
VOLUME GROWTH AND ESCAPE RATE OF BROWNIAN
MOTION ON A CARTAN-HADAMARD MANIFOLD

ALEXANDER GRIGOR’YAN AND ELTON P. HSU

Abstract. We prove an upper bound for the escape rate of Brownian motion on
a Cartan-Hadamard manifold in terms of the volume growth function. One of the
ingredients of the proof is the Sobolev inequality on such manifolds.
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1. Introduction

Let M be a geodesically complete noncompact Riemannian manifold. We denote
by d(x, y) the geodesic distance between x and y and by µ the Riemannian volume
measure. We use Px to denote the diffusion measure generated by the Laplace-
Beltrami operator ∆. Let X = {Xt, t ∈ R+} be the coordinate process on the path
space W (M) = C(R+,M). By definition, Px is a probability measure on W (M)
under which X is a Brownian motion starting from x.

Fix a reference point z ∈ M and let ρ(x) = d(x, z). We say that a function R(t)
is an upper rate function for Brownian motion on M if

Pz {ρ(Xt) ≤ R(t) for all sufficiently large t} = 1.

The purpose of this paper is to study the rate of escape of Brownian motion on M in
terms the volume growth function. Let us first point out that the notion of an upper
rate function makes sense only if the lifetime of Brownian motion is infinite. In this
case, the manifold M is called stochastically complete. The stochastic completeness
is equivalent to the identity

∫

M

p (t, x, y) dµ(y) = 1,
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where p(t, x, y) is the minimal heat kernel on M , which is also the transition density
function of Brownian motion on M .

Let B(z,R) be the geodesic ball of radius R centered at z. It was proved in [3]
that M is stochastically complete if

(1.1)

∫ ∞ r dr

log µ (B (z, r))
=∞.

The integral in (1.1) will be used in this paper to construct an upper rate function.
Before we state the result, let us briefly survey the existing estimates of escape rate.

• The classical Khinchin’s law of the iterated logarithm says that for a Brow-
nian motion in Rn with probability 1

lim sup
t→∞

ρ (Xt)√
4t log log t

= 1

(the factor 4 instead of the classical 2 appears because in our setting a Brown-
ian motion is generated by ∆ rather than 1

2
∆). It follows that, for any ε > 0,

(1.2) R (t) =
√

(4 + ε) t log log t

is an upper rate function.
• If M has non-negative Ricci curvature then (1.2) is again an upper rate

function on M – see [9, Theorem 1.3] and [7, Theorem 4.2].
• If the volume growth function is at most polynomial, that is,

µ (B (z, r)) ≤ CrD

for large enough r and for some positive constants C,D then the function

(1.3) R (t) = const
√
t log t

is an upper rate function – see [15, Theorem 5.1], [7, Theorem 1.1], and [9,
Theorem 1.1]. Note that the logarithm in (1.3) is single in contrast to (1.2),
and in general cannot be replaced by the iterated logarithm (cf. [1] and [10]).
• If the volume growth function admits a sub-Gaussian exponential estimate

µ (B (z, r)) ≤ exp (Crα) ,

where 0 < α < 2, then the function

R (t) = constt
1

2−α

is an upper rate function – see [7, Theorem 4.1].

Note that (1.1) is satisfied if the volume growth function admits the Gaussian
exponential estimate:

(1.4) µ (B (z, r)) ≤ exp
(
Cr2

)

(under the condition (1.4), the stochastic completeness was also proved by different
methods in [15], [12], and [2]. However, none of the existing results provided any
estimates of escape rate under the condition (1.4), let alone under the volume growth
function exp (Cr2 log r) and the like.

We will construct an upper rate function under the most general condition (1.1).
However, we assume in addition that M is a Cartan-Hadamard manifold, that is,



ESCAPE RATE OF BROWNIAN MOTION 3

a geodesically complete simply connected Riemannian manifold of non-positive sec-
tional curvature. The property of Cartan-Hadamard manifolds that we use is the
Sobolev inequality: if N = dimM then, for any function f ∈ C∞0 (M),

(1.5)

(∫

M

|f |
N
N−1 dµ

)N−1
N

≤ CN

∫

M

|∇f | dµ,

where CN is a constant depending only on N – see [11]. The Sobolev inequality
allows us to carry through the Moser iteration argument in [14] and prove a mean
value estimate for solutions of the heat equation on M , which is one of the ingredients
of our proof.

Now we state our main result.

Theorem 1. Let M be a Cartan-Hadamard manifold. Assume that the following
volume estimate holds for a fixed point z ∈M and all sufficiently large large R:

(1.6) µ (B (z,R)) ≤ exp (f (R)) ,

where f(R) is a positive, strictly increasing, and continuous function on [0,+∞)
such that

(1.7)

∫ ∞ r dr

f (r)
=∞.

Let φ(t) be the function on R+ defined by

(1.8) t =

∫ φ(t)

0

r dr

f (r)
.

Then R(t) = φ(C t) is an upper rate function for Brownian motion on M for some
absolute constant C (for example, for any C > 128).

If we set f (R) = log µ (B (z,R)) for large R then the condition (1.7) becomes
identical to (1.1). Under this condition, Theorem 1 guarantees the existence of an
upper rate function R (t). This in particular means that in a finite time Brow-
nian motion stays with probability one in a bounded set, which implies that the
life time of Brownian motion is infinite almost surely. Hence, the manifold M is
stochastically complete. This recovers the cited above result that (1.1) on geodesi-
cally complete manifolds implies the stochastic completeness, although under the
additional assumption that M is Cartan-Hadamard.

Let us show some examples.

• If

(1.9) µ (B (z,R)) ≤ CRD

for some constant C and D then (1.6) holds with

f (R) = D logR + const,

and (1.8) yields

t '
φ2

2D log φ
.

It follows that log t ' log φ2 and

φ (t) '
√
Dt log t.
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Hence, the following function

R(t) =
√
CDt log t

is a upper rate function, which matches the above cited results of [7], [9],
[15].
• If µ (B (z,R)) ≤ exp (Crα) for some 0 < α < 2 then (1.6) holds with f (R) =
Crα, and (1.8) yields t ' φ (t)2−α whence we obtain the upper rate function

R (t) = Ct
1

2−a ,

which matches the above cited result of [7].
• If

µ (B (z,R)) ≤ exp
(
CR2

)
,

then f (R) = CR2. Then (1.8) yields t ' lnφ (t). Hence, we obtain the
upper rate function

R (t) = exp (Ct) .

This result is new. Similarly, if

µ (B (z,R)) ≤ exp
(
CR2 logR

)

then (1.8) yields t ' log log φ whence

R (t) = exp (exp (Ct)) .

The hypothesis that M is Cartan-Hadamard can be replaced by the requirement
that the Sobolev inequality (1.5) holds on M . Furthermore, the method goes through
also in the setting of weighted manifolds, when measure µ is not necessarily the
Riemannian measure but has a smooth positive density, say σ (x), with respect
to the Riemannian measure. Then instead of the Laplace-Beltrami operator, one
should consider the weighted Laplace operator

∆µ =
1

σ
div (σ∇) ,

which is symmetric with respect to µ. Theorem 1 extends to the weighted manifolds
that are geodesically complete and satisfy the Sobolev inequality (1.5).

This paper is organized as follows. Section 2 contains the proof of an upper bound
for certain positive solutions of the heat equation. In Section 3 we prove the main
result stated above. In Section 4 we compute the sharp upper rate function on
model manifold and show that, for a certain range of volume growth functions, the
upper rate function of Theorem 1 is sharp up to a constant factor in front of t.

2. Heat equation solution estimates

In this section we prove a pointwise upper bound of certain solutions of the heat
equation on a Cartan-Hadamard manifold M (Theorem 4). It is an easy consequence
of an L2-bound for a general complete manifold and a mean value type inequality
for a Cartan-Hadamard manifold. These two upper bounds are known and we will
state them as lemmas.

For any set A ⊂M , let Ar be the open r-neighborhood of A in M .
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Lemma 2. Let M be a geodesically complete Riemannian manifold. Suppose that
u(x, t) is a smooth subsolution to the heat equation in the cylinder Ar× [0, T ], where
A ⊂M is a compact set and r, T > 0 (see Fig. 1). Assume also that 0 ≤ u(x, t) ≤ 1
and u(x, 0) = 0 on Ar. Then, for any t ∈ (0, T ],

∫

A

u2(x, t)dµ(x) ≤ µ(Ar) max

(

1,
r2

2t

)

exp

(

−
r2

2t
+ 1

)

.

A u=0Ar

t Ax{ t}

T

Figure 1. Illustration to Lemma 2

For the proof see [6, Theorem 3] (cf. also [7, Proposition 3.6]). Note that no
geometric assumption about M is made except for the geodesic completeness. The
proof exploits essentially the property of the geodesic distance function that |∇d| ≤
1.

Takeda [15] proved a similar estimate for

∫

A

u (x, t) dµ (x), using a different prob-

abilistic argument. However, it is more convenient for us to work with the L2 rather
than with L1 estimate in view of the following lemma.

Lemma 3. Let M be a Cartan-Hadamard manifold of dimension N . Suppose
that u(x, t) is a smooth nonnegative subsolution to the heat equation in a cylinder
B(y, r)× [0, T ], where r, T > 0 (see Fig. 2). Then

(2.1) u(y, T )2 ≤
CN

min
(√

T , r
)N+2

∫ T

0

∫

B(y,r)

u2 (x, t) dµ (x) dt,

where CN is a constant depending only on N .

Proof. As was already mentioned above, a Cartan-Hadamard manifold admits the
Sobolev inequality (1.5). By a standard argument, (1.5) implies the Sobolev-Moser
inequality

∫

M

|f |2+ 4
N dµ ≤ CN

(∫

M

|f |2 dµ

)2/N ∫

M

|∇f |2 dµ,

which leads by the Moser iteration argument [14] to the mean value inequality (2.1).
Note that the value of CN may be different in all the above inequalities.
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B(y,r)

T

0 y

(y,T)

Figure 2. Illustration to Lemma 3

An alternative proof of the implication (1.5)⇒(2.1) can be found in [4] (cf. also [5,
Theorem 3.1 and (3.4)]). �

With these two preliminary results, we prove the main inequality in this section.
This inequality will give an upper bound for probabilities of escaping times not
exceeding a given upper bound.

Theorem 4. Let M be a Cartan-Hadamard manifold of dimension N . Suppose that
u(x, t) is a smooth subsolution to the heat equation in a cylinder B(y, 2r) × [0, T ],
where r, T > 0. If 0 ≤ u ≤ 1 in this cylinder and u(x, 0) = 0 on B(y, 2r), then

(2.2) u (y, T ) ≤ CN
√
µ (B (y, 2r))

max
(√

T , r
)

min
(√

T , r
)1+N/2

exp

(

−
r2

4T

)

.

Proof. We use Lemma 2 with A = B (y, r). Then Ar = B (y, 2r) and, for any
0 < t ≤ T ,

∫

B(y,r)

u2 (x, t) dµ (x) ≤ µ (B (y, 2r)) max

(

1,
r2

2t

)

exp

(

−
r2

2t
+ 1

)

(see Fig. 3), whence
∫ T

T/2

∫

B(y,r)

u2 (x, t) dµ (x) dt

≤ 2µ (B (y, 2r))T max

(

1,
r2

T

)

exp

(

−
r2

2T

)

.

Applying Lemma 3 in the cylinder B (y, r)× [T/2, T ], we obtain

u (y, T )2 ≤ CNµ (B (y, 2r))
max (T, r2)

min
(√

T , r
)N+2

exp

(

−
r2

2T

)

,

whence (2.2) follows. �
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T

0

t

(y,T)

B(y,2r)B(y,r)

T/2

Figure 3. Illustration to the proof of Theorem 4

3. Escape rate of Brownian motion

We first explain the main idea of the proof. For any open set Ω ⊂ M , denote by
τΩ the first exit time from Ω, that is,

τΩ = inf {t > 0 : Xt 6∈ Ω} .

Recall that B(x, r) denotes the geodesic ball of radius r centered at x. Fix a reference
point z ∈M and set ρ (x) = d (x, z) .

Let {Rn}
∞
n=1 be a sequence of strictly increasing radii to be fixed later such that

limn→∞Rn =∞ and consider the following sequence of stopping times

τn = τB(z,Rn).

Then τn − τn−1 is the amount of time the Brownian motion Xt takes to cross from
∂B (z,Rn−1) to ∂B (z,Rn) for the first time (if n = 0 then set R0 = 0 and τ 0 = 0).
Let {cn}

∞
n=1 be a sequence of positive numbers to be fixed later. Suppose that we

can show that

(3.1)
∞∑

n=1

Pz {τn − τn−1 ≤ cn} <∞.

Then, by the Borel-Cantelli lemma, with Pz-probability 1 we have

(3.2) τn − τn−1 > cn, for all large enough n.

For any n ≥ 1, set

Tn =
n∑

k=1

ck.

It follows from (3.2) that, for all sufficiently large n,

τn > Tn − T0,

where T0 is a large enough (random) number. In other words, we have the implication

(3.3) t ≤ Tn − T0 ⇒ ρ(Xt) ≤ Rn, if n is large enough.
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Let ψ be an increasing bijection of R+ onto itself such that

(3.4) Tn−1 − ψ (Rn)→ +∞ as n→∞.

We claim that ψ−1 is an upper rate function. Indeed, for large enough t, choose n
such that

Tn−1 − T0 < t ≤ Tn − T0.

If t is large enough then also n is large enough so that by (3.3)

ρ (Xt) ≤ Rn

and by (3.4)

Tn−1 − ψ (Rn) > T0.

It follows that

t > Tn−1 − T0 > ψ (Rn) ,

whence

ρ (Xt) ≤ Rn < ψ−1 (t) ,

which proves that ψ−1 is an upper rate function.
Now let us find cn such that (3.1) is true. By the strong Markov property of

Brownian motion we have

(3.5) Pz {τn − τn−1 ≤ cn} = EzPXτn−1
{τn ≤ cn} .

Note that Xτn−1 ∈ ∂B (z,Rn−1). If a Brownian motion starts from a point y ∈
∂B(z,Rn−1), then it has to travel no less than distance

rn = Rn −Rn−1

before it reaches ∂B(z,Rn) (see Fig. 4), hence

Py {τn ≤ cn} ≤ Py
{
τB(y,rn) ≤ cn

}
, y ∈ ∂B(z,Rn−1).

B(z,Rn-1)

z

B(z,Rn)

y=Xτn-1

Xτn

B(y,rn)

XτB(y,rn)

Figure 4. Brownian motion Xt exits the ball B (y, rn) before B (z,Rn)
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From the above inequality and (3.5) we obtain

(3.6) Pz {τn − τn−1 ≤ cn} ≤ sup
y∈∂B(z,Rn−1)

Py
{
τB(y,rn) ≤ cn

}
.

For a fixed y ∈ ∂B (z,Rn−1), consider the function

u(x, t) = Px
{
τB(y,r) ≤ t

}
.

Clearly, u (x, t) is the solution of the heat equation in the cylinder B(y, r) × R+.
Furthermore, 0 ≤ u ≤ 1 and

u(x, 0) = 0 for x ∈ B(y, r).

The probability we wanted to estimate is the value of the solution at the center of
the ball:

Py
{
τB(y,rn) ≤ cn

}
= u(y, cn).

Applying the estimate (2.2) of Theorem 4 in the cylinder B (y, rn)×[0, cn] and noting
that B (y, rn) ⊂ B (z,Rn) so that

µ (B (y, rn)) ≤ exp (f (Rn)) ,

we obtain

(3.7) u (y, cn) ≤ CN exp (f (Rn) /2)
max

(√
cn, rn

)

min
(√

cn, rn
)1+N/2

exp

(

−
r2
n

16cn

)

.

Now we choose cn to satisfy the identity

r2
n

16cn
= f (Rn)

that is,

cn =
1

16

r2
n

f(Rn)
.

Noticing that cn < r2
n for large enough n, we obtain from (3.7)

Py
{
τB(y,rn) ≤ cn

}
≤ CN

rn
√
cn

1+N/2
exp (−f (Rn) /2) .

= CNr
−N/2
n f (Rn)

2+N
4 exp (−f (Rn) /2)

≤ CNr
−N/2
n .

Set now Rn = 2n so that rn = 2n−1. The above estimate together with (3.6) obviously
implies

∞∑

n=1

Pz {τn − τn−1 ≤ cn} ≤ CN

∞∑

n=1

r−N/2n <∞,

that is (3.1).
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Knowing the sequences {Rn} and {cn} , we can now determine a function ψ that
satisfies (3.4). Indeed, we have

Tn = c1 + ...+ cn

=
1

16

n∑

k=1

r2
k

f(Rk)

=
1

128

n∑

k=1

Rk+1(Rk+1 −Rk)

f(Rk)

≥
1

128

n∑

k=1

∫ Rk+1

Rk

rdr

f (r)

=
1

128

∫ Rn+1

R1

rdr

f (r)
.

Setting

ψ (r) = c

∫ r

0

rdr

f (r)
,

where c < 1
128
, and using (1.7), we obtain that

Tn − ψ (Rn+1)→∞ as n→∞,

which is equivalent to (3.4). Therefore, ψ−1 is an upper rate function. Clearly,
ψ−1 (t) = φ (Ct) where φ is defined by (1.8) and C = c−1, which finishes the proof
of our main result Theorem 1.

4. Escape rate on model manifolds

In this section we compute sharp upper rate function on model manifolds and
compare it to the one from Theorem 1. We first illustrate the method in a simple
case when M is a hyperbolic space.

4.1. Constant curvature. Let M be the hyperbolic space HN
K of dimension N ≥ 2

and of the constant sectional curvature −K2, where K > 0. Then µ(B(z, r)) ≤
Ce(N−1)Kr so that we can take f(r) = (N − 1)Kr. Theorem 1 yields the following
upper rate function

R(t) = CK (N − 1) t.

In this case a sharp upper rate function can be computed as follows. The radial
process rt = ρ(Xt) satisfies the identity (see [13])

rt =
√

2Wt + (N − 1)

∫ t

0

K cothKrs ds,

where Wt is a one-dimensional Brownian motion. We have

rt →∞ and
Wt

t
→ 0

as t→∞, whence
rt

t
→ (N − 1)K.
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Hence, a sharp upper rate function is

R (t) = (1 + ε)K (N − 1) t,

where ε > 0.

4.2. General model manifolds. Here M is not necessarily Cartan-Hadamard, but
we do assume that M has a pole z, that is, the exponential map exp : TzM → M
is a diffeomorphism. Then the polar coordinates (ρ, θ) are defined on M \ {z}. The
manifold M is said to be a model if the Riemannian metric of M is spherically
symmetric, that is, has the form

(4.1) ds2 = dr2 + h (r)2
dθ2,

where h (r) is a smooth positive function of r > 0 and dθ2 is the canonical metric on
SN−1 (note that θ varies in SN−1). For example, RN is a model with h (r) = r and
the hyperbolic space HN

K is a model with h (r) = K−1 sinhKr. The volume growth
function of the metric (4.1) is

V (r) := µ (B (z, r)) = ωN

∫ r

0

h (s)N−1
ds,

where ωN is the (N − 1)-volume of the unit sphere SN−1. The Laplace operator of
the metric (4.1) is represented in the polar coordinates as follows:

∆ =
∂2

∂r2
+m (r)

∂

∂r
+

1

h2 (r)
∆Sn−1 ,

where ∆Sn−1 is the Laplacian in the variable θ with respect to the canonical metric
of SN−1 and

m (r) := (N − 1)
h′

h
=
V ′′

V ′
.

The function m (r) plays an important role in what follows. Clearly, m satisfies the
identity

(4.2) V ′ (r) = V ′ (r0) exp

(∫ r

r0

m (s) ds

)

for all r > r0 > 0. We assume in the sequel that

(4.3) m (r) > 0 and m′ (r) ≥ 0 for large enough r

and

(4.4)

∫ ∞ dr

m (r)
=∞.

For example, we have m (r) = N−1
r

in RN and m (r) = (N − 1)K cothKr in HN
K . In

neither case is the hypothesis (4.3) satisfied. On the other hand, if V ′ (r) = exp (rα)
then m (r) = αrα−1, and both (4.3) and (4.4) are satisfied provided 1 ≤ α ≤ 2. If
V ′ (r) = exp

(
r2 logβ r

)
then (4.3) and (4.4) hold for all 0 ≤ β ≤ 1.
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We claim that under the condition (4.3) Brownian motion on M is transient, and
under the conditions (4.3)-(4.4) M is stochastically complete. We use the following
well-known results (cf. [8]) that for model manifolds the recurrence is equivalent to

(4.5)

∫ ∞ dr

V ′ (r)
=∞,

and the stochastic completeness is equivalent to

(4.6)

∫ ∞ V (r)

V ′ (r)
dr =∞.

Clearly, (4.3) implies that m (r) ≥ c for some positive constant c and for all large
enough r. It follows from (4.2) that V ′ (r) grows at least exponentially as r → ∞,
which implies (4.5). To prove (4.6), observe that, for large enough r > r0 we have

V (r)− V (r0) =

∫ r

r0

V ′ (s) ds =

∫ r

r0

V ′′ (s)

m (s)
ds

≥
1

m (r)

∫ r

r0

V ′′ (s) ds =
1

m (r)
(V ′ (r)− V (r0)) ,

whence
1

m (r)
≤

V (r)− V (r0)

V ′ (r)− V ′ (r0)
∼

V (r)

V ′ (r)
as r →∞.

Hence, (4.6) follows from (4.4).
Let us define the function r (t) by the identity

(4.7) t =

∫ r(t)

0

ds

m (s)
.

Our main result in this section is as follows.

Theorem 5. Under the above assumptions, the function r ((1 + ε) t) is the upper
rate function for Brownian motion on M for any ε > 0, and is not for any ε < 0.

Let us compare the function r (t) with the upper rate function R (t) given by
Theorem 1, which is defined by the identity

∫ R(t)

0

rdr

log V (r)
= Ct.

For “nice” functions V (r), one has

(4.8)
V ′′

V ′
'
V ′

V
= (log V )′ '

log V (r)

r
,

which means that the functions r (t) and R (t) are comparable up to a constant
multiple in front of t. For example, (4.8) holds for functions like V (r) = exp (rα) and
V (t) = exp

(
rα logβ r

)
, where α > 0, etc. On the other hand, it is easy to construct

an example of V (r) when r (t) may be significantly less that R (t) , because one can
modify a “nice” function V (r) to make the second derivative V ′′ (r) very small in
some intervals without affecting too much the values of V ′ and V . Then the function
r (t) in (4.7) will drop significantly, while R (t) will not change very much.
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Proof of Theorem 5. By the Ito decomposition, the radial process rt = ρ (Xt) satis-
fies the identity

(4.9) rt =
√

2Wt +

∫ t

0

m (rs) ds,

where Wt is a one-dimensional Brownian motion (see [13]). Since the process Xt is
transient, rt →∞ as t→∞ with probability 1. Hence, m (rt) ≥ c for large enough
t so that the second term in the right hand side of (4.9) grows at least linearly in t.
Since Wt = o (t) as t→∞, we have with probability 1,

(4.10) rt ∼
∫ t

0

m (rs) ds as t→∞.

Consider the function

u (t) =

∫ t

0

m (rs) ds

It follows from (4.10) that, for any C > 1 and for large enough t,

(4.11) rt ≤ Cu (t)

whence by the monotonicity of m,

m (rt) ≤ m (Cu (t)) .

Since du
dt

(t) = m (rt), we obtain the differential inequality for u (t):

du

dt
≤ m (Cu (t)) .

Solving it by separation of variables, we obtain, for large enough t0 and for all t > t0,
∫ Cu(t)

Cu(t0)

dξ

m (ξ)
≤ C (t− t0) ,

whence

(4.12)

∫ Cu(t)

0

dξ

m (ξ)
≤ Ct+ C0,

where C0 is a large enough (random) constant. Comparing (4.12) with (4.7) and
using again (4.11), we obtain

rt ≤ Cu (t) ≤ r (Ct+ C0) ≤ r
(
C2t
)

for large enough r with probability 1. Since C > 1 was arbitrary, this proves that
r ((1 + ε) t) is an upper rate function for any ε > 0. In the same way one proves that
rt ≥ r (C−2t) for large enough t so that r ((1− ε) t) is not an upper rate function. �
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