TWO-SIDED ESTIMATES OF HEAT KERNELS OF JUMP TYPE DIRICHLET
FORMS
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ABSTRACT. We prove necessary and sufficient conditions for stable-like estimates of the heat kernel
for jump type Dirichlet forms on metric measure spaces. The conditions are given in terms of the
volume growth function, jump kernel and a generalized capacity.
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2 A. GRIGOR’YAN, E. HU, AND J. HU

1. INTRODUCTION

1.1. Historical background and motivation. The heat kernel p; (z,y) in R™ is the fundamental
solution of the classical heat equation

Ou—Au=0
that is given by the Gauss-Weierstrass formula
1 o — y|”
=—— — . 1.1
bt ((IZ, y) (47Tt)n/2 exp ( At ( )

The heat kernel of a similar heat equation with non-local operator
du+ (—A)Y2u=0

is also known and coincides with the Cauchy-Poisson kernel in R"™:
n+1

Co o=y %
pi(x,y) = T (1 + ’t—2m> ; (1.2)

where C,, =T (242 /n(n+1)/2,

We are interested in estimates of heat kernels in rather general abstract setting. Let (M,d) be
a locally compact separable metric space and let u be a Radon measure on M with full support.
Let (€,F) be a regular Dirichlet form in L? (M, ). The generator £ of (£, F) is a self-adjoint,
unbounded, non-negative definite operator in L? (M, i) that gives rise to the heat semigroup P, =
e t£ ¢t > 0. It is known that the operator P, is Markovian, that is, P,f > 0if f > 0 and P.f < 1
if f < 1. These properties allow to extend P; to a bounded linear operator in all spaces LY (M, u),
q € [1,00].

If P; as an operator in L? (M, 1) has for any ¢ > 0 an integral kernel p; (x,%) then the latter is
called the heat kernel of (€, F). The heat kernel coincides with the transition density of the Hunt
process associated with (€, F).

For example, the Gauss-Weierstrass function (1.1) is the heat kernel of the Dirichlet form

er.n)= [ vl
Rn
where f € F := W12 (R"). The generator of this form is £ = —A. A more general Dirichlet form
E(S) = [ a0nf0.,f da

with a uniformly elliptic symmetric matrix (a;; (x)) has the generator £ = —0,, (aijaxj). By
Aronson’s theorem [2], its heat kernel (equivalently, the transition density of the diffusion process
generated by L) satisfies the Gaussian estimate

( )vﬂex _CM
bt 'Y Atn/Q p ¢ 3

where C, ¢ are positive constants, and the sign < means that both < and > are true but with
different values of C, c.
Another well-known example of the Dirichlet form is

_ 2
en-[ [ Y |<;>_y|{$g” dedy,

R xR™

where f € F = BQ/B,/; (R™), where 8 € (0,2) is the index of this form. The generator of this
Dirichlet form is £ = (—A)ﬁ / 2, and its heat kernel (that is, the transition density of the symmetric
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stable process of index (3) satisfies the estimate

_C |z — y| —(n+p)

Note that (1.2) matches this estimate with § = 1.
In the general setting, assume that the heat kernel exists and satisfies the following estimate

C o (dzy)
with some function ® and two positive parameters «, 3. Then, by a result of [25], we have either

8
P (s) < Cexp <—csﬁ) or ®(s) = C(1+s)" @9 In other words, either the Dirichlet form is
local and the heat kernel satisfies sub-Gaussian bounds

8
C d(xz,y)\rs-1
bt (':va) = Wexp <_C( il/ﬁ )> > ) (13)

or the Dirichlet form is of jump type and the heat kernel satisfies stable-like bounds

_C d(z,y)\

The sub-Gaussian estimate (1.3) was proved for many fractal spaces like Sierpinski gaskets and
carpets, see for example, [3] [4] [5], [8], [13], [27], [29], [30]. The stable-like estimate (1.4) follows
from (1.3) by subordination, see [16], [34].

In the both cases « has to be the Hausdorff dimension of (M, d). Moreover, both (1.3) and (1.4)
imply the a-regularity of the volume of balls in M, that is, for any metric ball B (z,r) in M,

p(B(z,r)) =1, (1.5)

where the sign ~ means that the ratio of the both sides is bounded from above and below by
positive constants.

In the case of (1.3), the parameter (3 is called the walk dimension. In fact, the walk dimension
happens to be an invariant of (M, d) as well. It is known that in this case necessarily § > 2. In
fact, for most interesting examples, like Sierpinski gaskets and carpets, we have § > 2. In the case
of (1.4), the parameter [ is called the index of the associated jump process, and it can take in
general arbitrary positive values.

The major question that arises in this area is to find some practical conditions on (M, d, u) and
(€, F) that should be equivalent to (1.3) resp. (1.4). Certain equivalent conditions for (1.3) were
obtained in [26] and [19], but they contain an elliptic Harnack inequality that is difficult to verify.
Some equivalent conditions for the upper bound in (1.4) were obtained in [18] and [22].

If (M,d, u) is a complete Riemannian manifold and (&, F) is the standard Riemannian Dirichlet
form given by

(. f) = /M\VfIQdM,

then it is known (cf. [15], [33]) that the Gaussian heat kernel estimate that corresponds to § = 2
in (1.3), is equivalent to the conjunction of the following two properties:

o the volume regularity (1.5);
e the Poincaré inequality

2 < A2
o itz [ () (1.6

where f is the arithmetic mean of f in B (z,7).
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In the case 3 > 2 one replaces (1.6) by the (-Poincaré inequality

[ oarnzS [ (- (17)
B(z,r) " JB(z,r)

where T'(f, f) is the energy measure of f. In general, (1.5) and (1.7) are necessary for (1.3), but not
sufficient, so that one needs one more condition. The third condition was introduced for the first
time by Barlow, Bass and Kumagai in [6]. They named that condition a cutoff Sobolev inequality
(shortly, (CS)) and proved that (1.5), (1.7) and (CS) are equivalent to (1.3).

The meaning of (C'S) is that it postulates the existence of test functions with certain properties.
However, (CS) is quite difficult both to state and to verify, the search for another third condition
continues.

Andres and Barlow introduced in [1] a much simpler cutoff Sobolev inequality in annuli (shortly,
(CSA)) and used it to obtain equivalent conditions for upper bound of sub-Gaussian type. Grigo-
ryan, Hu and Lau proved in [23] that (1.5), (1.7) and (CSA) are equivalent to (1.3). Note that in
[23] the authors used a slightly different version of (C'SA) that was named a generalized capacity
estimate (shortly, (Geap)). It was conjectured in [23] that (Geap) can be replaced by the following
much simpler capacity condition: for any ball B of radius r,

1 (B)

rB
where cap is the capacity associated with (€, F) (see (1.12) for the definition). This conjecture is
still open.

A similar question is in place for the stable-like estimate (1.4). In this case, we assume that
(€, F) is a jump-type Dirichlet form with a symmetric jump kernel J (x,y). Chen and Kumagai
proved in [10] that, in the case § < 2, the stable-like estimate (1.4) is equivalent to the volume
regularity (1.5) and the following estimate of the jump kernel J

1
d (z,y)*t?

that replaces in this case the Poincaré inequality.

The main question that we address in the present paper is obtaining equivalent conditions for
(1.4) for arbitrary values of the index 3, in particular, for § > 2. In this case, apart from (1.5)
and (1.9) one needs a third condition. Ideally, the third condition should be again the capacity
condition (1.8), but like in the diffusion case we can state this only as a conjecture.

Our main result here is that (1.4) is equivalent to the conjunction of (1.5), (1.9) and a certain
generalized capacity condition (Geap) that is stated below in Definition 1.11.

We are aware of a preprint of Chen, Kumagai and Wang [11] where they obtained a similar
result using as a third condition a non-local version of (C'SA). We should emphasize one significant
advantage of our condition (Gcap) — it can be stated in the same form both for local and non-local
Dirichlet forms, whereas the conditions like (C'SA) have to use a specific shape of £.

We should also mention that Chen, Kumagai and Wang [11] use a more general volume doubling
property instead of the volume regularity (1.5) and a more general gauge function instead of 0.
However, they have to assume also a reverse volume doubling property which implies that the
underlying space must be non-compact. In contrast to that, our result is stated and proved in a
localized form, that is, when all assumptions are made for a restricted range of radius and the heat
kernel bound (1.4) is obtained for a restricted range of time. Consequently, our results apply also
to compact spaces. Yet one more difference is that our proof is completely analytic whereas that
of [11] uses quite strongly the jump process associated with (£, F) and corresponding probabilistic
tools.

We expect that our method should work also for non-regular Dirichlet forms but this would
require a revision of a number of the previous works that we cite here. Let us emphasize that we
assume neither conservativeness of (£, F) nor compactness of metric balls, although these assump-
tions are commonly used in many papers on this subject.

1
Cap(QB,B) <C (1.8)

J(x,y) ~ (1.9)
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1.2. Statement of the main result. Let (M, d) be a locally compact separable metric space.
We denote by B (x,r) the open metric ball in (M, d) of radius r centered at = € M. For any ball
B = B (z,r) and for any A > 0, we denote by AB the ball B (x, Ar).

Let 1 be a Radon measure on M with full support and let (£, F) be a regular Dirichlet form in
L? (M, ). We assume that (€, F) is of jump type, that is, for all u,v € F N Cy(M)

(u,0) / / — u(y)) (v() — v(y)) di(z, y),
MxM\dlag

where j is a jump measure defined on M x M \ diag (see [14]). Assume in addition that the jump
measure j has a density with respect to u x p, which will be denoted by J(z,y). Hence, by [14,
Lemma 4.5.4, p.184], for all u,v € F,

g = [[ (o)~ ) (v() — o) o )du()duly). (1.10)
MxM
Let us fix two positive parameters «, 3 as well as R € (0, diam M| that will be used throughout

the paper.

Definition 1.1 (Condition (V')). We say that condition (V<) is satisfied if, for all x € M and
€ (0,00),
p(B(x,r)) < Cr,

for some constant C' > 0. We say that condition (1 ) is satisfied if, for all # € M and all r € (0, R),
p(B(x,r)) =
We say that (V) is satisfied if both (V<) and (V>) are satisfied.
Definition 1.2 (Condition (J)). We say that condition (J<) is satisfied if, for all distinct =,y € M,
J(z,y) < Cd (z,y)" 0.
Similarly, condition (J>) means that
J(z,y) > C N (z,y) "),
We say that (J) is satisfied if both (J<) and (J>) are satisfied.

By the general theory of Dirichlet forms (cf. [14]), (£, F) has the generator L that is a non-
negative definite, self-adjoint, symmetric operator on L?(M, u). The generator gives rise to the
heat semigroup {P},~q, where P; := e~'* is a bounded self-adjoint operator in L2 (M, ). If, for
any t > 0, P, is an integral operator, that is, given by

Bif (x) = /M pr () £ () da ()

where py(x,y) is the integral kernel, then pi(x,y) is called the heat kernel of (£,F). If it exists
then, for any t > 0, p; (z,y) is a non-negative measurable function of (z,y).
In this paper, we are concerned with the following stable-like estimates of the heat kernel.

Definition 1.3 (Condition (UE)). We say that the upper estimate (UFE) is satisfied if the heat
kernel p;(x,y) exists and satisfies the following estimate

C ([, day)y
pe(w,y) < /B (1 + /5 > ;

for all t € (O,Rﬂ) and p-almost all z,y € M.

1 1+ d(:v,y) et - t—a/,@ A t
to/B t1/8 - d(z,y)e+s’

Note that
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Definition 1.4 (Condition (LE)). We say that the lower estimate (LE) is satisfied if the heat
kernel p;(x,y) exists and satisfies the following estimate

c d(z,y)\ "

forall t € (O,Eﬁ) and p-almost all x,y € M.

To state the main result, we need some more definitions.

Definition 1.5. Let U C M be an open set, A be any Borel subset of U and x > 1 be a real
number. A k-cutoff function of the pair (A, U) is any function ¢ € F such that
o 0 < ¢ < Kk p-ae in M;
e ¢ >1 p-ae. in A;
e ¢ =0 p-a.e. in U°.
We denote by k-cutoff (A, U) the collection of all k-cutoff functions of the pair (A, U).

Any 1-cutoff function will be simply referred to as a cutoff function. Clearly, ¢ € F is a cutoff
function of (A4,U) if 0 < ¢ <1, ¢|a =1 and ¢|ye = 0. Also, we write
cutoff (A4, U) := 1-cutoff (A4, U).
Note that, for any x > 1,
cutoff (A, U) C k-cutoff(A,U),
and, for any ¢ € r-cutoff(A, U), we have 1 A ¢ € cutoff (A4, U).

Remark 1.6. Let us emphasize that we do not require a cutoff function ¢ to have a compact
support nor to be continuous, unlike some other papers where this notion was used.

Consider the following function space
F:={v+a:veF, acR}.

The motivation for introducing this space is to include constant functions that are not necessarily
in F.
Definition 1.7. Let U be an open subset of M and A be any Borel subset of U. For any function
u € F' N L>® and a real number x > 1, define the generalized capacity capg{) (A,U) of the pair
(A,U) by

cap{™ (A, U) = inf {€ (u2¢, ¢) : ¢ € r-cutoff(A,U)} . (1.11)

In the case k =1 and v = 1 we obtain the usual capacity:
cap(A4,U) := capgl) (A,U) =inf {E(p,¢) : ¢ € cutoff (A, U)}. (1.12)

Remark 1.8. Observe that the quantity £(u?¢, ) in the definition of the generalized capacity is
well defined. Indeed, if u = v+ a where v € F N L*® and a € R then by [14, Theorem 4.2(ii), p.28]
we have

u?p = v’ + 2ave + a’¢* € F.

Remark 1.9. Note that if u is not a constant then £ (u2¢, qS) can take negative values so that the
generalized capacity can be negative (unlike the usual capacity that is always non-negative). Since
we will be using only upper bounds for capgf) (A,U), one could have avoided negative values by
using in the definition (1.11) & (u2¢, ¢) N instead of & (u2q§, ¢). This would make the generalized

capacity non-negative, while all the results and proofs of this paper remain unchanged.

Remark 1.10. The notion of a generalized capacity for local Dirichlet forms was defined in [23]
in a somewhat different way. However, the main result in [23] can be also reformulated for the
generalized capacity defined by (1.11). The advantage of the definition (1.11) is that it works
equally well for local and non-local Dirichlet forms.
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Definition 1.11. We say that the generalized capacity condition (Gcap) is satisfied if there exist two
constants xk > 1,C > 0 such that, for any v € F' N L"Oind for all concentric balls By := B(xo, R),
B:=B(zg,R+r)withzpe M and0< R< R+r < R,

cap{™ (By, B) < %/ u?dp. (1.13)
B

Clearly, (Gcap) is equivalent to the existence of a number x > 1 (not depending on u) and a
function ¢ € k-cutoft(By, B) (depending on u) such that

Our main result is the following theorem (it is a consequence of a more general Theorem 2.10 to
be stated below).

Theorem 1.12. Let (£, F) be a regular jump type Dirichlet form on L*(M, ) with a jump kernel
J. Assume that (M,d, p) satisfies (V). Then the following equivalence holds:

(J) + (Geap) & (UE) + (LE). (1.14)

Moreover, under these hypotheses, the heat kernel is Holder continuous jointly in x,y and contin-
uwous jointly in x,y,t.

If R = oo and if (€, F) is conservative then it is known that (UE) + (LE) = (V) (see [20]).
Hence, in this case the statement of Theorem 1.12 can be reformulated as follows:

(V)4 (J)+ (Geap) & (UE) + (LE). (1.15)

In the case 5 < 2 the condition (Gcap) can be derived from (V') and (J) (see Section 2.6), so that
in this case we obtain

(V) + (J) & (UE) + (LE). (1.16)

This equivalence (in a somewhat more restricted setting) was first proved by Z.-Q.Chen and
T.Kumagai [10].

Definition 1.13 (Condition (cap)). We say that the capacity condition (cap) is satisfied if there
exists a constant C' > 0 such that, for any B := B(xo, R) with R < R,

cap(%B,B) < C%. (1.17)

It is easy to see that
(Gceap) = (cap) .
Indeed, applying (Geap) with uw = 1, we obtain a function ¢ € k-cutoff (%B , B) such that

C u(B)
£(6,0) < W/BUQ‘“‘: ot

Replacing ¢ by ¢ := 1 A ¢ € cutoff (1B, B), we obtain that £(¢, ¢) satisfies the same estimate,
which implies (1.17).
Theorem 1.12 and the condition (Gcap) are motivated by the following conjecture.

Conjecture 1.14. (V) + (J) + (cap) = (UE) + (LE).

At the time being we lack necessary technical tools to approach to this problem.
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1.3. Structure of the paper. Let us describe the main structural elements of the paper.

Section 2. In Subsection 2.1 we obtain a consequence of (Geap) — the Andres-Barlow condition
(AB). This is a non-local version of the condition (C'SA) introduced by Andres and Barlow [1] for
local Dirichlet forms. A similar condition in [11] is called (CSJ).

In Subsection 2.2 we discuss some properties of capacity. In Subsection 2.3 we show that (Gcap)
follows from a survival condition (S). In Subsection 2.4 we obtain a self-improved version of the
condition (AB). The latter is used later in the proof of Lemma 3.10 that in turn is one of the
ingredients of the proof of the crucial Lemma of Growth (Lemma 4.1).

In Subsection 2.5 we state an extended version of Theorem 1.12 — Theorem 2.10, and explain a
general scheme of its proof.

In Subsection 2.6 we treat a special case § < 2. We prove that in this case the hypothesis (Gcap)
can be dropped from (1.14), cf. Corollary 2.12.

Section 3. We prove here some auxiliary technical results, mostly related to the fact that (&, F)
is of jump type. The main results of this section are Lemmas 3.9 and 3.10.

Section 4. This section is central for the proof of Theorems 1.12 and 2.10. In a sequence of
lemmas, we prove estimates of the Holder norm of harmonic functions. The condition (Geap) in
the form (AB) is used only in the proof of Lemma 4.3, which itself constitutes the main part of the
proof of Lemma of Growth 4.1. The latter implies the Weak Harnack Inequality of Lemma 4.5.

In the case of a local Dirichlet form, the Weak Harnack Inequality implies immediately the
Hélder continuity estimate for harmonic functions (cf. [23]). In the present non-local case, the
Weak Harnack Inequality implies a weaker statement that requires further self-improvement. This
is a quite elaborate argument that we have borrowed from the paper of Di Castro, Kuusi, Palatucci
[12] and that is implemented in Lemma 4.7. The latter implies immediately Oscillation Lemma 4.8
containing the required estimate of the Holder norm.

Section 5 is devoted to the proof of Theorem 2.10. In Subsection 5.1 we show that (V') + (J) +
(AB) imply (S) (Corollary 5.7). In Subsection 5.2 we prove the oscillation inequality for a weak
solution u of the equation Lu = f (Lemma 5.9), based on the Oscillation Lemma 4.8.

In Subsection 5.3 we prove ultracontractive estimates for the heat semigroup PtQ and for its time
derivative (Lemma 5.10), by means of the Faber-Krahn and Nash inequalities that follow from (V')
and (J) (Lemma 3.5).

In Subsection 5.4 we prove the oscillation inequality and the Hoélder continuity for the heat
semigroup considering a function u = P{f as a weak solution to Lu = —d;u and using Lemmas
5.9 and 5.10.

In Subsection 5.5 we obtain the existence of the heat kernel via the ultracontractivity of the heat
semigroup, and prove the Holder continuity of the heat kernel (Lemma 5.13).

In Subsection 5.6 we conclude the proof of Theorem 2.10. We first obtain from (S) the on-
diagonal lower bound of the heat kernel. Then, using the Hélder norm estimate of the heat kernel
of Lemma 5.13, we obtain the near-diagonal lower estimate (N LE) of the heat kernel (see definition
in Section 2.5). Finally, we apply the following result of the companion paper of the authors [17,
Theorem 2.9]: under the standing assumption (1),

(J)+(S)+ (NLE) < (UFE) + (LE), (1.18)

which finishes the proof of (UFE) and (LE).

Let us also mention that the techniques for obtaining (LE) in (1.18) was developed in [17], while
the method for derivation of (UE) came from [22, Corollary 2.7].

Section 6. In this Section we obtain some consequences of our main result: Corollary 6.2 about
the equivalent conditions for (UE) and (LE) in terms of the Green function instead of (Gcap),
and Corollary 6.3 about asymptotic behavior of the heat semigroup as t — oo. Finally, Appendix
contains some technical results.

NoTATION. To shorten the formulas, we use everywhere measure j defined on M x M by

dj = J(z,y)du(z)du(y).
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In expressions of the form

/ F(z,y)dj
E1 ><E2

we always follow the convention that the variable x belongs to F7 and y belongs to Es.

We use the expression “p-almost all z,y € M 7 as a short hand for “u x p-almost all (z,y) €
M x M”.

Sometimes we use abbreviation & (u) := & (u,u).

Letters C, ¢, C’, ¢/, Oy, c1 ete are used to denote positive constants whose values are unimportant
and can change at any occurrence. However, our results are quantitative in the sense that the value
of such constants depends only on the parameters in the hypotheses in question.

The letters «, 3 and R denote the global parameters that have the same meaning all over the
paper. The usage of other letters depends on the context.

2. AROUND CONDITION (Gcap)
Let us extend & from F to F' := F + {const} as follows:
E(u+a,v+0b):=E(u,v), Yu,velF, abeR.

Then & has on F’ the same expression as in (1.10). Some properties of (£,F’) are proved in
Appendix.

2.1. Condition (AB).

Definition 2.1. Given ¢ > 0, we say that condition (AB;) is satisfied if there is C' > 0 such that,
for any w € F'N L* and for any three concentric balls By := B(wo, R), B := B(zo, R + ) and
Q:= B(zo, R) with 0 < R < R+7r < R <R, there exists ¢ € cutoff(By, B) such that

/ W(x) (3(@) — s < ¢ [ ¢ (@) (@) — uw)? dj + < / wdp.(21)
QxQ ™ Ja

BxB
We say that (AB) holds if (AB;) holds for some ¢ > 0.

The condition (AB) is named after Andres and Barlow, who first introduced in [1] a similar
condition for local Dirichlet forms (although in [1] function ¢ had to be the same for all u). They
called their condition by (C'SA) — a cutoff Sobolev inequality in annuli. The condition (C'SA)
was a significantly simplified version of a cutoff Sobolev inequality introduced earlier by Barlow,
Bass, Kumagai [6]. Since none of all these conditions is actually related to the classical Sobolev
inequality, we have decided to give to it a more appropriate name.

To confuse the reader even more, let us also mention that a version of the condition (C'SA) for
local Dirichlet forms was used in [23] under the name (Gcap). Here we use (Geap) for a different
condition as stated above.

It follows from (Geap) or (AB) that, for any couple of concentric balls By, By with radii 0 <
Ri < Ry < R, the set cutoff (B, B2) is non-empty. This observation will be frequently used. In this
section we establish a relation between (Gcap) and (AB) that is needed for the proof of Theorem
1.12.

Lemma 2.2. For any measurable set E C M and for all measurable functions f,g on E, the
following inequality holds:

/ @) (g@) —gw)’di < 2/ (9(@)—gW) (f* (@) g(x) = f* () g ) dj
ExE

ExFE
1 / 6 () (f () — £ )2 di, (2.2)
ExE

provided the middle integral is greater than —oo.
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Remark 2.3. In general, the integrals in (2.2) can take value +o0o. However, all the integrals in
(2.2) are finite provided f,g € F' N L. Indeed, by the expression (1.10) of £(g, g),

(@) (9(x) — 9@)?di < [1f]2 /M (gle) =g di = 1Fl E(oug) < o

ExXE X

Similarly, the third integral in (2.2) is finite. It follows from Proposition 6.5(i4) that f2g € F/NL>.
Then, using the Cauchy-Schwarz inequality and the expressions of £(g, g) and £(f2g, f?g), we obtain

[E . lg(z) — gl | 2 (@)g(x) — 2 ()gW)| di < VE(g,9)VE(fg, f2g) < o0

Proof of Lemma 2.2. By a direct computation, we have the following identity
% (X2 4 V%) (a—b)? = (a - b)(X%a— Y2b) - %(aQ CR) (X2 v2)
for all numbers a,b, X, Y. Let us estimate the last term here as follows:
|(@® =) (X* = Y?)| = [(X +Y)(a—b)|[(a+b)(X ~Y)|

< zll(X FY)2(a— )%+ (a+b)2(X — Y)?

1
< 5(X2 + Y% (a—b)?+2(a® +b))(X - V)2
Substitution into the above identity yields
1
3 (X2 4+Y?) (a—b)* <2(a—b)(X?a—Y?)+2(a® + b*)(X — V).

In particular, for arbitrary =,y € E, setting here X = f(z), Y = f(y), a = g(x) and b = g(y), we
obtain

5 (P2@) + £ () (o) — 9())?
< 2(g(x) — gW) (P (2)g(x) — F2(W)g(W) + 2(6°(z) + > (W) (f (x) — f(y))*.

Integrating this inequality over E x E against dj and symmetrizing in x,y we obtain (2.2). |
Lemma 2.4. (V<) + (J<) + (Gcap) = (AB).

Proof. Let By, B, and u be as stated in condition (AB). Consider also the intermediate ball
By := B(zo,R + r/2). Applying (Gcap) to the pair (By, B;), we obtain that there is a function
g € r-cutoff (By, By) such that

C
E(utg,g) < _ﬂ/ u?dp. (2.3)
T B
Let us apply (2.2) with this g and with f = u, E = B. Since g|gc = 0, we have

/ (9(2) — 9 () (4 (2) g (2) — o (1) 9 (v))
BxB

= E(u’g,9) </ch3 /Bch> —9(y) (WP (2)g(x) —u*(y)g(y)) &j
- S0 - [ Rled- [ e
< E(uPg,9).
Substituting this into (2.2) and using (2.3), we obtain
/ u?(z) (g9(x) — g(y))? dj < 2E(u?g,g) +4/ g (@) (u(z) = u(y))* dj
BxB

BxB
<if e w2 [ (2.4
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Define the function
¢ :=1A g € cutoff (By, By).
Since for all z,y € M we have |¢p(x) —o(y)| < |g(x) —g(y)| and g () < k¢ (z), we obtain from (2.4)

| @@ -owidi< 42 [ F @) - um)Pd+ 3G [ lde @)
BxB BxB B1

Since
OxQ=[BxBJU[(Q\B)x (Q\B)]U[(Q\B)xBJU[Bx(2\B),

we have

/ W2 (2) (6(z) — B(y))2 dj
QxQ

(s s o)
BxB J@\B)x(@\B) J(@Q\B)xB JBx(Q\B)

=01+ 12+ I3+ 14

We estimate Iy, --- , I4 separately. By (2.5), we have

B¢f @) ) di+ 1 [ ),

where ¢ = 4x2. Since ¢ =0 on Bf and, hence, ¢ =0 on B¢, we have
I, =0.

Using (6.8) from Appendix (which requires (V<) and (J<)) and the fact that ¢ < 1, we obtain

- [ . ( / u2<x>¢2<y>J<x,y>du<y>) ()
-/ . ( / | u2<x>¢2<y>J<x,y>du<y>) au()

u?(x x z
= /Q\B ( )</{y:d(x7y)>£} ! 7y)dﬂ(y)) e

C 9
< = u”(x)du(x).
<7 o (z)dp(x)

Similarly, we have

Adding up the estimates of Iy,--- , 14, we obtain (2.1). O
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2.2. Condition (cap).

Lemma 2.5. If (V) holds, then (cap) is equivalent to the following condition: for any A € (0,1),
there is a constant C > 0 depending on X\ so that for any ball B := B(xg, R) with R € (0, R),
u(B)
cap(AB,B) < C—— Tk (2.6)
Proof. Indeed, (cap) follows from (2.6) by setting A = 1/2. Let us prove that (cap) implies (2.6). If
A< % then this trivially follows by the monotonicity of capacity. Now, assume that A € (%, 1) and

set a = (1 —\)/2. It follows from (V') by a standard covering argument that there exist an integer
N = N(\) > 0 and N balls B; = B(z;,aR) with the centers x; € AB, i = 1,2, ..., N such that

N
ABcC | B
i=1
By the definition of a, we have 2B; C B. Using the subadditivity of capacity and its monotonicity
properties, we obtain

N
cap(A\B, B) p(B;, B) < Z p(Bi, 2B;).

||Mz

By (cap) we obtain

/:LL(B
SCW’

whence (2.6) follows. O

ca,p(Bi, 237,) < C

Recall that (Gcap) = (cap). In the next statement we show that also (AB) implies (cap).
Lemma 2.6. (V<) + (J<) + (AB) = (cap).
Proof. We need to prove that, for any ball B := B(z¢, R) C M with R € (0, R),

cap( B,B) < C’M(B)

o (2.7)

with some constant C' > 0 independent of R.
Applying the condition (AB) with function u = 1 for the triple %B, %B , B, we obtain that there
exists a function ¢ € cutoff (3 B, 3 B) such that
w(B
[ ) o) < B2,
BxB

Using this inequality together with (J<) and (V<), we obtain
£6.0)= [ (0la) - o)’
MxM

- / (6(2) — B(y))*dj +2 / 62 (x)dj
BxB

(§B)xBe
< C% +2 </(EB) ¢2(w)du(l’)> (xseuipB . J(x,y)du(y)>
< C% + 2u(B) (i‘é% /{ oo J (m,y)du(y)>
< C% +2u(B) (R/C4)ﬁ (by (6.8))
sc/%,

which implies (2.7). O
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2.3. Condition (5). Given a non-empty open set Q C M, let F (€2) be the closure of F N Cy (£2)
in F with respect to the norm & (u,u) := & (u,u) + ||u|/32. It is well known (see [14]) that if (£, F)
is regular, then (&, F(2)) is also a regular Dirichlet form. In this case, we denote the corresponding
generator, heat semigroup and heat kernel (if it exists) respectively by £, {Pf*} and p(z,v).

Definition 2.7 (Condition (S5)). We say that a survival condition (S) is satisfied if there exist
constants €, > 0 such that, for any ball B C M of radius r € (0, R) the following inequality holds:

essinf PP1 > ¢,
iB
4

provided /8 < ¢r.
In this section, we will prove the following implication.
Lemma 2.8. If every metric ball of radius < R has finite measure then (S) = (Geap) .

Proof. Assuming (S), we will prove that there exists a ‘number £ > 1 such that, for any pair of
balls By := B(zo, R), B := B(xo, R + r) with R + r < R, there is a function ¢ € k-cutoff(By, B)
such that, for all u € F' N L,

2
£,0) < /B Wy, (2.8)

which yields (Gcap). Construction of ¢ is motivated by the argument of [1, Lemma 5.4]. Set
A = =" and consider the function

oo
h=GR1p ::/ e MPP1gadt.
0

It follows from [14, Theorem 4.4.1] that h € F(B). We first obtain two-sided bounds of h and then
construct a k-cutoff function ¢ using h. By the definition of h, we have h = 0 in B®. Hence, for
any 0 < f € L' n L*(B),

(h, f) = /0 e M (PP1p, f)dt < / et e = A S e = 7P 1l

0

which implies that
h<rP pae. on B.

Let us now obtain a lower bound of h in By. Fix = € By and consider the ball B := B(x, r) C B.
By the definition of h and condition (), we have, for any 0 < f € L'(3B),

00 (6r)8 ~
f) = [P naz [T e (PP ) d
0 0

(6r)7 8.8
>/0 et el = A7 (1= e ) e £l

_oB
=Pl —e)e | fllpa,s
where the constants ¢, § are those from (S). Since By can be covered by a family of countable balls
like B and f is arbitrary, we obtain that
h> k" p-ae. on By.

where k1= e (1 — 6*55)*1.

NOW COHSideI’ the function
¢ L Iih
=B

which satisfies the conditions ¢ € F(B), 0 < ¢ < K, ¢|g, > 1 and ¢|ge = 0. It remains to prove
that ¢ satisfied (2.8). Let us use the notation

Ex(w,v) = E(w,v) + AMw,v),
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where w,v € F. If u € F' N L*> then u?¢ € F. By [14, Theorem 4.4.1], we obtain

EW9,0) < E6,6) = SEWS,GF1p) = (w6, 1p)

2
= i/ u?dp < H—/ u?dp,
7“6 B 7"5 B

which finishes the proof of (2.8). O

2.4. Self-improvement of (AB).
Lemma 2.9. If (V<) and (J<) hold then (AB) = (ABl/g).

The difference between (AB) and (AB g) is that the constant ¢ in (AB) may be large, whereas
in (A31 /8) we have ( = %. In fact, the value % is chosen for convenience of application, while in
the statement and proof of Lemma 2.9 it can be replaced by arbitrarily small positive number.

The proof below follows essentially the argument of Andres and Barlow [1] that was done in the
setting of local Dirichlet forms. We have to overcome two new difficulties, though: the non-locality
and the fact that the test function ¢ in (AB) is allowed to depend on u, which makes the derivation

of (A31 /8) much more involved.

Proof of Lemma 2.9. Let By := B(xo,R), B := B(zo, R+ r) and Q := B(xo, R’) be as in the
definition of (AB). Fix a function v € F' N L. We need to find ¢ € cutoff(By, B) such that

/ W2 (z) (B(a) — d))Pdj <
QxQ

. C
<5 F@@ -+ [ dae @)

If w =0 in Q then any ¢ will do. Assume in the rest of the proof that [[u| 2y > 0. Fix some

e > 0 to be specified below in (2.10), and set u. := |u| + . Note that u. € F' N L*>.
Let ¢ > 1 be a parameter also to be determined later. Define the sequences {ry,}, -, and {s,},~;
by

Tn = (1 - qin) r, Sp=Tpn—Tp-1= (q - 1) qinr
and set
B,, ;= B(xg, R+ 1y),
Un = Bn+1 \ Bn

Obviously, r, T r and, hence, B,, T B as n — 400, and U2 ,U,, = B\ By (see Fig. 1).

FIGURE 1. Sets B,, and U,
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Applying (AB) to the function u. and to each triple (B, By+1,$2), we obtain that there exists
¢,, € cutoff(B,,, By+1) such that,

| @) Gula) = ) di < ¢ (uela) = we)*df + 5 [ ol
QxQ Q

Bn+1 ><Bn+1 8n+1

Note that
and

In particular,

/ uldp < 2/ udp + 221 (Q) .
Q Q

1/2 1 1/2
2 2
€= U d,u> = (—/ U d,u) , 2.10
£ n @ Jo (210
/ugdu < 4/ u?du.
Q Q
It follows that

| 2@ 0w -, < ¢ (ule) ~ul)*df +—— [ odp (211)
QxQ Q

Bpy1XBniy1 Sn+1

Choosing

we obtain that

Consider the sequences {a,},-; and {b,},-, defined by

bn = q—ﬁn, Qp = bn—l - bn = (qﬁ - 1) q—ﬁn7

so that
Z anp =1,
n=1
and define the following function
= Zan¢>n. (2.12)
n=1

We will prove the following two claims:
(71) ¢ € F (which will imply that ¢ € cutoff(By, B) because by construction ¢|p, = 1 and

¢|pe = 0);
(7i) if ¢ is close enough to 1 then ¢ satisfies (2.9), which will finish the proof of (ABl/S).

To verify (i), observe first that ||¢,[|;2 < u (B)'? and, hence,
o0 o0
S landulls < 1 (B2 an < oo,
n=1 n=1

which implies that ¢ € L? (M). Since F is complete with respect to the norm ||-||;2 + & (;, Y2 in
order to prove that ¢ € F, it suffices to verify that

Z & (an¢n’ an¢n)1/2 < 00.

n=1

Since u. > €, we obtain from (2.11) that

-2
[ 6 -0 i< e + S [
QxQ Q

$n+1
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Since ¢,, is supported in B, we obtain

EGntn) = [ (ala) =0, = |

QxQ

(6(2) — 6u(®))2 dj +2 / 62 (2)dj

BxQe¢

Since d (B,Q¢) > R' — (R+7) > 0 and ¢2 < 1, the last integral here is bounded from above by
a constant that is independent of n, which follows from (6.8) that in turn is based on (V<) and
(J<). Absorbing also & (u,u) and fQ u?dy into constants, using s, = (¢ — 1) ¢~ and combining
the above two lines, we obtain

E (¢ps by) < Cqg™,

where the constant C' depends on all variables in question except for n. Since a, = (qﬂ — 1) g,
we obtain that

ZE an¢n7an¢n 1/2 Zan ¢n’¢n 1/2 < CZC] ﬁnq2ﬁn < o0,

n=1 n=1 n=1

which finishes the proof of (7).
For the proof of (ii), we consider the partial sums of the series (2.12):

N
®N = Z an¢n7
n=1

Clearly, &5 T ¢ pointwise as N — oo. It suffices to prove the following inequality

| @@ -ox@rd< 5 [ 6w a2 a5 [ e )

because (2.9) will follow then from (2.13) as N — oo by means of Fatou’s lemma.
Set

N 2
*(x) (Z an(¢p () — %(y))) dj
n=1

Since ¢, = 1 on By, 41 for allm > m+1, and ¢,, = 0 on By, , |, we obtain, for all z,y € M and for
alln >m+ 2,

= ¢ (@) (1 = ¢, (y)) + ¢m( )( — ¢p()).

Sy (u) == /Q @) (@)~ o) = /

QxQ

It follows that

N 2
(Z an(¢n () — ¢>n(y))>
n=1

N
= > an(da(2) ¢ +2Z Z Ut (G (@) = S (1) (D () — D (1))

m=1n=m+1

N N-1
= Z (1721 (¢n(x) qbn + 2 Z Amam+1 d)m( ) ¢m(y)) (¢m+1($) - ¢m+1(y))
n=1 m=1
N-2 N

+23° 3" tnam (6,,(2) = 6,0 (1)) (D0(2) — 3 (1))
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whence

N

Swlu) <35 a2 /Q (@) (0n(w) = a0

n=1

I

#2303 anan [ w@)on (@) (1= 6,0)d

m=1n=m+2 QxQ

Iz

#2303 anan [ w@)on(0) (- 0,0

m=1n=m+2 QxQ

I3
=3I + 21, + 215. (2.14)

We estimate I, I3, I3 separately. By (2.11) we have

neYial [ v ) - )
o0 0o 9
< CE_;GZ /Bnﬂxs(“(m) —u(y))* dj +0§_:1 86—7:1 /QUQ(x)du(x)
— - 2 _ 2 di > 2 B 9 J
C; o /B1><B (ule) ~ulu)| 4 + <; o /(Bn+1\Bl)XB (u(z) —u(y))” dj
m Ih2
+ CZ G /Q“ (x)dp(x) = (I + (T2 + Clhs. (2.15)
n=1 “"n+1
I3

Next, we estimate separately I11, 12, I13. Since

oo o0 2
ZaQZ(qﬁ—l)QZq*w”:(qﬁil) _d’-1

" ¢ -1 P +1
n=1 n=1

and ¢ =1 on Bj, we obtain

o0 ) /6 _ 1 ]
=3 / ) ) < G | ¢ @)~ u) (2.16)

Before we estimate I12, which is the main term, observe that by (2.12) the function ¢ on each
annulus U, satisfies the estimate

6> > ardp= > ar=bp,

k=m-+1 k=m+1

which implies

Uy < biam = (¢ —1)¢ on U,,. (2.17)
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Using (2.17) and a,, = ¢~ "~™8q,,, we obtain

_ - a2 _ . .
he ngl n/(‘Bn+l\B1)><B( w(e) = dj ZZ/mXB (y)” dj

n=1m=1
_ §j§jqﬂwﬂwﬂ/’ a2, (ulx) — u(y))? dj
n=1m=1 UmxB

- < *mmﬁﬂ;Bﬁwm—ww%j

oo 23

< Z #/U B(qﬁ —1)%¢°(z) (u(z) — u(y))? dj
m=1 mX
*(¢" = 1)

A1 ), ¢ @ @ —u)d

In order to evaluate I3, observe that, by the definitions of a, and s,

2 _ 2
Za B it o N U Vi PPl Ut
n b
5+1 1 (4 — 1)7 g8+ (q—1)"r0 n=1 (q—1)7 8

which implies that

B (B —
Z ¢’ (¢" - 1) 2

Sn+1
Substitution of (2.16), (2.18), and (2.19) into (2.15) yields an upper bound of I;.
Now let us estimate I2. Using that ¢,, =0 in By, .4, 1 — ¢, = 0 on B, and

d(Bp+t1,By) > Ty — Tm41 = Smt2, provided n > m+ 2,

we obtain

IN
g
g

o

3

$

S
gl\?
=

&

IN

(o] o0 )
Y. D man /B mHu (z) ( /{ d(x’y)ZSmH}J(ﬂzy)du(y)) du(x)

m=1n=m+2

§CZ Z Ay ﬂ /(2u2($)du(x),

m=1n=m+2 m+2

where we have used (6.8). Computing

[eS) o0 [eS) 8
E E ama Gm E a Gm b 4
mUn = n — 3 Um+4+1 =
ﬁ =Syt = s, (¢—1)
m=1n=m+2 m+2 m=1 °m+2 n=m+2 m=1 °m+42

we obtain

g

q 1/ 2
L <C————— | udu.
S PISETCRTN 8

(2.18)

(2.19)

(2.20)
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We estimate I3 similarly:

B= 3" 3 anan [ @)on() (1~ o))

m=1n=m-+2

Z Z aman/ u?(z)dj

m=1n=m+2 (\Bn)X Bmt1

IN

SO0 [ oo ( /, J(w,y>du<y>) du(x)
m=1n=m+2 (x,y)>sm+y2}
oL [ 1)
—— [ u(x x). .
T (@17 e g
Combining (2.14), (2.15), (2.16), (2.18), (2.19), (2.20) and (2.21), we obtain
288 —
(q" = 1) 2 2.0(61)/2
S < 6—— - dj + —5— du. 2.22
v < ¢ [ e ) —uw)? i+ S5 [t (222)
Finally, by choosing ¢ close enough to 1, we can make the coefficient in front of the first integral
arbitrarily small, in particular < %, which finishes the proof of (2.13). ([l

2.5. Main theorem. Now we formulate our main result that contains Theorem 1.12 from Intro-
duction.

Theorem 2.10. Let (£,F) be a regular jump type Dirichlet form on L*(M, ) with a jump kernel
J. If (M,d, u) satisfies (V') then the following equivalences hold:
(UE)+ (LE) < (J)+(S5)
< (J) + (Geap)
& (J)+(AB)
& (J)+ (ABys).

Under any of these conditions, the heat kernel p, (x,y) is Hélder continuous jointly in x,y and
continuous jointly in x,y,t.

In the proof we use the following condition.

Definition 2.11 (Condition (NLE)). We say that a near diagonal lower estimate (NLE) is sat-
isfied if the heat kernel p;(x,y) exists and satisfies the following estimate

C
pt(x’y) Z Wa

forallt € (O,Rﬁ) and p-almost all 2,y € M such that d (z,y) < 6t'/?, with some positive constants
c,d.

In order to prove Theorem 2.10, we will use the following result of [17, Theorem 2.9]: under the
standing assumption (V),
(UE)+ (LE) & (J)+(S)+ (NLE). (2.23)
Note that the main contribution of [17] was the proof of (LE) under (J)+ (S)+ (NLE), while the
other implications were based on [7, Theorem 1.2(a) = (c)], [21], [22, Theorem 2.1]. Combining
(2.23) with the results obtained earlier in this section, we obtain

(UE)+ (LE) = (J)+(5) by (2.23)
= (J)+ (Gecap) by Lemma 2.8
= (J)+(AB) by Lemma 2.4
= (J)+ (AByss) by Lemma 2.9.
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Hence, in order to close the circle of implications in Theorem 2.10, it remains to verify that
(J) + (ABy58) = (S) + (NLE), (2.24)

and then combine (2.24) with (2.23).
The proof of (2.24) will take the rest of the paper and will be concluded in Section 5.6. The
existence and the continuity of the heat kernel are proved in Lemma 5.13.

2.6. Case [ < 2. In this section we make two mild additional assumptions:

(1) all the metric balls in (M, d) of radii < R are precompact;
(73) F contains all functions f € Cp (M) such that € (f, f) < o.

The main result of this Section is the following consequence of Theorem 2.10.

Corollary 2.12. Let (£, F) be a regular jump type Dirichlet form on L?(M, p) with a jump kernel
J. Assume in addition that (i) and (ii) are satisfied, and that B < 2. If (V') holds then

(J) < (UE)+ (LE). (2.25)
If in addition R = co then we have the equivalence
(V)y+(J)= (UE)+ (LE). (2.26)

This result was first proved by Chen and Kumagai [10], although in a more restricted setting.

Proof. We will prove that in the case 8 < 2 we have
(V<) + (J<) = (ABy), (2.27)

which will then imply (2.25) by Theorem 2.10.
Fix a point 29 € M, numbers 0 < R < R+ < R and consider the function

o) =10 BT = d@0,2) s

r
Clearly, the function ¢ is continuous, supp ¢ C B (zg, R + r) and hence, supp ¢ is compact. Observe
also, that 0 < ¢ < 1 and ¢ = 1 on B (xg, R). We will prove below that ¢ € F, which will imply
that ¢ is a cutoff function of the pair (B (xg, R), B (zo, R+ r)). We will also prove that, for any
open set Q O B (zg, R+ r) and for any u € F' N L,

[ @) (6l) — 6 T (o) dita)dy) < 5 [ il (2.28)
Qx0 ™ Ja

which is equivalent to (ABy).
Let us start with the proof of the following inequality

A/M@—é@WJ@wMMMSCFﬁ (2.29)

for any x € M. Because of (J<), it suffices to prove (2.29) with J (z,y) = d(x,y)f(oﬁﬁ). Let us
split the integral in (2.29) into the following two parts:

- (@(z) — ¢(y))* ) e (6(x) = 9(y))’
hlw)= /{d(m,y><r} A, gere W L= /{d(z,y)Zr} d(r, g)ers W)

As follows from the definition of ¢, we have

6(2) — o) < LY vy e . (2.30)

r

For any k > 0, set By, := B(z,27%r), so that

[e.9]

(6(z) — o(y))°

b= kZO /Bk\BkJrl Wdﬂ(y)‘

Observe that, for any y € By \ Bgi1,
2~y < d(a,y) < 27Fr
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and, by (2.30)

(¢(z) = o(y))? d(z,y)° 9—k(2—a—p)
da, ot = r2d (z,y)* S e

where ¢ = 215, By (V<) we have

1B\ Bit) < p(Bi) < € (27r)",

whence it follows

k(2—a—p) cC e C’
) < CZ —arg H(Br\ Ber) < 7(22 i > e
k=0
where C’ < co because 2 — ﬂ > 0.
Since 0 < ¢ < 1, we obtain by (V<) and (6.7), that
dply) B

B T
2(7) (d(w,y)>r} A(@,y)oFP

Combining the estimates of I; and I, we obtain (2.29).
Let us show that ¢ € F. Since ¢ € Cy (M), it suffices to verify that

£(6,0) = /MXM (6(2) — $()2 T (z,y) du(z)duly) < .

Set B = B (xg, R+ r) and split the domain of integration in £ (¢, ¢) as follows:

/M><M /BXM /BCXB /BC><BC

The third integral vanishes because ¢ = 0 in B®. The first integral is estimated just by integrating
(2.29) over B which yields that it is finite. The second integral is bounded by [,/ 5 and the latter
is equal to the first integral by the symmetry in z,y. Hence, £ (¢, ¢) < co and ¢ € F.

Finally, multiplying (2.29) by u? and integrating over 2, we obtain (2.28), which finishes the
proof of (2.25).

Assume that R = co. In the view of (2.25), in order to prove (2.26) we need only to ensure
that (UE) + (LE) = (V). This implication was proved in [20], although under the additional
assumption that (€, F) is conservative. However, the conservativeness of the Dirichlet form (&, F)

with the jump kernel J (z,5) ~ d (z,y) " with 8 < 2 follows from a result of [24], which finishes
the proof. O

3. AUXILIARY ESTIMATES
3.1. Subharmonic functions.

Definition 3.1. Let Q be an open subset of M. We say that a function u € F' is subharmonic
(resp. superharmonic) in € if

E(u,) <0 (resp. € (u, ) >0) (3.1)
for any 0 < ¢ € F(Q). A function v € F' is called harmonic in € if it is both subharmonic and
superharmonic in €.

Lemma 3.2. Let u € F'.

(i) Suppose that a function f € C%(R) satisfies f" > 0 and supg|f'| < oo, supg f” < oc.
Then, for any non-negative function ¢ € F N L, we have f (u) € F', f'(u)p € F and

E(f(uw),d) < E(u, f'(w)9). (3.2)

(i1) Let Q2 be open subset of M. If u € F' is subharmonic in §, then uy € F' and uy is also
subharmonic in §2.
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Proof. (i) By Proposition 6.5 (see Appendix), we conclude that f(u) € F' and f'(u)¢p € F N L*®.
In order to prove (3.2), we use the following elementary inequality: for all X,Y € R and a,b € Ry

(f(X) = f))(@=b) < (X =Y)(f (X)a—f(Y)b). (3-3)
Indeed, substituting here X =u (z),Y =u(y),a = ¢(x),b= ¢ (y), we obtain

E(f(u),¢) = /MxM (f (u()) = f(u(y))) (¢(z) — d(y)) dj
< / (u(@) = u(y) (f (u(@)) ¢(z) — [ (u(y)) 6(y)) &j = E(u, f'(u)$),
M xM

which proves (3.2).
To prove (3.3) we can assume without loss of generality that a > b (otherwise switch a,b and
X,Y). We have

f(X)a—f(¥)b=f(X)(a=b)+ (f(X)—f(Y))b
whence
(X =Y) (af (X)=bf' (V) = (X=Y)f(X)(a=b)+(X=Y)(f(X)-f(Y))b
> (X -Y)f(X)(a—0),

where we have used the monotonicity of f’ and b > 0. Finally, it remains to observe that

(X =Y) f(X) > f(X)=f(Y),

which follows from the monotonicity of f’.
(77) Let u =v 4 a with v € F and a € R. Consider the function

g(t) =t +a)y —aq.

Since ¢ (v) is a normal contraction of v, we obtain ¢ (v) € F and, hence, uy = g(v) + a4 € F'.

Since w is subharmonic in €2, v is also subharmonic in €. In order to prove that u, is subharmonic
in Q, it suffices to verify that g(v) is subharmonic in €. It is easy to see that there exists a sequence
{gx}72, of C*functions on R such that

gr 39 as k— oo.
and

gr(0) =0, g, >0, g >0, S%pgi{ < 00, Sl;pSII[lgpgk < 0.

Fix a function 0 < ¢ € F(2) and prove that E(g(v),¢) < 0. By [14, Theorem 1.4.2(iii)], we can
assume in addition that ¢ € L. Then g;(v)¢ is non-negative and, by Proposition 6.5(ii)-(ii7),
9. (v)p € F(Q). Applying (3.2) and using that v is subharmonic in 2, we obtain, for any k > 1,

It remains to verify that

klggo g(gk (’U), ¢) = S(Q(U), ¢)7 (3'4>

which will imply that g (v) is subharmonic in €.
Since C' := supy, supg g5, < oo and g (0) = 0, we have

gk (v)| < Clo].

Setting wy := g (v) € F, and w := g (v) € F, we obtain by dominated convergence theorem, that

L2
wr — w as k — oo. (3.5)

On the other hand, since C~'wy, is a normal contraction of v, we have

sup € (wg, wy) < ¢, (3.6)
k
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where ¢ = C2€ (v,v) < co. By [32, Lemma 2.12], (3.5) and (3.6) imply that {wy} converges to w
weakly in (€, F), that is,

which is exactly (3.4). O
3.2. Inequalities of Nash and Faber-Krahn. Let us set
_B
v="=.
Q@

Definition 3.3. We say the Nash’s inequality (Nash) holds for (£, F) if there exists a positive
constant C' > 0 such that

(1+v -0 v
38 < € (£ w)+ B Jullfs ) llul 3
for all uw € F N L.

Given a non-empty open set Q C M, let £L? be the generator of the Dirichlet form (&, F(Q)) (cf.
Section 2.3). Denote by A1 (Q) the bottom of the spectrum of £% in L? (€, 1). It is known that
E(u, u)
weH N0} [fulZ:
Definition 3.4. We say the Faber-Krahn inequality (FK) holds if there exist o € (0,1) and ¢ >0
such that, for any ball B := B(zg,R) C M with R € (0,0R) and for any non-empty open set

Q) C B,
¢ (wB)\"
w02 55 ()
Lemma 3.5. (V) + (J>) = (V<) + (Nash) = (FK).

Proof. The first implication (V) + (J>) = (Nash) follows from the argument in the proof of
[28, Theorem 3.1]. Although the result of [28, Theorem 3.1] was stated and proved in the case
R = diam M, this argument works also for any R < diam(M). Let us prove the second implication:

(V<) + (Nash) = (FK).

Let Q be any open subset of a ball B := B(xg, R) with R € (0,0R), where o > 0 is a number to
be determined later. We need to prove that, for any non-zero function u € F ()

E(wu) _ ¢ <M(B)>V‘

2 -_
lullz — R

()

It suffices to prove this for any non-zero u € F(Q2) N L*(Q). By the Cauchy-Schwarz inequality, we
have

A(Q) =

lullZr < ullZ2 n(22).
Substituting this into (Nash), we obtain

2(1+v 5B v
[l < € (Euw) + B ul2:) a3

< (ww)+ (07R) 7 ulZ:) (Il n@) "

where we have also used that R > ¢~ 'R. Dividing by |ju||?%, we obtain

Juls < CEun(@)* + o™ a2,
By Q C B and (V<) we have
p(Q) < p(B)” < (CR*)* = CR,
whence

lull72 < CE(u,u) ()" + C 0 ||ul7s -



24 A. GRIGOR’YAN, E. HU, AND J. HU

Choosing o from C'™¢” = 1 we obtain
lull72 < 2C€(u, u)u(),

whence

E(u,u) _ (20070 (200" (uB)\"_ e (uB)Y"
lull72 = @) ~ (B (M(W) “w <M(Q)> ’
which proves (FK). O

3.3. Some energy estimates. The main results of this section are Lemmas 3.9 and 3.10 that will
be used in the next sections.

Lemma 3.6. For all u,v >0 and a,b € R, we have
a? b 1 v 2
—o) (S -2 ) <=5 () (@2 nd — )2 .
(u m(u v)_ 2<nu (a> AB%) +3(a —b) (3.8)
A similar estimate is contained implicitly in [12, p.1289].
Proof. We start with the following elementary inequality that is true for any € > 0:
a*= (b+a—02< (14+e)b*+ (1+e1) (a—1b)> (3.9)

By the symmetry of (3.8) and the triviality of (3.8) when u = v, we can assume without loss of
generality that v < u. Setting

v
t:=-—¢(0,1

Ze o),

substituting v = tu into (3.8) and using (3.9), we obtain

2 2
(u— ) (% - ?> =(1-1t) (a®—t7?)
<(A-t) [+’ + (1+e ) (a—b)? —t V7
=(1-t)(1+e—-tH*+(1-t)(1+e ") (a—b)>
Set € = %(1 — t) in the above inequality. Then 0 < & < % and, hence,
(1-t)(1+e ) =21+ ) =2+2<3.
Since b% > a? A b% and
3 1 1 1 5
u—¢ﬂ1+s—t§—41—w<§—§t—t{)—59—2—2p+?

the inequality (3.8) will be proved if we verify that

1, 1 5 01,

S22 s o 2 < 2 ()2, 1

2t , t+2_ 2(nt) (3.10)
Since the both sides of (3.10) vanish at the endpoint ¢t = 1, it suffices to prove the following

inequality between the derivatives of the both sides of (3.10):

‘4 1 9> Int
12 - t’
which is equivalent to
1
t2+¥—2t2 —Int. (3.11)

Again, since the both sides of (3.11) vanish at ¢t = 1, it suffices to prove the following inequality

between their derivatives: ) .
2t — 2 2 < —7
which is equivalent to
A — 2%+t —-1<0

and which is true because 2t> — 2t +¢ — 1= (¢t — 1) (2t + 1) . O
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Lemma 3.7. Let a function u € F' N L be non-negative in an open set B C M and ¢ € F N L
2
be such that ¢ =0 in B¢. Fiz any A > 0 and set uy ;= u+ A. Then % € F and

2 u 2
E(u, 2—)\) < — %/BXB (¢2(33) A ¢2(y)) ‘ln u:\\g;’ d
¢*(z) .
+3E(p, ) — 2 /13ch u,\(y)u)\(x)dj. (3.12)

Proof. We first prove that % € F N L*®. Indeed, the function

1
F(t) = ——
®) [t] + A

is a bounded Lipschitz function on R. Since u is non-negative in B and ¢ = 0 in B¢, the function
2 2
% is well defined on M and % = F(u)¢?. Hence, by Proposition 6.5(ii),

¢2

F(u)p? € FNL™.
U

Now we prove (3.12). We split the integral in the definition of &(u, 53—j) into four parts as follows:

= (o o Lo o)t (2520

=: h+L+ 13+ 14

Since ¢ = 0 in B¢, we have that Iy = 0 and, by symmetry,

2 x
boh=2[ (- nm) S0

_ Q/W Fd-2[ nwS =) 4

Bx B¢ ux(z)

_ _ 27 _ u .
—2 @ -owPd-2 [ wmE

uy(x)

In order to estimate I, we use Lemma 3.6 that yields

¢*(x)  ¢*(y) L ur(y)
(u(z) —u(y)) (m - u,\(y)) < —= ‘ln

2
Integrating this inequality over B x B against dj, we obtain

2

(6*(z) A ¢ (1)) + 3 (d(x) — d(y))* -

uy(x)

1 w()|® 2 o
L< -2 2 2(y)) In 22| ¢ - dj.
<oy [ @@ w28 G s [ e - o)
Combining the estimates of Iy, Is + I3 and I, we obtain
‘Z’Q 1 2 2 ux(y) 2
5(“:5) < —§/BXB (¢°(z) A ¢*(y)) lnm dj

w3 o[ e - ewra

2 xr
2 /Bch uA(v) Z\Exi b,

whence (3.12) follows. O
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Lemma 3.8. Let u € F' N L>® be non-negative and superharmonic in a ball 2B, where B is an
arbitrary ball in M. Fix any A > 0 and set uy := u+ A. Then the following inequality holds:

‘. 3 (ur(y) - .
/BXB dj < 6cap(B, §B) +4/ ————dj

8px(2B)°  UA(T)
Proof. If cap(B,3B) = oo then (3.13) holds trivially. Hence, assume that cap(B,3B) < oo, and
let ¢ be a cutoff function for the pair (B, 3B).
Observe that ﬁ—i € F(2B). Indeed, since ¢ vanishes outside %B, we have ¢ € F(2B). By the

same argument as in the first part of the proof of Lemma 3.7, we conclude that “Z% € F(2B). Since

)
: ux ()

(3.13)

2
% is non-negative and u is superharmonic in 2B, we obtain that

& (u, ¢—2) > 0. (3.14)

UX

Applying Lemma 3.7 with B replaced by 2B and using (3.14), we obtain

1 / 2 2 ux() [ . *(x) .
5 " (x) NP (y ’hl dj < 3E(¢, ) — 2 ux(y dj.
2 JapxoB (@@ 1 ¢ ) ux(z) (.9) (2B)x(2B)° ( )Ux(ﬂf)
Since ¢ =1in B, ¢ =0 in (%B)C and ¢ <1 in 2B, it follows that
2
BxB| ux(®) 3Bx(2B)° ux()
Minimizing the last inequality over ¢ € cutoff (B, %B), we finish the proof. O

Fix a reference point xy € M. For any measurable function v on M and for any ball B = B (xq, R)
on M, define the tail of v outside B by

1o i= [ o) (0. 0)dn(w) (315)

Lemma 3.9. Assume that (V), (J), and (cap) are satisfied. Let a function u € F' N L be non-
negative and superharmonic in the ball 2B, where B := B(xo, R) and R < %R. Fix three positive
numbers a,b, A, set uy :=u+ X\, and consider in 2B the function

V= <1n£> Ab.
ux/ o

£ 00— st Pantant < (1 L) )Y,

where the constant C depends only on the constants in the conditions (cap), (J) and (V<).

Then
(3.16)

Proof. 1t follows from the definition of v that, for all z,y € 2B,

ux(y)
up(z) |

jv(z) — v(y)| < ]m

For all z € 3B, y € (2B)¢, we have d (z9,2) < 3R < 3d (z,y) and, hence,

d(zo,y) _ d(xo,r)+ d(z,y)
d(x,y) d(z,y)

It follows from (J), that, for the above range of x,y,

< <3+1=4.
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Using the above three inequalities, (V'), (J), (cap) and Lemma 3.8, we obtain

][ ][ ))2dpu(2)dp(y)

z,y)ets
- 7 /Bxg(”@) o) G (o))
2
< C(2R)a+ﬁﬁ /BXB In Zigi; J (z,y) du(z)du(y)

< 090 +B R« (6 cap(B, gB) + 4[33 oy %J(w,y) d,u(w)du(y))

< C'RF (Raﬁ + L N du(x) /( . (w))- ; (wo,y)du(y)>

3 u(z)
3 U _
<oror-ale [ U e )
<C' 40" RﬁTQB((uA)—)
— )\ 9
which finishes the proof. O

Lemma 3.10. Assume that (AByg) is satisfied. Let By := B(wo,R), B := B(xo, R + 1) and

Q := B(xo, R) be three balls so that 0 < R < R+r < R' < R. Then, for any u € F' N L>, there
exists ¢ € cutoff(By, B) such that

3 c .
Eud) < SE(ud?) + /Q W2dp+ 3 /Q  ulayu(s)¢*a)d (3.17)

where the constant ¢ > 0 depends only on the constant in the condition (ABg).

Proof. We first prove the following identity

E(ud) = &(u,ug?) + /MxM u(z)u(y) (6(x) — &(y))* dj, (3.18)

for all u, ¢ € F' N L>®. Note that, by Proposition 6.5(i)-(ii), both u¢ and u¢? belong to F' N L.
By a direct computation, we have the following identity for all numbers a,b, X, Y,
(Xa—Yb)?=(X -Y)(Xa®> - Yb?) + XY (a—b)>.

Setting here X = u(z),Y = u(y),a = ¢(z) and b = ¢(y) and integrating this identity in (z,y) €
M x M with respect to dj, we obtain (3.18).
Assume further that ¢ € cutoff(By, B). Since

Mx M=(QxQ)U(Q°x M)U(QxQ, (3.19)
and ¢|qe—g, by (3.18), Cauchy-Schwarz inequality and symmetrization, we obtain
etwo) = )+ ([ [ 4 a6 - o d by (319)
QxQ cxQ QxQe

< E(u,ug?) + /Q 0 u*(z) (¢(z) — ¢(y))*dj (by Cauchy-Schwarz and symmetrization)

+ 2/ u(z)u(y)o®(z)dj. (by symmetrization) (3.20)
QxQe

By condition (AB g), there exists ¢ € cutoff(By, B) such that

1 . C
/Q w@)(6() ~ 6)d < § /Q (@) () () + 5 /Q u2dp. (3.21)
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Let us estimate the middle integral in (3.21). Applying (2.2) and observing that ¢|gc = 0, we
obtain

/QXQ (u(z) = u(y))® $*(2)dj < 2/

Fdj+4 / W2 (z) (6(x) — B(y))? i, (3.22)
QOxQ QxQ

where

F (2,y) = (u(z) — u(y)) (u(z) ¢*(z) —u(y) 6°(y)) ,
and all the integrals are finite by Remark 2.3. Note that

/ Fdj = € (u,u¢?).
MxM

Using (3.19) again, we obtain

/ Fdj = / Fdj — / Fdj — / Fdj. (3.23)
QxQ Mx M Qex M Qx Qe
Since ¢ () = 0 in Q°, we have
[ R [ ) - u) uwEnd < [ @) u) R
Qex M QexQ Qex
Similarly, we obtain

- / Fdj < / u()u(y) 8 (z)dj.
QxNe QxQe

Symmetrizing the former integral and substituting into (3.23), we obtain

/ Fdj < € (u,u¢?) + 2/ u(z)u(y)d? (z)dj.
QxQ

QxQe
Substitution into (3.22) yields

/ (u(z) - u(@)? P@)dj < 2 (u,ug?) +4 / u()u(y)d? (z)dj
QxQ

QxQe
4 / W (z) (Blx) — b)) i
QxQ

Substituting this into (3.21), we obtain

/ W2 (x) (6(x) — 6w))2 dj
QxQ

< e+ 5 [ u@ut)ea)d
w3 [ @) )~ o) i+ 5 [

which implies that

i N 2 <1 u, ug?
/Qmu(x)(¢(x) o) dj < SE(u, ¢)+/

C
[ u@u)et )+ e /Q W2dp.

Finally, substituting the above inequality into (3.20), we obtain (3.17). O

4. SUPERHARMONIC AND HARMONIC FUNCTIONS

In this section we establish estimates of the Holder norm of harmonic functions. The main result
is stated in Lemma 4.8.
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4.1. Lemma of growth. Recall that, by Lemma 3.5, the hypotheses (V') and (J) imply the Faber-
Krahn inequality (FK). Let o and v = g be the constants from (FK). Without loss of generality,

we can always assume that o € (0, %)

Lemma 4.1 (Lemma of growth). Assume that (V), (J) and (AB) are satisfied. Then there exists
g0 € (0,1) depending only on the constants in the above conditions, such that the following is true:
if a function u Ef’ N L is superharmonic and non-negative in a ball 2B, where B = B (x, R)
has radius R < oR, and if, for some a > 0,

—a/p
u(B 0 fu < a}) RPTys(u.)

< 1+ — 4.1
0 S | -y

then "
essinfu > — (4.2)

2

(see Fig. 2).

FIGURE 2. Level sets {u < a} and {u < a/2}

Recall that the tail function Tz (v) was defined by (3.15). Observe also that if w > 0 on M then
Top (u—) = 0 and the condition (4.1) simplifies.

Remark 4.2. The term “Lemma of growth” was introduced by E.M. Landis [31] in the context of
second order elliptic PDEs in R™. In order to understand this terminology, let us reformulate the
statement assuming that infopu = 0 and a = %supZB u. Then, for the function v := 2a — u, we

have infop v = 0, supyg v = 2a, and the smallness of % implies that
3
supv < —a,
iB
which can be rewritten in the form A
Supv > — supv.
2B % B

The latter means that sup v exhibits a growth by a factor > % > 1 when passing from %B to 2B,
which gives the name to this type of statements. In the context of local Dirichlet forms, a similar
Lemma of growth was proved in [23, Lemmas 7.2, 7.6].

The most essential part of the proof of Lemma 4.1 is contained in the following lemma. We use
the notation B, := B (zg,r).
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Lemma 4.3. Assume that (V), (J) and (AB) are satisfied. Let a function u € F' N L be
superharmonic and non-negative in a ball Bor, where R < oR. Fix some 0 < a <b, 11 <1ry < R

and set
B,
oy (B 1 {u < a)
2 (Bn)

2 « a+0
my < CA< b ) <9> ( 2 ) mithle (4.3)
b—a 1 o — 1T

T, (u-)
b Y
and the constant C > 0 depends only on the constants in (V), (J) and (AB).

u(Bry 0 {u < b))
1 (Br,) '

and mo =

Then

where

A:=1+

Proof. We use in the proof the following facts from [14]:

(1) any function u € F admits a quasi-continuous version u [14, Theorem 2.1.3, p.71];
(2) for any u € F and any open subset Q of M, we have u € F () if and only if w =0 g.e. in
Q€ where q.e. means quasi-everywhere [14, Corollary 2.3.1 p.98].
Let us fix a quasi-continuous modification of a given superharmonic function w and denote it
also by the same letter u. Set v := (b — ), and
m1 = pu(Br, N{u < a}), ma:= (B, N{u < b}).

Let ¢ be any cutoff function of the pair (B,,, B1 ( ; without loss of generality, we can assume
2

7"1+T2))
that ¢ is quasi-continuous. Then we have

my = 2 2 (b_u)+>2 1 )
e /Brlﬁ{u<a}qzs = /BT1 ¢ < b—a dy = (b_a)2/B (pv)“dp. (4.4)

1
>1 on {u<a}

Consider the set
E = B%(T1+T2) N {U < b}

By the outer regularity of u, for any € > 0 , there is an open set {2 such that £ C Q2 C B,, and
p() < p(E) +e<mp+e (4.5)
(see Fig. 3).

FIGURE 3. Sets E and )
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On the other hand, since ¢ = 0 g.e. outside By, ,,) and v =0 outside {u < b}, we obtain that
2
v =0 g.e. iIn £E°. Hence, since ¢v € F and ¢v =0 qg.e. In C E°, we conclude that
dv =0 qe. in B¢ H ince ¢v € F and ¢v = 0 q.e. in Q° C E° lude th
ov € F(Q). (4.6)
By the definition of A\; (€2), we obtain

2 E(dv)
/Q(gbv) = A(Q)

Using again that ¢v vanishes outside 2 and combining this inequality with (4.4), we obtain

1 v)2 E(gv)
i < e 0 < G )
By (FK) (Lemma 3.5) and (4.5), we have
c M(Bm) v C1 IU(BTQ) v
=5 () = 5 (572) -

where v = [3/a.

Let us now estimate £(¢v) from above. Since u is superharmonic in Bgg, the function b — u is
subharmonic in Bogr and, by Lemma 3.2(ii), the function v = (b — u)4 is also subharmonic in Bag.
Furthermore, by Proposition 6.5(iii) and (4.6), we have v$? = v - ¢ € F(Q) C F(Bag). Hence, by
the definition of subharmonic functions, we obtain

E(v,v9?) < 0. (4.9)
By Lemma 2.9, we have (ABl/g). Applying Lemma 3.10 to the triple B, B(; 1y,)/2, Br, and the
function v, we see that there exists ¢ € cutoff(B,,, B(;, 1r,)/2) such that

£wo) < 2@od?)+ 5 [ Pdurs [ u@ew)@

72

where r = ro —r1, ¥ € B, and y € By,. Applying here (4.9) and using that ¢ = 0 outside
B(r1+r2)/2a we obtain

E(vp) < r%/ vzdu+3/B v(x)du(x)- esssup /c v(y)J (z,y)du(y)

Bry (r14r2)/2 I€B<r1+r2>/2 B

< _ﬁ v du+3/ vdp - C / v(y)J (o, y)dp(y)
B, B o F
2

By 0 {u < 00) 4 3C3 (5, 0 (< )

T
a+3

3r .
2 1p,, (v) (using v < bl{u<b})

r

b2 8yl +8
< cmy— ((2) + T2 (%)a (Tp,,(b) + Ts,,(u ) (by definition of my and v)
2

r b
_ b2 8 atB a+ﬁ
<o (2 ()7 () 0] o 69)
7“2’6 r r b \r 2
B
b2 a+8 ryIp,. (u_
< cma— (%) (1 + %) (using o > 1)
2
b2 +6
= citg— (Q)a A, (4.10)
B
ry N T

where in the second line we used that, for all z € B, 1,)/2 and all y € By,

d(zo,y) _ d(zo,z) +d(z,y) _d(, )+1 <22 %

d(z,y) ~ d(z,y) ~d(z,y) r r
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which implies by (J) that
2 3’1“2 a+6
J(z,y) <C (T) J (wo,y) .
Combining (4.7), (4.8), (4.10) and letting ¢ — 0, we obtain
_ b \? myig [ro\ots
mi <c (—> A
' (b - a’) N(Brz)y r

Dividing this inequality by p (B;,) and observing that

m1 d ma
mi = and ma = )
1(Byy) 1(Br,)
we obtain
2
mp < c ( b > mit? 1UBrs) (r_2>Q+ﬁA

N b—a 2 :UJ(BH) r

cof b\ (r a(r_2>a+ﬁ 146/

- b—a T r 2 ’
which finishes the proof. O

Proof of Lemma 4.1. Let uw € F' N L> be superharmonic and non-negative in Byr with R < oR
and let a > 0. Consider the following sequences

1 1
Ry =5 (1+ 27MR, and ay:= S+ 27",
where k is a non-negative integer. Clearly, Ry = R, ag = a, Rp \, %R, and ap \, %a as k — oo.
Set also

- pw(Br, N{u < a})

M(BRk)

(see Fig. 4).

FIGURE 4. Sets Br, N{u < ai} and Bg,,, N{u < agq1}

Applying the inequality (4.3) of Lemma 4.3 with a = ax, b = ax_1, r1 = Rk and 79 = Rp_1, we
obtain, for any k£ > 1,

2 « a+i
ak—1 Ry_1 Ry_1 148/
< CA _
m < O k<ak—1_ak) ( Ry, ) (Rk—l_Rk> -1
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where 5
kalTBkal (u—)

ak—1
Since u is non-negative in Bar and Bg, , C Bar we have

Tpy, |, (u") = Tpyp (us).

Since Ri_1 < R and aj_1 > %a, we obtain

A =1+

Ak < 2A7
where
a1 ()
a
Using that
—(k—
Ry <o, ag-1 _ 1+2 (k=1) < 2F+1 and  Rga < gk+l
Ry, ap_1 — Qg 2—(k=1) _ 90—k R;_1 — Ry,

we obtain that
my < C - 2A - 22k+1) 9o o(k+1)(a+6) .m};ﬁf/a —C'A.9%. mi_,
where €7 := 220830 ¢ = a + 3+ 2, and
g=1+p3/c.
Applying the above inequality inductively, we obtain,
my, < (C'A) - 2. mi_,

< (C/A)l—i-q . 2ck+cq(k—1) . sz—Z

S (C/A)l“l‘q-‘r-..-‘qu*l . 20(k+q(k_1)++qk—1) ) mg

Note that
PR RSSO el Gt [ ol P Y
(¢ —1)? T (g-1)?"
k 1 k 1
1 RIS R -7 _ )
+qg+---+g¢q 1 -1 7-1
Hence, we obtain that
_cq__ q*
my < (%}1)2 (AT o (C'A) T,
It follows from the last inequality and from ¢ > 1 that if
cq 1
217 . (C’A)Til cmg < 3 (4.11)
then
lim my = 0. (4.12)

k—o0

Note that (4.11) is equivalent to
mo < 9 @17 L. (C’A)_qfll,
that is, to

=)

pw(BrN{u <a}) < Q_ﬁ_l (C/)—qfll <1 + RﬁTBQR(“))
1(Br) a
which is equivalent to the hypothesis (4.1) with

__cq9 __ _
g0 =2 G- (C)) 7T (4.13)
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Assuming that ¢¢ is defined by (4.13), we see that (4.11) is satisfied and, hence, we have (4.12). It

follows that "
w(Brja N {u < 5})

M(BR/2)
which implies (4.2). O

Corollary 4.4. Assume that (V), (J) and (AB) are satisfied. There is a constant € > 0 depending
only on «, B and such that, for any ball B := B(xzg, R) with R € (0,0R), and for any function
u € F'N L that is superharmonic and non-negative in 2B and satisfies

RPTop(u_) < e (]{9 idﬂ) - (4.14)

1 -1
ess infu > = (][ —d,u) .
§B 2 B U

Proof. We will apply Lemma 4.1 with a suitable constant a > 0. Indeed, for any a > 0, we have
1 1 1 1
p(BO{u<a) =uBA L > ) <a [ Ldn=ap(B)| Ldn
u a B U BU

In order to fulfill the condition (4.1) of Lemma 4.1, the constant a should satisfy the inequality:

=0,

the following is true:

1 ﬂT _ —a/B
a][ —dp < &g <1 + RQ—B(“)> . (4.15)
B u a
Let us set
€= 2_a/550.

Assuming that (4.14) holds with this e, we claim that (4.15) holds with the following value of a:

0—e (é %du>_1.

R°Thp(u_) <a

1 _a RPTyp(u_
a][ —dpy=e=2 3€0§50<1+ﬂ
BU

Indeed, for this a we have by (4.14)
and, hence,

a

N——
|
e

Therefore, by Lemma 4.1, we conclude that
essinfu > a
p 2
which finishes the proo