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1. Preliminaries

Let Γ be a countable infinite locally finite connected graph. If the vertices x, y ∈ Γ are connected
by an edge then we write x ∼ y and denote the edge connecting x and y by xy. Suppose that
each edge xy is assigned a positive weight µxy = µyx. Then define a function µ on vertices by

µ(x) =
∑

{y:y∼x}
µxy

and extend it to a measure on finite sets A ⊂ Γ by

µ(A) =
∑
x∈A

µ(x).

On every graph Γ one can consider the standard weight : µxy = 1 for all edges xy. In this case,
µ(x) is equal to the degree of x, that is to the number of adjacent edges.

A graph Γ equipped by a weight µ as above is called a weighted graph. Any weighted graph
(Γ, µ) admits a random walk on Γ defined by the one-step transition probabilities

P (x, y) :=
{ µxy

µ(x) , if x ∼ y,

0, otherwise.

Clearly, P is a Markov kernel, that is ∑
y∈Γ

P (x, y) = 1.

It is symmetric with respect to the measure µ, that is P (x, y)µ(x) = P (y, x)µ(y). A random walk
Xn on Γ is defined for all n ∈ N by the transition rule

P (Xn+1 = y |Xn = x) = P (x, y).

Denote Pn(x, y) = P (Xn = y |X0 = x). The main subject of this survey is the heat kernel pn(x, y),
defined as the density of Pn(x, y) with respect to µ, that is

pn(x, y) =
Pn(x, y)

µ(y)
.
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Clearly, pn(x, y) = pn(y, x).
Denote by d(x, y) the graph distance between points x, y ∈ Γ, that is the minimal number

of edges required to connect x to y by an edge path.
We will consider here results of two kinds: about the on-diagonal behavior of the heat kernel,

that is pn(x, x) as a function of n → +∞, and about the off-diagonal behavior, that is pn(x, y) as
a function of the distance d(x, y). On the connection between supx∈Γ pn(x, x) and isoperimetric
profiles see [9], [10] and [11]. For a general overview of random walks on infinite graphs see [32].

An important characteristic of a weighted graph is the volume growth function V (x, r)
defined as follows. Denote by B(x, r) the ball associated with the distance d(x, y), that is B(x, r) =
{y ∈ Γ : d(x, y) < r}, and set V (x, r) = µ(B(x, r)).

For example, for Z
D with a standard weight we have V (x, r) � rD. For this graph, a mod-

ification of the local central limit theorem implies that, for all positive n ≥ d(x, y) such that
n ≡ d(x, y) (mod 2),

pn(x, y) � n−D/2 exp
(
−d2(x, y)

Cn

)
.(1.1)

A similar estimate holds for Cayley graphs of finitely generated groups with polynomial volume
growth (see [24]). More precise estimates for abelian groups can be found in [27].

Note that on any infinite weighted graph (Γ, µ), the following estimate holds:

pn(x, y) ≤ C√
µ(x)µ(y)

exp
(
−d2(x, y)

Cn

)

(see [31], [8]). However, this estimate does not reflect the decay of the heat kernel as n → ∞.
Let us mention finally an estimate of a different kind, which holds on supercritical bond

percolation clusters in Z
D:

sup
y∈Γ

pn(x, y) ≤ C(x)n−D/2

(see [29]).

2. On-diagonal decay and volume growth

The Markov property implies that for all n ∈ N∑
y∈Γ

Pn(x, y) = 1

that is ∑
y∈Γ

pn(x, y)µ(y) = 1.

Restricting the summation to B(x, r), we obtain

inf
y∈B(x,r)

pn(x, y) ≤ 1
V (x, r)

.

This inequality suggests that the faster the function V (x, r) increases the smaller the heat kernel
should be, which agrees with (1.1). There are several results reflecting this heuristic idea. We
restrict ourselves to the case of polynomial volume growth.

Theorem 2.1. [12, Theorem 4.6] If for some x0 ∈ Γ and all r > 0

V (x0, 2r) ≤ CV (x0, r),(2.1)



Pointwise estimates for transition probabilities of random walks on infinite graphs 3

then for all even n > 0,

sup
x∈Γ

pn(x, x) ≥ c

V (x0,
√

n)
.(2.2)

In fact, the proof in [12] uses the additional hypotheses that x ∼ x for all x ∈ Γ and that
infx∼y P (x, y) > 0. One can get rid of these assumptions using [14, Proposition 4.2].

Theorem 2.2. If for some x0 ∈ Γ and all r ≥ 1

V (x0, r) ≤ CrD,

then for all even n > 0

pn(x0, x0) ≥ c

V (x0,
√

Cn log n)
.(2.3)

This Theorem follows from the proof in [28, Theorem 3] (see also [12, Remark 8 after Theorem
6.1]).

The lower bound (2.2) is sharp in Z
D (up to a constant factor). It is not known whether

in Theorem 2.1 one can replace supx pn(x, x) by pn(x0, x0). Theorem 2.2 provides a lower bound
for pn(x0, x0) which in comparison with (2.2) is off by a factor

√
log n. An example constructed

in [7] indicates that one cannot get rid of the logarithm in (2.3). Note that the volume doubling
condition (2.1) is not satisfied in this example.

Theorem 2.3. ([6, Theorem 2.1], [15, Section 5]) Let the weighted graph (Γ, µ) satisfy the hypoth-
esis

inf
x∼y

µxy > 0.(2.4)

Suppose that, for all points x ∈ Γ and all r ≥ 1,

V (x, r) ≥ crD.(2.5)

Then, for all x ∈ Γ and for all n ∈ N,

pn(x, x) ≤ Cn− D
D+1 .(2.6)

Note that the hypothesis (2.4) is automatically satisfied for a standard weight. It also implies
that (2.5) holds for D = 1. Hence, one can assume that D ≥ 1.

In fact, [6, Theorem 2.1 and Remark 2.2] contains a more general result as follows. Suppose
for all x ∈ Γ and r ≥ 1,

V (x, r) ≥ v(r),(2.7)

where v is a continuous positive strictly increasing convex function on [1,+∞). Then, for all x ∈ Γ
and for all n ∈ N,

pn(x, x) ≤ C

γ(cn)
,(2.8)

where γ is determined by the relation

γ−1 (s) � sv−1(s).(2.9)

For example, if v(r) = crD then γ−1 (s) � s1+1/D whence γ (t) � t
D

D+1 .
The upper bound (2.6) is by far not optimal for Z

D. Of course, the value of Theorem 2.3
largely depends on whether the exponent D/ (D + 1) is sharp, and it indeed is.
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Theorem 2.4. [6, Theorem 4.1] For arbitrarily large D there exists a graph Γ for which (with a
standard weight)

V (x, r) � rD(2.10)

and

pn(x, x) � n− D
D+1(2.11)

for all x ∈ Γ, r ≥ 1 and even n > 0.

Let us describe this example, motivated by fractal studies. Fix a positive integer N and
construct a graph Γ called a Vicsek tree as a subset of R

N . Let Qr denote the cube in R
N

Qr =
{
x ∈ R

N : 0 ≤ xi ≤ r, i = 1, 2, ..., N
}

.

Construct an increasing sequence {Γk} of finite graphs as subsets of Q3k . Let Γ1 be the set of
2N +1 points containing all vertices of Q1 and the center of Q1. Define 2N edges in Γ1 as segments
connecting the center with the corners. Assuming that Γk is already constructed, define Γk+1 as
follows. The cube Q3k+1 is naturally divided into 3N congruent copies of Q3k ; select 2N +1 of the
copies of Q3k by taking the corner cubes and the center one. In each of the selected copies of Q3k

construct a congruent copy of graph Γk, and define Γk+1 as the union of all 2N + 1 copies of Γk

(merged at the corners). Then the Vicsek tree Γ is the union of all Γk, k ≥ 1 (see Fig. 1).

Γ3

Γ2

Γ1

o

Figure 1. Vicsek tree in the plane

turns out that for the Vicsek tree both conditions (2.10) and (2.11) hold with

D = log3

(
2N + 1

)
.

In [4], very interesting constructions of graphs are given, which yield the conclusion of The-
orem 2.4 for every D ≥ 1.

Concerning arbitrary types of volume growths, it is also shown in [6] that there are graphs
satisfying (2.7) for any reasonable function v and where the matching lower bound to (2.8) holds,
up to a logarithmic factor.

3. Gaussian upper bound

For any function f on Γ define its energy by

E (f) =
1
2

∑
{x,y:x∼y}

(f(x) − f(y))2 µxy.
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Define the Laplace operator on a function f on Γ by

∆f(x) =
∑
y∼x

P (x, y)f(y) − f(x).

One says that f is harmonic on Ω ⊂ Γ if f is defined on Ω and all neighbors of Ω and if

∆f(x) = 0 ∀x ∈ Ω

(in other words, f has the mean value property with respect to P ). Similarly, f is subharmonic
if ∆f ≥ 0.

For any non-empty finite set A ⊂ Γ, let c0(A) be the set of all functions on Γ which vanish
outside A; then define

λ1 (A) = inf
f∈c0(A),f �≡0

E (f)∑
x f2(x)µ(x)

.

Alternatively, λ1(A) is the minimal eigenvalue of the Laplace operator ∆ restricted to the space
c0 (A) of all functions on Γ vanishing outside A.

For example, in Z
D the following lower bound for λ1 is true:

λ1 (A) ≥ cµ (A)−2/D .(3.1)

Consider the following conditions which in general may or may not hold:
• Volume doubling property: for some C > 0 and all x ∈ Γ, r > 0

V (x, 2r) ≤ CV (x, r).(V D)

• On-diagonal upper estimate: for all x ∈ Γ and n > 0

pn(x, x) ≤ C

V (x,
√

n)
.(DUE)

• On-diagonal lower estimate: for all x ∈ Γ and even n > 0

pn(x, x) ≥ c

V (x,
√

n)
,(DLE)

for some c > 0.
• Gaussian upper estimate: for all x, y ∈ Γ and n > 0

pn(x, y) ≤ C

V (x,
√

n)
exp

(
−d2(x, y)

Cn

)
.(UE)

• Faber-Krahn type inequality: for any ball B (x, r) on Γ and any non-empty set A ⊂ B (x, r)

λ1 (A) ≥ c

r2

(
V (x, r)
µ(A)

)α

(FK)

for some α, c > 0.
Observe that (FK) holds in Z

D with α = 2/D, which follows from V (x, r) ≈ rD and (3.1).

Theorem 3.1. [13, Theorems 1.1, 6.1] For any weighted graph (Γ, µ), we have

(FK) ⇐⇒ (UE) + (V D) ⇐⇒ (DUE) + (V D) =⇒ (DLE) .

In particular, if (Γ, µ) satisfies (V D) then

(FK) ⇐⇒ (UE) ⇐⇒ (DUE) =⇒ (DLE) .

A continuous analogue of this theorem for the heat kernel on Riemannian manifolds was
proved in [21].

Let ν be another weight on the graph Γ such that µ(x) � ν(x) for all x ∈ Γ. Observe that
the condition (FK) is invariant under such a change of weight. More generally, it is also invariant
under quasi-isometry of weighted graphs (see for instance [16]). By Theorem 3.1, the conditions
(UE) and (DUE) are preserved by quasi-isometry, which is a priori not obvious.
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4. Gaussian two-sided estimates

For any subset A ⊂ Γ and any function f on Γ, define the energy of f on A by

E (f ;A) :=
1
2

∑
{x,y:x∈A,y∼x}

(f(x) − f(y))2 µxy.

Alternatively,

E (f ;A) =
∑
x∈A

|∇f |2 (x)µ(x)

where

|∇f |2 (x) :=
1
2

∑
y∼x

(f(y) − f(x))2 P (x, y).

Denote also

fA =
1

µ(A)

∑
y∈A

f(y)µ(y).

Let us introduce the following hypotheses which in general may or may not be true.
• Poincaré inequality : for some c > 0, δ ∈ (0, 1] and for all x ∈ Γ, R > 0, for any function

f on Γ,
c

R2

∑
y∈B(x,δR)

|f(y) − fB(x,R)|2µ(y) ≤ E (f ;B (x,R)) .(PI)

• Lower estimate of the heat kernel: for all x, y ∈ Γ and all positive n ≥ d(x, y),

pn(x, y) ≥ c

V (x,
√

n)
exp

(
−d(x, y)2

cn

)
.(LE)

• Parabolic Harnack inequality: for all x ∈ Γ, R ≥ 1 and for any non-negative function
un(y) defined for n ∈ [0, 4T ], y ∈ B(x, 2R+1) and satisfying the heat equation un+1 = Pun

in [0, 4T ) × B(x, 2R), the following inequality holds

max
n ∈ [T, 2T )
y ∈ B(x,R)

un(y) ≤ C min
n ∈ [3T, 4T )
y ∈ B(x,R)

un(y),(PH)

provided T is a positive integer such that T � R2 and T ≥ 2R.
The relation between these hypotheses is given by the following theorem.

Theorem 4.1. [18] Assume that (Γ, µ) satisfies the following conditions:
(i) x ∼ x for all x ∈ Γ

(ii) there exists ε > 0 such that P (x, y) ≥ ε > 0, for all x ∼ y.

Then

(UE) + (LE) ⇐⇒ (PH) ⇐⇒ (V D) + (PI) .

The continuous version of this theorem was proved in [30] and [20]. It is possible to show
that the conditions (V D) and (PI) are stable under quasi-isometry (see [16]); hence both (PH)
and (UE) + (LE) are stable under quasi-isometry.

The role of the condition (i) is to avoid the parity problem. Indeed, it excludes in particular
bipartite graphs for which pn(x, y) = 0 whenever n and d(x, y) have different parities. Of course,
for such graphs (LE) cannot hold.

The hypothesis (ii) implies that the degree of each vertex x ∈ Γ is uniformly bounded from
above. If µ is a standard weight then (ii) is equivalent to this condition.

Note that (V D) + (PI) =⇒ (FK) (see [13]). Therefore, the implication (V D) + (PI) =⇒
(UE) can be deduced by Theorem 3.1. By the same theorem, one obtains the on-diagonal lower
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bound (DLE) for the heat kernel. Hence, the main point of Theorem 4.1 is in obtaining the
off-diagonal lower estimate, that is (V D) + (PI) =⇒ (LE).

A more direct approach than the one in [18] to off-diagonal lower bounds was given in [3].
The idea is to prove elliptic regularity estimates as a consequence of (V D) and (PI) by coming
back to the ideas of De Giorgi, then deduce parabolic regularity from elliptic regularity by using
the method introduced in [2] in a continuous context, and finally obtain the full off-diagonal lower
bound.

Let us start with some definitions:

Definition 4.2. We say that (Γ, µ) satisfies the De Giorgi property if there exist C > 0 and
α ∈ (0, 1) such that for every x ∈ Γ, every r,R such that 1 ≤ r ≤ R, and every function f which
is harmonic on B(x,R), one has

E (f ;B(x, r)) ≤ C

(
R

r

)2(1−α) V (x, r)
V (x,R)

E (f ;B(x,R)) .(DG)

Definition 4.3. We say that a parabolic oscillation estimate holds on (Γ, µ) if there exist β, δ, C >
0, such that

|pn(x, y) − pn(y, y)| ≤ C

(
d(x, y)√

n

)β 1
V (y,

√
n)

(PO)

for all x, y ∈ Γ and n ∈ N
∗ such that d(x, y) ≤ δ

√
n.

It is easy to check that (PO) together with the on-diagonal lower bound (DLE) (which
follows from (UE) and (V D)) imply (LE). Indeed, one can write

|pn(x, y) − pn(y, y)| ≤ C ′
(

d(x, y)√
n

)β

pn(y, y),

and if one chooses a ≤ δ such that C ′aβ ≤ 1
2 , then

pn(x, y) ≥ 1
2
pn(y, y) ≥ c′

V (y,
√

n)
≥ c′′

V (x,
√

n)

for all n ∈ N
∗ and all x, y ∈ Γ such that d(x, y) ≤ a

√
n. Then, a classical iteration argument of

Aronson [1] yields (LE). Therefore, the main task is to obtain (PO).
We recall here the discrete version of a classical result, known as Cacciopoli inequality.

Proposition 4.4. There exists an absolute constant C > 0 such that, for all x ∈ Γ, 0 < r < R,
and for all non-negative subharmonic functions f on B(x,R),

E (f ;B(x, r)) ≤ C

(R − r)2
∑

y∈B(x,R)

|f(y)|2µ(y).(C)

It was proved in [17], using the Moser iteration argument, that (V D) and (PI) imply an
elliptic regularity estimate. An alternative approach uses the ideas of De Giorgi (see [3]).

Proposition 4.5. Assume that (Γ, µ) satisfies (V D) and (PI). Then there exist α,C > 0 such that
for every x0 ∈ Γ, R ≥ 1, f ∈ R

Γ harmonic in B(x0, R) and x, y ∈ B(x0, R/4), one has

|f(x) − f(y)| ≤ C

(
d(x, y)

R

)α

 1

V (x0, R)

∑
z∈B(x0,R)

|f(z) − fR(x0)|2µ(z)




1
2

.(ER)
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We now show that

(ER) =⇒ (DG).

Indeed, if f is harmonic in B(x0, R) and 1 ≤ r ≤ R/8, write, for x ∈ B(x0, 2r),

|f(x) − f2r(x0)| ≤ 1
V (x0, 2r)

∑
y∈B(x0,2r)

|f(x) − f(y)|µ(y)

≤ C

V (x0, 2r)

∑
y∈B(x0,2r)

(
d(x, y)

R

)α

 1

V (x0, R)

∑
z∈B(x0,R)

|f(z) − fR(x0)|2µ(z)




1
2

µ(y)

≤ C
( r

R

)α


 1

V (x0, R)

∑
z∈B(x0,R)

|f(z) − fR(x0)|2µ(z)




1
2

,

thus


 ∑

x∈B(x0,2r)

|f(x) − f2r(x0)|2µ(x)




1
2

≤ C
( r

R

)α


V (x0, 2r)

V (x0, R)

∑
z∈B(x0,R)

|f(z) − fR(x0)|2µ(z)




1
2

.

By applying (V D), (PI) and (C), we obtain

E (f ;B(x0, r))
1
2 ≤ C

( r

R

)α−1
(

V (x0, r)
V (x0, R)

E (f,B(x0, R))
) 1

2

whenever 1 ≤ r ≤ R/8. On the other hand, if R/8 < r ≤ R then the result is trivial, hence (DG)
is obtained.

Finally, from the De Giorgi property (DG) one can deduce (PO) by proving first the following
“inhomogeneous” (DG)

E (f ;B(x0, r)) ≤ 8C
( r

R

)2(α−1) V (x0, r)
V (x0, R)

E (f ;B(x0, R)) + 2C ′R2
∑

y∈B(x0,R)

|f(y)|2µ(y),

where ∆u = f on Γ and C,α are the constants in De Giorgi’s property. This inequality is similar
to Morrey’s fundamental estimate on inhomogeneous elliptic equations and can be used to derive
parabolic estimates by following the ideas of [2].

5. Sub-Gaussian estimates

Recent development of analysis on fractals has brought into attention a new class of graphs which
exhibit in the large scale the same phenomena as fractal sets in the small. One of the examples
of such graphs is the Vicsek tree discussed in Section 2. Another example is shown on Fig. 2.
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Figure 2. Graphical Sierpinski gasket

A common feature of fractal-like graphs is that a standard random walk on them exhibits a
subdiffusive behavior. To be precise, let us introduce the following hypotheses, for an arbitrary
weighted graph (Γ, µ):

• Upper estimate with parameter β: for all x, y ∈ Γ and n > 0

pn (x, y) ≤ C

V (x, n1/β)
exp

(
−
(

dβ(x, y)
Cn

) 1
β−1

)
.(UEβ)

• Lower estimate with parameter β: for all x, y ∈ Γ and positive n ≥ d(x, y)

(pn + pn+1) (x, y) ≥ c

V (x, n1/β)
exp

(
−
(

dβ(x, y)
cn

) 1
β−1

)
.(LEβ)

Clearly, the hypothesis (UE) introduced in the previous section coincides with (UE2). The
condition (LE) seems slightly stronger than (LE2) as it claims the lower bound for pn rather
than for pn + pn+1. However, this has to do with the fact that (LE) was obtained in the previous
section under the assumption x ∼ x that will not be assumed here. In particular, now we do not
exclude bipartite graphs.

It is possible to prove that if (UEβ) and (LEβ) hold on (Γ, µ) then necessarily β ≥ 2. The
case β = 2 is referred to as Gaussian; a more general case β ≥ 2 is referred to as sub-Gaussian.
If β ≥ 2 and n ≥ d(x, y) then clearly(

dβ(x, y)
n

) 1
β−1

≥ d2(x, y)
n

,

which means that pn(x, y) decays with d(x, y) faster in the sub-Gaussian case rather than in
Gaussian. At the same time, V (x, n1/β) ≤ V (x, n1/2) that is pn(x, x) decays in n slower in the
sub-Gaussian case. Therefore, the propagation of the random walks in the sub-Gaussian case is
in general slower than in the Gaussian; hence the name.

One may expect that the results discussed in Sections 3, 4 should be extended (with proper
modification) to the sub-Gaussian case. However, such extensions are not straightforward and
are not available at the present time. Instead, we present here alternative characterizations of
sub-Gaussian estimates obtained in [22], [23].

For any non-empty finite set A ⊂ Γ, let τA be the first exit time from A, that is

τA = min {n ≥ 0 : Xn /∈ A} .
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Set

E(x, r) = ExτB(x,r),

which is the mean exit time from the ball B(x, r) starting from the center.
For any couple of finite sets A ⊂ B ⊂ Γ, define the capacity cap(A,B) by

cap(A,B) = inf
f |A=1,f |�B=0

E (f) .(5.1)

Consider the following hypotheses, where β is a positive parameter.
• Mean exit time estimate: for all x ∈ Γ and r ≥ 1,

E(x, r) � rβ.(Eβ)

• Capacity estimate: for all x ∈ Γ and r ≥ 1,

cap (B(x, r), B(x, 2r)) � V (x, r)
rβ

.(Capβ)

• Elliptic Harnack inequality: for any non-negative harmonic function u(x) in a ball B(x, 2r),
the following inequality holds:

max
B(x,r)

u ≤ C min
B(x,r)

u,(H)

with a constant C that is the same for all x ∈ Γ and r > 0.
• Parabolic Harnack inequality with parameter β: for all x ∈ Γ, R ≥ 1 and for any non-

negative function un(y) defined for n ∈ [0, 4T ], y ∈ B(x, 2R + 1) and satisfying the heat
equation un+1 = Pun in [0, 4T ) × B(x, 2R), the following inequality holds

max
n ∈ [T, 2T )
y ∈ B(x, R)

un(y) ≤ C min
n ∈ [3T, 4T )
y ∈ B(x,R)

(un(y) + un+1(y)) ,(PHβ)

provided T is a positive integer such that T � Rβ and T ≥ 2R.
The hypothesis (PH) introduced in the previous section differs from (PH2) only by using in

the right hand side un rather than un + un+1. Let us also observe that (PHβ) =⇒ (H) for any β.

Theorem 5.1. [22, Theorem 3.1] Assume that (Γ, µ) satisfies the following condition:

P (x, y) ≥ ε > 0, for all x ∼ y.(5.2)

Then

(UEβ) + (LEβ) ⇐⇒ (PHβ) ⇐⇒ (V D) + (H) + (Eβ) ⇐⇒ (V D) + (H) + (Capβ) .(5.3)

One of the points of Theorem 5.1 is that it shows the difference between the elliptic Harnack
inequality (H) and the parabolic one (PHβ). Indeed, as one sees from (5.3) the difference is
(V D) and one of the conditions (Eβ) or (Capβ) that determine the parameter β. An example of
Delmotte [19] shows that (H) does not imply (V D). It is easy to see (H) does not imply (Eβ)
either, because there are examples of graphs satisfying (H) and (Eβ) with arbitrary β ≥ 2 (see
[4]).

For the case β = 2, this theorem admits the following extensions. Let us introduce the radial
Faber-Krahn inequality:

λ1 (B(x, r)) ≥ c

r2
,(RFK)

for some c > 0 and all x ∈ Γ and r ≥ 1. Then

(UE2) + (LE2) ⇐⇒ (PH2) ⇐⇒ (V D) + (H) + (RFK) ⇐⇒ (FK) + (H).(5.4)

The first equivalence is a particular case of (5.3), and the second equivalence was proved in [22,
Corollary 3.2]. To include (FK) + (H) in the circle, note that the implication

(UE2) + (LE2) =⇒ (FK) + (H)
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follows from Theorem 3.1 and (5.3), whereas the implication

(FK) + (H) =⇒ (V D) + (H) + (RFK)

follows from (FK) =⇒ (V D) (cf. Theorem 3.1) and the trivial observation that (FK) =⇒
(RFK). Note also that the equivalence (PH2) ⇐⇒ (FK) + (H) was proved in [25] in the setting
of manifolds.

A deep question related to the above considerations is to provide a geometric understanding
of the elliptic Harnack inequality (H). This question is still open, also in the continuous setting
of manifolds.

If (V D) and (Capβ) are satisfied then necessarily β ≥ 2. Indeed, the following upper estimate
of capacity is always true

cap(B(x, r), B(x, 2r)) ≤ V (x, 2r)
r2

(it follows by taking a standard cut-off function in definition (5.1) of capacity). Combining with
(V D) and (Capβ), we conclude β ≥ 2.

The following theorem extends further the line of equivalences (5.3).

Theorem 5.2. Assume that (Γ, µ) satisfies the condition (5.2). Then

(V D) + (H) + (UEβ) =⇒ (LEβ) .(5.5)

In particular,

(V D) + (H) + (UEβ) ⇐⇒ (UEβ) + (LEβ) ⇐⇒ (PHβ) .

A continuous version of this result was proved in [25]. A similar approach can be used in the
graph case (see [23, Remark 15.1]).

Examples of graphs satisfying sub-Gaussian estimates (UEβ) + (LEβ) can be found in [5],
[26], [22]. In most of these examples, the volume growth function satisfies a uniform estimate

V (x, r) � rα,(Vα)

for all x ∈ Γ, r ≥ 1, for some parameter α. In this case, the sub-Gaussian estimates become as
follows:

pn(x, y) ≤ C

nα/β
exp

(
−
(

dβ(x, y)
Cn

) 1
β−1

)
(UEα,β)

and

(pn + pn+1) (x, y) ≥ c

nα/β
exp

(
−
(

dβ(x, y)
cn

) 1
β−1

)
.(LEα,β)

Then Theorem 5.1 yields the equivalence

(UEα,β) + (LEα,β) ⇐⇒ (Vα) + (H) + (Eβ) ⇐⇒ (Vα) + (H) + (Capβ) .(5.6)

In general, the parameters α, β must satisfy the following relations

2 ≤ β ≤ α + 1(5.7)

(see [23, Section 2]). Indeed, β ≥ 2 was proved above. To show that β ≤ α + 1 let us recall that
(Vα) implies by Theorem 2.3

pn(x, x) ≤ Cn− α
α+1 .

Comparing with the on-diagonal lower bound which follows from (LEα,β) we obtain β ≤ α + 1.
It was shown in [4], that for any pair of α and β satisfying (5.7) there exists a graph where

(Vα), (Eβ), and (H) hold. The Vicsek tree with parameter D described in Section 2 (see Fig. 1)
satisfies all the conditions (5.6) with α = D and β = D+1 (see [22]). Hence, in this case β = α+1
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which is the borderline case for α and β in (5.7). The Sierpinski gasket on Fig. 2 satisfies (5.6)
with α = log2 3 and β = log2 5 (see [26]).

In these two examples we have α < β. If on the contrary α > β then the sub-Gaussian
estimates admit another characterization in terms of the Green kernel g(x, y) that is defined by

g(x, y) =
∞∑

n=0

pn(x, y)

(alternatively, g(x, y) is the kernel of the operator (−∆)−1). It is straightforward that (UEα,β)
and (LEα,β) imply

g(x, y) � d(x, y)−(α−β), for all x �= y,(Gα−β)

provided α > β.

Theorem 5.3. [23] If (Γ, µ) satisfies (5.2) with α > β ≥ 2, then

(UEα,β) + (LEα,β) ⇐⇒ (Vα) + (Gα−β) .
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