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Abstract. We obtain the equivalence conditions for an on-diagonal upper bound
of heat kernels on self-similar measure energy spaces. In particular, this upper
bound of the heat kernel is equivalent to the discreteness of the spectrum of the
generator of the Dirichlet form and to the global Poincaré inequality. The key
ingredient of the proof is obtaining the Nash inequality from the global Poincaré
inequality. We give two examples of families of spaces where the global Poincaré
inequality is easily derived. These are the post-critically finite (p.c.f.) self-similar
sets with harmonic structure and the products of self-similar measure energy
spaces.
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1. Introduction

The heat kernel plays an important role in studying the dynamical properties of
fractals. Significant effort has been made by a number of authors to establish the
existence and bounds of the heat kernels on fractals (see [1], [2], [17], and references
therein). Typically, the heat kernel p (t, x, y) on a fractal set K satisfies the following
estimate

t−
α
β Φ1

(
t−

1
β d(x, y)

)
≤ p(t, x, y) ≤ t−

α
β Φ2

(
t−

1
β d(x, y)

)
, (1.1)

for almost all x, y ∈ K and all 0 < t < t0, where Φi(i = 1, 2) are positive decreasing
functions on [0,∞), d is a metric on K, and α, β are positive parameters.

Note that the estimate (1.1) holds for the classical Gauss-Weierstrass heat kernel
in Rn with α = n, β = 2, and

Φ1 (s) = Φ2 (s) =
1

(4π)n/2
exp

(

−
s2

4

)

.
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For certain classes of fractals, the estimates (1.1) hold with the functions

Φi(s) = c′i exp(−c′′i s
γi), (1.2)

where γi, c
′
i and c′′i are positive constants. Such estimates were proved by Barlow

and Perkins [3] for the Sierpinski gasket, by Fitzsimmons, Hambly, and Kumagai [10]
for the affine nested fractals, by Barlow and Bass [2] for the (generalized) Sierpinski
carpets, and by Hambly and Kumagai [17] and Kumagai and Sturm [21] for p.c.f.
fractals with regular harmonic structures. On-diagonal upper and lower bounds for
p.c.f. fractals were obtained earlier by Kigami [20].

The parameter α in (1.1) is in fact the Hausdorff dimension of K, whereas β is
the walk dimension of the heat kernel p(t, x, y), which can be characterized as the
largest index of non-trivial Besov spaces on K (see, for example, [15], [19], [26]). See
also [28] for function spaces on fractals.

The purpose of the present paper is to obtain a number of equivalent conditions
for the heat kernel upper bound of the form

p (t, x, y) ≤ Ct−θ, (1.3)

for almost all x, y ∈ K and all 0 < t < t0. For general measure spaces with
Dirichlet forms, several equivalent conditions for (1.3) are well known. These are the
Sobolev inequality [30], the Nash inequality [6], log-Sobolev inequality [9], and the
Faber-Krahn inequality [7], [8], [13], [14]. In the present paper, we emphasize those
equivalent conditions for (1.3), which depend on self-similarity of the underlying
space.

In Section 2, we introduce the notion of a self-similar measure energy space
(K, {Fi} , µ, E), where K is a compact metric space, {Fi}

N
i=1 is an iterated func-

tion system on K, µ is a self-similar probability measure on K with weight {ρi},
and (E ,F) is a self-similar Dirichlet form with weight {r−1

i }. Our main result (The-
orem 2.2) gives a number of equivalent conditions for the existence of the heat kernel
on this space satisfying (1.3). Surprisingly enough, the heat kernel bound (1.3) is
equivalent to the discreteness of the spectrum of the generator H of the Dirichlet
form (E ,F). Obviously, self-similarity is important for the validity of this kind of
result.

Another equivalent condition for (1.3) is the global Poincaré inequality. In Section
3 we provide a convenient sufficient condition for the global Poincaré inequality,
which, in particular, can be applied on p.c.f. fractals with harmonic structures.

Finally, in Section 4, we consider two kinds of examples of self-similar measure
energy spaces – p.c.f. fractals with harmonic structures and product spaces.

2. Main results

Let K be a compact metric space. Let N ≥ 2 be an integer, set S = {1, 2, · · · , N},
and let {Fi}i∈S be a family of contractions on K such that

K =
⋃

i∈S

Fi(K). (A0)

A couple (K, {Fi}) is called a self-similar space. Typically, self-similar spaces arise as
follows. Let G be a complete metric space and let {Fi}i∈S be a family of contractions
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on G. Then there exists a unique non-empty compact subset K of G satisfying (A0)
(see [18]). Clearly, restricting the mappings Fi to K, we obtain a self-similar space.

Let K be a self-similar space and µ be a measure on K. We say that µ is self-
similar if µ is a regular Borel measure with total mass 1, which satisfies the identity

µ(A) =
∑

i∈S

ρi µ(F−1
i (A)), (A1)

for any Borel set A ⊂ K, where {ρi}i∈S is a fixed sequence of positive numbers such
that ∑

i∈S

ρi = 1.

Such a measure µ always exists on K (see [18]). We refer to the sequence {ρi}i∈S as
the weight of µ.

For any Borel function f and any 1 ≤ p <∞, set

‖f‖p :=

(∫

K

|f(x)|pdµ(x)

)1/p

and consider the Lebesgue space Lp(µ) := Lp(K,µ).
Set Ki := Fi(K) for i ∈ S. We further assume that the sets {Ki}i∈S do not

overlap in the sense that

µ (Ki ∩Kj) = 0 for all distinct i, j ∈ S. (A2)

Note that (A2) is satisfied if the open set condition holds, see for example [22]. For
any m ≥ 1, any word ω := i1 · · · im ∈ Sm, and any function f : K → R, define

Fω = Fi1 ◦ · · · ◦ Fim , Kω = Fω (K) ,

ρω = ρi1 · · · ρim , fω = f ◦ Fω.

For the empty word ω, set Fω = id.
It follows from (A1) and (A2) that

µ(Kω) = ρω. (2.1)

Moreover, for any f ∈ L1 (µ) and any m ≥ 1, we have
∫

K

f(x) dµ(x) =
∑

ω∈Sm

ρω

∫

K

fω(x) dµ(x) (2.2)

(see [1, Theorem 5.28, p.73]).
Fix some 0 < λ < 1 and q := (q1, q2, · · · , qN) with 0 < qi < 1, and define a

partition Λ, associated with the data (λ,q), as follows

Λ := {ω = i1 · · · im : qi1 · · · qim−1 ≥ λ > qi1 · · · qim}.

Then it is easy to see that

K =
⋃

ω∈Λ

Kω, and µ(Kω ∩Kτ ) = 0 if ω 6= τ ∈ Λ,

which implies the following extension of the identity (2.2):
∫

K

f(x) dµ(x) =
∑

ω∈Λ

ρω

∫

K

fω(x) dµ(x), (2.3)
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for any f ∈ L1(µ).
Let (E ,F) be a Dirichlet form1 on L2(µ). We say that (E ,F) is self-similar if, for

any f ∈ F , the functions f ◦ Fi are also in F for each i ∈ S, and

E(f) =
∑

i∈S

r−1
i E(f ◦ Fi), (A3)

where {ri}i∈S is a fixed sequence of positive numbers. The sequence {r−1
i }i∈S is

referred to as the weight of E .
By induction it follows from (A3) that, for any partition Λ,

E(f) =
∑

ω∈Λ

(rω)−1 E(fω). (2.4)

Definition 2.1. Any quadruple (K, {Fi} , µ, E) satisfying the conditions (A0)-(A3)
is called a self-similar measure energy space.

By the closedness of (E ,F), the space F is a Hilbert space with the inner product

E1(u, v) := (u, v) + E(u, v).

Any Dirichlet form (E ,F) has a generator H, which is a non-negative definite self-
adjoint operator in L2 (µ). Denote by λess (H) the bottom of the essential spectrum2

of H. The operator H gives rise to the heat semigroup

Pt = exp (−tH) ,

where t ≥ 0. If the operator Pt has an integral kernel for any t > 0, then the latter is
called the heat kernel of (E ,F), and is denoted by p (t, x, y). Recall that a Dirichlet
form (E ,F) is called irreducible, if 1 ∈ F and E(u) = 0 if and only if u is constant.

Out main result is the following theorem.

Theorem 2.2. Let (K, {Fi}, µ, E) be a self-similar measure energy space, and let
the Dirichlet form (E ,F) be irreducible. Assume that

η := max
i∈S
{ρiri} < 1. (2.5)

Then the following conditions are equivalent.

(1) (Global Poincaré inequality): There exists a constant c > 0 such that,
for all f ∈ F ,

‖f‖2
2 ≤ cE(f) +

(∫

K

fdµ

)2

. (2.6)

(2) (Nash inequality): There exist constants c, θ > 0 such that, for all f ∈
F ,

‖f‖
2(1+ 1

θ )
2 ≤ c

(
E(f) + ‖f‖2

2

)
‖f‖

2
θ
1 , (2.7)

1We refer the reader to [12] for the definition and properties of the Dirichlet form and related
topics.

2The essential spectrum is the part of the spectrum of H which is complement of the discrete
spectrum of H.
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(3) (Diagonal upper bound): The heat kernel p(t, x, y) of the Dirichlet form
(E ,F) exists, and satisfies the estimate

p(t, x, y) ≤ cmax(t−θ, 1), (2.8)

for all t > 0 and almost all x, y ∈ K, and for some c, θ > 0.
(4) (Trace of heat semigroup): The trace Trace(Pt) of the heat semigroup

admits the estimate

Trace(Pt) ≤ cmax(t−θ, 1), (2.9)

for all t > 0 and some c, θ > 0.
(5) (Eigenvalue estimates): The spectrum of the generator H is discrete

and consists of a countable sequence 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ ... of
eigenvalues counted with multiplicity. Furthermore,

λk ≥ c k1/θ, (2.10)

for all k ≥ 0 and for some c, θ > 0.
(6) (Discrete spectrum): The spectrum of the generator H is discrete, that

is λess (H) = +∞.
(7) (Positivity of the essential spectrum): λess (H) > 0.

Since the discreteness of the spectrum of H is known to be equivalent to the
compactness of the embedding F ↪→ L2 (µ), we obtain the following corollary.

Corollary 2.3. (Compact Embedding Theorem) Under the hypotheses of Theo-
rem 2.2, each of the conditions (1)-(7) is equivalent to the fact that the identical
embedding F ↪→ L2 (µ) is a compact operator.

The fact that the heat kernel bound (2.8) implies the compactness of the embed-
ding F ↪→ L2 (µ) was also proved in [15, Theorem 4.12].

Proof. The proof of Theorem 2.2 will follow the diagram:

(1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6)⇒ (7)⇒ (1).

The implications (5)⇒(6)⇒(7) are trivial. The fact that (2)⇒(3) was proved in
[6, Theorem (2.1), p. 251] (see also [14]). In the sequel we denote by c a positive
constant, whose value is unimportant and may change at different occurrences.

(1)⇒(2). The proof given here is motivated by [1, p. 107], see also [20, p. 173].
Let qi = ρiri where 1 ≤ i ≤ N . By the hypothesis (2.5), we have 0 < qi < 1. For
any fixed 0 < λ < 1, consider the partition Λ associated with (λ,q). It follows from
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(2.3) and (2.6) that, for any f ∈ F ,

‖f‖2
2 =

∑

τ∈Λ

ρτ

∫

K

fτ (x)2 dµ(x)

≤
∑

τ∈Λ

ρτ

(

cE(fτ ) +

(∫

K

fτdµ

)2
)

≤ c
∑

τ∈Λ

(ρτrτ ) r
−1
τ E(fτ ) +

∑

τ∈Λ

ρ−1
τ

(

ρτ

∫

K

|fτ | dµ

)2

≤ c max
τ∈Λ
{ρτrτ}

∑

τ∈Λ

r−1
τ E(fτ ) +

(

min
τ∈Λ
{ρτ}

)−1
(
∑

τ∈Λ

ρτ

∫

K

|fτ | dµ

)2

≤ c
(
λE(f) + λ−θ‖f‖2

1

)
, (2.11)

where

θ = max
i∈S

(
log ρi

log ρiri

)

. (2.12)

Here we have used the fact that, for any τ ∈ Λ,

ρτrτ < λ ≤ a−1
0 ρτrτ , a0 = min

i∈S
{ρiri},

and, by ρτrτ < 1,

ρτ = (ρτrτ )
log ρτ

log(ρτ rτ ) ≥ (ρτrτ )
max
i∈S

log ρi
log(ρiri) ≥ (a0λ)θ.

Clearly (2.11) implies

‖f‖2
2 ≤ c

(
λ
(
E(f) + ‖f‖2

2

)
+ λ−θ‖f‖2

1

)
(0 < λ < 1). (2.13)

Note that (2.13) also holds for any λ ≥ 1, so it is true for all λ > 0. Choosing an
optimal value of λ, for example,

λ =

(
‖f‖2

1

E(f) + ‖f‖2
2

) 1
θ+1

,

we arrive at (2.7).

(3)⇒(4). By definition, we have

Trace (Pt) =
∑

k

(Ptvk, vk) , (2.14)

where {vk} is an orthonormal basis in L2(µ), and this definition does not depend on
the choice of the basis. Let us show that

Trace (P2t) =

∫

K

∫

K

p (t, x, y)2
dµ (y) dµ (x) . (2.15)

Noticing that

Ptv (x) =

∫

K

p (t, x, y) v (y) dµ (y) = (p (t, x, ·) , v) ,
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we obtain from (2.14) and P2t = P 2
t that

Trace(P2t) =
∑

k

(
P 2
t vk, vk

)
=
∑

k

(Ptvk, Ptvk)

=
∑

k

∫

K

(p (t, x, ·) , vk)
2
dµ (x) . (2.16)

Expanding p (t, x, ·) in the basis {vk} we obtain

p (t, x, ·) =
∑

k

(p (t, x, ·) , vk) vk (2.17)

whence by the Parseval identity
∑

k

(p (t, x, ·) , vk)
2 = ‖p (t, x, ·) ‖2

2. (2.18)

Hence, it follows from (2.16) and (2.18) that

Trace(P2t) =

∫

K

‖p (t, x, ·) ‖2
2dµ (x) , (2.19)

giving (2.15). Since E is irreducible, we have that
∫

K

p(t, x, y)dµ(y) = 1 (t > 0, x ∈ K), (2.20)

see for example [1, Lemma 4.10]. Finally, using (2.8) and (2.20), we obtain from
(2.15) that

Trace (P2t) ≤ sup
x,y∈K

p (t, x, y)

∫

K

∫

K

p (t, x, y) dµ (y) dµ (x)

≤ cmax
(
t−θ, 1

)
,

proving (2.9).

(4)⇒(5). It is a general fact that if a positive-definite self-adjoint operator in a
Hilbert space has a finite trace, then its spectrum is discrete away from 0, see for
example [5]. Hence, the spectrum of the operator Pt = e−tH consists of a discrete
part and possibly 0. By the spectral mapping theorem, if λ ∈ Spec (H), then
e−tλ ∈ Spec (Pt). Since e−tλ is positive, it belongs to the discrete spectrum of Pt,
whence we conclude that λ belongs to the discrete spectrum of H. This proves that
all the spectrum of H is discrete.

Now let {λk}∞k=0 be the eigenvalues with eigenfunctions ϕk which forms an or-
thonormal basis of L2(µ). Using (2.14) and the fact that

p(t, x, y) =
∑

k

e−λktϕk(x)ϕk(y)

for all t > 0 and µ-almost all x, y ∈ K, we have

Trace(Pt) =
∑

k

(Ptϕk, ϕk) =
∑

k

(
e−λktϕk, ϕk

)
=
∑

k

e−λkt.



8 ALEXANDER GRIGOR’YAN, JIAXIN HU, AND KA-SING LAU

Therefore, by the hypothesis (2.9) we see that, for all t > 0,
∞∑

k=0

e−λkt ≤ cmax(t−θ, 1) =: h (t) .

Assuming that the sequence {λk} is enumerated in an increasing order, we obtain
that, for any k ≥ 1,

ke−λkt ≤ h(t),

which yields that

λk ≥
1

t
log

k

h(t)
, t > 0.

For k large enough, choose t so that k = e c t−θ and t < 1. For such a t, we have
h (t) = ct−θ = k/e, and so

λk ≥ c′k1/θ, (2.21)

where c′ > 0. Now (2.21) is true for large enough k, but by adjusting the value of
c′, we see that this inequality holds for all k ≥ 0.

(7)⇒(1). The irreducibility of (E ,F) implies that 0 is a simple eigenvalue of
H with eigenfunction 1. Therefore, the rest of the spectrum of H coincides with
the spectrum of H restricted to the subspace Q of L2(µ), which is the orthogonal
complement of 1, that is

Q = {f ∈ L2(µ) :

∫

K

f(x)dµ(x) = 0}.

Hence, we see that

inf {λ : λ ∈ Spec (H) \ {0}} = inf
f∈F∩Q\{0}

E(f)

‖f‖2
2

. (2.22)

The Poincaré inequality means exactly that the right hand side of (2.22) is positive.
Thus it is enough to show that the left hand side of (2.22) is positive. Indeed, since
λess = λess (H) > 0, it suffices to show that

inf

{

λ : λ ∈ Spec (H) ∩

(

0,
1

2
λess

)}

> 0. (2.23)

However, by the definition of λess, we see that the spectrum of H inside the interval
[0, λess) is discrete. Hence, the spectrum inside (0, 1

2
λess) consists of a finite number

of eigenvalues with finite multiplicity. Therefore, we see that 0 is not a limit point
of the spectrum, proving (2.23). �

Remark. The hypothesis of self-similarity (including (2.5)) is used only for the
implication (1)⇒(2). Without this hypothesis, the following equivalences hold in
the general setting:

(2)⇔ (3), (4)⇔ (5), (1)⇔ (7).

Indeed, (1)⇒(7) is obvious from the spectral theory and (2)⇔(3) was proved in
[6]. With a certain amount of effort, we can prove that (5)⇒(4) is true (we omit
the detail).
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Remark. Note that the equivalence (2)⇔(3) holds in general with the same value
of θ (see [6]). The equivalence (4)⇔(5) also holds with the same value of θ. However,
there are examples of p.c.f. fractals where the best value of θ in (3) is different from
the best value of θ in (5) (see [16, Theorem 3.4] and [20, p.179]).

Remark. A. Bendikov and L. Saloff-Coste (private communication) constructed an
example of a Dirichlet form on an infinite dimensional torus T∞ with 0 < λess (H) <
∞. Hence, in general the implication (7)⇒(6) fails. Another example of a Dirichlet
form on T∞ gives a discrete spectrum with eigenvalues λk growing logarithmically
in k (see [4]). Hence, the implication (6)⇒(5) fails either.

3. Global Poincaré inequality

Let (K, {Fi}, µ, E) be a self-similar measure energy space with the weights {ρi}i∈S
and {r−1

i }i∈S, as defined in Section 2. Fix a point q0 ∈ K, set

Q := {F1(q0), F2 (q0) , ..., FN (q0)}

and consider the following condition: there exists c0 > 0 such that

|f(q)− f(q0)|2 ≤ c0E(f) for all f ∈ F and q ∈ Q. (A4)

Lemma 3.1. Assume that (A4) holds. Then, for any sequence of positive numbers
{al}∞l=0 satisfying

∞∑

l=0

a−1
l <∞, (3.1)

there exists a constant c such that, for any k ≥ 1 and all f ∈ F ,

∑

τ∈Sk

µ(Kτ )(fτ (q0)− f(q0))2 ≤ c

k−1∑

l=0

alη
lE(f), (3.2)

where η is defined in (2.5).

Proof. Fix f ∈ F , k ≥ 1 and consider τ := i1i2 · · · ik ∈ Sk. Set

x0 = q0 and xl = Fi1···il(q0) for 1 ≤ l ≤ k.

Observing that Fil+1
(q0) ∈ Q, we apply (A4) with the function f ◦ Fi1···il to obtain

that, for any 0 ≤ l ≤ k − 1,

(f(xl+1)− f(xl))
2 = (f ◦ Fi1···il+1

(q0)− f ◦ Fi1···il(q0))2

= (f ◦ Fi1···il(Fil+1
(q0))− f ◦ Fi1···il(q0))2

≤ c0E(f ◦ Fi1···il). (3.3)
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Set c1 :=
∑∞

l=0 a
−1
l <∞. It follows from (3.3) that

(fτ (q0)− f(q0))2 = (f(xk)− f(x0))2

=

(
k−1∑

l=0

a
−1/2
l a

1/2
l (f(xl)− f(xl+1))

)2

≤

(
∞∑

l=0

a−1
l

)
k−1∑

l=0

al(f(xl)− f(xl+1))2

≤ c1c0

k−1∑

l=0

al E(f ◦ Fi1···il). (3.4)

Summing up in τ ∈ Sk, we obtain that
∑

τ∈Sk

µ(Kτ )(fτ (q0)− f(q0))2 ≤ c1c0Ik(f), (3.5)

where

Ik(f) :=
∑

τ=i1...ik∈Sk

µ(Kτ )
k−1∑

l=0

al E(f ◦ Fi1···il).

Noting that µ(Ki1···ik) = ρi1 · · · ρik and
∑

i∈S ρi = 1, we have

Ik(f) =
∑

i1,··· ,ik∈S

µ(Ki1···ik)
k−1∑

l=0

al E(f ◦ Fi1···il)

=
k−1∑

l=0

(

al
∑

i1,··· ,il∈S

ρi1 · · · ρil E(f ◦ Fi1···il)

)

≤
k−1∑

l=0

alη
lE(f), (3.6)

where the last inequality follows from
∑

i1,··· ,il∈S

ρi1 · · · ρil E(f ◦ Fi1···il) =
∑

τ∈Sl

(ρτrτ ) (rτ )
−1 E(f ◦ Fτ )

≤ ηl
∑

τ∈Sl

(rτ )
−1 E(f ◦ Fτ )

= ηl E(f).

Finally, (3.5) and (3.6) yield (3.2). �

Theorem 3.2. Let (K, {Fi}, µ, E) be a self-similar measure energy space. Assume
further that the Dirichlet form (E ,F) is regular and satisfies (A4). If (2.5) holds,
then the global Poincaré inequality (2.6) holds with a constant c = c(c0, η).

Consequently, under the hypotheses of Theorem 3.2, all conditions (1)-(7) of
Theorem 2.2 hold as well.
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Proof. Fix a function f ∈ F ∩ C(K) and k ≥ 1. By the hypothesis (A2), when τ
varies in Sk, the cells Kτ form a partition of K up to a set of µ-measure 0. Therefore,
for µ-almost all x ∈ K, there exists exactly one τ ∈ Sk such that x ∈ Kτ . For such
an x, set fk(x) := fτ (q0). Obviously, the function fk(x) is defined for µ-almost all
x ∈ K, and is constant on any cell Kτ .

Set al = η−l/2 and observe that the sequence {al}
∞
l=0 satisfies (3.1) since η < 1.

Thus, we obtain from (3.2) that
∫

K

(fk(x)− f(q0))2 dµ(x) =
∑

τ∈Sk

∫

Kτ

(fτ (q0)− f(q0))2
dµ(x)

=
∑

τ∈Sk

µ(Kτ )(fτ (q0)− f(q0))2

≤ c

k−1∑

l=0

alη
lE(f) ≤ c E(f). (3.7)

Since f is continuous, K is compact, and Fi’s are contractive, it is easy to see that
fk(x)→ f(x) for µ-almost all x ∈ K as k →∞. Hence, letting k →∞ in (3.7), we
see that ∫

K

(f(x)− f(q0))2 dµ(x) ≤ cE(f),

for all f ∈ F ∩ C(K). Thus, upon setting

f̄ =

∫

K

f(x) dµ(x),

we obtain that∫

K

f 2 dµ− (f̄ )2 =

∫

K

(f − f̄ )2 dµ = inf
ξ∈R

∫

K

(f − ξ)2 dµ ≤ cE(f),

whence (2.6) follows. Finally, by the regularity of (E ,F), the set F ∩C(K) is dense
in F , which allows to extend (2.6) to all f ∈ F . �

Given a Dirichlet form (E ,F) on K, define an effective resistance R(x, y) for any
two points x, y ∈ K by

R(x, y) = sup
f∈F ,E(f) 6=0

|f(x)− f(y)|2

E(f)
. (3.8)

The hypothesis (A4) means that

R(q, q0) ≤ c0 for any q ∈ Q,

that is, R is assumed to be bounded on a finite set of points in K. It was shown
in [20, Lemma 3.3.7, p.86] that, for a p.c.f. self-similar fractal K with a harmonic
structure, the estimate

sup
x,y∈K

R(x, y) <∞ (3.9)

holds if and only if the harmonic structure is regular (see the next section for details).
If (3.9) holds, then the Poincaré inequality (2.6) trivially follows from

|f(y)− f(x)|2 ≤ sup
x,y∈K

R(x, y) E(f),
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see [17, Lemma 3.1, p. 438-439]. However, for non-regular harmonic structures, the
Poincaré inequality cannot be obtained in this way, whereas Theorem 3.2 still can
be applied.

4. Examples

In this section, we consider two ways of constructing self-similar measure energy
spaces. The first example is p.c.f. fractals with harmonic structure and the second
is products of self-similar measure energy spaces.

4.1. Post-critically finite self-similar fractals. Let G be a complete metric
space and {Fi}i∈S be a family of contractions in G, where S = {1, ..., N} and
N ≥ 2. Fix a finite set V0 = {p1, · · · , pD} ⊂ G which consists of D ≥ 2 distinct
points. For any m ≥ 1, define the sets Vm ⊂ G by induction as follows

Vm =
⋃

i∈S

Fi(Vm−1).

Assume that

V0 ⊂ V1, (B1)

which implies that the sequence {Vm}m≥1 is increasing.
Consider the set V1 as a graph: two points x, y ∈ V1 are neighbors in V1 if there

exists i ∈ S such that x, y ∈ Fi (V0). We say that V1 is connected if, for any pair
x, y in V1, there exists a finite sequence x = x0, x1, ..., xk = y such that xl−1 and xl
are neighbors for any l = 1, ...k. In the sequel, assume that

V1 is connected. (B2)

Let us introduce a quadratic form E0 on V0 as follows. Fix a symmetric D × D
matrix (cij) of non-negative reals and, for any function f : V0 → R, set

E0(f) =
D∑

i,j=1

cij(f(pi)− f(pj))
2. (4.1)

The numbers cij are termed the conductances of the graph V0. Assume that E0 is
irreducible, that is

E0(f) = 0 implies f ≡ const on V0. (B3)

Given E0, we inductively define a quadratic form Em on Vm by

Em(f) =
∑

i∈S

r−1
i Em−1(f ◦ Fi), (4.2)

for every function f on Vm, where ri are positive constants. By (4.2), we have

Em(f) =
∑

ω∈Sm

(rω)−1 E0(fω) (4.3)

for all m ≥ 1, where rω = ri1 · · · rim for ω = i1 · · · im.
The irreducibility of E0 implies that of E1. Together with the connectivity of V1,

this yields that there exists a constant c0 > 0 that, for any function f on V1 and for
any two points p, q ∈ V1,

(f(p)− f(q))2 ≤ c0E1(f). (4.4)
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Assume further that, for any function f on V1,

E1(f) ≥ E0(f). (B4)

Set

V∗ =
∞⋃

m=0

Vm,

and observe that
V∗ =

⋃

i∈S

Fi(V∗). (4.5)

For any function f on V∗, we have by (4.2)

Em+1(f)− Em(f) =
∑

i∈S

r−1
i (Em(f ◦ Fi)− Em−1(f ◦ Fi)) .

Therefore, the condition (B4) implies that the sequence {Em(f)}∞m=1 is increasing
in m by induction. Thus, for any function f : V∗ → R, we can define

E(f) = lim
m→∞

Em(f) (4.6)

(where so far we allow E(f) = +∞). It follows from (4.4) that, for any function f
on V∗,

(f (p)− f (q))2 ≤ c0E (f) for all p, q ∈ V1. (4.7)

Let K be the closure of V∗ in G. It is obvious from (4.5) that K satisfies (A0). It
is easy to verify that K is compact; hence K is a self-similar space. For any function
f on K, define E (f) = E (f |V∗) and set

F := {f ∈ C (K) : E (f) <∞} . (4.8)

It follows from (4.1) that (E ,F) satisfies the Markov property: if f ∈ F then
g = (0 ∨ f) ∧ 1 is also in F and E (g) ≤ E (f). Clearly (E ,F) is irreducible.
Moreover (4.2) and (4.7) imply that (E ,F) satisfies the conditions (A3) and (A4).

Finally, for any sequence {ρi}i∈S of positive numbers such that
∑

i∈S ρi = 1, there
exists a Borel regular measure µ on K satisfying (A1).

In order to conclude that (K, {Fi} , µ, E) is a self-similar measure energy space, we
still need to verify the condition (A2), and to ensure that the form (E ,F) is closed
with F dense in L2 (µ). This can be done under additional conditions as follows.

A particularly interesting case of the above construction is p.c.f. fractals intro-
duced by Kigami, see the details in [20, Chapter 1]. Let (K, {Fi}) be a connected
p.c.f. fractal with the boundary V0 := {p1, p2, · · · , pD} (D ≥ 2). We may introduce
a sequence of quadratic forms Em on Vm exactly as above. We say that K pos-
sesses a harmonic structure, if there exist a D × D matrix J := (cij) and a vector
r := (r1, r2, · · · , rN) such that

inf
g
{E1(g, g) : g = f on V0} = E0(f) (4.9)

for all f : V0 → R. The harmonic structure (J, r) is said to be regular if ri < 1 for
all i ∈ S. It is easy to verify that the harmonic structure is regular if and only if
η < 1 and θ < 1 where η and θ are defined by (2.5) and (2.12), respectively.

It is still an open question whether or not a general p.c.f. fractal possesses a
harmonic structure although a positive answer was obtained for certain classes of
p.c.f. fractals, see [23, 24, 27]. Assuming that (J, r) is a harmonic structure on
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(K, {Fi}). Then the condition (4.9) implies that E1 ≥ E0 and hence one can obtain
the quadratic form (E ,F) on K as above.

Definition 4.1. We say that a collection (K, {Fi} , µ, E) is a harmonic p.c.f. fractal
if (K, {Fi}) is a connected p.c.f. fractal with contractions Fi, and µ is a self-similar
measure on K, and the quadratic form E is associated with a harmonic structure as
above.

For a harmonic p.c.f. fractal, the assumptions (A0)− (A3) in Section 2 hold; in
particular, (A2) follows from

Fi(K) ∩ Fj(K) = Fi(V0) ∩ Fj(V0) (i 6= j),

see [20, Prop. 1.3.5, p.19]. In general, (E ,F) is not necessarily a closable form.
At this point, a harmonic p.c.f. fractal is not included into the variational fractal
introduced by Mosco [25]. However, Kigami [20, Theorem 3.4.6, p.92] proved that,
for a harmonic p.c.f. fractal (K, {Fi} , µ, E) with weights {ρi} and

{
r−1
i

}
, there

exists a subspace F̃ ⊂ L2(µ) that contains F , such that (E , F̃) is a local regular
Dirichlet form on L2(µ) with a core F , provide that (2.5) holds. In fact, Kigami has

obtained F̃ (which he denoted by F) by constructing a certain injective mapping ι

from functions on V∗ with finite energy to functions in L2 (µ), hence defining F̃ as

the image of ι. If f ∈ F then ι (f |V∗) = f , which implies that F = F̃ ∩ C (K).
Therefore, a harmonic p.c.f. fractal satisfying (2.5) is a self-similar measure energy

space satisfying (A4). Thus, the global Poincaré inequality follows by Theorem 3.2,
which implies also conditions (2)-(7) of Theorem 2.2. In particular, we obtain
the existence of the heat kernel satisfying (2.8). The latter result was obtained in
[20, Theorem 5.3.1, p.172], where the on-diagonal lower bound of p(t, x, y) was also
proved by using a probabilistic approach.

4.2. Products of self-similar spaces. Let
(
K, {Fi}i∈S , µ, E

)
be a self-similar

measure energy space with the weights {ρi},
{
r−1
i

}
. We say that the weights of

this space are homogeneous with coefficient η if

ρiri = η for all i ∈ S.

Let now (K ′, {F ′i} , µ
′, E ′) and

(
K ′′, {F ′′j }, µ

′′, E ′′
)

be two self-similar measure en-

ergy spaces, respectively, with the weights {ρ′i}, {(r
′
i)
−1} and {ρ′′j}, {(r

′′
i )
−1}. Con-

sider the product space

K := K ′ ×K ′′.

Clearly K is a self-similar space with the family of contractions

{Fij} := {F ′i ⊗ F
′′
j },

because

K =
⋃

i,j

(F ′i ⊗ F
′′
j )(K).

Consider the product measure on K

µ := µ′ ⊗ µ′′.
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It is not hard to see that µ is a self-similar measure on K with the weight {ρ′iρ
′′
j},

and so the conditions (A1)− (A2) hold.

Define an energy form E on K by

E(f) :=

∫

K′′
E ′(f(·, x′′)) dµ′′(x′′) +

∫

K′
E ′′(f(x′, ·)) dµ′(x′) (4.10)

for f ∈ L2(µ), and set

F = {f ∈ L2(µ) : E(f) <∞}.

Proposition 4.2. Let (K ′, {F ′i} , µ
′, E ′) and

(
K ′′, {F ′′j }, µ

′′, E ′′
)

be two self-similar

measure energy spaces with the weights {ρ′i} , {(r
′
i)
−1} and {ρ′′j}, {(r

′′
j )
−1}, respec-

tively, and let the forms (E ′,F ′) and (E ′′,F ′′) be irreducible. Assume that the both
pairs of weights are homogeneous with the same coefficient η, that is,

ρ′ir
′
i = ρ′′j r

′′
j = η for all i and j. (4.11)

Then the energy form E defined in (4.10) is self-similar with weight {η(r′ir
′′
j )
−1},

that is

E(f, g) =
∑

i,j

η(r′ir
′′
j )
−1E(f ◦ (F ′i ⊗ F

′′
j ), g ◦ (F ′i ⊗ F

′′
j )) (4.12)

for f, g ∈ F . Moreover (E ,F) is an irreducible Dirichlet form on L2(µ), and
(K, {Fij} , µ, E) is a self-similar measure energy space, whose weights are homo-
geneous with the same coefficient η.

Note that the homogeneity of the weights of the forms (E ′,F ′), (E ′′,F ′′) is essential
for the self-similarity of (E ,F).

Proof. The self-similarity of E was proved in [29, Lemma 2.2]. The Markov property
and the irreducibility of E follow directly from the definition (4.10). The closedness
of (E ,F) was proved in [11] (see also [29, Corollary 2.7] for the case of discrete
spectrum). Hence, (E ,F) is an irreducible Dirichlet form. The weights {ρ′iρ

′′
j} and

{η(r′ir
′′
j )
−1} of the product space are also homogeneous with the same coefficient η

because

ρ′iρ
′′
j (η
−1r′ir

′′
j ) = η−1(ρ′ir

′
i)(ρ

′′
i r
′′
i ) = η.

�

In the view of Proposition 4.2, the procedure of taking products can be iterated.

Namely, if
{

(K(n), {F (n)
i }, µ

(n), E (n))
}

is a finite sequence of a self-similar measure

energy spaces with homogeneous weights with the same coefficient η, then the prod-
uct

K := K(1) × ...×K(n)

has also the structure of a self-similar measure energy space defined as above.
Note that the products of fractals are infinitely ramified fractals, and hence they

are not p.c.f. fractals. This gives examples of self-similar measure energy spaces
which are not p.c.f. fractals.

As an example of applications of the above results, let us prove the following
statement.
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Corollary 4.3. Let
{

(K(n), {F (n)
i }, µ

(n), E (n))
}

be a finite sequence of p.c.f. fractals

with homogeneous weights with the same coefficient η < 1. Then their product
(K, {Fi}, µ, E) satisfies all the conditions (1)-(7) of Theorem 2.2.

Proof. By Theorem 3.2, each space K(n) satisfies the global Poincaré inequality. By
Theorem 2.2, the generator of E (n) has discrete spectrum. Then, it is easy to see
that the generator of the form E on the product space has also discrete spectrum.
By Proposition 4.2, the product space (K, {Fi}, µ, E) has homogeneous weights with
the same coefficient η < 1. Hence, Theorem 2.2 applies and yields the claim. �

Corollary 2.3 implies then that, under the above conditions, the compact em-
bedding theorem holds on the product space, too. The latter was also proved by
Strichartz for the product of two p.c.f. fractals with regular harmonic structure (see
[29, Corollary 2.7]).
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