < a} we
have ¢ = 0, while on {u > «ay} we have as above Vu = 0, which proves the second line

in (1.18). It follows that

1/2 1/2
/ |Vu|pdr = / V| pdr < (/ <,02d:17) (/ V| dm) :
Q Sa Sa Sa

For the left hand side of (1.15) we have by (1.17)) and the uniform ellipticity

/ Z a;;0;ud;p dx = / Z a;j0;p0;p dx > )\_1/ V| d.
Q. S, Sa

i,j=1 @ d,j=1

Combining the above two calculations with (1.15), we obtain

1/2 1/2
)\1/ yw|2d:cgb</ <p2da,-) (/ yw|2d;c> : (1.19)
[e3 Sa [e3

/ O*dr > c/ Vol da
Sa Sa
where ¢ = (\b) 7% > 0.

Assume n > 2. By the Sobolev inequality we have

n—2
V| de = / Vol?dx > ¢ (/ gpnzfzdx) :
Sa Q Q

where ¢ = ¢ (n) > 0. On the other hand, by the Holder inequality,

2 n—2
/ Oldr = / 1-p?dx < (/ dx) (/ (g02)”n2>
Sa Sa Sa Q

n—2

st (o)
Q

where |S,| is the Lebesgue measure of the set S,. Combining the above inequalities,

we obtain Ly L
|Sal " </ 90"%2) > cod </ so"znzdfli)
0 9]

It follows that
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and, hence,
|Sal = ¢, (1.20)

for some positive constant ¢ that is independent of «.

In the case n = 2 the same argument works where the exponent —5 should be
replaced by any ¢ > 1.

Now let us bring to contradiction. Consider an increasing sequence {ay}r-,
that converges to ag as k — oo. Then the sequence of sets S,, is decreasing and

ﬁSak:{xEQ:Vk ap <u(zr) <ag}=0.
k=1

Hence, by the continuity property of the Lebesgue measure,
kzh—{{olo ‘S(Xk:’ = \ﬂ;ozl Sak‘ =0,

which contradicts ((1.20]), thus finishing the proof. =

1.4.2 Some properties of weak derivatives

Here () is an open subset of R".
Lemma 1.6 (Chain rule in Wy?) Let ¢ be a C™-function on R such that

¥ (0) =0 and sup |[¢' (t)] < . (1.21)
teR

Then u € Wy (Q) implies 1 (u) € Wy () and
Vi (u) = ¢ (u) Vu. (1.22)

Proof. If u € C° then obviously ¢ (u) is also in C5° and hence in W, and the chain
rule (1.22)) is trivial.

An arbitrary function u € W;"* can be approximated by a sequence {uy} of C5°-
functions, which converges to u in W12-norm, that is,

L? L?
up — u and Vu, — Vu.

By selecting a subsequence, we can assume that also ug () — w(z) for almost all
x € (.

By (1.21) we have |¢ (u)| < C'|u| where C' = sup [¢'|, whence it follows that
¥ (u) € L?. The boundedness of ¢ implies also that ¢’ (u) Vu € L?. Let us show that

b (up) 2 (w) and Vi (ug) = o (u) Va, (1.23)

which will imply that the distributional gradient of 1 (u) is equal to 9’ (u) Vu. The
latter, in turn, yields that ¢ (u) is in VVO1 2 and, moreover, in VVO1 2,

The convergence ) (uy,) =R Y (u) trivially follows from wuy 2w and

¢ (u) = (u)] < C'lug —ul .
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To prove the second convergence in (1.23]) observe that

Ve (ur) = o' (u) Vul = [¢ (ur) Vg, — 9" (u) Vul
< [ () (Vg = V)l + (7 (ug) = ¥ (u) Vul

whence

IV () = ¢ (u) V2 < ClIVug = Va2 + (| (9 (ur) = " (u)) Vul|2. (1.24)

The first term on the right hand side of (|1.24]) goes to 0 because Vuy =, Vu. By
construction, we have also uy, () — u (z) a.e. , whence

Y (ug) — ' (u) — 0 a.e.

Since

[ () =& ()] [Vul* < 4C% | Vuf?

and the function |Vu\2 is integrable on €2, we conclude by the dominated convergence
theorem that

/Q 7 () — ' () [Vl djs — 0,

which finishes the proof. m

Lemma 1.7 Let {4, (t)} be a sequence of C*°-smooth functions on R such that

¥, (0) =0 and supsup [ ()| < oo. (1.25)
k

teR

Assume that, for some functions 1 (t) and ¢ (t) on R,

V(1) =0 (t) and ) (t) — @ (t) forallt € R. (1.26)
Then, for any u € Wy (), the function 1 (u) is also in Wy (Q) and

Vi (u) = ¢ (u) Vu,

Proof. The function ¢ (u) is the pointwise limit of measurable functions 1, (u) and,
hence, is measurable; by the same argument, ¢ (u) is also measurable. By , there
is a constant C' such that

| (O] < Ctl (1.27)

for all k£ and ¢ € R, and the same holds for function ¢). Therefore, ¢ (u)| < C'|u|, which
implies ¢ (u) € L2 (Q). By (1.25), we have also |¢ (t)| < C, whence ¢ (u) Vu € L2.
Since each function 1, is smooth and satisfies (1.21)), Lemma (1.6 yields that

Wy, (u) € Wp? (Q) and Viby, (u) = 1, (u) Vu.
Let us show that

V() 25 () and Vi (u) < o (u) Va, (1.28)
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which will settle the claim. The dominated convergence theorem implies that

[ 1o = 6 @P e —o.
Q
because the integrand functions tend pointwise to 0 as k — oo and, by (1.27)),

[y (w) = ¢ (u)|* < 4C%?,

2 is integrable on ). Similarly, we have

whereas u
1900 = o ) Yt du = [ 105, (0) = o ) [Vl ds —
Q Q

because the sequence of functions |}, (u) — ¢ (u)|? |Vu|* tends pointwise to 0 as k — oo
and is uniformly bounded by the integrable function 4C? |Vu/*. =

Proof of Lemma [1.4. Consider the functions
1, t>a,
v =(t-a), wd o= { 2
that can be approximated as in (1.26)) as follows. Fix any smooth function 7 (¢) on R
such that
t—1, t>2

Such function 7(¢) can be obtained by twice integrating a suitable function from
C(0,2).

y (0= (t-a).

’ ———— e ————————
// "“‘r
e yi(t)
e s >y
0 « t 0 o t

Define 1, for any k£ € N by

0 (0) = 7 (k (t — ).

If t < « then ¢, (t) = 0. If t > « then, for large enough k, we have k (t —a) > 2
whence

1 1
wk(t):E(k(t—a)—l):t—a—z—wf—a as k — oo.
Hence, 9, (t) — 1 (t) for all t € R.
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Similarly, if ¢ < « then v}, (t) = 0, and, for ¢ > a,
Lt)=1n(k({t—a))—1 ask — oo.

Hence, ¥, (t) — ¢ (t) for all t € R.
By Lemma u we conclude that (u —a), € Wy? and

Vu, u>a,
V(u—Oz)Jr:go(u)Vu:{07 w<a

which finishes the proof. m
Proof of Lemma By Lemma with a = 0, we have uy € VVO1 2 and

Vu, u>0,
Vu+—{ 0 w<o (1.29)

Applying this to function (—u), we obtain that u_ € W,"* and

0, u > 0,
Vi = { —Vu, u<0. (1.30)
Consequently, since Vu; = Vu_ = 0 on the set {u = 0}, we obtain
Vu=0ae on {u=0}. (1.31)

In particular, (1.31)) implies the following: if u, v are two functions from W,? (Q) and
S is a subset of (2 then

u=vaeonsS =Vu=Vv ae onb.
Let us now prove that, for any o € R,
Vu=0ae on {u=a}. (1.32)
If the constant function v = a were in W, then by
u=wv on {u=a}

we could obtain
Vu=Vv=0aeon {u=a}

thus proving (1.32). However, the constant function is not in W, and we argue as
follows. Choose a compact set K C €2 and a function v € C§° (2) such that v = « in
a neighborhood of K. Then

u=v on KN{u=a}

which implies that
Vu=Vv=0ae on KN{u=a}.

Covering 2 by a countable family of compact sets K, we obtain (1.32). m
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1.4.3 Sobolev inequality

Theorem 1.8 Assume 1 < p < n. Then there is a constant C = C (p,n) such that,
for all u € WyP (R),

n—p

(/ |u|77 dm) ' SC'/ |Vul? de. (1.33)
n Rn

In the proof we will use the following extended Holder inequality for non-negative

functions on R:
m 1 m 1/m
/ [T <] (/ fidt> : (1.34)
Ri—1 i=1 R

Indeed, for m = 1 this is trivial, and in the case m = 2 this is a Cauchy-Schwarz
inequality. For a general m, let us make the inductive step from m — 1 to m as follows:

[rtesta < ([t ™a) ™ ([ () a)°
m—1
= ([ oregman) ([ o)
R . e

3=

1 m—2

< ((/Rfldt?mll.,_ (/Rfm:dt)ml) (/Rfmdt)%
= (/Rfldt)m... (/Rfmdt)m

which is equivalent to (|1.34]).

Proof of Theorem Step 0. Let us first show that it suffices to prove ([1.33])
for u € C§° (R™). Indeed, if is known to be true for u € C§° (R") then choose
for any u € W, (R") a sequence {u;} from C° (R™) such that u;, — u in the norm of
WhP. Tt follows that

|Vug|? de — |Vul? dx as k — oc.
R™ R™

In particular, for Ve > 0 and for all large enough k

/|Vuk|pdx§/ IVl o+ <.
n Rn

Since ((1.33)) holds for each function u, we have

< |77 dm) ' <C | |Vulfde<C < |Vul? dm—l—a) :
Rr R™

Rn

Since u;, — u in LP, choosing a subsequence we can assume that uy — u a.e.. Hence,
by Fatou’s lemma, we conclude that

(Lot
Rn

n—p

f—npd;c) ' SC( |Vu|pd:c—|—€).
Rn

21.04.16
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Since € > 0 is arbitrary, we obtain that (1.33) holds for arbitrary u € W, ? (R™).

Step 1. Let us prove (1.33)) in the case p = 1 for any u € C} (R™). For p = 1 (1.33))

becomes
n—1

( |u|7-T dm) ' <C [ |Vuldz, (1.35)
Rr Rr

assuming that n > 1. Since u has a compact support, we have, for any index ¢ =1, ..., n,

:/ aiu<x1;'-;xiflayivxi+17---axn) dy;,
which implies
|U (ZL‘)| S / |VU| (1‘1,..,l’i_l,yi,l'i+1,...,l'n) dyz (136)

Consider function F' = |Vu| and let us use the following notation: for any sequence
i1, ..., of distinct indices, set

Fi i, / / x) dxy, dzg,...dx;, .
We consider F;

in..i, @ a function of x that does not depend on z;,, ..., z;, but depends
on all other components x;.
Inequality ((1.36]) can be written in a short form

Multiplying these inequalities for i = 1,...,n and taking to the power —, we obtain

n L
o= <[[F
=1

Let us integrate this inequality in x;. Since F} does not depend on 1, we obtain, using
(1.34) with m =n — 1, that

/\u(:v)]nzldazl < Fl"l/ (HF[”) dxy
R R .

=2

]_7

n

1
1 n—1
ot | | (/ Fidx )
1 | ® 1

1=2

IN

n 1

. | J 2

=2

Now let us integrate the last inequality in x5, noticing that Fj, does not depend on x5

and using ((1.34)):
u (2)|7 T dagdey < Fjy / (Fl“HF{;l) ds
R

=3

Fl? (/ Fldl'g)
R

2 M 1
_ anl anl
- 12 127 -

1=3

R2
1

(/ F11d$2) .
3

IN

=
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Integrating the last inequality in x3, noticing that Fjs3 does not depend on z3 and

using ((1.34)), we obtain

n 1 1o 1
|u(2)|"-1 deidradrs < Ff’Q’gl/ Fl’é‘lFf{lHFfé;l dzxs
R

1=4

e = =
S Flggl (/R Flgdl'g) </R F12d$3)

1

X H (/R 117’12z'<1l$3)n_1

1=4

I T

_ n—1 n—1

- F123 ||F123i'
1=4

RS

Continuing further by induction, we obtain, for any 1 < k£ < n, that

ju ()

RF

B k" 1
L n—1 n—1
dzy..dxp < F' 7 H F e

In particular, for & = n we obtain

[ IU(w)"ldeFféi.lnz(/ |Vu|dx) |

which proves the Sobolev inequality ([1.35]) in the case p = 1. Note that in this case
C=1.

Step 2. Let us prove now (|1.35) in the case p > 1, also for any u € C} (R"). We
claim that, for any o > 1, the function |u|* belongs to C§ (R") and

0y [u|* = a |u|* " sgnudiu. (1.37)

Indeed, the the identity is easily verified in each of the open sets {u > 0},
{u <0}, {u=0}° Since the right hand side of is continuous in the closure of
each of these open sets and vanishes at their boundaries, we see that the right hand
side is continuous in R"™, which implies that the identity holds in the whole R"™.
Consequently, |u|* € Cj (R™).

Applying to the function |u|* and using

V |ul* = a|ul*" sgnuVu,

( |u\ff1dx) " g/ |V\u|°‘]dx:oz/ o |Vl de
R™ R™ Rn

By the Holder inequality, we have

we obtain

p—1

p—1 1
/ |u\o‘_1\Vu\dx§(/ |uy<a—1>p'ildx) ' </ \Vu|pda:>p.
n R R™
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Choose o so that

p bn
1 - -
(a >p—1 pa
that is,
n—1
a=1+——((p—-1)= P.
Then also
an n
= :q7
n—1 n-—p

and we obtain

It follows that

n—p

(/ |u]qu> v Sa(/ |Vu|pd:13)p,

which is equivalent to (1.33)) with
—1 \?
C=aof = (n p) .
n—p

Now let us prove the Sobolev inequality in the form that was used in the proof of
Theorem [L.3]

Corollary 1.9 Let Q be an open subset of R™. If n. > 2 then, for any u € W, (Q),

/ \Vul* dz > ¢ (/ lu = d:v) ' (1.38)
0 0

where ¢ = ¢(n) > 0. Ifn = 2 and Q is bounded then, for any ¢ > 1 and any

ue W,?(Q)
1/q
/ |Vu|2dx >c (/ |u]2q dx) , (1.39)
Q Q

where ¢ = ¢o |74 and ¢y = ¢y (q) > 0.

Proof. Since C° (Q) € C° (R™), it follows that Wy (Q) € Wy (R™) (more precisely,
any function from W, () that is extended by 0 outside , belongs to Wy (R™)).

Therefore, (1.38) is a particular case of (1.33) with p = 2.
Assume n = 2. Then by ((1.33)) we have, for any 1 < p < 2,

(/ |u|22TI} da:) < C’/ |Vul? dz.
0 0
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Using the Holder inequality, we obtain

1—
/|Vu|pd9: _ /1-|Vu|pd93§ </ d:v)
Q Q Q
= QP2 (/ yvuﬁda:> .
Q

2—p P

(/ u| 72 dx) < QP2 (/\vumx)
Q Q
(/ |u|22fpp dm) ’ §C’|Q|i_l/ IVu|? da.
Q Q

It remains to set ¢ = ﬁ and observe that ¢ can be any number from [1,00) as p is

any number from [1,2). Then % —1= %, and we obtain

1/q
Q Q

which was to be proved. m

(SIS

(/ |Vu|p% das)
Q

Hence, we obtain

or

1.4.4 Theorem of Lax-Milgram
Theorem 1.10 Let B (u,v) be a bilinear form in a Hilbert space H. Assume that

1. B is bounded, that is, |B (u,v)| < Clul| ||v| for all u,v € H and some constant
C.

2. B is coercive, that is, B (u,u) > c|lu|® for all w € H, where ¢ is a positive
constant.

Then, for any bounded linear functional | on H, the equation
B(u,v)=1(v) Yve H (1.40)

has a unique solution u € H. Moreover, for this solution we have
1
Jull < > il (141)

If the bilinear form B (u, v) is symmetric then this theorem coincides with the Riesz
representation theorem. The strength of Theorem is that it allows non-symmetric
B.

Proof. For any v € H, the function v — B (u, v) is a bounded linear functional on H.
Hence, by the Riesz representation theorem, the equation

(w,v) = B (u,v) Yve H

26.04.16
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has a unique solution w € H. Since w depends on u, we obtain a mapping A: H — H,
defined by Au = w. In other words, A is defined by the identity

(Au,v) = B (u,v) Yv € H. (1.42)

Operator A is called the generator of the bilinear form B. Clearly, the equation ([1.40))
is equivalent to
(Au,v) =1(v) Yve H. (1.43)

Again by Riesz representation theorem, there is w € H such that
(w,v) =1(v) YveH,

Therefore, in order to solve it suffices to find u so that Au = w.

Hence, the question of solving of amounts to verifying that A is bijective, so
that the equation Au = w has a solution ©v = A~ 1w.

Let us prove that A is bijective in the following few steps.

Step 1. Operator A is linear. Indeed, for any u,,us € H and for all v € H we have

by (1.42)
(A (uy +uz),v) = B (ug + uz,v) = B (u1,v) + B (uz,v) = A (uy,v) + A (ug,v),

which implies Au; + Aus = A (uy + u2). The same argument shows that A (Au) =
AA (u) for any A € R.
Step 2. Operator A is bounded. Indeed, it follows from (1.42)) that

|(Au, v)| < Clul o]
Setting here v = Au, we obtain
1Au]* < C [lull || Au|

whence [|Au|| < C' ||ul[, which proves the claim.
Step 3. Operator A is injective. Indeed, setting v = u in ([1.42)), we obtain

(Au,u) = B (u,u) > c||ull”. (1.44)

In particular, Au = 0 implies © = 0, that is, A is injective. Applying Cauchy-Schwarz
inequality to the left hand side of (1.44)), we obtain

2
[Aull [[ul] = ¢ ||u]

and, hence,
|Aul| > c||ul] Yu € H. (1.45)

Step 4. The image Im A is dense in H. Indeed, if Im A # H then there is a non-zero
vector u in H that is orthogonal to Im A. In particular, (Au,u) = 0, which by
is not possible.

Step 5. Operator A is surjective, that is, Im A = H. In the view of Step4, it suffices
to verify that Im A is a closed set. Indeed, let {w} be a sequence of elements from
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Im A that converges to w € H. Let us show that w € Im A. We have w, = Auy, for
some uy € H. Tt follows from ((1.45)) that

lwe —wi]] > c|lup — wll

which implies that the sequence {u;} is Cauchy. Hence, there exists the limit u :=
limg_, o uz. By the boundedness of A we obtain
Au = klim Aup = klim W = W
and, hence, w € Im A.
Step 6. Finally, let us prove ([1.41]). Setting in ([1.40)) v = u and using the coercive
property of B, we obtain

cllul® < B (u,u) =1 (u) < |1} ull,

whence |lul| < ¢ ||| follows. =

1.4.5 Fredholm’s alternative

Theorem 1.11 Let K be a compact linear operator in a Hilbert space H. If the oper-
ator I + K 1is injective then I + K 1is surjective.

Here I is the identity operator in H. In other words, either the equation (I + K)x =
0 has non-zero solution or the equation (I + K)z = h has a solution x € H for any
heH.

Note that in a finite dimensional Euclidean space H, any linear operator A : H — H
has this property: if A is injective then A is surjective, because each of this properties is
equivalent to det A # 0. In infinite dimensional spaces this is not the case for arbitrary
operators.

Proof. Denote A = I + K. Assuming that ker A = 0, we will prove that Im A = H.
The proof consists of a few steps.

Step 1. Let us show that if {z;} is a bounded sequence of elements of H and if { Az;}
converges then {z;} has a convergent subsequence. Indeed, by the compactness of K,
the sequence { Kz;} has a convergent subsequence {Kz;, }. Since z;, + Kz; = Ax;,
converges, then also {x;_} converges, which proves the claim.

Step 2. Let us prove that Im A is a closed subspace of H. The image of any linear
operator is always a subspace, so we need to prove that Im A is closed. Let {y;} be a
sequence of elements in Im A that converges to y € H. Then y; = Ax; for some z; € H.

Let us prove that {x;} is bounded. Indeed, if it is not the case then we can assume

passing to a subsequence that ||z;|| — co. Setting z; = T We have

i
x|

~ Ax; Y

X

= = — 0 as 1 — oo.
il il

Since the sequence {Z;} is bounded and Az; converges, we conclude by Step 1, that
{Z;} has a convergent subsequence. Passing to this subsequence, we can assume that
{Z;} converges, say, to z € H. Clearly,

2] = Jim 7] =1
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and
Az = lim Az; =0
11— 00
that is, z € ker A. Since ker A = 0, we obtain z = 0 which contradicts ||z|| = 1.
Hence, the sequence {z;} is bounded. Since Az; converges, we conclude by Step
1, that the sequence {z;} contains a convergent subsequence. Denote it again by {z;}
and set x = lim x;. Then we have

y = limy; = lim Az, = Az € Im A,

which finishes the proof.

Step 3. Consider the sequence {V},-, of subspaces V) := Im A*, that is, Vi1 =
A (Vy). In particular, Vj = H and V; = Im A. Clearly, we have Vi1 C Vi. By Step
2, V1 is a closed subspace of V. In particular, V; is a Hilbert space. Since A can be
considered as an operator in Vi, we conclude by Step 2 that Vo = A (V) is a closed
subspace of V. Continuing by induction, we obtain that each V. is a closed subspace
of Vk

Let us prove that Vi1 = V}, for some k. Assume from the contrary that this is not
the case, that is, Vi, g Vi for all £ > 0. For any k, choose x; from the orthogonal
complement Vi, of Vi4q in Vj and so that [|z,|| = 1. For all i > j we have

Since ¢ > j + 1, we have
—T; + AiUZ — A[L’j S ‘/jJrla

which implies, by the choice of z; € Vﬁrl that
z; L (—x; + Az, — Azy).
Hence, by Pythagoras’” Theorem,
1Ky — Kaj||* = agll* + || (= + Az; — Az) || > 1.

Consequently, no subsequence of {Kz;} is a Cauchy sequence. On the other hand,
the compactness of K implies that {Kxz;} contains a convergent subsequence. This
contradiction proves the claim.

Step 4. Finally, let us prove that if A is injective then Im A = H. Let k be the
minimal non-negative integer such that Vi, = Vi. We need to prove that k£ = 0,
which is equivalent to ImA = H. Assume that £ > 1 and consider the mapping
A: V.1 — V.. Notethat Vo1 = V., & V,f and the space V,f is non-trivial by the
assumption that V;_; # Vj. The image of A on Vj, coincides with V}, by the assumption
A (Vi) = Viy1 = V. However, A (V,j) lies also in V},, which implies that the operator
A Vi_1 — Vi cannot be injective. This contradiction shows that £ = 0, which finishes
the proof. m
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1.4.6 Existence

Consider again an operator

n

ij=1 i=1

in an open set {2 C R™. As before, we assume that the coefficients a;;, b; are measurable

functions, the second order part ', 0; (a;;0;u) is uniformly elliptic divergence form

operator, and that all functions b; are bounded, that is, there is a constant b such that
D il <b ae in Q.
i=1

Theorem 1.12 If() is bounded and L is the operator (1.46]) in Q2 then the weak Dirich-
let problem

{Lu:f n

ue Wy (Q) (1.47)

has a solution u for any f € L* ().

Recall that by Theorem [1.3] the Dirichlet problem (1.47) has at most one solution,
which together with Theorem implies that (1.47)) has exactly one solution.

Proof. Consider the following bilinear form on W, (€):

[u, o] :/ ZaijajuaiSpdx—/ZbiaiugOd:U.
@ Q=1

ij=1

As we know, the weak equation Lu = f means that

wol == [ fodo Vo W3R (@), (1.48)
Q
The bilinear form [u, ] is bounded as

[, @]l < (A +0) [[ullyrz lollypa (1.49)

(cf. equation in the proof of Lemma [L.1). If this form were coercive, that is, if
for all u € Wy’

[, u] > ¢ |lullfyra (1.50)
with some positive constant ¢, then we could conclude by the Lax-Milgram theorem
that the equation (1.48) has a solution u € Wy (Q) that is, hence, is a solution of
. However, the form [u, ¢] is not necessarily coercive. However, it still satisfies
the following inequality:

[u,u] = /Zaijajuaiudx—/Zbiaiuud:c
Q) 05

ij=1

> /\_1/|Vu|2dx—b/|Vu| |u| dx.
Q Q
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Note that, for any € > 0,
1
IVl [u] < e |Vul® + gu2,

[u,u] > /|Vu| d:v—sb/|Vu| dx——/ dx
= /|Vu| dm—é/udx,
€ Ja

where ¢ = A\™' — be.Choosing ¢ small enough, say ¢ = %b‘l)\_l, we can ensure that

c > 0. It follows that
b
c (/ |Vul|? dw~|—/u2da:> - (— —|—c> /u2d:v
) Q € 0

2 2
> cllulyre = Cllullzz

so that

v

[u, u]

V

['U,,U] CHUH[2 > CHUH‘IYLZ7 (l.!il)

which is of course weaker than (1.50). So, in general the form [u, ¢] is not coercive.
However, a different bilinear form

[u, 0] + C (u, ¢)
is bounded by (1.49) and is coercive by (1.51)) (here (-,-) is the inner product in L?).
Let us consider instead of (1.48) an auxiliary problem:

[u, o] + C (u, ¥) /f(pdx Vo € Wy (Q). (1.52)

By the Lax-Milgram theorem, the equation (1.52) has a unique solution u € Wy* (Q).
Moreover, for this solution we have

lullyre < e N2 (1.53)

because the norm of the functional ¢ — [, f¢ in Wy (Q) is bounded by || f]| -
Denote by R the resolvent operator of (1.52)), that is, the operator
Q) — Wy*(Q)
f =
In other words, for any f € L?(f2), we have Rf = u where u is the unique solution of

(1.52). Obviously, R is a linear operator. Moreover, R is a bounded operator because
by (|1.53))

IR fllypz < ¢ 1 FIl e
Now let us come back to the equation ((1.48) and rewrite it in the equivalent form

[u, o] + C (u, ) = — /Q (f = Cu)pdr Vo€ VVOI’2 (). (1.54)
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By the definition of the resolvent R, this equation is equivalent to
u=R(f— Cu)

that is, to
u+ CRu = Rf. (1.55)

Define the operator K : L? — L? as composition of the following operators

7

L (Q) L wi?(Q) S L Q)

where 7 is the identical inclusion; that is,
K =1i0(CR).

By the Compact Embedding Theorem, the operator ¢ is compact. Since C'R is bounded,
we obtain that K is a compact operator. Setting Rf = g, let us rewrite (1.55)) in the
form

I+ K)u=g. (1.56)

We consider this equation in the Hilbert space L? (Q), that is, both g and u are assumed
to be in L?(Q). We claim that solving (1.56) for v € L?(Q) is equivalent to solving
(1.55) for u € W,”(Q). Indeed, the direction (L.55)=-(1.56) is trivial because if u €
Wy () then u € L?(Q2). For the opposite direction observe that if u € L? () solves
(1.56) with ¢ = Rf then

u=g— Ku=Rf—CRucW,*(Q)

by definition of the operator R.

Hence, it suffices to prove that the equation has a solution v € L?(Q) for
any g € L?(Q). By Fredholm’s alternative, it suffices to prove that the operator I + K
is injective, that is, the equation

(I+K)u=0

has the only solution v = 0. If u € L? () satisfies this equation then u satisfies ((1.54)
with f = 0, that is equivalent to

[u, 0] =0 Vo € W™ ().

By Theorem we know that v = 0. Hence, ker (I + K) = 0 and, by Fredholm’s
alternative we conclude that

Im (I + K) = L*(Q).

Therefore, the equation (I + K)u = g has a solution u € L? (Q) for any g € L*(Q),
which finishes the proof. m
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1.5 Estimate of L°°-norm of a solution

In this section we use the co-norm of a measurable function f in an open subset 2 of
R™:
1f 1l = esssup | £].

The space L (£2) consists of all measurable functions f on Q with || f||;« < oco. It is
possible to prove that L is a linear space, |||« is a norm in L* (Q2), and L*> () is
a Banach space. The following extension of the Holder inequality is obviously true:

/Q gl de < 11l N9l -

The Sobolev spaces W*? (Q) are now defined by (1.4)) also for p = oo, as well as the
spaces WP (Q) (cf. (1.5)).

1.5.1 Operator without lower order terms
Theorem 1.13 Let Q be a bounded domain in R™ and let
Lu= Z 81 (ClijajU)
i,j=1

be a divergence form uniformly elliptic operator in ) with measurable coefficients. If u
solves the Dirichlet problem

Lu = —f weakly in Q)
{ ue Wy (Q) (1.57)
where f € L*(Q), then
el oo < C 1P || £l oo (1.58)

where C' = C'(n,\) and X is the ellipticity constant of L.

In the proof we use the following Faber-Krahn inequality: if u € W,* (Q) and
U={zeQ:u(zx)+#0}

then
/|Vu|2dec|U|_2/n/u2dx, (1.59)
Q Q

where ¢ = ¢ (n) > 0. This inequality is proved in Exercise 10 in the case n > 2, but it is
also valid in the case n = 1. Indeed, in this case any function from VVO1 2 is continuous,
the set U is open and, hence, consists of disjoint union of open intervals, say U = LI, ;.
In each interval I;, the function v vanishes at the endpoints, which implies then by
Friedrichs’ inequality that

/ |Vl dz > |Ij|2/ u? dr > |U|2/ u? dr.
I I I

J J
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Summing up in all j, we obtain (|1.59) with n =1 and ¢ = 1.
Denote by A1 (2) the first (smallest) eigenvalue of the weak eigenvalue problem in

Q:
{ Av+ M v=0in

v e W,” (Q)
By the Rayleigh principle, we have

Vaul*d
M(Q) = inf M
wewlR Ny [ ulde

Since |U| < |€], it follows from (1.59) that
A(Q) > el (1.60)

This inequality is related to the following Faber-Krahn theorem: if 2* denotes a ball
of the same volume as €2 then

AL(Q) = A (927). (1.61)

In other words, among all domains with the same volume, the minimal value of A; is
achieved on balls. This is related to isoperimetric property of balls: among all domains
with the same volume, the minimal boundary area is achieved on balls.

Observe that if * = Br then

Cl

A (Q) =\ (Br) = o2

where ¢ = ¢ (n) > 0. Since |Bg| = ¢’R", we obtain
A () = el
which implies by and |Q*| = |Q| that
AL (Q) > c|Q /" (1.62)

Of course, this looks the same as ([1.60]), except for the constant ¢ in (1.62]) is sharp
and is achieved on balls, whereas the constant ¢ in ({1.60|) was some positive constant.
However, for our applications we do not need sharp constant c.

Proof of Theorem If ||fll; = oo then (1.58) is trivially satisfied. If
1 f1l .« = 0 then by Theorem [I.2 we have u = 0 and (1.58) holds. Let 0 < || f|| .« < 00.

Dividing u and f by || f|| ., we can assume without loss of generality that || f]|,;. = 1.
Fix o > 0 and consider a function v = (u —a), € W,y? (Q). By hypothesis that
Lu = — f weakly, we have the identity

/Zaij(‘?ju&-vdaz:/fvdx.
Q50 Q

Note that
Ojudv = J;v0;v a.e. (1.63)

03.05.16
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because, by Lemma [1.4] on the set {v =0} = {u < a} we have ;v = 0 a.e., while
on the set {v >0} = {u > a} we have ;v = 0;u a.e.. By (1.63) and the uniform
ellipticity we obtain

/ Z a;;0;ud;v dx = / Z a;;0;v0;v dx > )\_1/ |Vo|® dz. (1.64)
Q- Q- Q

2,7=1 2,7=1

Consider the set
Uy :={u>a}={v>0}

and observe that, by the Faber-Krahn inequality,

/]Vv|2dxzc\Ua]2/"/v2d:L’, (1.65)
Q Q

where ¢ = ¢(n) > 0. By ||f||;~ = 1 and Cauchy-Schwarz inequality, we have

1/2
/fvdarg/vdx:/ 1-vdr < |Uy|"? (/U2dl’> .
Q Q o Q

Combining all the above inequalities, we obtain

1/2
et |Ua|_2/”/ v?dx < |Uy)"? </ v2dx> ,
Q Q
1/2
(/ v2dx> <) |Ua\1/2+2/”.
Q

Let us rewrite this inequality in the form

whence

/Q(u —a)lde < K|U,J". (1.66)

where K = (¢*)\)* and p = 1+ 4/n.
Claim. Assume that a measurable function u in € satisfies for any o > 0 the inequality
(1.66) with some K and p > 1. Then

esssupu < C' |Q|% , (1.67)
0

where C = C (K, p).

In particular, if as above u is a solution of (1.57) with || f||; = 1 then (1.66]) holds
with p = 1+ 4/n. Since 7%1 = 2 we obtain by 1)

~n
2
esssupu < C'[Q" .
Q
Applying the same argument to —u, we obtain the same estimate for esssup (—u),

whence
lull - < C Q™
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which coincides with (1.58)) when || f]|; = 1.
Hence, it remains to prove the above Claim. Choose some 3 > « and consider the
set Us = {u > B}. Then we have

/ (u—a)id:t > / (u—a)id:c > (B — )’ |Us|,
Q Us
which together with (1.66]) implies

(8 —a)’|Usl < KU,

and, hence,

K
|Us| < m|Ua|p- (1.68)

Fix o > 0 to be chosen below, and consider a sequence {ay } oo, where oy, = (2 — 2"“).
This sequence is increasing, ag = « and oy — 2 as k — oo. Set

Vi. = {u > a }|
and observe that by (1.68))
K
Vi< —= V2.
(Oék - akfl)

Since oy, — a1 = a27F, it follows that
Vi < Ka24*VP  =4FMvp | (1.69)
where M = Ka~2. Iterating this inequality, we obtain

AEMVP | < AFM (45T MVEL)T = abr eyt

gk+p(k=1) j ri+p (4’“_2M1/,f’73)p2 _ 4k+p(k—1)+p2(k—2)M1+p+p2vsz3

Vi

IN

IN

_ k—1 2 k—1. ok
S 4k+p(k +...4p M1+p+p +...+p %P )

IN

Let us use the identities

k
—1
14ptp?+..+pt=L"2
p—1

and
PP —(k+1)p+k

Etp(k—1)+p*(k—2)+ ... +p " = 5
(p—1)

that are easily proved by induction. Then we have

PP — (ke D)ptk pF_1

Vi < 4 o2 My

ko —(k+D)ptk 1

= 4<p—p1>2Mpl?VO]p 4 -2 M 1. (1_7())
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We would like to make sure that V;, — 0 as kK — oo. Since Vy < |Q], it suffices to have
for that . )
46-0° M1 |Q| < 1,
that is,
P 1 2
46-0* Kr—1a 71 |Q] < 1.

For example, we can make the left hand side equal to % by choosing a from the equation
4(:»—1[)1)2[(11%1@_% |Q| = %

that is,
P;l

o= (24T KFTI) T =0T
With this choice of o we have
H{u > ax}| — 0as k — oo,

which implies that
{u=2a}[=0

and, hence,
—1
esssupu < 2a = 2C4 |Q|p2 : (1.71)

which finishes the proof of (1.67) with C'=2C;. =

Theorem [1.13] provides a non-trivial estimate even in the case L = A. Consider the
following weak Dirichlet problem:

(1.72)

Au=—1in
u =0 on Of2.

We know that the solution u () is a smooth function. In fact, it has the following
probabilistic meaning: if z € Q is the starting point of Brownian motion {X;} in R"
then u (x) is the mean exit time from 2. In other words, if we define the first exist
time 7¢ from € by

To=1inf{t >0: X, ¢ Q},

then

u(z) = Byrq. (1.73)
More generally, the Dirichlet problem

Au=—fin Q

u =0 on 0f)

has solution

u(z) = B, /0 TR

which implies ([1.73) for f = 1.
Let u be the solution of ((1.72). Then by Theorem we have

supu < C Q7™
0
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|2/n

that is, the mean exit time from (2 is bounded from above by C'|Q2|”". In particular,

if 2 = Bp then Q| = ¢, R™ and we obtain the estimate

supu < C'R%. (1.74)

Br
Note that the classical Dirichlet problem

Au=—1 in Bp
u=0 on 0Bp

has an obvious solution

R — |af’
ulr) = =5
In particular, we see that
R2
S = 0 = —
Elg)u u (0) 5

which shows that the estimate is optimal up to the value of the constant. Let
us emphasize the following probabilistic meaning of the latter identity: the mean exit
time from the center of the ball is equal to g;s. In particular, it is proportional not to
R as it would be in the case of a constant outward speed, but to R?, which for large
R means a significant slowdown in comparison with a constant speed movement. This
happens because Brownian particle does not go away in radial direction but spends a
lot of time for moving also in angular directions. For example, an observer staying at
the origin and watching in the direction of the particle, will have to turn around all
the times in order to keep the particle in the view.

1.5.2 Operator with lower order terms

Now we state and prove a more general version of Theorem [1.13] Consider in {2 a more
general operator

1,j=1 =1

where the coefficients a;; and b; are measurable functions, the matrix (a;;) is uniformly
elliptic with the ellipticity constant A\, and all b; are bounded, that is, there is a constant
b such that

> bl < bae. in Q. (1.76)

=1

We say that a function u € W,>? () satisfies weakly in © the inequality Lu > g where
g € L2 (Q) if, for any non-negative function ¢ € D (),

loc
_/ Zaijajuaiwdx—l—/zmaiugodxz/ggpdm. (1.77)
Q=1 Q=1 Q

Similarly one defines the meaning of Lu < g. If u € W2 (Q) and g € L? (Q) then, as
in the proof of Lemma the test function ¢ in (1.77) can be taken from Wy ().
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Theorem 1.14 Let Q be a bounded domain in R™ and let L be the operator (1.75).
Assume
Q2] <0, (1.78)

where § = c, \""0™" with some ¢, > 0. If u € W12 (Q) and f € L*(Q) satisfy

Lu > —f weakly in €2,
1.
{ uy € Wy (), (1.79)
then, for any q € [2,00] N (n/2,00], the following estimate holds:
esssupu < C |97 77 [| £+ (1.80)
Q

with a constant C = C (n, A, q) .
Theorem extends Theorem [1.13] in three ways:
1. We allow in the operator L lower order terms.
2. We allow inequality Lu > — f instead of equality.
3. We allows u, € Wy* () instead of u € Wy ()

4. The main estimate in given in terms of || f}||;, instead of || f]|;«, where ¢ in
particular can be oc.

Let us explain why Theorem [1.14] contains Theorem [1.13] Indeed, if all b; = 0 and,
hence, b = 0 then § = oo and the restriction (1.78)) on || is void. Assuming that
Lu= f,u e Wy?*(Q) and applying (1.80) with ¢ = oo, we obtain

esssupu < C ]Q]% | fill ;o = C |Q]% esssup f. (1.81)
Q

Applying this inequality to function —u, we obtain

essQinf (—u) < C Q" esssup f_,

whence it follows that )
2/n

esssup |u| < C'|Q7" esssup | f|,

Q
which is equivalent to ((1.58)).

Applying Theorem [I.14] with f = 0, we obtain the following the maximum principle:
if uy € Wy? (Q) and Lu > 0 weakly then v < 0 a.e. in Q. The condition u, € Wy (Q)

means that in some sense “u, = 0 on 0f)”, that is, “u < 0 on 0f)”.

Proof. Since f can be replaced in by f., we can assume without loss of generality
that f > 0. If || f||;, = oo then there is nothing to prove. If 0 < ||f||;, < oo then
dividing f and u by || f||,., we can assume that || f||;, = 1. Finally, the case || f||;, =0
amounts to the previous case as follows. Indeed, if Lu > 0 then also Lu > —e¢ for any

e > 0. Applying ((1.80) with f = e, we obtain

esssupu < C' \Q\%ﬁ lell a -
Q
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Letting e — 0 we obtain (1.80)) with f = 0.
Hence, we assume in what follows that f > 0 and || f||;, = 1. As in the proof of
Theorem [1.13] fix & > 0 and consider a function

vi=(u—a), =(up —a), .

This function belongs to VVO1 2 (©) and is non-negative. By the hypothesis that Lu > —f
weakly, we have the inequality

—/ Zaijﬁjuﬁivdx+/2bi8iuvdm2 —/fvdm,
Q) QS Q

t,j=1

that is,

Q. Qi Q

4,j=1

We estimate the left hand side similarly to ((1.64). Observe that
@u@iv = @-U@iv a.e. in

because on the set {v =0} we have ;v = 0 a.e. (by Lemma [L.5)), whereas on the set
{v > 0} we have
aiu = (’9Z~u+ = 8{0,

by Exercise 14 and by Lemma Hence, we have

/ Z a;;0;ud;v de = / Z a;;0;v0;v dx > )\_1/ |VU|2 dx.
Q- Q Q

ij=1 ij=1
Now let us estimate the terms in the right hand side of (1.82)). Using
Oiuv =0wv a.e. in

and (|1.76]), we obtain, for any € > 0,

- b 1
/ E bio;uvdr < b/ Vol |v|dz < —/ e|Vu]? + ~0? ) da,
Q4 Q 2 Ja €
=1

where we have use the inequality
1 2 1o
XY <-—leX“+-Y“).
2 €
It follows that
-1 2 be 2 b 2
A |[Vol"de < — [ |Vou["de+ — | vidz+ | fudz.
Q 2 Ja 2e Jo Q
Let us choose ¢ to satisfy the condition b = A~ that is,

é\:E'
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Then we obtain

1 AD?
)\1/ \Vol* dz < —Al/ |Vv|2d:c+—/v2dx+/fvd:c,
Q 2 Q 2 Q Q

whence

/|W|2dg; < /\sz/UQdm+2)\/fvdx.
Q Q Q

Using the Faber-Krahn inequality (1.65)), we obtain from (1.83) that

c|Ua|2/n/vgdm < /\2b2/02dm+2)\/fvda7,
Q 0 "

where

Uy ={u>a}={v>0}.

We would like to have
UL 7™ > 2222,

Since |U,| < |©], it suffices to have
Q7" > 2222,
which is equivalent to o
C\"™ _
0| < (5) AT
which is equivalent to (|1.78) with

5 — (g)n/2 AT

Hence, (|1.85)) is satisfied, and ((1.84)) yields
1
—c|Ua|2/n/vzdx§ 2/\/fvdx.
2 Q Q

Applying the Holder inequality with the Holder exponents g and ¢’ = q%l and using|| 1| ;.

1, we obtain

) 1/q
| ote < Ul ol = ([ v7ac)
Q Ua

37

(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

(note that if ¢ = co then ¢’ = 1). Since ¢ > 2 and, hence, ¢’ < 2, applying the Holder

inequality with one of the Holder exponents %, we obtain

!/
q

/avq’dx < (/ 1dx)1_2 (/ (Qﬂ’)‘f’ d:v)

!
q

d 2
= |U,|'" 2 (/ UQdZL') ,
Q
1
/fvdx < ]Uaﬁ_% </ vzd:c> :
Q Q

whence



38 CHAPTER 1. WEAK DIRICHLET PROBLEM

Combining with (1.87)), we obtain

=

1
—c]Ua\_2/”/v2 dz < 2\ U,
2 Q

3
3 (/ vzd:c> ,
% 1 1 2
(/ Ule") < AeTIN|UL |72
Q

4

/UZdl‘ <K \Ua|%_1+” ,
0

whence

and

where K = (4¢7')\)%. Set

2 4
q n
and observe that
1 4 2 4
p=2(1—--|—-14—-—=1—--+—>1
q n q n

because ¢ > 7. Hence, we have

/Q(u —a)tde < K|U,J"

with p > 1. This inequality coincides with the inequality (1.66|) from the proof of

Theorem Using the Claim from the proof of Theorem [1.13| we arrive at ((1.71)),
that is,

Shv
Q|

esssup u < C’|Q|% =C|Q" "9,
Q

which finishes the proof of (1.80). m

Let us discuss the restriction [2| < § that appears in the statement of Theorem
[[.14l Consider the operator

i=1
in a bounded domain €2 C R™ and the Dirichlet problem

Lu=—11in ()
{ uwe Wy?(Q). (1.88)
The estimate ((1.80)) of Theorem m yields, for ¢ = oo, that
u(z) < C1QY" in Q. (1.89)

The function u (x) has the following physical/probabilistic meaning. Operator L is the
- —
generator of a diffusion process with a drift b = (by,...,b,). In the case b = 0 this is
—)
Brownian motion, but in the case of non-zero b one can think of this diffusion process

ﬁ
as Brownian motion in a media that moves at any point = with the velocity b (z) (in
other words, media with convection). The function u (x) that solves (1.88]) gives the
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mean exit time of this diffusion from (2 assuming that the starting point is x. The
estimate (1.89) provides an upper bound for the mean exit time, saying that exit on

. 2
average occurs before time C' |Q*".

However, if the drift Y (x) is directed inwards the domain €2, then one can imagine
that the drift prevents the particle to escape from the domain, which may result in
a longer exit time. As Theorem says, this cannot happen if || is small enough,
but as we will see in example below, this can happen if || is large enough (for large
domains the effect of convection becomes dominating over diffusion).

Example. Consider one-dimensional example with Q@ = (—R, R) and

Lu=4"+W/
where
1, x<0,
b(z)=—sgnzx=¢ 0, x=0,
-1, z>0.

Let us solve explicitly the Dirichlet problem

{ Lu= -1 in (—R,R)
u(—R) =u(R)=0.

It suffices to solve the problem

{ Lu= -1 in (0,R) (1.90)

w(0)=u(R)=0

and then extend u evenly to (—R, 0), that is, by setting u (—z) = u (z). Since u satisfies
in (0, R) the equation
u' —u' = -1, (1.91)

in (—R,0) it will satisfy
u +u = —1.

Due to the the boundary condition u'(0) = 0, the function u is a weak solution of
Lu=—1on (—R,R).
The ODE (1.91)) has the general solution
u(z) =1+ coe” + .

The boundary conditions v’ (0) = u (R) = 0 give the following equations for ¢; and ¢j:

CQ+1 =
o+ e+ R =

whence ¢; = —1 and ¢; = e — R. Hence, ([1.90) has solution
u(z) = (e" = R) — " +x.

In particular,
u(0)=e—R—1.
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We see that for small R

2
M@%%3 (1.92)

while for large R
u (0) ~ e~ (1.93)

Note that the estimate ((1.80) with ¢ = co gives in this case
ull pw < CRZ, (1.94)

provided R is small enough, where the latter requirement is a consequence of (|1.78]).

The estimate (1.94) agrees with (1.92)), but (1.93) shows that (1.94)) fails for large R,

so that in general the restriction ((1.78) cannot be dropped.
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Chapter 2

Higher order derivatives of weak
solutions

Recall the following property of the distributional Laplace operator in a domain of R™:
if u € W2 and Au € L2, then u € W22, Moreover, if Au € W, then u € WS, In
this Chapter we prove the same property for divergence form elliptic operators. The
technique of Fourier series that worked for the Laplace operator, does not work for
the operator with variable coefficients, so we use entirely different techniques based on

difference operators.

2.1 Existence of 2nd order weak derivatives

Consider the operator

ij=1
in a domain €2 C R”. As before, we assume that this operator is uniformly elliptic and
the coefficients a,; are measurable. Recall that if u € W,2*(Q) and f € L2, (Q) then
the equation Lu = f holds in a weak sense if, for any ¢ € D (Q),

—/ Zaij(?ju(?i(pdx—/f@dx. (2.2)
Q; Q

ij=1

Recall also that if u € W2 (Q) and f € L? () then the identity (2.2) can be extended
to all ¢ € Wy (Q) (cf. Lemma .
Claim. If u € W22 (Q), f € L}, (), and the identity (2.2) holds for all ¢ € D (Q)

loc loc

then it also holds for all o € W12 (Q).

Proof. Fix a fugction o € WH2(Q) and let U be a precompact open set such that
suppp C U and U C (). Clearly, the integration in 1) can be restricted to U. Since
we Wh2(U), f e L*(U), ¢ € Wy? (U), we conclude that (2.2) holds by Lemma [1.1]
|

Claim. For any u € W,o* () (and even for u € W,oH (Q)) the expression Lu in (2.1)

is well-defined in the distributional sense. The identity (2.2)) is equivalent to the fact
that Lu = f holds in the distributional sense.

41
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Note that, for a general distribution u € D’ (2) the expression Lu is not well-defined
because the product a;;0;ju of a measurable function a,; and a distribution d;u does
not makes sense in generall]

Proof. The function d;u belongs to L, () and, since a;; are bounded, the function
a;;0;u belongs also to L7 . (), in particular, to D’ (2). Hence, 9; (a;;0;u) is defined as
an element of D’ (Q2), where 0; is understood in distributional sense. Consequently, Lu
is defined as an element of D’ (£2).

By definition of distributional derivative, we have, for any ¢ € D (Q),

(Lu,p) = Z (05 (aijOju) , p) = — Z (ai;05u, D;p)
i,j=1 hj=1

= —Z/amaju@godaz
Q

ij=1
Hence, the identity (2.2)) becomes

(Lu, @) = (f,0) Yo eD(Q),

which is equivalent to Lu = f.

For u € I/Vlloc1 () the proof is the same because L? . can be replaced everywhere by
n

Ll

loc*

Hence, from now on the expression Lu is well-defined as an element of D' () for
any u € I/Vlif Now we can state one of the main results of this Chapter.

Theorem 2.1 Let L be the operator (2.1) and assume that all the coefficients a;j of L
are locally Lipschitz in Q. If u € W22 (Q) and Lu € L}, (Q) then u € W2 (),

loc loc

2.1.1 Lipschitz functions

A function f on a set S C R" is called Lipschitz (or Lipschitz continuous) if there is a
constant L such that

f(x)—f)| <L|lx—y| Vzyelbs.

The constant L is called a Lipschitz constant of f on S.
Let 2 be an open subset of R”. We say that a function f : Q — R is locally Lipschitz
if for any point = € €2 there is € > 0 such that B, (z) C ©Q and f is Lipschitz in B. (x).
Let us list some simple properties of locally Lipschitz functions.

1. Any locally Lipschitz function is continuous.

LA product av of a distribution v € D’ () and a function a on 2 makes sense only if a € C* (Q).
In this case av is defined as an element of D’ () as follows:

(av,p) = (v,ap) Ve € D(Q),

which makes sense because ap € D ().
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2. If f, g are locally Lipschitz functions then f + g and fg are locally Lipschitz.
In particular, the set Lip,. (£2) of all locally Lipschitz functions in 2 is a vector
space and even an algebra.

3. Any functions from C* (Q) is locally Lipschitz in Q. Consequently, we haveﬂ
C'(Q) C Lip. () C C(9Q). (2.3)
In particular, Theorem [2.1| holds if all the coefficients a;; belong to C* ().

4. If f is locally Lipschitz in Q2 then f is Lipschitz on any compact subset of 2.

Proof of the property 4.. Let K be a compact subset of 2. We need to prove that
there is a constant C' such that, for any two points z,y € K,

1f (@) = f W < Cle—yl. (2.4)

For any x € K there exists ¢ = ¢, > 0 such that the ball B, (z) is contained in €2

and f is Lipschitz in B., (x) with the Lipschitz constant L,. The balls {B I, (x)}

zeK
N

form an open covering of K, so choose a finite subcover {B 1., (xz)} and set
2w i=1

g:=mine,, >0, L:=maxL, < oo.
Let us now prove (2.4)) if z,y € K are such that

o -yl < &
X — —£.
=5

Indeed, the point 2 belongs to one of the balls By (x;). Since

1 1
|$i—y|S|Ii—$’+|$—y|<§€mi+§5<€m“

we see that y € B., (v;). Hence, both z,y are contained in the same ball B, (),
whence we obtain that

[f@)—fWI<Lilz—y| < Liz—y|.
Hence, ([2.4)) holds with C' = L. Consider now the case

1
[z —y| = 3¢

Setting M = supy | f|, we obtain
@)~ W)l _2M

[z —yl T e

so that (2.4) holds with C' = 4¢71M. Hence, (2.4) holds for all z,y € K with C =
max (L,4e7'M). m

?Both inclusions in (2.3) are strict. For example, function |z| in R is Lipschitz but not C*, whereas
. 1/2 . . . .
function |z|/ is continuous but not locally Lipschitz.
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2.1.2 Difference operators

For the proof of Theorem [2.1| we need the notion and properties of difference operators.
Fix a unit vector e € R", a non-zero real number h and denote by 9" an operator that
acts on any function f : R" — R by

f(x+he) — f(x)

oh =

S () )

Obliviously, if f is differentiable then, for any = € R"
Of(x) — O.f (v) as h — 0.

Unlike the differential operators, the difference operator 9" is defined on any func-
tion f. Moreover, if f belongs to a function space F that is translation invariant, then
also 9" f € F. Note that all function spaces over R" that we use: LP, L} WP, whp

k loc? loc
Wy" etc., are translation invariant.
In the next lemma we state and prove some simple properties of difference operators.

Lemma 2.2 (a) (Product rule) For arbitrary functions f,g on R™ we have
0 (fg) = f(-+he)dlg+ (0Lf)g. (2.5)
(b) (Integration by parts) If f,g € L* (R"™) then

/n (01f) gdz = —/n f(8:"g) da. (2.6)

(¢) (Interchangeability with 0;) If f € L} .(R") and the distributional derivative O;f
belongs to L., (R") then
O (0:f) = 0: (9f) -

Proof. (a) We have

0! (fg)(z) = +(f(z+he)g(z+he)—f(z)g(x)

[+ he) (g (z + he) — g (x))

5 (f (@ +he) = f(2)) g (2)
= [z +he)drg(x)+ 0 f (x)g(x),
which is equivalent to (12.5]).

(b) Since all functions f,d"f,g,0-"g are in L2, the both integrals in (2.6 are
convergent. We have

/n(&?f)gch = %/n(f(x—i-he)—f(x))g(x) dx

— % Rnf(:n%—he)g(:z:)dx—%/nf(x)g(ﬂf) dx

1

= 3 Rnf(x)g(x—he)dx—%/nf(x)g(x) dx

= -] f@ 0:"g (v) du.
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(c) We have

f(x+he) — f(x)
h

— % (Oif (x + he) — O f (v))
= 83 (0:f) .

0; (0. f) = o

Next Lemma provides an important tool for proving the existence of a partial
derivative 0, f in L.

Lemma 2.3 If f € L? (R") and there is a constant K such that, for all small enough
hl h
|92 f 2 < K

then the distributional derivative 0. f belongs to L* (R") and

10cf1l 2 < K.

Proof. Take any sequence hy — 0. The sequence {82”9 f } is bounded in L? by
hypothesis. We use the fact that any bounded sequence in a Hilbert space contains a
weakly convergent subsequenceﬂ Hence, passing to a subsequence, we can assume that
the sequence {(9;”“ f} converges weakly in L? to some function g € L?, that is,

of—~g ask — oo. (2.7)

Let us show that 0. f = g. By the weak convergence, we have, for any ¢ € L* (R")

(024 f, ) = (g.9) as k — oo, (2:8)
where (-, ) is the inner product in L? (R"). For any ¢ € D (R"), we have by (2.6
(ngf, 90) = — (f, ae_h’“go) — — (f,0ep) as k — oo, (2.9)

because
;" p = 0,0 as k — oo

and the integration in

(f,@e_h’%p) = f o7 dr
Rn
can be reduced to a small neighborhood of supp ¢. The comparison of (2.8) and (2.9))
yields

—(f,0e0) = (9,) Vo ecD(R")

3Recall that a sequence {uy} of elements of a Hilbert space H converges weakly to u € H if

(ug, @) — (u, ) Vo € H.

The weak convergence is denoted by ur — w, and it is generally weaker that the strong (norm)
convergence uy — u.
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Considering now (-, -) as pairing between distributions and test functions and recalling
that the distributional derivative 0, f is defined by

(aef7 QO) == (f7 ae(p) VQO €D (Rn) )
we conclude that 9. f = g. Consequently, we have d.f € L? (R") and, by (2.7),
o f —~0,f ask — oo. (2.10)

Since H(‘?gkaLz < K, we obtain that, for any ¢ € L* (R"),

(@ f,0)| < Kl 2
which implies by that

|(8efa 90)| <K ||S0||L2 .

It follows that

10l = sup  NOLON g

eerz@nor 1elle

which finishes the proof. m

Corollary 2.4 (a) If f is a Lipschitz function in R™ with compact support then f €
Wh2(R"). Moreover, f € WhH> (R").

(b) If f is a locally Lipschitz function in Q then f € WL (Q). Moreover, f €
Wio™ (M).

Proof. (a) Indeed, if L is the Lipschitz constant of f then for all x and all h we have
o f (x)‘ < L. Since d"f also has compact support, it follows that, for all |h| < 1,
}82 f H , 18 uniformly bounded, which implies by Lemma that 0. f € L? and, hence,
feWwh?(R).

Since f is continuous and has compact support, we see that f is bounded, that is,
f e L™ (R"). Since }82]0 (z)| < L pointwise, we have, for any ¢ € D (R"),

(92 f, )| < Ll -
By (2.10) we have the same property for d, f, that is,

@ef, o)l < L@l 1

which implies that

Ocf,
0 f I = sup OS]
0eD(R™)\{0} ||90||L1

Hence, d.f € L*® (R") and f € WhH> (R").

(b) Let U be a precompact open set such that U C  and let ¢ be a cutoff function
of U in 2. Since ¢ is Lipschitz, it follows that f is locally Lipschitz. Since fy has
compact support, we conclude that fe is Lipschitz in a neighborhood of supp (fy)
and, hence, in R™. Tt follows by (a) that fo € W2 (R"). Since p = 1 in U, it follows
that f € W2 (U) and, hence, f € W2 (Q). Since also f € W (U), it follows that
fEWZ(Q). =

< L.
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Lemma 2.5 If f € Wy? (R") then

102 || e < N0ef 2 - (2.11)

Proof. It suffices to prove this for f € D (R"), since the both sides of the inequality
(2.11)) are continuous functionals in W2 (R"). We have

(f (z+ he) = [ (x))

h

0cf (w) =

> =

L1 o+ te) dt

o dt
h
/ Ocf (x +te) dt
0

SRS

where we have used that

%[f(ﬂte)] —gaxif(:cﬂe)ei—aef(a:ﬂe).

It follows that

h

— [ O.f (z+te) dt>

0

okt @) =

e

IN

laef (z + te)|” dt
0

/Rn (/oh 0ef (x+ t€>l2dt) do
/oh (/ 0] (z te>|2dx) dt
/oh ( 10 (y)IQdy> dt

h
/0 10 F 12 dt = [0

S/
>

and, using Fubini’s formula,

IN

o2 7117

S RS N

2.1.3 Proof of Theorem 2.1]

We precede the proof by one more lemma. Consider in an open domain 2 C R" an
operator

Lu = Z 81 (aijaju) s
ij=1

where the coefficients a;; are measurable and L is uniformly elliptic.
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Lemma 2.6 (Product rule for L) If u,v € W,22(Q) and Lu, Lv € L}, () then

loc

L(w) = (Lu)v + 2 Z a;j0;ud;v + ulv. (2.12)

3,j=1

We will use in the proof the following product rule from Exercise 19: if u,v €
W2 (Q) then uv € W2 (Q) and

0; (uwv) = (Oju) v+ u (9v) . (2.13)

In particular, since uv € VVlloc1 (), the expression L (uv) in (2.12)) is well-defined as a
distribution.

A simplified version of Lemma [2.6] Before the proof in full generality, let us prove the formula
(2.12) in a simpler setting. Namely, let us first prove (2.12)) assuming that a;; € C' (Q) and u,v €
W2 (Q). Then a;;0;u € W2 () and, hence, 9; (a;;0;u) € L?,. (). In particular, Lu and Lv belong

loc loc

to L7 (£2). Using we obtain
9; (ai;0; (wv)) = 95 (ai; (O5u) v) + 0; (aijud;v) .
Since a;;0;u and v belong to Wl{)f (Q), we obtain by the product rule that
0; (aij (0ju) v) = 0; (a;;0ju) v + a;;0;ud;v.
Similarly, we have
0; (a;ju0;v) = 0; (a;;0;v) u + a;;0;ud;v.
Adding up in all ¢, j and using the symmetry of a;;, we obtain that

L (uv) = (Lu)v + (Lv) u + 2 Z a;;0;ud;v,
ig=1

that is .

Note that under the weaker assumptions u, v € Wlif (Q) the above argument does not work since
ai;0ju can be claimed only to belong to L7 (). Hence, the term 9; (a;;0;u)v is meaningless as a
product of a distribution d; (a;;0;u) with a W,>? function v.

Lemma [2.6|will be used in the proof of Theorem [2.1{ where function v will be assumed in Wllof Q)

and the fact that u € VVIQOC2 (©) will have to be proved. Therefore, we need a full version of Lemma
2.0l

Proof of Lemma Using the distributional definition of L and the product rule
(2.13]), we obtain, for any ¢ € D (Q),

n

(L(uw), @) = > (9i(ai0; (uwv)), )

i.j=1
= - Z (a;;05 (uv) , Dip)
i.j=1
= — Z (aij (@u) v, @go) — Z (aijuajv, 8290) (214)
i.j=1 1.j=1

Using again the product rule

vOip = 0; (vp) — (Opv) o,
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we obtain
— Z (a;; (Oju) v, 0ip) = —/ Z a;; (Oju) v0;p dx
ij=1 Q=1
= /Za”aué’vgodx—/Zaw@u@ vp)d
i.j=1 t.j=1

Next, recall that Lu satisfies the following identity:

/NE:awau@wdx—l/(Lm¢dx

i,7=1

for any 1 € W12 (Q). Since vp € W2 (Q), setting here ¢ = vy, we obtain

l/‘E:(%ﬁ?ua(v¢)dm——jQ(Lu)v¢dx-—(vLu,¢)

i.5=1

whence
— Z a;; (Ou) v, 0;0) = (Z a;;0;u 0;v go) + (vLu, ). (2.15)
i.j=1 1.7=1

Similarly, we have

— Z (a;judjv, 0;p) = <Z a;;0;v Oju go) + (uLv, ) . (2.16)

i.0=1 i.0=1

Adding up (2.15)) and (2.16]), using a;; = a;; and (2.14), we obtain
(L (uv),p) =2 (Z a;;0;u0;v , go) + (vLu, ) + (ulv, @),

i.j=1
which is equivalent to (2.12). =

Proof of Theorem Set f = Lu. Consider first a special case when u € W12 (Q)
and f € L?(2), and prove that in this case u € W22 (Q). It suffices to prove that all
distributional derivatives 9; (9;u) belong to L? ().

Let us extend u to a function on R"™ by setting v = 0 in €2°. Then we have
u € Wh? (R™). We will prove that all second order derivatives dy (9;u) are in L? (R™).
Since d;u € L? (R"), by Lemma, it suffices to verify that, for any unit vector e, the
norms ||0! (Q;u)||,, are uniformly bounded for all small enough |h|. Since

8? (&u) = (91 (8fu) s
it suffices to prove that, for some K and all small enough |h|,
19: (92w)

.. < K. (2.17)

We are going to show that (2.17) holds with K = A(||f]|;2 + C||Vu| ;) where C

depends on n and on the Lipschitz constant of the coefficients a;; on supp u.
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Motivation. Before we start the proof of , let us explain an idea in a simpler situation.
Assume that u € W32 (2) and that a;; € C* (), and obtain an upper bound for the L*norm of the
second derivatives of u. Set v = Jyu for a fixed index k and obtain an upper bound for ||Vuv||,. that
would be analogous to (2.17)).

By Lu = f we have the identity

—/ Z aij(?juaigpdx:/fgodx
Q. Q

i,7=1

that holds for all ¢ € W;? (). By the assumption u € W32 (), we have dyru € W12 (Q). Hence,
we can use in the above identity the function ¢ := Ogru = Jgv.

Since both functions a;;0;u and ;v belong to W(} 2 (©), we can use the integration by parts
formula of Exercise 18 and obtain

—/ Z aijﬁjuaigod:z: = —/ Z aijﬁjuak (87,11) dx
Q Q

i,j=1 ,5=1
= / Z Ok (ai;05u) O;v dx
Q=1
= / Z (8kaij)8ju8wd:r+/ Z aijﬁjvé‘iv dx.
Q5=1 Q=1

Hence, we have the identity
/ Z a;;0;v0;v dx = / fopvdx —/ Z (Ora;j) Ojud;v da.
Q.57 Q Q.57
i,j i,
Since all dya;; are bounded on supp u, we obtain

/ Z (Okaij) Ojudivdr| < / Z |Okaij| | Vu| Vo] dz
Q Q.

4,j=1 4,j=1

IN

ClIVal gz Vol 2,

where C' = supg,p., 2, j=1 |Okaij|. Also, we have

/Q fowvdz < |[f]l5s IVl 2

and, by the uniform ellipticity condition,

n
/ Z aijajvﬁiv Z /\_1 HVUHiQ .
Q

i,j=1

It follows that
- 2
ATVl < Nl 190l e + C IVl 2 Vol -

and
Vol S A fllz2 + C I Vullge)

which is an analogous of ([2.17)).

Set v = 9"u. For simplicity of notations, we write 9" = 9". We always assume that
|h| is small enough, in particular, || is much smaller that the distance from suppu to
the boundary of Q. Clearly, we have then v € W12 (Q) and 0~ "v € W12 (Q). Since
Lu = f, we have, for any ¢ € VVOI’2 (Q),

—/ Zaijaju@godx:/fgodx.
Q; Q

t,j=1
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Setting here ¢ = 97"y = 9" (ahu), we obtain
—/ Z a;;0;u 0; (8‘%) dr = / f (8_%) dx.
Q50 Q

On the left hand side, we apply the integration by parts formulaﬁ and the product rule
for difference operators from Lemma [2.2}

—/ Z aij(?ju 81 (87h?)) dz
Q

ij=1

—/ Z aijaju 8*}1 (811)) dz
Q

ij=1

_ / S 0 (ai;050) v do
Q

i,7=1

= / Z aij (x + eh) d" (O;u) O dx
Q

i,7=1

+/ Z (8haz~j) 8ju8iv dx
Q.

2,7=1

= / Z Q5 (fL' + eh) (9]-1)81-1) dx
Q'

ij=1

—i—/ Z (8halj) Ojudvdx.
Q

i,7=1
Hence, we obtain the identity
/ > aij (z + eh) dpdv da = / f(07M) do — / > (9"ay) Ojudv da.
Q=1 Q Q50

Using the Cauchy-Schwarz inequality inequality and Lemma [2.5], we obtain

' /Q f(07") dx

< 1 fllz (070 o < 1£11 2 1Vl 2 -

Also we have

/ Z (0"a;j) Qjudivde| < Z |8haij‘ |Vul| |Vo| dz
Q=1 SUPP U, j=1
< ClVullp Vol 2

where
n

C := sup Z ’f)haij‘

supp v ij—1

“The integration by parts formula (2.6) of Lemma was proved for functions u,v € L? (R").
However, if both functions have compact supports in €2 then, for sufficiently small h, the integration
in the both sides of (2.6) can be reduced to .
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is finite because a;; are locally Lipschitz and supp v is compact. Hence, we obtain

|3 atat em) dpudiods < (Ifls + €1 ula) [Vl

i,j=1

On the other hand, by the uniform ellipticity we have

/ Z aij (x4 eh) ddw dr > X7 | V||,
Q

1,j=1

whence

AVl < (F e + C IVl 2) V0l 2

and
Vol <A fllz + ClIVull2) -

Since v = 9"u, we obtain (2.17) with K = X (|| f||,;2 + C [|[Vul| ,2) -
Consider now a general case u € W22 (Q) and f € L7, (Q). In order to prove that
u € V[_/lif (Q2) it suffices to prove that u € W22 (U) for any precompact domain U such

that U C (). Fix U and choose a cutoff function n of U in €. Consider function w = un
that belongs to W12 (). By Lemma [2.6/ we have

Lw = (Lu)n+ 2 Z a;;0;u0;n + u (Ln) .

1,j=1

A simple inspection shows that all the terms in the right hand side belong to L? (),
which implies that Lw € L?(Q2). By the above special case, we conclude that w €
W22 (Q), in particular, w € W22 (U). Since u = w on U, it follows u € W22 (U),
which finishes the proof. m

Corollary 2.7 Under the hypothesis of Theorem i the expression

Lu = Z 0, (a,ij@ju)
3,j=1

each derivative d; and 8; can be understood in W ().

If the both derivatives 9; and 9; in L are understood in W2 (Q) then one says that
the operator L is understood in the strong sense. Recall that if u € W5 (Q) then 9,
acts in W22 (Q), whereas 9; acts in D' (2); in this case we say that L is understood in
the weak sensell
Proof. By Theorem we have u € W2?(Q) and, hence, d;u € WL (Q). Since
a;; are locally Lipschitz, we have also a;; € W2, Hence, by Exercise 19, we have

loc *
a;0;u € W (Q) and

loc

0; (a;;05u) = (Biai;) ju + aiOy;u.

5Recall for comparison that L is understood in the classical sense if the both operators 9;, d; apply
to C'-functions, which is the case when u € C? and a;; € C'. If a;; € C* then operator L can be
understood in the distributional sense for any u € D’ (Q).



24.05.16

2.2. EXISTENCE OF HIGHER ORDER WEAK DERIVATIVES 53

Since a;; is bounded, it follows that a;;0;u € L7 (). Since d;a;; is locally bounded

loc

(because a;; € W,o™), the above identity implies that ; (a;0;u) € L7, (), whence

loc loc

a;;0;u € W22 (Q) . Hence, the operator d; acts on a function from W2 (Q), which was

to be proved. m

Remark. In the course of the proof we have proved the following fact: the product of

a function from I/Vlloc2 with a locally Lipschitz function belongs again to I/Vlif Similarly

one proves that the product of a function from W2 with a Lipschitz function belongs
to W2,

2.2 Existence of higher order weak derivatives

As above, consider in a domain 2 C R" a uniformly elliptic operator

Lu = 2”: 0; (a;j05u) . (2.18)

ij=1

1,2 S
Theorem 2.8 Let u € W, 7 (Q). If, for a non-negative integer k, we have a;; €

loc

CH(Q) and Lu € W2 (Q) then u € W2 (Q).

loc loc

For the proof we need the following lemma.

Lemma 2.9 Ifu € W'? (Q) and v € W™ (Q) then uv € W (Q).

loc loc loc

Proof. Induction in k. For k = 0 the claim is obvious: if u € L} () and v € L52, (Q)

loc loc

then uv € L (). Assuming k > 1, let us make the inductive step from k — 1 to k.

loc

Since W, € W;? and k > 1, the both functions u, v belong to W,-? (Q). By Exercise

loc

19, we conclude that uv € W,2! (Q) and
0; (uv) = (Oju) v + ud;v.

Since d;u € W1 (Q) and v € W'~ (Q), we conclude by the inductive hypothesis

loc loc

that (;u)v € W12 (Q). In the same way we obtain that ud;v € W'~ 2 (Q), whence

loc loc

it follows that d; (uv) € Wi "2 (Q). Hence, uv € W;? (), which was to be proved. m

loc loc

Proof of Theorem Induction in k. The case k = 0 is covered by Theorem
Assuming k£ > 1, let us make inductive step from k£ — 1 to k. Let

Qg5 S CkJrl (Q) and Lu € Wk’z (Q) .

loc

Then also a;; € C* () and Lu € W, " (), and the inductive hypothesis yields that

loc

uwe W Q).

loc

We need to prove that u € W/ t%? (€2), and for that it suffices to verify that any partial

loc

derivative dju belongs to W) (Q). We will show that

L (Ou) € W2 (Q).

loc
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Since du € W2 (Q) c W,22(9Q), applying the inductive hypothesis to du, we will

loc loc

conclude that du € W,"*? (Q) thus finishing the proof.

loc

Hence, let us compute L (0;u). We have

L (éhu) = Z 81 (aij(‘?j@lu) = Z 81 (aijalﬁju) .

i,j=1 4,j=1
Since both d;u and a;; belong to Wlif (Q), we have by the product rule in I/Vlloc2 (Q)
0, (a;;0;u) = a;;0,0;u + (0aij) Oju,

whence

L(ou) = ) 00 (ai05u) — (Dai;) Dyu)

ij=1

= @l (LU) - Z & (E)laijﬁju) .
1,j=1
Note that 8 (Lu) € Wy (). Since dju € W,? () and dia;; € CF () € W™ (),

it follows by Lemma that the product (da;;)d;u belongs to W2 () whence
; (Da;;0;u) € W) "2(Q). Hence, L(du) € W) "*(Q), which finishes the proof.

loc loc
|

2.3 Operators with lower order terms

Here we extend the results of Theorems and to the operator with lower order
terms. Consider in a domain 2 C R™ the operator

Lu = Z 0; (a;;05u) + Z bj0ju + cu, (2.19)

ij=1 i=1

where the coefficients a,;,b;, ¢ are measurable functions in Q. For any u € W,.? ()

the expression Lu is understood weakly, that is, the terms a;;0;u, b;0;u and cu are
elements of L7 . (£2), while the terms 0; (a;;0;u) are elements of D’ (2).

Theorem 2.10 Let L be the operator (2.19). Assume that (a;;) is uniformly elliptic
and that the coefficients b;, ¢ are bounded in Q. Let u € W12 (Q).

loc

(a) Assume that a;; are locally Lipschitz. If Lu € L2, (Q) then u € W22 (Q).
(b) Let k be a mon-negative integer. If a;; € C*1(Q), bj,c € C*(Q) and Lu €
W2 (Q) then u e W2 (Q).

loc loc

Proof. Consider the operator Ly defined by

LOU = Z 8z (aijaju) = Lu— (Z bji?ju + CU) .
j=1

ij=1
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(a) If u € W2 (Q) then

loc

Z b;0ju+cu € L7, (Q),
j=1

which implies that Lou € L2, (Q). By Theorem [2.1| we conclude that v € W22 (Q).

loc loc

(b) Induction in k. The inductive basis k = 0 is covered by part (a). Inductive step
from k — 1 to k. By the inductive hypothesis we already know that u € W5 ™% (). Tt
follows from Lemma 2.9 that

> bidju+cu € WEX(Q),

loc
=1

and, hence, Lou € I/Vlif (©2). By Theorem we conclude that u € W22 Q). m

loc

2.4 Existence of classical derivatives

Let us recall the following theorem.

Sobolev Embedding Theorem. Let ) be a domain in R". If k,m are non-negative
integers such that k > m + 5 then W2 (Q) — ™ (Q).

Combining Theorem with Sobolev embedding theorem, we obtain the following.
Corollary 2.11 Under the hypotheses of Theorem [2.10(b), if

n
k> ——2
m + 5 ,
where m is a non-negative integer, then w € C™ () . In particular, if a;j, b;,c € C* (£2)
and Lu € C*® (Q) then u € C* (Q).

loc

Theorem yields u € C™ (€2) . The second statement follows from the first one applied
toany m. m

Proof. Indeed, by Theorem we have u € W% (Q), and Sobolev Embedding

2.5 Non-divergence form operator

Recall that for a divergence form uniformly elliptic operator

Lu = Z (‘31 (aijﬁju) + ijﬁju
j=1

ij=1

in a domain ) C R", the equation Lu = f is understood in the weak sense if u €
W2 (Q) (and, hence, 9; acts on W,>* while 9; acts on L?,.) and Lu = f is understood

loc

in the strong sense if u € W2? (Q) (and both 9; and ; act in W.?).

loc
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Consider now a non-divergence form elliptic operator

Lu = Z a;;0;;u + Zb O;u (2.20)

2,7=1

in a domain €2 C R". In this case the notion of a weak solution is not defined, while
the notion of a strong solution makes sense as follows.

Definition. We say that the equation Lu = f is satisfied in €2 in the strong sense if
u € W22 (Q) (so that d;;u and d;u belong to L7, (Q)) and if Lu (z) = f (z) holds for
almost all x € ().

We say that the equation Lu = f is satisfied in € in the classical sense if u € C? ()
and if Lu () = f (z) holds for all = € Q.

Example. Consider in R the function u (z) = |z|. Obviously, we have u” () = 0 for
all z # 0, in particular, for almost all x € R. However, this function is not a strong
solution of u” = 0 because u ¢ I/[/l2oc2 (2). Indeed, for distributional derivatives we have
W =sgnr €L} andu’' =20 ¢ L?
In fact, every strong solution of Au = 0 in R" is also a weak solution, and we obtain

by Corollary that u € C*° (R").

loc*®

Consider the Dirichlet problem

Lu=f in Q,
{ we W2 (Q), (2.21)

where L is the operator (2.20) and the equation Lu = f is understood in the strong or
classical sense.

Theorem 2.12 Let L be the operator in a bounded domain 2 C R™. Assume
that (a;;) is uniformly elliptic in , a;; are Lipschitz in 2, b; are bounded and mea-
surable. Then, for any f € L*(Q), the Dirichlet problem has a unique strong
solution.

If in addition all the functions a;j, bj, f belong to C* (), then the solution u of
belongs to C* (), and the equation Lu = f is satisfied in the classical sense.

Proof. By Corollary 2.4 we have a;; € W2, If u € W22 (Q) then du € Wb

loc * loc loc and? by
the product rule,

(‘31- (al-j@ju) = (816LU) 8ju + al-jal-ju.

Therefore, for u € W2? (), we have

loc

Lu = Zalﬁl]u—i—Zb@u

3,7=1
= Z 6’1 (aijaju) — Z (azaw) 3ju + Z bjaju
3,5=1 3,5=1 7j=1

= Lu,
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where L is a divergence form operator defined by

zu = Z 81 (aij(‘?ju) + Zgjﬁju
j=1

1,7=1
with
" n
bj = bj - Z@iaij.
i=1

Since functions a;; are Lipschitz in 2, the weak derivatives 0;a;; are bounded in € (see
Corollary (a) and Exercises). Since also b; are bounded in €2, we obtain that the
coefficients b; are bounded in €.

The above computation shows that Lu = Lu for u € W22 (Q). In particular, the

loc

strong Dirichlet problem ([2.21)) is equivalent to the strong Dirichlet problem

Lu = f inQ
’ 2.22
Ay 222

whose solution u is sought in the class I/Vlif (©2). However, unlike the operator L, the

divergence form operator L can be regarded also in a weak sense, that is, on functions
from W22 (Q).

Hence, consider first in the weak sense. By Theorem the weak Dirichlet
problem (2.22) has a solution u. Since a;; are locally Lipschitz, we obtain by Theorem

Im that u € W2?(Q) and by Corollary that Lu = f holds in the strong sense.
Hence, the same function u is a strong solution of the Dirichlet problem , which
proves the existence of solution of .

Since any strong solution u of is a strong and, hence, a weak solution of
, we obtain by Theorem the uniqueness of wu.

If a;;, b5, f € C* () then by Corollary the solution u of belongs to C'*

and, hence, Lu = f is satisfied in the classical sense. m

Remark. Theorem yields the following estimate of the solution u of (2.22)):

2 1
[ull oo < CIQP 4 (11l o (2.23)
with any ¢ € [2,00] N (n/2, 00|, provided
9 <6,

where § = cn)\_",l\);” depends on the ellipticity constant A of (a;;) and on the constant

bi=sup ) [b;| < sup (Z bl + > |3iaij|) <b+n’K,
Q = Q -
Jj=1 Jj=1

ij=1
where b = supg > ;_, |b;| and K is a common Lipschitz constant of all a;;. Hence, the

b

same estimate holds for the solution u of 1) Note that b may be non-zero even if
b = 0 because of K # 0.
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Example. Let us give an example to show that the uniqueness statement of Theorem
fails if the coefficients a,; are not Lipschitz. This implies that any the estimate of
the type (2.23) cannot hold as it would imply the uniqueness.

Consider the operator L = Y7 i1 a;;0;; in R™ with the coefficients

8ij + ¢4, x #0,

aij (r) = { Y || 7

Oijs z =0,

where c is a positive constant. It is easy to verify that L is uniformly elliptic. Consider
the following Dirichlet problem in a ball B,:

{ Lu=0 in B, (2.24)

ue Wy (B,)

where L is understood in the strong sense, that is, u has to be in W22 (B,). If the
coefficients a;; were Lipschitz as in the statement of Theorem then this problem
would have a unique strong solution u = 0.

However, the coefficients a;; are not Lipschitz near 0 (not even continuous), and
the problem can have a non-zero solution. Indeed, it is possible to prove that if
s € (0,1), n > 2(2—s) and ¢ = =2 then the function u (z) = |z|* — r* belongs to
W22 (B,) N W, (B,) and solves in B, the equation Lu = 0 in the strong sense (see
Exercise 31 for details). Hence, the uniqueness in the strong Dirichlet problem ([2.24))
fails. Consequently, the estimate fails in this case, too.



Chapter 3

Holder continuity for equations in
divergence form

In this Chapter we will consider again a divergence form uniformly elliptic operator

ij=1

with measurable coefficients and will prove that any weak solution u of Lu = 0 is, in
fact, a continuous function! Moreover, we will prove that weak solutions are Holder
continuous.

Definition. A function f on a set S C R" is called Holder continuous with the Holder
exponent a > 0 if there is a constant C' such that

1f(z) = fy)] <Cle—yl*

for all z,y € S.

For example, f is Lipschitz if and only if f is Holder continuous with oo = 1.

Definition. Let S be a subset of R”. We say that a function f on S is locally Holder
continuous in S with the Holder exponent o > 0 if, for any point = € S, there exists
e > 0 such that f is Holder continuous in B, (x) N S with the exponent a.

It is easy to prove that if f is locally Holder continuous in S then f is Holder
continuous on any compact subset of S with the same Holder exponent (the proof is
the same as that in the case of Lipschitz functions). In particular, if S is compact then
any locally Holder continuous function on S is Holder continuous.

The set of all locally Holder continuous functions on S with the Holder exponent
a € (0,1) will be denoted by C* (.59).

Theorem 3.1 (Theorem of de Giorgi) If u € W22 (Q) is a weak solution of Lu = 0 in

loc

Q2 then u € C*(2) where a = a (n, A) > 0 (where A is the constant of ellipticity of L).

In particular, weak solutions are always continuous functions. For comparison, let
us observe that in order to obtain the continuity of a weak solution u by Corollary [2.11]
we have to assume that a;; € C* with k > 5 — 2. Theorem ensures the continuity
of u without any assumption about a;; except for uniform ellipticity and measurability.

59
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Theorem was proved by Ennio de Giorgi in 1957, which opened a new era in
the theory of elliptic PDEs. A year later John Nash proved the Hoélder continuity for
solutions of parabolic equation 0,u = Lu, which contains the theorem of de Giorgi as
a particular case for time-independent solutions.

We will prove Theorem after a long preparatory work.

3.1 Mean value inequality for subsolutions

Let L be the operator defined in a domain Q of R". We always assume that
L is uniformly elliptic with the ellipticity constant A and that the coefficients are
measurable. Recall that if u € W12 (Q) then inequality Lu > 0 is satisfied in the weak
sense in € if

Q

,j=1

for any non-negative function o € Wy (Q) (Exercise 23). In this case we say that u is
a subsolution of the equation Lu = 0. Similarly, if u satisfies Lu < 0, then u is called
a supersolution.

Theorem 3.2 (The mean-value inequality for subsolutions) Let B C Q and let u €
W12 (Bg) satisfy Lu > 0 in Bg in the weak sense. Then

C 1/2
esssupu < — </ u? da:) , 3.3
Brys Rn/2 Br + ( )

where C' = C (n, \).

An equivalent form of (3.3)) is

1/2
esssupu < C <][ uidx) : (3.4)
Br

Bpr/2

where the constants C' in (3.3) and (3.4) may be different (but both depend only on n

and \). The value
1/2
(][ uid:c)
Br

is called the quadratic mean of u, in Bg. Hence, esssupp, U is bounded by the
quadratic mean of u, in Bpg.
Recall that, for a harmonic function v in By, we have the mean value property

u (0) :]{BR udzx.

Using the Cauchy-Schwarz inequality, we obtain

1/2 ] 1/2
u (0) S][ updr < (][ uidx) = —7 </ uidm) . (3.5)
Br Br |BR‘ Br
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Fix a point z € Bp/,. Applying (3.5)) to the ball B/, () instead of Bg (0) and noticing
that Bp/s (2) C Bgr(0), we obtain

1/2 12
1 C
u(z) < —— / u’ dx < = (/ uidaj) :
|Bl'~2/2|1/2 ( Br2(2) Rn/2 Bgr

which proved (3.3)) for harmonic functions.
The proof of (3.3)) for a general operator L is much more complicated because we
do not have the mean value property in general. It is in some sense similar to the proof

of Theorem [L.I13l
Proof. Fix two values 0 < a < fas well as 0 < r < p < R and set

a:/Bp(u—oz)idx and b:/T(u—ﬁ)idx. (3.6)

Clearly, b < a. The purpose of the first part of the proof to obtain a stronger inequality
showing that b is essentially smaller than a. In the second part of the proof we will use
an iteration procedure similar to that in the proof of Theorem [1.13]

Consider the function

U= (u - B)Jr
that belongs to W12 (Bg) (see Exercise 15). Consider also the function
1, x| <,
n(z) =3 28 <z <p,
0, l|z[=p

Clearly, n is continuous. Since |z| is a Lipschitz function with Lipschitz constant 1, it

Since 7 is bounded, it follows that 7)? is also a Lipschitz functions. Let us show that
the function ¢ = vn? can be used as a test function in (3.2).

Claim. If U is a bounded domain and if f € WY (U) and g € WhH> (U) then fg €
W2 (U).

Indeed, since f € L? and g € L*™, we see that fg € L?. Since WbH*® C W2 the
function g also belongs to W2, and we obtain by the product rule that

0i (fg) = (0:f) g + fOig.

The right hand side belongs to L? because f and 0;f belong to L? while g and 0;g
belong to L. Hence, 0;(fg) € L* and fg € W'? as claimed. Note that a similar
argument was used in the proof of Corollary

Since Lipschitz functions belong to W1, it follows from this Claim that vn? belongs
to W2 (Bgr). By construction of 7, the function vn? is compactly supported in Bg,
whence we obtain vn? € W, (Bg). Finally, vn? > 0 so that ¢ = vn® can be used in

%)

Substituting ¢ = vn? unto (3.2) yields

Z/ a;0;u0; (vn?) dz < 0. (3.7)
Br

2,7=1
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By the product rule, we have

9; (vn?) = () n* + v (0m*) = (9v) n* + 2vmdim. (3.8)
Substituting (3.8) into (3.7)), we obtain
Z/ a;j0ju v n*dr < —2 Z/ a;j0;uvn o d. (3.9)
ij=1"Br ij=1"Br

Recall that 0,ud;v = 0;u0;v because on the set {u < $} we have v = 0 and, hence,
Ov = 0, while on the set {u > 3} we have 0;u = 0;v. Hence, the left hand side of (3.9)

is equal to
Z / a;;0;v O n*dx > /\_1/ Vol n?d.
Br Br

ij=1
Since djuv = 0;v v, the right hand side of (3.9)) is equal to

n

—QZ/ a;;0;00mundr < 2)\/ Vol |[Vn|vndx
Br Br

ij=1
1/2 1/2
2\ (/ \Vv]2n2da:) (/ ]Vn|gv2dx) :
BR BR
Hence, (3.9)) implies

1/2 1/2
)\1/ \Vol” n?dz < 2X (/ ]Vv\27]2d:c> (/ \Vn\QUQda:) :
Br Br Br

/ IVo|* nde < 4)\4/ \Vn|? v3d. (3.10)
Br

Br

IN

whence

Applying again the product, we obtain
V (vn) =nVu +0Vn

whence
IV (vn)” < (InVol + vVn))® < 2|Vol*n* + 2 |Vn[* v?.

Combining with (3.10)) yields
/ IV (vn)|? do < (8)\4+2)/ \Va|* v2dz.
Br Bgr

Since |Vn| = 0 outside B, and |Vrn| < p%r in B,, it follows that

2 c 2
V (vn)|” dx vidx .
[ vt ot [ (1)

where C = 8\* + 2.

02.06.16
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By the above Claim, the function vn belongs to W2 (Bg). Since supp (vn) C B,,
it follows that vn € VVO1 2 (B,) for any p' > p. Applying the Faber-Krahn inequality

[1.59] we obtain
J

where ¢ = ¢(n) > 0 and

A% (1177)|2 dr > c |F|2/n/ (1177)2 dx, (3.12)

/J/ B/J/

F:={x e B,:(vn)(x)>0}.
Since 77 = 0 outside B, and 7 > 0 in B,, we see that
F={zxeB,:v(x)>0}={re B, u(x)>f}.
For the same reason the integration over B, can be replaced by that over 5,, so that

/B ]V(vn)\2dx20]F\_2/n/ (vn)? d. (3.13)

By

Combining with (3.11]) and using that 7 =1 on B,, we obtain

\F|72" [ (on)*dx < ¢ vid,
2
B (p - T) By

P

where we have absorbed ¢ and C into a single constant C.
Since 7 = 1 on B,, it follows that

/ vidr < Ce 5 |F|2/”/ vid.
: (p—r) B

P

Finally, since v = (u — ) < (u — ), , we obtain

.
2 O 2/n 2
/T (=B e < g |F / /B (u— o) dr. (3.14)

Let us estimate |F'| from above as follows. Since u >  on F, we have

/Bp(u—&)idmz/F(u—a)idxz/F([)’_Q)dez(ﬁ_a)ﬂﬂ.

Recalling the notations a and b from (3.6]), we rewrite this as

IFl < ——;,
(8 — )
and substitution into (3.14)) inequality yields
b< ¢ S|Fma < - ¢ ——a' ", (3.15)
(p—r) (p—7)*(B—a)'"

Consider now a sequence { Ry}, of radii where

1 1
=—(14+— .
Ry 2(+2k)R
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Clearly, the sequence { Ry} is monotone decreasing, Ry = R and Rj, — % as k — oo.
Also, fix some « > 0 and consider a sequence {ay} .., such that

Clearly, the sequence {«y} is monotone increasing, ag = « and « — 2« as k — 0.

Set
ar = / (u — ak)i dz.

Since the sequence { Bg, } of balls is shrinking and the sequence { (v — ay), } of function
is monotone decreasing, we see that the sequence {a;} is monotone decreasing.
Our aim is to choose « so that a; — 0 as k — oo. Since

limay, = / (u— 204)?F dx,
Bry2

in this case we will obtain that
esssup u < 2a, (3.16)
Bpr/2
which will lead us to the desired estimate (3.3). Applying (3.15) to the pair a;_1, ax
instead of a, b, we obtain

C 1+2/n

ag < nak_l
(qu - Rk)2 (ak - ak71)4/

Since Ry_1 — Ry, = 1 (27%R) and aj — ay_1 = 27%a, it follows that

O4(1+2/n)k

ap < WG}:?/ "
Setting
pzl—i—% and M:%, (3.17)
rewrite this inequality in the form
ar < 4P Mal . (3.18)

This inequality is similar to the inequality (1.69) obtained in the proof of Theorem
LI3:
Vi <4FMVE . (3.19)

The difference between ((3.19) and (3.18)) is only that (3.18]) uses 47 instead of 4, which
does not make any difference for the next argument. Indeed, iterating (3.19)), we
obtained in the proof of Theorem the estimate ((1.70)), that is,

ko —(k+1)p+k 1

Vi <[40 M| 4T om0

Hence, iterating in the same way (3.18)) and replacing everywhere 4 by 47, we obtain
that

ko —(k+Dptk 1

ar < [4p<pf1>2Mp+1a0r 4P M (3.20)
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We would like to derive from (3.20]) that a — 0 as & — oo. This will be the case
whence the term in the square brackets is smaller than 1. Since

CLU:/ (u—a)id:cg/ u’ dz,
Br Br

it suffices to have the following inequality

2

_pt 1 9
4@-12 M p-1 uydr < 1.
Bgr

Substituting M and p from (3.17)), replace this inequality by the equality

46-0% [ —— 2de = =
’ <R2a4/") /BR U =5

which allows us to determine the desired value of o as follows:
C/
2

o = —
R" Jg,

2
uidx.

Substituting into (3.16)), we obtain

ol 1/2
esssupu < —-— (/ u? dx) ,
Brys Rn/2 Br +

which finishes the proof. m

Corollary 3.3 If u € W22 (Q) solves Lu = 0 in Q then u € L2, ().

Proof. Indeed, in any ball Bg such that Br C Q we have u € L? (Bg) and by Theorem
3. 2)

€esss < ¢ |||
upu < — |lu .
BR/2p — Rn/2 L2(Br)

Applying the same inequality to —u, we conclude that

ol (13 < 75 Il < 0
Hence, u € L*® (Bgy») and u € LS, (). m
3.2 Weak Harnack inequality for positive superso-
lutions
Theorem 3.4 Let Bzg C Q and assume that v € W2 (Bsg) is a non-negative weak
supersolution of L in Bsgr, that is, Lu < 0 in Bsg. Choose some a > 0 and set
E={x€Br:u(x)>a}.
For any € > 0 there exists 6 = 6 (n, \,€) > 0 such that if
|E| > ¢ |Bg| (3.21)

then
essinf u > da. (3.22)

Bgr
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"6

Recall that any positive harmonic function v in a ball B3g satisfies the Harnack
inequality
supu < C'inf u,
Br Br

where C' = C'(n). In particular, for any a < sup By U, We have

infu > da,

Br
where § = C~!, which looks similarly to . However, for the Harnack inequality
we do not need to know that the measure of the set ' = {u > a} N By, is positive — in
fact, it suffices to know that this set is non-empty as the latter will imply a < supg,, u.
This is the reason why Theorem is called a weak Harnack inequality. The word
“weak” refers here not to “weak solution”, but simply to a logically weaker statement.

Before the proof, let us derive from Theorem [3.4] the following mean value inequality

for superharmonic functions.

Corollary 3.5 (Mean-value inequality for supersolutions) Let Bsgr C Q and assume
that uw € W12 (Bsg) is a non-negative weak supersolution of L in Bsr. Then

-1
essinfu > ¢ <][ u_ldx) , (3.23)
Br Br

where ¢ = ¢ (n, \) > 0.

The value

(f wra) "

is called the p-mean of function u in . If p = 1 then this is the arithmetic mean, if
p = 2 — the quadratic mean. For example, the quadratic mean was used in the mean-
value inequality for subharmonic functions. If p = —1 as in then the p-mean
is called the harmonic mean. Hence, for a non-negative supersolution, essinfg, u is
bounded from below by the harmonic mean of u in Bp.

Proof. If ‘JCBR uldr = oo then 1) holds trivially. Assume that this integral is
finite. For any a > 0, we have

]{u<a}ﬂBR]:H%>é}ﬂBR

1 1
< a/ —dx = ap (B)][ —dx.
B U Br U

07.06.16
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Choosing 1
1 1 B
a= 2 (é ' de) ,
we obtain |
[{u < a} N Byl < Sy (B)
and, hence,

1
0> a} 1 Bal > 2 (B).
Applying Theorem [3.4 with ¢ = 1/2, we obtain

essinf u > da =
Br

N
PR
S
3
S
QL
S
~_
N

which was to be proved. m

67

Proof of Theorem [3.4. Let us first observe that if the claim of Theorem [3.4] is
proved under an additional assumption essinfg,, © > 0, then it remains true also if
essinfp,, u = 0. Indeed, if the latter is the case, then consider the function u 4+ m for

a positive m. Clearly, L (u+ m) = 0. Observing that

u>asSut+m>a+m,

we can apply (3.22)) to the function v+ m instead of u with the constant a +m instead

of a and obtain
essinf (u+m) > d (a+m).

Bgr

Letting m — 0, we obtain (3.22)). Hence, in what follows we can assume without loss

of generality that essinfp,, v > 0.
Also, by replacing u by u/a, we can assume that a = 1. In this case we have

E={u>1}NnBy
and, assuming (3.21)), we need to prove that

essinf u > ¢,
Br

where § = § (n, A\, e) > 0.
The main idea of the proof is to consider the function

1
v=In-—.
u
In terms of this function, we have
EZ{USO}HBH? ’EIEE‘BR’>

and we need to prove that

esssupv < C' = C (n,\€) . (3.24)

Br
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The plan of the proof is as follows. We will first verify that v is a subsolution of L,
which will imply by Theorem [3.2] that

esssupv < / vidm.
Br Bagr

Then, using a certain Poincaré inequality (similar to Friedrichs-Poincaré), we will de-

duce that
/ vidr < / Vol
Bar Bar

Finally, using again specific properties of Lv, we will obtain an upper bound for

/ Vo2,
Bar

which together with the previous estimates will yield (3.24).

Now let us prove that v is a weak subsolution of L in Bsg. Firstly, let us verify that
v € W2 (Bsg). On the set {u < 1} function v is non-negative. Since u is separated
from 0, we see that in this case

0 <v < const.
On the set {u > 1} function v is negative and
v =lnu < w.

Hence, in the both cases
|v| < const +-u,

which implies v € L?(Bsg). Since (In %)/ = —1 is a bounded function outside a

neighborhood of 0, that is, in the range of u, we obtain by the chain rule of Exercise

16, that
1 o;u
8]-1) = 8]' lna = —jT S L2 (BgR) .
Hence, v € W2 (Bsg). In the same way also the function 1 belongs to W2 (Bg),
which will be used below. Indeed, % is essentially bounded and, hence, is in L? (Bsg),

and by the same chain rule

1 0;u
0; |~ ) =—-4 € L*(Bsg).
J (’U,) u2 ( 3R)

Now let us verify that v is a subsolution of L, that is, Lv > 0 in Bsg. This is shown
in Exercise 32 using the chain rule for L. Let us give a direct independent proof for
that.

The motivation for Lv > 0 comes from the following observation: in the simplest case n = 1 and
2
L:#,ifu€C2,u>0andu”§0thenwehave

2 2
v// _ ln l " _ _'LL/ / _ (’LL/) _ u//u Z (’LL/) Z 0
U U u2 u?
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Ifn>1,L=A,ucC? u>0and Au < 0 then similarly

n n 2
1 Oiu)” — (04
Ay — Za” In= — Z ( zu) 2( zz'Uz> U

; u A u
i=1 i=1
Vul? — (Aw)u _ |Vul?

= >

u? w2
Noticing that |Vv| = ’% |, we obtain from the above computation

Av > Vol (3.25)
In fact, the above computation shows that (3.25)) is equivalent to Au < 0.

In the present general case, we have to verify that, for any non-negative test function

(%) eD (B3R>
/ Z aijajv ngo dx Z 0.
Bsr J=1
Since part of the following computation will also be used below for different purpose,
we need to do it for a slightly more general class of ¢, namely, assuming that ¢ is a

non-negative Lipschitz function with compact support in Bsg. Since d;v = —8%, we
have
n
/ Z a;;0;v Oipdx = / Z a,] Oypdr = Z a;;0; u dr. (3.26)
B3Rzgl BBRl] 1 B3Rzg 1

Since p € W and 1/u € W2, the function ¢/u belongs to W? (see Claim in the
proof of Theorem and by the product rule

(2)-a (o) -2

2 -a(2) o

U u2

Hence, substituting

into (3.26)), we obtain
/ Z a;j0;v Oy dx = / Z a;;0ju ( ( ) aiggo) dx.
B3r j j—1 U

Bar j j—1

Since function ¢ has compact support in Bsg, we see that ¢/u € W12 (Bsg). Since also
@/u > 0, this function can be used as a test function in the weak inequality Lu < 0,

which leads to
/B Z%a u 0; <%> dr > 0.

3R § j=1

It follows that

/ Z a;j0;v Oppdr > / Z a;;0; u 2 @dm
B B

3R §j=1 33” 1

= / Z a;;0;v 0;v p dx (3.27)
B

3R §j=1

v
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where we have used that 0;,u/u = —0;v and the ellipticity of L. Hence, we have proved
that Lv > 0.

Note that, in fact, we proved a stronger inequality that is analogous of
(3-25). Indeed, observing that the left hand side of is equal to (Lwv, ¢) where Lv
is regarded as distribution, we can rewrite as follows:

Lv Z Z ai]ij 87;?}.

i,j=1

The inequality (3.27]) will also be used below.
Applying the mean value inequality of Theorem [3.2) to a subsolution v, we obtain

C 1/2
esssupv < —- (/ v d:v) , 3.28
BR Rn/2 BQR N ( )

which completes the first step towards the proof of the bound ((3.24)).
In order to estimate further the integral in (3.28)), we need the following fact.

Poincaré inequality Let v € W2 (B,) and consider the set
H={xe€ B, :v(z) <0}.

Then )
B
/ videC’T 5| Vo, | da (3.29)
, [H| Jp,

where C' = C (n).

Recall that the Friedrichs-Poincaré inequality says that if v € WO1 2 (B,) then

/ v?dr < CTQ'/ |Vo|? da. (3.30)
By

T

For an arbitrary function v € W12 (B,.) this type of inequality cannot be true because by adding a
large constant to v we can make | B. v2dx arbitrarily large, whereas / B |Vv|2 dx does not change.
Assume for simplicity that v > 0. Then (3.29) amounts to

2|B
/ vide < OF | T|/ Vo|? dz,
B, \H| /g,

where H = {v = 0}. Hence, if v vanishes on a large enough set (in the sense that |H| > ¢|B,|), then
we obtain again (3.30). As we see, the validity of (3.30]) or similar inequalities depends on the property

of v to vanish on certain sets.

The proof of (3.29) is non-trivial and will be given below (see Theorem and
Corollary [3.10)).

Now let us apply (3.29) for the function v = In % in the ball Bsp, that is, for r = 2R.
Since

E:{’USJ_}F\IBRC{USO}HBQR:H,

we have
|H| > |E| > ¢|Br| =€2™" | Bag| .
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Then (3.29) yields

2 2
/ v2dr < C’R? Vo, |* dz < C% Vol dz
Bar

BQR B2R

Combining with (3.28)), we obtain

2 1/2
esssup v < L/z <R—/ ]vadx) : (3.31)
BR Rn 9 B2R

The next step consists of estimating the integral |’ Ban |Vv|?* dz. Consider the func-
tion

I
n(z) =3 &8 <z <p,
0, |zl =p,

where r = 2R and 2R < p < 3R, for example, we can take p = %R. Since ¢ :=n?is a
Lipschitz function with compact support in Bsg, we can use it in (3.27)), which yields

/ Z a;;0;0 v de < — Z a;j0;v 0; (772) dz. (3.32)
B

3R j j=1 B3r j j—1

Let us motivate the argument below first in the case L = A. Recall that if v > 0 and Au <0
then by 1} the function v = ln% satisfies the inequality

Av > |Vol*.

It holds in the classical sense, which implies that in the weak sense, that is, for any non-negative
function p € W12 (Bsg),

ﬁVv|2g0dm < f/Vv -Vdz,

which is analogous of (3.27). Setting here ¢ = n? as above, rewrite it in the form

1/.2 1/2
ﬂVv|2n2 de < —/VU -Vnndx < (/(|Vv77)2 dac) ( IVn[? daz)

which implies
/|V11|2 n*dx < /\Vn|2 dx.

Since n =1 on Byg, n =0 in BS,, and |Vn| < ﬁ, it follows that

B
/ |V11|2 dr < LRB =CR" 2.
Bar (/) - T)

Using the uniform ellipticity of (a;;), we estimate the left hand side of (3.32)) as

follows:
/ Z a;j0;v Ov ndr >\ / |Vv|2 n’dz,
B i j=1

Bsgr
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while the right hand side of (3.32)) is estimated as follows:

— Z aijajv@- (772) dx S )\/B |V’U’ }V?]2‘

Bsr jj=1

_—\ / Vol |Vl n.
Bsr

Hence, we obtain

/ Vot ntde < zv/ Vol [V n
Bsgr Bsgr

, 1/2 , 1/2
w(/ (el n) dx) (/ v d:c) |
Bsr Bsr

/ \Vo|* n?dz < 4)\4/ V| da.
Bsr Bsgr

Since n = 1 on Byg and |Vn| < /ﬁ, where p — r = R/2, we obtain

IA

whence

p—r)°

B
/ IVl de < 422 Bl = CR"?,
Baogr (

where C' = C'(n, \). Finally, substituting this estimate into (3.31]), we obtain

esssup v < (RQs’lCR"’Q)I/2 =C(n,\e),

Br Rn/2

which finishes the proof of (3.24). m

3.3 Oscillation inequality and Theorem of de Giorgi
Define the oscillation of a function u in a domain D by

oscu = essup u — essinf u.
D D D

Observe that, for all real a, b,
osc (au + b) = |a| osc u.
D D
Theorem 3.6 (Oscillation inequality) Let Bsg C Q and assume that v € W2 (Bsg)

is a weak solution of Lu = 0 in Bsr. Then

oscu < 7y 0Sscu, 3.33
0SC U < 7 08¢ (3.33)

where v =y (n,\) < 1.
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Proof. If oscp,, v = 0 or oo then there is nothing to prove. If 0 < oscp,, u < 00,
then, by adding a constant to u and rescaling u, we can assume that

essinfu =0 and esssupu = 2.
Bs3r Bsr

Consider the two sets
{u>1}NBr and {u<1}NBg. (3.34)

One of these sets has measure > 3 |Bg|. Assume that this is the first set. Then by
Theorem witha =1 and € = % we obtain that

essinfu >4 =19 (n,/\, %) )

Bgr
Hence,
2—90
oscu <2—4§ = 0sc U,
Bgr B3r

which proves 1) with v = 2—;6 < 1.

Assume now that the second set in 1) has measure at most % |Bg|. Consider
the function v = 2 — u. For this function the oscillation in any domain is equal to that
of u. Also we have Lv = 0 in Bsr and

u<l&sov>1.

Hence, the set {v > 1} N By has measure > 1 |Bg|. Applying the same argument as
above, we obtain that

0scv < 7y 0sc v,
Bgr B3gr

which finishes the proof. m

Theorem 3.7 (Theorem of De Giorgi) If u € W2 (Q) and Lu = 0 weakly in S then
u € C*(Q) where « = a(n, A) > 0. Moreover, for any compact subset K of Q, we have

HUHCQ(K) <C ”UHL2(Q)

where (@) — u(y)
w(z) —u(y
U||qa(ry 1= SUP |U| + SUp ————5— 3.35
iy = sup T (3.35)
z£y

and C = C (n,\, p), p = dist (K,090).

Remark. Since K is compact, C* (K) is the set of all Holder continuous functions
on K with the Holder exponent o. Then the expression ||u||0a( K> defined by ,
is finite for any v € C*(K), and is a norm in C* (K). Moreover, one can show that
C® (K) with this norm is a Banach space. The expression

ap [10) ~ (@)

zyeK |fL’ - y|a
TH#Y
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is called a Holder seminorm and, indeed, it is a seminorm in C* (K).

Proof. Step 1. Let p be the distance from K to 0f2, so that for any x € K the ball
B, (z) is contained in €. Fix a point z € K and set

pr.=3"p.
By Theorem [3.6] we have
osc u <7y osc u, (3.36)
By, (2) Bpp_1(2

which implies by induction that

osc u<~*1 osc u < 29* tesssup lul .

By, (2) By (2) By, (2)
Applying Theorem 3.2 to v and —u, we obtain that

esssup |u| < esssup |u| < C|ul| 25 (.)) < Cllull 2y,
By, (2) BP/Q(z)

where C' = C'(n, A, p). Combining the above inequalities, we obtain

Bosgzz)u < OF [l 20 - (3.37)

Pk

Note that without application of Theorem [3.2] we obtain

osc u <% osc u <29 |lull, o . 3.38
s 1 <5 pse < 29" ul g (3.38)

Step 2. Let us prove that, for almost al]ﬂ x,y € K with

0<|z—yl<p/2 (3.39)
the following inequality holds
lu(@) —u@)| < Cle—y|*[lull 2 (3.40)
where
1
a = logg —

and C' = C'(n, A, p). For any couple z,y with 0 < |x — y| < p/2 there is a non-negative

integer k£ such that
1

1
§pk+1 <lz—y| < §Pk- (3.41)

Hence, let us fix k and prove (3.40)) for almost all z, y satisfying (3.41) P

!The expression “for almost all z,y € K" has the following rigorous meaning: for almost all points
(r,y) € K x K. Hence, here we use the Lebesgue measure in R" x R" = R?".

Indeed, if we know already that the set Sj of points (z,y) € K x K satisfying (3.41) and not
satisfying (3.40)) has measure 0 in R?", then the set of points (z,y) € K x K satisfying (3.39) and not
satisfying (3.40) is ;- Sk, which also has measure zero.
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The compact set K can be covered by a finite number of balls By, (z;) where
z; € K. For any © € K there is z; such that © € Bi,, (z;); then by 1) we have

y € B, (z). Hence, for any couple z,y € K satisfying there is z; such that
r,y € B, (z). Therefore, it suffices to prove for almost all z,y € B,, (z) where
z = z; is a fixed point on K.

By (3.37), we obtain that, for almost all z,y € B, (2),

u@) —u @) < osc 1< O ulls. (342)

Pk

Let us express v* via p, = p3~*. Setting

1
a = logs — > 0,
g
we obtain 7 = 37 and
Ak =gk — (@) : (3.43)
p

It follows from ([3.42)) that
u(z) —u(y)] < Cpy llull - -
This implies (3.40)) because by (3.41))
Pr =31 < 6z —yl.

Alternatively, if we use (3.38) instead of (3.37) and (3.42)), then we obtain, for almost
all x,y € K with (3.39) that

(@) — u(y)] < C ('33 > y')a ol (3.44)

where C' = C'(n, A) does not depend on p.
Step 3. Now let us show that v has a C*-version. It suffices to prove this for u|x
where K is any compact subset of 2. As above let p be the distance between K and

of.
Choose a mollifier ¢, that is, a function ¢ € C§° (R") such that

¢ >0, suppp C B; and / pdr = 1.

n

Set for any positive integer k
i, (1) = k"¢ (k) (3.45)
so that
supp ¢, C By and / opdr = 1. (3.46)

n

For any u € L?(R"), consider its mollification, that is, the sequence of functions
{ur}re, defined by

uk<x>=uwk<x>=/ u (@ — ) o (9) dy.

n
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It is known (cf. Exercise 4) that

u*apkL—2>u as k — oo. (3.47)

Let u € W12 (Q) be as above a solution of Lu = 0 in Q. Extending u to R™ by setting
u = 0 outside €, we obtain u € L? (R") and, hence, can define the mollification wu;, as
above. The idea of what follows is to show that the limit

u(x):= lm uy (x) (3.48)

k—o0

exists for all x € K and that u € C*(K). Since K is arbitrary, this will imply that
the limit exists for all x € K and that u € C*(Q2). Since by there is a
subsequence {uy, } such that

U, — U a.e.,

we will conclude that 7w = u a.e., which means that u is a C“-version of u.

In order to prove the existence of limy .o uy (z) it suffices to prove that, for any
r € K, the sequence {uy (x)} is Cauchy. Since suppy, C By, let us rewrite the
definition of wu; in the form

ug () = u(xr — e (y)dy = u(z) g (x — 2)dz. 3.49
o= [ we-paww=[ w62 (3.49)

Let x € K. If k > p~' then By (z) C  so that the integration above is performed
inside (2.

For all k,m > p~! we have, using (3.49)) and (3.46]),

wio)= [ u@ele-ad= / %) (& — 2)dy oy (i — ) dt,
Bl/k:( ) Bl/m Bl/k

where z € By, t € Bi/,. Similarly, we have

wn(@) = [l e-ti= [ / D)o (1 — 2) dz i, (2 — ) dt.
Bi/m By i(z) J Byym(z

Using Fubini’s theorem we obtain
g () — U, ( // (u(z) —u(t)) o, (x—2) @, (x —t)dzdt. (3.50)
B1 k(%)X By (2)

Assume that k,m > 2p~! so that + and L are smaller than p/2. Then both balls
By () and By, (x) lie in the p/2-neighborhood of K. Denote the closed p/2-
neighborhood of K by K’. Since K’ is also a compact subset of 2, we can apply
the result of Step 2 to u on K’, that is, for almost all z,¢ € K’ such that

|2 —t| < p/4,

we have

u(z) —u(®)] < Clz =t lull 2



3.3. OSCILLATION INEQUALITY AND THEOREM OF DE GIORGI 7
If z € By (x) and t € By, () then
|z —t| < 1 + k=
—k m

In particular, if k,m are large enough then this is smaller than p/4, and we obtain
that, for almost all (2,t) € By () X Bi/m ()

«

T [ull 20
Substituting into (3.50|) and using (3.46)), we obtain

1 1\“
lug () — up ()| < C (E + E) Jull 2y — 0 as k,m — oo.

\u(z)—u(tngc]l

Therefore, the sequence {uy, (z)} is Cauchy for any x € K and, hence, has the limit

Let us now show that u € C*(K). For that let us estimate first |uy () — uy (y)| for
x,y € K assuming that
[z —y| < p/4

Observe that

uk@c):/ <>¢km—zdz—/ / Do (o — 2)de oy (y — ) dt
B k() Bi/k(y) Y Byyp(z

and

ug, (y) = / u(t)p, (y—1t)dt = / / (y—t)dt o, (v — 2)dz.
Bi/k(y) Byk(x) J By i (y

Hence, using Fubini’s theorem, we obtain

ug () — uy ( // (u(z) —u(t) o, (r—2) @ (y —t)dzdt.  (3.51)
By (2)x By (y)

If k is large enough both balls By ;. (z) and By (y) lie in K'. For all z € By, (x) and
t € Byi (y) we have by the triangle inequality

2
2t <lo =yl + % < p/4

provided k is large enough. Hence, by the result of Step 2 for K’, we obtain, for almost
all (2,t) € Byk (x) x Byx (y) that

2 «
0@ = w1 (le =11+ ) Nl
whence by (3.51))
2 [e%
@) = <C (lo =31+ ) Tl
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Letting £ — oo we obtain

[w(@) —u(y) < Cle—y[* ull 2
for all z,y € K such that |z — y| < p/4. The latter implies that u is Holder continuous
on K with the Holder exponent «. Since u = u a.e., this means that « has a C'“-version,
which was to be proved.
Step 4. It remains still to prove the estimate . Let us rename u back to u so
that u is a continuous in . By Theorem [3.2) we have, for any x € K,

u(z) < sup u < Cllullpep, ) < Cllull 2 -
Bp/Q(m)

Applying the same estimate to —u, we obtain

u(z)] < Cllull 2 q)
that is,

Slil(P jul <C HU”L2(Q) )
where C' = C' (n, \, p). By inequality (3.40|) of Step 2 we have, for all z,y € K with

0<|z—yl <p/2
the following inequality
u(z) —u ()] < Cle—yl" lull 2

(it was proved above for almost all x, y but now, due to the continuity of u, we obtain
that it holds for all z,y). Hence, we obtain

[u(@) —u(y)l

sup o < Cllull12q) -
z,yeK, | |
0<|z—y|<p/2
Observe that

ulxr)—uly 2"
sup M <2 (_) sup |u| < C'[ull f2q) -
z,yEK, |'I - y| P K

lz—y|>p/2

Finally, combining all these estimates, we obtain

u(z) —u(y)l
Ul| oy = sup |u| + sup ———=— < C'||u ,
H HC’ (K) P | ’ w,yiK, |$_y| H HL2(Q)
a7y

which finishes the proof of (3.35). m

Corollary 3.8 Under the hypotheses of Theorem [B.7], it is also true that, for any
compact set K C Q and for all x,y € K such that |x —y| < p/2,

(@) —uy) < C ('x - y')a ol e (3.52)

where p = dist (K, 0N2) and the constant C' depends only on n, A (and does not depend
on p).
Proof. Indeed, (3.52)) was proved at the end of Step 2 for almost all x,y satisfying the

above restrictions (see (3.44])). Since u is now continuous, the inequality (3.52) holds
for all z,y. m
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3.4 Poincaré inequality

Theorem 3.9 For any ball Bg in R™ and any f € W2 (Bg), the following inequality

18 true:
/ / f () dedy < CR"? / IV f|? d, (3.53)
Bgr JBr Br

where C' = C (n

Dividing the both sides of 1D by |BR]2 and recalling that |Bg| = ¢, R", we can
rewrite it in the following form:

]éR]iR (f (@) = f (y))* dudy < CRQ]iR IV £ d.

Proof. Let us first prove (3.53)) for f € C' (Bg). For all z,y € B we have
1
F) =1 = [ alf@+t- o)
0
1
- [ Vrertm-a)- -

IN

/er\<x+t< )y — ol dt
< 2R/0 VF| @+t (g — ) dt.

whence by the Cauchy-Schwarz inequality

<f(y)—f(w))2§4R2/ VI (x+t(y — x))dt.

It follows that

/BR/BR(f(f)—f(y))QdIdy§4R2/BR/BR/01\Vf|2(m+t(y—m))dtdxdy (3:54)

Set F' = |V f|* and extend F to the entire R" by setting F = 0 outside Bg. In the
view of (3.54]), in order to prove (3.53)) it remains to show that

1
/ / / F(x+t(y—2))dtdedy < CR”/ Fdz. (3.55)
Br JBRr Jo R™

By Fubini’s theorem, the integrations in the left hand side are all interchangeable. In
the integral

/BF<x+t<y—x>>dy

let us make change z = y — x, so that

/BRF(at—i—t( >>dy_/BR(_I)F($+tZ)dZS/BQRF($+tz)dz
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a.

nd
1 1
/ / /F(x—l—t(y—x))dtdmdyg/ / /F(a:—l—tz)dtdacdz.
Br v Bgr J0 Bsp Y/ Br J0

Then in the integral
/ F(x+tz)de
Br

let us make change ' = x + tz so that

/ F(:c+tz)d:c:/ F(az’)daz’g/ F(x’)da:’:/ F (') da'.
Br BR(tZ) n Br

It follows that

1 1
/ / / F(rx+t(y—2))dedydt < / / / F(2')dtdz'dz
B JBr Jo By JBr Jo

= 1- |B2R| F(ZL‘/) d{lf/
Bgr

= CR"/ F (z)dx,
Bgr

which finishes the proof of (3.55)) for f € C' (Bg).
Let now f € W2 (Bg). It suffices to prove that, for any r < R,

[ [ G@-swrasay<crs [ vt (3.56)
r « Br By
and then let r — R. Let ¥ be a smooth cutoff function of B, in Bg. Then f1 €
W,y* (Bg) and, by setting f1¢ = 0 outside Bg, we obtain that fi¢ € Wy* (R"). Since
f = fv in B,, the function f in can be replaced by f1). Hence, renaming f1)
back into f, we can assume that f € VVO1 2 (R™).

Consider mollifications f, = f * ¢, where {¢,} is a sequence of mollifiers defined

by (3.45)). Then f, € C*° (R") and, hence, by the first part of the proof we have

| [ @ - a) dsay < cons [ Vs (357
I ™ BT‘
Since by Exercise 4

fk VV_; f7

passing to the limit in (3.57) as k — oo, we obtain (3.56). m

Now we can prove a version of the Poincaré inequality used in the proof of Theorem

3.4

Corollary 3.10 Let v € W2 (Bg) and consider the set
H={x€ Br:v(r) <0}.

Then

R*|B
v2dr < C Bl Vo, |* dz
" |H|
Br Br

where C'= C (n).
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Proof. Note that v, € W12 (Bg). Renaming v, into v, we can assume that v > 0

and must prove that

2|B
/ v?dr < CM Vol de,
Br

[H| /b,
where H = {v = 0}. By (3.53)) we have

/BR /B (v(2) = v () dvdy < CR"™ / Vol da.

Bgr

Restricting the integration in the left hand side to y € H and noticing that v (y) = 0,

we obtain
/ / v (x)? dedy < C’R"”/ \Vol|® dz
H JBg Br

H| [ v(z)ds < CR””/ Vol da.
Br

Bgr

whence

Finally, it remains to observe that R"*? = cR? |Bg|. =

Remark. There is yet another form of the Poincaré inequality: for any ball B in R"
and for any f € W2 (Bg),

/ (f =7 de < CRQ/ V£ da, (3.58)
Br Br
where C'= C'(n) and

f= . f(z)dx

(see Exercise 38). In particular, if

fdxr =0

Br

then (3.58) becomes
frdr < CRQ/ IV dz,

Br Bg

which has the same shape as the Friedrichs-Poincaré inequality.

3.5 Holder continuity for inhomogeneous equation

As above, consider in a domain €2 C R" a divergence form uniformly elliptic operator
Lu = Z 0, (aijaju)
ij=1
with measurable coefficients.

Theorem 3.11 Let u € W2 (Q) be a weak solution of Lu = f, where f € L (Q) with
q € [2,00] N (n/2,00]. Then u € CP () where 3= (n,\,q) > 0.
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Remark. If 2 is bounded then f € L7 () implies f € L*(2). By Theorem [1.14} if u
is a solution of the Dirichlet problem

Lu = f weakly in €2,
ue Wy?(Q)

with f € L?(Q) then u € L* (). Theorem says that also u € CP (Q).

Remark. Note that if f € L? with ¢ < n/2 then there may exist a solution u € W2
of Lu = f that does not admit a continuous version (see Exercises).

Proof. Fix some compact set K C ) and a point z € K. It suffices to prove that, for
small enough r > 0,

osc u < constr”, (3.59)
By (z)

where 5 € (0,1) and const may depends on n, A, Q, K, f,u but does not depend on
z,r. This inequality is an analogous to the inequality from Step 1 of the proof
of Theorem [3.7] Arguing further as in the proof of Theorem [3.7, we will conclude that
u € CP(Q).

First we choose some positive R < dist (K,01) so that Bg := Br(z) C . Let v
be the solution of the Dirichlet problem in Bp:

Lv = f weakly in Bpg
v E W1’2 (BR)

that exists by Theorem Consider the difference w = u — v that satisfies Lw = 0
in Br. By Theorem 3.7, w € C* (Bg) where oo = a(n, A) > 0. Moreover, by Corollary
3.8] for any compact set F' C Bp and for all z,y € F such that |z — y| < p/2, we have

hmm—w@nso(ﬁgﬂ)nwmw%p (3.60)

where p = dist (F,0Bg) and «, C depend only on n, A\. Take F' = Bp/5 so that p = %R.
Then, for all z,y € Bg/s, we have

) 1
-yl < -R = -p.
|z —y| g 5P

Hence, (3.60]) holds for all z,y € Bg/s.
Fix some r such that 0 < r < R/5. Then (3.60]) holds for all 2,y € B,. Using that
p= 3R and |z —y| < 2r, we obtain from (3.60) that

T (0%
osc w <C (E> [wl| oo () -

Applying the same argument to R/2 instead of R, we obtain the following: if 0 < r <
R/10 then

T «
e O (F) Ml

By the mean value inequality of Theorem [3.2 we have

||w||Loo(BR/2) ] [l 125, -

21.06.16
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Using also that

lwllpey < Nullz@) + 10l 22em,
[l 20y + CRY? 0]l oo -

A

we obtain
1400 (1) < 75 ell) + € Mol oy
Hence,

oscu < 0SCU -+ oscw

T T T

rye ([ C
< 2Wollimqany +€ (1) (7 Vil + 10l
r\* 1
< Cllimeoy +C (5) 7 Il (3.61)
Since f € L9 (Bg), we obtain Theorem |1.14} that

2.1
[0l ooy < CIBRI™ ™ 1fll o)

which is equivalent to

HU“LOO(BR) <CR* s ”f“Lq(Q) : (3.62)
Substituting into (3.61]), we obtain
_n rye 1
oscu < CRH ||fll ey + € () 7 Nl - (3.63)
So far » and R are arbitrary numbers such that
R < dist (K,09) and 0<r < R/10. (3.64)

Now, for any r > 0, we choose R = R (r) so that
2-n/q _ ﬁ)a L
R (R Rn/2’

that is,

o
R = r2-n/qta+tn/2

Observe that o

<1
2-n/qg+a+n/2
Therefore, if » — 0 then R — 0 and R/r — oo. Hence, if r is small enough (that
is, r < 7o where ry depends only on dist (K, 02) and Hﬁqi—oﬂrn/?)’ then the both
conditions ((3.64]) are satisfied. For these values of  and R, we obtain from (3.63|) that,
for any z € K,

0<

o5 u < O (Il + uliagey) (3.65)

where 5
= 2-n/ge
2—n/qg+a+mn/2

thus proving (3.59) with 5 =3 (n,\,¢) >0. =
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3.6 Applications to semi-linear equations

Consider a divergence form uniformly elliptic operator

Lu= Z (91 (aij(?ju)

1,j=1

is a bounded domain €2 assuming that the coefficients are measurable. Given a function
f(z,v) on Q x R, consider the following semi-linear Dirichlet problem

Lu= f(z,u) in
{ w e WOLQ @), (3.66)

where the operator Lu is understood weakly as before. We assume that function f is
such that the composition f (z,u (z)) belongs to L? (Q) whenever u € L? (Q). Our goal
is to investigate the solvability of the problem (|3.66)).

Fix first a function v € L? () and consider the following linear Dirichlet problem

{ Lu= f(xz,v) in Q

ueWy?(Q), (3.67)

By Theorem [.2] it has a unique solution u. Hence, we obtain the mapping
T : L*(Q)— L*(Q)

Tv = u.

The problem (3.66) amounts then to solving of the equation T'u = u. Hence, we face
the problem of finding a fixed point of the mapping 7.

3.6.1 Fixed point theorems

Let us discuss some fixed point theorems, that is, the statements that ensure the
existence of a fixed point under certain hypotheses.

Theorem 3.12 (Fixed point theorem of Schauder) Let K be a compact convexr subset
of a Banach space X. If T : K — K is a continuous mapping then T has a fixed point,
that is, there exists a point x € K such that Tx = x.

If X = R” then then K can be any bounded closed convex subset of R™. In this case
Theorem is referred to as the fixed point theorem of Brouwer. In fact, theorem of
Schauder is normally proved by using theorem of Brouwer.

Corollary 3.13 Let K be a closed convex subset of a Banach space X andT : K — K
is a continuous mapping such that the image T (K) is precompact. Then T has a fized
point.

Proof. Let C be the closed convex hull of T'(K). Then C' C K and C is compact.
Clearly, T' can be regarded as an operator from C' to C, which implies by Theorem
that T has a fixed point. m

23.06.16
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Definition. A mapping 7' : X — X is called compact if, for any bounded set £ C X,
the image T (F) is precompact.

Note that if 7" is linear and compact then T is also bounded and, hence, continuous.
However, in general a compact mapping 7" does not have to be continuous.

Theorem 3.14 (Fixed point theorem of Leray-Schauder) Let T : X — X be a com-
pact, continuous mapping. Assume that

the set {x € X : x = oTx for some 0 < o <1} is bounded. (3.68)

Then T has a fixed point.
Remark. The Leray-Schauder condition (3.68) can be regarded as a replacement of
the contraction condition in the Banach fixed point theorem.

Example. Consider an affine mapping Tx = = + a with some a € X. The equation
x = oTx is equivalent to z = o (z + a), that is, to

oa

T = .
l1—0

This can be satisfied with any o € (0,1), and the norm of z is clearly unbounded.
Hence, condition (3.68) fails. Obviously, 7' does not have a fixed point.

Example. Let T (x) be a continuous function on X = R. If the condition (3.68) holds
then there is R > 0 such that any x € R satisfying © = ¢7 (z) with ¢ € (0,1) admits
the estimate |z| < R. We claim that in this case

T(R)<R and T(—R)>—R. (3.69)

Indeed, if T'(R) > R then we have R = o7 (R) with some o € (0,1) and, hence, we
should have |R| < R, which is wrong. In the same way, if T (—R) < —R then we
have (—R) = ¢T (—R) with some ¢ € (0,1) and, hence, |—R| < R. This contradiction
shows that holds. Then the existence of the fixed point x = T' (z) follows from
the intermediate point theorem, because the function f (z) = z — T (x) is non-negative
at x = R, non-positive at * = —R and, hence, vanishes at some point = € [—R, R|.

Proof. The condition (3.68) means that there R > 0 such that any x from the set
(3.68) admits the estimate ||z|| < R. By dividing the norm in X by R, we can assume
without loss of generality that R = 1. In other words, we assume that

if v = oTx for some 0 < o < 1 then ||z| < 1. (3.70)

Consider a mapping S : X — X defined by

T, if |Tz|| <1
S:cz{ o AT < (3.71)

e i 1Tz) > L.
We claim that S is continuous and compact. To see that, let use represent S in the
form of composition

S=®0T,
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where @ : X — X is defined by

oy, if |yl <1
‘I’y—{ e iyl > 1.

Then & is continuous because it can be represented in the form

Dy =w(lyl)y

with the following function ¢ defined on [0, c0):

Since ¢ is obviously continuous, we see that ® is continuous, which implies that also
S is continuous.
Since T' is compact, for any bounded set £ C X, the image T (F) is precompact,

that is, T (F) is compact. Since ® is continuous, the set ® ( (E)) is compact, which
implies that S (F) = & (T (£)) is precompact. Hence, the mapping S is compact.

By construction, we have ||Sz|| < 1 for all x € X. Denote by B the closed unit
ball of radius 1 in X. Then S (X) C B and, in particular, S (B) C B. Hence, S
can be regarded as a mapping from B to B. Since S (B) is precompact, we obtain by
Corollary that S has a fixed point = € B.

Let us verify that z is also a fixed point of T'. Indeed, if T'x € B then T'x = Sx and,

hence, Tx = z. Assume now that Tz ¢ B, that is, ||T'z|| > 1. In this case we obtain
from (3.71) ||Sz|| = 1 and, hence, ||z|| = 1. On the other hand, (3.71)) yields also

Tx = ||Tz|| Sz = ||[Tz| x

and v = 0Tz where 0 = 7 < 1. By (3.70) we must have [|z|| < 1, which contradicts
|z|| = 1. This contradiction shows that the second case is impossible, which finishes

the proof. m

3.6.2 A semi-linear Dirichlet problem

Consider a divergence form uniformly elliptic operator

Lu= Z 81 (aijaju)

3,7=1

is a bounded domain €2 assuming that the coefficients are measurable, and the following
semi-linear Dirichlet problem

{ Lu = f(z,u) in Q (3.72)

ue Wy (),

where the operator Lu is understood weakly as before. Function f = f (x,u) is defined
in 2 xR, and we assume that it is Borel measurable. Then, for any measurable function
u on €2, the composite function f (x,u (x)) is also measurable.
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We assume in addition that f satisfies the following two conditions:

|f (z,0)] < CL(1+ [o]"), (3.73)

for all v € R and almost all z € €0, and

|f (@, 01) = f(z,02)] < Ca|or — 0o (3.74)

for all v1,vy € R and almost all x € €2, where v, C, Cy are positive constants.

Theorem 3.15 Assume that the above hypotheses and hold with v < 1.
Then the following is true.

(a) The problem has a solution w.

(b) If in addition || is small enough then the solution u is unique.

(c) If in addition v < 2 then u € C?(Q) for some B = (n,\,7) > 0..

Remark. In part (b), without restriction on |{2| there is no uniqueness for the problem
(3.72). Indeed, even in the one dimensional case, the Dirichlet problem

Lo @ et =0

has two solutions v = 0 and u (z) = sinx. Although the function f (x,u) = —u does
not satisfy (3.73)), it is easy to modify it to satisfy (3.73]) with any v > 0:

f(xz,u) := —min (Jul,1).

Then the problem

{ u" = f(x,u)
u(0)=u(r)=0

still has two solutions v = 0 and u (z) = sinz because both solutions take values
between 0 and 1, and for u € [0, 1] we have f (z,u) = —u.

Similarly, if €2 is a bounded domain in R™ and u is an eigenfunction of the Laplace
operator in €2, that is,

{ Au = —Au in €, (3.75)

ue Wy (),

then we obtain again an example of non-uniqueness because v # 0 and the problem

(3.75)) has also a solution u = 0.

Remark. In part (c), the restriction 7 < 4/n is not optimal. In fact, if (3.73) holds
with v < 1 then any solution u of (3.72) is Holder continuous (see Exercise 53). In
particular, all the eigenfunctions of L are Holder continuous (see Exercise 49). On the

other hand, if v > —%- then solution u does not have to be continuous (see Exercise
46).

Proof of Theorem For any v € L? (), the function

Fy(x) == f (z, 0 (x)) (3.76)
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belongs to L? (), because by (3.73) and v < 1
|F, ()| < C(1+ ") <C@2+v|) € L2(9). (3.77)
(a) For any v € L? (2), consider the following linear Dirichlet problem

{Lu—FvinQ

we Wi (Q) (3.78)

that has a unique solution u by Theorem[1.2, Define the mapping 7" : L? (2) — L? ()
by Tv = u; that is, for any v € L? (Q), the function Tw is defined as the solution u of
(3.78)) considered as an element of L? (). Clearly, if u solves (3.72) then

Tu = u.

Conversely, if u € L?(Q) is a fixed point of T, then necessarily v € W,* (Q) because
the range of T lies in VVO1 2 (), and u solves the equation Lu = F,, which is equivalent
to (3.72).

Hence, the existence of solution of is equivalent to the existence of a fixed
point of the mapping T : L? (Q) — L?(Q2). Let us first prove that T is continuous and
compact. Clearly, T" is the composition of the following mappings:

L2(Q) — L*(Q)— W™ (Q) — L ()

v — F, F,—u U— U

where u is the solution of the Dirichlet problem (3.78). We know from the properties
of the linear Dirichlet problem (3.78) that the mapping F), + u is linear and bounded:

[ullwiz) < ClE L

(cf. Exercise 20) and, hence, continuous. The mapping v — F,, given by (83.76)), is also
continuous because by (3.74))

1Fo = Foll 2 < Cllor — val| 2 - (3.79)
Moreover, the mapping v — F,, is bounded in the sense that image of any bounded set
is bounded, because by (3.77)
[l < C A+ vll2) -

Finally, the identical mapping u — u from W, (Q) to L? is continuous and compact,
the latter by the compact embedding theorem. Hence, we conclude that 7' is continuous
and compact.

In order to apply Leray-Schauder theorem for existence of a fixed point of T, we
need to prove that if v = ¢Tw for some 0 < ¢ < 1 then v is bounded. This equation
implies that v € Wy * (Q) and

Lv=0oL(Tv) =0oF,,
that is, v solves the Dirichlet problem

Lv=o0F, in .
ve W, ?(Q)
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Therefore, we have

[l 2 < Nvllwiz < ClloFull < CIE L

/UQdm SC’/FUde.
Q Q

On the other hand, it follows from (3.77) that

(cf. Exercise 20), that is,

/ﬁmgc/u+MWMéC+C/WWM,
Q Q Q

where the value of the constant C' is changed at each occurrence. Hence, we obtain

/&@§C+C/m”m. (3.80)
Q Q

By Young’s inequality, we have, for any ¢ > 0,
1 1

|v|27 =< — + (81)27)q
€ ep

1

where p, ¢ is a pair of Holder conjugate exponents. Choose ¢ = % and, hence, p = >

so that )
|v|27 < = 4 e
ep

/ l|*" de < C. + €q/ vidx.
Q Q
Substitution into (3.80)) yields

/ vide < C. + Ce? / vide.
Q Q

1
2C”

and

we obtain

/ vidr < 2C.,
Q

that is, ||v||;2 is bounded. By Theorem of Leray-Schauder we conclude that 7" has a
fixed point and, hence, the Dirichlet problem has a solution.

(b) Let us show that if || is small enough then the mapping 7 is a contraction in
L? (). This will imply by the Banach fixed point theorem that 7' has a unique fixed
point, that is, both uniqueness and existence. Let v; and v, be two functions from
L?(Q), set uy = Ty and uy = Tvy. We need to prove that

Choosing ¢ so small that €7 <

Jur — us|| < 0 llor — |
for some 6 < 1. Setting u = u; — uy, we obtain

Lu = Luy — Lus = f (z,v1) — f (x,09).

28.06.16
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That is, for any ¢ € W, (Q), we have

/Q Z a;j0;u 0jp dor = — /Q (f (x,v1) — f(z,v9)) pdx. (3.81)

2,7=1

By (3.74) we have
|f (2, 01) = [ (z,09)] < Cafvr — vy
Hence, setting in (3.81) ¢ = u and using the uniform ellipticity of (a;;), we obtain

)\_1/ \Vul? dz < 02/ |01 — ol |u| dz.
Q Q

On the other hand, by the Faber-Krahn inequality, we have

/|Vu|2dx20n\9\2/"/u2dx.
Q Q

Combining the two inequalities and using the Cauchy-Schwarz inequality, we obtain

/qux < C’|Q|2/"/ |01 — ol |u| dx
Q Q

1/2 1/2
C Q" (/Q (v — v3)° dx) (/Q u2daz> :

lur — usl 2 < CIQ™ lor — val| 2

IA

whence

If || is small enough then C'|Q*™ < 1, that is, T is a contraction, which was to be
proved.
(¢) By Theorem a solution of is Holder continuous, provided F, € L7 ()
with
q € [2,00]N(n/2,0]. (3.82)
We have
[Eull e < CHL A [ulM e < C (1 ([[ul ) -

Since u € L? () and

1/q
e, = ( / |u|'yqu) |
Q

we see that |||u|”||;, < oo provided vg = 2. Let us verify that ¢ := 2/~ satisfies (3.82).
Indeed, we have ¢ > 2 because v < 1, and ¢ > n/2 because v < 4/n. Hence, ¢ satisfies
(3.82), and we obtain that u € C* () with 8= 3(n,\,v) >0. m



Chapter 4

Boundary behavior of solutions

Consider again in a bounded domain €2 C R” the weak linear Dirichlet problem

Lu = f,
ue Wy (Q).
We know that if f € L?(Q2) where
4 € [2,+00] N (n/2, 0],

then u € C” () with 8 > 0, in particular, u is continuous in . We can ask if u takes
the boundary value in the classical sense, that is, if for a given point xq € 0f),

Am (x) =0.

e
The answer to this question depends in the properties of the boundary 02 near z,.

The aim of this Chapter is to prove the following: if 02 is “good” enough in some
sense then, in fact, u € C' (ﬁ) and u = 0 on Jf) in the classical sense.

There are many different methods for investigation of the boundary behavior of
solutions. We will use the method of continuation through the boundary, so that
a boundary point xqg € 02 becomes an interior point in a larger domain, so that
the previous results about Holder continuity in interior points can be used. We first
consider a model case of a flat boundary.

4.1 Flat boundary

Consider an open set €2, C R such that a part of the boundary of €, lies on the
hyperplane H = {z,, = 0}. Regarding H as R""!, denote by I the interior of 9Q, N H
considered as a subset of R" .

Let

ij=1
be a uniformly elliptic operator in {2, with measurable coefficients. Let u be a solution
of the following Dirichlet problem in €2, :

{ Lu=f
ue Wy ()

91
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where so far f € L?(©,). We would like to investigate the Holder continuity of u up
to I'.
Define a mirror reflection in H as a mapping ® : R” — R" such that

¢ (ZL’l, "')xn—lyxn) = (xh ooy Tp—1, _xn) .

Clearly, ® is involution, that is, ®~! = ®.
Let Q_ = & (€ ) so that Q_ C R”". Observe that the set I" belongs to the both
boundaries 0€2, and 0f)_. Consider the set

Q=0Q,UQ_ UT

that is an open subset of R™ that is invariant for the mapping ®. Note that all points
of I' are interior points of 2. We are going to extends u, f, L from €2, to (2.

> H=R™!

A function v : Q — R is called even if
v(®(z)) =0 (2), (4.2)

and odd if
v(P(x)) =—v(z). (4.3)

Any function v : €2, — R allows obviously even and odd extensions to €2, just by using
(4.2)) or (4.3), respectively (on I'" we set for simplicity v = 0).
Let us extend both functions u and f to 2 in the odd way, that is, by
u(®(r)) = —u(z) and f(®(x))=—f(z)

for all x € Q2.
To extend the coefficients of L, we use the following notation:

1, 1< n,
;= .
! -1, i=n.

Then set, for all x € Q,,
a'z'j (q) (ZL’)) = O'Z'O'jaij (ZL’) . (44)

In other words,

30.06.16
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e a;; extends in the even way if ¢,j <nori=j=mn;
e a;; extends in the odd way if i <n, j=nori=n, j<n.

For x € T" set L = A. Hence, we obtain the extended operator L in 2 and the
extended functions v and f in €.

Theorem 4.1 Under the above conditions, the operator L is uniformly elliptic in €,
uwe Wy?(Q) and Lu = f in Q.

Proof. To prove that L is uniformly elliptic, it suffices to prove the following: if (a;;)
is a symmetric matrix such that, for any £ € R,

ATHEP <> aggg; < AlEP (4.5)
ij=1
then the same holds for the matrix (¢,0;a;;) . We have

n

Z (0i0jaiz) §;€; = Z URLE

1,7=1 4,j=1

where 71, = 0,&;, that is, n = (51, T S —fn). By we have

AP <) agmm, < Al (4.6)
ij=1
Since |n| = [£|, we obtain

n

N <Y (oioja) €8 < MEP

1,7=1

which proves the uniform ellipticity of (o;0;a;;).
Since u € W, (€2.), we obtain that also uo® € W,"* (Q_) and, hence, the extended
u belongs to Wy (Q4 UQ_). Since Q D Q, UQ_, we obtain that also u € W,* (Q) (we
use a general fact that if ' € Q” then W, (') € W,* () because D (') C D ().
Let us show that Lu = f in ), that is, for any ¢ € D (Q),

2,j=1

dxr = 0. (4.7)

For that we split the integral [, in the sum fQ+ + |, and in the integral [, ...dz we
make change © = ® (y) thus reducing it to an integral over €. In particular, we have

fa)ye(e)de = [ f(2(y) e (P (y))|det Jo| dy,
Q. Q
where Jg is the Jacobi matrix of ®. Obviously, det J = —1, whence

Q_f(x)so(ﬂf) dx = A (@) ¢ (@ (y))dy.
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Denoting
77b (y) = (CI) (y)) = (yl, ooy Yn—1, _yn)

and recalling that
F(@ W) =-f),

we obtain

f@)p(@)dr=— [ f(y)v(y)dy.

O Q4
It follows that

/ fodv= [ fode— [ fode= [ f(o—v)de
Q o o Oy

Let us handle the term a;;0;u 0;0. We have

(0i0) (@ (1)) = (050) (Y1s s Yn—1, —Yn) = 0 [© (Y1, s Yn—1, —¥Yn)] = Ot (y)

and similarly
(05u) (@ (y)) = (O5u) (Y1, - Yn-1, =Yn) = 0305 [t (Y1, -+ Yn—1, —¥n)] = —0;0;u (y)
where we have used the fact that u is odd. Using also (4.4]), we obtain

(aij0;u0ip) (2 (v)) = —0iojai5 (y) 0;0;u (y) 0:0:9 (y) = — (ai;0;udi) (v) ,

as 022 = 0? = 1. Hence, we obtain

/ (4405 Oip) () dr = — / (a3,0,udi) (3) dy,

which implies

Qi Q4 4 j=1
It follows that

/ [Z aijOjudip + [
0

ij=1

dﬂ?Z/Q [Z aij0ud; (p =) + f(p — )| do.  (4.8)

ij=1

Observe that the function ¢ — ¢ belongs to VVO1 2 () by Exercis 30. Indeed, ¢ —
1) belongs to C'*® (§+) and, hence, it is in W2 (€2,) and it is continuous on 0;
moreover, ¢ — 1 vanishes on 0¢), , because ¢ — 1 = 0 on I' by construction of ¢, while
@ — 1 =0 on the rest of €2, because ¢ and 1 vanish on 0f).

Since u solves Lu = f in {2, using ¢ — ¢ as a test function, we obtain that the

right hand side of (4.8) vanishes, whence (4.7)) follows. =

By Exercise 30, if g is a function on Q such that g € W2 (2), g is continuous at any point of 952,
and g = 0 on 012, then g € VVO12 Q).
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Corollary 4.2 Let L be an operator in €2, as above. Let u solves in (), the Dirichlet
problem
Lu=f in Q4
{ u € Wy ()

where f € L9 () with
q € [2,00] N (n/2,00]. (4.9)

Then v € C* (2 UT) for some a = a(n, A\, q) > 0. In particular, u is continuous at
any point of T' and ulr = 0.

Proof. Indeed, let us extend L,u, f to @ = Q; UQ_ UT as in Theorem (1.1l By
Theorem we have u € W,* (Q) and Lu = f in Q. Since f € L7 (Q), we conclude by
Theorem that v € C*(2). In particular, u € C* (24 UT'). Since u is continuous
on I' and u is odd with respect to the mirror reflection in I', we conclude that u|r = 0.
u

4.2 Boundary as a graph
Let U be an open set in R”!. Given a function h : U — R, consider its graph
Ip={(z,t) eR":2€U, t=h(2)}

and its supergraph:
Sp=A{(z,t) eR":z€ U, t >h(2)}.

Here z € R"!, t € R, and we consider the pair (z,t) as the point (21, ..., z,_1,t) of R™.
A cylinder over U is any set () C R" of the form U x I where I is a non-empty
open interval in R.
Let € be a bounded open subset of R" with the following property: there is a
cylinder ) over U such that

QN =5,NQ and I2NQE =T},

~L P ea
Rn EQ
Rn-l U

Z=(X1, .- Xn-1)
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Note that the set €2, from the previous section with a piece I' of a flat boundary is
a particular case of the present construction with i (z) = 0 and U = I'. The following
theorem generalizes Corollary [4.2]

Theorem 4.3 Under the above conditions, assume that the function h belongs to
CY(U). Consider a weak Dirichlet problem

Lu = f in Q,
{ e Wy (), (410

where L is the uniformly elliptic operator (4.1)) in Q with measurable coefficients. If
f e Li1(Q) with q as in (4.9), thenu € C (QUTY}) and u|r, = 0.

Proof. Choose an open subset V of U such that V is compact and V C U. Let I' be
the graph of h restricted to V. It suffices to prove that u € C* (2 UT) for some a > 0.
We will see that the Holder exponent v depends not only on A, n, ¢ but also on the sets
Q, U,V and on the function h.
Let us first extend the function A from U to R"~! as follows. Choose first a constant
¢ such that
Qc{zxeR":z, >c}

and set h = c¢in U°. Then () is contained in the supergraph .S}, of the extended function
h. However, the so extended function h is not continuous on OU. On U \ V let us
redefine i to make is smaller and to have h € C* (R"!).

Then we have supgn.—1 |Vh| < oo,

QcCS, and 02DT,

where, as above, T' is the graph of h|y (see the picture below).

A
Xn
Q
e
St
I'
C
J » H=R™*
U
Let us consider the following mapping ¥ : R” — R™:
U (2) = (21, 000y Tpe1, T — D (T, 0 T 1)) - (4.11)

Clearly, ¥ is a C'-diffeomorphism of R", and the inverse mapping is given by

U () = (W1 Y1, Un + 2 (Y1, Yn1)) - (4.12)

5.07.16
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Since
Sp={zeR":z,>h(xy,....,0h-1)}

and
Iy={zeR":2, =h(xy,....,201)},

we obtain that
U (Sy) =R} and V(') =H = R,

as well as
U (Q)C R? and UOQ)o>v M) =V

The mapping WV is called straightening as it straightens the piece I' of the boundary
0f) into a flat piece V. Denote

so that

Q. CR} and 90Q,DV

(see the picture).

XnA

Qs

» H=R"

\Y,

We can regard ¥ as a C''-diffeomorphism between 2 and €2,. We denote an arbitrary
point in © by z while that in €2, — by y, and write the mapping ¥ in the form y = ¥ (x).
We will need the Jacobi matrices of ¥ and U~!. Using (4.11)) and (4.12)), we find that

Oy 0 :
J p— pr—
Y (8:@) : 0
—O1h - —0,1h 1
and

1 0 0

Jy-1 = =
! ((M) : SO
Oh -+ Op_1h 1

It is easy to verify that the matrices Jgy and Jg-1 are mutually inverse as they should
be, and that
det J\p = det Jq;fl =1.
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Set
K = max (1, sup |Vh|> .

Rn—1

Then all the entries of the both matrices Jy and Jy-1 are bounded by K.
Any function v on €2 can be pushed forward to a function v, on €, that is defined
as follows:
Vs (U (x)) =v(x) forall z € Q,

which is equivalent to
v (y) =v (" (y)) forally e Q..

Let us prove some properties of push-forward.
(a) If w € L? (§2) then u, € LP (). Indeed, changing y = ¥ () in the integral, we
obtain

[ ety = [ o @r i = [u@rd

It follows also that
HUHLP(Q) = HU*HLP(Q*)a

that is, push-forward is an isometry of L? (€2) and LP (€2,).
(b) If w € W12 (Q) then u, € W2 (€,). Indeed, observe that, by the chain rule,

Ot (1) = 0y [ (¥ ()] = 3 (0., 5

i=1

Since d,,u € L? (), we obtain by (a) that (9,,u), € L*(Q,). Since all partial deriv-

atives % are bounded by K, we obtain that (0,,u), Z}z belongs to L? (), whence

Dy us € L? (). Hence, u, € WH2(Q,). It follows from this argument that

n
10yl 2 < K Y 0null 2 < Kn ||Vl 2,

=1

n
IVallpe < ) 1002 < Kn® [Vl 2

k=1

whence
-1
(En?) " ullwrzq) < lullwizq,y < En?lluflypieg - (4.13)

(¢) If u € Wy (Q) then u, € Wy?(Q,). Observe that if p € C} () then ¢, €
CH(Q,). If u € W, (Q) then u is the limit in W2 (Q) of a sequence {,} of C}
functions in 2. By we conclude that u, is the limit in W12 (€,) of the sequence
{(¢).}. Since (¢,), € CL (), it follows that u, € Wy* ().

(d) By Exercise 3 we have the following property of push-forward. Let

L= Z 81 (aijaj)

ij=1
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be an operator in €2 and let Lu = f hold weakly in 2. Then
L.u, = f, weakly in €2,

where the operator L, is given by

1
L,=—Y 09, (buvDo
\/E@k:l Yk ( kl yz)
with
- Yk Oy
b f—
kl (y) pa a; ([E) axz 8$]
i,7=1
and
D = (det Jg)
Since D = 1, we have
L.= ayk (bklayz) .

ik=1

Let us show that the operator L, is uniformly elliptic in §2,. For any £ € R", we have

n

Z buln&s = Z Z Qij ayk Oiﬂ xéi

kl=1 kl=11ij=1
— i
ij=1 ax’
Set
k=1
so that

Z bui€i&i = Z @175

k=1 ij=1

By the uniform ellipticity of (a;;), we have

Al <Y agmmy < Al

ij=1

Since the coefficients ayk are bounded by K, we obtain from
;| < Kn €]

and, hence,
[nl < Kn?[¢].

Since

Z 8@

4.15
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and all the coefficients % are also bounded by K, it follows that

€] < Knn],

whence .
(Kn?) " Jg] < |n| < Kn?¢].

Combining with (4.16) and (4.17)), we obtain

MEP <D s < P

k=1

where A\, = A (K n2)2 . Hence, L, is uniformly elliptic with the ellipticity constant A,.
Now let u solve the Dirichlet problem (4.10) with f € L?(€2). By the above prop-
erties of push-forward, we obtain that u, solves the Dirichlet problem

L.u, = f, weakly in €2,
u, € Wy ()

and f, € L9(€). Since Q, C R%} and the set V lies on 02, N H, we conclude by
Corollary that u, € C*(Q, UV) for some o« = « (n, A, ¢) > 0, and that u, = 0 on
V. Tt follows that also u € C* (Q2UT), in particular, u € C (QUT), and u = 0 on T,
which finishes the proof. m

Remark. Note that the exponent o depends via A, also on the constant K that bounds
|Vh|. Since K depends on the extension of function h outside V', the value of o depends
on V. Hence, we cannot claim that u is Holder continuous on the full boundary 0f2
inside Q.

Remark. The statement and proof of Theorem (with necessary modifications)
remain valid if A is a Lipschitz function rather than C*.

4.3 Domains with C! boundary

Given two sets A C R*~! and B C R, define the product A x; B with respect to the
coordinate z; in R™ as follows:

Ax;B={(x1,....,x0,) E R" : (21, ..5...,x,) € A, x; € B},
where the notation Z; means that z; is omitted, that is,
(.I'l, i’l,fﬂn) = (.I'l, ey Lg— 15 ity --ey xn) .

A (open) cylinder in R™ with respect to the coordinate z; is any set @) of the form
Q = U x; I where U is an open subset of R*~! and I is an open interval in R.
Definition. Let 2 be an open subset of R”. We say that the boundary of €2 belongs to
the class C! (or simply € belongs to C') if the following two conditions are satisfied:

(1) any open neighborhood of any point x € 92 has a non-empty intersection with
Q;

7.07.16
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(77) for any point x € 0N there exist a cylinder Q = U x; I containing = and a
Cl-function h : U — I such that 90 N Q = T', (in other words, 0 is locally a
C! graph).

Rn

v

U

(g X1, Xi01, - X) ER™E

I 3

Without loss of generality, we can assume that U (and, hence, @) is connected.

Claim. It follows from (i) and (ii) that QN Q coincides either with the supergraph of
h in Q or with the subgraph of h in Q.

Proof. Let S be the supergraph of h in ) and S’ be the subgraph. Then
Q=SusS uUry,.

Since S is an image of () under a continuous mapping, it follows that S is connected.
Since S is covered by the disjoint union Q LI Q" of open sets, it follows that S C Q or
S c Q°. The same argument applies also to S’: either S’ € Q or S’ C Q.

However, S and S’ cannot both be contained in the same of the two sets Q or Q.
Indeed, if S and S’ are both contained in €2 then any point z on I';, has in small enough
neighborhoods no points from Q°, which contradicts (). If S and S’ are contained in
Q°, and any point x € I'j, has in small enough neighborhoods no points from €2, which
contradicts the definition of the boundary.

Hence, there remain only two possibilities:

e cither SC Qand §' C Q°
eorSCcQandScqQ.

In the first case we have QN (Q = S, and in the second case 2N Q =5". =m

The next statement provides a large class of examples of domains with C'! boundary.
Recall that a bounded open set ) is called a region if there exists a C! function F
defined in an open neighborhood Q' of 2 such that

Q={zxeQ : F(x) <0},
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N={reQ:F(x)=0},
and
VF #0 on 0f2.

For example, a ball Bg = {z € R" : |z| < R} is a region with function
F(z) = |z|" — R?.
Lemma 4.4 If Q) is a region then Q has C' boundary.

Proof. Fix some point z € 0f2. By the hypothesis VF (z) # 0, the point z cannot be
a local maximum of F. Since F' (z) = 0, it follows that any neighborhood of z contains
points x with F' (z) > 0, that is, the points from [

Since VF' (z) # 0, there is an index i = 1,2...,n such that 0;,F (z) # 0. By the
theorem of implicit function, the equation

F(z1,29,...;2,) =0

can be resolved in a neighborhood of z with respect to x; as follows: there is a cylinder
Q = U x; I containing z and a C! function f : U — I such that, for all z € Q,

F(x1,.nzy) =0 x;, = f (21, ...84..20) .

Consequently, we have
NN =Ty,

and, hence,  is a domain with C! boundary. m

Theorem 4.5 Assume that Q is a bounded domain with C' boundary. Let L be a
uniformly elliptic operator with measurable coefficients in 2 and let u solve the weak
Dirichlet problem

{Lu:me (4.18)

uwe W2 (Q)
where f € L7 (Q) with q € [2,00] N (n/2,00]. Then u € C*(Q) with some a > 0 and
ulgo = 0. Here a depends on n, A, q and (.

Proof. By definition of C! boundary, for any point # € 9 there is a cylinder Q, =
U, x;, I, such that 9Q N Q, is the graph of a C! function h, : U, — I,. Besides, by
the above claim, 2N @), is either supergraph or subgraph of A, in @Q,.

As in the proof of Theorem choose an open subset V,, C U, such that x € V,
and V, is a compact subset of U,. Let I', be the graph of hz|v,. By the proof of
Theorem we have u € C* (QUT,) where a, > 0, and u =0 on I',.

The family @), = V,. x;, I, of all cylinders @/, with x € 0 provides an open covering
of 0€). Choose a finite subcover {Q;k}, k=1,..,N, and set

@ = min (g, ...y Gy ) > 0.

Then we have u € C* (QUT,,) for any k. Since the union of all sets I';, over all k is
02, we obtain that u € C* (Q U 02) and u = 0 on 052, which was to be proved. m

Remark. The statement and the proof of Theorem remain valid if the boundary
0 is Lipschitz rather than C*.



12.07.16

4.4. CLASSICAL SOLUTIONS 103

4.4 Classical solutions
Now we can prove a result about existence of a classical solution.

Theorem 4.6 Assume that Q is a bounded domain with C' boundary and let k be
an integer such that k > n/2. Consider in Q a uniformly elliptic operator L =
> i je1 0i (aij0;) with coefficients a;; € CH1(Q). Then, for all f € C*(Q) and
g€ C? (ﬁ), the classical Dirichlet problem

Lu=finQ
{u:g on 02 (4.19)

has ezactly one solution u € C* (Q)NC ().

Remark. The assumptions of this theorem about functions a,;, f, g are not quite
optimal. They are to illustrate the method of obtaining classical solutions by means of
weak solutions.

Proof. Consider first the weak Dirichlet problem

{ Lu = f weakly in 2

u—ge W, (Q). (4.20)

By Exercises 7 and 27, if f € L?(Q) and g € W? (Q) (which is the case under the
present assumptions) then the problem has a unique weak solution u € W12 ().
Since f € C* (1), we have also f € W"? (). Since a;; € C*™ (), we obtain by
Theorem [2.10(b) that
we Wi (Q).

loc

Since

k+2>g+z

the Sobolev embedding theorem implies that u € C? (2). Hence, u is a classical solution
of Lu = f in €.

In order to investigate the behavior of u on 94, let us rewrite (4.20]) in terms of the
function v = u — g as follows:

{ Lv = f — Lg weakly in 2 (4.21)

ve W, (Q).
Since g € C? (Q) and a;; € C* (Q), it follows that Lg € C (22), whence
f—LgeC(Q)cL(Q).

In particular, the problem has a unique weak solution v (this is an alternative
proof of the existence and uniqueness of solution u of ) By Theorem we
obtain v € C* (ﬁ) with some o > 0, and v = 0 on 9. It follows that also u € C¢ (ﬁ)
and u = g on 0, so that u satisfies the boundary value in the classical sense.

Hence, u is a classical solution of . Finally, the uniqueness of the classical
solution of 1} in the class C%(Q) N C (ﬁ) follows from the maximum principle of
Exercise 1. m
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Recall from PDE the following result for the Laplace operator: let f € C? (Bg) be
bounded and let g € C' (0Bg). Then the Dirichlet problem

Au=f in Bg
{ u=g¢g ondBg (4.22)

has exactly one classical solution v € C* (Bg) N C (ER). Of course, the requirements
here are much milder than those in Theorem[4.6] Of course, this is very special situation
of L = A and 2 = Br where one can expect better results than in general.

There is one more serious distinction between these two results. If u is the classical
solution of , it may not be a weak solution in any sense, because, as we have seen
on examples, the classical solution of with arbitrary continuous function g on

00 may have infinite energy:
/ |Vul® dz = oo,
Br

and, hence, may be not in W12 (Bg). Hence, for the methods based on weak solutions,
one need to impose additional restriction on g.



Chapter 5

Harnack inequality

5.1 Statement of the Harnack inequality (Theorem
of Moser)

Consider again in a domain 2 C R" a uniformly elliptic operator in divergence form

L = Z 0, (a,ij@j)
3,7=1

with measurable coefficients. Recall that if u € W,o? () is a weak solution of Lu = 0

in © then by Theorem [3.7] u is Holder continuous in €.

Definition. We say that a function u is L-harmonic in €2 if u is the continuous version
of a weak solution u € W22 (Q) of Lu = 0 in €.

loc

The main result of this Chapter is the following theorem.

Theorem 5.1 If u is a non-negative L-harmonic function in a ball Bog C §2 then

supu < C'infu (5.1)
Br Br

where C'= C (n, \).

The inequality is called the Harnack inequality, analogously to the classical
Harnack inequality for harmonic functions that holds with the constant C' = 3™. This
inequality for uniformly elliptic operators in divergence form with measurable coeffi-
cients was first proved by Jiirgen Moser in 1961.

Recall the weak Harnack inequality of Theorem [3.4] that we now reformulate in the
following form}

Weak Harnack inequality Let Bigp C Q and assume that u € W2 (Byg) is L-
harmonic in Byr. Choose some a > 0 and set

E={zx€Br:u(zx)>a}.

If for some ¢ > 0
|E| > ¢|Bxgl,

'Tn comparison with Theorem we replace Bsr by Bsgr and supersolution by solution.

105
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then
infu > da, (5.2)

Br

where § =6 (n, \,e) > 0.

BAR

The Harnack inequality (should it be already proved) implies the weak Harnack
inequality as follows: if the set E has positive measure then we conclude that

a < supu,
Bg

and then (5.2)) follows from ({5.1)).
However, in the proof of Theorem we will use the weak Harnack inequality.

Moreover, we will use only the following properties of L-harmonic functions (apart
from continuity):

(1) the weak Harnack inequality;

(7) if w is L-harmonic then also the function au + b is L-harmonic for arbitrary
a,beR.

If these two properties hold for any other operator L then also the Harnack inequal-
ity holds for L.

The method of derivation of the Harnack inequality from the weak Harnack inequal-
ity was invented by Eugene Landis in 1970s as an alternative to a more complicated
method of Moser that involved a difficult lemma of John-Nirenberg.

5.2 Lemmas of growth

For the proof of Theorem [5.1] we need some lemmas. The first lemma is an extension
of the weak Harnack inequality.
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Lemma 5.2 (Reiteration of the weak Harnack inequality) Let u be a non-negative
L-harmonic function in some ball Bg (x). Consider a ball B, (y) where

2
y€Bip(x) and r < §R.
If

{u=>1} N B, (y)
| By (y)]

r\s
> (L
u(@ 2 (z) s
where 6 =6 (n, A\,0) >0 and s = s (n,\) > 0.

>0>0 (5.3)

then

Br(X) B

Proof. Note that
By (y) C Br ()
because

1 8
\x—y\+4r<§R+§R:R.

Applying the weak Harnack inequality in B, (y) and using (5.3]), we obtain that

inf u>d,:=09(n,A0).
Br(y)

It follows that
H{u >0 0B (W)l o 1B _

> =2""
| Bar ()] | Ba, |
If Bs, (y) C Bg(z) then applying the weak Harnack inequality in Ba, (y), we obtain
that

inf u > 010 (n,/\,Q*") = €01,

Bar(y)

where

g:=90 (n, A, 2’”) )
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It follows that
[{u > €01} N Bur (Y)]  |Bor|

| Bar (y)] ~ [Bur|
Therefore, if Big, (y) C Bg () then

=2""

infu > (6,6) e = £26;.

B47'
We continue by induction and obtain the following statement for any positive integer
k:
if Byri2, (y) C Br(v) then inf u > 6. (5.4)

2k

Let k be the maximal integer such that

Then

while



5.2. LEMMAS OF GROWTH 109

It follows that
R— [z -yl

8

where we have used that R > 9|z — y|. Hence, for this value of k, we have

2k > > |z —y|

YIS B2kr (y) .

Then by ((5.4))

u(x) > eFoy.

On the other hand, we have
2k < 2M 2 4z —y| <R

whence R
k <log, —.
r
It follows that

R logy s
u(z) > 87 gy = 52080 — g, <?> — 6 (1)

with s = log, % > 0, which finishes the proof. m

Lemma 5.3 (Alternative form of the weak Harnack inequality) Let u be an L-harmonic
function in some ball Byg (). If

[{u <0} N Bg ()]
| Br

>0>0,

then

sup u > (1+0)u(x), (5.5)
Bar(z)

where § = 6 (n, \,0) > 0 is the same as in the weak Harnack inequality.

Bur
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Proof. If u(z) < 0 then (5.5) is trivially satisfied. Assume that w(xz) > 0. By
rescaling, we can assume also that

sup u = 1.
Bar(z)

Consider the function v = 1 —u that is a non-negative L-harmonic function in Byg (z).
Observe also, that
u<0&v>1.

Hence, we obtain that
{v= 10 Ba@)
| Br|

By the weak Harnack inequality, we conclude that

inf v >,
Br(z)

where 0 = § (n, A,0) > 0. It follows that v () > ¢ and, hence

1 1
ulr) <l—-0< —— = sup u,
(v) < 140 1+65)

which is equivalent to (5.5). =
Lemma 5.4 (Lemma of growth in a thin domain) There exists € = € (n, A) > 0 such
that the following is true: if u is an L-harmonic function in a ball Bg (x) and if

[{u >0} N Bg| <e
| Br|

then

supu > 4u (z) .
Bgr

Corollary 5.5 Under the same assumptions, choose some a € R and assume that

{u > a} N Bg| <e
| Br|

Then

supu > a+4(u(z) —a).
Bgr

Proof. Indeed, just apply Lemma to the L-harmonic function v =u —a. =

Proof of Lemma [5.4. The value of € will be determined later. So far consider ¢ as
given. Consider any ball B, (y) C Bg (z) such that

B, | _
| Br|

2e,

14.07.16
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which is equivalent to (}%)n = 2¢ and, hence, to
r=(2¢)""R.
Then

[{u>0}n B (y)| {u>0}NBr(2)||Br| . 1 _1
|Br| - | Bl |Be| — 2e

It follows that
{u<0}nB () _ 1
| B, | -2

Br(X)

If By, (y) C Bg(x) then we can apply Lemma [5.3[ and obtain that

sup u > (1+0)u(y),
B4T(y)

where § = ¢ (n, A, %) > 0. By slightly reducing 9, we obtain the following claim.
Claim. If By, (y) C Bg (z) and r = (2¢)"/™ R then there exists y' € By, (y) such that

u(y) = (1+0)ul(y),
where 0 > 0 depends on n, \.

Let us apply the Claim first for y = x. Assuming that ¢ is small enough, we obtain
4r < R and, hence, By, (z) C Bg (z). Hence, we obtain by Claim a point x1 € By, ()
such that

u(ry) > (14+0)u(x).
If By, (1) C Bgr(z) then we apply Claim again and obtain that there is o € By, (27)
such that

u(wg) > (140)u(xy).
We continue construction of the sequence {x;} by induction: as long as By, (v3) C
Br (x), we obtain xy41 € By, (x)) such that

u(Tr1) 2 (14 0)u ().

If, for some k, By, (x}) is not contained in Bg () then we stop the construction.
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X X2 Xk

Br(X)

By construction, if zj, exists then x; € Br (z) and
w(xg) > (14 6) u(xy). (5.6)

Besides, we have
|z — x| <4r foralll <k —1,

which implies that
|z, — x| < 4kr. (5.7)

Let us prove by induction in & the following claim:
if 4kr < R then x;, exists.
We know already that x; exists. Let us prove the induction step, that is,
if 4 (k4 1)r < R then x4, exists.

Indeed, if 4 (k+ 1) < R then also 4kr < R and we obtain the inductive hypothesis
that zy exists. It follows from ([5.7)) that

By (w1) C Bagrs1yr () .

Since 4 (k+ 1)r < R, we see that By, (vx) C Bg(x), and this construction can be
continued so that x;,; exists, which finishes the inductive proof.
Let us choose the maximal integer k£ with 4kr < R. Then we have

4k+1)r>R
and, hence,
1
k> E—1:—1—1.
4r 4(26)"

It follows from ([5.6)) that

w(zg) > (1+8)3 7™y ().

Finally, choosing e small enough (depending only on ¢ and n, that is, on A and n), we
obtain

sup u > u(xg) > 4u (z),

Br()

which was to be proved. m
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5.3 Proof of the Harnack inequality

Here we prove Theorem 5.1} Observe first that it suffices to prove the following version
of the Harnack inequality: there exists a constant C, depending on n, A and such that
if u is a non-negative L-harmonic function on a ball Big (z) (where K = 18) then

sup u < Cu(x).
Br(z)

Without loss of generality, we can assume that

sup u = 2, (5.8)
Br(z)
and we need to prove that
u(zr) >c (5.9)

for some positive constant ¢ = c(n, A). Let us construct a sequence {r},-, of points
such that
T € Bop (x) and  u () = 2% (5.10)

A point 2; with u(z1) = 2 exists in Bg (z) by assumption (5.8). Assume that zy
satisfying (5.10]) is already constructed. Then, for small enough r > 0, we have

sup u < 281

Br(xk)
Set
T, = sup {7‘ € (0,R]: sup u < 2k+1} .

Br(zy)
If r, = R then we stop the process without constructing z,,.;. If »r < R then we
necessarily have
sup u = 2kt
Br(zk)
(note that B, (xy) C Bg(xr) C Byr(z) so that u is defined in B, (xy)). Therefore,
there exists x41 € By, ,, (z) such that u (zj41) = 2"
If 241 € Bag (z) then we keep 2511 and go to the next step. If 24,1 ¢ Bag () then
we disregard ., and stop the process.
Hence, we obtain a sequence of balls {B,, (xx)} such that

e <R, a3 € Bog (x), u(wy)=2"

and
sup u < 2FL (5.11)
B'rk(xk)
Moreover, we have also
[ Tpg1 — 21| < 7%

The sequence {x} cannot be infinite because u (ry) — 0o whereas u is bounded in
Bsg (7) as a continuous function. Let N be the largest value of k in this sequence.
Then we have either ry = R or ry < R and xy,1 ¢ Bsg(x) (where zy,q is the
disregarded point).
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Xy XN+l
BR(x)/
BZR(X)/
In the both cases we clearly have
r+..+ry>R. (5.12)

19.07.16
In any ball B,, (z;) we have by (5.11)

sup v < 2L <2k lg (Qk — 2k_1)
Brk(xk)

= a+4(u(z) —a),
where a = 251, By Corollary [5.5, we conclude that

{u>a} N B, (x)
B,,]

> €,

that is,

[{u> 213N B,, (z)] .
| Br| T

Now let us apply Lemma with B, (y) = B,, (). Since u is non-negative and
L-harmonic in Bgpg (), the following conditions need to be satisfied:

2 1
e < §KR and |z — x| < §KR.

Since 1, < R and |z — x| < 2R, the both conditions are satisfied if K = 18. By

Lemma [5.2) we obtain that
Tk

¥ cok—1
w(z) > <R> 52kt (5.13)
where § = (n,\,e) >0 and s = s(n,\) > 0.
The question remains how to estimate (%“)S 2F=1 from below, given the fact that we
do not know much about the sequence {r;}: the only available information is .
The following trick was invented by Landis. The condition implies that there

exists k < N such that
R

D) (5:14)
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Indeed, if for all £ < N we have
re < —R
" k(4 1)

then it follows that
N [e’e) ]{
Sy e n
— p k(k+1)

which contradicts (5.12)). Hence, choose k that satisfies (5.14). For this & we obtain
from ([5.13]) that

Tk\® gk—1 2+1
u(m)Zé(ﬁ) 2 Z(Sm.

The next observation is that although we do not know the value of k£, nevertheless we
can obtain a lower bound of u (z) independent of k because

2k71

Hence, we conclude that

which finishes the proof of (5.9).
Finally, let us prove that if u is non-negative and L-harmonic function in a ball Byr

then

supu < C'inf u.
Br Br

Assume without loss of generality that the center of the ball By is 0. Let a be a point
in Br where u takes the maximal value and b be the point in By where u takes the
minimal value. We need to prove that

u(a) < Cu(b)
for some C' = C (n, A). It suffices to prove that
u(a) < Cu(0) and u(0) < Cu(b).

Set r = R/K (where K = 18 as above) and connect 0 and a by a sequence {asj}fzo of
points such that
r9=0, g =a, |z;—xj| <

For that, it suffices to choose all zj on the interval [0, a] dividing this interval into K
equal parts.

Since x; € Bp, the ball By, (z;) = Bg (z;) is contained in Byp (0). By the form of
the Harnack inequality that we proved above, we conclude that

sup u < Cu(x;).
By (z5)

Since z;41 € B, (z;), it follows that
u (1) < Cu(z;)

and, hence,
u(a) < CKu (0).

The inequality for u (b) is proved in the same way.
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5.4 * Some applications of the Harnack inequality

5.4.1 Convergence theorems

Theorem 5.6 Let {uy},., be a sequence of L-harmonic functions in a domain Q C
R™. If
L?OC(Q)
U, — U as k — oo
then the function u is also L-harmonic in 2. Moreover, the sequence {uy} converges
to u locally uniformly.

Proof. Let us show that the sequence {uz} converges also in W? (Q). For that it
suffices to show that the sequence of {Vu;} is Cauchy in L2 (BR/Q) in any ball Bg/,
such that By C . For that we use the inequality 1} from the proof of Theorem
0. 28

/ \Vo|* n?de < 4/\4/ (V| v2dz, (5.15)
Bgr Bpr

where v is any L-harmonic functionf]in Q and 7 is any Lipschitz function with compact
support in Bg; in particular, choose 77 to be the following bump function:

17 |ZL'| S T?
n(z) =3 & <z <p, (5.16)
0, lz| > p.

where 0 < r < p < R. Take r = %R and p = %R. Then it follows from || that
/ \Vol* dz < c vidx. (5.17)
R2
Bry2 Br

Let us apply this inequality to v = uy — u;. Since
lwe — wllp2p,) — 0 as k,l — oo,

it follows from (5.17) that
||Vuk - VUZHLQ(

Brys) 0 as k,l — oo.

(), which implies that « € W,-? and uj, — u in W,27 ().

Hence, Vuy, converges in L? fi

loc
Since each wuy, satisfies the identity

/ Z aijajuk@-go =0
Q

ij=1
for all ¢ € D (Q), passing to the limit as k — oo, we obtain the same identity for u,
whence Lu = 0 follows.

2In fact, (5.15) was proved for v = u, where u is L-harmonic function. Applying (5.15) also to
v = u_, we obtain the same inequality with v = u.
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The last claim follows from Theorem that implies that, for any ball By C €2,

sup Ju — il <~ ot — we]
B OO ll2(ag) -

Since ||u — ugl| 25,y — 0 as k — oo, it follows that also

sup |u — ug| — 0,
R/2

which means that up — wu locally uniformly. =

Theorem 5.7 Let {uy},-, be a sequence of L-harmonic functions in a connected do-
main @ C R"™. Assume that this sequence is monotone increasing, that is, uyyq (x) >
uy, (x) for all k > 1,x € Q. Then the function

u(x) = lim uy (z)

k—o0

18 either identically equal to oo in 2, or it is an L-harmonic function in Q. Moreover,
in the latter case the sequence {uy} converges to u locally uniformly.

Proof. By replacing u; with up — u;, we can assume that all functions wu; are non-
negative. Consider the sets

F={zeQ:u(xr) <oo}
and
I={zeQ:u(x)= o0}

so that 2 = F'LU 1. Let us prove that both F' and I are open sets.
Indeed, take a point z € F' and show that also B. (z) € F' for some £ > 0. Choose
e so that B () C Q. By the Harnack inequality, we have

sup ur < C inf uy < Cuy ().
B:(z) Be(z)

By passing to the limit as £ — oo, we obtain

sup u < Cu (z).
Be(z)

Since u (z) < oo, we obtain that also supp_(,yu < oo and, hence, B: (z) C F. Hence,
F' is open.
In the same way one proves that

inf u>C1u(x),
Be ()

which implies that [ is open.
Since 2 is connected and €2 = F U I, it follows that either I = Q or F = . In
the former case we have u = oo in (2, in the latter case: u(x) < oo for all z € Q.
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Let us prove that in the latter case u is L-harmonic. For that, we first show that the
convergence u; — u is locally uniform, that is, for any x € €2 there is € > 0 such that

up S uin B (x) as k — oo.

Then the L-harmonicity of u will follow by Theorem
Choose again € > 0 so that By, (z) C €. For any two indices k > [, apply the
Harnack inequality to the non-negative L-harmonic function ug — u;:

su(p) (up —wy) < C(ug, —wy) ().
B:(x

Since (ur — ;) (z) — 0 as k,l — oo, it follows that
up —w = 01in B. (z) as k,l — oo.

Hence, the sequence {uy} converges uniformly in B. (z). Since {u;} convergence point-
wise to u, it follows that

up = uwin B (x) as k — oo,

which finishes the proof. m

Theorem 5.8 If {uy} is a sequence of L-harmonic functions in Q that is bounded in
L?(Q)), then there is a subsequence {uy,} that converges to an L-harmonic function
locally uniformly.

Proof. Consider any ball By C €. Let us apply the inequality 1) from the proof
of Theorem [3.2] that says the following: v is L-harmonic in € then

/ IV (vn))? dz < LQ/ v2dx
Br (p_ T‘) By

where we take 0 < r < p < R and function 7 is defined by 1) Taking r = %R and
p= %R, and applying this to v = u,

/ IV (uen)|? da < % uidr.
Bpr R Br

Since the right hand side is uniformly bounded for all k, so is the left hand side.
Therefore, the sequence {uyn}e, is bounded in W2 (Bg). Since uyn € Wy (Bg),
we obtain by the compact embedding theorem that this sequence has a convergent
subsequence in L? (Bg). Since n = 1 on Bp/s, it follows that {u;} has a convergence
subsequence in L? (Bgys).

Covering §2 by a countable family of the balls and using the diagonal process, we
conclude that {u;} has a subsequence that converges in L2 () to some function u. By
Theorem we conclude that v is L-harmonic and the convergence is locally uniform.
[ ]
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5.4.2 Liouville theorem

Theorem 5.9 If u is a non-negative L-harmonic function in R™ then u = const .

Proof. By subtracting from u the constant infg» u, we can assume without loss of
generality that infg. v = 0. We can apply the Harnack inequality to u in any ball By
because u is L-harmonic and non-negative in Byg for any R > 0. Hence, we obtain

supu < C'inf u,
Br Br

where C' does not depend on R. Letting R — oo, we see that the right hand side goes
to 0. Hence, the left hand side also goes to 0, and we conclude that ©u =0. m

5.4.3 Green function

We state the next theorem without proof.

Theorem 5.10 Let 2 be a bounded domain in R™. Then there exists a function
G (z,y) on Q x Q with the following properties:

1. G (x,y) is jointly continuous in (x,y) € Q x Q\ diag .
2. G(x,y) > 0.
3. G(x,y) =G (y, 7).

4. For any function f € L? (R"), the following function

ue) = [ Gl )y
1s a weak solution of the Dirichlet problem

Lu= —f in €,
uwe Wy (9Q).

5. Assume n > 2. Then, for any compact set K C €2, there are positive constants
c1,co > 0 such that

ale—y " <Gxy) <cle—y/™" (5.18)
forallz,y € K.

This theorem was proved by Walter Littman, Guido Stampacchia, and Hans Wein-
berger in 1963. The Harnack inequality of Theorem [5.1] was used to prove the estimate
(5.18).
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5.4.4 Boundary regularity

Let 2 be a bounded domain in R" and consider the following Dirichlet problem in 2:

{ Lu=0in O (5.19)

u—ge Wy (Q)

where g € C* (ﬁ) is a given function.

Definition. We say that a point z € 9 is reqular for 1) if, for any g € C* (ﬁ),
the (continuous version of the) solution u of (5.19)) satisfies

aljll%u (x) =g (2). (5.20)

Fix a point z on the boundary 02 and, for any integer & > 1, consider the following
sets:

Ei (2) = By—x (2) N Q°.

Theorem 5.11 Assume n > 2. Then a point z € 0Q is reqular for (5.19) if and only
of

o0

> 2K cap (B (2)) = 0. (5.21)
k=1

This theorem was proved by W.Littman, G.Stampacchia, and H.F.Weinberger in
1963 using their estimate of the Green function. For the case L = A, Theorem
was first proved by Norbert Wiener in 1924. The condition for regularity
is called Wiener’s criterion.

One of the consequences of Theorem is that the notion of regularity of z € 99
does not depend on the choice of the operator L as long as it in the divergence form
and uniformly elliptic.



Chapter 6

* Equations in non-divergence form

6.1 Strong and classical solutions

Consider in a domain €2 C R™ a non-divergence form operator

n

Lu = Z Q5 (I) 8iju

ij=1

with measurable coefficients a;; € C* (€2). Assume that L is uniformly elliptic with
the ellipticity constant A. Given a function f € L] (), where p > 1, we say that u is
a strong solution of Lu = f in Q if u € W2 () and the equation

S s () B () = 1 (1) (6.1)

2,j=1

is satisfied for almost all z € Q. Here 0;;u is the weak derivative of u that obviously
belongs to L. _(€). Here we consider only strong solutions of the class 2", that is,
p = n. By the Sobolev embedding theorem, we have
WA (@)= C (%),
so that all strong solutions are continuous functions.
Assume now that the coefficients a;; are continuous in 2. Given a function f €
C (), we say that u is a classical solution of Lu = f in Q if u € C?(2) and the
equation (6.1]) is satisfied for all x € Q. Of course, any classical solution is also strong,.
If u is a solution of Lu = 0 (either strong or classical) then we refer to u as an
L-harmonic function.

6.2 Theorem of Krylov-Safonov

The main results of this Chapter are stated in the next two theorems that were proved
by Nikolai Krylov and Michail Safonov in 1980 based on the previous work of Eugene
Landis.

121
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Theorem 6.1 (Estimate of the Holder norm) If w is an L-harmonic function in §)
then w € C* () with some o« = v (n, A) > 0. Moreover, for any compact set K C €2,

[ullga ) < Cllullog (6.2)
where C' = C' (n, A, dist (K, 052)) .

Of course, if u is a classical solution then v € C? () and, hence, u € C* () with
any o« < 1. However, even in this case the estimate (6.2)) of the Holder norm is highly
non-trivial, because o and C' do not depend on a particular solution .

Theorem 6.2 (The Harnack inequality) If u is a non-negative L-harmonic function
m a ball Bog C € then

supu < C'inf u
Bgr Br

where C' = C (n, \).

In this Chapter we will prove restricted versions of Theorems [6.1] and [6.2] assuming
that a;; € C* (2) and that the L-harmonic functions are classical solutions of Lu = 0.
Passage from C* coefficients to the general case can be done by using approximation
techniques that we do not consider here.

6.3 Weak Harnack inequality

From now on we assume that a;; € C*°(2) and that any L-harmonic function u is
classical, that is, belongs to C? (§2). In fact, by Corollary [2.11], we have u € C* (Q).

As in the case of the divergence form operator, we will concentrate on the proof of
the weak Harnack inequality for L-harmonic functions. Then both Theorems and
follow in the same way as for the divergence form case. Hence, our main goal is
the following theorem.

Theorem 6.3 (Weak Harnack inequality for non-divergence form operator) Let u be a
non-negative L-harmonic function in a ball Byg C 2. Choose any a > 0 and consider
the set

E ={u>a}nN Bg.

If, for some 6 > 0,

then
inf u > da,

Br

where § =6 (n, A\, 0) > 0.

We present here the proof devised by E.Landis shortly after Krylov and Safonov
announced the proofs of Theorems [6.1] and [6.2] This proof has advantage that it is in
many ways similar to the proof in the divergence form case.

However, there is a crucial distinction between the two cases. In the present case
of a non-divergence form operator, the proof uses a highly non-trivial theorem of
Alexandrov-Pucci that we state below and that provides an estimate of solution of
the corresponding Dirichlet problem. We precede it by the statement of the existence
result that we also need.
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Theorem 6.4 Let Br C Q2 and f € C*® (FR). Then the classical Dirichlet problem

Lu = f in Br
{ u=0 on 0Bg (6.3)

has a solution u € C* (Bg) N C (Bg) .

Approach to the proof. Rewrite the operator L in the form

Lu = Z@ (a;j0;u) — Z(Z@a,])ﬁu

1]1

= Za (a;;0;u) —|—Zb8u

2,7=1

where
n
bj: E &aij.
=1

Then we need the classical solvability of the Dirichlet problem for the divergence form
operator with lower order terms and with smooth coefficients.
Since L has now a divergence form, we can consider first the weak Dirichlet problem

Lu = f weakly in Bpg,
u € Wol’Q (BR> .

By Theorem , this problem has a solution u € C*° (Bg), that is hence a classical
solution of Lu = f.

We need still to ensure the boundary condition v = 0 in the classical sense. For
the operators without lower order terms b; the corresponding result is contained in
Theorem 4.6, With the terms b; one basically has to repeat all the theory of Holder
regularity (both interior and up to the boundary) and then to arrive to a version of
Theorem for the operator with lower order terms. We skip this part. m

Theo