Stirling formula and Gauss integral by using Wallis product

Alexander Grigor'yan
University of Bielefeld

October 31, 2014

Abstract

The purpose of this note is to give elementary (accessible to 1st year students) proofs of three formulas mentioned in the title.

1 Wallis product

Theorem 1 We have for $n \in \mathbb{N}$

$$
\begin{equation*}
\frac{\left(2^{n} n!\right)^{2}}{(2 n)!} \sim \sqrt{\pi n} \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

An equivalent formulation:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{(2 \cdot 4 \cdot \ldots \cdot 2 k)^{2}}{(3 \cdot 5 \cdot \ldots \cdot(2 k-1))^{2}(2 k+1)}=\frac{\pi}{2} \tag{2}
\end{equation*}
$$

Proof. Set for all $n \in \mathbb{Z}_{+}$

$$
I_{n}=\int_{0}^{\pi} \sin ^{n} x d x
$$

We prove the following properties of I_{n}.
(a) $I_{n-1} \geq I_{n}>0$. Since for $0<x<\pi$ we have $0<\sin x \leq 1$, it follows that

$$
0<\sin ^{n} x \leq \sin ^{n-1} x,
$$

which implies $0<I_{n} \leq I_{n-1}$.
(b) $I_{0}=\pi$ and $I_{1}=2$. Indeed, we have

$$
I_{0}=\int_{0}^{\pi} d x=\pi \text { and } I_{1}=\int_{0}^{\pi} \sin x d x=-[\cos x]_{0}^{\pi}=2 .
$$

(c) $I_{n}=\frac{n-1}{n} I_{n-2}$ for $n \geq 2$, which is proved by integrations by parts:

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi} \sin ^{n} x d x=-\int_{0}^{\pi} \sin ^{n-1} x d \cos x \\
& =-\left[\sin ^{n-1} x \cos x\right]_{0}^{\pi}+\int_{0}^{\pi} \cos x d \sin ^{n-1} x \\
& =(n-1) \int_{0}^{\pi} \cos ^{2} x \sin ^{n-2} x d x \\
& =(n-1) \int_{0}^{\pi}\left(1-\sin ^{2} x\right) \sin ^{n-2} x d x \\
& =(n-1)\left(I_{n-2}-I_{n}\right)
\end{aligned}
$$

whence $I_{n}=\frac{n-1}{n} I_{n-2}$ follows.
(d) $\lim _{n \rightarrow \infty} \frac{I_{n}}{I_{n-1}}=1$. It follows from (c) and (a), that

$$
\frac{n-1}{n}=\frac{I_{n}}{I_{n-2}} \leq \frac{I_{n}}{I_{n-1}} \leq 1 .
$$

Since $\frac{n-1}{n} \rightarrow 1$, we obtain that $\frac{I_{n}}{I_{n-1}} \rightarrow 1$ as $n \rightarrow \infty$.
(e) For any $k \in \mathbb{Z}_{+}$

$$
I_{2 k+1}=2 \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{3 \cdot 5 \cdot \ldots \cdot(2 k+1)} \text { and } I_{2 k}=\pi \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1)}{2 \cdot 4 \cdot \ldots \cdot(2 k)} .
$$

Induction in k. For $k=0$ these identities are satisfied by (b).
Induction step from $k-1$ to k. Assuming that

$$
I_{2 k-1}=2 \frac{2 \cdot 4 \cdot \ldots \cdot(2 k-2)}{3 \cdot 5 \cdot \ldots \cdot(2 k-1)}
$$

we obtain by (c)

$$
I_{2 k+1}=\frac{2 k}{2 k+1} I_{2 k-1}=2 \frac{2 \cdot 4 \cdot \ldots \cdot(2 k-2) \cdot(2 k)}{3 \cdot 5 \cdot \ldots \cdot(2 k-1) \cdot(2 k+1)} .
$$

The second identity for $I_{2 k}$ is proved similarly.
(f) $I_{n-1} I_{n}=\frac{2 \pi}{n}$. It follows from (e), that

$$
I_{2 k} I_{2 k+1}=\pi \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1)}{2 \cdot 4 \cdot \ldots \cdot(2 k)} \cdot 2 \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{3 \cdot 5 \cdot \ldots \cdot(2 k+1)}=\frac{2 \pi}{2 k+1}
$$

which proves $I_{n-1} I_{n}=\frac{2 \pi}{n}$ for $n=2 k+1$. For the case $n=2 k$ we have similarly

$$
I_{2 k-1} I_{2 k}=2 \frac{2 \cdot 4 \cdot \ldots \cdot(2 k-2)}{3 \cdot 5 \cdot \ldots \cdot(2 k-1)} \cdot \pi \frac{1 \cdot 3 \cdot \ldots \cdot(2 k-1)}{2 \cdot 4 \cdot \ldots \cdot(2 k)}=\frac{2 \pi}{2 k} .
$$

(g) $\quad I_{n} \sim \sqrt{\frac{2 \pi}{n}}$. It follows from (f), that

$$
I_{n}^{2}=I_{n} I_{n-1} \frac{I_{n}}{I_{n-1}}=\frac{2 \pi}{n} \frac{I_{n}}{I_{n-1}}
$$

whence

$$
\frac{I_{n}^{2}}{2 \pi / n}=\frac{I_{n}}{I_{n-1}} \rightarrow 1
$$

and $I_{n}^{2} \sim \frac{2 \pi}{n}$. It follows that

$$
\begin{equation*}
I_{n}=\int_{0}^{\pi} \sin ^{n} x d x \sim \sqrt{\frac{2 \pi}{n}} . \tag{3}
\end{equation*}
$$

Finally, let us prove (1). For $n=2 k+1$ we have by (g)

$$
2 \frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{3 \cdot 5 \cdot \ldots \cdot(2 k+1)} \sim \sqrt{\frac{2 \pi}{2 k+1}},
$$

whence

$$
\frac{2 \cdot 4 \cdot \ldots \cdot(2 k)}{3 \cdot 5 \cdot \ldots \cdot(2 k-1)} \sim \sqrt{\frac{\pi}{2}(2 k+1)} \sim \sqrt{\pi k} .
$$

The left hand side is equal to

$$
\frac{(2 \cdot 4 \cdot \ldots \cdot(2 k))^{2}}{3 \cdot 5 \cdot \ldots \cdot(2 k-1) \cdot 2 \cdot 4 \cdot \ldots \cdot 2 k}=\frac{\left(2^{k} k!\right)^{2}}{(2 k)!}
$$

whence (1) follows.

2 Stirling formula

Theorem 2 We have for $n \in \mathbb{N}$

$$
\begin{equation*}
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \quad \text { as } \quad n \rightarrow \infty \tag{4}
\end{equation*}
$$

Proof. The asymptotic identity (4) is equivalent to

$$
\frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!} \rightarrow 1 \text { as } n \rightarrow \infty
$$

which is equivalent to

$$
\ln \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!} \rightarrow 0 \text { as } n \rightarrow \infty
$$

that is

$$
\left(\frac{1}{2} \ln n+n \ln \frac{n}{e}\right)-(\ln 1+\ln 2+\ldots+\ln n) \rightarrow \ln \frac{1}{\sqrt{2 \pi}} \text { as } n \rightarrow \infty .
$$

We first prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(n \ln \frac{n}{e}-\left(\ln 2+\ln 3+\ldots+\ln (n-1)+\frac{1}{2} \ln n\right)\right) \tag{5}
\end{equation*}
$$

exists and is finite, and then we compute the value of the limit.
Consider the function $f(x)$ on $[1, \infty)$ defined by the following conditions:

1. $f(n)=\ln n$ for all $n \in \mathbb{N}$
2. for $x \in[n, n+1], f(x)$ is a linear function.

By the concavity of $\ln x$, we see that

$$
f(x) \leq \ln x \text { for all } x \geq 1
$$

It follows that

$$
a_{n}:=\int_{1}^{n}(\ln x-f(x)) d x, \quad n \in \mathbb{N},
$$

is a non-negative monotone increasing sequence. We have

$$
\int_{1}^{n} \ln x d x=n \ln n-n+1=n \ln \frac{n}{e}+1
$$

and

$$
\begin{aligned}
\int_{1}^{n} f(x) d x & =\sum_{k=1}^{n-1} \int_{k}^{k+1} f(x) d x=\sum_{k=1}^{n-1} \frac{f(k)+f(k+1)}{2} \\
& =\ln 2+\ldots+\ln (n-1)+\frac{1}{2} \ln n
\end{aligned}
$$

Hence, we obtain

$$
a_{n}=n \ln \frac{n}{e}+1-\left(\ln 2+\ldots+\ln (n-1)+\frac{1}{2} \ln n\right) .
$$

Hence, the existence of the limit (5) is equivalent to existence of the limit $\lim _{n \rightarrow \infty} a_{n}$. Since $\left\{a_{n}\right\}$ is increasing, the limit does exist but we need still to show that it is finite. For that write

$$
\begin{aligned}
a_{n} & =\sum_{k=1}^{n-1} \int_{k}^{k+1}(\ln x-f(x)) d x \\
& \leq \sum_{k=1}^{\infty} \int_{k}^{k+1}(\ln x-f(x)) d x \\
& =\sum_{k=1}^{\infty}\left((k+1) \ln \frac{k+1}{e}-k \ln \frac{k}{e}-\frac{\ln k+\ln (k+1)}{2}\right) \\
& =\sum_{k=1}^{\infty}\left((k+1) \ln (k+1)-k \ln k-\frac{1}{2} \ln k-\frac{1}{2} \ln (k+1)-1\right) \\
& =\sum_{k=1}^{\infty}\left(\left(k+\frac{1}{2}\right)(\ln (k+1)-\ln k)-1\right) \\
& =\sum_{k=1}^{\infty}\left(\left(k+\frac{1}{2}\right) \ln \left(1+\frac{1}{k}\right)-1\right) .
\end{aligned}
$$

Expanding $\ln \left(1+\frac{1}{k}\right)$ in Taylor series, we have

$$
\ln \left(1+\frac{1}{k}\right)=\frac{1}{k}-\frac{1}{2 k^{2}}+\frac{1}{3 k^{3}}+o\left(\frac{1}{k^{3}}\right) \text { as } k \rightarrow \infty
$$

whence

$$
\begin{aligned}
\left(k+\frac{1}{2}\right) \ln \left(1+\frac{1}{k}\right)-1 & =\left(k+\frac{1}{2}\right)\left(\frac{1}{k}-\frac{1}{2 k^{2}}+\frac{1}{3 k^{3}}+o\left(\frac{1}{k^{3}}\right)\right)-1 \\
& =\left(1-\frac{1}{2 k}+\frac{1}{3 k^{2}}\right)+\left(\frac{1}{2 k}-\frac{1}{4 k^{2}}\right)-1+o\left(\frac{1}{k^{2}}\right) \\
& =\frac{1}{12 k^{2}}+o\left(\frac{1}{k^{2}}\right) \\
& \sim \frac{1}{12 k^{2}} \text { as } k \rightarrow \infty .
\end{aligned}
$$

Hence, the series

$$
\sum_{k=1}^{\infty}\left(\left(k+\frac{1}{2}\right) \ln \left(1+\frac{1}{k}\right)-1\right)
$$

is convergent as it is equivalent to the convergent series $\sum \frac{1}{k^{2}}$. It follows that the sequence $\left\{a_{n}\right\}$ is bounded and, hence, $\lim a_{n}$ exists and is finite.

Consequently, the limit (5) exists. It follows that also the following limit exists

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}\left(\frac{n}{e}\right)^{n}}{n!}
$$

and is a positive number. That is, for some constant $c>0$,

$$
\begin{equation*}
n!\sim c \sqrt{n}\left(\frac{n}{e}\right)^{n} . \tag{6}
\end{equation*}
$$

To determine c, compute

$$
\frac{\left(2^{n} n!\right)^{2}}{(2 n)!} \sim \frac{\left(2^{n} c \sqrt{n}\left(\frac{n}{e}\right)^{n}\right)^{2}}{c \sqrt{2 n}\left(\frac{2 n}{e}\right)^{2 n}}=\frac{c^{2} 2^{2 n} n n^{2 n} e^{-2 n}}{c \sqrt{2 n} 2^{2 n} n^{2 n} e^{-2 n}}=c \sqrt{\frac{n}{2}} .
$$

By Theorem 1 we conclude

$$
c \sqrt{\frac{n}{2}} \sim \sqrt{\pi n}
$$

whence $c=\sqrt{2 \pi}$. Substituting c into (6), we obtain (4).

3 Gauss integral

Theorem 3 We have

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Proof. Consider for any $n \in \mathbb{N}$ the function

$$
f_{n}(x)=\frac{1}{\left(1+\frac{x^{2}}{n}\right)^{n}} .
$$

It is known that the sequence $\left\{\left(1+\frac{x^{2}}{n}\right)^{n}\right\}_{n \in \mathbb{N}}$ is monotone increasing and converges to $e^{x^{2}}$. Hence, the sequence $\left\{f_{n}(x)\right\}$ is monotone decreasing and converges to $e^{-x^{2}}$. Since

$$
f_{n}(x) \leq f_{1}(x)=\frac{1}{1+x^{2}}
$$

and f_{1} is integrable on \mathbb{R}, we obtain by the dominated convergence theorem that

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{n}(x) d x \rightarrow \int_{-\infty}^{\infty} e^{-x^{2}} d x \tag{7}
\end{equation*}
$$

On the other hand,

$$
\int_{-\infty}^{\infty} f_{n}(x) d x=\int_{-\infty}^{\infty} \frac{d x}{\left(1+\frac{x^{2}}{n}\right)^{n}}=\sqrt{n} \int_{-\infty}^{\infty} \frac{d y}{\left(1+y^{2}\right)^{n}}
$$

The change $y=\cot t, t \in(0, \pi)$ yields

$$
\int_{-\infty}^{\infty} f_{n}(x) d x=\sqrt{n} \int_{0}^{\pi} \frac{d t}{\sin ^{2} t\left(1+\frac{\cos ^{2} t}{\sin ^{2} t}\right)^{n}}=\sqrt{n} \int_{0}^{\pi} \sin ^{2 n-2} t d t
$$

By (3), we have

$$
\int_{0}^{\pi} \sin ^{2 n-2} t d t \sim \sqrt{\frac{2 \pi}{2 n-2}} \sim \sqrt{\frac{\pi}{n}} \text { as } n \rightarrow \infty
$$

which implies

$$
\int_{-\infty}^{\infty} f_{n}(x) d x \rightarrow \sqrt{\pi}
$$

which together with (7) finishes the proof.

