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Abstract

The purpose of this note is to give elementary (accessible to 1st year stu-

dents) proofs of three formulas mentioned in the title.

1 Wallis product

Theorem 1 We have for  ∈ N

(2!)
2

(2)!
∼ √ as →∞ (1)

An equivalent formulation:

lim
→∞

(2 · 4 ·  · 2)2
(3 · 5 ·  · (2 − 1))2 (2 + 1) =



2
(2)

Proof. Set for all  ∈ Z+
 =

Z 

0

sin  

We prove the following properties of 

() −1 ≥   0 Since for 0     we have 0  sin ≤ 1, it follows that

0  sin  ≤ sin−1 

which implies 0   ≤ −1.
() 0 =  and 1 = 2. Indeed, we have

0 =

Z 

0

 =  and 1 =

Z 

0

sin  = − [cos]0 = 2

1



()  =
−1

−2 for  ≥ 2, which is proved by integrations by parts:

 =

Z 

0

sin   = −
Z 

0

sin−1  cos

= − £sin−1  cos¤
0
+

Z 

0

cos sin−1 

= (− 1)
Z 

0

cos2  sin−2  

= (− 1)
Z 

0

¡
1− sin2 ¢ sin−2  

= (− 1) (−2 − ) 

whence  =
−1

−2 follows.

() lim→∞ 
−1

= 1 It follows from () and (), that

− 1


=


−2
≤ 

−1
≤ 1

Since −1

→ 1, we obtain that 

−1
→ 1 as →∞.

() For any  ∈ Z+

2+1 = 2
2 · 4 ·  · (2)

3 · 5 ·  · (2 + 1) and 2 = 
1 · 3 ·  · (2 − 1)
2 · 4 ·  · (2) 

Induction in . For  = 0 these identities are satisfied by ().

Induction step from  − 1 to . Assuming that

2−1 = 2
2 · 4 ·  · (2 − 2)
3 · 5 ·  · (2 − 1) 

we obtain by ()

2+1 =
2

2 + 1
2−1 = 2

2 · 4 ·  · (2 − 2) · (2)
3 · 5 ·  · (2 − 1) · (2 + 1) 

The second identity for 2 is proved similarly.

() −1 = 2

 It follows from (), that

22+1 = 
1 · 3 ·  · (2 − 1)
2 · 4 ·  · (2) · 2 2 · 4 ·  · (2)

3 · 5 ·  · (2 + 1) =
2

2 + 1


which proves −1 = 2

for  = 2 + 1. For the case  = 2 we have similarly

2−12 = 2
2 · 4 ·  · (2 − 2)
3 · 5 ·  · (2 − 1) · 

1 · 3 ·  · (2 − 1)
2 · 4 ·  · (2) =

2

2


()  ∼
q

2

 It follows from (), that

2 = −1


−1
=
2





−1


2



whence
2
2

=


−1
→ 1

and 2 ∼ 2

. It follows that

 =

Z 

0

sin  ∼
r
2


 (3)

Finally, let us prove (1). For  = 2 + 1 we have by ()

2
2 · 4 ·  · (2)

3 · 5 ·  · (2 + 1) ∼
r

2

2 + 1


whence
2 · 4 ·  · (2)

3 · 5 ·  · (2 − 1) ∼
r



2
(2 + 1) ∼

√


The left hand side is equal to

(2 · 4 ·  · (2))2
3 · 5 ·  · (2 − 1) · 2 · 4 ·  · 2 =

¡
2!

¢2
(2)!

whence (1) follows.

2 Stirling formula

Theorem 2 We have for  ∈ N

! ∼
√
2

³


´
as →∞ (4)

Proof. The asymptotic identity (4) is equivalent to

√
2

¡



¢
!

→ 1 as →∞

which is equivalent to

ln

√
2

¡



¢
!

→ 0 as →∞

that is µ
1

2
ln+  ln





¶
− (ln 1 + ln 2 + + ln)→ ln

1√
2

as →∞

We first prove that

lim
→∞

µ
 ln




−
µ
ln 2 + ln 3 + + ln (− 1) + 1

2
ln

¶¶
(5)

exists and is finite, and then we compute the value of the limit.

Consider the function  () on [1∞) defined by the following conditions:
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1.  () = ln for all  ∈ N
2. for  ∈ [ + 1],  () is a linear function.
By the concavity of ln, we see that

 () ≤ ln for all  ≥ 1
It follows that

 :=

Z 

1

(ln−  ())   ∈ N,
is a non-negative monotone increasing sequence. We haveZ 

1

ln  =  ln− + 1 =  ln



+ 1

and Z 

1

 ()  =

−1X
=1

Z +1



 ()  =

−1X
=1

 () +  ( + 1)

2

= ln 2 + + ln (− 1) + 1
2
ln 

Hence, we obtain

 =  ln



+ 1−

µ
ln 2 + + ln (− 1) + 1

2
ln

¶


Hence, the existence of the limit (5) is equivalent to existence of the limit lim→∞ 

Since {} is increasing, the limit does exist but we need still to show that it is finite.
For that write

 =

−1X
=1

Z +1



(ln−  ()) 

≤
∞X
=1

Z +1



(ln−  ()) 

=

∞X
=1

µ
( + 1) ln

 + 1


−  ln




− ln  + ln ( + 1)

2

¶
=

∞X
=1

µ
( + 1) ln ( + 1)−  ln  − 1

2
ln  − 1

2
ln ( + 1)− 1

¶
=

∞X
=1

µµ
 +

1

2

¶
(ln ( + 1)− ln )− 1

¶
=

∞X
=1

µµ
 +

1

2

¶
ln

µ
1 +

1



¶
− 1
¶


Expanding ln
¡
1 + 1



¢
in Taylor series, we have

ln

µ
1 +

1



¶
=
1


− 1

22
+

1

33
+ 

µ
1

3

¶
as  →∞

4



whenceµ
 +

1

2

¶
ln

µ
1 +

1



¶
− 1 =

µ
 +

1

2

¶µ
1


− 1

22
+

1

33
+ 

µ
1

3

¶¶
− 1

=

µ
1− 1

2
+

1

32

¶
+

µ
1

2
− 1

42

¶
− 1 + 

µ
1

2

¶
=

1

122
+ 

µ
1

2

¶
∼ 1

122
as  →∞

Hence, the series
∞X
=1

µµ
 +

1

2

¶
ln

µ
1 +

1



¶
− 1
¶

is convergent as it is equivalent to the convergent series
P

1
2
. It follows that the

sequence {} is bounded and, hence, lim  exists and is finite.

Consequently, the limit (5) exists. It follows that also the following limit exists

lim
→∞

√

¡



¢
!

and is a positive number. That is, for some constant   0,

! ∼ 
√

³


´
 (6)

To determine , compute

(2!)
2

(2)!
∼
¡
2
√

¡



¢¢2

√
2
¡
2


¢2 =
2222−2


√
2 222−2

= 

r


2


By Theorem 1 we conclude



r


2
∼ √

whence  =
√
2 Substituting  into (6), we obtain (4).

3 Gauss integral

Theorem 3 We have Z ∞

−∞
−

2

 =
√


Proof. Consider for any  ∈ N the function

 () =
1¡

1 + 2



¢ 

5



It is known that the sequence
n³
1 + 2



´o
∈N

is monotone increasing and converges

to 
2

 Hence, the sequence { ()} is monotone decreasing and converges to −2 
Since

 () ≤ 1 () =
1

1 + 2

and 1 is integrable on R, we obtain by the dominated convergence theorem thatZ ∞

−∞
 () →

Z ∞

−∞
−

2

 (7)

On the other hand,Z ∞

−∞
 ()  =

Z ∞

−∞

¡
1 + 2



¢ = √Z ∞

−∞



(1 + 2)
 

The change  = cot ,  ∈ (0 ) yieldsZ ∞

−∞
 ()  =

√


Z 

0



sin2 
¡
1 + cos2 

sin2 

¢ = √Z 

0

sin2−2 

By (3), we have Z 

0

sin2−2  ∼
r

2

2− 2 ∼
r




as →∞,

which implies Z ∞

−∞
 () →

√


which together with (7) finishes the proof.
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