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Abstract. We show that a near-diagonal lower bound of the heat kernel of a Dirichlet
form on a metric measure space with a regular measure implies an on-diagonal upper
bound. If in addition the Dirichlet form is local and regular then we obtain a full
off-diagonal upper bound of the heat kernel provided the Dirichlet heat kernel on any
ball satisfies a near-diagonal lower estimate. This reveals a new phenomenon in the
relationship between the lower and upper bounds of the heat kernel.
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1. Introduction

There has been a vast literature on two-sided estimates of heat kernels on Riemannian
manifolds, infinite graphs, fractals, and, more generally, on metric measure spaces. The
reader may consult [8, 10, 14, 29, 30] for Riemannian manifolds, [5, 9, 19, 20] for infinite
graphs, [2, 3, 25] for fractals or metric spaces, and the references therein.

In a majority of the proofs of two-sided estimates for the heat kernel, one normally
obtains first the upper bound and then use it in order to prove the lower bound. This
method goes back to the pioneering work by Aronson [1] and since that time has become
standard in the heat kernel literature (see, for example, [2, 11, 22, 28, 31]).

Our purpose in this paper is to show that, conversely, certain heat kernel lower bounds
imply the upper bounds! As far as we know, this is the first result of this kind.

Let (M,d, µ) be a metric measure space endowed with a Dirichlet form (E ,F) in
L2 (M,µ). The main examples of such a space are as follows:

(1) M is a Riemannian manifold, d is the geodesic distance, µ is the Riemannian
measure, and E is the classical Dirichlet form

E (f) =

∫

M

|∇f |2 dµ

with domain F = W 1
0 (M).
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(2) M is a fractal subset of RN such as the Sierpinski gasket or the Sierpinski carpet.
In this case, d is usually the extrinsic distance from RN and µ is the Hausdorff
measure of a proper dimension. The definition of a Dirichlet form is highly non-
trivial. For a certain class of fractals, one first defines a discrete Dirichlet form on
a graph approximation of M and then takes a properly scaled limit.

Assume that the heat semigroup associated with (E ,F) has an integral kernel, which is
then called the heat kernel of (E ,F) and is denoted by pt (x, y). In general, this function
is measurable with respect to x, y for any t > 0. For the sake of Introduction, assume in
addition that pt (x, y) is continuous in x, y. Note that if M is a Riemannian manifold then
pt (x, y) is the minimal positive fundamental solution to the heat equation on M .

Let measure µ be α-regular, that is, for any metric ball B (x, r),

µ (B (x, r)) � rα.

Our first result (Theorem 3.3) says that if the heat kernel satisfies the near-diagonal lower
estimate

(1.1) pt (x, y) ≥ ct−α/β for all x, y ∈M such that d (x, y) ≤ δt1/β

where β, c, δ are positive constants, then it satisfies also the on-diagonal upper estimate

(1.2) pt (x, x) ≤ Ct−α/β for all x ∈M, t > 0.

The proof of this result is based on the following two components:

(1) We introduce a family W β/2,2 of Besov function spaces on the metric measure
space (M,d, µ) and prove the Nash type inequality for the norm in these spaces
(see Proposition 2.1 below). This component requires only the regularity of the
measure.

(2) Using (1.1), we obtain the embedding estimate (3.6), which implies the Nash in-
equality for the Dirichlet form E . Then (1.2) follows by the Nash argument [27].

The hypothesis that µ is α-regular is essential. We give an example showing that if
this hypothesis fails, then the near-diagonal lower estimate (1.1) does not imply (1.2) (see
Example 3.7).

A natural question arises whether one can obtain in the same setting also an off-diagonal
upper bound for pt (x, y) showing the decay as d (x, y)→∞. For that, assume in addition
that the Dirichlet form (E ,F) is regular and local. Our conjecture is that, under the above
hypotheses, (1.1) implies the following full upper bound:

(1.3) pt (x, y) ≤
C

tα/β
exp

(

−

(
dβ(x, y)

C ′t

) 1
β−1

)

.

Note that (1.3) and a matching lower bound for pt (x, y) are known to be true for a large
class of fractal sets, which are then characterized by the two parameters α and β (in fact,
α is the Hausdorff dimension of M and β is a so called walk dimension).

In the case when M is a Riemannian manifold and β = 2, this conjecture is true because
(1.3) follows from (1.2) alone (Corollary 3.5). In the general case, we have been able to
prove the following two weaker versions of this conjecture.

(1) A somewhat stronger condition than (1.1), called the local lower estimate of the
heat kernel (see (LLE) in Section 4) does imply (1.3) (Theorem 4.2).

(2) If a near-diagonal lower bound (1.1) holds together with the following time-independent
upper bound

pt (x, y) ≤ Cd (x, y)−α ,

then (1.3) is true (Theorem 4.6).
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The locality of the form (E ,F) is necessary for (1.3), which is shown in Example 4.7.
Our results are new even for the case of Riemannian manifolds with β = 2. For example,

Theorem 4.2 provides the following new proof of the fact that Moser’s parabolic Harnack
inequality (see [26]) for the heat equation on a manifold with α-regular measure implies
the heat kernel two sided Gaussian estimates (see [22] for another proof of this result).
Indeed, the condition (LLE) mentioned above is an analogue of (1.1) for the heat kernel pBt
in a ball B ⊂M with the Dirichlet boundary condition, which is somewhat stronger than
(1.1). By the classical Aronson argument [1], the parabolic Harnack inequality implies
(LLE) with β = 2. By Theorem 4.2, we obtain the upper bound (1.3). The matching
lower bound follows from (1.1) again by Aronson’s chain argument.

Notation. Letters c, c′, c0, C etc. denote positive constants, whose values may change
at each occurrence. If f and g are two non-negative functions then we write f � g if, for
some C > 0,

C−1g ≤ f ≤ Cg
in the common domain of f and g.

2. Preliminaries

Let (M,d) be a locally compact, separable metric space, and let µ be a Radon measure
supported on M . For 1 ≤ p ≤ ∞, denote by Lp := Lp(M,µ) the usual space of all
p-integrable real-valued functions on M with the norm

‖f‖p =

(∫

M

|f(x)|pdµ(x)

)1/p

(with the obvious modification if p =∞).
Let (E ,F) be a Dirichlet form on L2(M,µ). In the sequel we use the convenient ab-

breviation E(f) := E(f, f) for f ∈ F . Let H be the generator of (E ,F), that is, H is a
non-negative definite self-adjoint operator in L2 with domain dom(H) ⊂ F , and

(Hf, g) = E(f, g) (f ∈ dom(H), g ∈ F) ,

where ( , ) is the inner product on L2. The generator H gives rise to the semigroup

(2.1) Tt = e−tH (t ≥ 0),

which is a family of bounded self-adjoint operator in L2. In addition, the semigroup {Tt}
is Markovian, that is, if 0 ≤ f ≤ 1 a.e., then

(2.2) 0 ≤ Ttf ≤ 1

a.e. for all t ≥ 0, see [12, Theorem 1.4.1, p. 23]. A family {pt(x, y)}t>0 of measurable
functions on M ×M is termed the heat kernel of the form (E ,F) if pt(x, y) is an integral
kernel of Tt, that is

(2.3) Ttf(x) =

∫

M

pt(x, y)f(y)dµ(y) for a.e. x ∈M

for all t > 0 and f ∈ L2.
For x ∈ M and r > 0, let B(x, r) = {y ∈ M : d(y, x) < r} be the open ball in M . Fix

some r0 ∈ (0,∞] throughout this paper. For α > 0, we say that µ is lower α-regular if
there exists a constant c1 > 0 such that

(2.4) µ(B(x, r)) ≥ c1r
α

for µ-almost all x ∈ X and 0 < r < r0, and µ is upper α-regular if there exists a constant
c2 > 0 such that

(2.5) µ(B(x, r)) ≤ c2r
α
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for µ-almost all x ∈ X and 0 < r < r0. We say that µ is α-regular if µ is both upper and
lower α-regular.

For any σ > 0, define a non-negative functional Wσ (f) on L2 by

(2.6) Wσ (f) := sup
0<r<r0

r−2σ

∫

M

[
1

µ(B(x, r))

∫

B(x,r)
|f(y)− f(x)|2dµ(y)

]

dµ(x).

In particular, if µ is α-regular, then for any β > 0,

(2.7) Wβ/2(f) � sup
0<r<r0

r−α−β
∫

M

[∫

B(x,r)
|f(y)− f(x)|2dµ(y)

]

dµ(x).

Define the Banach space W σ,2 by

W σ,2 = W σ,2(M,d, µ) :=
{
f ∈ L2 : Wσ (f) <∞

}
.

with the norm (
‖f‖22 +Wσ(f)

)1/2
.

The space W σ,2 admits the following Nash inequality.

Proposition 2.1. Assume that µ is α-regular and β > 0. Then, for all f ∈W β/2,2,

(2.8) ‖f‖
2(1+ β

α
)

2 ≤ c
(
r0
−1‖f‖22 +Wβ/2(f)

)
‖f‖

2β
α

1 ,

where c > 0 depends only on α, β, c1, c2.

Proof. We can assume that f ∈ L1 ∩W β/2,2. For any such f and r > 0, set

fr(x) :=
1

µ(B(x, r))

∫

B(x,r)
f(y)dµ(y).

In the remainder of the proof, we denote by c a positive constant depending only on
α, β, c1, c2 but whose value may be changed at each instance. Note that

(2.9) ‖fr‖1 ≤ c ‖f‖1.

By (2.4), we see that

(2.10) ‖fr‖∞ ≤ c
−1
1 r−α‖f‖1

for 0 < r < r0. Combining (2.10) and (2.9), we obtain that

(2.11) ‖fr‖
2
2 ≤ ‖fr‖∞‖fr‖1 ≤ c r

−α‖f‖21.

On the other hand, using the Cauchy-Schwarz inequality, we have that

‖fr − f‖
2
2 =

∫

M

(
1

µ(B(x, r))

∫

B(x,r)
(f(y)− f(x))dµ(y)

)2

dµ(x)

≤
∫

M

(
1

µ(B(x, r))

∫

B(x,r)
(f(y)− f(x))2dµ(y)

)

dµ(x)

= rβ

{

r−β
∫

M

(
1

µ(B(x, r))

∫

B(x,r)
(f(y)− f(x))2dµ(y)

)

dµ(x)

}

≤ rβWβ/2(f).(2.12)

Therefore, it follows from (2.11) and (2.12) that

‖f‖22 ≤ 2
(
‖fr‖

2
2 + ‖fr − f‖

2
2

)
≤ c

(
r−α‖f‖21 + rβWβ/2(f)

)
,(2.13)



HEAT KERNEL ESTIMATES 5

for 0 < r < r0. Clearly, if r ≥ r0 ( and r0 <∞), then we have that

‖f‖22 ≤

(
r

r0

)β
‖f‖22,

which together with (2.13) yields that

(2.14) ‖f‖22 ≤ c
(
r−α‖f‖21 + rβ

(
r0
−1‖f‖22 +Wβ/2(f)

))

for all r > 0. If f ≡ 0, then (2.8) is trivial. Otherwise

r0
−1‖f‖22 +Wβ/2(f) 6= 0.

Indeed, if this expression vanishes, then we would have that r0 = ∞ and f = const 6= 0.
Since µ is α-regular, it follows from r0 =∞ that µ(M) =∞, and so f = const /∈ L2. This
is a contradiction. Hence, letting

r =

(
‖f‖21

r0
−1‖f‖22 +Wβ/2(f)

)1/(α+β)

in (2.14), we obtain (2.8). �

The proof of Proposition 2.1 is motivated by [23, Theorem 3.1].

3. Near-diagonal lower estimates imply on-diagonal upper bounds

Assume that the Dirichlet form (E ,F) possesses a heat kernel pt(x, y). We say that
pt(x, y) satisfies a near-diagonal lower estimate if, for some δ, c0 > 0, β > 1,

(NLE) pt(x, y) ≥ c0 t
−α/β

for all 0 < t < δ r
β
0 and µ-almost all x, y ∈M satisfying

d(x, y) < δ t1/β ,

where α is the same as in (2.4). Under a certain additional assumption on the metric
d, for example the chain condition, (NLE) allows us to obtain a full lower estimate for

pt(x, y) for all 0 < t < r
β
0 and µ-almost all x, y ∈ M . We say that (M,d) satisfies the

chain condition if, for any distinct points x, y ∈ X and any integer n ≥ 1, there exist a
constant c > 0 and a sequence of points {xk}nk=0 in X such that x0 = x, xn = y, and

(3.1) d(xi, xi+1) ≤ c n−1d(x, y) (0 ≤ i ≤ n− 1).

For instance, the chain condition is satisfied if (M,d) is a geodesic space.

Proposition 3.1. Let (M,d) be a metric space satisfying the chain condition, and let µ
be lower α-regular. Assume that the heat kernel pt(x, y) of the Dirichlet form (E ,F) exists
and satisfies (NLE). Then pt(x, y) satisfies the off-diagonal lower bound

(LE) pt(x, y) ≥ c t−α/β exp

(

−c′
(
d(x, y)

t1/β

) β
β−1

)

for all 0 < t < r
β
0 and µ-almost all x, y ∈M , for some c, c′ > 0.

See [2] or [17, Corollary 3.5] for the proof.
The following is the key result in this paper, showing that (NLE) implies the Nash

inequality for (E ,F).
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Theorem 3.2. Let (M,d) be a metric space with a lower α-regular measure µ. Assume
that the heat kernel of the Dirichlet form (E ,F) exists and satisfies (NLE). Then, for all
f ∈ F ,

(3.2) ‖f‖
2(1+ β

α
)

2 ≤ c
(
r0
−1‖f‖22 + E(f)

)
‖f‖

2β
α

1

where c (independent of r0) depends only on the constants from the hypothesis.

Proof. First note that (NLE) implies that the measure µ is upper α-regular, see [17, (3.3),
p.2071] for the case r0 =∞. For r0 <∞, the proof is the same. Indeed, fix a ball B(x0, r)
with 0 < r ≤ εr0 where

ε =
1

2
δ1+1/β

with the same δ as in (NLE). Let f = 1B(x0,r). Then, for any t > 0 and almost all
x ∈ B(x0, r),

1 ≥ Ttf(x) =

∫

B(x0,r)
pt(x, y)dµ(y) ≥ µ(B(x0, r)) essinf

y∈B(x0,r)
pt(x, y),

whence

(3.3) µ (B(x0, r)) ≤

(

essinf
x,y∈B(x0,r)

pt(x, y)

)−1

.

Choosing t such that

δt1/β = 2r,

we see that, for all x, y ∈ B(x0, r),

d(x, y) < 2r = δt1/β ,

and
t = (2r/δ)β ≤ (2εr0/δ)

β = δr
β
0 .

Therefore, (NLE) implies that

essinf
x,y∈B(x0,r)

pt(x, y) ≥ c0t
−α/β = c r−α,

whence µ is upper α-regular for 0 < r ≤ εr0 by virtue of (3.3). Now, if r0 < ∞ and
εr0 < r < r0, then

µ (B(x0, r)) ≥ µ (B(x0, εr0)) ≥ c (εr0)α = c′rα,

and so µ is upper α-regular for all 0 < r < r0 by adjusting the constant.
For any f ∈ L2, set

Et(f) =
1

t

∫

M

(f − Ttf) f dµ.

By [12, Lemma 1.3.4, p.22], the family {Et(f)} increases as t ↓ 0 and tends to E(f), for
any f ∈ F . Using this and (2.2), we obtain that, for any t > 0 and r > 0,

E(f) ≥
1

t

∫

M

(f(x)− Ttf(x)) f(x)dµ(x)

=
1

2t

{∫

M

∫

M

(f(x)− f(y))2pt(x, y)dµ(y)dµ(x)

+ 2

∫

M

f(x)2(1− Tt1(x))dµ(x)
}

≥
1

2t

∫

M

∫

B(x,r)
(f(x)− f(y))2pt(x, y)dµ(y)dµ(x).(3.4)
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For any r < δ1+1/βr0, let t = (r/δ)β so that t < δr
β
0 . For such r and t, since

d(x, y) < r = δt1/β ,

for almost all x ∈M and y ∈ B(x, r), we can apply (NLE) in (3.4) to obtain that

E(f) ≥
c0
2
t−(1+α/β)

∫

M

∫

B(x,r)
(f(x)− f(y))2dµ(y)dµ(x)

= c r−(α+β)

∫

M

∫

B(x,r)
(f(x)− f(y))2dµ(y)dµ(x).(3.5)

Let us verify that (3.5) also holds for δ1+1/βr0 ≤ r < r0 (assuming r0 < ∞). Since µ
satisfies the doubling condition, any ball of center x0 and radius r can be covered by a
finite number (independent of x0 and r, r0) of balls of radius δ1+1/βr0. Applying (3.5) for
each of these balls and adding up, we see that (3.5) holds for any 0 < r < r0. Finally,
taking supremum in r, we obtain from (3.5) that

(3.6) E(f) ≥ cWβ/2(f).

Combining (3.5) and (2.8), we arrive at (3.2). �

Theorem 3.3. Let (M,d) be a metric space with a lower α-regular measure µ. Assume
that the heat kernel pt (x, y) of the Dirichlet form (E ,F) exists and satisfies (NLE). Then
the following upper estimate holds

(DUE) pt(x, y) ≤
c

min(tα/β , rα0 )

for all t > 0 and µ-almost all x, y ∈M .

Proof. The conclusion immediately follows from Theorem 3.2 by a result in [7], which
extends to the present setting the classical argument by Nash [27]. �

The estimate (DUE) is called a diagonal upper estimate because, in the setting when
pt(x, y) is continuous in x, y, it is equivalent to the same estimate on the diagonal x = y:

pt(x, x) ≤
c

min(tα/β , rα0 )

by noting that, using the semigroup property and Cauchy-Schwarz inequality,

pt(x, y) =

∫

M

pt/2(x, z)pt/2(z, y)dµ(z)

≤

(∫

M

pt/2(x, z)2dµ(z)

)1/2(∫

M

pt/2(z, y)2dµ(z)

)1/2

= (pt(x, x)pt(y, y))1/2 .

Remark 3.4. If M is unbounded, we can take r0 = diam(M) = ∞. Then (DUE) is
reduced to

(3.7) pt(x, y) ≤ c t−α/β .

Corollary 3.5. Let M be a Riemannian manifold, d be the geodesic distance, µ be the
Riemannian measure and (E ,F) be the classical Dirichlet form on M , that is,

(3.8) E(f) =

∫

M

|∇f |2 dµ.

Assume that µ is lower α-regular and set β = 2. Then (NLE) =⇒ (UE).
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Proof. Indeed, by Theorem 3.2, we have (NLE) =⇒ (DUE), that is,

(3.9) pt(x, x) ≤ c t−α/2,

for all t < r2
0 and x ∈ M . By [13], the on-diagonal estimate (3.9) on a manifold implies

the off-diagonal upper bound:

pt(x, y) ≤
c

tα/2
exp

(

−
d(x, y)2

c′t

)

,

for all x, y ∈M and t < r2
0, for some c, c′ > 0. �

We make the following conjecture.

Conjecture 3.6. Let (M,d, µ) be a separable metric measure space with a lower α-regular
measure µ and (E ,F) be a local regular Dirichlet form in L2 (M,µ). Then (NLE) =⇒
(UE).

In the next section, we will prove a version of this conjecture when a somewhat stronger
version of (NLE) holds.

We finish this section with an example showing that the condition of the lower regularity
of measure µ in Theorem 3.3 cannot be dropped.

Example 3.7. Let M be a manifold obtained by gluing together R3 and R+ × S2, where
S2 is the unit sphere in R3. More precisely, assume that M is a complete 3-dimensional
manifold such that M is disjoint union of a compact set K, and open sets E1 and E2,
where E1 is isometric to R+ × S2, and E2 isometric to R3 \ B0 where B0 is a ball in R3,
see Figure 1.

K


E
 1


E
2


b
a
l
l
 
B
0


x

y


Figure 1. M = E1 ∪ E2 ∪K

Let µ be the Riemannian measure on M , d be the geodesic distance, and E be defined
as in (3.8), which is local and regular. Set r0 = ∞. Obviously, µ is not lower α-regular
for any α (indeed, for small r, µ (B (x, r)) � r3 whereas for large r there are balls with
µ (B (x, r)) � r). It follows from [18, Example 3] that the heat kernel pt on M satisfies
the following lower estimate:

(3.10) pt(x, y) ≥
c

t3/2
exp

(

−
d(x, y)2

c′t

)

,

for all t > 0 and x, y ∈M , where c, c′ > 0. Thus, (NLE) is true with α = 3 and β = 2 (and
no other choice of α and β will do). On the other hand, if x = y ∈ E1 with d (x,K) =

√
t

for large t, then it follows from [18, Example 3] that

pt(x, x) ≥
c

t1/2
�

c

t3/2
.
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Hence, the diagonal upper bound of pt

pt(x, x) ≤
c

t3/2

fails for such x and t.

4. Local lower estimates imply full upper bounds

We say that condition (UE) holds if

The heat kernel pt(x, y) exists and satisfies the upper estimate

(UE) pt(x, y) ≤ c t−α/β exp

(

−c′
(
d(x, y)

t1/β

) β
β−1

)

,

for all 0 < t < r
β
0 and µ-almost all x, y ∈M , where c, c′ > 0.

From now on we assume that the form (E ,F) is local and regular. For any regular
Dirichlet form (E ,F), there exists an associated Hunt process ({Xt}t≥0, {Px}x∈M ), see
[12, Theorem 7.2.1]. If in addition (E ,F) is local, then Xt is a diffusion, that is, the path
t → Xt is continuous almost surely [12, Theorem 7.2.2]. By the transition density of the
process Xt, we mean a measurable function p̃t(x, y) defined pointwise on (0,∞)×M ×M
such that

(4.1) Exf(Xt) =

∫

M

p̃t(x, y)f(y)dµ(y)

for all x ∈M , t > 0 and any bounded Borel function f . For any such function f , set

(4.2) Ptf(x) := Exf(Xt) (x ∈M, t > 0).

Then {Pt}t≥0 is a semigroup on bounded Borel functions. It is well-known [12] that

Ttf(x) = Ptf(x) a.e.

for all t > 0 and all bounded Borel functions f . This implies that if the heat kernel pt(x, y)
and the transition density p̃t(x, y) exist, then

pt(x, y) = p̃t(x, y)

for all t > 0 and µ-almost all x, y ∈M . Let us emphasize that unlike the heat kernel, the
transition density is defined for all x, y ∈M .

We say that N ⊂M is the negligible set, if µ(N) = 0 and

Px (Xt ∈ N or Xt− ∈ N for some t ≥ 0) = 0 for all x ∈M \N.

It follows from [2, Proposition 4.14, Corollary 4.15] or [16] that if the heat kernel exists and
satisfies (DUE), then the transition density p̃t(x, y) satisfies (DUE) for all x, y ∈ M \ N
and t > 0, where N is a negligible set.

Let Ω be an open subset of M , and define

FΩ = {f ∈ F : f |M\Ω = 0}.

If (E ,F) is a regular Dirichlet form on L2(M,µ), then the form (E ,FΩ) is also a regular
Dirichlet form on L2(Ω, µ) [12, Theorem 4.4.3, p.154]. Let

(
{Xt}t≥0, {PΩ

x }x∈M
)

be a
(killed) Hunt process associated with (E ,FΩ). Then, for any bounded Borel function f ,
and for all x ∈M, t > 0,

(4.3) PΩ
t f(x) := EΩ

x (f(Xt)) = Ex(1{t<τΩ}f(Xt))

where

τΩ = inf{t > 0 : Xt /∈ Ω},
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the first exit time from Ω, see [12, (4.1.2), p.135]. Assume that the transition density for
the killed process on Ω exists for any open subset Ω, and denote it by p̃Ω

t (x, y). Clearly
p̃Ω
t (x, y) = 0 for all t > 0 if x /∈ Ω or y /∈ Ω. It follows from (4.3) that, for all x ∈ M and

all t > 0,

(4.4) p̃Ω
t (x, y) ≤ p̃t(x, y)

for µ-almost all y ∈M .
Taking f = 1 in (4.3) and integrating in e−λtdt over (0,∞), we obtain that

λ

∫ ∞

0
e−λtPΩ

t 1(x)dt = λ

∫ ∞

0
e−λt Ex(1{t<τΩ})dt

= Ex

(

λ

∫ τΩ

0
e−λtdt

)

= 1− Ex
(
e−λτΩ

)
.

Therefore,

(4.5) Ex
(
e−λτΩ

)
= 1− λ

∫ ∞

0
e−λtPΩ

t 1(x)dt

for all x ∈M and λ ≥ 0, and for any open subset Ω of M . In the remainder of this section,
we always set

r0 := diam(M).

In order to obtain off-diagonal upper estimates of the heat kernel pt(x, y), we assume
the following local lower estimate of the heat kernel:

(LLE): For any ball B, the local heat kernel pBt (x, y) exists. Moreover, there exist
some c0 > 0, β > 1, δ ∈ (0, 1) such that, for all x0 ∈M, 0 < r < r0 and all t ≤ δrβ ,

p
B(x0,r)
t (x, y) ≥ c0 t

−α/β ,

for µ-almost all x, y ∈ B
(
x0, δt

1/β
)
, where α is the same as in (2.4).

Roughly speaking, the condition (LLE) says that the Dirichlet heat kernel p
B(x0,r)
t (x, y)

satisfies the near-diagonal lower bound for x, y close to the center of the ball, see Figure
2.

x0

x
y

r

δ 1/βt

Figure 2. Balls B (x0, r) and B
(
x0, δt

1/β
)

If p
B(x0,r)
t (x, y) is continuous in x, y for any ball B(x0, r), then we can rephrase the local

lower estimate in a simpler way: there exist some c0 > 0, β > 1, δ ∈ (0, 1) such that, for
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all x ∈M, 0 < r < r0 and all t ≤ δrβ ,

(4.6) p
B(x,r)
t (x, y) ≥ c0 t

−α/β ,

for all y ∈ B
(
x, δt1/β

)
.

Lemma 4.1. Let (E ,F) be a Dirichlet form on a separable metric space M . If (LLE)
holds, then the (global) heat kernel pt(x, y) of (E ,F) exists and satisfies (NLE) with r0 =
diam(M).

Proof. Observe that the heat kernel pt of (E ,F) exists under the hypothesis (LLE). Indeed,
if r0 < ∞ then M is a metric ball B and, hence, pt = pBt . If r0 = ∞ then, for a fixed

x0 ∈M , the sequence
{
p
B(x0,n)
t

}∞

n=1
is increasing in n, its limit is finite almost everywhere

and is the heat kernel pt of (E ,F), see [16, Lemma 4.1].

It remains to show pt(x, y) satisfies (NLE). Fix t < δr
β
0 , and let r be such that t = δrβ .

By (LLE), we have that, for any z ∈M , there is a set Nz ⊂M such that µ (Nz) = 0 and

(4.7) p
B(z,r)
t (x, y) ≥ c0t

−α/β

for all x, y ∈ B
(
z, δt1/β

)
\Nz. By adjusting Nz, we can assume that

pt(x, y) ≥ pB(z,r)
t (x, y)

also for all x, y ∈ B
(
z, δt1/β

)
\Nz. Hence, for all x, y ∈ B

(
z, δt1/β

)
\Nz,

(4.8) pt(x, y) ≥ c0t
−α/β .

Consider the subsets of M ×M

A =
{

(x, y) ∈M ×M : d(x, y) < δt1/β
}

and

Az =
{

(x, y) ∈M ×M : x, y ∈ B
(
z, δt1/β

)}
.

Clearly we have

A ⊂
⋃

z∈M

Az

because, for any (x, y) ∈ A, we see that x, y ∈ B
(
x, δt1/β

)
and hence, (x, y) ∈ Ax. Now,

since each set Az is open in M ×M and M ×M has a countable base, there is a countable
family {Azk}

∞
k=1 such that

A ⊂
∞⋃

k=1

Azk .

Since (4.8) holds for all (x, y) ∈ Azk\Nzk for any k, we obtain that the same is true for
any (x, y) ∈ ∪k≥1Azk\N , where

N :=
∞⋃

k=1

Nzk

has zero measure, and that (4.8) holds for all (x, y) ∈ A\N . Therefore (NLE) follows. �

The next theorem is our main result in this paper.

Theorem 4.2. Let (M,d, µ) be a separable metric measure space and measure µ be lower
α-regular. Let (E ,F) be a local regular Dirichlet form in L2 (M,µ). Then the following
equivalence holds:

(LLE)⇐⇒ (UE) + (NLE).
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Proof. We first prove the implication “(LLE)⇒ (UE) + (NLE)”. By Lemma 4.1, (LLE)
implies that the heat kernel pt(x, y) of (E ,F) exists and satisfies (NLE). Thus we only
need to prove (UE) assuming that (LLE) holds. Observe that (LLE) implies that there
exists a negligible set N such that, for all x0 ∈M, 0 < r < r0 and all t ≤ δrβ ,

(4.9) p̃
B(x0,r)
t (x, y) ≥ c0 t

−α/β

for all x, y ∈ B
(
x0, δt

1/β
)
\N , see [16]. Let us show that, for all x ∈ M \N , 0 < r < r0

and all t > 0,

(4.10) Px(τB(x,r) ≤ t) ≤ c exp

(

−c′
( r

t1/β

) β
β−1

)

.

The proof of (4.10) given here is motivated by [16, Theorem 9.1] or [2]. We first prove
that there exists some ε ∈ (0, 1) such that, for all x ∈M \N , 0 < r < r0 and λ ≥ r−β ,

(4.11) Ex
(
e−λτB(x,r)

)
≤ ε.

To see this, fix x ∈ M \N and 0 < r < r0, and set τ = τB(x,r). For 0 < t < δrβ , we see
from (4.9) with x0 = x that

P
B(x,r)
t 1(x) =

∫

M

p̃
B(x,r)
t (x, y)dµ(y)

≥
∫

B(x,δt1/β)\N
p̃
B(x,r)
t (x, y)dµ(y)

≥ c0 t
−α/βµ

(
B(x, δt1/β)

)
≥ c > 0.

It follows that, for λ ≥ r−β ,

λ

∫ ∞

0
e−λtP

B(x,r)
t 1(x)dt ≥ λ

∫ δrβ

0
e−λtP

B(x,r)
t 1(x)dt

≥ c λ
∫ δrβ

0
e−λtdt = c

(
1− e−δλr

β
)
≥ c′ > 0.

Therefore, by (4.5),

Ex
(
e−λτ

)
= 1− λ

∫ ∞

0
e−λtP

B(x,r)
t 1(x)dt ≤ 1− c′,

proving (4.11).
Now we show that (4.11) implies (4.10). For r0 = ∞, this was proved in [2, 16]. For

r0 <∞, the proof is the same. To see this, we show that, for x ∈M \N and 0 < r < r0,

(4.12) Ex
(
e−λτ

)
≤ c exp

(
−c′λ1/βr

)

for λ > 0, where c, c′ > 0 are independent of x, r and λ. Indeed, let ρ = r/n where n ≥ 1
will be chosen below. Set τk = τ(x, kρ), the first exit time from the ball Bk := B(x, kρ),
for k = 1, · · · , n. By the strong Markov property, we have that

(4.13) Ex
(
e−λτk+1

)
= Ex

(
e−λτke−λ(τk+1−τk)

)
= Ex

(
e−λτkEXτk e

−λτk+1

)
.
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Note that Xτk ∈ ∂Bk \N with Px-probability 1, and τk+1 ≥ τB(y,ρ) for any y ∈ ∂Bk. We

have from (4.13) and (4.11) that, for λ ≥ ρ−β ,

Ex
(
e−λτk+1

)
≤ Ex

(
e−λτk

)
sup

y∈∂Bk\N
Ey
(
e−λτB(y,ρ)

)

≤ εEx
(
e−λτk

)
(1 ≤ k ≤ n− 1).(4.14)

Now choose the largest integer n such that λ ≥ ρ−β = (n/r)β , that is,

nβ ≤ λrβ .

(We assume that λrβ is large enough; otherwise (4.12) automatically holds.) Therefore,

Ex
(
e−λτ

)
≤ εn = e−n log 1

ε ≤ e−(λ1/βr−1) log 1
ε ,

proving (4.12). By (4.12), we have that

Px(τ ≤ t) = Px
(
e−λτ ≥ e−λt

)
≤ eλtEx

(
e−λτ

)

≤ c exp
(
λt− c′λ1/βr

)

≤ c exp

(

−c′′
(
rβt−1

)1/(β−1)
)

(4.15)

by taking λ such that λt = 1
2c
′λ1/βr. Thus (4.10) holds.

Finally, fix x0, y0 ∈M (x0 6= y0) and let r = 1
2d(x0, y0). Then, for almost all x ∈ B(x0, r)

and y ∈ B(y0, r),

pt(x, y) ≤ Px

(

τB(x0,r) ≤
t

2

)

sup
t/2≤s≤t

esssup
u∈B(x0,2r)

ps(u, y)

+ Py

(

τB(y0,r) ≤
t

2

)

sup
t/2≤s≤t

esssup
v∈B(y0,2r)

ps(v, x),(4.16)

see [16]. By (4.10), we see that, for any x ∈ B(x0, r/2) \N ,

(4.17) Px

(

τB(x0,r) ≤
t

2

)

≤ Px

(

τB(x,r/2) ≤
t

2

)

≤ c exp

(

−c′
( r

t1/β

)β/(β−1)
)

.

Similarly, for any y ∈ B(y0, r/2) \N ,

(4.18) Py

(

τB(y0,r) ≤
t

2

)

≤ c exp

(

−c′
( r

t1/β

)β/(β−1)
)

.

Noting that, for µ-almost all u, y ∈M and t/2 ≤ s ≤ t, we have from (DUE) that

ps(u, y) ≤ c t−α/β if t < r
β
0 .

Therefore, we combine (4.16), (4.17) and (4.18) to obtain (UE).
For the opposite implication, we prove a stronger claim. For this, we introduce a

condition (ΦUE) as follows:

(ΦUE): There exists a bounded positive function Φ on [0,∞) satisfying

(4.19) sup
s≥0

sαΦ (s) <∞

such that the heat kernel pt(x, y) of (E ,F) satisfies the estimate

pt(x, y) ≤ t−α/βΦ

(
d(x, y)

t1/β

)

for all t < r
β
0 and µ-almost all x, y ∈M .
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Obviously, (UE) =⇒ (ΦUE) because one can take Φ (s) = c exp
(
−c′s

β
β−1

)
. We claim

that if (E ,F) is a regular Dirichlet form (not necessarily local) then

(NLE) + (ΦUE) =⇒ (LLE).

Note that (ΦUE) =⇒ (DUE) and (DUE) implies the Nash inequality (3.2) for all f ∈ F .
In particular, this inequality holds also for all f ∈ FΩ, which implies that pΩ

t (x, y) exists
by the results of [7] and [16].

Next, let us apply the following inequality

(4.20) pt(x, y) ≤ pΩ
t (x, y) + sup

0<s≤t
esssup
z∈Ωc

ps(y, z)

which is true for all open Ω ⊂M , for all t > 0 and µ-almost all x, y ∈ Ω, see [16, Lemma
8.1]. Fix some 0 < δ′ ≤ δ/2 to be specified below where δ is the constant from (NLE).
Also, fix some x0 ∈ M , r ∈ (0, r0), s > 0, and 0 < t ≤ δ′rβ . For all z ∈ B(x0, r)

c and

y ∈ B
(
x0, δ

′t1/β
)
, we have

d(y, z) ≥ d(z, x0)− d(x0, y) ≥ r − δ′t1/β ≥
(

1−
(
δ′
)1+1/β

)
r ≥ const r.

Then by (ΦUE), we have, for µ-almost all z ∈ B(x0, r)
c and y ∈ B

(
x0, δ

′t1/β
)
,

ps(y, z) ≤ s−α/βΦ

(
d(y, z)

s1/β

)

= d(y, z)−α
(
d(y, z)

s1/β

)α
Φ

(
d(y, z)

s1/β

)

≤ d(y, z)−α sup
ξ≥0

ξαΦ (ξ) ≤ c r−α ≤ c
(
δ′
)α/β

t−α/β .

Choosing δ′ to be small enough, we obtain that for µ-almost all y ∈ B
(
x0, δ

′t1/β
)
,

esssup
z∈B(x0,r)c

ps(y, z) ≤
c0

2
t−α/β ,

where c0 is the constant from (NLE). Applying (4.20) with Ω = B(x0, r) and using (NLE),

we obtain that for µ-almost all x, y ∈ B
(
x0, δ

′t1/β
)

c0 t
−α/β ≤ pt(x, y) ≤ pB(x0,r)

t (x, y) +
c0

2
t−α/β ,

which implies that

p
B(x0,r)
t (x, y) ≥

c0

2
t−α/β .

Hence, we have proved (LLE) with the parameter δ′. �

Remark 4.3. Assume that the hypothesis in Theorem 4.2 hold. If in addition (M,d)
satisfies the chain condition, then we obtain from Proposition 3.1 the following result: the
local lower estimate (LLE) is equivalent to the two-sided estimate

pt(x, y) � t−α/β exp

(

−c′
(
d(x, y)

t1/β

) β
β−1

)

,

for all 0 < t < r
β
0 and µ-almost all x, y ∈ M . Here the value of the constant c′ may be

different for the upper and lower estimates.
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Remark 4.4. In Theorem 4.2, we do not assume that the diffusion ({Xt}t≥0, {Px}x∈M )
is stochastically complete, that is

Px (Xt ∈M) = 1 for all x ∈M, t > 0.

This condition is usually assumed in most literature on the heat kernel estimates.

Remark 4.5. Theorem 4.2 provides a new way of obtaining two-sided estimates of the heat
kernel pt(x, y) from the parabolic Harnack inequality. Indeed, by the standard argument
(see [1, 28, 31]), the parabolic Harnack inequality implies (LLE), whence (UE) and (NLE)
follows.

For the next statement, we need the following condition, which is referred to as the time
independent upper estimate :

(TIUE) pt(x, y) ≤ c d (x, y)−α for all t < r
β
0 and µ-a.a. x, y ∈M.

It is easy to see that (ΦUE) =⇒ (TIUE).

Theorem 4.6. Let (M,d, µ) be a separable metric measure space and let (E ,F) be a local
regular Dirichlet form in L2 (M,µ). If measure µ is lower α-regular, then

(TIUE) + (NLE)⇐⇒ (UE) + (NLE).

Proof. The direction ⇐ is obvious because (TIUE) coincides with (ΦUE) with function
Φ (s) = cs−α that satisfies (4.19) (despite this function is unbounded).

To prove the opposite implication, observe that, by Corollary 3.3, (NLE) implies (DUE),
which together with (TIUE) yields

(4.21) pt(x, y) ≤ c min
{
t−α/β , d(x, y)−α

}
,

for all t < r
β
0 and µ-a.a. x, y ∈ M . Obviously, (4.21) is equivalent to (ΦUE) with the

function

(4.22) Φ(s) = c

{
s−α, s > 1,

1, s ≤ 1.
,

which is clearly bounded and satisfies (4.19). By the second part of the proof of Theorem
4.2, (ΦUE)+(NLE) imply (LLE). Then, by Theorem 4.2, (LLE) implies (UE). �

The next example shows that if (E ,F) is not local (whilst the other conditions in
Theorem 4.2 are still true), then (LLE) does not imply (UE).

Example 4.7. Let (M,d, µ) be a metric measure space with a Dirichlet form (E ,F) whose
heat kernel pt (x, y) is stochastically complete and satisfies the estimates

(4.23) t−α/βΦ1

(
t−1/βd(x, y)

)
≤ pt(x, y) ≤ t−α/βΦ2

(
t−1/βd(x, y)

)

for all 0 < t < r
β
0 and µ-almost all x, y ∈ M , where r0 = diam(M), and α > 0, β > 1

and Φ1 and Φ2 are positive decreasing functions on [0,∞). For example, for some basic
fractals such as the Sierpinski gaskets or the Sierpinski carpets, it is known that (4.23)
holds with

Φi(s) = ci exp
(
−c′is

γi
)

(i = 1, 2)

for some ci, c
′
i, γi > 0, see for example [6], [4], or [21]. Under certain mild conditions on

Φ1 and Φ2, (4.23) implies that the measure µ is α-regular, see [17].
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Let H be the associated infinitesimal generator of the heat kernel pt, defined by (2.3)

and (2.1). Then, for any 0 < σ < 1, the heat kernel p
(σ)
t corresponding to the fractional

power Hσ satisfies the estimate

(4.24) p
(σ)
t � t−α/β

′
(

1 +
d (x, y)

t1/β
′

)−(α+β′)

,

where β′ = σβ, for all 0 < t < r
β′

0 and µ-almost all x, y ∈ M . (see for example [15, 24]).

The Dirichlet form (E (σ),F) corresponding to p
(σ)
t (x, y) is given by

E(σ)(u) = (Hσu, u) =
1

2

∫

M

∫

M

(u(x)− u(y))2k(x, y) dµ(y)dµ(x)

where

k(x, y) =
σ

Γ(1− σ)

∫ ∞

0
pt(x, y)

dt

tσ+1
� d(x, y)−(α+β′).

One can see that E(σ) is regular but not local. By (4.24), we see that p
(σ)
t (x, y) does not

satisfy (UE). However, it satisfies (ΦUE) and (NLE), which implies (LLE) by the second
part of the proof of Theorem 4.2. Therefore, (LLE) does not imply (UE) if (E ,F) is not
local.

To be more specific, let us consider M = Rn with the Lebesgue measure µ and the
classical Dirichlet form (E ,F) given by (3.8). Then the Dirichlet form E(1/2) is given by

E(1/2)(f) =
Cn
2

∫

Rn

∫

Rn

(f(x)− f(y))2

|x− y|n+1
dydx,

where Cn = Γ
(
n+1

2

)
/π(n+1)/2, and its heat kernel admits the explicit formula

(4.25) p
(1/2)
t (x, y) =

Cn
tn

(

1 +
|x− y|2

t2

)−n+1
2

,

that is, p
(1/2)
t is the Cauchy-Poisson kernel. In this case, we have α = n and β′ = 1.

Note that the form E (1/2) is regular but not local, and p
(1/2)
t (x, y) does not satisfy (UE)

although it satisfies (LLE).
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J. Math. (4) 51 (1999), 673-744.

[5] M. Barlow, T. Coulhon and T. Kumagai, Characterization of sub-Gaussian heat kernel estimates on
strongly recurrent graphs, Comm. Pure Appl. Math. 58 (2005), 1642-1677.

[6] M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Related
Fields 79 (1988), 543-623.

[7] E.A. Carlen and S. Kusuoka and D.W. Stroock, Upper bounds for symmetric Markov transition
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