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1 Introduction

Let us consider a stationary Schrödinger equation in Rn, n > 2,

∆u− uµ = 0 (1.1)

where µ is a measure on Rn, which is considered as a perturbation to the Laplace
operator. Let g (x, y) be the Green function of the Laplacian, that is g(x, y) =
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cn |x− y|
2−n. If µ belongs to the local Kato class, that is, for any bounded open set

A ⊂ Rn the function

x 7→
∫

A

g (x, y) dµ(y)

is finite and continuous, then the equation (1.1) has also a positive Green function
µg(x, y), which is continuous off the diagonal (see for example [7]). The question of
obtaining estimates for the perturbed Green function µg (x, y) was addressed in a
large number of publications.

Here we present a general method of obtaining lower estimates for µg (note that
since µ ≥ 0, the comparison principle implies that µg ≤ g). The following statement
is a particular case of our main Theorem 4.3. Denote by B(x,R) the ball in Rn of
radius R centered at point x, and set

Γµ (x,R) :=

∫

B(x,R)

g(x, z)dµ(z). (1.2)

Theorem 1.1 If µ belongs to the local Kato class, then the perturbed Green function
µg satisfies the following estimate, for all distinct x, y ∈ Rn and R ≥ 3 |x− y|,

µg(x, y)

g(x, y)
≥ exp (−C − CΓµ (x,R)− CΓµ (y,R)) , (1.3)

where C = C(n) > 0.

Although the lower bound for µg obtained by (1.3) may not be optimal, the
power of Theorem 1.1 is in its generality: it gives some lower bound for any µ as
above, and in many cases it allows to correctly identify the range of x, y where

µg (x, y) ' g (x, y) (1.4)

(the sign ' means that the ratio of the left- and right hand sides is bounded from
above and below by positive constants). For example, if

sup
x∈Rn

∫

Rn
g(x, z)dµ(z) <∞ (1.5)

then (1.3) implies that (1.4) holds for all x 6= y. This result is not new, though:
under the same hypothesis (1.5) or a similar one it was proved in many places, see
for example [7], [8], [10], [35], [37] (see also [16] and [41, Theorem A] for similar
results for heat kernels).

Let dµ = V (x) dx and assume that the potential V satisfies the estimate

V (x) ≤
V0

1 + |x|γ
, (1.6)

where γ and V0 are positive constants. Consider the following cases.

1. If γ > 2 then (1.5) holds and hence µg satisfies (1.4) for all x 6= y.

2



2. If γ = 2 then (1.3) yields

µg(x, y)

g(x, y)
≥ cmin

(
〈x〉
〈y〉

,
〈y〉
〈x〉

)τ
, (1.7)

where 〈x〉 := 1 + |x| and τ and c are positive constants. In particular, µg
satisfies (1.4) provided 〈x〉 ' 〈y〉.

3. If γ < 2 then (1.3) yields

µg(x, y)

g(x, y)
≥ c exp

(

−C |x− y|2−γ
(
|x− y|
〈x〉+ 〈y〉

)θ)

, (1.8)

where θ = min (γ, n− 2) and C, c > 0. In particular, µg satisfies (1.4) provided

|x− y| ≤ C (〈x〉+ 〈y〉)η ,

where η = θ
θ+2−γ .

In the second case, if V (x) = V0 |x|
−2 for |x| > 1, then then following estimate

of µg was proved in [16]:

µg(x, y)

g(x, y)
' min

(
〈y〉
〈x〉

,
〈x〉
〈y〉

)τ
, (1.9)

where the exponent τ is determined by

τ = −
(n

2
− 1
)

+

√(n
2
− 1
)2

+ V0.

An upper bound in (1.9) was also proved by Murata [35] with the same τ . Hence,
(1.7) yields a qualitatively correct lower bound but without explicit value of τ (our
method is too robust to give a sharp value of τ).

In the third case, for the potential V (x) = V0 |x|
−γ , a sharp upper bound for µg

was proved by Murata [35], which in the range |x| ≥ 2 |y| ≥ 2 amounts to

µg (x, y) ≤
C

|x|a |y|b
exp

(
−c |x|1−γ/2

)
,

for some positive a, b depending on n and γ, and which was shown to be asymp-
totically correct as |x| → ∞ (a similar but not so sharp upper bound for µg was
obtained in [39]). For comparison, our estimate (1.8) gives in this range

µg (x, y) ≥
c

|x|n−2 exp
(
−C |x|2−γ

)
.

As we see, the exponent 2− γ is twice larger than the one sharp one. Nevertheless,
we believe that the estimate (1.8) is still the best available lower bound for the
potential (1.6).

The structure of the paper is as follows. In Section 2 we introduce the setting of
P-harmonic Bauer spaces, which is natural for our problem, and prove a sufficient
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condition for the existence of a perturbed Green function (Theorem 2.12). In Section
3, we prove the following general lower bound for the perturbed Green function
(Theorem 3.3):

µg(x, y)

g(x, y)
≥ exp

(

−

∫
X
g(x, z)g(z, y)dµ(z)

g(x, y)

)

, (1.10)

where X is the underlying space. Under some additional hypotheses on g (x, y)
introduced in Section 4 (and which are satisfied in Rn), the estimate (1.10) implies
(1.3) (Theorem 4.3).

Section 5 contains specific examples of application of Theorem 4.3, including
Theorems 5.8 and 5.10, which in particular cover the setting when the underlying
metric space is Ahlfors regular, the Green function g (x, y) decays polynomially in
distance, and the perturbation potential V (x) is similar to (1.6). Apart from the
Green function of the Laplace operator in Rn, this includes Green functions on a
large class of fractal spaces.

Notation. Letters C, c denote unimportant positive constants whose value may
change at each occurrence, unless otherwise stated.

2 Existence of the perturbed Green function

2.1 Harmonic spaces and Green functions

To work in reasonable generality we shall assume in the following that (X,H) is a
Bauer space with a Green function. We cite here the main properties of such spaces
and refer the reader to [9] for a detailed account.

Let X be a locally connected locally compact topological space with countable
base. For every open subset U of X, let B(U) (resp. C(U)) be the set of all Borel
measurable (resp. continuous real) functions on U . Given a set F (U) of functions
on U , F+ (U) ,Fb (U) ,Fc (U) will be the sets of all functions in F (U) that are
respectively non-negative, bounded, or with compact support. Let Uc denote the
family of all open relatively compact subsets of X.

A harmonic sheaf on X is a map H which to every open subset U of X assigns
a linear subspace H(U) of C(U) such that the following properties hold:

• For any two open subsets U, V of X, U ⊂ V =⇒ H(U) ⊂ H(V ).

• For any family (Ui)i∈I of open subsets and any numerical function h on U :=⋃
i∈I Ui,

h|Ui ∈ H(Ui) (i ∈ I) =⇒ h ∈ H(U).

The elements of H(U) are called harmonic functions on U .
A set V ∈ Uc is called regular if every f ∈ C(∂V ) possesses a unique continuous

extension HV f on V such that HV f is harmonic on V and HV f ≥ 0 if f ≥ 0.
The couple (X,H) is called a Bauer space if the following properties are satisfied:

• For every x ∈ X, there exists a harmonic function h defined in a neighbourhood
of x such that h(x) 6= 0.
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• There exists a base V of regular sets such that U ∩ V ∈ V for any U, V ∈ V .

• (Bauer’s convergence axiom) For any increasing sequence (hn) of non-negative
harmonic functions on an open set U ,

h := sup hn is locally bounded in U =⇒ h ∈ H (U) .

Alongside Bauer’s convergence axiom, sometimes we use the following stronger
hypotheses:

• (Doob’s convergence axiom) For any increasing sequence (hn) of non-negative
harmonic functions on an open set U ,

h := sup hn is finite on a dense subset of U =⇒ h ∈ H (U) .

• (Brelot’s convergence axiom) For any increasing sequence (hn) of non-negative
harmonic functions on a connected open set U ,

h := sup hn is finite at a point in U =⇒ h ∈ H (U) .

A Brelot space is a Bauer space satisfying Brelot’s convergence axiom.
For every open subset U of X, a lower semicontinuous function s : U →

(−∞,+∞] is called hyperharmonic on U provided that HV s ≤ s for every regu-
lar V ∈ Uc. It is superharmonic on U if in addition the functions HV s are locally
bounded on V . It follows from Doob’s convergence axiom that a hyperharmonic
function that is finite on a dense subset is superharmonic.

A superharmonic function s ≥ 0 on U is called a potential on U if 0 is the
largest harmonic minorant of s on U . We write S(U) (resp. P(U)) for the set of all
superharmonic functions (resp. potentials) on U . Every function s ∈ S+(U) admits
a unique decomposition s = h + p such that h ∈ H+(U) and p ∈ P(U) (Riesz
decomposition).

A Bauer space (X,H) is called P-harmonic if there exists a potential p > 0 on
X.

Definition 2.1 Given a Bauer space (X,H), a function g : X × X → [0,∞] is
called a Green function if the following conditions are satisfied:

(i) for every y ∈ X, gy := g(·, y) is a potential on X, harmonic on X \ {y};

(ii) for every x ∈ X, g(x, ·) is continuous on X \ {x};

(iii) for every continuous real potential p on X, there exists a Borel measure ν ≥ 0
on X such that

p =

∫

X

gydν(y).

We shall assume in the sequel that we have a Green function g on a Bauer space
(X,H). Then the space (X,H) is P-harmonic if and only if the family of all sets
{gy > 0}y∈X covers X.

It is known that if (X,H) is a connected Brelot space then gy > 0 on X, gy is
locally bounded on X \{y}, and g is lower semicontinuous on X×X. In particular,
in such a space the existence of a Green function obviously implies P-harmonicity.

In examples below X is an open subset of Rn unless specified otherwise.
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Example 2.2 Let aij, bi, c be measurable real functions on X. Consider the operator

L =
n∑

i,j=1

∂

∂xi

(

aij
∂

∂xj

)

+
n∑

i=1

bi
∂

∂xi
+ c, (2.1)

assuming that the matrix (aij (x))ni,j=1 is a symmetric and uniformly elliptic, bi and
c are bounded, and c ≤ 0. It follows from [34] that continuous weak solutions to the
equation Lu = 0 form a Brelot space.

Example 2.3 Let aij, bi, c be continuous real functions on X. Consider the operator

L =
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

bi
∂

∂xi
+ c (2.2)

assuming that the matrix (aij(x))ni,j=1 is symmetric and positive definite, and c ≤ 0.
It follows from [30] that continuous solutions to the equation Lu = 0 form a Brelot
space (see [29]).

Example 2.4 Consider in X ′ := R×X a parabolic operator ∂
∂t
−L where L is one

of operators (2.1) or (2.2). Then continuous solutions to the equation
(
∂
∂t
− L

)
u = 0

form a Bauer space. Moreover, a Doob convergence axiom is also satisfied in this
case.

Example 2.5 Let

L =
1

2

r∑

k=1

A2
k + A0 (2.3)

where A0, A1, . . . , Ar are C∞-vector fields on X. If the family {Ak}
r
k=1 satisfies the

Hörmander condition then C∞-solutions to the equation Lu = 0 form a Bauer space
with Doob convergence axiom. Moreover, if A0 = 0 then one obtains a Brelot space
(see [3], [4], [5]).

Example 2.6 Let L be the Laplace-Beltrami operator on a Riemannian manifold
X. The solutions to the equation Lu = 0 form a Brelot space, so that P-harmonicity
of this space is equivalent to the existence of a positive Green function. Various
necessary and sufficient conditions for that can be found in [14].

For any Borel measure µ on X consider operator Gµ that acts on functions as
follows:

Gµf :=

∫

X

gy f (y)dµ(y). (2.4)

For any f ∈ B+ (X), Gµf is a hyperharmonic function. If Gµf is locally bounded
then Gµf is a potential (under Doob’s convergence axiom it suffices to know that
the set {Gµf <∞} is dense in X, and under Brelot’s convergence axiom is suffices
to know that Gµf 6≡ ∞).

We will also use the notation

gµ := Gµ1 =

∫

X

gy dµ(y). (2.5)
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Let us endow Bb(X) with the sup-norm ‖ · ‖∞. Clearly, if gµ is bounded then Gµ is
a positive bounded operator in Bb(X) whose norm is equal to ‖gµ‖∞.

If (X,H) is a P-harmonic Bauer space then there are harmonic kernels HU for
all open subsets U ⊂ X yielding generalized solutions to the Dirichlet problem.
Given a Green function g on (X,H), for every open subset U ⊂ X we obtain a
corresponding Green function gU for U by

gyU = gy −HUg
y for all y ∈ U. (2.6)

If V is an open subset of U , then HVHU = HU and hence

gyV = gyU −HV g
y
U for all y ∈ V. (2.7)

In particular, this implies that gV ≤ gU . Note that gU is symmetric provided g is
symmetric (see [25], [27]).

The operator Gµ
U and the function gµU are defined similarly to (2.4) and (2.5),

respectively.

Definition 2.7 A Radon measure µ ≥ 0 on X is called a (local g-) Kato measure
if, for every compact set A ⊂ X, the function Gµ1A is finite and continuous (in
particular, Gµ1A is a potential).

LetMs(X) denote the set of all countable sums of Kato measures with compact
supports. All Kato measures belong to Ms (X). So, Ms(X) is the set of countable
sums of Kato measures. Measures µ ∈ Ms(X) do not charge semipolar sets (see,
for example, [3, Lemma VI.5.15]).

It is worth mentioning that, for any f ∈ B+ (X) and µ ∈ Ms (X), Gµf is a
countable sum of continuous real potentials each of them being harmonic outside
a compact set. A consequence of that is the following domination principle: if
µ ∈Ms(X) is supported by a Borel set A and s ∈ S+(X) then

s ≥ gµ on A =⇒ s ≥ gµ on X. (2.8)

2.2 A perturbed Green function

Let g be a Green function for a Bauer space (X,H).

Definition 2.8 Given a measure µ ∈Ms(X), a function µg : X ×X → [0,∞] will
be called a perturbed Green function if, for every y ∈ X, µgy is a non-negative Borel
function on X satisfying

µgy +Gµ (µgy) = gy. (2.9)

Note that a perturbed Green function is not necessarily a Green function in the
sense of Definition 2.1.

The motivation behind the identity (2.9) is as follows. Let X be a domain in
Rd and g be the classical Green function of the Laplace operator ∆ in X. Then
applying ∆ to (2.9) (in the distributional sense) we obtain

∆(µgy)− µgy µ = −δy,
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whence it follows that µg is a Green function of the operator ∆ − µ. Similarly, for
other linear second order elliptic or parabolic operators.

It is well known that if (X,H) is a Brelot space and if µ is a Kato measure then
a perturbed Green function µg exists. Moreover, in this case µg is a Green function
(in the sense of Definition 2.1) of a perturbed harmonic space (X, µH) (see [6], [26]).
For a general µ ∈ Ms (X) this is not necessarily the case. For any µ ∈ Ms (X),
(2.9) implies that µgy ≤ gy. Being the difference of gy and Gµ (µgy), the function
µgy is finely continuous on X \ {y}.

We need some preparation for the proof of the existence of a perturbed Green
function. The following lemma was proved in [18, Lemma 4.1] (actually, it was
stated for Brelot spaces and for a smaller class of measures but the proof given in
[18, Lemma 4.1] works as well in our setting).

Lemma 2.9 Let P be a polar subset of X and µ ∈Ms(X). Let s ∈ S+(X) and let
f be a real Borel function on X be such that Gµ |f | <∞ on X \ P . Then:

f +Gµf ≤ s on X \ P =⇒ Gµf ≤ s on X \ P.

Corollary 2.10 Under the hypotheses of Lemma 2.9,

f +Gµf = s on X \ P =⇒ f ≥ 0 on X \ P.

In particular,

f +Gµf = 0 on X \ P =⇒ f = 0 on X \ P.

Proof. By Lemma 2.9 we have Gµf ≤ s which together with f +Gµf = s yields
f ≥ 0. The second claim obviously follows from the first one.

It follows from Lemma 2.9 that the operator I+Gµ is injective on Bb (X) provided
gµ is bounded. In fact, then I + Gµ is even invertible in Bb(X) (see, for example,
[3, II.7.4]).

Corollary 2.11 If a perturbed Green function µg(x, y) exists then it is unique out-
side the diagonal {x = y}.

Proof. Indeed, if f ∈ B+ (X) is another function satisfying (2.9), that is

f +Gµf = gy on X,

then noticing that the set P := {gy =∞} is polar we conclude from (2.9) and
Corollary 2.10 that f = µgy on X \ P . Since P ⊂ {y} we obtain that f = µgy on
X \ {y}.

Theorem 2.12 Let (X,H) be a P-harmonic Bauer space with a Green function
g (x, y), and let µ ∈ Ms(X) be such that Gµ (1Ag

y) is a potential for any compact
set A ⊂ X and any y ∈ X. Then there exists a perturbed Green function µg(x, y).
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Proof. Let us first prove the existence of µg under the stronger assumptions
that there exists a positive bounded superharmonic function on X, and gµ as well
as all Gµgy, y ∈ X, are potentials.

Let us show that gµ is a countable sum of bounded continuous potentials. By
definition of Ms (X), µ =

∑∞
n=1 µn where each µn is a Kato measure with compact

support. Then gµ =
∑∞

n=1 g
µn where each gµn is continuous by definition and is

bounded by the domination principle (2.8).
Hence, by [23, Proposition 1.2], there exists a (unique) kernel K such that

(I +Gµ)K = Gµ. (2.10)

Let P denote the polar set {Gµgy =∞} so that µ (P ) = 0. By (2.10), GµKgy ≤
Gµgy <∞ on X \ P , so f := 1X\P (gy −Kgy) satisfies Gµ |f | <∞ on X \ P and

(I +Gµ) f = (I +Gµ) gy −Gµgy = gy on X \ P.

By Corollary 2.10, we obtain that f ≥ 0 on X \ P , i.e., gy ≥ Kgy on X \ P .
Let ϕ ∈ B+(X) be such that

ϕ+Kgy = gy on X \ P.

Applying I +Gµ and using (2.10) we conclude that

(I +Gµ)ϕ = gy on X \ P.

By fine continuity, Gµϕ ≤ gy on X. Finally, choose µgy ∈ B+ (X) such that

µgy +Gµϕ = gy on X,

and
µgy (y) =∞ if gy (y) =∞. (2.11)

Since Gµϕ ≤ Gµgy < ∞ on X \ P , we see that ϕ = µgy on X \ P and hence
Gµϕ = Gµ (µgy) on X. Thus

µgy +Gµ (µgy) = gy on X. (2.12)

Now let us consider the general case. Fix a precompact open set U ⊂ X and
check that the harmonic space (U,HU) satisfies the hypotheses of the first part of
the proof. Indeed, by P-harmonicity of (X,H) there exists a positive continuous
superharmonic function s0 on X, so that s0|U is a positive bounded superharmonic
function on U . Since Gµ

Ug
y ≤ Gµ (1Ug

y), Gµ
Ug

y is a countable sum of potentials, and
Gµ (1Ug

y) is superharmonic by assumption, we conclude that every function Gµ
Ug

y,
y ∈ X, is a potential (see [3, III.6.3]).

Let us show that gµU is also a potential. By P-harmonicity of (X,H) the sets
{gy > 0}y∈X cover X. Since U is compact, there is a finite set y1, .., yn of points

in X such that the sets {gyi > 0}, i = 1, 2, ..., n, cover U . Therefore, the potential
s :=

∑n
i=1 g

yi is strictly positive on U , say s ≥ ε on U where ε > 0. Then

gµU ≤ Gµ1U ≤ ε−1Gµ (1Us) = ε−1

n∑

i=1

Gµ (1Ug
yi) . (2.13)

9



Since gµU is a countable sum of potentials and the function Gµ (1Ug
yi), i = 1, ..., n,

are superharmonic on U , we obtain as above that gµU is a potential.
Hence, by the first part of the proof, there exists a perturbed Green function

µgU . Let us show that U 7→ µgU is increasing. Fix precompact open sets V ⊂ U , a
point y ∈ V , and set v = µgyV and u = µgyU . Then

v +Gµ
V v = gyV (2.14)

and
u+Gµ

V u+HVG
µ
Uu = u+Gµ

Uu = gyU = gyV +HV g
y
U . (2.15)

The set P := {gy =∞} ⊂ {y} is polar. Set f = 1V \P (u− v) and observe that
Gµ |f | <∞ on V \ P . Moreover, by (2.14) and (2.15),

f +Gµ
V f = HV g

y
U −HVG

µ
Uu on V \ P.

Since the right hand side here is a non-negative harmonic function on V , we obtain
by Corollary 2.10 that f ≥ 0, that is v ≤ u on V \ P . Since v = ∞ = u on P by
(2.11), we have v ≤ u on V .

Finally, we set for all y ∈ X

µgy = sup
U

µgyU .

Passing to the limit in
µgyU +Gµ

U (µgyU) = gyU

as U ↑ X we obtain (2.12), that is µg is the perturbed Green function.

Remark 2.13 If one knows that µgy ≥ cgy on X \ {y} then there exists a unique
finely continuous modification of µgy.

The next statement provides a sufficient condition for finiteness of Gµgy in
X \ {y}. Set

g̃(x, y) = g(x, y) + g(y, x)

and define g̃µ similarly to (2.5).

Lemma 2.14 (cf. [6]) Let (X,H) be a P-harmonic Bauer space with a Green func-
tion g. If µ ∈ Ms(X) has a compact support and g̃µ < ∞ then Gµgy < ∞ on
X \ {y} for every y ∈ X.

Proof. Let A denote the support of µ and s be a positive continuous superhar-
monic function on X. Fix distinct points x, y ∈ X and choose a relatively compact
open neighborhood W of y which does not contain x. Then

α := sup{g(x, z) : z ∈ W} <∞,

and by the boundary minimum principle,

gy ≤
sup∂W gy

inf∂W s
s on X \W,
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whence

β := sup{g(z, y) : z ∈ A \W} ≤
sup∂W gy

inf∂W s
sup
A

s <∞.

Thus,

Gµgy(x) =

∫

A

g(x, z)g(z, y) dµ(z)

≤ α

∫

W

g(z, y) dµ(z) + β

∫

A\W
g(x, z)dµ(z)

≤ αg̃µ(y) + βg̃µ(x) <∞,

which was to be proved.

Corollary 2.15 Let (X,H) be a P-harmonic Bauer space with a Green function g
such that Doob’s convergence axiom is satisfied. If µ ∈Ms(X) and

g̃1Aµ <∞ (2.16)

for any compact set A ⊂ X then a perturbed Green function µg exists.

Proof. By Lemma 2.14 applied to measure 1Aµ, we have G1Aµgy <∞ on X\{y},
which implies by Doob’s convergence axiom that G1Aµgy is a potential. Hence, µg
exists by Theorem 2.12.

Remark 2.16 Under a condition similar to (2.16) the existence of the perturbed
Green function was proved in [6].

3 A general lower bound for the perturbed Green

function

The setting of this section is the same as in the previous Section 2. The next result
provides an extension of [23, Proposition 1.9] to positive superharmonic functions
which may be unbounded.

Proposition 3.1 Let (X,H) be a P-harmonic Bauer space with Green function
g. Let µ ∈ Ms(X) and f ∈ B+ (X) be such that the function s := f + Gµf is
superharmonic on X. Then

f ≥ s exp

(

−
Gµs

s

)

on {0 < s <∞}. (3.1)

Remark 3.2 Inequality (3.1) has appeared before in literature in various settings
under more restrictive hypotheses. In [11, Proposition 11], it was proved in the case
when the function s is harmonic and bounded in a domain of Rm. In [23, Proposition
1.9], (3.1) was proved in an abstract setting in the case when the function s is
superharmonic and bounded (assuming also that 1 is a superharmonic function and
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measure µ is Kato). The proof is based on the following observation. Consider the
resolvent operator

Rα = (I + αGµ)−1
Gµ,

where α > 0, which obviously satisfies the identity

(I + αGµ)−1 = I − αRα.

On the other hand, if s is bounded and superharmonic then, for a fixed x, the
function

ϕ (α) = (s− αRαs) (x)

is non-negative and completely monotone, which follows from the identity

ϕ(n) (α) = (−1)n n!Rn
α (s− αRαs) (x)

(see, for example, [21, p. 656]). Hence, ϕ (α) is log-convex, which yields the inequal-
ity

ϕ (1) ≥ exp

(
ϕ′ (0)

ϕ (0)

)

ϕ (0)

that is equivalent to (3.1).
We will use the inequality (3.1) for bounded s to handle unbounded superhar-

monic functions.

Proof. Consider first the case when 1 is a superharmonic function on X. Let ν
be any Kato measure on X with compact support such that 0 ≤ ν ≤ µ. Then gν is
bounded and continuous, hence I +Gν is an invertible operator on Bb(X) and

K := (I +Gν)−1Gν

defines a kernel on X (see, for example, [7, Proposition 2.5]). Define a sequence
(sn)n∈N by

sn = min(s, n),

Since sn is bounded, we get by the above mentioned result of [23, Proposition 1.9]
the inequality (3.1) for sn instead of s, that is,

(I +Gν)−1sn ≥ sn exp(−
Gνsn

sn
). (3.2)

Since (sn) increases to s, we obtain that

Ksn −→
n→∞

Ks = K(I +Gµ)f ≥ K(I +Gν)f = Gνf. (3.3)

The identity

(I +Gν)−1 = (I +Gν)−1 ((I +Gν)−Gν) = I −K

and (3.3) imply that

lim
n→∞

(I +Gν)−1sn = lim
n→∞

(sn −Ksn) ≤ s−Gνf on {0 < s <∞} . (3.4)
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Clearly, we have also

lim
n→∞

exp(−
Gνsn

sn
) = exp(−

Gνs

s
) on {0 < s <∞},

whence, combining with (3.2) and (3.4), we conclude that

s−Gνf ≥ s exp

(

−
Gνs

s

)

on {0 < s <∞}.

The proof in this case is finished by letting ν ↑ µ.
In the general case when 1 is not necessarily a superharmonic function, fix

any positive continuous real superharmonic function w on X, which exists by P-
harmonicity of (X,H). Consider a new sheaf Hw where all functions are obtained
from those from H by dividing by w. Then the function gw given by

gw (x, y) =
g (x, y)

w (x)w (y)

is a Green function in the P-harmonic Bauer space (X,Hw). It is easy to verify that
for ν = w2µ

1

w
Gµf = Gν

w

(
f

w

)

.

The assumption f +Gµf = s implies that

f

w
+Gν

w

(
f

w

)

=
s

w
,

and we conclude by the first part of the proof that

f

w
≥

s

w
exp

(

−
Gν
w (s/w)

s/w

)

=
s

w
exp

(

−
Gµs

s

)

,

whence the claim follows.

Now we can prove the main result of this section.

Theorem 3.3 Let (X,H) be a P-harmonic Bauer space with a Green function g.
If µ ∈Ms(X) and a perturbed Green function µg exists then

1 ≥
µg(x, y)

g(x, y)
≥ exp

(

−

∫
X
g(x, z)g(z, y)dµ(z)

g(x, y)

)

, (3.5)

for all x, y ∈ X such that 0 < g(x, y) <∞.

Proof. The upper bound in (3.5) follows from (2.9). To prove the lower bound,
fix y ∈ X and denote s := gy and f := µgy. Then, by (2.9), f +Gµf = s. Since s is
superharmonic, by Proposition 3.1 the functions f and s satisfy (3.1) whence

µgy ≥ gy exp

(

−
Gµgy

gy

)

on {0 < gy <∞} , (3.6)

which is exactly (3.5).
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Corollary 3.4 Let (X,H) be a connected Brelot space with a Green function g. If
µ ∈Ms(X) and Gµ (1Ag

y) 6≡ ∞ for any precompact set A ⊂ X and any y ∈ X then
the perturbed Green function µg exists and satisfies the estimate

1 ≥
µgy

gy
≥ exp

(

−
Gµgy

gy

)

on X \ {y} . (3.7)

Proof. Recall that a connected Brelot space with a Green function is P-
harmonic. The assumption Gµ (1Ag

y) 6≡ ∞ and Brelot’s convergence axiom imply
that Gµ (1Ag

y) is a potential. By Theorem 2.12 the perturbed Green function exists.
Finally, (3.7) follows from (3.6) and the fact that 0 < gy <∞ on X \ {y}.

Remark 3.5 If for some C > 0 and all y ∈ X we have

Gµgy ≤ Cgy

then (3.5) or (3.7) yields that µg ' g. In various particular cases this was proved
before in [7], [10], [35], [36], [37] for elliptic equations and in [32], [33], [40] for
parabolic equations. Other conditions implying µg ' g can be found in [24], [38],
[42], [43].

4 Lower bound for the perturbed Green function

in Brelot spaces

In this section, we assume that (X, d) is a connected, locally compact, separable,
metric space. Let (X,H) be a Brelot space possessing a Green function g (x, y),
which is jointly continuous in X ×X \diag. In particular, g > 0 on X ×X, and the
space (X,H) is P-harmonic.

For any x ∈ X and r > 0, denote by B(x, r) the d-ball of radius r centered at x,
that is

B(x, r) := {z ∈ X : d(x, z) < r} .

Consider the following conditions which in general may be true or not.

(A) For some constant C > 0 and for all x, y, z ∈ X,

min(g(x, z), g(z, y)) ≤ Cg(x, y). (4.1)

(B) For some constants c, δ ∈ (0, 1) and for all r > 0 and x, y ∈ X,

x ∈ B (y, δr) =⇒ gB(y,r)(x, y) ≥ cg(x, y). (4.2)

For example, in Rn (4.2) holds with any δ < 1. The next statement provides a
simple sufficient condition for (A) and (B) (a more general result will be proved in
Proposition 5.1).
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Lemma 4.1 (cf. [18, Proposition 9.2]) Let 1 be a superharmonic function, and
assume that there exists a constant σ > 0 such that for all distinct x, y ∈ X

g (x, y) ' d (x, y)−σ . (4.3)

Then both (A) and (B) are satisfied.

Proof. By the triangle inequality, we have

1

g (x, y)
' d (x, y)σ ≤ (d (x, z) + d (z, y))σ

≤ Cσ (d (x, z)σ + d (z, y)σ) '
1

g (x, z)
+

1

g (z, y)
,

whence (A) follows.
To prove (B) denote U = B (y, r) and observe that by (2.6)

gy = gyU +HUg
y. (4.4)

By the maximum principle (which holds due to the assumption that 1 is a super-
harmonic function),

sup
U

HUg
y = sup

∂U

gy ,

whence we obtain the following inequality in U

gyU ≥ gy − sup
∂U

gy . (4.5)

By (4.3) we have sup∂U g
y ≤ Cr−σ , whence we obtain for any x ∈ B (y, r)

gU (x, y) ≥ g (x, y)− Cr−σ.

If x ∈ B (y, δr) where δ is small enough then g (x, y) ≥ 2Cr−σ whence we obtain

gU (x, y) ≥
1

2
g (x, y) .

Remark 4.2 For further discussions about property (A) see [19], [20], [21], [22].

Let us introduce the following notation

Γµ(x,R) :=

∫

B(x,R)

(g(x, z) + g(z, x)) dµ(z) = g̃1B(x,R)µ(x). (4.6)

In particular, Γµ (x,∞) = g̃µ (x). The following theorem is our main result.
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Theorem 4.3 Let µ be a Radon measure on X such that Γµ (x,R) < ∞ for all
x ∈ X and R ∈ (0,+∞), and Γµ (x,R)→ 0 as R→ 0 locally uniformly in x. Then
the perturbed Green function µg exists.

If in addition the hypothesis (A) holds then, for all x 6= y,

1 ≥
µg(x, y)

g(x, y)
≥ exp (−C (g̃µ (x) + g̃µ (y))) , (4.7)

where the constant C is the same as in (A). In particular, if sup g̃µ < ∞ then
µg (x, y) ' g (x, y) for all x 6= y.

If the hypotheses (A) and (B) hold then, for all x, y ∈ X and R > 0 such that

0 < d(x, y) <
δ

2
R,

the following estimate takes place

1 ≥
µg(x, y)

g(x, y)
≥ c exp

(

−
C

c
(Γµ (x,R) + Γµ (y,R))

)

, (4.8)

where the constants C, c, δ are the same as in (A) and (B).

Remark 4.4 Let us note that if µ is Lebesgue measure on Rn then µg exists but
the estimate (4.7) is void because the right hand side of (4.7) is 0. On the other
hand, (4.8) gives a non-trivial lower bound for µg (see Section 5 for details).

Proof. If we know already that µ ∈ Ms then, by Corollary 2.15, to prove the
existence of a perturbed Green function, it suffices to verify that g̃1Aµ < ∞ for
any compact set A ⊂ X. Indeed, for any x ∈ X there exists R > 0 such that
A ⊂ B (x,R), whence

g̃1Aµ(x) =

∫

A

g̃ (x, z) dµ (z) ≤ Γµ (x,R) <∞. (4.9)

To prove that µ ∈ Ms it suffices to show that the function g1Aµ is finite and
continuous for any compact set A ⊂ X. The finiteness follows from (4.9). The
continuity is easily proved by the following argument taken from [7, p.129]. Fix
x ∈ X, ε > 0, and let A′ = A ∩ B (x, ε), A′′ = A \ B (x, ε). Then, for any
y ∈ B (x, ε),

g1A′µ (y) ≤
∫

B(x,ε)

g (y, z) dµ (z) ≤
∫

B(y,2ε)

g (y, z) dµ (z) ≤ sup
u∈B(x,ε)

Γµ (u, 2ε) ,

which tends to 0 as ε → 0. Moreover, g1A′′µ (y) is continuous on B (x, ε), since
g is continuous outside the diagonal. Thus, the function g1Aµ = g1A′µ + g1A′′µ is
continuous at x.

If (A) holds then rewrite (4.1) as follows:

g(x, z)g(z, y)

g (x, y)
≤ C (g(x, z) + g(z, y)) , (4.10)
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for all x, y, z ∈ X such that x 6= y (recall that g > 0 on X ×X). By Theorem 3.3
and (4.10), we obtain that

µg(x, y)

g(x, y)
≥ exp

(

−

∫
X
g(x, z)g(z, y) dµ(z)

g(x, y)

)

≥ exp

(

−C
∫

X

(g(x, z) + g(z, y)) dµ(z)

)

≥ exp (−C (g̃µ (x) + g̃µ (y))) ,

which proves (4.7)
Assume now that (B) holds as well. Fix y ∈ X, R > 0, and set U = B(y,R/2).

Applying estimate (3.5) of Theorem 3.3 to the harmonic space (U,HU) with the
Green function gU and replacing gU by g where the inequality allows, we obtain

µg(x, y)

gU(x, y)
≥ exp

{

−

∫
U
g(x, z)g(z, y) dµ(z)

gU(x, y)

}

,

for any x ∈ U \ {y}. Let 0 < d (x, y) < δR/2. Then the hypothesis (B) implies that
gU(x, y) ≥ cg(x, y) whence

µg(x, y)

g(x, y)
≥ c exp

(

−
1

c

∫
U
g(x, z)g(z, y) dµ(z)

g(x, y)

)

≥ c exp

(

−
C

c

∫

U

(g(x, z) + g(z, y)) dµ(z)

)

≥ c exp

(

−
C

c
(Γµ (x,R) + Γµ (y,R))

)

,

where in the last line we have replaced U by the larger sets B(x,R) and B(y,R).

5 Specific lower bounds for the perturbed Green

function

The setting in this section is the same as in the previous Section 4, and we assume
in addition that 1 is a superharmonic function. The purpose of this section is to
obtain, on the one hand, simple sufficient conditions for (A) and (B), and, on the
other hand, explicit lower bounds for µg.

5.1 Sufficient conditions for (A) and (B)

The following statements generalizes [18, Propositions 9.2, 9.3].

Proposition 5.1 Assume that J (x, r) is a positive function on X × (0,+∞) such
that, for some constants ε > 0, C > 1, and N ≥ 2,

(J1) J (x, r) ≤ CJ (x, t) for all x ∈ X and 0 < t ≤ Nr;
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(J2) J (x, r) ≥ (1 + ε) J (x,Nr) for all x ∈ X, r > 0,

(J3) J (x, r) ≤ CJ (y, r) whenever d (x, y) ≤ r.

If, for all x, y ∈ X,

g (x, y) ' J (x, r) where r = d (x, y) , (5.1)

then the hypotheses (A) and (B) are satisfied.

Example 5.2 All hypotheses of Proposition 5.1 are satisfied if for some σ > 0

g (x, y) ' d (x, y)−σ (5.2)

since we can take J (x, r) = r−σ. Hence, (5.2) implies (A) and (B), which we already
have seen in Lemma 4.1. Different examples will be given below after Lemma 5.3.

Proof. Let us set

r1 := d(y, z), r2 := d(x, z), r3 := d(x, y).

where x, y, z ∈ X are given points (see 1).

z

r3

r2 r1

yx

Figure 1: Triangle xyz

Let us prove that

min(J(x, r2), J(z, r1)) ≤ C3J(x, r3), (5.3)

which implies (A) by (5.1). Observe that r1 + r2 ≥ r3 and hence either r1 ≥ 1
2
r3 or

r2 ≥ 1
2
r3.

Suppose first that r2 ≥ 1
2
r3. Then, by (J1)

J(x, r2) ≤ CJ(x, r3),

whence (5.3) follows. Suppose now r1 ≥ 1
2
r3. Using (J3) and (J1), we obtain

J(z, r1) ≤ CJ (y, r1) ≤ C2J(y, r3) ≤ C3J(x, r3),

which was to be proved.
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Let us now prove (B). It suffices to show that there exist λ, δ ∈ (0, 1) such that,
for all y ∈ X and r > 0,

gy − gyB(y,r) ≤ λgy in B (y, δr) . (5.4)

Set U := B(y, r) and recall that by (4.5) the following inequality holds in U :

gy − gyU ≤ sup
∂U

gy , (5.5)

so that (5.4) amounts to
sup
∂U

gy ≤ λ inf
B(y,δr)

gy. (5.6)

For any z ∈ ∂U and x ∈ U we have d (x, z) ≤ 2r and hence by (J1) and (J3)

g (z, y) ' J (z, r) ≤ CJ (z, 2r) ≤ C2J (x, 2r) ≤ C3J (x, r) ,

whence
sup
z∈∂U

gy ≤ C ′ inf
x∈U

J (x, r) . (5.7)

If x ∈ B (y, δr) then by (5.1) and (J1),

g (x, y) ≥ cJ (x, δr) ,

for c > 0. Let us take δ := N−k for some positive integer k. Then by (J2)

g(x, y) ≥ cJ(x,N−kr) ≥ c (1 + ε)k J(x, r)

whence
inf

B(y,δr)
gy ≥ c (1 + ε)k inf

x∈U
J (x, r) .

Comparing with (5.7), we obtain (5.6) with λ = const (1 + ε)−k, which can be made
< 1 by taking k large enough.

Lemma 5.3 Let ν (x, r) be a positive function on X × (0,+∞) with the following
properties:

• for all x ∈ X and 0 < r ≤ R,

A1

(
R

r

)α
≤
ν(x,R)

ν(x, r)
≤ A2

(
R

r

)α′

(5.8)

for some constants A1, A2 > 0 and

α′ ≥ α > β; (5.9)

• if B(y, r) ⊂ B(x,R) and r ≤ R then

ν(y, r) ≤ ν(x,R); (5.10)
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• for all distinct x, y ∈ X and a constant β > 0

g(x, y) '

∞∫

d(x,y)

tβ−1dt

ν(x, t)
; (5.11)

Then the hypotheses (A) and (B) are satisfied.

Remark 5.4 The condition α > β implies that the integral (5.11) converges.

Proof. Let us show that in fact

g (x, y) '
rβ

ν (x, r)
, (5.12)

where r = d (x, y). Indeed, we have

∫ ∞

r

tβ−1dt

ν (x, t)
≥
∫ 2r

r

tβ−1dt

ν (x, t)
≥

rβ

ν (x, 2r)
≥ A−1

2 2−α
′ rβ

ν (x, r)
,

so we are left to prove the upper bound

∫ ∞

r

tβ−1dt

ν (x, t)
≤ C

rβ

ν (x, r)
.

The latter is equivalent to
∫ ∞

r

ν (x, r)

ν (x, t)
tβ−1dt ≤ Crβ,

which in view of (5.8) amounts to

A−1
1

∫ ∞

t

(r
t

)α
tβ−1dt ≤ Crβ

and which holds because α > β.
To finish the proof, it suffices to verify that the function

J(x, r) :=
rβ

ν(x, r)

satisfies the hypotheses (J1) − (J3) of Proposition 5.1, which trivially follows from
(5.8)–(5.10).

Example 5.5 If
ν (x, r) ' rα (5.13)

where α > β then (5.11) amounts to

g (x, y) ' d (x, y)−(α−β)
. (5.14)

We already have seen that (5.14) implies (A) and (B) (see Lemma 4.1 and Propo-
sition 5.1).
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Example 5.6 Let X be a non-compact geodesically complete Riemannian manifold
and ν(x,R) be the Riemannian volume of the geodesic ball B(x,R) so that (5.10) is
automatically satisfied. Under certain hypotheses on X (in particular, if the Ricci
curvature of X is non-negative), the heat kernel pt (x, y) of X, that is, the minimal
positive fundamental solution to the heat equation on X, satisfies the Gaussian
estimate

pt (x, y) '
1

ν(x,
√
t)

exp

(

−
d2 (x, y)

ct

)

, (5.15)

for all x, y ∈ X, t > 0, where the constant c may be different for upper and lower
bounds (see [12], [13], [16], [31]). Since the Green function g (x, y) of the Laplace-
Beltrami operator is related to the heat kernel by

g (x, y) =

∫ ∞

0

pt (x, y) dt, (5.16)

integrating (5.15) in t, one obtains (5.11) with β = 2. Note that inequalities (5.8)
follow from (5.15) with some 0 < α ≤ α′ (see [12]). Hence, if (5.15) holds and in
addition α > 2 then the hypotheses (A) and (B) are satisfied.

Example 5.7 Let (X, d, ν) be a metric measure space and let ν (x, r) = ν (B (x, r))
where B (x, r) is a d-ball. In this case, (5.10) is automatically satisfied. Let in
addition (E ,F) be a Dirichlet form in L2 (X, ν) whose generator ∆ has a continu-
ous stochastically complete heat kernel pt (x, y). Assume in addition that pt (x, y)
satisfies the following sub-Gaussian estimate

pt (x, y) '
1

ν (x, t1/β)
exp

(

−

(
dβ(x, y)

ct

) 1
β−1

)

, (5.17)

for all x, y ∈ X, t > 0, where β > 1 is a parameter called the walk dimension. The
estimate (5.17) holds on a large variety of fractal spaces (see for example [1], [2],
[15], [17], [28]). Since the Green function g (x, y) of ∆ is related to the heat kernel by
(5.16), integrating (5.17) in t, one obtains (5.11). It is possible to prove that (5.17)
implies (5.8) with some 0 < α ≤ α′. If in addition α > β then all the assumptions
of Lemma 5.3 are satisfied and hence the hypotheses (A) and (B) hold.

5.2 Radial perturbations

We say that a positive function h (r) on R+ has the doubling property if h (r1) ≤
Ch (r2) for all r1, r2 ∈ R+ such that 1

2
≤ r1

r2
≤ 2.

Theorem 5.8 Let ν be a Borel measure on X such that the function ν (x, r) :=
ν (B (x, r)) is finite, positive and, for some 0 < α ≤ α′,

C−1

(
R

r

)α
≤
ν (x,R)

ν (x, r)
≤ C

(
R

r

)α′

whenever x ∈ X and 0 < r < R.

Assume that, for some 0 < β < α, the Green function g (x, y) satisfies the following
estimate

g (x, y) '
rβ

ν (x, r)
where r = d (x, y) , (5.18)
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for all distinct x, y ∈ X. Let µ be a Radon measure on X such that dµ = f (x) dν
where function f (x) is bounded on any ball. Fix a reference point o ∈ X, set
|x| = d (x, o), and

F (R) = sup
R
2
≤|x|≤2R

|f (x)| .

Then the perturbed Green function µg exists and satisfies the estimate

µg (x, y) ' g (x, y) ,

for all distinct x, y ∈ X such that

d (x, y) ≤ εmin
(
〈x〉, 〈y〉, F (|x|)−1/β, F (|y|)−1/β

)
, (5.19)

where 〈x〉 = 1 + |x| and ε > 0 depends on the constants from the hypotheses.

Remark 5.9 If f (x) ' |x|−γ for large r where γ ≤ β then (5.19) is equivalent to

d (x, y) ≤ εmin (〈x〉, 〈y〉)η ,

where η = γ/β. Some improvement of this result will be obtained in Corollary 5.11
below, although under a bit more restrictive hypotheses.

Proof. By Lemma 5.3, the hypotheses (A) and (B) are satisfied. In order to
apply Theorem 4.3, we need to estimate the function

Γµ (x,R) =

∫

B(x,R)

g̃ (x, z) f (z) dν (z) . (5.20)

Fix x ∈ X and R > 0. Observe that the function

g (r) :=
rβ

ν (x, r)

is doubling and g̃ (x, z) ' g (ρ) where ρ = d (x, z). For any positive function h on
R+ with doubling property we have

∫

B(x,R)

h (ρ) dν (z) =
∞∑

k=0

∫

B(x,2−kR)\B(x,2−(k+1)R)
h (ρ) dν (z)

≤ C

∞∑

k=0

h
(
2−kR

)
ν
(
x, 2−kR

)

≤ C

∫ R

0

h (r) ν (x, r)
dr

r
, (5.21)

whence

∫

B(x,R)

g̃ (x, z) dν (z) ≤ C

∫

B(x,R)

g (ρ) dν (z) ≤ C

∫ R

0

g (r) ν (x, r)
dr

r
= CRβ.

(5.22)
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Since f (z) is bounded on any ball, this implies that Γµ (x,R) is finite and Γµ (x,R)→
0 as R → 0 locally uniformly in x. Hence, Theorem 4.3 applies and yields that µg
exists and admits the estimate (4.8).

Let us show that

R ≤ min

(
1

4
〈x〉, F (|x|)−1/β

)

=⇒ Γµ (x,R) ≤ C. (5.23)

Assume first |x| ≥ 1. Then 〈x〉 ≤ 2 |x| and hence R ≤ 1
2
|x|. Therefore, for any

z ∈ B (x,R), we have 1
2
|x| ≤ |z| ≤ 3

2
|x| and hence f (z) ≤ F (|x|). By (5.20) and

(5.22), we obtain

Γµ (x,R) ≤ C

∫

B(x,R)

g̃ (x, z)F (|x|) dν (z) ≤ CRβF (|x|) ,

whence the claim follows because RF (|x|)1/β ≤ 1. If |x| < 1 then R < 1 and, hence,
Γµ (x,R) is bounded by (5.22).

The condition (5.19) implies d (x, y) ≤ 4εR where

R = min

(
1

4
〈x〉,

1

4
〈y〉, F (|x|)−1/β

, F (|x|)−1/β

)

.

Assuming that ε < δ
8

where δ is the constant from hypothesis (B), we obtain
d (x, y) < δ

2
R and hence, by (4.8) and (5.23), µg (x, y) ≥ cg (x, y), which was to

be proved.

Theorem 5.10 Let ν be a Borel measure on X such that for all x ∈ X and t > 0,

ν (B (x, r)) ' v (r) ,

where v (r) is a positive continuous function in R+ satisfying the estimates

C−1

(
R

r

)α
≤
v (R)

v (r)
≤ C

(
R

r

)α′

(5.24)

for all 0 < r < R, where 0 < α ≤ α′. Assume that the Green function g (x, y)
satisfies the estimate

g (x, y) '
rβ

v (r)
, where r = d (x, y) , (5.25)

for all distinct x, y ∈ X, where β is a constant such that

0 < β < α.

Fix a reference point o ∈ X and assume that µ is Radon measure on X such that

dµ

dν
(x) ≤ f (|x|) for all x ∈ X, (5.26)

where |x| := d (x, o) and f (s) is a positive decreasing function on R+ satisfying the
doubling condition.

Then a perturbed Green function µg exists and satisfies the following estimates,
for some positive constants C, c and for all distinct points x, y ∈ X.
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(i) If ∫ ∞

1

f (r) rβ−1dr <∞

then
µg (x, y) ' g(x, y). (5.27)

(ii) If f (r) ' r−β for large r then

1 ≥
µg(x, y)

g(x, y)
≥ cmin

(
〈y〉
〈x〉

,
〈x〉
〈y〉

)τ
, (5.28)

with some constant τ > 0, where 〈x〉 := 1 + |x|.

(iii) If f (r) ' r−γ for large r where 0 < γ < β then

1 ≥
µg(x, y)

g(x, y)
≥ c exp

[

−C d (x, y)β−γ
(

d (x, y)

〈x〉+ 〈y〉

)θ]

, (5.29)

where θ = min(γ, α− β).

Corollary 5.11 In the setting of Theorem 5.10, let f (r) ' r−γ for large r, where
γ > 0.

(i) If γ > β then (5.27) holds for all distinct x, y.

(ii) If γ = β then (5.27) holds provided 〈x〉 ' 〈y〉.

(iii) If γ < β then (5.27) holds provided

d (x, y) ≤ C (〈x〉+ 〈y〉)η , (5.30)

where η = θ
θ+β−γ = min

(
γ
β
, α−β
α−γ

)
(see Fig. 2).

y

xo

|y|

|x|

C x
η

d(x,y)

Figure 2: For all y ∈ B (x,C〈x〉η), we have µg (x, y) ' g (x, y)

Proof of Theorem 5.10. Obviously, the hypotheses of Theorem 5.8 are
satisfied, and hence the perturbed Green function µg exists and satisfies the estimate
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(4.8) of Theorem 4.3. All we need is to obtain good enough estimates for Γµ (x,R)
to use in (4.8).

Set g (r) = rβ/v(r) so that g̃ (x, y) ' g (r) where r = d (x, y). Given x ∈ X and
R > 0, split the integration in (4.6) into two domains: |z| < d (x, z) =: ρ and |z| ≥ ρ
(see Fig. 3) and set

Γ1 : =

∫

B(x,R)∩{|z|<ρ}

g̃(x, z)dµ(z) (5.31)

Γ2 : =

∫

B(x,R)∩{|z|≥ρ}

g̃(x, z)dµ(z) (5.32)

so that Γµ (x,R) = Γ1 + Γ2.

|z| ρ

x o

|z|<ρ

R

Figure 3: Estimating Γ1 and Γ2

Estimate of Γ1. If z ∈ B (x,R) and |z| < ρ then |z| < R whence

Γ1 ≤
∫

B(o,R)∩{|z|<ρ}

g̃(x, z)dµ(z) '
∫

B(o,R)∩{|z|<ρ}

g(ρ)dµ(z)

It follows from the triangle inequality that ρ ' |x|+ |z| and hence

g (ρ) ' g (|x|+ |z|) .

Using this, (5.26), and (5.21), we obtain

Γ1 ≤ C

∫

B(o,R)

g (|x|+ |z|) f (|z|) dν (z) ≤ C

∫ R

0

g (|x|+ r) f (r) v (r)
dr

r
.

Estimate of Γ2. If z ∈ B (x,R) and |z| ≥ ρ then by the triangle inequality
|z| ' |x|+ ρ and hence

dµ

dν
(z) ≤ f (|z|) ' f (|x|+ ρ) .
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Therefore, by (5.32) and (5.21),

Γ2 ≤ C

∫

B(x,R)

f (|x|+ ρ) g (ρ) dν (z)

≤ C

∫ R

0

f (|x|+ r) g (r) v (r)
dr

r

≤ C

∫ R

0

f (|x|+ r) rβ−1dr.

Combining the estimates of Γ1 and Γ2, we obtain

Γµ (x,R) ≤ C

∫ R

0

f (r) g (|x|+ r) v (r)
dr

r
+ C

∫ R

0

f (|x|+ r) rβ−1dr. (5.33)

Consider some consequences of (5.33). It follows from the definition of g (r) and
α > β that

g (|x|+ r) v (r) ≤ Cg (r) v (r) = Crβ.

Since f is decreasing, we have

f (|x|+ r) ≤ f (r) .

Hence, we obtain from (5.33) that

Γµ (x,R) ≤ C

∫ R

0

f (r) rβ−1dr.

Consequently, if ∫ ∞

0

f (r) rβ−1dr <∞, (5.34)

then Γµ (x,R) ≤ const and hence, for all x 6= y,

µg (x, y) ' g (x, y) ,

which settles part (i).
In general, we can estimate the integrals in (5.33) as follows. By (5.24), we know

that g(|x|+ r) ≤ Cg(|x|) if r ≤ |x| and g(|x|+ r) ≤ Cg(r) if r ≥ |x|. Therefore,

∫ R

0

f(r)g(|x|+ r)v(r)
dr

r
≤ Cg(|x|)

∫ |x|∧R

0

f(r)v(r)
dr

r
+ C

∫ R

|x|∧R
f(r)rβ−1 dr.

(5.35)
Moreover, since f is decreasing,

∫ R

0

f(|x|+ r)rβ−1 dr ≤
1

β
f(|x|)(|x| ∧ R)β +

∫ R

|x|∧R
f(r)rβ−1 dr. (5.36)

Adding (5.35) and (5.36), we obtain by (5.33) that

Γµ (x,R) ≤ Cg (|x|)
∫ R

0

f (r) v (r)
dr

r
+ Cf (|x|)Rβ, if |x| ≥ R. (5.37)
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Furthermore, by (5.24),

g(|x|)
f(|x|)|x|β

∫ |x|

0

f(r)v(r) dr ≥
∫ |x|

0

v(r)

v(|x|)
dr

r
≥ c

∫ |x|

0

(
r

|x|

)α′
dr

r
≥ c

so that

g (|x|)
∫ |x|

0

f(r)v(r) dr ≥ cf(|x|)|x|β.

Thus, the estimates (5.35) and (5.36) yield that

Γµ (x,R) ≤ Cg (|x|)
∫ |x|

0

f (r) v (r)
dr

r
+ C

∫ R

|x|
f (r) rβ−1dr if |x| < R. (5.38)

Now assume that f (r) ≤ Cr−β for large r. Then the first integral in (5.37) and
(5.38) can be estimated by

|x|β

v (|x|)

∫ |x|

0

f (r) v (r)
dr

r
≤ C+C

∫ |x|∨1

1

v (r)

v (|x|)

(
|x|
r

)β
dr

r
≤ C+C

∫ |x|∨1

1

(
r

|x|

)α−β
dr

r
≤ C,

whence in the both cases

Γµ (x,R) ≤ C + C log+

R

〈x〉
,

where 〈x〉 = 1 + |x|. Taking in (4.8) R = 3δ−1d (x, y) and using this estimate of
Γµ (x,R) we obtain

µg(x, y)

g(x, y)
≥ c

(

1 +
R

〈x〉

)−τ (

1 +
R

〈y〉

)−τ
,

for some τ > 0. If |x| ≥ |y| then R ≤ C |x| and the first factor here is estimated by
a constant, whereas for the second factor we have

1 +
R

〈y〉
=
〈y〉+R

〈y〉
'
〈x〉
〈y〉

whence
µg(x, y)

g(x, y)
≥ c

(
〈y〉
〈x〉

)τ
.

Similarly, one treats the case |x| ≤ |y|, whence (5.28) follows.
Suppose next that f (r) ≤ Cr−γ for large r, where 0 < γ < β. Then, for any

s ≥ 1,

∫ s

0

f (r) v (r)
dr

r
≤ C+

∫ s

1

v (r)

rγ
dr

r
= C+

∫ s

1

v (r)

rβ
rβ−γ−1dr ≤ C+C

v (s)

sβ
sβ−γ ≤ C+C

v (s)

sγ
,

whereas for 0 < s < 1 ∫ s

0

f (r) v (r)
dr

r
≤ C.
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Therefore, in the case |x| < R, we obtain by (5.38) that

Γµ (x,R) ≤ C+C
|x|β

v (|x|)

∫ |x|

1

v (r)

rγ
dr

r
+CRβ−γ ≤ C+C |x|β−γ+CRβ−γ ≤ C+CRβ−γ ,

and in the case |x| ≥ R, (5.37) yields

Γµ (x,R) ≤ C
|x|β

v (|x|)

∫ R

0

v (r)

rγ
dr

r
+ C |x|−γ Rβ

≤ C +
|x|β

v (|x|)
v (R)

Rγ
+ C |x|−γ Rβ

≤ C + CRβ−γ

(
|x|β

Rβ

v (R)

v (|x|)
+
Rγ

|x|γ

)

≤ C + CRβ−γ

((
R

|x|

)α−β
+

(
R

|x|

)γ)

≤ C + CRβ−γ

(
R

|x|

)θ
,

where θ = min (α− β, γ). So, in both cases, we have

Γµ (x,R) ≤ C +Rβ−γ min

(

1,
R

|x|

)θ
≤ C + CRβ−γ

(
R

|x|+R

)θ
. (5.39)

Taking in (4.8) R = 3
δ
d (x, y) and observing that R+ |x| ' |x|+ |y|, we obtain from

(5.39)
µg(x, y)

g(x, y)
≥ c exp

(

−CRβ−γ

(
R

|x|+ |y|

)θ)

. (5.40)

Finally, let us show why |x|+ |y| can be replaced by 〈x〉+ 〈y〉. If |x|+ |y| ≥ 1 then
|x|+|y| ' 〈x〉+〈y〉 and all is clear. If |x|+|y| ≤ 1 then d (x, y) ≤ |x|+|y| ≤ 1 whence

it follows that both R and R
|x|+|y| are bounded and hence

µg(x,y)
g(x,y)

≥ c. Therefore, any

negative expression inside the exponential in (5.40) will do.

5.3 An example with singular measure

Let S be a hyperplane in Rn, n > 2, passing through the origin, and consider the
measure1 µ = f (x) δS, where f is a continuous function on S. Given x ∈ Rn and
R > 0, let x′ be the orthogonal projection of x onto S and set

Rx =

{ √
R2 − |x− x′|2, if |x− x′| < R,

0, if |x− x′| ≥ R

(see Fig. 4).

1Here δS is the singular measure on Rn which is supported on S and its restriction on S is the
(n− 1)-dimensional Lebesgue measure.
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x

x

S

R

Rx

Figure 4:

Clearly, we have
Γµ (x,R) = Γµ (x′, Rx) .

In order to estimate Γµ (x′, r), we can apply the estimates obtained in the proof of
Theorems 5.8 and 5.10 to the case X = S , v (r) = crn−1, and g (r) = cr2−n so that
α = n − 1 and β = 1 < α. Therefore, as in the proof of Theorem 5.8, Γµ (x′, r) is
finite and goes to 0 as r → 0 locally uniformly in x′, and hence, by Theorem 4.3, µg
exists and satisfies the estimate (4.8), which can be rewritten as follows:

µg (x, y)

g (x, y)
≥ exp (−C − CΓµ (x′, Rx)− CΓµ (y′, Ry)) . (5.41)

Assuming further that f (x) ' |x|−γ for large |x|, we obtain as in Theorem 5.10 the
following:

(i) If γ > 1 then Γµ (x′, r) ≤ C and hence Γµ (x,R) ≤ C for all x ∈ Rn and
R > 0, which implies µg (x, y) ' g (x, y) for all distinct x, y ∈ Rn.

(ii) If γ = 1 then

Γµ (x′, r) ≤ C + C log+

r

〈x′〉
.

Taking R = 3 |x− y| we obtain from (5.41)

µg (x, y)

g (x, y)
≥ exp

(

−C − C log+

Rx

〈x′〉
− C log+

Ry

〈y′〉

)

≥ c

(

1 +
Rx

〈x′〉

)−τ (

1 +
Ry

〈y′〉

)−τ
, (5.42)

for some c, τ > 0. The dependence on x, y here is not transparent. Of course, if
x, y ∈ S then (5.42) amounts to (5.28). Consider another interesting case when x
and y are on the opposite sides from S. In this case,

|x− y| ≥ |x− x′|+ |y − y′|

whence Rx ' R ' Ry and

µg (x, y)

g (x, y)
≥ c

(

1 +
|x− y|
〈x′〉

)−τ (

1 +
|x− y|
〈y′〉

)−τ
.
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(iii) If 0 < γ < 1 then

Γµ (x′, r) ≤ C + Cr1−γ

(
r

|x′|+ r

)θ
,

where θ = min (n− 2, γ) . In the case when x and y are on the opposite sides from
S and |x′| ≥ |y′|, we obtain from (5.41)

µg (x, y)

g (x, y)
≥ exp

(

−C − C |x− y|1−γ
(

|x− y|
|x′|+ |x− y|

)θ)

.
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