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1 Introduction

Let M be a non-compact connected Riemannian manifold and let μ be the Riemannian
measure on M . For each non-empty open subset Ω ⊂ M, denote by λ(Ω) the first eigen-
value of the Dirichlet problem in Ω for the Laplace-Beltrami operator Δ. The Faber-Krahn
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inequality is a lower bound on λ(Ω) in terms of the volume μ(Ω) as follows:

λ (Ω) ≥ Λ (μ (Ω)) , (1.1)

where Λ is a non-negative function on (0, +∞). The function Λ is called the Faber-Krahn
function of an open set U ⊂ M if (1.1) holds for all Ω ⊂ U . Since λ (Ω) decreases
on expansion of Ω, we will always assume that the Faber-Krahn function is monotone
decreasing.

Recall that the classical Faber-Krahn theorem states that, for any open set Ω ⊂ RN ,

λ(Ω) ≥ λ(B),

where B is the Euclidean ball with volume μ(B) = μ(Ω). It is easy to see that λ(B) =
cNμ(B)−2/N . Hence, according to the definition given above, RN has the Faber-Krahn
function

Λ(v) = cN v−2/N .

This paper describes how Faber-Krahn inequalities and Faber-Krahn functions behave
under removal of a compact set with smooth boundary (Section 2.2, Proposition 2.1 and
Theorem 2.4) and under gluing of several non-compact manifolds (Section 3, Theorem
3.3). This is somewhat a technical goal but these results should prove useful in various
situations. In particular, they extend (in a sense) those of [2] where a Sobolev inequality
for the exterior of certain compact domains in RN was proved.

One specific application of these cutting and gluing results is presented in detail in
Section 4. It concerns with the problem of estimating of the heat kernel on a manifold
with ends. To describe more precisely this application, let us assume that M is geodesically
complete and let K ⊂ M be a compact set with smooth boundary such that M \K has k
connected components E1, . . . , Ek. The sets Ei are called the ends of M with respect to
K.

Furthermore, in many cases each end Ei can be considered as the exterior of a compact
set with smooth boundary in another complete manifold Mi. In this case we say that M
is a connected sum of M1, ...,Mk and write

M =
k⊔

i=1

Mi

(see Section 3.1 for a careful definition).
Now, suppose that each Mi is a non-compact complete manifold for which we have a

good heat kernel upper bound. What information can we obtain for the heat kernel on
the connected sum M?

The study of the relationships between heat kernel bounds and functional inequalities
(such as Faber-Krahn inequalities and others) has been an active area of research during
the past decades (see, e.g., [4], [21], [8], [11]). In view of the previous experience is natural
to attack the above question about heat kernel bounds on connected sums of manifolds
by using the Faber-Krahn inequalities, which is done in this paper.

We obtain fairly satisfactory heat kernel bounds that are easy to apply in some cases.
For example, let us consider the special case when each end Ei is the exterior of a compact
with smooth boundary in a non-compact complete manifold Mi with non-negative Ricci
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curvature. Let Vi(x, r) be the volume of the geodesic ball in Mi of radius r and center
x ∈ Mi. For any r > 0, set

Vmin(r) = min
1≤i≤k

Vi(oi, r),

where oi ∈ ∂Ei is a fixed reference point. In this situation we prove that, for all t > 0,

sup
x,y∈K

p(t, x, y) ≤
C

Vmin(
√

t)
. (1.2)

(see Theorem 4.5). The estimate (1.2) is used in our paper [13] as a key ingredient for
obtaining two-sided estimates of p (t, x, y) for the full range x, y ∈ M and t > 0 in the
above setting. In particular, it follows from [13] that (1.2) is sharp, that is, has a matching
lower bound, provided each manifold Mi is non-parabolic.

We denote by the letters c, C, c′, C ′ etc positive constants whose values can change at
each occurrence.

2 Cutting Faber-Krahn inequalities

In this section we show that the Faber-Krahn inequality is roughly preserved under the
removal of a compact set with smooth boundary.

2.1 FK-functions

Let (M, g) be a non-compact Riemannian manifold possibly with boundary1 δM . Fix a
positive smooth function σ on M and consider a Radon measure μ on M defined by

dμ = σ2dμ0,

where μ0 is the Riemannian measure on M . The couple (M,μ) is called a weighted
manifold. The operator

Lu = σ−2div(σ2∇u)

is defined on functions u ∈ C2 (M) is called the Laplace operator of (M,μ). In particular,
in the case σ ≡ 1 it coincides with the Laplace-Beltrami operator of the Riemannian
manifold M . The operator L obviously satisfies the Green formula for all u, v ∈ C∞

c (M)
∫

M
uLv dμ = −

∫

M
(∇u,∇v)dμ =

∫

M
Lu v dμ,

although in the case of non-empty boundary δM we have to assume in addition that u
and v satisfy the Neumann boundary condition on δM .

It follows that L is symmetric with respect to measure μ and admits the Friedrichs
extension that is a self-adjoint operator in L2 (M,μ) that will be denoted also by L (cf.
[11]).

1We use the symbol δ to denote the boundary of a “manifold with boundary” M as opposed to the
symbol ∂ that denotes the topological boundary of a subset. Note that the topological boundary ∂M
of a “manifold with boundary” M is always empty. It would be preferable to use another term for δM ,
for example, the border, and to call M a “manifold with border” but, unfortunately, the confusing term
“manifold with boundary” is commonly used and cannot be easily changed.
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Let d(x, y) be the geodesic distance between x and y. Let B(x, r) be the open geodesic
ball of radius r around x. We say that the Riemannian manifold (M, g) is complete if the
metric space (M,d) is complete. It is known that the completeness of M is equivalent to
the fact that all geodesic balls B (x, r) are precompact.

For any region Ω ⊂ M, we denote by λ(Ω) the first Dirichlet eigenvalue for the operator
L in Ω. More precisely,

λ(Ω) := inf
φ∈C∞

0 (Ω)

∫
Ω |∇φ|2 dμ
∫
Ω φ2dμ

.

Note that if M has a boundary then, topologically, Ω can contain points of δM as interior
points. At those points, the test function φ does not necessarily vanish. Therefore, in this
case, λ(Ω) is the smallest eigenvalue of L in Ω satisfying the Dirichlet condition on ∂Ω
and the Neumann condition on δM ∩ Ω. Nonetheless, we will always refer to λ(Ω) as the
Dirichlet eigenvalue, in order not to overload the terminology.

Definition. Let U be an open subset of M . We say that a non-negative function Λ(v)
on (0,∞) is a Faber-Krahn function (FK-function) for U (or we say that U admits a
FK-function Λ) if Λ is non-increasing on (0,∞) and, for any precompact open subset Ω
of U ,

λ(Ω) ≥ Λ(μ(Ω)). (2.1)

Clearly, Λ ≡ 0 is always a FK-function but, of course, only positive FK-functions are
of interest. It can happen that M itself has a positive FK-function, that is, (2.1) holds
for all precompact open subsets Ω of M . For example, in the case M = RN the classical
Faber-Krahn theorem implies that RN has the FK-function

Λ (v) = cv−2/N (2.2)

where c = c (N) > 0. It follows by a compactness argument that, for any weighted
manifold M of dimension N , any precompact open set U ⊂ M admits the FK-function

Λ (v) = cUv−2/N (2.3)

with some constant cU > 0 that depends on U .
It is known that any Cartan-Hadamard manifold of dimension N admits the FK-

function (2.2) but with a different value of c (see [15]).
The fact that M has the FK-function (2.2) is equivalent to the Nash inequality:

∀ f ∈ C∞
0 (M), ‖f‖2(1+2/N)

2 ≤ C

(∫

M
|∇f |2dμ

)

‖f‖4/N
1

and, in the case N > 2, to the Sobolev inequality

∀ f ∈ C∞
0 (M), ‖f‖2

2N/(N−2) ≤ C

∫

M
|∇f |2dμ

(see [1], [14]).
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Let M be complete non-compact manifold that covers a compact manifold. Fix some
reference point x0 and set V (r) = μ (B (x0, r)). It follows from the isoperimetric inequality
of [3, Theorem 4], that M has the FK-function

Λ(v) = cr(v)−2,

where the function r(v) is determined by the equation Cv = V (r) and c, C are positive
constants depending only on M . The same result holds for any non-compact connected
real unimodular Lie group M of dimension N equipped with an invariant Riemannian
metric.

Let us consider two explicit examples of the volume growth function on a covering
manifold M .

Example. If, for large r, V (r) ≥ Crν , where ν is a positive constant, then r(v) ≤ Cv1/ν

and
Λ(v) = cv−2/ν (2.4)

for large v.
If there exists 0 < α ≤ 1 such that, for large r,

V (r) ≥ exp (crα) , (2.5)

then r(v) ≤ C(log v)1/α and

Λ(v) =
c

(log v)2/α
, (2.6)

for large v. In all cases for small v we have

Λ (v) = cv−2/N .

Example. In the case of Lie group M as above there are two possibilities for the volume
growth function: either V (r) � rν for a positive integer ν or log V (r) � r. In the first case
we obtain that M has the FK-function (2.4). In the second case, either M is amenable
and then, for large v,

Λ(v) =
c

log2 v

or M is non-amenable and then, for large v, Λ (v) = c > 0 (see [17]).

Example. Let us give one more example of different type. Let M = Rn × K where K is
a compact Riemannian manifold of dimension N − n. Then M admits the FK-function

Λ (v) = c

{
v−2/N , v < 1,

v−2/n, v ≥ 1

(see [5]).

On the other hand, for a general manifold one cannot expect to have a positive FK-
function. The following notion is more flexible.

Definition. Let (B, v) 7→ Λ(B, v) be a non-negative function where B = B(x, r) varies
among all geodesic balls of M and v ∈ (0, +∞). We say that Λ is a relative FK-function
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for (M,μ) (RFK-function) if v 7→ Λ (B, v) is a FK-function of the ball B; that is, the
function v 7→ Λ(B, v) is non-increasing in v and, for any ball B in M and for any open set
Ω ⊂ B,

λ(Ω) ≥ Λ(B,μ(Ω)). (2.7)

A complete non-compact manifold M always admits a RFK-function of the from

Λ(B, v) = a(B)v−2/N (2.8)

where N = dim M and a(B) > 0 (cf. (2.3)), which follows from the fact that B is
precompact. An important class of manifolds for which a(B) can be estimated explicitly, is
the class of complete manifolds with non-negative Ricci curvature, μ being the Riemannian
measure. For such a manifold one has

a(B) � ρ(B)−2μ(B)2/N , (2.9)

where ρ(B) is the radius of B (cf. [7, Theorem 1.4 and Theorem 2.1], [16], [18]).

2.2 Cutting a manifold

Let (M,μ) be a non-compact connected weighted manifold of dimension N . Let us fix a
compact set K ⊂ M that is the closure of a non-empty open set with smooth boundary2

such that M \ K is connected. Consider the set

M∗ := M \
o
K

as a manifold with boundary δM∗ = δM t ∂K. We will equip with the superscript ∗ all
the notation related to M∗; in particular, M∗ is endowed with the measure μ∗ = μ|M∗ .

By construction M∗ is complete and connected. Denote by d∗ the geodesic distance
on M∗ and by B∗ (x, r) geodesic balls in M∗. Obviously, we have d∗ (x, y) ≥ d (x, y) for
all x, y ∈ M∗, which implies the inclusion

B∗ (x, r) ⊂ B (x, r) (2.10)

of the balls, for all x ∈ M∗ and r > 0.
The connectedness of M \ K implies that there is a precompact open subset U of M

with smooth boundary such that K ⊂ U and U \ K is connected (for example, U can be
taken as a ball of large enough radius centered at K). The set U is used in all statements
in this section.

Our goal is to provide a lower bound for the Dirichlet eigenvalue λ∗(Ω∗) for open sets
Ω∗ ⊂ M∗ in terms of such quantities on M . If Ω∗ is disjoint with K then Ω∗ is also an
open subset of M and we have λ∗ (Ω∗) = λ (Ω∗) and there is nothing to do. However, if
Ω∗∩K = Ω∗∩∂K is non-empty then λ∗ (Ω∗) is the first eigenvalue of the operator L∗ = L
in Ω∗ with the Dirichlet condition on ∂Ω∗ and the Neumann condition on

δM∗ ∩ Ω∗ = (δM ∩ Ω∗) t (∂K ∩ Ω∗) ,
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* -
the Dirichlet boundary

*

M*=M \K
o

M

M* * -
the Neumann boundary

M*= M K

M

K

Figure 1: The eigenvalue problem for λ∗ (Ω∗)

as on Fig. 1.
Consider the set Ω = Ω∗\∂K that is an open subset of M and observe that λ (Ω) is the

first eigenvalue of L in Ω with the Dirichlet condition on ∂Ω = ∂Ω∗∪ (∂K ∩ Ω∗) and the
Neumann condition on δM ∩ Ω. Hence, λ (Ω) in comparison with λ∗ (Ω∗) has additional
piece of the Dirichlet boundary which implies that

λ (Ω) ≥ λ∗ (Ω∗) .

Therefore, obtaining a lower bound for λ∗ (Ω∗) is a non-trivial task, that will be discussed
in this section.

2.3 Non-parabolic case

To illustrate some technique that can be used for obtaining lower bounds for λ∗ (Ω∗), we
treat first the case when the weighted manifold (M,μ) is non-parabolic (see [10] for a
detailed discussion of this notion). The crucial property that we will use is the following.
A weighted manifold (M,μ) is non-parabolic if and only if for any open precompact set U
there exists a constant CM (U) (which is called the non-parabolicity constant of U in M),
such that

∀ f ∈ C∞
c (M),

∫

U
|f |2dμ ≤ CM (U)

∫

M
|∇f |2dμ. (2.11)

Given two subsets A b B of M , we say that a function φ is a cutoff function of the pair
A,B if φ ∈ C∞

c (M), 0 ≤ φ ≤ 1, supp φ ⊂ B and φ ≡ 1 in an open neighborhood of A.

Proposition 2.1 Let (M,μ) be a non-parabolic. Under the above assumptions there exists
a constant c > 0 such that, for any open subset Ω∗ ⊂ M∗,

λ∗ (Ω∗) ≥ c min (λ (Ω) , 1) , (2.12)

2if M is a manifold with boundary then we assume in addition that ∂K and δM are disjoint
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where Ω = Ω∗\∂K. The constant c depends only on d (K, ∂U ) and on the non-parabolicity
constant CM∗ (U \ K).

Proof. Observe that the manifold M∗ is also non-parabolic (cf. [6]). Let φ a cutoff
function of the pair K,U . Set

Cφ = sup
U

|∇φ|2 .

Clearly, by choosing φ appropriately, Cφ can be bounded from above in terms of d (K, ∂U ).
The restriction φ|M∗ also denote by φ. For any function f ∈ C∞

c (Ω∗), we have f = f1 + f2

where
f1 = fφ, f2 = f(1 − φ)

(cf. Fig. 2).

*

U

Support of f(1- )

Support of f

K

Figure 2: Functions fφ and f (1 − φ)

Since (M∗, μ∗) is non-parabolic, we have C∗ := CM∗ (U \ K) < ∞ and, hence,
∫

U\K
|f |2dμ ≤ C∗

∫

M∗
|∇f |2dμ = C∗

∫

Ω
|∇f |2dμ. (2.13)

Note that
∫

Ω
|∇f1|

2dμ ≤ 2
∫

Ω
|∇f |2 φ2dμ + 2

∫

Ω
f2 |∇φ|2 dμ

≤ 2

(∫

Ω
|∇f |2dμ + Cφ

∫

U\K
|f |2dμ

)

.

Substituting here (2.13), we obtain
∫

Ω
|∇f1|

2dμ ≤ 2 (1 + C∗Cφ)
∫

Ω
|∇f |2dμ.

The same estimate holds for f2:
∫

Ω
|∇f2|

2dμ ≤ 2

(∫

Ω
|∇f |2dμ + Cφ

∫

U\K
|f |2dμ

)

≤ 2 (1 + C∗Cφ)
∫

Ω
|∇f |2dμ.
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The function f2 is compactly supported in the set Ω = Ω∗ \ K ⊂ M and thus
∫

Ω
f2
2 dμ ≤

1
λ(Ω)

∫

Ω
|∇f2|

2dμ.

Using again the non-parabolicity of (M∗, μ∗), we obtain
∫

Ω
f2
1 dμ =

∫

U\K
f2
1 dμ ≤ C∗

∫

M∗
|∇f1|

2dμ = C∗
∫

Ω
|∇f1|

2dμ.

Combining all the above estimates, we obtain
∫

Ω
f2dμ ≤ 2

(∫

Ω
f2
1 dμ +

∫
f2
2 dμ

)

≤ 2C∗
∫

Ω
|∇f1|

2dμ +
2

λ (Ω)

∫

Ω
|∇f2|

2dμ

≤ 4

(

C∗ +
1

λ(Ω)

)

(1 + C∗Cφ)
∫

Ω
|∇f |2dμ,

which implies (2.12).

2.4 FK-functions in balls

Now we pass to the case of a general (=possibly parabolic) manifold (M,μ) . The main
result of this section will be Theorem 2.4 below.

Instead of the non-parabolicity constant we will use the following three local versions
of the Poincaré inequality. Let W ⊂ M be a precompact open set.

1. For any g ∈ W 1
0 (W ) ∫

W
g2dμ ≤ C

∫

W
|∇g|2 dμ. (2.14)

2. If W has smooth boundary and connected, then, for any g ∈ W 1
(
W
)
,

∫

W
(g − m)2 dμ ≤ C

∫

W
|∇g|2 dμ, (2.15)

where m = 1
μ(W )

∫
M gdμ.

3. Moreover, if in the case 2

μ (g ≤ 0) ≥
1
2
μ (W )

then also ∫

W
g2
+dμ ≤ C

∫

W
|∇g+|

2 dμ (2.16)

(cf. [7, Theorem 1.2]).

In all cases the constant C depends only on the intrinsic geometry of W .
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Lemma 2.2 Let U be a precompact open subset of M with smooth boundary such that
K ⊂ U and U \ K is connected. There exists a constant c > 0 such that for any open
subset Ω∗ ⊂ M∗ := M \ K, we have

λ∗ (Ω∗) ≥ c min (λ (Ω∗ ∪ U) , 1) . (2.17)

The constant c depends only of the local geometry of K and U .

Proof. Note that Ω is an open subset of M . If Ω∗ ∩ ∂K = ∅ then the Neumann
boundary condition on ∂K ∩ Ω∗ is void, and we obtain

λ∗ (Ω∗) = λ (Ω∗) ≥ λ (Ω) .

Consider a general case when Ω∗ ∩ ∂K is non-empty. Set

Ω = Ω∗ ∪ U.

We shall prove that, for any function f ∈ C∞
c (Ω∗),

∫

Ω∗
f2dμ ≤ C

(
1

λ(Ω)
+ 1

)∫

Ω∗
|∇f |2 dμ, (2.18)

which then implies (2.17) with c = (2C)−1. Let us extend f to a function in C∞
c (M∗) by

setting f = 0 outside Ω∗. Set

m =
1

μ (U \ K)

∫

U\K
f dμ

and f̃ = f − m. Since the function f is smooth in U \ K, we obtain by the Poincaré
inequality (2.15) in U \ K

∫

U\K
f̃2dμ ≤ CP

∫

U\K
|∇f |2 dμ. (2.19)

Choose an open subset V of M with smooth boundary such that K b V b U . Let h
be the harmonic function in V such that h = f on ∂V ; set h̃ = h − m. Fix a function
ϕ ∈ C∞

c (V ) such that ϕ ≡ 1 in a neighborhood of K.
The function (1 − ϕ) f̃ vanishes in a neighborhood of K and, hence, can be smoothly

extended to the whole M by setting it to be 0 on K. Since the functions h̃ and (1 − ϕ) f̃
are defined in V and have the same boundary values on ∂V , the Dirichlet principle yields

∫

V

∣
∣
∣∇h̃

∣
∣
∣
2

dμ ≤
∫

V

∣
∣
∣∇
(
(1 − ϕ) f̃

)∣∣
∣
2

dμ.

On the other hand, we have
∫

V

∣
∣
∣∇
(
(1 − ϕ) f̃

)∣∣
∣
2

dμ =
∫

V \K

∣
∣
∣∇
(
(1 − ϕ) f̃

)∣∣
∣
2

dμ

≤ Cϕ

∫

U\K

(

f̃2 +
∣
∣
∣∇f̃

∣
∣
∣
2
)

dμ,
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U

Support of f(1- )

V

K *

~

Figure 3: Set Ω∗ and function f̃ (1 − ϕ)

where Cϕ depends only on the function ϕ. Combining with (2.19) and using ∇f̃ = ∇f ,
we obtain ∫

V

∣
∣
∣∇
(
(1 − ϕ) f̃

)∣∣
∣
2

dμ ≤ Cϕ (1 + CP )
∫

U\K
|∇f |2 dμ,

whence ∫

V
|∇h|2 dμ =

∫

V

∣
∣
∣∇h̃

∣
∣
∣
2

dμ ≤ Cϕ (1 + CP )
∫

U\K
|∇f |2 dμ. (2.20)

Consider in Ω the function

g =

{
h in V,
f in Ω \ V.

Since g ∈ W 1
0 (Ω), we obtain by (2.20)

‖g‖2
L2(Ω) ≤ λ (Ω)−1 ‖∇g‖2

L2(Ω) ≤ λ (Ω)−1 (1 + Cϕ (1 + CP ))
∫

Ω\K
|∇f |2 dμ. (2.21)

On the other hand, we have

‖f‖L2(Ω\K) ≤ ‖g‖L2(Ω\K) + ‖f − g‖L2(V \K) ≤ ‖g‖L2(Ω) + ‖f − h‖L2(V \K) . (2.22)

Consider the function f − h in V ∗ = V \
o
K on the manifold M∗. This function vanishes

on ∂V = ∂∗V ∗, so that f − h ∈ W 1
0 (V ∗). Hence, using the Poincaré inequality (2.14) in

V ∗ and (2.20), we obtain

‖f − h‖2
L2(V \K) ≤ C ′

P

∫

V \K
|∇ (f − h)|2 dμ

≤ 2C ′
P

∫

V \K
|∇f |2 dμ + 2C ′

P

∫

V \K
|∇h|2 dμ

≤ 2C ′
P (1 + Cϕ (1 + CP ))

∫

U\K
|∇f |2 dμ,
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where the constant C ′
P depends only on the intrinsic geometry of V ∗.

Finally, combining (2.21)-(2.22) we obtain

‖f‖2
L2(Ω\K) ≤ 2 ‖g‖2

L2(Ω) + 2 ‖f − h‖2
L2(V \K)

≤

(
2

λ (Ω)
+ 4C ′

P

)

(1 + Cϕ (1 + CP ))
∫

Ω\K
|∇f |2 dμ,

which is equivalent to (2.18).

Lemma 2.3 Let U be a precompact open subset of M with smooth boundary such that
K ⊂ U and U \ K is connected. There exists a constant c > 0 such that for any open
subset Ω∗ ⊂ M∗ := M \ K with

μ (Ω∗) ≤
1
2
μ (U \ K) (2.23)

the following inequality holds:

λ∗ (Ω∗) ≥ c min
(
λ(Ω), μ (Ω∗)−2/N

)
, (2.24)

where Ω = Ω∗ \ ∂K. The constant c > 0 depends only of the local geometry of K and U .

Proof. Fix an open neighborhood V of K such that V ⊂ U , and a cutoff function ψ
of the pair V,U , that is, a function ψ ∈ C∞

c (U) such that 0 ≤ ψ ≤ 1 and ψ|V ≡ 1. For any
f ∈ C∞

c (Ω∗), we have
∫

Ω∗
f2 dμ ≤ 2

∫

Ω
(fψ)2 dμ + 2

∫

Ω
((1 − ψ) f)2 dμ. (2.25)

(1 − ψ)f is supported in Ω ⊂ M, we have
∫

Ω
((1 − ψ) f)2 dμ ≤ λ(Ω)−1

∫

Ω
|∇ ((1 − ψ) f)|2 dμ

≤ 2λ(Ω)−1

∫ (
f2 |∇ψ|2 + |∇f |2 (1 − ψ)2

)
dμ

≤ Cψλ(Ω)−1






∫

U\K

f2 dμ +
∫

Ω
|∇f |2 dμ




 ,

where we have used the boundedness of ψ and |∇ψ| .
Since ψf is supported in U , the first term on the right hand side of (2.25) can be

bounded, by using the Faber-Krahn inequality in U , as follows:
∫

U
|fψ|2 dμ ≤ CFKμ (Ω∗)2/N

∫

U
|∇ (fψ)|2 dμ

≤ CFKCψμ (Ω∗)2/N






∫

U\K

f2 dμ +
∫

Ω
|∇f |2 dμ




 .
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Figure 4: Set Ω∗

Hence, we obtain

∫

Ω∗
f2 dμ ≤ Cψ

(
λ(Ω)−1 + CFKμ (Ω∗)2/N

)





∫

U\K

f2 dμ +
∫

Ω
|∇f |2 dμ




 . (2.26)

By hypothesis (2.23), we have

μ ({f = 0} ∩ U \ K) ≥
1
2
μ (U \ K) .

Applying the Poincaré inequality (2.15) to f+ and f−, we obtain
∫

U\K

f2 dμ ≤ CP

∫

U\K
|∇f |2 dμ. (2.27)

Therefore, (2.26) yields
∫

Ω∗
f2 dμ ≤ Cψ

(
λ(Ω)−1 + CFKμ (Ω∗)2/N

)
(1 + CP )

∫

Ω∗
|∇f |2 dμ ,

whence (2.24) follows.

Theorem 2.4 Let K be a compact subset of M with smooth boundary such that M∗ :=
M \ K is connected. There exist constants c ∈ (0, 1) and P,Q > 1 such that any ball
B∗ (x,R) in M∗ admits the Faber-Krahn function

v 7→ Λ∗(v) := cΛ(Qv) , (2.28)

where Λ is the Faber-Krahn function of the ball B (x, PR) in M .
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As we see from the proof, the constants c, P,Q depend only on the intrinsic geometry
of some precompact neighbourhood of K but, of course, they do not depend on x,R.

Proof. Since M \K is connected, there exists a precompact open neighborhood U of
K such that U \K is connected. Let Ω∗ be an open subset of a ball B∗(x,R) in M∗; set
v := μ (Ω∗) . To prove (2.28), we have to show that

λ∗(Ω∗) ≥ cΛ(Qv). (2.29)

Set Ω = Ω∗ \ ∂K and so that Ω is a subset of M . Moreover, by (2.10) we have

Ω ⊂ B(x,R).

Let us consider the following cases.
Case 1. Assume that B(x,R) does not intersect K. Then λ∗(Ω∗) and λ(Ω) are the

eigenvalues of the same boundary value problem, whence by (FK) in B(x, PR) and by
the monotonicity of Λ(∙)

λ∗(Ω∗) = λ(Ω) ≥ Λ(v) ≥ Λ(Qv). (2.30)

Case 2. Assume that B(x,R) ⊂ U . By the Euclidean Faber-Krahn inequality in

U \
o
K ⊂ M∗, it follows that

λ∗ (Ω∗) ≥ cv−2/N .

We are left to verify that in this case

Λ(v) ≤ Cv−2/N . (2.31)

Indeed, since v ≤ μ(B(x,R)), then there is a ball B(y, r) ⊂ B(x,R) with μ(B(y, r)) = v.
Its eigenvalue λ(B(y, r)) is comparable to that of the Euclidean ball of the Euclidean
volume v, that is,

C−1v−2/N ≤ λ(B(y, r)) ≤ Cv−2/N . (2.32)

Note that B(y, r) lies in U so that the constant C in (2.32) depends only on the intrinsic
geometry of U. Therefore,

Λ(v) ≤ λ(B(y, r)) ≤ Cv−2/N , (2.33)

whence
λ∗ (Ω∗) ≥ cΛ(v). (2.34)

Case 3. Assume that B (x,R) intersects K and B (x,R) is not contained in U . Then

2R ≥ d (K,U c) (2.35)

which implies that
U ⊂ B (x, PR) (2.36)

where

P := 1 + 2
diam U

d (K,U c)
(2.37)
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Indeed, since B (x,R) intersects both K and U c, then

2R = diam B (x,R) ≥ d (K,U c) .

If x′ ∈ B (x,R) ∩ K then

U ⊂ B
(
x′, diam U

)
⊂ B (x,R + diam U) .

By (2.35) and (2.37) we have

R + diam U ≤ R +
diam U

d (K,U c)
2R = PR,

whence (2.36) follows.
Consider two subcases.
Case 3a: let v ≤ 1

2μ (U \ K). Then we obtain by Lemma 2.3

λ∗ (Ω∗) ≥ c min
(
λ (Ω) , v−2/N

)

≥ c min
(
Λ (v) , v−2/N

)
.

Note that in this case (2.31) is satisfied because, as in Case 2, we can choose a ball
B (y, r) ⊂ U ⊂ B (x, PR) such that

μ (B (y, r)) = v,

whence (2.33) follows. Hence, we obtain

λ∗ (Ω∗) ≥ cΛ (v) ≥ cΛ (Qv) .

Case 3b: let v > 1
2μ (U \ K). Then Lemma 2.2 yields

λ∗ (Ω∗) ≥ c min (λ (Ω∗ ∪ U) , 1) .

Since by (2.36)
Ω∗ ∪ U ⊂ B (x, PR) ,

we have
λ (Ω∗ ∪ U) ≥ Λ (μ (Ω∗ ∪ U)) .

Since

μ (Ω∗ ∪ U) ≤ v + μ (U) ≤ v +
μ (U)

μ (U \ K)
2v = Cv

where

C = 1 + 2
μ (U)

μ (U \ K)
,

we obtain
λ (Ω∗ ∪ U) ≥ Λ (Cv)

and, hence,
λ∗ (Ω∗) ≥ c min (Λ (Cv) , 1) (2.38)
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Note that

Λ (Cv) ≤ Λ

(
C

2
μ (U \ K)

)

=: L0.

If L0 ≤ 1 then we obtain from (2.38)

λ∗ (Ω∗) ≥ cΛ (Cv) .

If L0 > 1 then it follows that

λ∗ (Ω∗) ≥
c

L0
min (Λ (Cv) , L0) ≥

c

L0
Λ (Cv) ,

which finishes the proof.

2.5 Relative FK-function

Corollary 2.5 Assume that we are in the setting of Theorem 2.4.
(a) If M admits the FK-function Λ (v) then M∗ admits the FK-function

Λ∗ (v) = cΛ (Qv) ,

where c,Q > 0 are the constants from Theorem 2.4.
(b) If M admits the RFK-function Λ(B, v) then M∗ admits the RFK-function

Λ∗(B∗ (x,R) , v) = cΛ(B(x, PR), Qv), (2.39)

where c, P,Q are the constants from Theorem 2.4.

Proof. Clearly, it suffices to proof (b). By Theorem 2.4, any ball B∗ (x,R) in M∗

admits a FK-function
v 7→ cΛ (B (x, PR) , Qv) ,

which means, that (2.39) is the RFK-function of M∗.

Example. Consider the case M = RN , μ being the Lebesgue measure. Then M has
the FK-function Λ(v) = cv−2/N and by Corollary 2.5 M∗ has the FK-function Λ∗(v) =
c′v−2/N . In particular, this implies the Nash inequality on M∗:

∀ f ∈ C∞
0 (M∗), ‖f‖2(1+2/N)

2 ≤ C

(∫

M∗
|∇f |2dμ

)

‖f‖4/N
1

and, in the case N > 2, also the Sobolev inequality

∀ f ∈ C∞
0 (M∗), ‖f‖2

2N/(N−2) ≤ C

∫

M∗
|∇f |2dμ

The Sobolev inequality in M∗ = RN \ K (in fact, in a greater generality as far as the
regularity of ∂K is concerned) was proved in [2]. The same conclusion holds, of course, for
Cartan-Hadamard manifolds and, more generally, for any Riemannian manifold M with
the FK-function Λ(v) = cv−2/N .
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Example. Let M be a complete non-compact manifold with non-negative Ricci curvature
and μ its Riemannian measure. Then M admits the RFK-function

Λ(B, v) =
c

ρ (B)2

(
μ (B)

v

)2/N

,

where c > 0 (cf. [7], [19]). Theorem 2.4 yields that M∗ admits the same RFK-function
but with a different value of c. Some versions of the Nash and Sobolev inequalities hold in
this case as well – see [18], [20]. Besides, this RFK-function implies a certain upper bound
of the heat kernel in M∗ with the Neumann boundary condition om ∂K (cf. Section 4.1).
Two sides estimates of the heat kernel with the Dirichlet boundary condition on ∂K are
also available – see [12].

3 Gluing FK-functions

The purpose of this section is to obtain the RFK-function on the connected sum of man-
ifolds M1, ...,Mk assuming that the RFK-functions are known for each Mi. The main
result is Theorem 3.3.

3.1 Manifolds with ends

Let M be a Riemannian manifold. We say that an open set E ⊂ M is an end if E is
connected, E is not relatively compact and ∂E is compact (note that such an end may
correspond to more than one asymptotic ends). Let K be a compact set with smooth
boundary such that M \K has k connected components E1, . . . Ek and each Ei is an end.
If M has a boundary δM , then we always assume that δM does not intersect K. We
describe such a situation by writing

M =
k⊔

i=1

∣
∣
∣
∣
∣
K

Ei .

The closure Ei will be regarded as a manifold with boundary δEi that consists of two
disjoint pieces: the topological boundary ∂Ei that lies on ∂K and the rest that lies on
δM . Clearly, K can also be regarded as a manifold with boundary δK = ∂K. We will
always assume that all sets Ei are disjoint.

Since we are not interested in the effects of the specific geometry of K, we will some-

times omit K from the notation introduced above and write M =
k⊔

i=1
Ei. Furthermore, in

many cases, each Ei can be considered as the exterior of a compact in another manifold
Mi. In this case we also write

M =
k⊔

i=1

Mi

and refer to M as a connected sum of the manifolds Mi (see Fig. 5).
Here Mi may be a manifold with boundary and, in particular, Mi = Ei is allowed here.

If Mi is a manifold with boundary, then we always assume that its boundary δMi is the
disjoint union of two pieces δ′i and δ′′i where δ′i = ∅ or δ′i = ∂Ei, and δ′′i = δM ∩ Ei.
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Ei 

Mi 

K 

δMi 

Figure 5: The manifold M that is a connected sum of Mi’s

Example. A specific realization of Rn
⊔
Rn is obtained as follows:

M = (Rn \ Bn)
⊔∣∣
∣
K

(Rn \ Bn) ,

where K = Sn−1 × [−1, 1] is equipped with an appropriate metric. Here Bn is the unit
closed ball in Rn and Sn−1 is the (n − 1)-dimensional sphere.

We assume that M is equipped with a measure μ on M with smooth density σ2, and
that each Mi is equipped with a measure μi with smooth densities σ2

i so that σi = σ on
Ei. We will equip with a subscript i the names of all the objects related to the manifold
Mi. In particular, we will denote geodesic balls in Mi by Bi(x, r). Note that a ball B in
M that is contained in Ei is at the same time a ball in Mi. Moreover, for such a ball B
we have μ(B) = μi(Bi).

3.2 The main results

Let M be the connected sum of M1, ...,Mk as described in Section 3.1. The goal of this
section is to obtain a RFK-function Λ for M in terms of given RFK-functions Λi on Mi,
i ≥ 1. Set r0 := diam K and fix E0 – an open set in M with smooth boundary such that

K2r0 ⊂ E0 ⊂ K3r0 ,

where Kr is an open r-neighborhood of K. Since E0 is a precompact open subset of M ,
it has the Faber-Krahn function

Λ0(v) := c

{
v−2/N , if v ≤ v0

v
−2/N
0 , if v > v0

, (3.1)

where N = dim M and v0 = μ (E0) .
Given the RFK-function Λi(B, v) on Mi, i = 1, ..., k, define the function

Λ(B, v) := min
1≤i≤k

inf
y∈∂Ei

Λi(Bi(y, 3ρ(B)), v), (3.2)
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where v > 0, B is a ball in M , and ρ(B) is the radius of B. Now, define the function
Λ(B, v) as follows:

Λ(B, v) :=






Λ0(v), if B ⊂ E0;
Λi(B, v), if B ⊂ Ei, i ≥ 1, but B 6⊂ E0;
Λ(B, v), otherwise.

(3.3)

Proposition 3.1 Assume that each of the manifolds Mi, i = 1, ..., k, is connected, non-
compact, complete, and

Ei = Mi . (3.4)

Assume also that, for each i, the weighted manifold (Mi, μi) admits the RFK-function Λi.
Then the manifold M =

⊔
i Mi admits the RFK-function

(B, v) 7→ cΛ(B, v) , (3.5)

where Λ is defined by (3.3) and the constant c > 0 depends only on the intrinsic geometry
of a precompact neighbourhood of K.

Proof. Fix a ball B = B(x,R) ⊂ M , an open set Ω ⊂ B, a test function f ∈ C∞
0 (Ω).

We need to prove that ∫

Ω

|∇f |2 dμ ≥ cΛ(B, v)
∫

Ω

f2dμ, (3.6)

where v := μ(Ω). Consider the following cases.
Case 1. Assume that B ⊂ Ei for some i ≥ 0 (if B is contained in both E0 and Ej ,

j ≥ 1, then take i = 0). If i ≥ 1 then the Faber-Krahn inequality in B = Bi(x,R) ⊂ Ei

gives ∫

Ω

|∇f |2 dμ ≥ Λi(B, v)
∫

Ω

f2dμ = Λ(B, v)
∫

Ω

f2dμ (3.7)

If i = 0, then the ball B = B0(x,R) has the FK-function Λ0 (v) and we obtain
∫

Ω

|∇f |2 dμ ≥ Λ0(v)
∫

Ω

f2dμ = Λ(B, v)
∫

Ω

f2dμ.

In particular, if R ≤ r0 then this case applies. Indeed, if x ∈ Kr0 , then B(x,R) ⊂
K2r0 ⊂ E0. If x /∈ Kr0 , then x ∈ Ei, for some i ≥ 1, and B(x,R) is contained in the same
Ei.

Cases 2,3: preliminary remarks. In the next cases 2 and 3, we assume that
B = B(x,R) is not contained in any Ei, i ≥ 0. In particular, we have R > r0. Let us set
Ωi = Ω ∩ Ei for i ≥ 1 and observe that the restriction of f to Ωi belongs to C∞

0 (Ωi) on
the manifold Mi because non-zero values of f on ∂Ωi lie on ∂Ei = δMi (here we use the
assumption that Mi = Ei). Set

Ii :=
∫

Ωi

f2dμ , i ≥ 1, and I0 =
∫

K
f2dμ.
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Observe that
k∑

i=0

Ii =
∫

Ω
f2dμ. (3.8)

Case 2 (“main case”). Fix some positive ε < 1
k to be specified later on, and assume

that, for some i ≥ 1,

Ii ≥ ε

∫

Ω
f2dμ. (3.9)

Then the ball B has a non-empty intersection with Ei, but it is not contained in Ei by
the aforementioned assumption. Thus, B intersects ∂Ei. Let y be a point in B ∩ ∂Ei. We
claim that

Ωi ⊂ Bi(y, 3R). (3.10)

Indeed, y ∈ B(x,R) implies that B(y, 2R) ⊃ B(x,R) ⊃ Ω. Next,

B(y, 2R) ∩ Ei ⊂ Bi(y, 2R + diam ∂Ei) ⊂ Bi(y, 3R),

because diam ∂Ei ≤ r0 < R, whence

Ωi ⊂ B(y, 2R) ∩ Ei ⊂ Bi(y, 3R).

(see Fig. 6).

Bi(y,3R)

B(x,R)

y Ei
ΩiΩ

Ei

Figure 6: Illustration to the case 2

Now we can apply the Faber-Krahn inequality in Ωi in the ball Bi(y, 3R) ⊂ Mi, which
yields by (3.9)

∫

Ω

|∇f |2 dμ ≥
∫

Ωi

|∇f |2 dμ ≥ Λi (Bi(y, 3R), μ (Ωi))
∫

Ωi

f2dμ

≥ εΛi(Bi(y, 3R), v)
∫

Ω

f2 .
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To conclude (3.6), we are left to verify that

Λi(Bi(y, 3R), v) ≥ Λ(B, v). (3.11)

Indeed, since B is not contained in any Ej , j ≥ 0, we have

Λ(B, v)
(3.3)
= Λ(B, v)

(3.2)

≤ Λi(Bi(y, 3R), v) ,

whence (3.11) follows.
Case 3. Assume that (3.9) is not satisfied for any i ≥ 1. Then we have

∫

M\K
f2dμ = I1 + ... + Ik ≤ kε

∫

Ω
f2dμ , (3.12)

and by (3.8) ∫

K
f2dμ = I0 ≥ (1 − kε)

∫

Ω
f2dμ. (3.13)

Since 1− kε > 0, we see that the intersection K ∩B is non-empty. Fix a point y ∈ K ∩B;
then we have B ⊂ B(y, 2R). Observe that K ⊂ B(y, r0) and B(y, r1) ⊂ E0 where r1 := 2r0.
Choose a function φ ∈ C∞

0 (B(y, r1)) such that φ|B(y,r0) = 1. Clearly, φ can be chosen in
the way that

|∇φ| ≤
2

r1 − r0
=: C0 (3.14)

(see Fig. 7).

B(y,2R)

Ω

y

B(y,r1) B(y,r0)

E0

K
B(x,R)

Figure 7: Illustration to the case 3.

Since fφ ∈ C∞
0 (Ω ∩ B (y, r1)), we obtain by the Faber-Krahn inequality in E0

∫
|∇ (fφ)|2 dμ ≥ Λ0 (μ (Ω ∩ B(y, r1)))

∫
(fφ)2 dμ ≥ Λ0 (v)

∫
(fφ)2 dμ. (3.15)
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On the other hand,
|∇ (fφ)|2 ≤ 2 |∇f |2 φ2 + 2f2 |∇φ|2

whence by (3.14) and (3.12)
∫

|∇ (fφ)|2 dμ ≤ 2
∫

|∇f |2 φ2dμ + 2
∫

f2 |∇φ|2 dμ

≤ 2
∫

|∇f |2 dμ + 2C0

∫

M\K
f2dμ

≤ 2
∫

|∇f |2 dμ + 2C0kε

∫
f2dμ. (3.16)

Since by (3.13) ∫

M
(fφ)2 dμ ≥

∫

K
f2dμ ≥ (1 − kε)

∫

M
f2dμ , (3.17)

we obtain by putting together (3.15), (3.16), (3.17), that
∫

|∇f |2 dμ + C0kε

∫
f2dμ ≥

1
2

∫
|∇ (fφ)|2 dμ (3.18)

≥
1
2
Λ0 (v)

∫
(fφ)2 dμ

≥
1 − kε

2
Λ0 (v)

∫
f2dμ. (3.19)

Note that, by (3.1), m := inf Λ0 > 0. Choose ε > 0 so small that

C0kε <
1 − kε

4
m.

Then the second term on the left hand side of (3.18) is absorbed by the right hand side of
(3.19), and we obtain ∫

|∇f |2 dμ ≥ c′Λ0 (v)
∫

f2dμ.

We are left to show that
Λ0(v) ≥ cΛ(B, v). (3.20)

We have in this case, by (3.3),
Λ(B, v) = Λ(B, v).

Therefore, (3.20) will follow from the following lemma, which will finish the proof of
Proposition 3.1.

Lemma 3.2 If B = B (x,R) is not contained in any Ei, i ≥ 0, then

∀ v > 0, Λ(B, v) ≤ CΛ0(v), (3.21)

where the constant C depends on the intrinsic geometry of a precompact neighborhood of
K.
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Proof. Taking into account definition (3.2) of Λ, it suffices to verify that, for some
i ≥ 1 and y ∈ ∂Ei,

Λi(Bi(y, 3R), v) ≤ CΛ0(v). (3.22)

In fact, (3.22) holds for any i ≥ 1 and y ∈ ∂Ei. So, fix some i ≥ 1 and y ∈ ∂Ei.
Consider first the case when

v ≤ v1 := Vi(y, r0).

Then, for some r ≤ r0, we have
v = Vi(y, r).

Set Ω = Bi(y, r) and observe that Ω ⊂ Bi(y, r0) ⊂ Bi(y, 3R), because R ≥ r0. Therefore,
by the Faber-Krahn inequality in Bi(y, 3R),

λ(Ω) ≥ Λi(Bi(y, 3R), v).

On the other hand, the ball Ω may vary only within a compact region around ∂Ei ⊂ ∂K,
which means that its first eigenvalue is comparable to that of the ball of the same volume
in RN . In other words,

λ(Ω) � v−2/N ,

whence we obtain
Λi(Bi(y, 3R), v) ≤ Cv−2/N .

Assume now v > v1. Since Λi is non-increasing in v, we conclude

Λi(Bi(y, 3R), v) ≤ Λi(Bi(y, 3R), v1) ≤ Cv
−2/N
1 .

Combining the two cases, we obtain

Λi(Bi(y, 3R), v) ≤ C

{
v−2/N , if v ≤ v1

v
−2/N
1 , if v > v1

≤ C ′
(

1 +
v0

v1

)2/N

Λ0(v)

= C ′′Λ0(v),

which was to be proved.
Our next goal is to state and prove the main result: an extension of Proposition 3.1

where we do not assume any more that Ei = Mi. The statement will be very similar to
that of Proposition 3.1, but we must modify the definition (3.3) of the function Λ. Fix
some constants P,Q > 1 and set, for any ball B ⊂ M and v > 0,

Λ
∗
(B, v) := min

1≤i≤k
inf

y∈∂Ei

Λi(Bi(y, 3Pρ(B)), Qv), (3.23)

where ρ(B) is the radius of B, and Bi denotes geodesic balls in Mi. Fix also a constant
c > 0 and set

Λ(B, v) :=






Λ0(v), if B ⊂ E0;
Λi(B, v), if B ⊂ Ei, i ≥ 1, but B 6⊂ E0;
cΛ

∗
(B, v), otherwise,

(3.24)

We can now state and prove our main result.
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Theorem 3.3 Assume that each of the manifolds Mi, i = 1, ..., k, is connected, non-
compact, and complete. Assume also that, for each i, the weighted manifold (Mi, μi) admits
the RFK-function Λi. Then the connected sum M =

⊔
i Mi admits the RFK-function Λ

defined by (3.23)–(3.24) for some P,Q > 1 and c > 0.

Proof. We denote by Bi (x, r) the geodesic balls in Mi and by B∗
i (x,R) – the geodesic

balls in Ei considered as a manifold. By Corollary 2.5 (cf. (2.39)), the manifold Ei admits
the RFK-function

Λ∗
i (B

∗
i (x,R) , v) = cΛi(Bi (x, PR) , Qv) (3.25)

Let us choose c so small and P,Q so large that they serve all Ei, i ≥ 1.
Obviously, M is a connected sum of the manifolds Ei, which allows us to use Proposi-

tion 3.1 to compute a RFK-function of M . Let B = B (x,R) be a geodesic ball in M . If
B ⊂ Ei, i ≥ 1, then B is also a ball in Mi and, hence, B admits the FK-function

v 7→ Λi(B, v) = Λ(B, v).

If B ⊂ E0 then B admits the FK-function

Λ0 (v) = Λ (B, v) .

Assume now that B does not lie in any Ei, i ≥ 0. Using Proposition 3.1 (cf. (3.2)) and
(3.25), we obtain that B admits a FK-function

v 7→ min
1≤i≤k

inf
y∈∂Ei

Λ∗
i (B

∗
i (y, 3R), v)

= min
1≤i≤k

inf
y∈∂Ei

cΛi(Bi (y, 3PR)), Qv)

= cΛ
∗
(B, v) = Λ (B, v) ,

which finishes the proof.

3.3 Specific RFK-functions

We derive here consequences of Theorem 3.3 in two special cases as in Theorems 3.4 and
3.5 below. We keep the notation and hypotheses introduced in Section 3.1. The hypotheses
of Theorem 3.3 are also assumed to hold.

Theorem 3.4 Assume that each manifold Mi admits the FK-function Λi(v). Then there
exist constants c > 0, Q > 1 such that M =

⊔k
i=1 Mi admits the FK-function

Λ (v) = c min
1≤i≤k

Λi(Qv). (3.26)

Proof. Indeed, each Mi has the RFK-function

(B, v) 7→ Λi (v) ,

and by Theorem 3.3 M has the RFK-function Λ (B, v) given by (3.23)-(3.24). Given a
precompact open set Ω ⊂ M , choose a ball B containing Ω so large that B not contained
in any Ei. Setting v = μ (Ω), we obtain by Theorem 3.3

λ (Ω) ≥ Λ (B, v) = cΛ
∗
(B, v) = c min

1≤i≤k
Λi(Qv) = Λ (v) ,
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which was to be proved.

Example. Assume that each Mi has the FK-function

Λi (v) = ci

{
v−2/N , v ≤ 1,

v−2/ni , v > 1,
(3.27)

where N is the common topological dimension of all Mi and ni can be called the dimension
at infinity of Mi. Then M =

⊔k
i=1 Mi admits the FK-function

Λ (v) = c

{
v−2/N , v ≤ 1,

v−2/n, v > 1,

where n = min1≤i≤k ni, which follows immediately from (3.26).

Example. Assume that each Mi satisfies the Nash inequality

∀ f ∈ C∞
0 (Mi), ‖f‖2(1+2/ni)

2 ≤ Ci

(∫

Mi

|∇f |2dμ

)

‖f‖4/ni

1 (3.28)

for some ni > 0. Then M =
⊔k

i=1 Mi satisfies the Nash inequality

∀ f ∈ C∞
0 (M), ‖f‖2(1+2/n)

2 ≤ C

(∫

Mi

|∇f |2dμ

)

‖f‖4/n
1

with n = min1≤i≤k ni. This follows from Theorem 3.4 and from the equivalence between
the Faber-Krahn inequality and the Nash inequality that was mentioned in Section 2.1.

Note also that a sufficient condition for (3.28) is the Faber-Krahn inequality with the
FK-function (3.27) with ni ≥ N .

Our next result concerns the case of certain “nice” RFK-functions. Fix α > 0. We say
that a weighted manifold (M,μ) satisfies condition (RFKα) if there exists c > 0 such that
M has the RFK-function

Λ(B, v) = cρ(B)−2

(
μ(B)

v

)α

, (3.29)

where ρ(B) is the radius of the ball B. As we have already mentioned in Section 2.1, a
complete non-compact Riemannian manifold with non-negative Ricci curvature satisfies
(RFKα) with α = 2/N where N = dim M .

Note that if M satisfies (RFKα) for some α > 0 then M satisfies also (RFKβ) for
any 0 < β < α. Indeed, replacing in (3.29) the value of α by a smaller value β reduces
the right hand side in the case v ≤ μ (B). Since for any open set Ω ⊂ B we have always
v := μ (Ω) ≤ μ (B), we obtain that the inequality λ (Ω) ≥ Λ (B, v) will continue to hold
after replacing α by β (the values of Λ (B, v) for v > μ (B) do not matter).

It is known [8, Proposition 5.2] that if M is a complete manifold satisfying (RFKα)
then M satisfies the following volume regularity property : there exists a constant C such
that

∀B′ ⊂ B,
μ(B)
μ(B′)

≤ C

(
ρ(B)
ρ(B′)

)2/α

. (VR)
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In particular, fixing B, letting r(B′) → 0 and using μ (B′) � ρ (B′)N , we obtain from
(VR) that 2/α ≥ N and, hence,

α ≤ 2/N.

Now we assume that, for each i = 1, ..., k, Mi is a complete non-compact manifold that
satisfies (RFKαi) for some αi > 0. For any ball Bi (x, r) in Mi set

Vi (x, r) = μi (Bi (x, r)) .

For any i fix a reference point oi ∈ ∂Ei and set for any r > 0

Vmin(r) = min
1≤i≤k

Vi(oi, r). (3.30)

For any ball B = B(x, r) in M set

F (B) = F (x, r) :=

{
μ(B), if B ⊂ Ei, i ≥ 1,
Vmin(r), otherwise.

(3.31)

Theorem 3.5 Assume that each Mi satisfies (RFKαi) for some αi > 0. Then M =⊔k
i=1 Mi admits the RFK-function

Λ(B, v) = cρ(B)−2

(
F (B)

v

)α

,

where α = min αi, c > 0 and F is defined in by (3.30)-(3.31).

Proof. Since αi ≤ α, we see that each Mi satisfies (RFKα), that is, Mi has the
RFK-function

Λi (Bi (y, r) , v) =
c

r2

(
Vi (y, r)

v

)α

.

By Theorem 3.3, M admits the RFK-function Λ given by (3.23)-(3.24). It follows from
(3.23) that, for any ball B (x, r) in M ,

Λ
∗
(B, v) = min

1≤i≤k
inf

y∈∂Ei

Λi(Bi(y, 3Pr), Qv)

=
c

r2

[

min
1≤i≤k

inf
y∈∂Ei

Vi(y, 3Pr)

]α

v−α. (3.32)

Let us show that for any y ∈ ∂Ei

Vi (y, 3Pr) ≥ cVi (oi, r) .

Indeed, if r is large enough (compared to r0) then B (y, 3Pr) ⊃ B (oi, r), whereas for a
bounded range of r we have

Vi (y, 3Pr) � rN � Vi (oi, r) .

Hence, we obtain from (3.32)

Λ
∗
(B, v) ≥

c

r2
Vmin (r)α v−α.
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Substituting this estimate into (3.24) yields

Λ(B, v) ≥ c






v−2/N , if B ⊂ E0;
r−2 (μ(B)/v)α , if B ⊂ Ei, i ≥ 1, but B 6⊂ E0;
r−2 (Vmin(r)/v)α , otherwise.

(3.33)

If B ⊂ E0 and v ≤ μ(B), then we obtain by α ≤ 2/N and μ (B) ≤ CrN that

v−2/N ≥ cr−2(μ(B)/v)2/N ≥ cr−2(μ(B)/v)α.

Therefore, in the right hand side of (3.33) the first and second line can be combined as
follows:

Λ(B, v) ≥ c

{
r−2 (μ(B)/v)α , if B ⊂ Ei, i ≥ 0,
r−2 (Vmin(r)/v)α , otherwise,

= cr−2

(
F (B)

v

)α

,

which finishes the proof.

4 Upper bound of the heat kernel

In this section we obtain upper bounds of the heat kernel on the connected sum M =⊔k
i=1 M. Each Mi is a complete, connected, non-compact weighted manifold, that satisfies

a certain Faber-Krahn type inequality. By using the results of Section 3, we will derive a
Faber-Krahn inequality on M. By [8], this Faber-Krahn inequality on M implies certain
heat kernel upper bounds. We will also show how to obtain upper bounds for the heat
kernel on M starting from upper bounds on the heat kernel of each Mi.

There are two main types of assumptions on Mi, under which the above scheme works:

(A) Each Mi satisfies (RFKα), that is, admits a relative Faber-Krahn function of the
form (3.29).

(B) Each Mi admits a uniform Faber-Krahn function Λi(v).

4.1 Faber-Krahn inequalities and heat kernel upper bounds

This section contains some preliminary material borrowed mainly from [8]. Let (M,μ)
be a complete connected weighted manifold. For any ball B (x, r) in M set V (x, r) =
μ (B (x, r)). Denote by pt (x, y) the heat kernel on M , that is, the minimal positive fun-
damental solution to the heat equation ∂u

∂t = Lu on M . If M has the boundary δM then
the heat kernel satisfies the Neumann boundary condition on δM .

Proposition 4.1 ([8, Theorem 5.2]) Assume that M has the RFK-function

Λ(B(x,R), v) = a(x,R)v−α, (4.1)
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where α > 0 and a(x,R) is an arbitrary positive function of x and R. Then, for all
x, y ∈ M and t, R > 0,

p(t, x, y) ≤
C

min(t, R2)
1
α (a(x,R)a(y,R))

1
2α

exp

(

−
d2(x, y)

Dt

)

(4.2)

for some C,D > 0 (in fact, D is any constant > 4 and C = C (α,D)).

In particular, if M satisfies (RFKα), that is, has the RFK-function

Λ(B (x,R) , v) =
c

R2

(
V (x,R)

v

)α

,

then (4.1) is satisfied with

a (x,R) =
c

R2
V (x,R)α .

Substituting this into (4.2) and setting R =
√

t, we obtain

p(t, x, y) ≤
C

√
V (x,

√
t)V (y,

√
t)

exp

(

−
d2(x, y)

Dt

)

. (4.3)

Recall that (RFKα) implies the volume regularity condition (VR). Using the latter to
estimate the ratio V

(
x,

√
t
)
/V
(
y,
√

t
)
, one obtains from (4.3)

p(t, x, y) ≤
C

V (x,
√

t)
exp

(

−
d2(x, y)

Dt

)

. (4.4)

For x = y we obtain the diagonal upper estimate

p(t, x, x) ≤
C

V (x,
√

t)
. (DUE)

The volume regularity condition (VR) implies trivially the volume doubling condition: for
all x ∈ M and R > 0,

V (x, 2R) ≤ CV (x,R). (VD)

In particular, we obtain the implication

(RFKα) ⇒ (V D) + (DUE).

It turns out that the converse is also true.

Proposition 4.2 ( [8, Proposition 5.2]) For any complete manifold M , the following
equivalence holds:

(V D) + (DUE) ⇔ (RFKα) for some α > 0. (4.5)
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For the rest of this section, we consider the case when the manifold (M,μ) admits
a uniform FK-function Λ(v). We assume that Λ(v) is non-increasing positive continuous
function on (0,∞), such that ∫

0

dv

vΛ(v)
< ∞. (4.6)

For example, the hypothesis (4.6) holds if Λ(v) � v−ε for small v (where ε > 0).
Given such a function Λ, we associate with it a function z(t) defined for any t > 0 by

means of the following identity:

t =
∫ z(t)

0

dv

vΛ(v)
. (4.7)

The integral in (4.7) converges by (4.6). Due to the fact that Λ is non-increasing, the
integral (4.7) takes arbitrarily large values so that z(t) is defined for all t > 0. Clearly, z
is positive, continuous, increasing and limt→∞z(t) = ∞.

Proposition 4.3 ([8, Theorem 2.1]) If (M,μ) admits a uniform FK-function Λ satisfying
(4.6), then the following upper bound of the heat kernel holds, for all x, y ∈ M , t > 0,

p(t, x, y) ≤
C

z(ct)
. (4.8)

Proposition 4.4 ([9, Theorem 1.1]) Let us assume that the heat kernel on (M,μ) satisfies
the upper estimate (4.8), where z(t) is a positive increasing function on (0,∞) (not nec-
essarily given by (4.7)). Assume in addition that the function z(t) satisfies the following
regularity property:

for some γ > 1 and all t2 > t1 > 0,
z(γt1)
z(t1)

≤ C
z(γt2)
z(t2)

. (4.9)

Then, for all x, y ∈ M and t > 0, we have

p(t, x, y) ≤
C

z(ct)
exp

(

−
d2(x, y)

Dt

)

. (4.10)

Remark. Condition (4.9) does not restrict the growth of the function z. If z is of at
most polynomial volume growth in the sense that z(γt) ≤ Cz(t), for some γ > 1 and for
all t > 0, then (4.9) holds, due to the hypothesis that z is increasing. If z is of at least
polynomial volume growth in the sense that z(γt)/z(t) is increasing, for some γ > 1, then
(4.9) holds with C = 1.

4.2 Case of a relative Faber-Krahn inequality

Throughout this section, we will assume that a weighted manifold M is the connected
sum of M1, ...,Mk as was explained in Section 3.1, where all Mi are connected, complete,
non-compact.

Assume as in Section 3.3 that each Mi satisfies (RFKα), that is, admits the RFK-
function

Λi(B, v) =
c

R(B)2

(
μi(B)

v

)α

, (4.11)
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where c and α are positive constants (we can always take c and α to be so small that they
serve Mi for all i = 1, ..., k). Recall the following notation from Section 3.3: Vmin (r) is
defined by (3.30), that is,

Vmin(r) := min
1≤i≤k

Vi(oi, r)

and F (x, r) is defined by (3.31), that is,

F (x, r) =

{
V (x, r), if B(x, r) ⊂ Ei, i ≥ 1,
Vmin(r), otherwise.

(4.12)

Note that if B (x, r) ⊂ E0 then V (x, r) ' rN ' Vmin (r) so that the condition i ≥ 1 in the
first line of (4.12) can be replaced by i ≥ 0.

Theorem 4.5 Assume that each Mi satisfies (RFKα). Then the heat kernel on M =⊔k
i=1 Mi satisfies for all x, y ∈ M and t > 0 the following estimate:

p(t, x, y) ≤
C

√
F (x,

√
t)F (y,

√
t)

exp

(

−
d2(x, y)

Dt

)

, (4.13)

for some C,D > 0. Consequently, we have for all t > 0

sup
x,y∈K

pt (x, y) ≤
C

Vmin

(√
t
) . (4.14)

Proof. By Theorem 3.5, M admits the RFK-function

Λ(B(x,R), v) = b(x,R)v−α,

where
b(x,R) = cR−2Fα(x,R). (4.15)

Hence, Proposition 4.1 yields, for all x, y ∈ M and all t > 0, R > 0,

p(t, x, y) ≤
C

min(t, R2)
1
α (b(x,R)b(y,R))

1
2α

exp

(

−
d2(x, y)

Dt

)

.

By choosing R =
√

t and by substituting b from (4.15), we obtain (4.13).
The estimate (4.14) is a trivial consequence of (4.13) as in the case x ∈ K we have by

(4.12) F (x, r) = Vmin (r).
By using (3.31), the estimate (4.13) can be written in a more explicit form as follows.

For x ∈ Ei, y ∈ Ej , where i, j ≥ 0 and d = d(x, y), we have

p(t, x, y) ≤ C exp

(

−
d2

Dt

)






1
Vmin(

√
t)

, if B(x,
√

t) 6⊂ Ei and B(y,
√

t) 6⊂ Ej ,
1√

Vmin(
√

t)V (x,
√

t)
, if B(x,

√
t) ⊂ Ei and B(y,

√
t) 6⊂ Ej ,

1√
Vmin(

√
t)V (y,

√
t)

, if B(x,
√

t) 6⊂ Ei and B(y,
√

t) ⊂ Ej ,

1√
V (x,

√
t)V (y,

√
t)

, if B(x,
√

t) ⊂ Ei and B(y,
√

t) ⊂ Ej .

(4.16)
If we assume 0 < t ≤ r2

0, then B(x,
√

t) is necessarily contained in one of Ei, i ≥ 0.
Therefore, we obtain the following
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Corollary 4.6 Referring to Theorem 4.5, we have, for any t ∈ (0, r2
0] and all x, y ∈ M ,

p(t, x, y) ≤
C

√
V (x,

√
t)V (y,

√
t)

exp

(

−
d2(x, y)

Dt

)

. (4.17)

Combining Theorem 4.5 with Proposition 4.2, we obtain the following result.

Corollary 4.7 Assume that each Mi satisfies (V D) and (DUE). Then the heat kernel
on M =

⊔k
i=1 Mi satisfies the upper bound (4.13).

4.3 Case of a “flat” Faber-Krahn inequality

Let us assume that each Mi, i = 1, ..., k, admits a positive FK-function Λi(v) satisfying
(4.7). For each i define the function zi(t) for t > 0 by

t =

zi(t)∫

0

dv

vΛi(v)
. (4.18)

Theorem 4.8 Under the above assumptions the heat kernel on M =
⊔k

i=1 Mi satisfies,
for all x, y ∈ M and all t > 0,

p(t, x, y) ≤
C

z(ct)
, (4.19)

for some positive constants C, c, where

z(t) := min
1≤i≤k

zi(t). (4.20)

Moreover, if z satisfies the regularity condition (4.9), then

p(t, x, y) ≤
C

z(ct)
exp

(

−
d2(x, y)

Dt

)

(4.21)

for all x, y ∈ M and all t > 0.

Proof. By Theorem 3.4 M admits the FK-function

Λ(v) := c min
1≤i≤k

Λi(Qv) . (4.22)

Let us define the function z̃ by

t =

z̃(t)∫

0

dv

vΛ(v)
. (4.23)

By Proposition 4.3, the heat kernel p(t, x, y) on M satisfies, for all x, y ∈ M , t > 0,

p(t, x, y) ≤
C

z̃(ct)
. (4.24)
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Hence, the estimate (4.19) will follow if we prove that

z̃(t) ≥ cz(ct), (4.25)

for some c > 0. Indeed, (4.22) and (4.23) yield

1
Λ(v)

= max
1≤i≤k

1
cΛi(Qv)

≤
k∑

i=1

1
cΛi(Qv)

and

ct = c

z̃(t)∫

0

dv

vΛ(v)
≤

k∑

i=1

z̃(t)∫

0

dv

vΛi(Qv)
=

k∑

i=1

Qz̃(t)∫

0

dv

vΛi(v)
.

Therefore, for some i = 1, 2, ...k,

Qz̃(t)∫

0

dv

vΛi(v)
≥

c

k
t = c′t,

which implies by (4.18) and (4.20),

Qz̃(t) ≥ zi(c
′t) ≥ z(c′t),

and (4.25) follows.
Finally, if z satisfies the regularity property (4.9), then (4.21) follows from (4.19) by

Proposition 4.4.

Example. Assume that each Λi is given by

Λi(v) = c

{
v−2/N , v ≤ 1,

v−2/ni . v > 1.
(4.26)

Then, by (4.18),

zi(t) �

{
tN/2, t ≤ 1,

tni/2, t > 1,
,

which obviously satisfies (4.9). By (4.20), we obtain

z(t) �

{
tN/2, t ≤ 1,

tn/2, t > 1,
,

where n = mini≥1 ni. This function satisfies the regularity property (4.9).

Example. Assume that M consists of two ends, with the FK-functions, given for large v
as follows:

Λ1(v) = cv−1/ν1

and
Λ2(v) = c(log v)1−ν2 ,
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where ν1, ν2 > 1. Then we have, for large enough t,

z1(t) � tν1

and
z2(t) = exp

(
(at + b)1/ν2

)
, a > 0.

Obviously, we obtain z(t) = z1(t) for large t.

We say that a continuously differentiable function f : (0,∞) → (0,∞) satisfies (REG)
if it has the following two properties.

• f(0) = 0, f(∞) = ∞, f ′ > 0 and f ′/f is monotone decreasing;

• there exist ε > 0 such that the function g = f ′/f satisfies

g(t2) ≥ εg(t1) for all 0 < t1 ≤ t2 ≤ 2t1.

By [8, Theorem 2.2] the following is true. If the heat kernel p (t, x, y) on a complete
non-compact manifold satisfies for all x ∈ M and t > 0 the inequality

p (t, x, x) ≤
1

f (t)
,

where f satisfies (REG) then M has the FK-function Λ (v), where Λ is uniquely determined
from f by the identity

t =

f(δt)∫

0

dv

vΛ(v)

with some δ = δ (ε) > 0.

Corollary 4.9 Assume that heat kernel of each Mi satisfies for all t > 0 the estimate

sup
x∈Mi

pi(t, x, x) ≤
1

fi(t)
,

where fi satisfies (REG). Then the heat kernel on M =
⊔k

i=1 satisfies

p(t, x, y) ≤
C

f(ct)
, (4.27)

where f (t) = min1≤i≤k fi (t). Moreover, if f satisfies in addition the regularity condition
(4.9), then

p(t, x, y) ≤
C

f(ct)
exp

(

−
d2(x, y)

Dt

)

(4.28)

for all x, y ∈ M and all t > 0.
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Proof. By [8, Therem 2.2] each Mi has the FK-function Λi that satisfies

t =

fi(δt)∫

0

dv

vΛi(v)
.

By Theorem 4.8 we obtain

p(t, x, y) ≤
C

z(ct)
,

where
z(t) := min

1≤i≤k
fi(δt),

which is equivalent to (4.27).
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