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1 Introduction and statements

Let (M,d) be a locally compact separable metric space and p be a Radon measure on M
with full support. Let (£, F) be a local regular Dirichlet form in L? (M, u) and {X;},~, be an
associated diffusion process on M. Denote by P, and E, respectively the probability measure
and expectation associated with this process starting at the initial point x € M.

Let us assume that the process {X;} has the transition density p; (x,y) with respect to the
measure p; that is, for all z € M, t > 0, and any Borel set A C M

B, (X, € A) = /Apt (1) dps ().

For simplicity, assume further that p; (z,y) is a continuous function of x,y € M for all ¢ > 0.
The function p; (x,y) is called also the heat kernel of the form (&€, F) or of the process {X;}.

We have in mind two kind of examples of the above setting. Firstly, let M be a Riemannian
manifold. Then let d be the geodesic distance, p be the Riemannian volume, and & be the
canonical energy form given by

Elf] = /M V2 dp,

o

and F = H! (M, p) (that is, F is the closure of C§° in W2 (M, p)). In this case, {X;} is the
standard Brownian motion on M, and the heat kernel p; (x,y) exists and is a smooth function
in (t,x,y). There is also a vast literature devoted to upper and lower bounds of the heat kernel
in connection with the geometry of M (see, for example, [6], [8], [13], [25], [27], [28], [29]).

Secondly, let M be one of fractal spaces described, for example, in [1]. Normally, d is an
extrinsic distance, u is a Hausdorff measure, and the energy form (€, F) is constructed by using
graph approximations of M and a scaling limit. On large classes of fractals, it was proved that
the heat kernel exists and is a continuous function of (¢, z,y). Furthermore, on such fractals the
heat kernel admit nice upper and lower bounds (see, for example, [1], [19], [21]).

Returning to the abstract setting, for any x € M and r > 0, set

B(z,r):={ye M :d(z,y) <r}

and let V (z,r) := p (B (z,r)) be the volume of the ball B (z,7). We will assume throughout
that 0 < V (z,7) < oo. The aim of this paper is to provide equivalent conditions for the following
upper estimate of the heat kernel, for a given parameter § > 1 called the walk dimension:

(UEp) : There is a constant C' > 0 such that, for all z,y € M, and for all ¢ > 0,

C d°(z, 71
pi (z,y) < Wexp (— (%) ) ; (1.1)

The form of the estimate (UEjg) is motivated by the following two classes of examples.

1. If M is a geodesically complete Riemannian manifold with non-negative Ricci curvature
then the heat kernel satisfies (UE3) with 8 = 2 (see [23], [10], [26]). If M = R™ with the
standard Euclidean structure then (U E2) holds because in R"™ we have

_ 1 d(z,y)*
pe(2,y) = - n/zeXp< m

and V (z,r) = epr™.



2. On a large class of fractal spaces, one has V' (z,7) ~ r®, and the estimate (UEp) (as well
as a matching lower bound) holds with some 8 > 2 (see, for example, [2], [3], [4]).

In the case of a Riemannian manifold, the necessary and sufficient condition for (UEs3) in
terms of a Faber-Krahn inequality were proved in [11] (see below for more detail). In a general
setting, Kigami [22] proved the necessary and sufficient conditions for (U Ejg) in terms of a local
form of a Nash inequality and a mean exit time estimate. The present paper is largely motivated
by this result of Kigami. Our purpose here is threefold. Firstly, we use a Faber-Krahn inequality
instead of a local Nash inequality to match the aforementioned result of [11]. Secondly, we
improve the argument of Kigami to get rid of some additional technical assumptions. Thirdly,
we prove a new equivalences for (UFEg).

In order to state the results, let us introduce notation and terminology. We say that the
process {X;},~, (or the heat kernel p;) is stochastically complete if

Px(XtEM):/ pt(z,y)du(y) =1 for all z € M and t > 0. (1.2)
M

For any open set () C M define the exit time
T :=inf{t > 0:X; ¢ Q} (1.3)

(here X; ¢ Q means that either X; € Q¢ := M \ Q or X; is in the cemetery, in the case if {X;}
is stochastically incomplete). We will frequently consider the mean exit time from the center of
a ball, which is E;7 (g ).

For any open set Q C M set

FQ):={feF:f=0in M\ Q} (1.4)

and define the spectral gap of Q2 by

Amin () := inf E1/]

_ , 1.5
rerm o 171 (15)

where || f||2 is the norm of f in L? (M, u1). In fact, Ayin (€2) is the bottom of the spectrum of the
generator Hg of the Dirichlet form (£, F (2)) in L? (2, u).

Here and throughout we denote by C' and ¢ positive constants, whose values may change at
each occurrence. Our results are quantitative in the sense that the constants in the conclusions
depend only on the constants in the hypotheses. Consider the following hypotheses that in
general may be true or not, with a fixed parameter g > 1.

(VD) : The volume doubling property: for all x € M and r > 0, V (z,r) is finite, positive, and
V(z,2r) < CV (z,7).

This condition is equivalent to the following: there exists a > 0 such that, for all x € M

and 0 < r <R,
V (z,R) R\“
— =< — 1.

V (x,r) _C(r> (16)

(see Lemma 11.1 below).

(Eg) : The mean exit time estimate: for all x € M and r > 0,

erP < ErT B2y < CrP.



For example, in R™ one has E;7p(,,) = cr?, that is, (E) holds with 3 = 2. The latter is
true also for any complete non-compact manifold of non-negative Ricci curvature. On all fractal
spaces mentioned above, one has (Eg) with § > 2.

(Pg) The ezit probability estimate: for all x € M and r > 0,

P, (TB(:v,r) < 5Tﬁ> <e,
for some ¢ € (0,1) and ¢ > 0.

Note that (E3) = (P3) (see Theorem 9.3). Many equivalent conditions to (Pg) are stated
in Theorem 9.1. In particular, if the process X} is stochastically complete then (Pg) is equivalent
to the following one: there exists 0 < & < % and C > 0 such that, for all z € M and ¢ > 0,

/ pe(z,y)dp(y) > 1 —e.
B(z,Ctl/ﬁ)

(FKg) : The Faber-Krahn inequality: there exists v > 0 such that, for any ball B C M of radius r
and for any non-empty open set 2 C B,

A () > (%) . (L7)

Since p (B) > u(§2), the value of v can be chosen to be arbitrarily small, for example,

v < 1, which will be frequently assumed.

It is easy to see that (FK2) holds in R"™. Indeed, for any bounded open set €2 in R", a
theorem of Faber and Krahn says that

)\min (Q) 2 )\min (Q*)
where Q* is a “symmetrization” of €2, that is, a ball of the same volume as €. If the radius of

Q* is p then we have
/

c c
)\min M) === NG Y )
R
which yields
C/
)\min (Q) 2 T 2n
(@)

We see that (1.7) holds with v = 2/n and 3 = 2 because the terms u (B)” and 2 cancel out. It is
possible to prove that in fact (F'K3) holds on any complete non-compact Riemannian manifold
with non-negative Ricci curvature (see [10]). In this generality, one cannot get rid of the term

w(B)” in (1.7).
(DUEg) : A diagonal upper estimate of the heat kernel: for all x € M and all ¢t > 0,

C

pe (v, ) < W (1.8)

Using the semigroup property, the symmetry of the heat kernel, and the Cauchy-Schwarz
inequality, it is easy to show that (1.8) is equivalent to the estimate

C
pe(z,y) <
VV (@ 8119) V (y,11/9)

for all z,y € M and ¢t > 0. The estimate (1.9) will also be referred to as (DUEjp).

, (1.9)
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(PUER) : An upper estimate with a function ®: for all z,y € M and all t > 0,

C d(x,
(@) < Sy ® < il/ﬁy)) : (1.10)

where ® (s) is a decreasing positive function on [0, +00) such that

/00 s“71d (s) ds < oo, (1.11)

and « is the exponent from (1.6).

For example, (UEg3) can be stated in the form (®U E3) with the function ® (s) = exp(—cs% )
which obviously satisfies (1.11). Therefore, (UE3) = (®PUE3) but a priori (PUEg) is a weaker
condition than (UEg). Since ® is a bounded function, (PUEg) = (DU Eg) by the symmetry of
the heat kernel.

The following theorem is the main result of this paper.

Theorem 1.1 Let (M,d) is a locally compact separable metric space, p be a Radon measure on

M with full support, and (£,F) be a regular Dirichlet form in L? (M, ). Assume in addition
that:

(a) (M,d) is connected and diam (M) = oo.

(b) Measure p satisfies the volume doubling property (VD).
(¢) The form (E,F) is local.

(d) The process { Xt} is stochastically complete.

()

e) The diffusion process {Xi},o associated with (£,F) admits a continuous heat kernel

pe (2, y).

Then, for any B > 1, the following equivalences take place

(UEg) & (®UEp) (1.12)
& (DUEg) + (Pg) & (FKg) + (Pg) (1.13)
& (DUEg) + (Eg) & (FKg) + (Eg) . (1.14)

In fact, Theorem 1.1 is a particular case of a more general Theorem 12.1 where neither
existence nor continuity of the heat kernel is assumed. In fact, the existence of the heat kernel
follows from (FKg) + (Pg) or (FKg) + (Eg). In this generality one cannot guarantee the
continuity of the heat kernel, which makes all argument much more involved. Theorem 12.1 is
proved in Section 12 after some preparation in the preceding sections.

In the setting of Riemannian manifolds, it was proved in [11, Proposition 5.2] that, for § = 2,

(UEQ) =4 (DUEQ) = (FKQ), (1.15)

so that in this case the hypotheses (E3) and (Pg) can be dropped. However, in general (DU Ep)
is not equivalent to (UEg) so that the hypotheses (Eg) or (Pg) cannot be got rid of!. A weak
replacement for (1.15) is the equivalence (1.12).

1 As was pointed out by the referee, a counterexample is obtained by taking a direct product of two spaces
with different values of the walk dimension (.



Kigami proved in [22] that
(UEg) < (DUEg) + (Eg) < (Nash) + (Eg),
where (Nash) refers to a so called local Nash inequality, assuming in addition that

inf V (z,r) >0 for some r > 0. (1.16)
zeM
The present paper is largely motivated by this result of Kigami. Our purpose here is threefold.
Firstly, we use the Faber-Krahn inequality in (1.14) instead of the local Nash inequality to match
(1.15). Secondly, we improve the argument of Kigami to get rid of the additional assumption
(1.16) and of the continuity of the heat kernel. Thirdly, we prove new equivalences (1.12) and
(1.13).

For the equivalence (1.12) it is very essential that the process {X;} is a diffusion (which
is equivalent to the locality of (£,F)). Indeed, let for example {X;} be the symmetric stable
process in R™ of index 3 € (0,2); that is {X;} is generated by (—A)ﬂﬂ, where A is the Laplace
operator. It is known that its heat kernel satisfies the following estimate:

( ) 1 1
P, y) = )
/B d(z, n+p
(1+ t(f};’))

that is (PUER) with ® (s) = W. Although this function satisfies (1.11) (note that here
a = n) and all other hypotheses of Theorem 1.1 are satisfied, too, except for the locality, the
estimate (U Eg) is obviously not true.

ACKNOWLEDGMENTS. The author thanks Martin Barlow, Laurent Saloff-Coste, and Andras
Telcs for useful discussions on the subject.

2 Preliminaries

Unless otherwise stated, here and in the rest of this paper let (M,d) be a locally compact
separable metric space, ;1 be a Radon measure on M with full support, and (€, F) be a regular?
Dirichlet form in L? = L? (M, ).

It is well known that such a form has a generator, which will be denoted by H and which is
a positive definite self-adjoint operator in L?. The domain dom(H) is a dense subspace of F,
and for all f € F and g € dom(H), we have

(f,Hg) =E(f,9)-

The operator H determines a heat semigroup {P;},~, by
Py = exp (~tH),

so that P; is a bounded self-adjoint operator in L? (and even ||P| < 1). In addition, the
semigroup {P;},-, is strongly continuous in L? and is Markovian. The latter means that f >0
implies P.f > 0 and f < 1 implies P,f < 1. and The Markovian properties of P, allow to extend
P, from L' N L? to a bounded operator in L' and then, by duality, to a bounded operator in
L.

2The form (&, F) is called regular if 7 N Co (M) is dense both in F and in Co (M).




Definition. A family {p;},., of i x p-measurable functions on M x M is called a heat kernel
of the form (€, F) if p; is an integral kernel of the operator P;, that is, for any ¢ > 0 and for any
felr?

Rt la) = [ pilen) F@dn() for praa. v € M. (2.1)

Clearly, of a heat kernel exists then, for any ¢ > 0, p; (+,-) is uniquely defined on M x M
up to a change on a set of measure 0. It is easy to see that a heat kernel satisfies the following
properties, for all £,s > 0 and for p-a.a. x,y € M:

e The positivity: p; (z,y) > 0 (follows from P,f > 0 for f > 0).
e The total mass inequality:
/ pe(w, 2)dp(z) <1 (2.2)
M
(follows from P, f <1 for f <1).

e The symmetry: p.(z,y) = pt(y, z) (follows from the self-adjointness of P, that is (P, f,g) ;2 =
(f7 Ptg)L2 ) .

e The semigroup property:

pm@wzéfmmm@wwm (2.3)

(follows from P, s = P, P).

By [9, Theorem 7.2.1], any regular Dirichlet form (€, F) admits an associated Hunt process
{{Xt}tzo APz} e M} where P, is a probability measure defined on the space of paths started

at the point z € M. By [9, Theorem 7.2.2], if the form (&, F) is local (which will be sometimes
assumed) then the process {X;} is a diffusion, that is, the path ¢ — X; is continuous almost
surely.

The transition function Py (z, B) of the Hunt process is defined by

Py (.’E,B) =P, (Xt S B),

where t > 0, x € M, and B is a Borel subset of M. Hence, P, (z,-) is a probability measure
on X (possibly, with added cemetery), for any € M and t > 0. Respectively, P; acts as a
semigroup on the space of bounded (or non-negative) Borel functions® by

ﬂﬂ@zéf@ﬂ@dwz&ﬂ&%

for all x € M and t > 0, where E, is expectation associated with P,.
The relation of the Hunt process with the Dirichlet from is given by the identity

P.f (x) =Puf () for pra.a. x € M and all t > 0, (2.4)
for all bounded Borel functions f; in other words, we have

Pf(x)=E,f(X¢) forp-aa. x€ M andallt>D0. (2.5)

3If the process {X:} is not stochastically complete then the value of f at the cemetery is assumed to be 0.




Note that P,f (z) is defined for p-a.a. x € M, whereas P, f (x) is defined for all x € M. Hence,
the semigroup P; contains some extra information compared to the semigroup P; although P
and P; are identical as semigroups in L*°.
The identity (2.4) allows to extend P:f to Borel functions f from L?. Indeed, assuming
f >0, set
P:f = lim P (f AN n)
n—oo

and observe that the limit is monotone and is finite p-a.a. x € M because so is P, f.

For any open set 2 C M, define F (2) by (1.4) so that (£, F (£2)) is a regular Dirichlet form
in L? (Q, 1) (see [9, Theorem 4.4.3, p.154]). Hence, all notions defined for the form (£, F) make
sense also for the form (£, F (9)), in particular, the generator Hq and the heat semigroup Pf?.
If P{ has a heat kernel then it is called the Dirichlet heat kernel of Q and is denoted by p§® (z,y)
(this terminology is motivated by the fact that in a classical setting p{® satisfies the Dirichlet
boundary condition on 92). It is frequently convenient to extend p{* (x,%) to entire M so that
i (z,9) = 0if = or y is outside Q.

In the general case when the heat kernel does not necessarily exists or is not a continuous
function, we need to modify some of the conditions defined in Introduction as follows. Recall
that 8 > 1 is a fixed real number.

(UEp) : A heat kernel exists and satisfies the estimate

—WGX%_(W&M)%),

Dt (xvy) <

for pra.a. x,y € M\ N and for all ¢t > 0,
(DUEg) A heat kernel exists and satisfies the estimate

(z,y) < < :
VV (018 V (y,11/9)

for pra.a. x,y € M\ N and for all ¢ > 0.

(PUE3) A heat kernel exists and satisfies the estimate

c d(z,y)
Pt(%y) < V(,’L"tl/ﬁ)(b( tl/ﬂ >7

for p-a.a. x,y € M \ N and for all t > 0, where ® (s) is a decreasing positive function on
[0, 400) satisfying (1.11).

Definition. A Borel set N C M is called negligible for the process X; if p(N) = 0 and

P, (Xt € N or X;_ € N for some ¢t >0) =0 forall z e M\N.

(Eg) : There exists a negligible set N C M such that, for all z € M \ N and r > 0,

erP < Ey7B(zr) < crP.



(Pg) There exists a negligible set N C M such that, for all z € M \ N and r > 0,

P, (TB(x,r) < 5Tﬁ> <eg,
for some ¢ € (0,1) and ¢ > 0.

Finally, the conditions (VD) and (FK) remain unchanged. The statement of Theorem 1.1
is then slightly changed: the condition (e) of the existence of a heat kernel is no longer needed
as it is build into (DUEg), (UEg), and (PUEg). This version of Theorem 1.1 is stated below
in Section 12.

3 Heat semigroups and heat kernels

Denote by || - ||, the norm in LP = LP (M, ). Also, denote by esup essential supremum; in
particular, we have || f|loc = esup,; | f]-

Lemma 3.1 If a heat kernel p, (z,y) exists then, for any measurable set U C M, the function

t — esup p (x,y)

z,ycU
is non-increasing on (0, +00).
Proof. We have
esup pi (z,) =sup [ pr () £ (2)9 (0) s () s (5) = sup (Pif.9). (3.1)
z,yelU f,9 JU f.9

where (-,-) is the inner product in L? (M, p) and the supremum is taken over non-negative
functions f,g € L' N L?(U,p) such that ||f|l1 = |lglli = 1. The symmetry of P; and the
semigroup property imply

(Pef.9) = (Pyaf, Poag) < 1PyafllollPryaglle = (Pf, 1)Y? (Pig, 9)Y2,

whence

Sup(Ptfvg) Ssup(Ptfvf)'
f9 f

Since the opposite inequality is trivial, we have in fact

Sup(Ptfag) :Sup(Ptfaf)'
fg f

Finally, (P.f, f) = ||[P,j2f|3 is non-increasing in ¢, whence the claim follows. m

Definition. We say that a semigroup P, is LP — LY ultracontractive (where 1 < p < q¢ < 4+00)
if there exists a positive decreasing function ~y (t) on (0,+00) (called the rate function) such
that, for all t > 0,

1P fllg <~ (@) I fllp forall feLP NI (3-2)

It is easy to see that if P, is LP — LY ultracontractive then P is also L¢" — LP" ultracon-
tractive with the same rate function, where p* and ¢* are the Holder conjugates to p and gq,
respectively. Indeed, any f € L9 N L2, we have by (3.2)

1Pl = sup LI, UL T) WL
geLPNL2\{0} l9llp geLPNL2\{0} llgllp geLPAL2\{0} lgll,

<y @1l



whence the claim follows.

In particular, P, is L' — L? ultracontractive if and only if it is L? — L ultracontractive.
In this case, we say that P, is ultracontractive.

The next lemma relates the ultracontractivity of P, with the existence of a heat kernel
satisfying a uniform upper bound. This fact is well known but there hardly exists a reference
with a detailed proof matching our setting (see [5], [1, Propositions 4.13, 4.14], [8, Lemma 2.1.2],
[29] for proofs in various settings). So, we give a full proof here.

Lemma 3.2 The semigroup P, is ultracontractive with the rate function v (t) if and only if P,
has a heat kernel p, (x,y) satisfying for all t > 0 the estimate

esup py (z,y) < v (t/2)°. (3.3)
z,yeM

Proof. If a heat kernel exists and satisfies (3.3) then we have by (3.1) and (3.3)

(Parf,g) < esup po (2,y) I fllllgls <~ @2 I fllllgll,
z,yeM

for all f,g € L? N L. Taking f = g and noticing that (Pyf, f) = || P.f]|3, we obtain

1P fll2 <~ (@) [1£1]1,

that is, P; is L' — L? ultracontractive.
Conversely, if P; is L' — L? ultracontractive then P, is also L? — L ultracontractive, that
is, for all f € L? and t > 0,

1P flloo < v()[1fl2- (3.4)

Fix t > 0. For any f € L?, P,f is an element of L> N L? and, hence, is defined for u-almost all
x. We would like to choose a pointwise function realization of P, f(z) while keeping the linearity
of P;. Denote by £ the set of all bounded measurable functions on M defined pointwise. Then
L is a Banach space with the sup-norm (in contrast to L> where the norm is the essential
supremum esup). N

We claim that there exists a linear operator* P, : L? — £ such that, for any f € L2,

Bf=Pf pae. (3.5)

and _
sup |Pf| < 4l f (3.6)

Observe that, for any ¢ € L, there exists a norm preserving realization of ¢ in £°°, that is, a
function ¢’ € £ such that

¢ = ¢ p-ae. and sup |<p" = esup |g| .
Indeed, fix any pointwise realization of ¢ and observe that the set

E(p) = {z € M : |p(x)| > esup |¢|}

has p-measure 0. Then define ¢'(x) to be equal to p(z) outside E(p), and to vanish on E(p).

4If M is a Riemannian manifold then ,Pvt f can be defined as a continuous realization of P;f, because of the
hypoellipticity of the Laplace operator. In general, one can only ensure that P; f has a quasi-continuous realization
(see Lemma 7.1). If no point in M is polar (as happens on many fractal spaces) then any quasi-continuous function
is continuous, so that 2 f can again be defined as a continuous realization of P;f. However, this does not work in
general, although the estimates we obtain in this paper can help establishing the continuity of P;f a posteriori.
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Let {vg}re; be an orthonormal basis in L?, and let V' be the set of all finite linear combina-
tions of functions vy with rational coefficients. Define Igtvk to be a norm-preserving realization
of Py in L£%°; then extend ﬁt to the whole space V' by linearity. In particular, we have, for all
fev, N

Pf=Pf p-ae. (3.7)

The set V is countable. Since each set E(P,f) has measure 0, the union U of all sets E(P,f)
over all f € V has also measure 0. Now we modify the definition of P f for every f € V by
setting P, f to be zero on U (and not changing it outside U). Clearly, the linearity and (3.7) are
preserved, but we acquire in addition that

sup ‘ﬁtf‘ = esup | P, f],
which together with (3.4) implies

sup |PLf| < A(0)|flla for all f € V. (3.8)

Hence, P, is a bounded linear mapping from (V, || - [|2) to £°. Since V is dense in L2, P; uniquely
extends to a bounded linear mapping from L? to £, which satisfies (3.5) and (3.6).
Fix € M, and consider a linear functional on L? defined by

f— Pf(x).

By (3.6), this is a bounded linear functional in L?. By the Riesz representation theorem, there
exists a function p;, € L? such that, for any f € L2,

Bof () = (pras f)y2 = /Mpt,ay)f(y)du(y). (3.9)

The function p; (z,y) := pt» (y) will be the heat kernel if we prove that it is measurable jointly
in z,y € M. To that end, we use again the orthonormal basis {vj};-; in L?. For any index k,

the function uy 1= ﬁtvk is in L? and hence is measurable. On the other hand, we have by (3.9),
for all x € M,

ug, () = (Pt,z, V) 2 -

The Parseval identity yields

2
Ipecll3 =D ur (@),
k

whence it follows that the function = — ||p; ;|2 is measurable.
It follows from (3.8) and (3.9) that

[Pell2 < (1) (3.10)

Therefore, for any compact set K C M,

/K (/Mpt (,y)" du (y)> dp (z) = /K pell3dp () < 4% (£) 1 (K) < oo,

and, by Fubini’s theorem, p; (z,y) € L? (K x M). By the local compactness of M, it follows

that p; (z,y) is jointly measurable in z,y.
By the semigroup property and the symmetry of the heat kernel, we have, for y-a.a. x,y € M,
pe(x,y) = /Mpt/Q (2,2) Prya (2,y) dpe (2) < |1Pej.ell2llpejayll2 < v (8/2)7,

which was to be proved. m

11



4 The Dirichlet heat kernel

The results of this section are known in the setting of manifolds (see for example [18], [11], [13],
[7]). Here we have modified the argument to adjust to the present singular setting. Recall that
the spectral gap Amin (€2) is defined by (1.5).

Lemma 4.1 Let U C M be an open set such that p(U) < oco. Assume that, for all non-empty
open sets Q) C U,
Amin () > ap ()77, (4.1)

where a and v are positive constants. Then, for any non-negative function u € F (U) \ {0},
€ [u) > cvallull57|ull T, (4.2)
where ¢, s a positive constant depending only on v.

Proof. Assume first u € F (U) N Cy (U). By the Markov property, for any s > 0 we have
(u—s), € F(U) and
Eu] > & [(u—s),]. (4.3)
The set U := {z € U : u(z) > s} is open. Since (u — s), vanishes outside U, we obtain that
(u—s), € F(Us) whence by (1.5)

E(w=15)y] = Amin (Us) / (u— s)i du. (4.4)

S

Denote for simplicity A = |lu||; and B = ||ul|3. Since u > 0, we have
(u— s)i > u? — 2su,

which implies upon integration

/U(u —5)%du > B — 2sA. (4.5)
On the other hand, we have

1 A
p(v) < 5 [ udu=2,
S U S

and the assumption (4.1) yields

Amin (Us) > ap (Us) ™ > a (%)V. (4.6)
Combining (4.3), (4.4), (4.5), and (4.6), we obtain
€] > Ain (US)/ (w—sPdp>a (%) (B-254).

Taking here s = ﬁ, we finish the proof.
Consider now the general case u € F (U). By the regularity of (€, F (U)), there exists a
sequence {u,} € F (U)N Cp (U) such that
|lup —ull2 — 0 and & [u, —u] — 0. (4.7)

Since p (U) < 0o, the Cauchy-Schwarz inequality yields

[un — ully < v/ p(U)[un — ull2 — 0. (4.8)

For each wy, (4.2) holds by the previous argument. Passing to the limit as n — oo we obtain
(4.2) foru. m

The next lemma is a modification of the Nash argument [24], which allows to obtain a heat
kernel upper bound from the Nash type inequality (4.2) (see also [5], [11, Theorem 2.1]).
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Lemma 4.2 Under the hypotheses of Lemma 4.1, a heat kernel p{ exists and satisfies the
inequality
esup pf (z,y) < C (at) ™" (4.9)
z,ycU

for allt >0, where C = C (v).
Proof. Lemma 4.1 says that, for all non-negative u € F (U) \ {0},
€ [u) > callull 57 [[ull 7> (4.10)

Let f € L? (U, 1) be non-negative and || f||; = 1. Set u; = PV f for all ¢ > 0 and observe that
uy € dom(H) C F where H = Hy is the generator of the form (£,F (U)). Moreover, we have
duy

7 = —Huy, whence

dut
(E,ut) = — (Hut,ut) = —8 [’U,t] .

On the other hand, differentiating the function J(t) := ||u||3 we obtain

dJ d duy
> — 92t
dt dt (utvut) ( dt , U

It follows from (2.2) that ||us]l; < 1. Combining (4.10) and (4.11), we obtain the differential
inequality

1) = —2E [uy]. (4.11)

% < —caJ't,

whence J (t) < C (at)_l/ Y. Consequently, the semigroup P is L' — L? ultracontractive with
the estimate
1Pz < C(at) ™",

whence, by Lemma 3.2, PV has a heat kernel satisfying (4.9). =

5 The transition function and local ultracontractivity

For any open set 2 C M, the Hunt process {{Xtﬂ}po , {]P’g}xeM} associated with the Dirichlet

form (£, F (Q)) is obtained from X; by killing the latter outside Q. The transition function P’
of the process ng is given by

Py (z,B) =P (X; € A) =P, (t < T7q and X, € B)

where 7q is the first exit time of the process X; from 2 defined by (1.3) (see [9, (4.1.2)]).
Consequently, we have

Pif (2) =B (f (X)) = Bo (Lgpargy f (X)) (5.1)

for all z € M, t > 0, and a bounded (or non-negative) Borel function f. For the heat semigroup
Pf! of the form (&, F ()), we have then

P2f(x) =E, (Lyyargy f (Xy))  for praa. z € M. (5.2)

Clearly, the semigroup PtQ is dominated by F;, that is, PtQ f < P, f for any non-negative function
f. In particular, if P; is ultracontractive then PtQ is also ultracontractive.

Definition. A sequence {2, } of subsets of M is called ezhausting if ,, C Q1 and U,Q,, = M.
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Lemma 5.1 If {Q,} 7 isan emhaustmg sequence of open sets in M and a Dirichlet heat kernel
p?” exists for any n then the sequence {pt "} increases, and lim,,_. p; - determines a heat kernel

pt of P

Proof. Since 7q is monotone in €, it is obvious from (5.2) that p{* in monotone in Q. By
(5.2) we have, for any non-negative Borel function f on M,

(Veraaf (D) = [ 28 (@) £ ) du )

for p-a.a. © € M and all ¢t > 0. Letting n — oo and setting p; := lim,, 00 P?", we obtain

E. (f (X)) = /Mpt (.9) f () dps ()

It follows from (2.5) that p; is a heat kernel of P,. m

Definition. We say that the semigroup P; is locally ultracontractive if there exists an exhausting
sequence of open sets {Q}72, such that the semigroup PtQ’“ is ultracontractive for any k =
1,2, ....

It follows from Lemmas 3.2 and 5.1 that if P; is locally ultracontractive then a heat kernel
exists.

Lemma 5.2 If a heat kernel p; (x,y) exists and is locally bounded (that is, belongs to LS. (M x M))
then the semigroup P, s locally ultracontractive.

Remark. As we will see in Lemma 8.1, if the semigroup F; is locally ultracontractive then a
heat kernel exists.

Proof. Since M is locally compact and separable, there exists an exhausting sequence
{Qk}r2, of precompact open sets. By hypothesis, we have, for any F,

i (1) := esup p; (z,y) < 00
xvyeﬂk

By Lemma 3.1, the function =y, () is decreasing. Using the fact that P ¥ is dominated by P;
and the first part of the proof of Lemma 3.2, we obtain that P, 2 jg ultracontractlve with the
rate function ;. m

6 Mean exit time and the spectral gap

Let f be a non-negative Borel function on M and ¢ (t) be a non-negative continuous function
on [0,400). Multiplying (5.1) by ¢ (¢) and integrating in ¢, we obtain, for any open set Q C M
and all x € M,

[e’e) TQ
| e a=E [T o (6.1)
In particular, for ¢ = 1, we obtain

| Per @ de=e, [ ) 62)

whence it follows, for f = 1, that

o0
E,rq = / P (z) dt. (6.3)
0
For any open set ) C M, set B
E(Q) =esupE,7q. (6.4)
x€N
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Lemma 6.1 For any non-empty open set Q C M, we have

‘ "

Amin () > (6.5)

&=

()

Remark. This inequality is well known in the setting of random walks on graphs and diffusions
on manifolds. Here we give a proof in a full generality.

Proof. Let H = Hq be the generator of the form (€, F (Q)) in L? (Q, ). For any T > 0
and consider the following operator

T
Gr :/ e_tHdt:goT(H),
0

where
1—e T

T
o= [ e i =
0 A

Since the function ¢ is bounded and continuous on [0, +00), the operator Gr is a bounded self-
adjoint operator in L2. Since the function o is decreasing, we obtain by the spectral mapping
theorem

o7 (Amin (2)) = @ (inf spec (H)) = sup spec (Gr) .
Note that
sup spec (Gr) = ||Gl|2—2,

where || - ||,—p stands for the operator norm of an operator in LP (€, ). We will prove below
that, for all T"> 0, B
[Gll2—2 < E(Q), (6.6)

Assuming that much, we obtain from the above three lines
er (Amin () S E(Q).

Letting T' — oo and observing that ¢ (A) — 1/A, we obtain (6.5).

To verify (6.6), recall that the operator e/ = PtQ can be considered as a bounded operator
in L°°. Therefore, the operator G also extends to a bounded operator in L. Since PtQ and
Ptﬂ coincide as operators in L*, we see that, for any bounded Borel function f,

T
Grf = /0 (Pf) dt  p-ae..

Therefore, for p-a.a. x € €2, we obtain

G f (x)] < /0 P|f| (x) dt = E, /0 " 1A () dt < (Eurg)sup /],

that is, using (6.4), .
eSglzlp |Grf| < E(Q)sup|f].

This implies, for any g € L' N L? (Q, p),

: (Gry, f) : (9,Grf) _—
IGrgl FeCo(@N\0} || flloo feco(@\{0} || flloo  — gl

that is, _
1Grllie1 < E (D). (6.7)
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Since PtQ is a positivity preserving operator, so is also G, that is f > 0 implies G f > 0,
for any Borel function f. In particular, for any s € R we have Gp (f + 8)2 > 0, that is

Grf?+2sGrf + s°Grl > 0,

whence B
(Grf)* < GrlGrf? <E(Q)Grf
Therefore, B _ B
G f1I3 < E@) Gl < B2 £ = E @) |I£13,
that is

|GTll2—2 < E(Q),

which was to be proved. m

7 Negligible sets

This section is mostly based on the book by Fukushima, Oshima, Takeda [9] and complements
some statements from this book. Our main result here is Lemma 7.5.

Definition. For any set E C M, the capacity cap (also called 1-capacity) is defined by

cap(FE) := igf &1 ¢) (7.1)

where &1 [¢] := € [p] + ||¢||3 and ¢ varies over all functions from F such that ¢ > 1 in an open
neighborhood of E (see [9, p.64]).

Clearly, we have cap(E) > u(E). Also, it is obvious from the definition that cap(F) is
monotone function of E.

Definition. A function f on M is called quasi-continuous if, for any € > 0, there exists an open
set E such that cap(E) < ¢ and f is continuous in M \ E (see [9, p.67]).

Lemma 7.1 ([9, Theorem 4.2.3, p.144]) For any Borel function f € L? and for anyt > 0, the
function x — Pf (x) is quasi-continuous on M.

Definition. A Borel set N C M is called negligible if ;1 (N) = 0 and

P, (Xt € N or X;_ € N for some ¢t >0) =0 forall z € M\N.

Lemma 7.2 If cap(E) = 0 then there is a negligible set N D E.

Proof. Indeed, by [9, Proof of Theorem 4.2.1(ii), p.142], any set of capacity 0 is “excep-
tional”, and by [9, Theorem 4.1.1, p.137|, any exceptional set is contained in a Borel “properly
exceptional” set, which, by the above definition, is negligible. m

Lemma 7.3 Let S be a countable family of quasi-continuous functions on M. Then there exists
a negligible set N C M such that, for any non-empty open set U C M and any f € S,

sup f =esupf and inf f = einf f. (7.2)
U\N U U\N U
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Proof. By [9, Theorem 2.1.2, p.67], if S is a countable family of quasi-continuous functions
on M then there exists a regular nest {Fjy}p., such that f|p, is a continuous function for any
f € S. The term “a regular nest” means that {F}} is an increasing sequence of closed sets in
M such that cap(M \ Fj) — 0 as k — oo, and p (Fj, N Q) > 0 for any open set {2 intersecting
Fy. The set E = M \ U F}, has capacity 0. By Lemma 7.2, the set E of capacity 0 is contained
in a negligible set N. Let us show that, for this set N,

sup f = esup 1,
U\N

and the same will be for inf. Since p (N) = 0, the inequality

sup f > esup f
U\N

is trivial.
Fix f € S, a non-empty open set U C M, and prove the opposite inequality. Since M \ N
is covered by Uy F}, we see that
sup f < lim sup f.
U\N k—oco ynFy,
Since p(U) > 0 and pu(N) = 0, U \ N is non-empty and hence the intersection U N F} is
non-empty for large enough k. Fix € > 0 and find a point « € U N F}, such that

sup f < f(z)+e. (7.3)

UNE,

Since any f € S is continuous on F}, there exists an open set 2 such that x € Q C U and

> .
&%f f(x) - (7.4)
Since pu (2N Fy) > 0, we have
inf f <esu 7.5
Qkaf ngf (7.5)

From (7.3), (7.4), (7.5), we obtain

sup f<esupf—|—25<esupf+26
UNF, QNFy

whence the claim follows by letting e — 0 and k — co. =
The next lemma is a modification of the argument in [1, after Remark 4.13].

Lemma 7.4 Assume that the heat semigroup P; is L?> — L ultracontractive, that is, for any
feL?andt>0,

1P flloo < v (@) 1 £1l2 (7.6)

where 7y (t) is a positive decreasing function on (0, +00). Then there exists a negligible set N C M
such that for all x € M \ N, all Borel functions f € L?, and all t > 0,

Pef (@) <7 @) ]| fll2, (7.7)

where 7 (t) = limg_¢— 7y ().
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Proof. Let Sy be the functional family on M that consists of all finite linear combinations
with rational coefficients of indicator functions 1, where B runs over a countable family of
precompact open sets in M, which form a base of topology of M. Note that Sy is a countable
set, Sp is a vector space over Q, and Sy is dense in L2,

Let us show the closure Sy of Sp under pointwise limits coincides with the set of all Borel
functions on M. Indeed, observe first that Sy is a linear space over R. Next, for any open Q2 C M,
the function 1g is in Sp because (2 is a union of elements from the base. Hence, also functions
1o, — 1q, are in Sy for any two open sets (21, y. Therefore, for any continuous function f on
M, all the functions of the form 1;,< ;<) are in /S\S, for all real a,b, and so are the functions

n—1

Z akl{ak§f<ozk+1} (78)
k=0

for any sequence ap < g < ... < ay, of reals. Since functions of the form (7.8) tend to f pointwise
for appropriate choice/\(/)f partition, we see that any continuous function is in §6. Hence, all Borel
functions are also in Sj.

Let S be the family of all functions of the form P, f where f € Sy and ¢ is a positive rational.
Then S is countable, and every function from S is quasi-continuous by Lemma 7.1. Let N be a
negligible set that exists for the family S by Lemma 7.3, so that, for all functions f € Sy and
for all t € Q4, we have

sup |Pyf| = esup [Pf| = [[Pflloo- (7.9)
M\N M

In particular, for any z € M \ N, we obtain

Pef (@) < Peflloc < v (@) [ f]]2-

Since Sj is dense in L2, we conclude by the Riesz representation theorem that, for all x € M\ N
and t € Q., there exists p;, € L? such that, for all f € Sy,

Pif (z) = /M praf dp. (7.10)

It is clear that
[pt,xll2 <7 ().

From the positivity preserving of P;, we conclude that p;, > 0 p-a.e. and from P;1 < 1 we
obtain that

/ pradp < 1. (7.11)
M

Since P (z,-) is a probability measure, the both sides of (7.10) will survive passage to a limit in
f provided the sequence of functions is bounded and converges pointwise. Hence, we conclude
that (7.10) holds for all bounded Borel functions f. Taking monotone increasing limits, we
obtain (7.10) for all non-negative Borel functions. Hence, for any Borel function f € L2, for any
x € M\ N, and t € Q4, we have

Pef (@) < Pelfl < llpeallallfllz < v (&) [1f[l2-

To finish the proof, we need to extend this inequality to real t. Let ¢ > 0 be real, and let s < t
be a positive rational. Then we have

Pof (2) = Py (Prsf) (z) = /M Do (Prosf) dit,
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and it follows from (7.11) and (7.6) that
Pef ()] < Pr-sflloo <7 (= 3) I f]2-

Passing to the limit as s — 0 we finish the proof. m

Lemma 7.5 Assume that the semigroup P; is locally ultracontractive (that is, there exists a
ezhausting sequence of open sets {Qi}p—, in M such that the semigroup Ptﬂ’“ 1s ultracontractive
for any Q). Then there exists a negligible set N C M such that, for any non-negative Borel
function f on M, for any non-empty open set U C M, and for any t > 0,

sup Prf = esup P; f. (7.12)
U\N U

Proof. It suffices to prove that
sup Py f < esup Py f (7.13)
U\N U

because the opposite inequality trivially follows from pu (N) = 0. Note that if (7.13) holds for
some set N then it holds also for any larger set N. Let us also observe that (7.13) survives
increasing monotone limits in f; that is, if { f} is an increasing sequence of functions for which
(7.13) holds and if fj converges to f pointwise then (7.13) holds also for the limit function f.
Indeed, by the monotone convergence theorem, P, fi tends to Py f pointwise. Hence, we obtain

sup Pef = lim sup P fi < lim esup Pifr < esupPf.
U\N k—ocop\N k—oo U
Note that it suffices to prove (7.13) assuming that P, is ultracontractive. Indeed, if we know
that then applying it to Ptﬂ’C we obtain that there exists a negligible set N such that, for any
non-negative Borel function f on M, for any non-empty open set U C M, and for any ¢ > 0,

sup PtQ’“f < esup PtQ’“f.
QkﬂU\Nk kaU

Taking N = UNy, letting k£ — oo, and noticing that the sequence {73? kf } is monotone increas-

ing, we obtain (7.13).

Next, it suffices to assume that f € L? = L? (M, z1). Indeed, an arbitrary non-negative Borel
function f can be approximated by an increasing sequence { fx} of non-negative Borel functions
fr € L?, which converges to f pointwise, whence the claim follows.

Hence, we assume in the sequel that P, is ultracontractive and f is a non-negative Borel
function from L2. Let us first fix such a function f and construct a set N = Ny so that (7.13)
holds for this particular f and for all U and t. Let Sy be the functional family that consists of

all functions of the form .

Z kg <f<anii}s

k=0
where n is any positive integer, and 0 < a1 < ag < ... < a,, are rational. Clearly, the set Sy
is countable, and there is a sequence of functions {gr} C Sy that increases and converges to f
pointwise.

Let S be the family of all functions of the form P;g where g € Sy and t is a positive
rational. Then S is countable, and every function from S is quasi-continuous by Lemma 7.1.
Let N = Npemma 7.3 be a negligible set that exists for the family S by Lemma 7.3, and let
N = Npemma 7.4 be the negligible set that exists by Lemma 7.4; let us set

N = NLemma 7.3 U NLemma 7.4-
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In particular, we have
sup Prg < esup P:g (7.14)
U\N U
for all non-empty open sets U, all positive rationals ¢, and all g € Sy. Let {gr} be an increasing
sequence converging to f pointwise. Applying (7.14) to ¢ = g and passing to the limit as
k — oo, we obtain (7.13) for rational ¢ > 0.
Let us now show that (7.13) holds also for all real ¢ > 0. Before that, let us verify that

sup |Psf —Puf[ =0 ass—t+. (7.15)
M\N

Indeed, by Lemma 7.4 and f € L?, we obtain

sup |Psf — Pef| = sup [Py (Ps—tf = )| <) [Psetf — flla =0 ass—1t+.
M\N M\N

Now fix a real ¢ > 0 and let {sx} be a decreasing sequence of rationals converging to t. We
already now that

sup P, f < esup Ps, f.
U\N U

Passing to the limit as k — oo and using (7.15), we obtain (7.13).

Now let us show that a set N can be chosen so that (7.13) holds simultaneously for all non-
negative Borel functions from L?. There exists a countable dense subset of L?. Replacing any
function in this subset by its positive part and taking its Borel version, we obtain a countable set
S1 of non-negative Borel functions in L? which is dense in L%r. Choosing as above a negligible
set N = N, for each function g € S; and then setting N = J ses; Ng, we obtain a negligible set
N that serves all functions from 57 simultaneously.

Let us show that, with this set NV, (7.13) holds for any non-negative Borel function f from
L?. Let {f} be a sequence from S; that converges to f in L2. By the ultracontractivity of P;,
we obtain, for any ¢ > 0,

[Pefic = Peflloo <7 () Ife = fllz =0 as k — oo (7.16)

By Lemma 7.4, we have, for any x € M \ N,

Pefr (@) = Pof @) <7 @) [fe = fll2 =0 as k — o (7.17)

For any function f, for any open set U, for any ¢ > 0, and for any x € U \ N, we have

Pifi (z) < esup Py fr

Letting k — oo and using (7.16) and (7.17), we obtain

Pif () < esup P.f
U

whence (7.13) follows. m

8 The transition density

Definition. A family {p; (z,y)},., of measurable functions on M x M is called a (symmetric)
transition density of the process {X;} if the following properties are satisfied:
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1. There exists a negligible set N C M such that for all z € M \ N, for all ¢ > 0, and for all
bounded Borel functions f on M,

Pof (x) = /M B (,y) £ () d (v) (8.1)

2. For all z,y € M and t > 0,
ﬁt (‘T’ y) = ﬁt (ya :C) . (82)

3. For all x,y € M and t,s > 0,

Brrs (2,y) = /Mﬁt (2,9) Fa (4, 2) dp (). (8.3)

Clearly, if a transition density p; (x,y) exists then its is also a heat kernel. However, unlike
a heat kernel, which is defined almost everywhere, a transition density is defined everywhere.

Lemma 8.1 If the semigroup P; is locally ultracontractive then a transition density exists.

Proof. Assume first that P; is ultracontractive with a rate function 7 (¢). By Lemma 7.4,
there exists a negligible set N C M such that for all z € M \ N, t > 0, and Borel functions
fer?

Pef ()] <7 () | fl2,

where 7 (t) = v (t —0). By the Riesz representation theorem, for any € M \ N and ¢t > 0,
there exists py . € L? such that

Ptf ((L‘) = (pt,x7f)7

for any Borel function f € L2 In fact, the function p: (z,y) = pt . (y) is a heat kernel. For all
x,y € M \ N, define a transition density by

ﬁt (xu y) = (ps,xvpt—s,y) 5 (8'4)

where 0 < s < t. It was shown in [30] that the right hand side in (8.4) does not depend on s
and that p; (x,y) is indeed a transition density on M \ N. Extending p; (z,y) to all z,y € M
by setting it equal to 0 if z € N or y € N, we conclude the proof.

Assume now that P; is locally ultracontractive, that is, Ptﬂ’“ is ultracontractive for an ex-
haustive sequence {2} of open sets. By the above argument, a transition density ﬁ? k exists for
all Q, with a negligible set Nj, C Q. Setting N = |J, Ny and p; = limy_o ﬁ?’“, we obtain a
transition density on M. m

Corollary 8.2 If a heat kernel exists and is in Ly, then a transition density also exists and is
in Ly .

Proof. Indeed, the existence of a transition density follows from Lemmas 5.2 and 8.1. The
local boundedness follows from the fact the transition density is equal to the heat kernel p-a.e..
]

Lemma 8.3 Assume that a transition density p; (x,y) exists and is in LS. Then there exists
a negligible set N C M such that, for all non-empty open sets U,V C M and t > 0,

sup Py (z,y) = esuppg (z,y) . (8.5)
zeV\N z€V
yeU\N yeu
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Proof. Since p; > 0 p-a.e., the identity (8.1) extends to all non-negative Borel functions f.
Set Pt := pt (x,-) so that (8.1) takes the form

Pif (x) = /M Brof dp.

Changing here ¢ to s and setting f = p;—s, where y € M and 0 < s < t, we obtain, using also
(8.2) and (8.3), that for all z € M \ N,

Psﬁt—s,y (.%') = / ﬁs,zﬁt—s,ydﬂ = ﬁt (x7 y) .
M
By Lemma 5.2, the semigroup P, is locally ultracontractive. Therefore, by 7.5, we have

sup Psf = esup Ps f,
V\N 1%

for any non-negative Borel function f (we can assume that the negligible set N from Lemma
7.5 is the same as the one from Definition 8; otherwise, just take the union of the two negligible
sets). Hence, we conclude that, for any y € M,

sup Py (z,y) = esup pg (z,y) . (8.6)
zeV\N zeV

By symmetry, we have also, for any x € M,

sup py (x,y) = esup pt (z,y) .
yeU\N yelU

Taking in (8.6) supremum in y we obtain
sup sup pg(z,y) = sup esupp (z,y)
yeU\N zeV\N yeU\N zeV

= sup _inf sup p;(x,y)
yeU\N E,u(E)=0 zeV\E

< inf  sup sup Py (z,y)
E.u(E)=0 yeU\N zeV\E

= _inf sup sup p;(z,y)
E,u(E)=0 xcV\E yeU\N

= esupesupp; (z,y),
zeV yeU

whence (8.5) follows (the opposite inequality is trivial because p(N) =0). =

Corollary 8.4 Assume that there exists a heat kernel p (x,y) such that py € Ly, for allt > 0
and

Dbt (.’L’,y) S Ft (xvy)v (87)

for all t > 0 and for p-a.a. x € V, y € U where V,U are non-empty open subsets of M and
F, (z,y) is a continuous function on V- x U for any t > 0. Then there exists a transition density
pt (z,y) and a negligible set N C M such that

ﬁt ('T’y) SFt ('T’y)’ (88)

forallt >0 andx € V\N,yeU\N.
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Proof. By Corollary 8.2, a transition density p; (z,y) also exists and, hence, satisfies (8.8)
for all t > 0 and for p-a.a. x € V, y € U. Let N be a negligible set from Lemma 8.3, and let us
prove that (8.8) holds for all t >0 and x € V\ N,y € U\ N. Fix xg € V\ N, yo € U\ N, and
choose open sets V) C V and Uy C U containing zy and yg, respectively. Then, by Lemma 8.3,

Pt (z0,y0) < sup pr(z,y) = esupps (x,y) < esup F; (z,y) = sup F (z,vy).
z€Vo\N I z€Vp I
yeUo\N y<lo yelo y<lo

Shrinking Vy and Uy to the points x¢ and yg, respectively, and noticing that

sup Fy (z,y) — F (w0, y0) ,
zeVy
yelo

we conclude the proof. m

9 The exit time

In this section, we assume that (M, d) is a locally compact separable metric space, i is a Radon
measure on M with full support, (£,F) is a local regular Dirichlet form in L% (M, ), and

{{Xt}t>0 APz} e M} is the associated diffusion process. The main point of the next statement

is to provide criteria for the estimate (9.3) of the exit time probability, which will be used later
in Theorem 9.3.

Theorem 9.1 Assume that {X;} is a diffusion and {X;} is stochastically complete. Then, for
any B > 1 and for any negligible set N C M, the following are equivalent:

(i) There exists 0 < e < % and § > 0 such that, for all0 <t < 6 and x € M \ N,

P, (X € B(z,7)°) <e

(i3) There exist 0 < e < 1 and § > 0 such that, for all 0 <t < 6r% and x € M \ N,
Py (7B <t) <e.

(i91) There exist € > 0 such that, for all >0 and x € M \ N,
E, (TB(:M) A ’I“ﬁ) > erf.

(tv) There exist 0 < e <1 and § > 0 such that, for all v > 0, A > (57“[3)71 and x € M\ N,
E; exp (—)\TB(LT)) <e. (9.1)

(v) There exist ¢,C > 0 such that, for all ;A >0 and x € M \ N,
o)) < Cexp (—c)\l/ﬁr) . (9.2)

E, exp (—)\TB(

(vi) There exist ¢,C > 0 such that, for all r,t >0 and x € M \ N,
NG
P, (TB(LT) < t) <Cexp| —c <7> (9.3)
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Remark. The hypothesis of stochastic completeness is only used in the proof of the implication
(i) = (4i). As one can see from the proof, without stochastic completeness all the conditions
(79) — (vi) are still equivalent and imply (7).

Proof. (i) = (ii). Let us set

my (r) := sup sup P, (X; € B(z,1)°).
0<s<t ze M\N

Fix x € M\ N and set A= B (x,r), U = B(x,2r). By the stochastic completeness of {X;}, we
have
P, (Xt € A)=1—-P, (Xy € A°) > 1 —my (1), (9.4)

whereas by Lemma 10.1

P, (X; € A)—PY (X, € A) < sup sup P.(X,€A). (9.5)
0<s<t zeOU\N

Figure 1: The ball U = B (x,2r) and a point z € 9U.

For any 0 < s <t and z € OU \ N we have d(z, A) > r and hence
P, (Xs € A) <P, (Xs € B(2,7)°) <my(r)
(see Fig. 1). Subtracting (9.5) from (9.4), we obtain
PU (X, € A) > 1 —2my (1),
whence it follows by (5.2) that
P,(t >t) =PV (X; €U) >1—2my (r).

Therefore,
P, (tu <t) < 2my(r), (9.6)

which, by hypothesis, is bounded by 2¢ provided ¢t < §r”. Noticing that 2¢ < 1 and renaming
2e by €, we finish the proof.
Note that the inequality (9.6) can also be extracted from [1, Lemma 3.9].

(i) = (iii) . Denoting T = Tp(s ), We have
E, (T/\Tﬁ) >E, (1{T>5rﬁ}7’/\rﬁ> >P, (7’ > 5rﬁ> AP >1—e)(0A1)rP,
whence the claim follows.
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(7i1) = (iv) . For all non-negative reals A, 7,t, we have the elementary inequality
e M <1—Xe M(T AL,
which is trivially verified by considering two cases 7 > ¢ and 7 < {. Therefore, for 7 = T, )
and t = 1%, we obtain
Eye M <1-— )\e_’\rﬁEz (7’ A 7“’6) <1- erBre= A"
Setting A =~ we obtain
Eye ™ <1—ce L.

The same inequality holds also for all A > r—7 and, hence, the condition (iv) is satisfied with
d =1 (in fact, it is satisfied with any 6 > 0).

(iv) = (v). For a positive number n, set p = r/n, and consider the sequence of balls
By, = B(x,kp), k =1,2,...,n. Set 7, = 7, and observe that, for any € M \ N,
E,e Mkt =, (ef)‘Tke*)‘(T’“H*T’“)) =E, (efATkEXTk ef)‘T’““) . (9.7)

Since X;, € 0By \ N with P,-probability 1 and, for any y € 0By, we have 7411 > Tp(,,,) and
hence
Eye Ah+t < Eye B,

we obtain from (9.7), for any z € M \ N,

Eye o1 <Eue ™™™ sup [E, e A Bw») (9.8)
yE@Bk\N

(see Fig. 2).

Figure 2: The stopping times 7 and 7541

Now choose n so that

\ > nf 1
—orB §pP
(if no positive integer n satisfies (9.9) then (9.2) is trivially true for large enough C'). Applying
the hypothesis (9.1) in the ball B (y, p), we obtain, for any y € M \ N,

(9.9)

Eyef)‘TB(y,p) <e

25



whence by (9.8)
Eye 1 < cB e Mk,

Iterating this inequality and noticing that 7p(, ) = 7, we conclude that for n satisfying (9.9),

Emef)\TB(z’T) < e — e—an

)

where a = log% > 0. Taking the largest n satisfying the inequality (9.9) and noticing that, for
this n,
n>OANYPr -1,

we obtain
E e B < exp (—aél/ﬁ)\l/ﬁr + a) ,

which was to be proved.

(v) = (vi) . We have, for 7 = 7,y and A > 0,

P, (r<t)=P, (e_)‘T > e_kt) < eME e < Cexp ()\t — c)\l/ﬁr) .

_B_
Choosing A = (%) f-1 we obtain the claim.

(vi) = (it) . We have

1
B\ -1
Py (TB(:v,r) < t) < Cexp <_C <%> ) .

If t < 6r” and § is small enough then the right hand side can be made arbitrarily small, whence
the claim follows.
(#9) = (i) This is trivial because

Py (Xi € B(x,7)°) <Py (Tpuy) < t).
| ]

Lemma 9.2 If f is a bounded non-negative Borel function on M and

u::/ Pufdt < o0
0

then, for any A > 0,
u= / e MPy (f + M) dt. (9.10)
0

Remark. If M is a precompact open set on a Riemannian manifold and P; is the transition
function associated with the Dirichlet Laplacian on M then the function u solves the equation
Ay = — f with the vanishing Dirichlet boundary condition. Subtracting Au from the both sides,
we obtain

Au—du=—(f+ ),
whence (9.10) follows. The proof below is an abstract version of this argument.

Proof. If A =0 then (9.10) is trivial, so we can assume A > 0. For any s > 0, we have
u = / P f dt + / PsPi_sf dt = / Ptfdt+733/ Pi_sfdt = / Pif dt + Psu.
0 s 0 s 0
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Multiplying this identity by Ae™* and integrating in s from 0 to oo, we obtain

u = / e ( / Ptfdt> ds + / e NP ds
0 0 0

= / < / )\e)‘sds) P, fdt + / e P ds
0 t 0

= / e’\tPtfdt—f—/ e Py (M) ds,

0 0

whence (9.10) follows. m

Theorem 9.3 If {X;} is a diffusion process and (Eg) holds then there exist positive constant c
and C' (depending on the constants in the condition (Eg)) such that

1
B -1
P, (TB(LT) <t) <Cexp (—c (%) ) ) (9.11)

for all r,t > 0 and for all x € M \ N, where N is the negligible set from the condition (Eg).

Remark. The fact that (Eg) implies (9.11) is basically due to M.Barlow and can be extracted
from [1, Theorem 3.11]. Here we give a new proof of that. See also [17] for an alternative proof
of Theorem 9.3, and [15, Proposition 7.1], [16, Lemma 6.3] for similar estimates for random
walks on graphs.

Proof. Fix a point z € M \ N and r > 0, and set U = B (x,r). Consider a function v in U
defined by

(e 9]
u:=E71y = / Pl 1dt.
0
The upper bound in the condition (Eg) implies

sup u < C'rP. (9.12)
U\N

Indeed, for any y € U \ N we have U C B (y,2r) and, hence,
Eyry <EyTpyar) <C (2r)ﬁ.
Set

1
A\ =

= (9.13)
SUP(\ N U

and notice that Au < 1in U \ N; since the set N is negligible, this implies that everywhere
Py (Au) < PY1.

By Lemma 9.2 we obtain
[e.e] o0
u= / e MPY (14 M) dt < 2/ e MPY1dt.
0 0
On the other hand, for any A > 0, we have the identity

E,e U =1 -\ / e MPU1 () dt, (9.14)
0
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which follows from (6.1) with ¢ (t) = Ae™*. Comparing the above two lines, we obtain, for A
as in (9.13) and for all y € M,

A
E,e U <1 — Zu ). (9.15)
Using the lower bound in (Ejg) and (9.12), we obtain
C/
w(z)>er® > supu=—,
U\N A
which together with (9.15) yields
/
_ c
Exe ATu S 1-— 5
Clearly, the last inequality remains true also for A > SupUl\Nu and, in particular, for A > c%ﬂ'

The proof is concluded by application of the part (iv) = (vi) of Theorem 9.1. m

10 Estimating heat kernel using exit probabilities

In this section, we assume that the form (£, F) is a local, and hence {{Xt}tzo , {Px}meM} is a

diffusion process. As before, we denote by 7y the first exit time from a set U (see (1.3)). For
any open set U C M, define the exit probability function ¥V (z,t) as follows:

WY (z,t) =P, (1 < t).

In words, Y (x,t) is the P,-probability that X; exits U before time ¢. Our main result in this
section is Theorem 10.4 that provides a certain upper bound of the heat kernel of X; using the
exit probabilities.

The next lemma will not be directly used in the proof of Theorem 10.4, but it introduces
the argument in a simpler setting. Besides, a weaker version of this lemma will be used in the
proof of Theorem 1.1. Recall that Py is the transition function defined in Section 5.

Lemma 10.1 Let N C M be a negligible set for the diffusion {X;}. Let U be a non-empty open
subset of M, and f be a non-negative Borel function on M such that f =0 in M \ U. Then,
for allx € U\ N and all t > 0,

Pef(x) <PYf(x) + 47 (2,t) sup  sup Psf (2) . (10.1)
0<s<t z€QU\N

Remark. One can always take here N = (), which is a perfectly good choice in the case when the
function z — P, f (z) is continuous. Otherwise, the supremum of P f (z) over the full boundary
OU may be not under control, so one has to reduce it by removing some singularities of this
function.

We will use (10.1) for f = 1p, where B is a Borel subset of U, in which case we obtain

P, (X; € B) <PY(X; € B) + ¢V (2,t) sup sup P, (X, € B). (10.2)
0<s<t zedU\N

Proof. Without loss of generality, we can assume that the function f is bounded and its
support is compact (otherwise, approximate f by an increasing sequence of bounded functions
with compact supports). Writing 7 = 77, we obtain by the strong Markov property

Pif (x) = Eof (Xt)
= Eu (Lo f(X0)) + Eo (Lr<iy f (X0))
= E/f (X)) +Er (Lir<nEx, [ (Xi—r))
= PYf(x) + By (LipeyyProrf (X7)) . (10.3)
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For any = € U, we have X, € OU with P,-probability 1. If x € U\ N then P, (X, € N) =0
and hence X, € OU \ N with P,-probability 1. Therefore, we obtain, for any x € U \ N,

Pthf (XT) S sup sup Psf (Z) Px_a's”
0<s<t z€9U\N

whence

Ey (Lir<qyPrrf (X)) <Pu(7<t) sup sup Psf(2). (10.4)
0<s<t 2€U\N

In fact, the range 0 < s <t for the variable s can be replaced by 0 < s < ¢ for the following
reason: if 7 = ¢ (which corresponds to s = 0) then P, f (X;) = f (X;) = 0 because f =0 on
OU. Hence, (10.1) follows from (10.3) and (10.4) with the above improvement. m

Let A; be the o-algebra of events in the space of all continuous paths w : [0,+00) — M,
which is generated by all events {w : w (s) € B} where 0 < s <t and B is a Borel set in M. For
any A;-measurable random variable ¢, define a random variable &¢ by

¢ (w) =& (W),

where w' := w (¢ — -) . Although the path w’ is defined only on [0, ], the value £ (w') still makes
sense because ¢ is A;-measurable.

Lemma 10.2 If £ is a non-negative A;-measurable random variable then, for all non-negative
Borel functions f,g on M,

[ Ba(er G @au @) = [ By (€9(X0) £ ) lo). (10.5)

Proof. It suffices to verify (10.5) for cylindrical random variables £, that is, for £ in the
form

§=h1(Xy,) ha (Xy,) - (X4,)

where 0 < t; < tg < ... < t, < t and hj are non-negative Borel functions. For such ¢, (10.5)
amounts to the identity

/M B, (f(Xe)hn(Xy,)-.-h1(Xe,)g(Xo)) dp(x) = /M Ey (9(Xe)h1 (Xi—ty)---on (Xi—t, ) f(X0)) du(y),

which was proved in [9, Lemma 4.1.2, p.135]. =
The next statement is crucial for Theorem 10.4, and is a refinement of Lemma 10.1.

Lemma 10.3 Let N C M be a negligible set for the diffusion {X;}, and let U and V be two
non-empty open subsets of M such that either U CV or UNV = . Let f,g be non-negative
Borel functions on M, and let f]M\U = 0. Then, for all a,b,t > 0 such that a + b =t, we have

[ ®ngan < [ P ngas (10.6)
1% 1%
+osup sup Puf(v) / B (2,0) g (2) dpt (2) (10.7)
b<s<tvedV\N v
+osup sup Pag(u) / WU (,5) £ () d (9) (10.8)
a<s<t u€dU\N U
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Remark. If in addition g[y; 1 = 0 then integration in all terms in (10.6)-(10.8) can be extended
to entire space M. In this case, the left hand side of (10.6) is symmetric in f, g (while the right
hand side of (10.6) is always symmetric in f, g). Observe also, that if U and V are disjoint then
the term [i, (P} f) gdp in (10.6) vanishes because f =0 in V and hence P} f = 0.

Proof. Without loss of generality, we can assume that both functions f and g are bounded
and with compact support, so that all the terms in (10.6)-(10.8) are finite (in general, approxi-
mate each of the functions f and g by an increasing sequence of bounded functions with compact
supports). Using P, f (z) = E, f (X;) and

Ptvf(x) =E, (1{Tv>t}f (Xt)) )

we obtain
Puf (x) <P/ f(z) +E, (Lry<arf (X0)) + Eo (Lia<ry <t f (X1)) - (10.9)
Assuming z € V '\ N, let us estimate the middle term in (10.9) similarly to (10.4), that is

Eo (Lry<af (X)) = Eo (Liry<aBx,, f (Xiry))

< Py(ryv <a) sup sup Pyf (v),
b<s<t vedV\N

which implies

/Em (Lry<ayf (Xe)) 9 (z) du(z) < sup  sup Psf(v)/ Po (v < a) g(x)dp(z).  (10.10)
1% b<s<tvedV\N 1%

To estimate the last term in (10.9), consider the random variable § = 1¢,<;, <. For any
continuous path w that intersects 0V between times 0 and ¢, we have

Tu (w) <t —r7y (W),

because by hypothesis 9V is outside U (see Fig. 3 and 4).

Figure 3: Case U C V.

Therefore, a < 7y (w') < ¢ implies Ty (w) < t—a = b, which means that £ (w') < 14, <p (w)
and hence ¢ < 1{7,<py- Using (10.5) and f|ynp = 0, we obtain

| B (Gusrcf () 9@ dnte) = [ B, (€19.(X0) £ ) du )
M M
< [ By (s (X0) £ () di ).
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T,(w)

Figure 4: Case of disjoint U and V.

Similarly to (10.10), we obtain, for any y € U \ N,

Ey (Lry<pyg (X)) <Py (ry <b) sup  sup Pag(u),
a<s<tucdU\N

whence it follows that

/Ex (L{a<rv<nyf (X1)) g(a)du(a) < sup  sup Psg(U)/Py (v <b) f(y)du(y). (10.11)
\% a<s<t ucdU\N U

Finally, integrating (10.9) over V against measure g () du(x) and using (10.10) and (10.11), we
finish the proof. m

Theorem 10.4 Assume that the diffusion {X;} has a heat kernel p; (z,y) which, for anyt > 0,
is a L3S -function on M x M. Let U and V' be arbitrary non-empty open subsets of M such that
either U CV orUNV =0, and U’ and V' be open sets containing OU and OV, respectively.
Then, for p-a.a. x €V, y € U and for all t > 0, we have

pe(z,y) <p/ (z,y)+¢" (z,4) sup esupps(v,y) +¢Y (y,5) sup esupps (u,z). (10.12)
t/2<s<t veV’ t/2<s<t uclU’

Remark. If V and U are disjoint then p} (x,) = 0 so that we have

pe(z,y) <P (z,5) sup esupps(v,y) + 9" (y,5) sup esupps (u, ). (10.13)
t/2<s<t veV’ t/2<s<t ucU’

Another important particular case, which will be used in the proof of Theorem 1.1, is when
Uu=V.

Remark. If the heat kernel is continuous then (10.12) holds for all x € V, y € U, and the sets
V', U’ can be replaced by dV and 9OU, respectively.

The estimates (10.12) and (10.13) were proved in [14] for diffusions on Riemannian manifolds,
where the heat kernel is a smooth function. A particular case of (10.12) for x = y was proved
in [22, Lemma 4.5] in an abstract setting but still assuming that the heat kernel is continuous.
Without continuity of the heat kernel, a major difficulty is to ensure the use of the essential
supremum of the heat kernel rather than the supremum. The hypothesis that the heat kernel
is locally bounded seems to be technical, but it is satisfied in all cases of interest when one may
hope to use (10.12). Indeed, without local boundedness of the heat kernel, the terms in (10.12)
containing the essential supremum of p;, may be equal to 4oc0.
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Proof. By Lemma 5.2, the semigroup P; is locally ultracontractive. By Lemma 7.5, there
exists a negligible set N C M such that

sup Psh = esupP h
WA\N

for any non-negative Borel function h, any non-empty open set W C M, and for any s > 0.
Assuming that f and g are non-negative Borel functions supported in U and V', respectively,
we have

sup Psf < sup Ps f—esupP 1,
OV\N VAN

and, similarly,

sup Psg < esup Psg.
OU\N U

Substituting these inequalities into the estimate of Lemma 10.3, we obtain

/(Ptf)gdu < /(Ptvf)gdu
1% 1%
+ sup esupPsf (v /wv z,a) g (x)dp ()

b<s<twveV’
+ sup esupPug () [ o7 (0.8) £ (9) du ). (10.14)
a<s<tucU’ U
Since
Psf (v) = /Ups (v,y) f(v)dp(y) p-aa. ve M,
we obtain

esup Psf (v) < /U esup ps (v,9) £ () dp (1)

veV! veV!

Estimating similarly Psg (u), we obtain from (10.14)

[ mews@ twan@ine) <[]} @ g@ 0w

VxU VxU

+ [[ s esupp, (0.9) 0V (2.0) 000 ()dn(e)dnto)
VxU —

+ [[ sup esup e (0.2) 0 (00 o) () dla) o).
VxU T et

Setting a = b = t/2 and noticing that the functions of the form g(z)f (y) span all L* (V x U, u x p),
we finish the proof. m

Example 10.5 Here is a typical example of application of Theorem 10.4. Assume for simplicity
that the heat kernel p; (x, y) is continuous in x, y for any ¢ > 0, and that we are given the following
two conditions:

e For some v > 0 and all ¢t > 0,

sup pt(z,y) < Ct™". (10.15)
z,yeM
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e For any ¢ > 0 there exists 6 > 0 such that for all z € M and 0 < t < 6,

P, (TB(z,r) < t) <e.

Then by Theorem 9.1(i7) = (vi) we have, for all positive ¢, r, that

=
YBET) (2.1) < Cexp <—c <%> ’ ) . (10.16)

Fix two distinct points z,y € M, set r = %d (x,y) and observe that, by Theorem 10.4

pe(z,y) <PPED (2,8)  sup  ps(v,y) + PO (y, ) sup  ps(u,). (10.17)
t/2<s<t t/2<s<t
v€DB(z,r) u€dB(y,r)

Substituting (10.15) and (10.16) into (10.17), we obtain

1
N
pt (z,y) < Ct™"exp <—c <%> ) :

11 Volume doubling

In this section, we assume that (M, d) is a metric space and u is a Borel measure on M. The
following lemmas are well-known in the setting of complete manifolds (see for example [18], [10],
[26]).

Lemma 11.1 If (VD) holds on M then there exists a positive constant o such that for all

z,y €M and 0 <r < R
V(z,R) R+d(z,y)\”
— < — 27 . 11.1

V (y,r) _C( r (11.1)

Proof. If x = y then R < 2"r where
R R
n = [logy —] <logy — +1,
r r

whence

R log, C
< C" =2l C < ¢ <—) . (11.2)

r

V(z,R)
V(z,r)
If x # y then B (z,R) C B (y, R+ d) where d = d(x,y), and by

V (z,R)
Vi(y,r)

log, C
SV(y,1~2+d)<C(R+d> .

Viy,r) — r

Lemma 11.2 If (M,d) is connected and satisfies (V D) then there exist positive constants o, ¢
such that for allz € M and 0 <r < R

/

provided B (x, R)" is non-empty.
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Remark. If in addition diam M = oo then B (z, R)“ is always non-empty and, hence, (11.3)
holds for all z € M and 0 < r < R.

Proof. The condition B (z, R) # () implies that B (z,p’) \ B (z,p) # 0 forall 0 < p < R
and p' > p. Indeed, if B (z,p’) \ B (z,p) = 0 then M splits into disjoint union of two open sets:
B (x,p) and B (z,p) . Since M is connected, the set B (z, p)° must be empty, which contradicts
the assumption that B (z, R)® is non-empty.

If 0 < p < R/2 then by the above the annulus B (:c, %p) \ B (:c, %p) is non-empty. Let y be
a point in this annulus. Then by (11.1) V (z,p) < CV (y, p/3) whence

Vi(z,2p) 2V (z,p) +V (y,p/3) = (1 +2)V (z,p), (11.4)

where e = C~ L.
For any 0 < r < R, we have 2"r < R where

R R
= |logy —| > log, — — 1.
n = [log, rJ = 1082
For any 0 < k < n — 1 we have 2¥r < R/2 whence by (11.4)
Vv (ac, 2k+1r> >1+¢)V (w, 2’“7“) .
Iterating this inequality, we obtain

V (z,R)
V (z,r)

V (z,2"r)
V (z,r)

>

)

R>10g2(1+€)

> (142)" = 28149 > (1 4 2)~) <_
s

which was to be proved. m

Corollary 11.3 If (M,d) is connected and satisfies (VD) then p(M) = oo if and only if
diam (M) = oo.

Proof. If diam (M) < oo then M is a ball of a finite radius, and p (M) < oo by (VD). If
diam (M) = oo then B¢(z, R) is non-empty for any ball B (x, R). In this case, (11.3) implies
that V (z,R) — oo as R — oo, that is u (M) =oco. ®

12 The main result

Here we state and prove our main result, which is more general than Theorem 1.1 from In-
troduction. In addition to conditions introduced in Section 2, consider one more condition as
follows.

(E3) : There are positive constants C' and v such that, for any ball B in M of radius r and for
any non-empty open set 2 C B,

EQ):= e;selg)EzTQ <Corf <%>V (12.1)

12.1 Statement and the flowchart of the proof

Theorem 12.1 Let (M,d) is a locally compact separable metric space, p be a Radon measure
on M with full support, and (€,F) be a reqular Dirichlet form in L? (M, ). Assume in addition
that:
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(a ,d) is connected and diam (M) = oo.

) (M
(b) Measure p satisfies the volume doubling property (VD).
(¢) The form (€,F) is local.

)

(d) The process { Xt} is stochastically complete.

Then, for any 3 > 1, we have the following equivalences:
(UEg) < (PUEp)

= (DUEﬁ)
= (DUEﬁ)

(Ps) & (Bp) + + (Ps)
(Eﬁ) = (Eﬁ) + + (Eﬁ)

The proof is covered by the chains of implications as on the following diagram:

(Pg) &
(Ep) &

(FKp)

+
+ (FKp)

oy |22 5 | L ) 8! @UEs) L
(DUEg) | 2. | (Ep) |1toa| (Eg) |Lea| (FKg) |T.93
(Bs) | =7 o) | " | (Be) |7 | (Ba) |
(FKlg) ? (DUElg) from previous line (DUElg)
(P || (m) - (E;)
4?7

The implications marked by are yet to be proved. The other implications follow from
already known results as it is indicated on the diagram. Indeed, Theorem 9.3 obviously yields
(Eg) = (Pg), which is used twice on the diagram, and Lemma 6.1 yields (E3) = (FK). Let
us explain the implication

(Bs) + (Ps) = (Ep) + (Ep).

Indeed, by Theorem 9.1(it) = (i4i), the condition (Pg) implies that there exist ¢ > 0 such that,
for all z € M \ N (where N is a negligible set),

E, (TB(LT) A rﬁ) > erf,

whence it follows that E,7p(, ) > er”, which is the lower bound in the condition (Eg). The
upper bound in (Ejg) follows trivially from (Eg) by taking Q = B in (12.1).
Note also that the last implication

(DUE) + (Pg) (Ep)

holds because, by virtue of the previous implications on the diagram, we have

(Pg) = (Ep).-

The rest of the diagram amounts to the following implications that will be proved below:
+ (Pg) =
o (DUEg) + (Ps) = (UEp)
e (DUEs) = (Ep)

— (DUEp) +

(DUEg) +

o (FKp) (DU Eg)
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o (DUER) = (P3) (the fact that (PUE3) = (DUEj) is trivial).

Let us explain how Theorem 12.1 implies Theorem 1.1 from Introduction. Apart from
having additional equivalence in Theorem 12.1, the main distinction is that in Theorem 1.1 one
assumes a priori that a transition density exists and is a continuous function, whereas in Theorem
12.1 the existence of a heat kernel has to be proved and the conditions used are supposed to
holds almost everywhere or outside a negligible set. In the case of Theorem 1.1, a heat kernel
admits a continuous version, which greatly simplifies the arguments in the preceding sections.
In particular, all essential supremums can be replaced by supremums and all negligible sets in
all the hypotheses and statements can be set to be empty (hence, there is no need in the results
of Section 7 whatsoever). Following the same line of argument yields Theorem 1.1.

The condition (a) is used only in the proof of the implication (DUEg) = (Ej3) via Lemma
11.2 and Corollary 11.3. The condition (c) (the locality of the form (£, F)) is explicitly used in
Theorem 9.1, in all the statements of Section 10, and hence in all the results that use them. In
particular, the condition (c) is essential for obtaining (U Eg) but the implication (FK)+(P3) =
(DUEg) goes without it. The condition (d) of stochastic completeness is used only in the proof
of the implication (®UEg) = (Pg) via Theorem 9.1(i) = (it).

12.2 Proof of (FK)+ (P) = (DUE)

The following lemma is a modification of the iteration argument of Kigami [22, proof of Theorem
2.9]. This argument is enhanced, simplified, and generalized here to get rid of the hypothesis
(1.16) and of the continuity of the heat kernel, which were used in [22].

Lemma 12.2 Let the form (€, F) be local and let the following two conditions are satisfied.

e For any ball B = B (xq,7) on M, a heat kernel pP exists and satisfies the estimate

esup py’ (2,y) < Wy (z0,7), (12.2)
z,yeB

forallzg € M andr,t > 0, where U, (xo,7) is a positive function that satisfies the following
doubling condition:
Uy (zo,7") < KWy (20,7) (12.3)

for allr <" <2r and t/2 <t' <t and some constant K.

e There exists a positive, strictly monotone increasing function ¢ (t) on (0,+00) such that

/go(s) ds < 00 (12.4)
0
and, for a negligible set N C M and for allx € M\ N, t >0, and r > ¢ (t),

1
Py (TR <t) < e (12.5)

Then a heat kernel p, exists and satisfies the following estimate, for all xg € M and t > 0,

esup Pt (.’IJ, y) S 2K\I}t (fI,'O, @ (t)) .
z,y€B(z0,9(t))
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Proof. Let W C U C U’ C Q be open subsets of M, and U C U’. If Q is a ball then, by
(12.2), the heat kernel p{! is bounded. Applying the inequality (10.12) of Theorem 10.4 in
(instead of M) we obtain

pi (z,y) <pf (z,y) + Y (z,5) sup esuppf (u,y) +¥Y (y, L) sup esuppf (u,z),
s/2<s<t ucU’ t/2<s<t uelU’

for all t > 0 and p-a.a. x,y € U, whence it follows that

esup p? (z,y) < esup pif (z,y) + 2esup 1/)U (3:, %) sup esup p? (z,y) . (12.6)
z,yeWw z,yelU zeW t/2<s<tzx,ycU’

Fix xg € M,0<r < p/ < p< R, and set W = B(xg,r), U = B(x0,p'), U = B (g, p),
2 = B (zo, R). By (12.2) we have

esup p! (z,y) < esup pY’ (z,y) < U, (z0,p) . (12.7)
z,yelU z,yelU’

By (12.5) we have, for all z € W\ N,

1

"y (x, %) < opBl@p/ =) (x, %) < Vd (12.8)

provided p/ —r > ¢ (%) This will be the case if

p—r=p() (12.9)

and if p’ is sufficiently close to p. Assuming that and writing for simplicity

esuppj’ := esup p{’ (z,y),
1% z,yeV

we obtain from above, for ¢ := %,
Q2 Q
esup p;; < Wy (wg,p)+€ sup esup p,
B(zo,r) t/2<s<t B(z0,p)
< Uy (xp,p) +€ esup p?/Q, (12.10)
B(zo,p)

where we have used also the fact that, by Lemma 3.1, the function s — esupy, p? is non-
increasing.
For a fix t > 0, set t, =t/2", n > 0, and

=9 (o) +o 1)+ ...+ (tn1), n>1 (12.11)

It follows from (12.11) that

S

2t
d
rn§2/ (p(s)—szzl(t)<oo.
0

Assume that R > I (t) so that all the balls B,, = B (zg,r,) are in Q (see Fig. 5).
Using 741 — n = ¢ (t,) and observing that this condition matches (12.9), we obtain from
(12.10)

Q Q
esupp;, < Wy, (v0,7n+1) +EeSUPDY, -
Bn Bn+l

Since ¢ (t) is increasing in ¢, (12.11) implies

Tn4+1 = Tn + 2 (tn) < Tn + 2 (tn—l) < 2rn7
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lt(? tg X Bo

Figure 5: The sequences of times {t,},-, and balls {B,}~ .

which, by the doubling property of W, yields
Uy, (z0,7nv1) < KWy, (z0,70)

and hence
\I/tn (.T,'Q,Tn+1) S Kn\:[lto (1’0,7"1) S Kn+1\Ith (.%'O,TO) .

Therefore, we obtain
Q 1 Q
esupp; < K"y, (wo,70) + gesupp; .,
Bn, Bn+1

whence it follows by iteration that

esup pit < K, (z0,70) (1+ Ke+ (Ke)? +...) +&" esBupp?n .

By

1

Since € = 57,

we obtain
esupp,% < esuppgl < Wy, (9, R) < K"y (29, R)
n Q
and hence
lim &" esup pgl =0.
B

n—oo
n

Letting n — oo in (12.12) we obtain

esup ps’ < 2K, (x0,70) .

By

(12.12)

the above geometric series converges. Applying (12.2) for the ball Q = B (zg, R),

(12.13)

Finally, letting R — oo and noticing that, by Lemma 5.1, p? — p¢, we obtain that a heat kernel

pt (z,y) exists and satisfies the same estimate, which was to be proved. m

Now let prove that (FKg) + (Pg) = (DUEj3). Let B be a ball of radius » > 0 on M. Let

us restate (F'Kg) as follows: for any non-empty open set 2 C B,

Amin (€2) > ap ()77
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where
c

— —u(B)".
a=-5u(B)

Therefore, by Lemma 4.2, a heat kernel ptB exists and satisfies the upper bound

pP (x,9) < C (at)™"

Pl <—C ()"
e < (F) (12.14)

for p-a.a. x,y € B and all t > 0. Hence, the first condition of Lemma 12.2 is satisfied with the

function 1
C rP v
U () = ——— ()

@0 = (7)

By hypothesis (Pg), the second condition of Lemma 12.2 is satisfied with the function ¢ (t) =
Ct'/P. Hence, Lemma 12.2 yields

that is

esup  pr(2,Y) < =75
z.y€B(zo.p(t)) V' (o, t1/7)

whence (DU Eg) follows.

12.3 Proof of (DUE) + (P) = (UE)
Here, we assume that (DU Eg) and (Pg) hold with some 3 > 1 and prove that, for y-a.a. z,y € M

and t > 0,
1
c dB(x,y)\ P 1
< ——— — . E
pe(@y) < o (o, 7] P ( ( cr > (UEp)

The method of obtaining the off-diagonal upper bound of the heat kernel from the on-diagonal
one using an estimate of exit probabilities, goes back to Barlow [1, Theorem 3.11], where the case
V (x,7) ~ r® was covered®. For a general volume function V (x,r) satisfying (V' D) the proof is
more complicated — different versions can be found in [16, Theorem 6.2] and [22, Theorem 2.9].
The new proof that we present here seems to be simpler than the previous ones, although at
expense of using Theorem 10.4.

Fix two distinct points xg,yg € M and set r = %d (x0,%0). By (DUER), pt is locally bounded,
applying inequality (10.13) of Theorem 10.4 with V' = B (xo,r) and U = B (yo,r) we obtain,
for pra.a. x € B (xo,r) and y € B (yo,7),

pe(z,y) < PO (2,L) sup  esup  ps(v,y) (12.15)
t/2<s<tveB(zq,2r)
4qpBor) (y,%) sup esup s (u,x) (12.16)

t/2<s<tu€B(yo,2r)

(see Fig. 6).
For any z € B (z9,7/2) \ N we have by (P3) and Theorem 9.1(i1) = (vi),

1
B\ -1
wB(zo,r) (x’ %) < wB(a:,r/Q) (% %) < Cexp <_ <%> ) , (12.17)

°Tt is interesting to mention that in the case when M is a Riemannian manifold then (DUE2) < (UEs) (see
[11, Proposition 5.2] or [12, Theorem 3.1]).
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Figure 6: Illustration to the proof

and, similarly, for any y € B (yo,7/2) \ N,

B\ -1
YBWod) (4 1) < Cexp <_ (%) ) , (12.18)

By (DUEg) we have, for p-a.a. v,y € M ,
C

ps (v,y) < . (12.19)
\/V (v, 81/5) 1% (y, 81/5)
Using (11.1) we obtain, for all z, z € B(z(,Cr) and any ¢ > 0,
1
\%4 (x,sl/ﬂ) ro\Q B\ -1
— < —_— < — . .
aern _C(1+81/ﬁ) < C.exp &7(8) (12.20)
Applying (12.20) for z = v and for z = y, and substituting into (12.19), we obtain, for p-a.a.
x,y,v € B (z9,Cr),
1
C. AN
<L ——m—— — . .
ps (v,y) < V (@,5179) exp (5 < . > > (12.21)

Taking here supremum in s € (%, t) amounts to replacing s by ¢ and to changing constants.
Finally, substituting (12.17), (12.18), (12.21), and a similar upper bound for p (u,z) into
(12.15)-(12.16), we obtain, for p-a.a. z € B (z9,r/2) and y € B (yo,r/2),

C. B F B 7
Dt (%y) S % (:C’tl/_fﬁ) exXp | € (7) — <a) .

Choosing ¢ small enough and noticing that d (z,y) < 3r, we obtain (UEg). m

12.4 Proof of (DUE) = (E)

Let us first prove that (DU E3) implies the following estimate: for any ball B = B (x¢,r) on M,
for p-a.a. z,y € B, and for all ¢ > 0,

ot (,y) < % (tl%)a, (12.22)
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where « is the exponent from (11.1). Write for simplicity

B B
esuppy = esu%pt (z,y),
RIS

and observe the following property of the function ¢ + esupp?: if the inequality

K o\
F<— (a3 .
esupp;y < (D) tl/ﬁ) (12.23)
holds for ¢ = s then (12.23) holds also for ¢ = 2s provided
s> T :=2KP/opf (12.24)

(here K > 1 is a constant to be specified below). Indeed, by the semigroup property, we have
for p-a.a. z,y € B

phy (z,y) = /Bpf (2,2)p? (2,y) du (2) < (esupp?) i (B)

whence by (12.23) and (12.24)

esupPB < Lz (L>2a < K* " ’ " ) = K " )
2T pB) s8] T u(B) \(1/2)V0 )\ (25)1/7 p(B) \ (25)% )

which was claimed.

Assume for a moment that we have proved (12.23) for ¢ = T'. Then by induction the above
property of the function ¢ ~— esupp? yields that (12.23) holds for all ¢ = 2"T, where n is a
non-negative integer. Since by Lemma 3.1 the function ¢ +— esup pf is non-increasing, we obtain
for 2"T < t < 2717 that

es B < es B < K 4 a = K2a/ﬁ (L)a

Therefore, if we prove that there exists K such that (12.23) holds for 0 < ¢ < T then we can
conclude that (12.22) holds for all ¢ > 0.
Consider first the case 0 < t < r?. By (DUEg) we have, for p-a.a. x,y € M and t > 0,

C
pe(z,y) < 0
VV (8179 V (y,11/9)

(12.25)

(the argument below is sensitive to constant factors, so we use individual notation for different
constants as Cp). Observe that, by (VD) and (11.1), for any x € B and 0 < t < P,

V (zg,7) ro\o
Vet < (W> . (12.26)

Since pP < py, (12.25) and (12.26) imply that, for y-a.a. z,y € B and 0 < t < ¥,
C()Cl ( r )q

PP (z,y) <

that is, (12.23) holds for 0 < t < r# provided K > CoCy.
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Consider now the remaining case r? < t < T. We have, for any z € B,

1 v (xo,Tl/ﬁ) V (zo,7) 1
V (x,t1/7) Vv (z,tY/8) 'V (2o, TVB) V (20,7)
Since t < T', we obtain using (V' D), (11.1), and (12.24), that

VT _ o (TN _ g ()
V@om =< <?) = 2K (575 )

Since r < T8, Lemma 11.2 yields

V (zo,7) ANCY —o'/a
V (o, T/5) < G (Tl/ﬂ) < oK

Hence, (12.25) implies, for u-a.a. x,y € B,

’ K r @
B < a/fpr—afa__ X (T
o (@:9) S CoCrCo2* PRl s (573)

whence (12.23) follows, provided K is chosen large enough to satisfy
000102201/BK70//O[ <1.

Let us now show that (12.22) implies (Ej3). Select a countable dense sequence {z,} C M
and call a ball B (x,r) selected if x = x,, for some n and if its radius r is rational. Hence, the
family of selected balls is countable. Recall that (E) means that for any ball B = B (z,r) and
for any open set Q C B (z,r)

“(Q)y/a B, (12.28)

=m0 (i)
for all x € Q\ N, where N is a negligible set. Clearly, it suffices to prove (12.28) for selected
balls B.

By (12.22) the heat kernel p? is bounded. Hence, by Corollary 8.2, a transition density
Dt (z,y) exists and satisfies the same upper bound (12.22). By Lemma 8.3, for any ball B there

exists a negligible set Np C M such that

sup  sup P (z,y) = esuppp (z,y).
z€B\Np yeB\Np B

Let NV be the union of all sets Ng where B is a selected balls, so that IV is also a negligible set.
Hence, for any selected ball B of radius r, we have

C T\
~B
sup  sup p; (2,Y) < —= | =757 ) -
2€B\N yeB\N v @) 1 (B) <t1/ﬂ)

By (6.3), we obtain, for any non-empty open set Q2 C B and for allz € Q\ N, T > 0,
T 00
B < [ PPL@du [ PP d
0 T

T+/ /ﬁtB(ﬂc,y)du(y)dt
T Q
e

p(€) (e
r+ S )
C:U’(Q)Ta 1-a/B

m !

IN

IN

IN
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(note that « is the exponent from (V' D), which can be taken arbitrarily large; we have assumed

here that a > ). Finally, choosing
- (mm)ﬁ/a 5
1 (B) ’

we obtain (12.28).

12.5 Proof of (PUFE) = (P)

Since the heat kernel p; is locally bounded, by Corollary 8.2 a transition density p; exists and also
satisfies (PU Eg). By Corollary 8.4, there exists a negligible set N such that for all z,y € M \ N

and t > 0,
~ C d(z,y)

Let us show that, for any £ > 0 there exists § > 0 such that if 0 < ¢ < 679 then, for all z € M\ N,

P, (X; € B(z,r)") <e¢ (12.29)

Indeed, assuming € M \ N and setting 7, = 2¥r we obtain

o0

PXieB@n) = [ mendm=3 [ P (,9) dit ()
B(z,r)* k=0 Y B@rep1)\B(@,r1)

IN

> C Tk
kZ:OV (T, 7k41) % (:c,tl/ﬁ) ® (ﬂ/ﬁ)

< o) e()

< C 7LD (s) ds. (12.30)
%T/tl/ﬁ

By the hypothesis (1.11), the right hand side of (12.30) can be made smaller than & provided
r/tY/8 is sufficiently large, which was claimed. By the part (i) = (ii) of Theorem 9.1, (12.29)
with € < 1/2 implies (Pg). m

Hence, we have finished the proof of Theorems 1.1 and 12.1. Note that the hypothesis
of stochastic completeness was used only once in the proof, namely in the proof of Theorem
9.1(i) = (i7) (see eq. (9.4)). The latter is exactly the part of Theorem 9.1, which was used in
the above argument.

The proof of the implication (UE3) = (E3) by Kigami [22] also uses the stochastic com-
pleteness although not explicitly stated. Let us present an example, showing that without the
stochastic completeness the implication (UEg) = (E3) is not true.

Example 12.3 Consider in R the process {X;} generated by the operator H = —% +Q (z)

where Q € C* (R) is a positive function. To be precise, we consider R with the Euclidean
distance d, the Lebesgue measure i, and the Dirichlet form

E(f,g) = /R (f'd +Qfg) du
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o
in the domain F = H' (R). All the hypotheses (a)-(d) of Theorem 1.1 are satisfied. On the
other hand, the associated diffusion process {X;} is not stochastically complete because of the
killing term @Q. Since @ > 0, the heat kernel of this process admits the upper bound

1 |z — y]°
pe(z,y) < exp | ——— |,

VArt 4t

that is (UEs) holds.
Let us verify that the lower bound in (E3) fails in general. For example, take @ (z) = 22.
Then the heat kernel of {X,} is given by the explicit expression

(z —y)*

L o Lo
S — =2 “p?tanht — -y’ tanht | .
Pi{ey) (2rsinh2t) 2" ( 9sinh2¢ o+ MRET oY Al )
In particular, noticing that Wizt + tanh ¢t > 1, we obtain
1 1,
pt(0,2) < ——————exp (——x >
(27 sinh 275)1/2 2

whence

/ /pt (0,2) dx dt < oo.
0 R

By (6.3), the function 7 — Eo7 (g, is bounded, which makes the lower bound Eo7 (o) > cr?
impossible.

13 Appendix: Resistance metric and (FK)

Here we show an example of derivation of a Faber-Krahn inequality (FK) directly from the
volume properties of the balls in a resistance metric. Define the resistance R (z,y) between
points x,y € M by
2
) —
Ry e sy L@ FOP
FEFNCo(M) E[f]
Of course, it may well happen that R (z,y) = oo but for many examples of fractal spaces, it is
known that R (z,y) < co. It is easy to see that in this case /R (z,y) is a metric on M. Define

the corresponding balls
B(z,r):={ye M :R(x,y) <r}
and set V (z,r) := p (B (x,r)).
Theorem 13.1 Let M be a locally compact connected topological space, u be a Radon measure
with full support on M, and (£,F) be a regular Dirichlet form in L?(M,u). Assume that

R (x,y) is a metric on M compatible with the topology of M, and diam M = co. Assume also
that the volume function V (x,r) satisfies (V D), that is

V(z,2r) < CV(z,r),

for all x € M and r > 0. Then, for any ball B (z,r) and any non-empty open set Q C B (z,71),

c V(z,r)\"
o )2 57055 (7 e

for some positive constants v and c.
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Proof. The following argument is close to [20, Lemma 4.2]. Recall that, by the variational

property,
glf]
Amin () = in .
)= et 712

Clearly, one can restrict here to those f for which sup|f| = 1. Take any function f € FNCy ()
with sup |f| = 1 and let 29 € © be a point such that |f (zg)| = 1. Let p be the largest radius
such that B (zg, p) C Q. The fact that the support supp f is a compact subset of Q implies that
the ball B (zg, p) is not covered by supp f; let yg € B (xq, p) \ supp f (see Fig. 7).

Figure 7: Points zo and yp.

Then we have

o> R(IL'Q yO) > ‘f(xo) _f(yO)‘2 _ 1

Ef] e
whence € [f] > p~!. Since ||f]|3 < 1 (), we obtain
elf] 1
Jo F2du = pu ()
and hence 1
)\min Q =
@)= P (§2)

On the other hand, we have
V (o, p) < ()

and, by the doubling property and Lemma 11.1,

MgCG)a,

V (o, p) o
whence 1 _c(V(z,r) 1/a
225 ()
and
0> 5 () = ()
| ]

Corollary 13.2 Under the hypotheses of Theorem 13.1, if in addition V (z,r) < CrYN for all
x € M and r > 0 then M satisfies (FKg) with § =1+ N.
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Proof. Indeed, the inequality (13.1) of Theorem 13.1 implies

Ain () > ¢ <%>

which was to be proved. m
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